Staff View
Identifying structure-property-processing relationships of tyrosol-derived polyarylates for the efficient design of biodegradable medical devices

Descriptive

TitleInfo
Title
Identifying structure-property-processing relationships of tyrosol-derived polyarylates for the efficient design of biodegradable medical devices
Name (type = personal)
NamePart (type = family)
Cohen
NamePart (type = given)
Jarrod
NamePart (type = date)
1992
DisplayForm
Jarrod Cohen
Role
RoleTerm (authority = RULIB); (type = text)
author
Name (type = personal)
NamePart (type = family)
Brennan
NamePart (type = given)
John
DisplayForm
John Brennan
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
chair
Name (type = personal)
NamePart (type = family)
Knapp
NamePart (type = given)
Spencer
DisplayForm
Spencer Knapp
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
internal member
Name (type = personal)
NamePart (type = family)
Warmuth
NamePart (type = given)
Ralf
DisplayForm
Ralf Warmuth
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
internal member
Name (type = personal)
NamePart (type = family)
Gormley
NamePart (type = given)
Adam
DisplayForm
Adam Gormley
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
outside member
Name (type = corporate)
NamePart
Rutgers University
Role
RoleTerm (authority = RULIB)
degree grantor
Name (type = corporate)
NamePart
School of Graduate Studies
Role
RoleTerm (authority = RULIB)
school
TypeOfResource
Text
Genre (authority = marcgt)
theses
Genre (authority = ExL-Esploro)
ETD doctoral
OriginInfo
DateCreated (qualifier = exact); (encoding = w3cdtf); (keyDate = yes)
2021
DateOther (type = degree); (qualifier = exact); (encoding = w3cdtf)
2021-01
Language
LanguageTerm (authority = ISO 639-3:2007); (type = text)
English
Abstract
Polymeric biomaterials have revolutionized the medical sector, but acidic degradation byproducts, limited tunability, and non-degradability of those used in commercial products, has led to an unmet need for new, improved libraries of polymers. Specifically, the design of new materials with defined structure-property relationships will enable faster, and more efficient material selection for application specific research. Biomedical research intertwines itself between many scientific disciplines including chemistry, materials science, biology, engineering and medicine. Due to the complexity in designing new biomaterials, many research groups focus on incremental chemical or physical modifications to existing materials such as composites of metal alloys or synthetic polymers like poly(lactic acid) (PLA). To address limitations polymeric biomaterials, several laboratories have focused their efforts on developing new libraries based on amino acids for their improved biocompatibility and tunability. Tyrosine has had great translational success from the Kohn group into the clinic due to the structurally rigid aromatic ring and biocompatibility of the amino acid. Tyrosine has been successfully used by the Kohn lab to generate polycarbonates and polyarylates, which exhibit excellent biocompatibility and tunability. Slight modifications to these polymers including incorporation of hydrophilic oligomers of PEG or free acid groups led to a library of materials with predictable tunability. One major limitation of tyrosine-based polymers is the mismatch between degradation and resorption due to the presence of amide linkages, the degradation of which is limited to enzymatic modes. We hypothesize that to overcome this limitation, replacing the amide bond in the tyrosine diphenol with an ester derived from tyrosol will promote resorption while maintaining biocompatibility and tunability.
Tyrosol is a naturally derived anti-oxidant commonly found in olive oil. A small subset of the library described in this dissertation have been previously used in 3D printing applications. However, the design of such polymers for broader biomedical applications has not been explored. Establishing structure property relationships within a library of tyrosol-derived polymers was a main thrust of this dissertation. We hypothesize that establishing these correlations will enable the more efficient design of polymers for specific application. Synthetic optimization of novel tyrosol diphenols and subsequent polymers followed by an intensive examination of polymer properties was carried out to identify the great potential of this library. Tyrosol derived poly(ester-arylate)s were explored with three major structural comparisons: (i) diphenol symmetry, (ii) diacid carbon chain length, and (iii) diacid bond rigidity. Resulting polymers were then characterized for their chemical, degradative, thermal, mechanical, and biological properties. Structure-property relationships were established to better guide material design.
A wide range of material parameters were obtained and implications in polymer design identified. These design parameters were extended to specific processing techniques including additive manufacturing. Methods for improving bioinks used in additive manufacturing were explored through the use of click chemistry to further expand on the polymer properties of printed constructs using fused deposition modeling. Correlations between polymer molecular weight, printing parameters, and post printing curing times were identified.
Additionally, these polymers were investigated for their use as drug eluting devices. A subset of the developed polymer library was chosen, and chemical modifications were made to the polymers in order to provide improved drug delivery for both hydrophobic and hydrophilic APIs. Extruded implantable devices loaded with drug were designed for applications including implantable birth control and treatments for HIV. Poor patient compliance is often a hurdle in improving clinical outcomes, and therefore, long acting implants can improve treatment effectiveness.

Guided rationale based upon the known chemical properties of monomers was used to design an expanded library of poly(ester-arylate)s for a range of biomedical applications. Tunability of thermal, mechanical, and processing properties enables selection of a material for specific physiological applications, as different pathologies require materials to match their properties. This library has established a platform for developing versatile polymeric materials by biomolecular tethering to improve device properties, incorporation of peptides for improved biologically responsive degradation, and new resorbable nerve conduits.
Subject (authority = local)
Topic
Polymer chemistry
Subject (authority = RUETD)
Topic
Chemistry and Chemical Biology
RelatedItem (type = host)
TitleInfo
Title
Rutgers University Electronic Theses and Dissertations
Identifier (type = RULIB)
ETD
Identifier
ETD_11341
PhysicalDescription
Form (authority = gmd)
electronic resource
InternetMediaType
application/pdf
InternetMediaType
text/xml
Note (type = degree)
Ph.D.
Note (type = bibliography)
Includes bibliographical references
RelatedItem (type = host)
TitleInfo
Title
School of Graduate Studies Electronic Theses and Dissertations
Identifier (type = local)
rucore10001600001
Location
PhysicalLocation (authority = marcorg); (displayLabel = Rutgers, The State University of New Jersey)
NjNbRU
Identifier (type = doi)
doi:10.7282/t3-emvr-4x25
Back to the top

Rights

RightsDeclaration (ID = rulibRdec0006)
The author owns the copyright to this work.
RightsHolder (type = personal)
Name
FamilyName
Cohen
GivenName
Jarrod
Role
Copyright Holder
RightsEvent
Type
Permission or license
DateTime (encoding = w3cdtf); (qualifier = exact); (point = start)
2020-12-15 14:29:21
AssociatedEntity
Name
Jarrod Cohen
Role
Copyright holder
Affiliation
Rutgers University. School of Graduate Studies
AssociatedObject
Type
License
Name
Author Agreement License
Detail
I hereby grant to the Rutgers University Libraries and to my school the non-exclusive right to archive, reproduce and distribute my thesis or dissertation, in whole or in part, and/or my abstract, in whole or in part, in and from an electronic format, subject to the release date subsequently stipulated in this submittal form and approved by my school. I represent and stipulate that the thesis or dissertation and its abstract are my original work, that they do not infringe or violate any rights of others, and that I make these grants as the sole owner of the rights to my thesis or dissertation and its abstract. I represent that I have obtained written permissions, when necessary, from the owner(s) of each third party copyrighted matter to be included in my thesis or dissertation and will supply copies of such upon request by my school. I acknowledge that RU ETD and my school will not distribute my thesis or dissertation or its abstract if, in their reasonable judgment, they believe all such rights have not been secured. I acknowledge that I retain ownership rights to the copyright of my work. I also retain the right to use all or part of this thesis or dissertation in future works, such as articles or books.
RightsEvent
Type
Embargo
DateTime (encoding = w3cdtf); (qualifier = exact); (point = start)
2021-01-31
DateTime (encoding = w3cdtf); (qualifier = exact); (point = end)
2023-01-31
Detail
Access to this PDF has been restricted at the author's request. It will be publicly available after January 31st, 2023.
Copyright
Status
Copyright protected
Availability
Status
Open
Reason
Permission or license
Back to the top

Technical

RULTechMD (ID = TECHNICAL1)
ContentModel
ETD
OperatingSystem (VERSION = 5.1)
windows xp
CreatingApplication
Version
1.4
DateCreated (point = end); (encoding = w3cdtf); (qualifier = exact)
2020-12-17T23:33:55
DateCreated (point = end); (encoding = w3cdtf); (qualifier = exact)
2020-12-17T18:35:38
ApplicationName
macOS Version 10.14.1 (Build 18B75) Quartz PDFContext
Back to the top
Version 8.3.13
Rutgers University Libraries - Copyright ©2021