
SAFE MOTION CONTROL AND PLANNING FOR
AUTONOMOUS RACING VEHICLES

by

ALIASGHAR ARAB

A dissertation submitted to the

School of Graduate Studies

Rutgers, The State University of New Jersey

In partial fulfillment of the requirements

For the degree of

Doctor of Philosophy

Graduate Program in Mechanical and Aerospace Engineering

Written under the direction of

Jingang Yi

and approved by

New Brunswick, New Jersey

May, 2021
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Jingang Yi

In the future of the autonomous car industry saving lives might depend on more de-

manding maneuvers than what the average drivers know how to do. Professional race

car drivers, as well as some skilled stunt drivers, are able to exteremely push the lim-

its of a vehicle’s capabilities and safety features which are useful to avoid hazardous

situations. By understanding these human-inspired driving abilities, a motion plan-

ning and autonomous vehicle control system can be developed for enabling Aggressive

Maneuvering as a Safety Feature (AMSF). Similar to existing and widely used vehicle

safety features, such as anti-lock braking and electronic stability control, AMSF can

be utilized to increase overall safety. AMSF system will push the limits of maneu-

verability and motion stability to enable the next generation of accident-free vehicle

systems. The design of an AMSF requires advanced theoretical tools and algorithms to

guarantee safety assurance under a dynamically changing environment. Current AMSF

design methods incorporate a variety of elements such as analytical vehicle dynamics

model-based control, machine learning-based methods to mimic expert human drivers,

integrated physical model-based knowledge, and experience-based skills to enhance ve-

hicle maneuverability with guaranteed motion stability.

ii



The main goal of this dissertation focuses on the safety-guaranteed motion planner

and controller design for AMSF. This dissertation proposes methods and algorithms

that enable the integration of data-driven approaches based on machine learning tech-

niques and physical model analysis that will achieve parity with and even exceed the

driving skills of the most skilled drivers. To achieve these goals, several new modeling

and control approaches are developed in this dissertation. First, in order to improve

the physical model accuracy under a dynamic environment, Gaussian Process on Poly-

nomial Basis (GPPB) method is proposed to learn from human expert driving data. A

Sum Of Square (SOS) method is used to estimate the safety boundary of the nonlinear

vehicle dynamics to enable the use of Nonlinear Model Predictive Controller (NMPC)

for AMSF design. It is also shown that the safety of the aggressive maneuvering can be

considered as a safety brier applied as constraints to the vehicle’s motion similar to a

control barrier function. The main rationale of these designs comes from observations

that many physical models cannot effectively capture dynamic changes or the uncer-

tainties of the vehicle/environment interactions, such as tire-road contact properties.

Machine learning-based methods generally provide an effective means to obtain the

system dynamics changes in real time and incorporate them into the control design.

One important feature of the above integrated GPPB and SOS approach lies in

the guaranteed safety and stability under the control design for aggressive vehicle ma-

neuvers. The motion safety assurance while tracking a planned trajectory has been

successfully resolved by integrating the data-driven methods with physical model-based

controllers under dynamic changing environments. Theoretical analyses are presented

in the dissertation for the vehicle dynamics model and also extendable to other well-

understood dynamics structure of the car-like robots. The Lyapunov stability method

is used to show safety assurance of a learning model-based control framework. A scaled

race car-like robot is used as an experimental testbed to demonstrate the proposed con-

trol of the AMSF design. The experimental results demonstrate superior agility and

fast traveling time performance under the proposed control design than those under the

physical model-based control design in literature.
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Another important aspect of this dissertation focuses on the real time motion plan-

ning for AMSF design. Planning the trajectory for an autonomous vehicle for agile

maneuvers in a dynamic environment is complex and challenging, especially when the

autonomous vehicles tend to maximize the driving capabilities to achieve certain met-

rics such as traveling time, etc. The proposed motion planner in the dissertation takes

advantage of the Sparse Stable Trees (SST), the Star Rapidly-exploring Random Tree

(RRT*) algorithm, and the NMPC design. The use of the sparsity property helps to

reduce the computational burden of the RRT* method by removing non-used nodes in

each iteration and therefore to render the algorithm to converge to optimal path quickly.

A heuristic quality function is used to guide the search to achieve faster convergence,

and the NMPC is used for rewiring feasibility among nodes. The motion planner is

tested experimentally and also compared with the existing benchmarks to demonstrate

superior performance.

Finally, the last part of the dissertation discusses and proposes an extension of the

above-mentioned methods to further incorporate the newly development of machine

learning techniques. Another goal is to test Gaussian Process and Reinforcement Learn-

ings for direct and indirect controller design. Our goal is to test the learning methods

for both the off-line and the online applications and design stable adaptive rules for real

time stability and safety assurance and performance enhancement. Taking advantage of

policy search approaches alongside nonlinear programming methods gives strong opti-

mization power for overall safety and agility in real time implementation. The works in

this part will be experimentally validated and demonstrated using two different car-like

robot platforms: one is racing car-like and the other is a scaled autonomous truck used

for the minimum time lap and stunt maneuverings experiments.
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Chapter 1

Introduction

Replacing human-operated vehicles, which are today the primary mode of transporta-

tion across the world, with autonomous vehicles (also called self-driving, driverless or

robotic vehicles), would inevitably have a profound impact on nearly every aspect of

future human society [2]. Like any new technology, Autonomous Vehicles (AV) will

become accepted by society if perceived as safe. This can only happen if automotive

companies can ensure that AVs are safe, boost productivity, and reduce the environ-

mental impact of traditional human-operated vehicles [3]. AVs need not only perform

under normal driving conditions but also under specific safety scenarios ranging from

routine police interactions to unexpected emergency situations that may require fast re-

actions (e.g., dodging an unexpected obstacle, saving valuable road users, or performing

quick detours and fast evacuations). To this end, it is essential to look to professional

driving skills in order to help design safe autonomous aggressive maneuvers for hazard

avoidance [4].

About 94% of the approximately 1.25 million annual automotive deaths worldwide

and the 40, 000 annual automotive deaths in the United States are attributed to drivers’

behavior. According to the World Health Organization, 49% of road traffic deaths in-

volve pedestrians (22%), cyclists (4%), motorcycles (23%) in addition to vehicle-animal

crashes and accidents due to natural disasters [5]. The role of human drivers in vehicle

accidents will not dramatically change unless advances in technology and science will

make building AVs more reliable than human beings possible [6]. As with technolo-

gies such as Anti-Lock Braking Systems (ABS) and Electronic Stability Control (ESC),

AVs aim to reduce fatalities and severe injuries in valuable road users by improving the

safety of vehicle operation during emergency maneuvers [7].
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Humans’ natural and unconscious response to unpredictable hazards, such as an

oncoming object, is to dodge rather than block. A motion planner and controller for

safe agile maneuvers may be designed inspired by this natural evasive human reaction.

Agile maneuvers performed by race-car drivers demonstrate that vehicles are capable

of such evasive steering. In turn, these behaviors can be used by AVs in emergency

situations to avoid collisions [1]. Despite the current conventional prohibitions against

aggressive maneuvering on the road, AVs can learn from professional race-car drivers

to perform stable yet agile motions [8]. Such actions increase AV maneuverability in

avoiding unanticipated obstacles at high speed while maintaining vehicular control and

ensuring safety across all operating environments [9].

Advancements in machine perception such as high precision sensors, computer vi-

sion, the use of LIDAR, enhanced embedded computers, and robust connectivity have

enabled AVs to implement accurate cognitive algorithms such as motion planning and

predictive controllers to pursue self-driving and obstacle avoidance autonomously. Ad-

vances in computational methods can make planning a motion safely by taking ad-

vantage of the vehicle’s full dynamic capabilities possible. Motion planning algorithms

are able to find all the physically feasible paths that the vehicle can take to avoid a

collision. In contrast, the motion control system would be able to take advantage of

the vehicle’s full capabilities. Aggressive maneuvers for emergency situations require

operating the vehicle up to its stability limits. These limitations are affected by various

uncertainties such as modeled dynamics and the friction force between the tires and

different road surfaces. Extensive driving experience and solid knowledge about the

vehicle’s operation enable race-car drivers to perform maneuvers at the limits of the

vehicle’s handling. This dissertation seeks to go beyond modeling the skills of a normal

car driver in order to achieve the performance of a race-car driver in certain scenarios

for autonomous driving.

A motion planning algorithm utilizing a high accuracy model of the car dynamics is

able to find a path for AVs to compete with professional car drivers (and possibly win in

a race). A predictive motion controller emulating the behavior of professional car drivers

maximizes vehicle performance while maintaining stability in dynamic circumstances.
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This dissertation proposes motion planning and controller machinery inspired by these

techniques to safely maximize the autonomous vehicle’s maneuverability in emergency

situations. Aggressive maneuvering techniques similar to ESV and ABS can serve as

emergency hazard avoidance for the next generation of safety features to keep vulnerable

road users safe. This dissertation aims to boost the understanding of safe aggressive

maneuvers such that the comprehension gained can be applied to motion planning and

controller design for future AV safety features.

1.1 Background

Aggressive vehicle maneuvers are commonly used by professional race-car drivers to

achieve fast and agile performance. Understanding these skilled maneuvers can help

design autonomous driving capability and active safety features under extreme condi-

tions such as emergency situations [1, 10, 11]. Aggressive maneuvering performed by

race-car drivers is usually planned in advance as a feasible and safe path while they are

aware of the limits for the vehicle’s maximum maneuverability and ability to maintain

the vehicle’s motion still safe. The act of overseeing the agile maneuver by race-car

drivers can be replaced by a motion planner, which is embedded the physical properties

of the vehicle into consideration. Then, the motion controller performs the action by

assuring the vehicle is able to follow the planned trajectory. Motion planner and motion

controller design for aggressive maneuvering are analytically challenging, safety-critical,

and computationally expensive.

Using professional driver testing data for pendulum-turn maneuvers shows the ma-

neuver stability and agility performance demonstrated by more experienced race-car

drivers out-performs normal drivers [10, 12]. Understanding professional driving skills

will aid in designing human-inspired autonomous vehicle aggressive maneuvers intended

to handle unstable vehicle motion in such scenarios as high-speed obstacle avoidance.

Although significant efforts and progress have been made in recent years, systematic

analysis and motion planning, and control system design are still needed to guarantee

the performance and safety of these autonomous aggressive maneuvers. Thus, this dis-

sertation proposes that insights gained from studying skilled drivers in highly dynamic
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maneuvers and basic control theories with numerical methods for stability and safety

analysis can be applied to guarantee the safety of vehicle control systems during aggres-

sive maneuvering. Using agile maneuvers to autonomously avoid hazardous accidents

and improve vulnerable road users safety is called Aggressive Maneuvering as a Safety

Feature (AMSF). Figure 1.1 shows an example of the AMSF.

Figure 1.1: Frames captured from a simulations shows the car avoids a hazardous
accident using aggressive maneuverings. (from top left). This image is extracted from
video games.

1.1.1 Aggressive Maneuvering as a Safety Feature

Studying aggressive maneuvers of robotic vehicles and autonomous cars has drawn aca-

demic and industry attention in recent years. However, most existing work, focuses on

maneuvering and motion analysis [10,13–19]. Few works, use these analyses to increase

safety and stability [20]. Investigating the stable and safe region as an attraction re-

gions in the state space under certain control laws is a challenging problem [21]. Safety

assurance in autonomous aggressive maneuvering is highly complicated, and vehicle

dynamics are dependent on only traction or braking forces that are generated by four

small contact patches between the tire and the road, as shown in Figure 1.2(a). Due

to the complexity of modeling, sensing, and tire/road interactions, stability analysis
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of ground vehicles for aggressive maneuvering becomes particularly challenging. The

longitude and lateral stability of the vehicle for trail-braking and pendulum-turn cor-

nering maneuvers by rally-racing drivers are studied, and an optimization approach is

formulated to parameterize professional drivers’ behavior [22–26].

Studying extremely aggressive maneuvers can be used for designing motion planning

and controllers for handling vehicles under unstable motion, particularly in emergency

situations such as high-speed obstacle avoidance and skidding. This approach requires

a rethinking of the definition of vehicles’ stability. Sliding and slipping are considered

to potentially cause unstable motion in regular vehicle maneuvers. However, for aggres-

sive maneuvering, they are instead considered useful to contribute to vehicles’ safety

under certain scenarios. The well-controlled utilization of the tire force capacity and

intentional sliding and slipping by expert human drivers improves maneuvering agility.

When attempting to drive collision-free paths in emergency situations, automobiles are

limited by the amount of tire forces that can be produced through the contact patch.

The limit, which is commonly shown as a frictional circle in Figure 1.2(b), is defined

by the product of the tire-road friction coefficient and the vertical load of on the tire.

The friction circle is captured as √
F 2
x + F 2

y ≤ Fzµ, (1.1)

where Fx, Fy, and Fz are the longitude, lateral and normal forces, respectively, and µ

is the total friction coefficient that is highly uncertain and its accurate value is difficult

to find in real time.

(a) (b)

Figure 1.2: (a) The schematic view of a tire. (b) Coupling circle of the friction with
the friction range.
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The tire-road friction model is highly nonlinear and consists model uncertainty,

and the vehicle model is subject to nonholonomic constraints, which makes the control

design more challenging since classic control methods are not able to solve this nonlinear

control problem under motion constraints for aggressive maneuvering.

1.1.2 Stability of aggressive maneuvering

Researchers have made incredible advances in active safety control of the autonomous

vehicle, with potentially hazard avoidance features that commonly limit the vehicle’s

motion [4,27]. In contrast, the next generation of active safety control for autonomous

vehicles should not restrict the vehicle’s motion. Taking advantage of the vehicle’s

motion’s maximum capacity is not possible without a proper understanding of the

vehicle’s dynamic. Hence, autonomous aggressive maneuvers can be planned in advance

by understanding its dynamic and predicting maximum capability. Afterward, the

predictive controller is able to follow the planned aggressive maneuvers for unexpected

situations to avoid possible injuries to vulnerable road users.

Onboard vehicle sensors can measure the vehicle’s current states in real time. Know-

ing the vehicle model and using a predictive controller, we can oversee the vehicle’s

future conditions, such as safety and stability, with certain accuracy. Predicting the

vehicle’s future condition and assuring its safety allows the controller to maximize the

present performance while sustaining long-term stability. A stable autonomous con-

troller for aggressive maneuvering under rapidly changing conditions should be able

to predict the vehicle’s handling limits and learn in a manner similar to professional

drivers [28,29]. Experienced drivers skim the road differently and predict the next sce-

narios and possible actions to avoid accidents. Classic analytical methods have been

used to find and analyze dynamical systems’ stability and safety. There is a lack of

conversance to utilize these methods for complex problems such as autonomous ag-

gressive maneuvering. Wherein this dissertation, we propose using various numerical

methods for the safety-guaranteed control design. Constrained predictive controller,

numerical stability analysis methods, and control barrier functions are methods capa-

ble of finding the safe subset of control commands. Applying the safety constraints to
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the autonomous systems has received more attention in the recent years [30–34].

Motion stability is one of the key features of vehicle maneuvers. In [35], longitudinal

motion stability is analyzed through tire slip dynamics under purely braking maneu-

vers. Lateral vehicle stability analyses in [15, 36] consider the dynamics of the vehicle

yaw rate and the mass center side slip angle under a constant longitudinal velocity and

zero tire slip ratio. The works in [10,12] define and illustrate the maneuver stability and

agility performance. Agility metrics of vehicle motion are also proposed using profes-

sional driver testing data for a pendulum-turn maneuver. During aggressive maneuvers,

vehicles operate under rapidly changing conditions, therefore we must consider tran-

sient motion stability as well. Race-car drivers can offer insights into vehicle control

during extreme maneuvers; however, little data from race teams are publicly available

for analysis. Researchers have studied race-car drivers’ maneuvers during live racing

events and collected vehicle’s physical data acquired by sensors attached to the vintage

race-cars and addressed the stability of aggressive maneuvers [28].

Understanding motion stability would be further helpful to design autonomous con-

trollers to prevent the vehicles unsafe actions and improve hazard avoidance [4]. The

motion stability defines the stable regions or envelopes and these stability envelopes are

used in most autonomous driving controllers, for example, [1,22], etc. Model Predictive

Control (MPC) is attractive to design control systems for the autonomous aggressive

maneuvers because of its capability to systematically handle states and input con-

straints [37, 38]. Many other aggressive control designs, for example, [38–40] neglect

the motion stability requirement, and no stability or safety is guaranteed when the

controlled vehicles follow the desired path.

For simplicity and a better understanding of the overall complexity of the problem,

two wheels on each axis (front and rear) are assumed to be a single wheel located at

the midpoint of the vehicle’s axis as shown in Figure 1.3(a). The two-wheel model or

called bicycle model, reduces the dynamical system’s complexity, which leads to less

complicated stability analysis and control design, while the accuracy might be compro-

mised. Instead, this dissertation uses a four-wheeled model for the higher accuracy of

the control design. For the 2D bicycle model, the front wheel can be steered, and we
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denote the steering angle as δ. The generalized coordinates are q = [x, y, θ], where (x, y)

are the Cartesian coordinates of the center of gravity CG, θ measures the orientation

of the car body with respect to the x-axis. The dynamic model can be written as

ẋ =

 β̇
ω̇ψ

 =

Ffy+Fry
mV − ωψ

L1Ffy−L2Fry
Iz

 =: g(x, u), (1.2)

where x = [β ωψ]T , u = δ. As shown in Figure 1.3(b), the motion stability region is

defined as the closed region formed by the separatrices of the saddle points x0
e of (1.2)

under zero steering angle, u = δ = 0. The stability region is considered as the maneu-

vering envelopes inside i.e., the vehicle motion should be kept.
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Figure 1.3: (a) The schematic view of a simplified bike model used to study the motion
stability of a vehicle. (b) The open-loop phase portrait with a constant speed and zero
steering wheel, the rectangle shows the utilized stability region by [1].

In [1], static stability regions are offered by neglecting the longitudinal dynam-

ics. The stability regions used in the methods mentioned above are obtained through

problem simplifications, such as considering steering wheel angle or longitude velocity

constant. The vehicle’s steering angle and longitude speed are not constant during

the aggressive maneuvering, observing race-car drivers. Due to the vehicle and tire

models’ complexity, determining the stability region for safe aggressive maneuvering is

not straight forward, and classic methods can’t be used. This dissertation proposes a

closed-loop stability region to maximize maneuverability without abdicating the safety.

Aggressive maneuvering is considered risky and is not socially and legally accepted.
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However, it can be taken into consideration in designing targeted accident prevention

policies [5]. Aggressive maneuvering might be the only feasible way to avoid unexpected

dangerous situations such as a bicycle crossing the road, a pedestrian jaywalking the

highway, or an animal jumping on the road, or a natural disaster blocking the road.

These unexpected situations may cause making poor decisions and actions by human

drivers. Average car drivers cannot react properly when aggressive maneuvering is

the only feasible way to avoid danger. On-Road evaluation of hazard perception and

reaction for human drivers and among the newly licensed teen drivers demonstrates

poor skills, especially where unexpected hazards might materialize [41]. An autonomous

aggressive maneuvering safety feature can deafest average human drivers, overcoming

severe time constraints, limited knowledge about the vehicle’s dynamic, and insufficient

maneuvering skills.

This work aims to provide a provable stable, AMSF for future autonomous vehi-

cles. We consider a car-like robotic platform in this study so that our results can be

directly applied for vehicle active safety control. Provable stability is one of the crit-

ical characteristics of aggressive autonomous maneuvers as a safety feature. To keep

the aggressive maneuvering stable, most control designs take the approach to restrict

the motion within a restricted stability region [1, 4]. Our studies in this dissertation

reveals that autonomous vehicles can perform similar or sometimes better than profes-

sional drivers to operate the vehicles outside the restricted stability regions to achieve

superior agility. Therefore, to achieve aggressive maneuvering as a safety feature, it

is required to design a stable controller with fewer restrictions to allow autonomous

aggressive vehicle maneuvers for protecting vulnerable road users.

Envelope control is widely used in the aircraft industry. These systems allow pilots

to freely operate the aircraft within a safe operating regime based on the aircraft load,

pitch, bank, and speed limitations. The control system intervenes to prevent aircraft

instability near and beyond the edges of this safe envelope. Both Airbus and Boeing

implement envelope control in their aircraft, but their implementations differ on the

extent of human versus computer control [9].
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1.1.3 Motion planner and motion controller

A passenger car model is considered a nonholonomic dynamical system [42]. A non-

holonomic constraint will not reduce the Degrees of Freedom (DoFs) of a mechanical

system, but it adds a motion constraint. Nonholonomic constraints cannot be inte-

grated and then will not reduce the number of DoFs. A vehicle, as a nonholonomic

mechanical system, has only two control inputs, but there are 3-DoFs. Nonholonomic

constraints in robotic are particularly interesting because implies that the mechanism

can be completely controlled with a reduced number of actuators but it is subjected

to particular paths taken to reach [43]. This has drawn the attention of dynamic con-

trol designers and engineers in the past decades. They have looked to such models as

adaptive sliding-mode observer designed for a selective catalytic reduction system of a

vehicle [44] and robust Hinf approach utilized to estimate the side-slip angle of the ve-

hicle, a gain-scheduled robust control for lateral stability via linear parameter-varying

technique [45], fuzzy sliding mode controller [46] and MPC [47–51]. Controlling the

autonomous robot in the presence of uncertainty increases the complexity of control

design [52, 53]. Therefore, designing a robust controller must overcome changes and

uncertainties of the friction, weight shifting, and parameters for lane change maneuvers

using adaptive sliding mode control with fuzzy boundary layer [54]. To address the

estimation of uncertainties, we turn to learning methods such as neural networks [55],

fuzzy systems [56], adaptive Taylor series [57] to ultimately create robust control of

robot vehicles to enhance controller performance.

Nonholonomic constraints, the nonlinearity of the model, and uncertainties of the

robotic vehicle bring additional complexity to the design of motion planning. It is signif-

icantly challenging to encode feasible and safe aggressive maneuvers into our proposed

motion planner. Different tools for the stability and safety analysis of nonlinear control

systems are available but not yet enough. Due to these complexities, the representation

of vehicle stability is commonly defined as the stability of simplified dynamical systems

(bike model) that consist of the rotational rate and the vehicle sideslip angle under a

constant velocity and steering wheel angle [1, 4, 10]. This dissertation will show that
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this method can’t apply to a closed-loop control system with varying steering angle and

vehicle’s speed.

Understanding motion stability would offer profound insights in designing autonomous

controllers to prevent risky actions in autonomous vehicles and to improve AVs’ haz-

ard avoidance capabilities. Motion stability determines stable regions or envelopes safe

for the vehicle’s maneuvers [1, 22]. Model Predictive Control (MPC) is an invaluable

tool for designing control systems for autonomous aggressive maneuvers because it is

capable of handling constraints subjected to the system and controller [37,38,50]. The

stability boundaries or envelopes can be incorporated as constraints into NMPC’s op-

timization engine. Many other aggressive control designs, for example, [38–40] neglect

the motion stability requirement, and no stability or safety is guaranteed when the

controlled vehicles follow the desired path.

More recent studies have introduced valuable methods to address the safety and

stability of agile vehicle motions. Sensitivity analysis of path tracking at the vehicle’s

limit handling has been tested on the vehicle on a low friction surface [58]. Another

research focused on minimizing lateral path tracking error [59]. Game theory has been

utilized to design a planner for autonomous racing cars by representing the trajectory

as a piecewise-polynomial and incorporating bicycle kinematics. This model has signif-

icantly out-performed a basic planner [60] as did a model combining of game-theoretic

and a model predictive control algorithm designed for autonomous agile vehicles [32,61].

Similar to the envelope control widely used in the aircraft industry, autonomous

vehicles allow the vehicle to freely maneuver within a safe, dynamic region determined

by the vehicle’s side-slip angle and yaw-rate. The model predictive controller pre-

vents vehicle instability near and beyond the edges of the safe region [9]. Although

some of the methods mentioned above show the intention to control autonomous ag-

gressive maneuvers, they still restrict the vehicle’s motion within a restricted region,

which is not proper for a closed-loop control system. Studying professional driver per-

formance [10, 12] reveals that the professional drivers sometimes operate the vehicle

outside the car’s stable regions to achieve high motion agility. Therefore, it is desirable

to design autonomous driving strategies that deliver such unstable yet safe aggressive
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maneuvers akin to professional drivers. A safety boundary is proposed in [12] extend

the conservative stability region in the phase plane.

The most common approach to maintaining vehicle stability is to restrict the motion

within the stability region of vehicle dynamics [1,4]. In [62], the learning model predic-

tive control uses the data from previous motion to improve its performance; however,

there is no proof that this satisfies safety requirements. The studies in [63] reveal that

autonomous vehicles can perform similar to professional drivers in operating vehicles

outside, rather than within, the stability regions to achieve superior agility. Therefore,

in order to make highly aggressive maneuvers into a safety feature, we must perfect a

provable stable controller to relax restrictions, allowing aggressive vehicle maneuvers

for protecting vulnerable road users [59]. This easing of restrictions will allow vehi-

cles to perform aggressive maneuvers [10, 64]. Existing obstacle avoidance systems,

as well as future designs (including models incorporating aggressive maneuvering as

safety features) must behave ethically in realistic scenarios to protect its passengers

and vulnerable road users [65].

In the above-mentioned controller design for aggressive maneuvers, optimal trajec-

tories are assumed to be known a − prior. Relaying on a given initial path simplifies

the Nonlinear Programming (NP) hard problem of path finding to becomes a convex

optimization [66, 67]. More generalized motion planning algorithms, such as sampling-

based planners [68], are applied to find optimal motions and paths for aggressive ma-

neuvers [4,27,69,70]. Various versions of RRT* as an anytime computation framework

are exploit to find the optimal maneuvers. Although optimality and completeness might

be guaranteed by these motion planners, the computational cost is one of the major

drawbacks in implementing these methods for real time applications.

To address the computational efficacy issue of motion planning algorithms different

methods have been implemented. Reusing the information from the previous compu-

tation cycle for online replanting will update the effected portion of the search trees by

the change in a dynamic environment [71,72]. Even though implementation of RRT* is

not amenable to real time computation on embedded computers for high-speed robotic

applications, it can be implemented on future dedicated parallel-computation resources
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on the cloud [70].

Aggressive vehicle maneuvers autonomously can be divided into three different

methods,

� Based on the analytical dynamic model [50, 73, 74]

� Optimizing the inputs-output date mimicking expert human driver performance [75,

76]

� Combining the analytical and numerical stability, safety and agility knowledge

with the learning and predictive methods [24,77]

Instead of mimicking or using only analytical methods, this dissertation will use the

human’s expertise to design a motion planner and motion controller for safe autonomous

aggressive maneuvering.

1.2 Dissertation outline and contributions

This dissertation presents the development, analysis, and design of a motion planner

and controller for the safe autonomous aggressive and stunt vehicle maneuverings in

six chapters. Chapter 1 is the introduction. In Chapter 2, we provide an overview

of vehicle’s model and define the safety region for aggressive maneuverings for a 1/7

scaled race-car. Chapter 3 introduces a predictive controller framework and addresses

the feedback linearization integrated with a nonlinear model predictive controller to

follow the center line of the race-track when is allowed to perform agile maneuvers.

Chapter 4 describes how a successive optimal motion planning technique achieves the

minimum lap times on the race track to defeat the professional driver for a lap time.

Chapter 5 demonstrates how using numerical stability analyzing methods can help

us to bring additional safety and robustness to the controller design for aggressive

maneuverings combining analytical and numerical methods. In Chapter 6, we explain

how to utilize reinforcement learning and heuristic optimization algorithms for a safe

policy search based on the analytical model of the vehicle in simulations for autonomous

stunt maneuvers in real world.
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This dissertation aims to advance the understanding of aggressive maneuvers which

can be used as a safety feature for future autonomous vehicles. To achieve our goal,

a combination of expert human driver’s experience, analytical methods, numerical sta-

bility analysis, learning machinery and policy search algorithms have been used. This

dissertation demonstrates how safe agile maneuvers can be performed similar to profes-

sional drivers which can be used to increase the safety of vulnerable road users in future

autonomous vehicles. Instead of previously used, open-loop safety region, a closed-loop

safety region is introduced for the first time in Chapter 2. The safe control problem of

the race-car is defined as a real time nonlinear programming problem subjected to the

vehicle’s model and the safety region. In Chapter 3, both simulation and experimen-

tal results imply that real time NMPC with an extended stability region improves the

performance of autonomous aggressive maneuvering without losing stability. NMPC is

able to follow the the trajectory and perform safe autonomous aggressive maneuvers

but to defeat a professional race-car driver for a minimum-time lap challenge a global

optimization algorithm is required.

Finding the shortest path or the fastest path while maintaining motion stability is

necessary for developing a safe aggressive maneuvering. Finding the minimum time

lap is a non-convex problem and NP-hard to solve. The optimal solution may not be

unique and can take the form of a trade-off between different objectives. It is shown

by observing measurably distinct driving styles that achieve similar results [8]. The

main purpose of the discussed motion planning algorithm in Chapter 4 is to find the

fastest feasible trajectory while maximizing motion stability. Contrary to the common

implicit assumption that an optimal path always needs the maximum vehicle capability,

the data compare skilled drivers and autonomous vehicles with similar outcomes but

different car performance.

Optimal motion planning methods such as RRT* require reconfiguration in the

search trees to optimize trajectories. The new optimal node replaces the non-optimal

node if NMPC can connect the new optimal node to the search tree. Chapter 4 explains

how to use the NMPC described in Chapter 3 to find the minimum-time trajectory

on the race track. NMPC and RRT* have an extended stability region explained in
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Chapter 3 to find the optimal trajectory. NMPC and RRT* have extended stability

region explained in Chapter 2 to maximize the capability of vehicle maneuvers without

compromising safety.

The nonlinear multi-input multi-output nature of vehicle dynamics poses challenges

in planning a predictable behavior path for autonomous vehicles in real time. RRT

based algorithms are able to incorporate nonlinear dynamical model of the vehicle,

range of uncertainties and constraints to find a path with guaranteed feasibility and

safety. Despite all of the advantages, basic RRT methods are not optimal and there

is no generalized method to rewire the nodes such as what was proposed by RRT* to

find the optimal solution. Enabled by the proposed motion planning method, NMPC is

used to solve the complex problem of rewiring for RRT*. The proposed spars RRT* is

an optimal path planning method which satisfies the safety constrains and uses NMPC

for rewiring for the first time.

Chapter 5 presents how to use a numerical stability analyzing machinery to find

the vehicle’s stability region with modeling uncertainty. Chapter 5 describes the nature

of the optimization and learning methods, including SOS and Polynomial Gaussian

Process (GP) for the safety-guaranteed motion control design. The safety region can

enhance safe aggressive autonomous driving using observed data in real time. Taking

advantage of SOS as a numerical tool for stability assurance and GP to learn more

about the system’s uncertainty can improve the performance and robustness of the

method.

The research community has been paying greater attention to expert race-car drivers

in designing motion control and planning strategies for autonomous vehicles. Designers

and engineers have looked to expert drivers for inspiration in developing new ways

of thinking about stunt autonomous maneuvers. Chapter 6 presents that instructions

from an expert stunt driver can be used to initiate the policy search for autonomous

stunt vehicle maneuvers. In the final chapter we use reinforcement learning to find

control policies with guaranteed safety for autonomous stunt maneuvering by knowing

the range of uncertainties. We demonstrate how the control policy can be taken from

simulation to the real world for stunt maneuvering and path following examples.
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Chapter 2

Autonomous Vehicles and Aggressive Maneuvering

2.1 Introduction

This chapter introduces the state-space model of a vehicle dynamics, including the tire-

road interactions. Aggressive maneuvering for the vehicles and the stability of these

maneuvers are studied in this chapter. After defining the stability of the aggressive

maneuvering, a safety region inside the stable region is defined. The safety region

for the vehicle control is studied in both closed-loop and open-loop vehicle’s control

systems. The studies show the advantages of using the closed-loop safety region to

increase the robot’s motion capability. Linear Quadratic Regulator (LQR) controller

presented in this chapter enables developing a comprehensive safety region analysis

for the autonomous vehicle with the closed-loop control system. The stability region

discovery framework presented in this chapter will serve as the foundation for the safety

guaranteed motion planning and controller of aggressive autonomous maneuvers.

The last few years have witnessed technical competence adopted by autonomous and

semi-autonomous vehicles in the car industry. Thus, it is essential to ensure that the

vehicle dynamics are precisely achievable for high accuracy motion control and planning

design. Although we are using a 1/7 scaled vehicle to lower the cost of our experiments,

the proposed methods in this dissertation can be generalized for real size autonomous.

AMSF can be designed as a unique equipment beside the myriad of electrical and

mechanical subsystems and millions of lines of programming codes in them to bring

more safety to the future autonomous vehicles. Despite current safety subsystems, such

as drive dynamics control and anti-lock brake systems, which serve to increase the safety

by limiting the maneuverability of the vehicle, AMSF takes advantage of the maximum

capability of the vehicle for to increase the safety. To design the motion control and
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planning algorithms, the dynamical model must be known or approximated, and the

physical interactions between the vehicular subsystems must be written in the form of

state-space systems. The aim of this chapter is to produce a precise model; the methods

of theoretical mechanics such as Lagrange or Euler principles are used.

As a result of the increase in computing power and advances in machine learning

methods, comprehensive vehicle models can be used to describe autonomous vehicle

behavior to design more reliable motion control and motion planning algorithms. We

illustrate and demonstrate the experimental performance through a scaled robotic vehi-

cle test-bed. A comparison with an existing control design in literature is also included

and discussed. An integrated state-space model is introduced here using the car-like

mobile robot’s dynamics and kinematics that includes actuator modeling.

2.2 Vehicle model

There are numerous degrees of freedom associated with vehicle dynamics. The most

simplified vehicle dynamic model is a 2-DOF bicycle model, representing the lateral

and yaw motions described in Eq. (1.2). This model’s drawbacks are that it doesn’t

include the dynamics for the longitudinal direction by assuming it does not affect the

vehicle’s lateral or yaw stability, which is not accurate due to the coupling effect of

tires in Eq. (1.1) and load shifting on the side wheels. It’s challenging to develop a

dynamic model to capture vehicle motion in all directions and generally the model also

requires computation cost. This section describes the derivation of the 3-DOF four-

wheeled model used in this study. It also explains how to drive the equations for the

front and rear tire of the right and left side slip ratio and side-slip angles. This section

first describes the vehicle dynamics and then the dynamics of the tire-road interactions

and then the motors’ dynamics. Finally, an integrated state-space representation of the

vehicle model is presented.

Figure 2.1(a) shows the scaled robotic vehicle used in the experiments. The scaled

vehicle is a front-wheel steering mobile robot similar to the passenger car. More details

of the experimental setup of the scaled robotic vehicle will be discussed in Section 2.4.1.
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(a)

(b)

Figure 2.1: (a) Autonomous scaled vehicle. (b) A schematic of the robotic vehicle
motion.
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Figure. 2.1(b) illustrates the schematic of the kinematic and kinetic diagram. We

consider the vehicle motion in the horizontal plane. A ground-fixed frame N (X,Y )

and a body-fixed frame B(x, y) are used to build the model. The origin of B is located

at the vehicle mass center (denoted as G). As shown in Figure 2.1(b), the location

of G is at the middle point along with the robot lateral direction (but not along the

longitudinal direction). The vehicle pose in N is denoted by q = [x y ψ]T , where

p = [x y]T is the position vector of G and ψ is the yaw angle with respect to the

X-axis. The velocity vector is then v = [vx vy ωψ]T in B where ωψ = ψ̇. The distances

from G to the front and the rear wheels are denoted as L1 and L2, respectively, and

L = L1 +L2 is the wheelbase. The vehicle’s width is denoted as 2W , and the mass and

moment of inertia about the z-axis in B are denoted as m and Iz, respectively.

The following list defines relevant definitions for the variables and the physical

explanation associated with them in this dissertation.

Longitudinal force: The tire-road interaction forces toward the forward moving

direction of each tire are named longitudinal forces. We denote these forces as Fijx,

where i = f, r, j = l, r, at the front (rear), left (right) wheels of the robotic vehicle,

respectively.

Lateral force: Sideways direction of the forces applied to each wheel are lateral

forces. These forces caused by the wheel’s side-slip angles can control the rotation of

the vehicle, but due to the configuration of the vehicle, we cannot avoid the lateral

forces. Lateral forces can also be unexpected, similar to external disturbances. We

denote the lateral forces as Fijy where i = f, r, j = l, r, at the front (rear), left (right)

wheel of the robotic vehicle, respectively.

Tire slip angle: This is equivalent to heading in a given direction but walking

at an angle to that direction. Similarly, the tire might move in a direction while the

heading direction is in a different direction, as it is shown by α in Figure 1.2(a). Each

tire may have a different slip angle at the same instant in time, and we denote them as

αij where i = f, r, j = l, r, at the front (rear), left (right) wheels of the robotic vehicle,

respectively.

Tire slip ratio: Slip ratio describes the normalized relative velocity of the tire
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center to the ground. The tire might have a faster or slower angular velocity at the

moment comparing to the equivalent longitude velocity of the tire at the contacting

point. Each tire may have a different slip ratio λ at the same instant in time, and we

denote them as λij where i = f, r, j = l, r, at the front (rear), left (right) wheels of the

robotic vehicle, respectively.

Body-slip angle: β is the angle between theX-axis and the vehicle’s velocity vector

at the center of gravity point, as shown in Figure 2.1(b). It should be emphasized that

this is different from the slip angle associated with the tire.

2.2.1 Vehicle dynamics model

The front steering angle is denoted as δ. It straightforward to obtain the motion

equations of the vehicle system in Figure 2.1(b) as follows [78]:

mv̇x =mvyψ̇ + (cδl Fflx + cδ Ffrx) + (sδ Ffly + sδ Ffry) + (Frlx + Frrx), (2.1a)

mv̇y =−mvxψ̇ + (sδ Fflx + sδ Ffrx) + (cδ Ffly + cδ Ffry) + (Frly + Frry), (2.1b)

Izψ̈ =L1[(sδ Fflx + sδ Ffrx) + (cδ Ffly + cδ Ffry)]− L2(Frly + Frry)+

W [(− cδ Fflx + cδ Ffrx) + (sδ Ffly − sδ Ffry) + (−Frlx + Frrx)]. (2.1c)

In the above and subsequent equations, we use δ ' δl ' δr and notation sδ := sin δ

and cδ := cos δ for δ and other angles. The dynamic model (2.1) is then re-written in

the matrix form as

Mq̈ + C(q, q̇) = Bx(δ)Fx + By(δ)Fy, (2.2)

where Fx = [Fflx Ffrx Frlx Frrx]T , Fy = [Ffly Ffry Frly Frry]
T . and matrices M, C,

Bx and By are given as
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M =


m 0 0

0 m 0

0 0 Iz

 , C =


−mvyψ̇

mvxψ̇

0

 ,

Bx =


cδ cδ 1 1

sδ sδ 0 0

L1 sδ −W cδ L1 sδ +W cδ −W W

 ,

By =


− sδ − sδ 0 0

cδ cδ 1 1

L1 cδ −W sδ L1 cδ +W sδ −L2 −L2

 . (2.3)

2.2.2 Tire/road friction modeling

The longitudinal and lateral friction forces depend on tire slip ratios and slip angles. The

vehicle uses soft-rubber tires, and the motion heavily depends on the tire-road friction

forces. Vehicle motion heavily depends on tire/road friction forces. The tire/road

friction forces are related to longitudinal slip ratios, lateral slip angles, and normal

loads at each tire. The longitudinal slip ratios are defined as:

λij =
vij cos(αij)− rijωij

max{vij cos(αij), rijωij}
, i = f, r, j = l, r, (2.4)

where rij is the tire’s effective radius and vxij and ωij are the relative velocity of the

tire and the ground at the center of the tires and tire angular velocities, respectively.

The lateral friction forces are functions of the slip angles, where αij , the front and rear

tire slip angles, are defined as:

αfj = tan−1

(
vy + L1ψ̇

vx

)
− δ, αrj = tan−1

(
vy − L2ψ̇

vx

)
, j = l, r. (2.5)

The body-slip angle used in the bike model Eq. (1.2), is defined as:

β = tan−1 vGy
vGx

, (2.6)

where we can write the kinematics relationship of the above calculations as v :=

vG cos(β) = vGx and vn := vG sin(β) = vGy. We define the variable σ := tanβ =
vGy
vGx

.
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Due to the lateral and longitudinal accelerations, the load shifting can be obtained as

Ffiz = mg
L2

2L
− mh

2

(aGx
L
±
aGy
2W

)
, (2.7)

Friz = mg
L1

2L
+
mh

2

(aGx
L
∓
aGy
2W

)
, i = l, r, (2.8)

Using the Pacejka’s magic formula from [79], we are able to estimate the longitudinal

and the lateral friction forces caused by slip ratios (2.4) and slip angles (2.5) and loads

of each tire (2.8) as

Fijx = Fijzµijx(λij), Fijy = Fijzµijy(αij), i = f, r, j = l, r, (2.9)

The coupling effect between the longitudinal and the lateral friction forces is modeled

as the friction circle shown in Eq. (1.1) for each wheel as√
F 2
ijx + F 2

ijy ≤ Fijzµ,

where µ is the total friction coefficient. For both µijx(λij) and µijy(αi), we use the

Pacejka’s magic formula [79] as

µ(α) = D sin
(
C tan−1

(
B(1− E)α+ E tan−1(Bα)

)
(2.10)

where the model parameters B, C, D, and E are obtained through matching with

experimental results that will be discussed in later sections. For both the longitude

and lateral forces, we use the Pacejka’s magic formula in this dissertation [79]. The

values for the model parameters of the magic formula can be obtained by matching

with experimental results [80,81] or using estimation methods [82,83].

2.2.3 Motor and transmission modeling

A model is briefly represented for the motor and transmission system in this section

for the consistency of the robotic vehicle modeling. The longitude force commands

can be assumed as the inputs of a robotic vehicle in Eq. (2.2); however, the robot is

driven by an electric brushless servo motor shown in Figure 2.2(a). The use of motor

dynamics and transmission system in the model leads us to a computationally fast
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realistic controller. One electric motor provides the torques to shaft of the wheels via

the dynamics

Jmϕ̈m +Bmϕ̇m + rTg τw = τm (2.11)

where τm ∈ R is the torque provided by a brushless electric motor. Jm and Bm are the

motor inertia and damping, respectively, and ϕm and ϕ̈m are the motor angular velocity

and acceleration, respectively. τw ∈ R4 is the vector of wheel torques and rg ∈ R4 is

the vector of the transmission ratio of the motor to each wheel. Electric motor’s are

usually controlled by the level of the voltage trough a Pulse Width Modulation (PWM)

technique. Assuming all phases of the brushless DC motor have the same parameters, in

order to obtain the motor voltage as the input of the system, we consider the electrical

equation of geared brushless dc motors with transfer function deduction in below form

Laİa +RaIa +Kbϕ̇m = ζ, (2.12)

where ζ ∈ R and Ia ∈ R are motor voltages and currents, respectively. Also Ra, La,Kb ∈

R represent the equivalent coefficients of the winding resistance, inductance, and back

electromotive force (EMF) constant, successively. The motor torque τm is produced by

the motor current

τm = KmIa (2.13)

where Km is the motor torque coefficient. The generated torque by the electric motor

from Eqs. (2.11)-(2.12) is transferred to the wheels through the transmission system

shown in Figure 2.2(b). This transmission system and differentials of the vehicle

have been designed to work with 2WD or 4WD drivetrain where simplified modeling

splits the motor’s power attached to the driveshafts between the tires evenly [84]. The

provided torque to each wheel rotates each wheel via the dynamics

Jwω̇ + Bwω + rwFx + τB = τw (2.14)

where ω = [ωfl ωfr ωrl ωrr]
T , Jw,Bm, and rw are the 4 × 4 diagonal matrices for

the wheel coefficients, namely, the inertia, damping, and radius, successively. Also,

τw ∈ R4 and τB ∈ R4
≥0 is the vector of the breaks torques applied to each wheel’s shaft

independently via electric servos for RURacer-1 shown in Figure 2.5. Substituting
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(a)

(b)

Figure 2.2: (a) Schematic of a DC electric brushless motor driven scaled vehicle and the
electric servo for steering control. (b) A schematic of the transmission and reduction
gears of the robotic vehicle.
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Eqs. (2.13) and (2.12) into Eq. (2.11) by neglecting the impudence La ≈ 0, torques of

the four wheels can be calculated knowing the motor’s voltage as

τw = (rgr
T
g )−1rg

[
R−1
a Km(ζ −Kbϕ̇m)− Jmϕ̈m −Bmϕ̇m

]
(2.15)

2.2.4 State-Space vehicle models

State-Space model without the motors dynamic

Defining the state variable z = [qT q̇T ]T and inputs u = [δ Fx]T , we can rewrite the

robot dynamics using (2.3) and (2.2) as

ż = f(z,u). (2.16)

The represented model in Eq. (2.16) uses the steering wheel angle and the longitude

force of the wheels as input. This model is not considered the wheel’s motion dynamics,

the motor’s model, and the coupling effect on forces. This model’s drawback is that

there is no guarantee that we can generate the longitude forces accurately since there

is no low-cost and precise method to measure the interaction force between the wheel

and ground [85]. A significant number of researchers has used it control design [38,

86], however, this model is not complete and but it can be used for the study of the

stability of the vehicle and control design purposes. A comprehensive state-space model

combined with machine learning methods is introduced in Chapter 5.

2.3 Safety region for aggressive maneuvering

In this section, we first define the vehicle maneuver stability in an open-loop manner

and then discuss how to determine the stability under a set of given closed-loop control

systems. We also discuss the maneuver agility and present several agility metrics we

use in our experimental comparisons. The safety region for the represented system is

analyzed, and the closed-loop safety region is introduced. The dynamical model must

reflect the vehicle’s motion status and the frequency and duration of control actions to

perform safe maneuvers adequately. We define the open-loop vehicle maneuver stability

as follows.
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Definition 2.1 The vehicle maneuver stable region is defined as the domain of attrac-

tion of the nonlinear dynamical systems (2.1) and (1.2) (ψ̇ and β as the state variables)

under the given vehicle motion and steering angle. The vehicle maneuver is stable if

the vehicle motion states are located within the stable maneuver region the states will

converge to the stable equilibrium point.

As shown in Figure 2.3(a), the motion stability region is defined as the closed region

formed by the separatrix of the saddle points x0
e of (1.2) under zero steering angle,

u = δ = 0. The stability region is considered as the maneuvering envelopes inside

which the vehicle motion should be kept.

Precisely computing the stability region is expensive due to the complex nonlinear

dynamics in (2.1). In [1, 74, 87], a simplified treatment takes the saddle points to con-

struct a rectangular (or diamond) shape region Ωo in the β-ψ̇ plane; see Figure 2.3(b).

Denoting x0
e = [β0

e ψ̇
0
e ]
T as the saddle point of (1.2) under δ = 0, namely, g(x0

e, 0) = 0

in Eq. (1.2), we define simplified open-loop stability region

Ωo = {(β, ψ̇) : |β| ≤ |β0
e |, |ψ̇| ≤ |ψ̇0

e |}. (2.17)

The region Ωo defined by (2.17) is shown in Figure 2.3(a). The results in [10] reveals

that in aggressive maneuvers, the professional drivers operate the vehicles out of region

Ωo and yet still maintain safety. Without clearly describing how to obtain the safety

boundary, a safety region has been utilized for safe control of autonomous vehicles

in [12]. In the following, we present a closed-loop safety region.

Definition 2.2 The vehicle maneuver stable region is defined as the domain of attrac-

tion of the nonlinear dynamical systems (2.1) The vehicle maneuver stable region is

defined as the domain of attraction of the nonlinear dynamical systems (2.1) and (1.2)

(ψ̇ and β as the state variables) under the given vehicle motion and feedback controller.

The vehicle’s maneuver is considered as safe if the vehicle’s state at any given time

during the maneuver is inside the safety region.

Under optimal closed-loop steering wheel control, namely, LQR, we define closed-

loop stability region

Ωc = {(β, ψ̇) : |β| ≤ |β0
ec|, |ψ̇| ≤ |ψ̇0

ec|}. (2.18)
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We augment Ωo and compute the safety region by considering vehicle motion with

possibly maximum steering actuation. LQR method is used to find the state feedback

control δLQR to obtain the augmented Ωo.

δLQR = arg min
u

∫ ∞
0

(
kββ

2 + kψψ̇
2 +Ru2

)
dt,

ẋ = Dx+Eu, (2.19)

where D = ∂g
∂x

∣∣
x

and E = ∂g
∂u

∣∣
x

are the Jacobian linearization of nonlinear function

g(x, δ) in (1.2). Parameters kβ, kψ and R are positive constant gains. The solution of

the LQR design is given as δLQR = −Kx, where K ∈ R2 is the feedback gain.

Lemma 2.1 The safety region of vehicle without a controller as the open-loop region

is a subset or equal to the safety region for the given closed-loop stabilizer controller of

the vehicle that is Ωo ⊆ Ωc.
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Figure 2.3: Stability regions and boundaries calculation. (a) The open-loop phase
portrait with δ = 0 and region Ωo. (b) The open-loop phase portrait with steering
feedback δLQR = −Kx and region Ωc.

Proof of Lemma 2.1

To prove the lemma, we need to compute and compare the non-zero equilibra x0
e and

xce of dynamics (2.1) under δ = 0 and δ = δLQR, respectively. To compute and analyze

x0
e and xce, we simplify the lateral friction forces in (2.1b). A piecewise linear friction
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model [88] is used to approximate (2.10). The piecewise linear friction force function

Fy(α), namely,

Fy(α) = C(a1 + a2α), (2.20)

where C is the tire cornering stiffness coefficient. a1 = 0, a2 = 1 if 0 ≤ α ≤ αm;

a1 = a∗1 = (αmax−γααm)αm
αmax−αm , a∗2 = −(1−γα)αm

αmax−αm if αm < α ≤ αmax, where αm is the slip

angle with the maximum Fmax, αmax is the maximum slip angle, and 0 < γα ≤ 1 is a

constant to denote the ratio of Fy at αm and αmax. Note that a∗1 > 0 and a∗2 < 0.

Using (2.20) for the front and rear tires, model (2.1) is reduced to

ẋ =

 −Cfa2f+Cra2r
mV −1− Lc2

mV 2

−L1Cfa2f−L2Cra2r
Iz

−L2
1Cfa2f+L2

2Cra2r
IzV


︸ ︷︷ ︸

D

x

+

 Cfa2f
mV

L1Cfa2f
Iz


︸ ︷︷ ︸

E

δ +

 Cfa1f+Cra1r
mV

L1Cfa1f−L2Cra1r
Iz

 (2.21)

and the equilibrium xe is obtained as xe =
[
D1+D2δ

∆
D3+D4δ

∆

]T
, whereD1 = LCFCr(L1a2fa1r+

L2a2ra1f )−mV 2(L1Cfa1f−L2Cra1r), D2 = Cfa2f (L2LCra2r−mV 2L1), D3 = −LV CfCr(a2fa1r−

a1fa2r), D4 = −LV CfCra2fa2r, and ∆ = L2CfCra2fa2r −mV 2(L1Cfa2f − L2Cra2r).

Under δ = 0, it is straightforward to obtain

x0
e =

[
D1
∆

D3
∆

]T
. (2.22)

With δLQR = −Kx = −k1x1 − k2x2, k1, k2 > 0, we obtain

xce =
[
D1∆+k2(D1D4−D2D3)

∆(∆+k1D2+k2D4)
D3∆+k1(D2D3−D1D4)

∆(∆+k1D2+k2D4)

]T
(2.23)

From (2.22) and (2.23), the difference ∆xe = xce − x0
e is obtained as

∆xe = −
[

D2(k1D1+k2D3)
∆(∆+k1D2+k2D4)

D4(k1D1+k2D3)
∆(∆+k1D2+k2D4)

]T
. (2.24)

We now show the results by the following four cases.

Case 1: |αf | ≤ αfm and |αr| ≤ αrm. In this case, a1i = 0, a2i = 1, i = f, r,

and therefore, D1 = 0 and D3 = 0. From (2.24), we have xce = x0
e and by definition,

Ωc = Ωo.
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Case 2: |αf | ≤ αfm and |αr| > αrm. In this case, a1f = 0, a2f = 1, a1r =

a∗1r > 0, and a2r = a∗2r < 0. Thus, D1 = LCfCrL1a
∗
1r + mV 2L2Cra

∗
1r > 0, D2 =

Cf (L2LCra
∗
2r −mV 2L1) < 0, D3 = −LV CfCra∗1r < 0, D4 = −LV CfCra∗2r > 0, and

∆ = L2CfCra
∗
2r −mV 2(L1Cf − L2Cra

∗
2r) < 0.

Note that β0
e = D1

∆ < 0 and ψ̇0
e = D3

∆ > 0. To show Ωo ⊆ Ωc, we need to prove

that βce − β0
e ≤ 0 and ψ̇ce − ψ̇0

e ≥ 0. From (2.23), we find the conditions for the above

inequalities to be held as k1D1 +k2D3 ≥ 0, ∆+k1D2 +k2D4 > 0 and these are satisfied

if k1 and k2 are chosen as

− ∆

D4
− D2

D4
k1 ≤ k2 ≤

LCfL1 +mV 2L2

LV Cf
k1. (2.25)

Case 3: |αf | > αfm and |αr| ≤ αrm. In this case, a1r = 0, a2r = 1, a1f = a∗1f > 0,

and a2f = a∗2f < 0. D1 = LCfCrL2a
∗
1f−mV 2L1Cfa

∗
1f , D2 = Cfa2f ∗(L2LCr−mV 2L1),

D3 = LV CfCra
∗
1f > 0, D4 = −LV CfCra∗2f > 0, and ∆ = (L2CfCr −mV 2L1Cf )a∗2f +

mV 2L2Cr. For high vehicle velocity v ≥
√

LL2Cr
mL1

, ∆ > 0, D1 < 0, D2 > 0. Similar to

the previous case, if k1D1 + k2D3 > 0, then βce ≤ β0
e ≤ 0 and ψ̇ce ≥ ψ̇0

e ≥ 0. Therefore,

if choosing gains

k2 >
mL1V

2 − LL2Cr
LV Cr

k1, (2.26)

then Ωo ⊆ Ωc.

Case 4: |αf | > αfm and |αr| > αrm. We have a1r = a∗1r > 0, a1f = a∗1f > 0, a2f =

a∗2f < 0, and a2r = a∗2r < 0. For simplicity, we assume the same properties for the front

and rear tires by a∗1f = a∗1r and a∗2f = a∗2r. Then, D1 = L2CfCra
∗
1fa
∗
2f−mV 2a∗1f (L1Cf−

L2Cr), D2 = Cfa
∗
2f (L2LCra

∗
2f − mV 2L1) > 0, D3 = 0, D4 = −LV CfCra∗2f

2 < 0,

∆ = L2CfCra
∗
2f

2 −mV 2a∗2f (L1Cf − L2Cr).

If L1Cf ≥ L2Cr (i.e., oversteering), ∆ > 0, D1 < 0, we need ∆ + k1D1 + k2D4 < 0,

namely,

k2 >
mL1V

2 − LL2Cra
∗
2f

LV Cra∗2f
k1 +

L2CfCra
∗
2f −mV 2(L1Cf − L2Cr)

LV CfCra
∗
2f

, (2.27)

for βce ≤ β0
e ≤ 0 and ψ̇ce ≥ ψ̇0

e = 0. If L1Cf < L2Cr (i.e., understeering), for high

velocity v ≥
√

L2CfCra
∗
2f

L1Cf−L2Cr
, ∆ < 0, D1 > 0, then if (2.27) is satisfied, similarly we obtain

Ωo ⊆ Ωc.
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In summary, we choose gains to satisfy (2.25), (2.26) or (2.27) and then Ωo ⊆ Ωc

and this completes the proof. These safety regions can be calculated for different speed

as it is demonstrated in Figure 2.4.
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Figure 2.4: (a) Stability regions and the phase portraits for different speeds for a
vehicle with the closed-loop controller. (b) The equilibrium points in Eqs. (2.17)-(2.18)
for different longitude speeds.

2.4 Experimental setup

Two different versions of a scaled race-car are used for the tests, and their setups are

explained in this section. The value of the model parameters of both versions of the

scaled vehicles are the same and it is shown in Table 2.1.

Table 2.1: Testing robotic vehicle parameters

m (kg) L1 (m) L2 (m) W (m) h (m) Iz (kg m2)

6.0 0.2 0.2 0.15 0.05 0.25

2.4.1 Scaled car-like robot

The first version of the robotic vehicle (RURacer-1) shown in Figure 2.5 is a modified

Traxxas XO-1 model with various added onboard sensors and actuators. This car has
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Figure 2.5: Autonomous scaled vehicle with four independent breaks and load sensors
named RURacer-1.

been prepared for autonomous agile maneuvering tests in the Robotics and Mechatron-

ics (RAM) laboratories in the Department of Mechanical and Aerospace Engineering

at Rutgers.

RURacer-1 is a four-wheel driven 1/7 scaled race-car powered by a powerful brush-

less electric motor with the front and rear differentials. At each wheel, an electric disc

brake is added to provide the active braking capability. The steering and the brake

actuators are operated by the servo motors controlled by the onboard embedded sys-

tem. Four potentiometers are added to the suspensions to measure the deflection and

the normal forces Fz at each tire. Two rotating potentiometers are added and used

to measure the steering angle. All onboard sensors and actuators are connected to an

embedded real time system (myRIO from National Instruments) with a sampling and

control frequency of 1 kHz.

The robotic vehicle is tested on a wooden track, as shown in Figure 2.6(a). The

track is specially designed to test the aggressive vehicle maneuvers with straight-line

and U-turn shapes. A set of reflective markers are attached to the robotic vehicle.

The vehicle’s real time position is provided by the motion capture systems (8 Bonita

cameras from Vicon Motion Systems Ltd).
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Figure 2.6: (a) RURacer-1 on the testing race track and the motion capture cameras.
(b) Tire force characteristics test setup. (c) Longitudinal tire force Fx testing results.
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Tire force testing setup

We tested the tire characteristics and obtained the tire model. Figure 2.6(b) shows

the tire force testing setup. The vehicle is supported by a loading jack, and the front

two tires are pressed against a treadmill belt. The contact between the tire and belt

surface has a similar friction property as the tire-track contact. A 6-DOF load cell is

mounted rigidly between the vehicle and the jack. The normal force is kept around

half of the vehicle’s weight. The treadmill and the tire moving velocities are controlled

to generate various slip ratios λ. Meanwhile, the corresponding longitudinal friction

forces Fx are measured. Figure 2.6(c) shows the comparison of the magic formula,

experimental results, and piecewise linear approximation for Fx. Tables 2.2 and 2.3

represent the parameters for experimental results shown in Figure 2.6(c).

Table 2.2: Parameters of the magic formula

B C D E

7.2 1.52 0.68 -1.999

Table 2.3: Parameters of the piecewise linear friction model

αm αmax γa Stiffness

0.135 2.2 0.5 76

2.4.2 Enhanced scaled car-like robot

The goal to build RURacer-2 was to create improve platform performance, such as

enhanced wheel encoders and advanced embedded processors. Compared to RURacer-

1, the new platform can reach four times lower latency (less than 7ms) and twenty times

faster computation power. To achieve this, an hardware architecture was designed along

with the custom fitting of wheel encoders to monitor individual wheel speed and easily

accessible and flexible hardware, software, and interfaces. An upgraded IMU system
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was also added to the new version capable of estimating the vehicle’s rotations in three

dimensions in addition to 3D angular velocities and linear accelerations. This platform

allows researchers to take advantage of the latest software and hardware platforms,

such as the Robotic Operating System (ROS) and the NVIDIA Jetson TX2 system on

module (SOM).

Hardware and software architecture

The scaled vehicle chosen for this project is a similar 1/7th scale Traxxas XO-1. The

XO-1 shown in Figure 2.1(a) is highly capable of drifting as it features an optional

rear-wheel drive system and can reach up to 100 miles per hour (MPH). To monitor

individual wheels’ angular velocity, optical wheel encoders (EM1 from US Digital) were

custom fit and assembled on each side of the axles.

We chose NVIDIA Jetson-TX2 to control the vehicle because of it’s high computa-

tional power for real time processing. TX2 is running the Linux kernel with an Ubuntu

operating system created by NVIDIA called L4T. Also, TX2 features onboard WiFi,

which we set up to connect to the router and the host computer for real time com-

munications. The host computer provides high computational power at the edge for

resource-hungry algorithms such as motion planning or image processing. The com-

munication framework is built on top of ROS to receive and send data from different

processing nodes.

A microcontroller controls the steering wheel’s servo and the speed of the brushless

motor. Also, optical encoders are connected to the microcontroller, communicating to

TX2 by Universal Asynchronous Receiver/Transmitter (UART) using rosserial. Using

UART, we achieve a 100Hz frequency for real time sensor data acquisition and actuator

control. This allows running the NMPC motion controller on TX2 while the lower level

programming part is on the microcontroller.

The IMU used for RURacer-2 is provided by Adafruit-BNO055, providing 9 DOF

sensing information, that it has been difficult before. We used a 3.2 Mega Pixels

(MP) FLIR Blackfly GigE camera at 30 frames per second, resulting in up to 2.6mm of

accuracy to localize the vehicle. The camera is connected to the network, and the image
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processing node is running on the edge processing unit, which is a powerful desktop

computer. The architecture used for RURacer-2 is shown in Figure 2.7.

Figure 2.7: Software and communications architecture of RURacer-2 platform using
camera for localization.

2.4.3 Existing platforms

RURacer has been specifically designed for the motion control and planning research

purposes. There are existing open-source test-beds that can be used for similar appli-

cations.

� MIT racecar: A The platform uses variety of sensors and computing hardware,

placed on top of a 1/10-scale mini race car as a multi-purpose open-source plat-

form for robotics research and education [89].

� Georgia Tech Autorally: AutoRally is a scaled truck platform as a self-driving

vehicle testbed for research purposes. This platform contains all the sensing or

computing units designed for aggressive autonomous off-road driving tests [90].

� UPENN F1/10: F1TENTH was designed as an open-source autonomous vehicle

test-bed by the University of Pennsylvania for autonomous systems research and
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education purposes [91].

The contributors of RURacer platform include the materials to share this system as

an open-source robotic vehicle test-bed for autonomous agile maneuvering research and

education, specifically for motion planning and motion control. The main differences of

RURacer platforms are the embedded accurate sensors and independent breaks. Load

sensors, steering wheel angle sensor on the wheel, and independent breaks are unique

differences of RURacers.

2.5 Summary

We introduced a closed-loop safety region instead of the previously used open-loop

safety region for the aggressive vehicle maneuverings. LQR controller was used to find

the safety for the autonomous vehicles when the maneuverability is not sacrificed. The

proposed safety region increased the agility of the vehicle for hazard avoidance situa-

tions. The safety region will be then used as a convex constraint for the nonlinear model

predictive controller. Also, RURacer-1 and RURacer-2, the car-like robots used for the

experiments were presented. We explained the the localization and communications

methods, attached sensors and actuators. We represented the tire testing setup which

is utilized to measure the tire-road friction model characteristics. The dynamical model

of the vehicle knowing it’s physical properties is presented.
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Chapter 3

Hybrid Nonlinear Model Predictive and Feedback

Linearization Motion Controller

3.1 Introduction

While controlling autonomous vehicles has been well investigated in the past several

decades, there are considerably fewer studies that address a path tracking controller

that allows the car to perform safe aggressive maneuvers. Designing an envelope motion

controller in order to operate the vehicle on the edges of the motion stability (which can

be called aggressive maneuvering) will maximize the car’s maneuverability for hazard

avoidance situations. The proposed aggressive motion controller can also be used for

other urgent delivery applications, agile and safe maneuvers, scaping from hazardous

conditions, and high-speed obstacle avoidance.

Although there have been valuable efforts in developing control methods for au-

tonomous vehicles, much of this research has focused on controlling the vehicle under

regular driving conditions with moderate maneuvers [87, 92]. Studies on controlling

vehicles in more critical maneuvers near the stability limits have decorated many asso-

ciated challenges, such as sustainability and safety [10,93–97].

Like the experienced drivers, particularly those with racing experience, the predic-

tive controller can safely control the vehicle at the full limits of its maneuverability.

Maintaining the vehicle’s motion states inside the safety region is as challenging as de-

termining the stability’s margins for the predictive control design. Race-car drivers have

demonstrated aggressive maneuvering capabilities by achieving minimum-time rounds

on a race track. To prove this, the performance of autonomous aggressive maneuvers

should be similar or defeat professional drivers. Nonetheless, the proposed controller

is allowed to perform to the limits of the closed-loop stability region approximated in
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Section 2.3.

In this dissertation, a hybrid nonlinear model predictive and feedback linearization

controller is proposed for a path-tracking purpose. Using the proposed method, the

vehicle is allowed to maximize the vehicle’s maneuverability as thoroughly as a race-

car driver. In this chapter, using a proper dynamic model for FLC and NMPC, the

autonomous vehicle car could follow the trajectory designed on the race track with

similar performance to an expert RC race-car driver.

3.2 Feedback linearization control

The vehicle control design consists of two parts: the first part is a Feedback Lineariza-

tion Controller (FLC) to compute the desired tire friction forces. The second part is an

NMPC controller to calculate the controlled inputs around the needed tire forces within

the safety region. The two-part design is inspired by the tube-based MPC in [98].

Feedback linearization control is a common approach used in controlling a class

of nonlinear systems. This method involves transforming the nonlinear system into a

linear system through a change of variables and suitable control inputs. It was observed

that the nonlinearity of saddle-point bifurcation would appear in vehicle dynamics with

respect to the variation of the front wheel steering angle. The vehicle’s model is not

feedback linearization similar to what can be applied to an affine-type nonlinear system

as given by a general nonlinear form

ż = fg(z) + gg(z)u

y = hg(z)

(3.1)

where z ∈ Rn is a vector of state variables, u ∈ Rm is a vector of manipulated input

variables, y ∈ Rm is a vector of outputs, fg(·) ∈ Rn is a general vector of nonlinear

functions, gg(·) ∈ Rn×m is a matrix of nonlinear functions, and hg(·) ∈ Rm is also

a vector of nonlinear functions. The system (3.1) is said to be input-state feedback

linearizable if there exists a diffeomorphism T : Dz ∈ Rn such that Dx = T (Dz)

contains the origin and the nonlinear mapping x = T (z) transforms the system (3.1)

into a stable linear form by canceling the nonlinear as it is explained in Chapter 13
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of [99]. Considering the vehicle dynamics in (2.1) as partially feedback linearizable by

rewriting Eq. (2.16) in the form of

ż = fFL(z, δ) + gFL(z, δ)u2

y = hFL(z)

(3.2)

where z = [q q̇] the input vector u is spitted into the steering wheel angle δ and

longitude force of the wheels u2 = Fx, and y = [h1(z) h2(z)] = [rP ˙rP ]T . We consider

rP as the center of the front wheels (center point between C1 and C2 in Figure 2.1(a))

and can be calculated

rP = h1(z) = [x+ L1cψ y − L1sψ]T , (3.3)

and the time derivative of rP is

ṙP = h2(z) = Λv, Λ =


cψ − sψ −L1 sψ

sψ cψ L1 cψ

 . (3.4)

fFL and gFL, nonlinear models used in (3.2) for FLC design are given as

fFL =


q̇

M−1 [ByFy −C(z)]

 , gFL =


0

M−1Bx

 . (3.5)

Using the vehicle dynamic equation (2.1) and the new variable definitions in (3.3) and

(3.4), the time derivative of Eq. (3.4) is

r̈P = ΛM−1(BxF x +ByF y −Cv) + Λ̇v, (3.6)

where the model matrices are presented in (2.3). For a given desired trajectory rd,

considering F x as the controlled input u2, we have

F x = Γ−1[r̈d +Kd(ṙd − ṙP ) +Kp(rd − rP ) + ϑ], (3.7)

where Γ = ΛM−1Bx, ϑ = ΛM−1ByF y + Λ̇v, and Kp = diag([kp1; kp2]), kp1, kp2 ∈

Rn≥0 and Kd = diag([kd1; kd2]), kd1, kd2 ∈ Rn≥0 are positive diagonal matrices. Substi-

tuting the controller input (3.7) into (3.6) while defining error e = rd − rP , we obtain
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the closed-loop equation of

ë+Kdė+Kpe = 0 (3.8)

and the above error dynamics are stable for any given initial conditions. The longitude

forces of each wheel F x are controllable using independent break for RURacer1. Road-

tire friction forces and brushless motor torques are causing to have bounded inputs and

saturation effect. To resolve the input and constraints of the control system and safety

region, NMPC, a constrained numerical optimization algorithm, will be introduced.

FLC is employed to construct the stabilizing control laws for the vehicle model.

The stability of the overall closed-loop control system is then guaranteed by applying

the stability region and NMPC. NMPC finds the steering angle to minimize the track-

ing error while maintaining the system stability using numerical optimization. It also

ensures the motion is inside the safety region (2.18) by penalizing the sets of control

inputs for potentially unstable behavior of the vehicle’s dynamic.

3.2.1 Analysis of FLC for the vehicle control with model uncertainty

Using Lyapunov stability analysis can find the stable funnel for the controller in (3.7).

The stable funnel is not the same as the safety region in Section 2.3 and it’s basically the

domain of attraction for the closed-loop control system in (3.8). Developing two control

loops, namely, FLC and NMPC, helps us to form the integrated closed-loop system to

find the region of attraction with the guaranteed asymptotic convergence. Due to

difficulties of lateral forces precise estimation, we assume that there is an uncertainty

in the part of the model ϑ and we have an approximation of it as ϑ̂. Concerning

the closed-loop systems FLC with uncertainty in (3.7), let us formulate the following

state-space equations as

ĖL = ALEL +BLUL (3.9)

where

EL =


e(t)

ė(t)

, AL =


02×2 I2×2

−kp −kd

 , BL =


02×2

I2×2

 , UL = ϑ̂− ϑ, (3.10)
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EL ∈ R4 is the vector of error and it’s derivative, AL ∈ R4×4 and BL ∈ R4×2 rep-

resents the state-space matrix of the closed-loop control system and UL ∈ R4 is the

approximation error. Before analyzing the stability of FLC, the following assumptions

are required.

Assumption 3.1 The desired trajectory, rd, and its time derivatives ṙd are smooth

and uniformly bounded.

Assumption 3.2 ϑ̂− ϑ = ΛM−1By(Fy − F̂y) is bounded, since the lateral force Fy,

and the estimation of the lateral force F̂y, and the parameters for the model M , Λ, By

are also bounded.

Let VL(t) be a continuously differentiable function defined over domain D ⊂ Rn

VL(t) =
1

2
ET
LPEL (3.11)

Stability region Ω ⊂ D as a compact set that is positively invariant with respect to ĖL

such that V̇L(t) ≤ 0. Let’s evaluate the time derivative of V (t) to find the attraction

region of Ω

V̇L(t) =
1

2
ET
L

(
AT
LP + PAL

)
EL +ET

LPBLUL (3.12)

where matrix Q is positive definite and by solving AT
LP + PAL = −Q we will find a

symmetric positive solution for P to guarantee the stability of the closed-loop system

in (3.9) for every state starting in Ω. One can rewrite Eq. (3.12) as

V̇L = −1

2
ET
LQEL +ET

LPBLUL, (3.13)

The derivative of Lyapunov equation Eq. (3.13) has the unique symmetric positive

definite solution. By selecting kpi > 0, kdi > 0, all eigenvalues of AL are in the open

left-half of the complex plane. To make it clear, one can calculate a characteristic

equation as λ1,2 = −kd1/2 ±
√
k2
d1 − 4kp1/2, λ3,4 = −kd2/2 ±

√
k2
d2 − 4kp2/2 to show

the Asymptotically Stability is feasible when kdi > 0 and k2
di > 4kpi, i = 1, 2.

Based on the above discussion and Eq. (3.13), the derivative of the Lyapunov func-

tion should be negative, V̇L(t) < 0 in Ω to guarantee the stability of the closed-loop
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control system. The attraction region is positively invariant if we can satisfy the in-

equality

ET
LPBLΛM−1By(F y − F̂ y) <

1

2
ET
LQEL =⇒ V̇L(t) < 0 (3.14)

Knowing the vehicle dynamics are locally Lipschitz functions, we can use NMPC to

find robust and stable steering wheel commands around a neighborhood of the domain

of attraction Ω by knowing the range of accuracy for lateral forces approximations

infδ ‖F y − F̂ y‖ ≤ ρ. Using the range of lateral forces approximation and triangle

inequality we can find the upper bound of the error as

‖E‖ < 2ρ‖PBLΛM−1By‖
λQmax

, (3.15)

where λQmax is the largest eigenvalue for Q and ρ is the maximum approximation error

for the tire lateral force modeling.

Using Lyapunov function to define the domain of attraction and integrate it with

NMPC to find the steering wheel angle to follow a desired trajectory while it’s subjected

to safety region constraints is discussed in Chapter 2. The stability results are given

for the nominal model, and the effects of uncertainties are briefly studied. Knowing

the range of uncertainties, we can find the domain of attraction which the closed-loop

controller is asymptotically stable and using NMPC will allow us to apply safety and

motion constraints.

3.3 Nonlinear Model Predictive Control

In this section, we introduce the NMPC method for constrained control of dynamic

systems such as car-like robot. First, we define the classic NMPC algorithm and then the

constrained control problem is formalized to control an autonomous vehicle’s aggressive

maneuvering within the safety region. After introducing NMPC in a special setting,

we describe various extensions of the basic algorithm to apply the safety region as a

constraint for the dynamic system. Finally, we investigate the experimental challenges

and present the results using the NMPC.
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MPC calculates control actions for a prediction horizon at each control interval, us-

ing a combination of model-based prediction and constrained optimization. The key dif-

ference between linear MPC and NMPC is that the model can be nonlinear and include

time-varying parameters. Nonlinear model predictive control is an optimization-based

method for the feedback control of nonlinear systems. Its primary applications are

stabilization and tracking problems. NMPC is flexible to integrate various state/input

boundaries by defining customized penalty functions. NMPC originated from the op-

timal control theory with fundamental optimization contributions, like the numerical

optimizations for convex and non-convex problems, dynamic programming, and the

work of Lev Pontryagin and Richard Bellman in the 1950s [100,101].

3.3.1 NMPC formulation

NMPC, at each controlling instant runs a dynamic programming optimizer to predict

future actions of the system over a finite time horizon, k = 0, . . . , N−1, of length N ≥ 2.

The first element of the resulting optimal control sequence is used and implemented

the next step of the system. In this section, we give a mathematical description of

using NMPC for constrained control systems to follow the desired trajectory z∗ inside

the feasible subset of states zd ≡ z∗ ∈ Z consists aggressive maneuvers. Z ∈ Rn and

U ∈ Rm represent the overall states and inputs space for the vehicle’s model. The

definitions and assumptions and theoretical development of NMPC in this section are

obtained from [102]. The numerical simulations and experimental results compared

with a professional race-car driver will then be presented.

A prerequisite for being able to find a control policy to converge to a desired state

z∗ is to make z∗ an equilibrium of the nominal closed-loop system. Also, NMPC is able

to find the optimal control policy properly if z∗ and the initial states of the system

are inside the permitted state space Ωp and they are not violating control system

constraints. Ωp ≡ Z is a subset of states which are not violating any constraints.

Assuming that u∗ is the control command that minimizes the trajectory error, where

u∗ ∈ U where [z(t) ∈ Ωp ∀ t > 0, z(t)→ z∗] subjected to the nonlinear model equation
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f(·) will lead us to

ż∗ = f (z∗,u∗) , (3.16)

which it will be predicatively computed it in a sequel for the prediction horizon. The

cost function to be used in our optimization should penalize the distance of an arbitrary

state z ∈ Z to z∗ and the violation cost of the control system form the constraints. One

of the main reasons for the success of NMPC is its ability to take safety and motion

constraints into account explicitly. Here, we consider mixed constraints for the safety

of the control system, states and inputs. To this end, we introduce a nonempty set

Z ⊆ Z that doesn’t violate the constraints and for each z ∈ Z we introduce a nonempty

control constraint set U(z) ⊆ U . Of course, U may also be chosen independent of z.

The idea behind introducing these sets is that we want the trajectories to lie in Z and

the corresponding control values to lie in U(z). Given such a cost function J(z, u,Z,U)

and a prediction horizon length N ≥ 2, we can now formulate the basic NMPC scheme

in Algorithm 3.1.

Algorithm 3.1: (Basic NMPC algorithm for constrained inputs and states )
At each sampling time tn, n = 0, 1, 2 . . .

1 Measure the state z(n) ∈ Z of the system;
2 Set z0 := z(n), solve the optimal control problem

minimize JN (z0,u(·)) :=
∑N−1

k=0 ` (zu (k, z0) ,u(k)) with respect to
u(·) ∈ UN (z0) , subject to
zu (0, z0) = z0, zu (k + 1, z0) = z (zu (k, z0) ,u(k)) and denote the obtained
optimal control sequence by u?(·) ∈ UN (z0).;

3 Define the NMPC-feedback value µN (z(n)) := u?(0) ∈ U and use this control
value in the next sampling period.

We use NMPC to explicitly take constraints on the control inputs and states into

account. The input and state constraints are chosen independently where the safety

constraints are mixed. These are made precise in the following definitions:

Definition 3.1 The Admissibility consider a control system and the state and control

constraint sets Z ⊆ Z and U(z) ⊆ U . The states z ∈ Z are called admissible states and

the control values u ∈ U(z) are called admissible control values for z. The elements of

the set Y := {(z,u) ∈ Z × U |z ∈ Z,u ∈ U(z)} are called admissible pairs.
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Assumption 3.3 The Viability for each z ∈ Z there exists u ∈ U(z) such that

f(z,u) ∈ X holds. The property defined in this assumption is called viability or con-

trolled forward invariance of Z. It excludes the situation that there are states z ∈ Z from

which the trajectory leaves the set Z for all admissible control values. Hence, it ensures

UN (z0) 6= ∅ for all z0 ∈ X and all N ∈ N∞. This property is important to ensure

the safety and feasibility of Safe Optimal Control Problem at N th step, (SOCPN) : the

safe optimal control problem (SOCP N) is called feasible and safe for an initial value

z0 if the set UN (z0) over which we optimize is non empty. Viability of Z thus implies

that (SOCPN) is feasible yet safe for each z0 ∈ Z and hence ensures that µN (z) is well

defined for each z ∈ Z.

Definition 3.2 [102] Mixed constraints are given functions GSi : Z×U → R, i ∈ E S =

{1, . . . , pg} and HS
i : Z × U → R, i ∈ I S = {pg + 1, . . . , pg + ph} with pg, ph ∈ N0, we

define the constraint sets Z and U(z) via

Z :=

z ∈ Z|
there exists u ∈ U with GSi (z,u) = 0 for all i ∈ E S

and HS
i (z,u) ≥ 0 for all i ∈ I S


and for z ∈ Z

U(z) :=

u ∈ U |
GSi (z,u) = 0 for all i ∈ E S and

HS
i (z,u) ≥ 0 for all i ∈ I S


Here, the functions GSi and HS

i do not need to depend on both arguments. The functions

GSi , H
S
i not depending on the input u are called pure state constraints, the functions

GSi H
S
i not depending on z are called pure control constraints and the functions GSi , H

S
i

depending on both z and u are called mixed constraints.

The idea behind introducing these definitions and assumptions is that we want the

trajectories to lie in inside the admissible sets and ensuring the safety based on the

viability assumption when the corresponding control values are permissible at all time.
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3.3.2 NMPC for aggressive maneuvering

The aim of the NMPC controller is to find the control policy where the states and

inputs of the policy are within the admissible pairs in Definition 3.1 during the a task

of aggressive maneuvering. Also, to ensure the safety of the maneuver, Assumption 3.3

require the vehicle to ensure there is an admissible input that can prevent the vehicle

falling outside of the safety region in (2.18). There are 3 different types of constraints

applied to the proposed NMPC which are defined in Definition 3.2. The main goal of

model predictive control is to control the state of the vehicle system toward a reference

trajectory and then keep it close to this reference with the vehicle’s motion inside the

safe region. An NMPC is designed on top of numerical optimization to solve the path

following and maintain the vehicle motion within the computed safety envelope. To

formulate the safe optimal control problem for the aggressive maneuvering, a discretized

system of (2.16) with a fixed sampling period Ts is used

z(k + 1) = f(z(k),u(k)), u(k) = u(k − 1) + ∆u(k), (3.17)

where u(k), k ∈ N, is the input and ∆u(k) is the changing amount of the input at the

kth step. The following cost is minimized in the NMPC design.

Jδ =

k+Hp∑
i=k

(l1‖ei‖2 + l2‖ėi‖2 + l3‖∆ui‖2) + l4Jm, (3.18)

where lj , j = 1, · · · , 4, are constant weights, Hp is the predicting horizon, and cost Jm

penalizes the possible robot motion outside Ωo, namely,

Jm =


kββ

2 + kψω
2
ψ if z = [β ωψ]T /∈ Ωo

0 if z = [β ωψ]T ∈ Ωo

, (3.19)

where kβ, kψ > 0 are the constant gains. The NMPC is then formulated as

min
∆u(t)

Jδ

subject to zk+1,t = f(zk,t,uk,t)

umin ≤ |uk,t| ≤ umax,∆umin ≤ |∆uk,t| ≤ ∆umax

uk+1,t = ∆uk+1,t + uk,t, k = 1, . . . ,Hp,

(βk,t+Hp , ωψk,t+Hp) ∈ Ωc. (3.20)
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where z(t) = [zt,t zt+1,t · · · zt+Hp,t] with zt,t = z(t) is the sequence of z(t) over the

prediction horizon Hp at time t, and updated according to (3.17). Terms uk,t, ∆uk,t,

and ut,t = u(t) are the kth input sequence ut and ∆ut respectively. At each time step

t, the performance index (3.18) is minimized to obtain the optimal control input.

The use of Jm in the NMPC is inspired by a strategy to penalize the motion stability

similar taken by the professional drivers. If the motion is within Ωo, the control design

follows a regular model predictive control. If the motion is outside Ωo, the modified

NMPC design tries to bring the motion back to the stable equilibrium at the origin.

3.3.3 Stability of NMPC

Nonlinear model predictive control, also known as model receding horizon, is expedient

to deal with nonlinearities and constraints. Many of the stability analysis techniques

which later turned out to be useful for NMPC, like Lyapunov function-based stability

proofs or stabilizing terminal conditions were in fact first developed for linear MPC

and later carried over to the NMPC. Also, for computational reasons the prediction

horizon should be as short as possible, compatible with the expected performance and

hardware, software limitations of the robotic vehicle. Although the main challenge is

to guarantee closed-loop stability and performance also for small values of prediction

horizon by an appropriate design of the constrained optimization engine it is possible to

ensure closed-loop stability [103]. The NMPC proposed in this chapter the perturbation

and uncertainties are explicitly taken into account using a domain of attraction and

applying that to the optimization problem as constraints. Similarly, min–max MPC

schemes building on game theoretic ideas or tube-based MPC schemes [104] have been

developed to deal with model uncertainties. Later in Chapter 5 a learning based NMPC

will be introduced for uncertainty approximations.

Convergence of NMPC

The proposed NMPC uses Nonlinear Conjugate Gradients (NCG) as a numerical dy-

namic programming algorithm to solve the constrained optimization problem of safe

aggressive maneuvering. NCG, comparing to other dynamic programming methods,
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needs lower memory requirements, and it has a superior local and global convergence

rate [105]. The development of efficient NCG for constrained nonlinear systems is an

active research area [106,107].

In our abstract formulations of the NMPC Algorithm (3.20) only the first element

∆u0,t of the respective minimizing control sequence is used in each step, and the remain-

ing entries ∆u1,t, . . . ,∆uN−1,t are discarded. In the practical implementation however,

these entries play an important role because numerical optimization algorithms for

solving the cost function usually work iteratively, starting from an initial guess ∆u(·)0
k,t

an optimization algorithm computes iterates ∆u(·)ik,t, i = 1, 2, . . ., converging to the

minimizer ∆u(·)∗k,t and a good choice of ∆u(·))0
k,t is crucial in order to obtain fast con-

vergence for this iteration, or even to ensure convergence, at all. Here, the minimizing

sequence from the previous time step or using an initial guess by a simple kinematic

base controller can be efficiently used to construct such a good initial guess.

Consider the finite horizon counterpart optimal control problem at N th step of

control system (3.20). For this method one can show that the optimal value function

similar to Eq. (3.11) is of the form VN (E) = E>PNE and that the matrix PN has a

unique symmetric and positive definite form discrete time algebraic Riccati equation

where P ∈ R4×4. In [102], it has been shown that as N → ∞ the convergence implies

that for each ε > 0 there exists Nε > 0 such that the inequality∣∣∣E>PNE−E>PE
∣∣∣ ≤ ε‖E‖2

holds for all N ≥ Nε. The convergence property of (3.20) and stability analysis in

Section 3.2 delivers an stable feedback law from (3.7) and (3.20) the closed-loop control

system is asymptotically stable.

Computational complexity and real time challenges of NMPC

NMPC solves the optimal control problems in real time using iterative nonlinear pro-

gramming optimization methods, which are computationally heavy and practically chal-

lenging. Iterative methods use the gradient of the cost function to find the convergence

direction during the optimization; however, to avoid falling into local minimum traps,
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we will use the following assumptions.

Assumption 3.4 (Equilibrium endpoint constraint) (i) The point z∗ ∈ Z is an equi-

librium for an admissible control value u∗, i.e., there exists a control value u∗ ∈ U (z∗)

with f (z∗,u∗) = z∗. (ii) The stage cost ` : Z × U → R+
0 satisfies ` (z∗,u∗) = 0 for z∗

from (i). Each admissible control sequence on the horizon N − 1 can be extended to an

admissible control sequence on the horizon N in real time.

The statistical analysis for the NCG method in simulations shows the capability of the

real time convergence of the algorithm. Figure 3.1 demonstrates the average conver-

gence rate of the proposed NCG. The statistical comparison of NCG with Steepest

Descent (SD), Particle Swarm Optimization (PSO), and modified Memetic Algorithms

(MA) [108] proves that NCG can be used for real time purposes since the process time

for an applicable convergence is acceptable.
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Figure 3.1: Statistical convergence comparison of NCG for a trajectory following prob-
lem over 100 different tries for path agile maneuvering in simulations.

3.4 Experimental results

RURacer-1 shown in Figure 2.5 was tested on a wooden track as shown in Figure 2.6(a).

Details of the experimental setup and physical models are explained in Section 2.4.1. A
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skilled RC vehicle driver was invited to conduct aggressive maneuvers. The driver has

more than ten years of experience running RC race-cars. The human driver tried to

follow any arbitrary trajectory and run the vehicle as fast as possible without losing the

stability to achieve the minimum time lap on the race track shown in Figure 2.6(a). We

collected the data from his experiments to compare with autonomous driver tests. The

controller design then uses a vehicle’s velocity profiles as one of the tracking targets,

and the results are also compared with the human driver performance. For comparison

purposes, we also implemented the Restrictive Boundary NMPC (RBNMPC) in [87]

that uses the open-loop stability boundary in the MPC design.

We set up the desired trajectory rd as the center-line of the track as shown in

Figure 3.2. Under the control systems design, the vehicle tries to follow the desired

trajectory within the shortest time while maintaining a safe motion. Figure 3.2 shows

the performance under the proposed NMPC and the RBNMPC along with the trajec-

tory under the human expert driver. The tracking errors under the NMPC are smaller

than those under the RBNMPC and even the human driver. The traveling times un-

der these two controllers and the human driver are listed in Table 3.1. We also list

and compare the maneuver agility metrics under the two controllers and the human

expert driver. The first agility metric is the accumulated lateral jerk, and the second is

the accumulated relative lateral acceleration of the robotic vehicle [10]. Both metrics

are calculated over the traveling distances. These comparisons demonstrate the higher

agility and the shorter traveling time under the NMPC than those under the RBNMPC

design. It is also clearly demonstrated that the human expert driver outperforms both

autonomous controllers.

Table 3.1: Tracking performance comparison

Controller Travel time (s) Agility metric 1 (m/s3) Agility metric 2

NMPC 4.85 6.31 0.58

RBNMPC 5.21 4.83 0.46

Human 4.58 7.36 0.65
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Figure 3.2: Trajectory comparison under two different autonomous control designs and
human test.

Figure 3.3 further shows the vehicle motion comparisons under the two control

designs along with the performance of the human expert driver. Figure 3.3(a) shows

the longitudinal and lateral velocities (vx and vy) and Figure 3.3(b) demonstrates the

yaw-rate (ωψ) comparisons. From both figures, we observe that under the NMPC, the

magnitudes of the velocity and the yaw-rate are in general larger than those under

the RBMPC design, while under the human expert driver, these values are then even

larger than those of the NMPC. To clearly see such a trend, Figure 3.3(c) shows the

slip angle comparisons under the two control designs and the human expert driver.

Under the NMPC, the slip angle β reaches and keeps large values (around more than

10 degrees) over a long period, while the slip angle under the RBNMPC maintains

relatively smaller values. Under the human expert driver, the slip angle values reach

even larger magnitudes than those under the NMPC for some periods. This observation

is similar to the comparison between the professional racing drivers, and the typical

human drivers presented in [10].

It is also interesting that from the results shown in Figure 3.3(d), the NMPC gen-

erates larger steering inputs than those of RBNMPC (e.g., over 1.5-2.5 s and 3.2-4.8 s
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Figure 3.3: Comparison results under two autonomous controllers. (a) Vehicle velocity
profiles. (b) Yaw rate (ψ̇) profiles. The large circle, square, and star markers indicate
the out of open-loop stability region at these moments. (c) The center slip angle β
profiles. (d) Steering angle δ profiles.
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periods). On the other hand, the human expert driver did not use any larger steering

angles but instead, the duration of steering action is longer than that of the two con-

trollers. Moreover, the human driver uses rapid changes in steering the vehicle. The

saturated steering angle differences under the two controllers shown in Figure 3.3(d)

are due to the augmented, large stability regions, that is, Ωo ⊆ Ωc. Figure 3.3(b) also

shows the time instances (as large circle, square, and star markers) at which the vehicle

motion is outside the stability region of the open-loop vehicle dynamics. The longitude

and lateral acceleration profiles are also represented in Figure 3.4(a) and Figure 3.4(b),

respectively.

3.5 Summary

In this chapter, a nonlinear model predictive controller on top of a feedback lineariza-

tion controller was proposed to follow the desired trajectory and aggressive maneuvers

within the safety region. NMPC was modeled as a constrained nonlinear programming

problem and was solved in real time. NMPC useed the complete analytical model of the

vehicle subjected to safety region and input limits. The controller allowed the vehicle

to maximize the vehicle’s maneuverability as thoroughly as a race-car driver. A proper

dynamic model of the vehicle, tire, and its actuators provided more accurate prediction

for the vehicle’s future state for the NMPC. Experimental results proved that a proper

dynamic model for FLC and NMPC, and the trajectory designed on the race track, the

autonomous vehicle car can follow the trajectory with similar performance to an expert

RC race-car driver.
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Chapter 4

Motion Planning for Safe Aggressive Maneuvering

4.1 Introduction

During a aggressive or stunt maneuvering, professional drivers follow a certain sequence

of motions for specific maneuvers. These motions are usually planned ahead of time,

however, they are usually ready for any unexpected situation to reduce the risk. We can

divide professional race car driving into two steps, planing and performing. A motion

planning algorithm can be compared to professional driver’s action schedule when the

motion controller behaves as a synchronizing engine to keep the actions precise and safe.

The problem of safe optimal motion planning requires computation of control commands

and vehicle states to find risk free agile vehicle maneuvers. The resulting problem can

be formulated as a constrained optimization process. This optimal control problem is

subjected to the dynamical model of the vehicle and it’s safety regions. Motion planning

is computationally expensive and commonly unachievable in real time.

Optimal path planning for racing have been studied in the past a few years. A

sequential optimization algorithm can generate race trajectories using an initial feasible

trajectory [66]. However, this method has limitations since the initial path is not always

accessible and it is not guaranteed to find the globally optimal trajectory due to using

convex optimization methods. Using professional driving techniques to generate the

trajectories similar to race car drivers take on the race track for autonomous vehicle

maneuvering [109]. It is still challenging to find the time-optimal trajectory in real time

even by assuming the initial feasible trajectory is accessible [110–112].

Sampling-based motion planning algorithms, such as Rapidly-exploring Random

Trees (RRT) [113] and Sampling-Based Model Predictive Control (SBMPC) [114], effi-

ciently find feasible trajectories for complex dynamical systems with constraints. These
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algorithms have demonstrated the ability to produce feasible open-loop trajectories,

but they cannot guarantee the produced trajectory’s optimality. The development of

the RRT* algorithm ensures the asymptotically optimality [68] through the nearest

and rewiring strategies in the tree node expansion process. However, since solving

the boundary-value problem for a complex dynamic system is challenging, the RRT*

algorithm’s rewiring mechanism cannot be implemented efficiently.

Recently, a modified RRT* algorithm is implemented to find a minimum-time trajec-

tory for autonomous high-speed driving of vehicles [70]. A simple particle model is used

to transform the steering problem for the half-car model to reduce computations [27].

The sparse-RRT method does not use the rewiring process and instead provides asymp-

totic near-optimality for planning without access to a steering function [115]. Motion

primitives are used to generate a feasible and fast trajectory for vehicle maneuvers,

and optimality of the trajectory is, however, not guaranteed [38]. Randomized motion

planning algorithms are also proposed to generate open-loop sequences of minimum-

time motions for successful simulation [27, 70, 116]. A closed-loop RRT-based motion

planning algorithm is implemented in [71] for real time autonomous vehicles, but the

optimality of the trajectory is not considered and guaranteed. Feedback-based motion

planning algorithms are developed in [117] with guaranteed control stability and safety.

This chapter’s primary aim is to design an optimal motion planning algorithm for

aggressive autonomous maneuvering for vehicle dynamics with drifting capabilities on

a race track with physical constraints and track boundaries. Our motion planning

method is based on the Rapidly-exploring Random Trees (RRT) [113], RRT* [68],

and Sparse-RRT [115]. The principal motives for this choice are: (i) Sampling-based

algorithms apply to various type of nonlinear dynamic systems; (ii) the incremental

optimization nature of RRT* and complexity reduction using Sparse-RRT algorithm

complies with near real time optimal path planning for the real world and implemen-

tation; (iii) sampling-based methods allow trajectory planning while imposing possibly

very complex constraints on the states and inputs of the control system.
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4.1.1 Rapidly-exploring random trees

(RRT) is a heuristic search method that builds up a tree where each branch is one

iteration of a numerical simulation of a dynamical system [118, 119]. The simulated

system at each iteration intends to generate a motion towards random nodes in the

search space. The safety and feasibility of the dynamical system are ensured at each

step of the simulation. Before adding the node to a tree, the safety and feasibility of

the simulated branch are checked. Unlike the original RRT [113], which looks for the

input sequence leading to the goal, this dissertation will find the most desired trajec-

tory using an integrated controller. In order to plan the trajectory in real time, this

method is required between each decision step to generate the vehicle control motions,

which are possible to regenerate using NMPC. The advantage of using the controller

integrated to RRT is its ability to apply to kinodynamic planning problems, which

include both system and environmental uncertainties. The integrated NMPC furthers

the development of this method to reconfigure the tree for rewiring in RRT* [68]. Find-

ing an asymptotically optimal solution using RRT* for complex dynamical systems is

not straight forward since it needs solving boundary value problems. Since there is no

general solution for rewiring, this dissertation uses NMPC to generate local closed-loop

simulations for the vehicle on the race track. It was implemented using a full vehicle

model to ensure the vehicle’s maneuver’s precision and safety, where the safety region is

found analytically. The proposed method reconnects the nodes together using NMPC.

A drain function is implemented to remove extra nodes to reduce process burden, called

Sparse-RRT* (SRRT*). However, the implementation was not fast enough. For real

time implementation; it is used in a near real-time test scenario on the edge computer.

4.2 Constrained optimal motion planning design

In this section, we present a motion planning approach that takes the advantages of the

local steering algorithm [27] and the sparse search method with the integration of the

NMPC [116]. One attractive property of the proposed motion planner is less computa-

tion difficulty and thus is suitable for real time applications. Indeed, we implemented
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and demonstrated the motion planning algorithm using RURacer-1 and RURacer-2,

on the race track. We also compare the performance under the autonomous driving

control and the expert human driver. The main contribution lies in the design and

implementation of a reliable motion planning scheme for autonomous vehicle aggressive

maneuvers. The proposed sparse-based motion planner has adopted from [116], and

the use of the MPC for the steering function is inspired by from [27]. We extend the

work in [116] to take advantage of the steering function and that the rewiring process is

used only for the dynamically reachable nodes to reduce the computational cost. The

combined feedback linearization and NMPC design are used as the lower-level controller

for robust motion performance that was explained in Chapter 3.

4.2.1 Motion planning formulations

Let compact sets Z ⊂ Rn and U ⊂ Rm denote the trajectories and the controls for

system (2.16), respectively. Let Zo ⊂ Z and Zg ⊂ Z denote the obstacle and goal

regions, respectively. The feasible region is then Zf := Z/Zo. The vehicle is first

located at z0 ∈ Z and must maintain inside feasible region Zf and reach Zg. A

feasible trajectory ω ∈ Zf over duration T is a set of dynamic states of the vehicle

system over [0, T ] which connect z0 to Zg with corresponding controls u. Ω is the set

of all feasible trajectories in Zf . The motion planning for given {Zf ,U , z0,Zg} is to

find trajectory ω ∈ Ω while minimizing a cost function (i.e., traveling time). The cost

function c(z) 6= 0 for trajectory z ∈ Z is defined as

Jc(z) =

∫ T

0
c(z(t))dt.

The RRT* algorithm is a sampling-based motion planner that guarantees optimal-

ity [68]. The main approach of RRT* is the use of the Nearest and Rewire procedures

that need Steering function to connect two different nodes in the configuration space.

Nearest checks the distance or cost between each vertex and its parent to find the

closest node in the a neighborhood of vertices in a fixed radius from the new node.

In Rewire, after a vertex has been connected to the cheapest neighbor, the neighbors

are again examined for a accumulative cost reduction if the are being rewired to the
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Figure 4.1: Drain and Rewiring methods after generating a new node is graphically
presented in a selected picture.

newly added vertex. In the Sparse-RRT [116] algorithm, the Nearest function is used

but Rewire is not used because of the difficulty to solve boundary-value problem. A

Drain function is also used to remove the nodes with higher costs in neighboring sets

and keeps the lowest-cost node. In our approach, we instead use the NMPC controller

to connect the nodes.

We extend the RRT* algorithm described in [70] and make modifications to add

the attractive properties of the Sparse-RRT in [116] as a Drain function. Unlike the

approach in [27] to connect the nodes in the rewiring process, the NMPC design is

used to connect the nodes for the vehicle dynamic model. The SRRT* is illustrated

in Algorithm 4.1. Figure 4.1 also illustrates the construction of the BestNearest,

Drain and Rewire processes in the SRRT* design and these processes are described

in the following discussions. Also, there are further modifications to the Sample and

Drain algorithms to improve the convergence and reduce the computation complexity

comparing to original RRT and Sparse-RRT methods.

Sample: Inspired from the MPC-tree method [114], we take the goal-directed sam-

ples in the steering function design. The goal-directed sampling process’s main idea is

to take a small percentage (e.g., 5%) of the samples biased toward the goal. Such a

process would help to converge to the goal quickly. The sampled point is presented in
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Algorithm 4.1: SRRT*(Zg,U , z0,Zf , imax)

1 V← z0, E← ∅, i← 0;
for i < imax do

2 zrand ← Sample(Zf ,Zg);
3 znear ← BestNearest(V, zrand,∆near);
4 znew ← Steering(znear, zrand,Zf );

if znew 6= ∅ then
5 V← V ∪ {znew}, E← E ∪ {(znear, znew)};
6 V,E← Rewire(V, znear, znew);
7 V,E← Drain(V, znew,∆Drain);

end
8 i← i+ 1;

end

Figure. 4.1 with an orange circle as zrand.

BestNearest: The main concept of the BestNearest function is illustrated in Fig-

ure 4.1. The circle around zrand with a radius of ∆Near defines the area that the

algorithm searches for the neighbors. Similar to the RRT* [27] and Sparse-RRT [115]

algorithms, the BestNearest function used in Algorithm 4.1 tries to find a node with

the minimum cost within a vicinity ∆near of znew. The vicinity is limited only to the

nodes that are dynamically feasible to be steered from znear to znew. The BestNearest

function is illustrated in Algorithm 4.2. The Near function returns all the nodes in V

that are in vicinity of zrand within a radius of ∆near. The nodes in ZNear are restricted

to those that are dynamically feasible through FeasibleNear function in the algorithm.

Steering: Unlike random propagation in [115], in the proposed SRRT* algorithm,

the nearest node zNear is driven toward zrand (usually close to znew) using also the

Steering function, as illustrated in Figure 4.1. The advantage of using the Steering

function is that when the system has an obstacle-free path to Zg, the goal-directed

sampling helps a fast convergence to obtain the initial trajectory for real time applica-

tions.

Rewire: To find the nodes ztorewire that need to be rewired, the vicinity of znew

within a radius of ∆near is used to restrict to the nodes that are dynamically feasible, as

the gray circle area illustrated in Figure 4.1. We also use a vicinity around znew within

a radius of ∆rewire as the converging area from node ztorewire. The main difference and
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advantage of the SRRT* algorithm with the Sparse-RRT in [115] is the added Rewire

function. The reason for not using the Rewire function in [115] lies in the difficulty to

solve the boundary value problems. At each iteration, after sampling a new state and

extending the tree towards the new state, the Rewire function attempts to re-assign the

parent of each nearby node. The nearby nodes’ vicinity is restricted to the ranges the

NMPC can steer to reduce the number of attempts. In the RRT* algorithm [27], the

number of times to invoke the Steering function is O(n log n) and the collision check is

implemented after the rewiring by the Steering function. To reduce the computational

burden, the collision check is enforced while propagating. We also use the closed-loop

NMPC to steer the system from one node to another with its inherent optimization

formulation.

Drain: The main idea of the Drain function is to divide the search space into sub-

sections and then use search methods to connect the subsections and find the trajectory.

Comparing with other algorithms, the main difference in this work is that the subsec-

tions are chosen dynamically while the tree is growing. Unlike [116], the drain region

∆Drain is selected regarding the attraction region of the dynamic system. In Figure 4.1,

drain region ∆Drain is illustrated as the blue circles where all the nodes in the vicinity of

znew within ∆Drain are called zpeer. The Drain function is illustrated in Algorithm 4.3.

In Algorithm 4.3, z.children is the number of the children of node z and ZUseless is

the set of the nodes which have a higher cost than the best-reached node and ZReached

is the set of the nodes that reach the goal.

Algorithm 4.2: BestNearest(V, zrand,∆near)

1 ZNear ← Near(V, zrand,∆near);
2 ZNear ← FeasibleNear(ZNear, zrand);

if ZNear = ∅ then
3 Return : Nearest(V, zrand);

end
else

4 Return : argminz∈ZNear
c(z) ;

end
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Algorithm 4.3: Drain(V, znew,∆Drain)

1 ZDrain ← Near(V, znew,∆Drain);
if c(znew) ≥ argminz∈ZDrain

c(z) then
2 remove(znew);

else
for z ∈ ZDrain do

if z.children = 0 then
3 remove(z);

end

end

end

end
if ZReached 6= ∅ then

4 ZUseless ← {z ∈ V |c(z) ≥ argminz∈ZReached
c(z)};

for z ∈ ZUseless do
5 remove(z);

end

end

4.3 Complexity analysis and comparisons

4.3.1 Analysis of proposed motion planning

This section illustrates desirable properties of SRRT* including the near-optimality

property and the convergence rate. Then some simulations are given to show these

performances of SRRT* by comparing RRT*, SST and SRRT*.

Convergence rate and optimal properties

For the analysis proposes, some notions are introduced. A
(n)
k denotes a δ-similar tra-

jectory to the kth segment is generated, where k is the number of the segment in the

optimal trajectory and n is the number of iteration. E
(n)
k denotes whether at least one

optimal trajectory to the kth segment is generated from iteration 1 to n. [115] men-

tioned BestNearest eventually generates a δ-similar trajectory to any optimal trajectory

and gave the following boundary condition:

P (E
(n)
k ) ≥ 1−

n∏
j=1

P (E
(j)
k−1) · γρδ→δBN (4.1)
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where γ is a positive constant and ρδ→δBN denotes the probability for Steering function

to generate a trajectory. Assume that the kth segment of the trajectory always meets

the lower boundary of the probability function P (E
(n)
k ). The ratio of the probabilities

can be obtained between iteration n and n− 1 while n approaches infinity.

lim
n→∞

|1− P (E
(n)
k )|

|1− P (E
(n−1)
k )|

=

∏n
j=1(1− P (E

(j)
k−1) · γρδ→δBN )∏n−1

j=1 (1− P (E
(j)
k−1) · γρδ→δBN )

= lim
n→∞

(1− P (E
(n)
k−1) · γρδ→δBN ).

(4.2)

In addition, we have the following equation if a δ-similar trajectory to any optimal

trajectory is generated.

lim
n→∞

P (E
(n)
k−1) = 1. (4.3)

Applying these two equations (4.2) and (4.3), we can obtain:

lim
n→∞

|1− P (E
(n)
k )|

|1− P (E
(n−1)
k )|

= 1− γ · ρδ→δBN . (4.4)

The equation (4.4) states that BestNearest converges linearly to near-optimal solutions.

[116] explained the experimental performance of BestNearest and Drain function in

SRRT* guarantees the near-optimality properties. This approach’s complexity is mainly

determined by two nearest neighbor queries, BestNearest and Drain. A sparse data

structure is maintained in SRRT*, so the computational burden to perform these queries

is much smaller than other methods. The statistical analysis of the complexity and

convergence are discussed for different test-beds in simulations.

4.3.2 Simulation results of SRRT*

We conducted simulation comparison of the running time, a number of the nodes, and

the convergence rate of the cost functions (i.e., traveling time or distance) among the

RRT*, SST and SRRT* algorithms. The vehicle dynamics model and 2D model (i.e.,

dubins vehicle dynamics) were tested in simulations. Figure 4.3(a)-4.3(c) show the

comparison results (average of 20 random runs) of these algorithms with the vehicle

dynamics: the running time, the number of the nodes, and the convergence rate of the

cost function. For the computation load, the SRRT* outperforms slightly than the SST
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and the RRT*. The number of the nodes for the RRT* is increasing linearly with the

iterations, which reaches to 26740 nodes. The SST and the SRRT* algorithms reach

to 6535 nodes and 4024 nodes respectively after 8 × 104 iterations due to the sparse

properties. The Cost of SST drops rapidly in the beginning, but it maintains at 3.34

seconds. The costs of the SRRT* and the RRT* finally maintain at the same lower-

level, smaller than that of the SST. For 2D model, although the running time of SST

is smaller than that of SRRT*, the cost of SST remains much higher level than that of

SRRT*. Similar results can be drawn from Figure 4.2 that the distance of SRRT* and

RRT* are very close while SST has a longer distance than other algorithms.

4.1 shows the simulation results under different algorithms for simple 2D and the

U-turn vehicle maneuver. Similarly, the number of the nodes for the SRRT* is less than

the other two methods. The cost functions are the distance from the initial states to

the goal and the traveling time. The length of the best path found by SRRT* is slightly

shorter than that of SST in the simulation of simple 2D. As for vehicle dynamics, the

traveling time of SRRT* converges similar to that of the RRT* while the traveling

time of the SST is much larger than the other algorithms. Similar to that shown in

Figure 4.3(a), the SRRT* algorithm is faster than both the other two methods. All of

these results demonstrate the attractive properties of the SRRT* algorithm.

Table 4.1: Average results for simulating different algorithms foe same problem and
50000 iterations.

Problem Method Nodes Computation Time Cost

Simple 2D (Distance)

RRT* 45605 234 (s) 7.942 (m)

SST 6543 154 (s) 8.098 (m)

Spare-RRT* 5954 161 (s) 7.961 (m)

U-turn (Time)

RRT* 27350 412 (s) 2.87 (s)

SST 6105 323 (s) 3.18 (s)

SRRT* 4573 291 (s) 2.93 (s)
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Figure 4.2: Comparing the minimum distance motion planning results for a simple
2D particle model with 10000 iterations. (δNear=0.5, δDrain=0.05) (a) The standard
RRT*. 7820 nodes in 38 seconds while the cost is 8.006. (b) The Sparse-RRT. 4831
nodes in 31 seconds while the cost is 8.64. (c) The proposed method as SRRT*. 4505
nodes in 33 seconds and 4523 times of rewiring while the cost is 8.016.
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Figure 4.3: Comparing the number of the nodes, computational time and convergence
of the cost function for vehicle motion planning. (a) The elapsed time of different
methods for the car mode. (b) Number of the generated nodes for the car model. (c)
Convergence of the cost function (Time) for the car model. (d) The elapsed time of
different methods for the 2-D mode. (e) Number of the generated nodes for the 2-D
model. (f) Convergence of the cost function (Distance) for the 2-D model.
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4.4 Experimental results

Test 1: Minimum-time half of a Lap

Similar to Chapter 3, RURacer-1 in Figure 2.5 was used to test the race-car to follow

the optimal trajectory on the track was used for the experiments which presented in

Figure 2.6(a). The time-optimal trajectory computation by the SRRT* was not fast

enough for online motion planning. In our experiments, the optimal motion planning

was first computed once. The robot will modify the plan when an unknown random

obstacle obstructs the path, which was not applicable to this scenario. The NMPC was

implemented to follow the minimum time trajectory computed by the SRRT* off-line.

Figure 4.4 shows the time-optimal trajectory generated by the SRRT* algorithm (i.e.,

the solid line). The blue-dot line in the figure indicates the NMPC tracking results

after the optimal trajectory was generated by SRRT*. The main reason for conducting

the NMPC in simulation was to check that the rewiring process’s small tolerances do

not cause any problems.

We again invited the expert RC vehicle driver to the campus and conducted driving

experiments, and collected his test data for comparison purposes. His tests were con-

ducted several times, and all motion data were recorded using the sensors and cameras.

Taking the same starting and ending points, we ran the autonomous driving tests. Then

the motion controller was implemented to track the optimal trajectory generated by

the motion planner.

Figure 4.5 shows the comparison results of the motion planning under human expert

driving and autonomous control. The SRRT* was used to generate the time-optimal

trajectory for the autonomous driving test rd as shown in the figure. Under the motion

control design, the vehicle followed the desired trajectory in the shortest time. As

shown in Figure 4.5, the NMPC minimized the tracking error, and the trajectories

under the motion controller and the human driver do not follow the motion planner

result. Furthermore, we also computed and listed the traveling times under these two

cases and the results are listed in Table 4.2. For comparison purposes, we also include

the maneuver agility metrics in the table. These agility metrics include the accumulated
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1 m

1 m

Figure 4.4: The time-optimal trajectory using the SRRT*. The results are obtained
under 500, 000 iterations, 2, 573 nodes, 1, 570 rewiring and 601, 260 of drained nodes
in 1, 063.97 seconds. (∆Near = 0.5 and ∆Drain = 0.1). The optimal traveling time was
found as 2.93 s.

lateral jerk and the accumulated relative lateral acceleration of the vehicle [10]. Both

metrics listed in the table are calculated over the traveling distances. From those

results, the autonomous controller achieves a shorter traveling time and higher agility

than those by the human expert driver.

Table 4.2: Tracking performance comparison under two controllers and the human
driver

Controller Traveling time (s) Agility metric 1 (m/s3) Agility metric 2

Proposed 3.18 5.31 0.58

Human 3.26 7.36 0.65

Figure 4.6 further shows the vehicle motion comparisons under the control design
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Figure 4.5: Trajectory comparison under two different autonomous control designs and
human test.
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Figure 4.6: Experimental comparison results under the autonomous controller and the
human expert driver. (a) Vehicle velocity profiles. (b) Yaw-Rate (ψ̇) profiles. (c) The
body center slip angle (β) profiles. (d) Steering angle (δ) profiles.
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and human’s test. Figure 4.6(a) shows the longitudinal and lateral velocities, Fig-

ure 4.6(b) demonstrates the yaw-rate (ψ̇) comparisons, Figure 4.6(c) shows the slip an-

gle comparisons and finally, Figure 4.6(d) shows the steering angle comparison. These

figures clearly show that under the NMPC, the vehicle runs smoothly without quickly

changing the steering and slip angles, which is observed by the performance of the hu-

man expert driver. Both the autonomous and human expert driving show large slip

angles (around more than 10 degrees). This observation is similar to the comparison

between the professional racing drivers, and the typical human drivers presented in [10].

Test 2: Minimum-Time Lap

We asked the same RC vehicle driver to conduct driving tests for the fastest lap for

comparison purposes. We collected the results from several tests he performed and chose

the best result for comparison. In this test the vehicle follows the optimal trajectory

generated by the proposed SRRT*. Then the proposed motion controller in Chapter 3

is implemented to track the optimal trajectory generated by the motion planner.

The time-optimal trajectory computation by the SRRT* is not fast enough for

online motion planning. In our experiments, the optimal motion planning was first

computed off-line, and the motion controller was implemented to follow the trajectory.

The NMPC was implemented to follow the minimum time trajectory computed by the

SRRT* off-line. Figure 4.7 shows the time-optimal trajectory generated by the SRRT*

algorithm (i.e., the solid line). The blue-dot line indicates the NMPC tracking results

after the optimal trajectory was generated by SRRT*.

The RC vehicle driver conducted new driving tests to reach the fastest lap time.

The starting point of the vehicle was from one side of the track, and the goal was to

reach the same area again. The human expert driving tests were conducted several

times, and all motion data were recorded. The best result from his tests was compared

with the autonomous controller test of NMPC following the optimal path found by

SRRT* shown in Figure 4.7.

Figure 4.8 shows the comparison results of the motion planning, human expert
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Figure 4.7: The time-optimal trajectory using the SRRT*. The results are obtained
under 500, 000 iterations, 2, 573 nodes, 1, 570 rewiring and 601, 260 of drained nodes in
9073.97 seconds. (∆Near = 0.5 and ∆Drain = 0.1). The optimal traveling time is found
as 4.31 s.

driving, and autonomous control. The SRRT* was used to generate an initial time-

optimal trajectory for the autonomous driving test rd as shown in the figure. Under

the motion control design, the vehicle tries to follow the desired trajectory within the

shortest time. As shown in Figure 4.8, it is clear that the NMPC is based on minimizing

the tracking error. The human expert driving trajectory is also plotted in the same

figure. The trajectories under the motion controller and the human driver control do

not follow the exact trajectory designed by the motion planner results. Furthermore,

we computed and listed the traveling times under these two cases and the results are

included in Table 4.3. For comparison purposes, we also listed the maneuver agility

metrics in the table. These two agility metrics include the accumulated lateral jerk and

the accumulated relative lateral acceleration of the vehicle [10]. Both metrics listed in

the table are calculated over the traveling distances. It is clear from Table 4.3 that

the autonomous controller achieves a shorter time and higher agility than those by the

human expert driver.

Figure 4.9 further shows the vehicle motion comparisons under the control design

and human control experiments. Figure 4.9(a) shows the longitudinal and lateral veloc-

ities, Figure 4.9(b) demonstrates the yaw-rate (ψ̇) comparisons, Figure 4.9(c) shows the

slip angle comparisons and finally, Figure 4.9(d) shows the steering angles comparison.

These figures clearly show that under the NMPC, the vehicle runs SRRT* smoothly
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Figure 4.8: Test 2-Trajectory comparison under two different autonomous control de-
signs and human test.
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Figure 4.9: Test 2-Experimental comparison results under the autonomous controller
and the human expert driver. (a) Vehicle velocity profiles. (b) Yaw-Rate (ψ̇) profiles.
(c) The body center slip angle (β) profiles. (d) Steering angle (δ) profiles.
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Table 4.3: Test 2: Tracking performance comparison with planned trajectory, proposed
controllers and human’s control experiments

Controller Finishing time (s) Agility metric 1 (m/s3) Agility metric 2

SRRT* rd 4.31 7.51 0.59

Proposed 4.36 7.44 0.53

Human 4.49 7.68 0.65

without quickly changing the steering and slip angles, which can be seen by the perfor-

mance of the human expert driver. Both the autonomous and human expert driving

show large slip angles (around more than 12 degrees). This observation is similar to the

comparison between the professional racing drivers, and the human drivers presented

in [10].

4.5 Summary

We presented the SRRT* motion planning algorithms for autonomous aggressive vehi-

cle maneuvers. The SRRT* motion planner took advantages of the Sparse-RRT and

the RRT* algorithms. The advantage of sparse property for motion planning helped

to reduce the computational burden by removing un-useful nodes in the searching pro-

cess. The attractive property of the SRRT* lies in fast convergence to the optimal

solution with less amount of computations. We implemented and compared our pro-

posed algorithm with Sparse-RRT and RRT* both in simulations and experiments. Our

experimental goal was to find the minimum time trajectory on the race track. Compar-

ison with the human expert driver, we could achieve a better lap time using SRRT* for

motion planning and NMPC as the motion controller. The experimental results have

demonstrated the high agility maneuvering performance under the autonomous driving

control with the motion planner.
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Chapter 5

Learning Methods for Vehicle Safety Enhancement

5.1 Introduction

This chapter aims to provide a safe nonlinear predictive-learning controller to enable

AMSF. The safety region for aggressive maneuverings introduced in Chapter 2 was uti-

lized by the motion controller in Chapter 3 to safely follow the minimum time trajectory

found by the motion planner discussed in Chapter 4. These methods work successfully

unless there is an unexpected change in the vehicle model or the tire-road parameters.

The uncertain essence of the tire-road friction can cause instability and dangerous be-

haviors unless these uncertainties are compensated for the real world experiments. This

chapter provides an algorithmic approach that employs Lyapunov’s stability theory for

finding a stable search region for a real time learning predictive controller for AMSF.

Gaussian Process on Polynomial Basis (GPPB) learning method is used to improve

the vehicle and tire model accuracy for enhancing the controller performance and safety

region estimation proposed in Chapter 3. Sum Of Square (SOS) method is used to find

a stable region considering uncertainties and disturbances to improve safety region

estimations for AMSF. In [120, 121], the GP learning approaches are used to improve

its dynamics model from data to safely increasing racing performance while the safety

boundary for NMPC is not considered. Despite existing learning based methods which

used GP for training the model, we used GPPB and integrated it with SOS to update the

stability region. The estimation of the stability region is then used as safety constraints

by NMPC for real time control of the vehicle.

In [122], the learning model predictive control uses the data from previous motions

to improve its performance, while there is no proof for satisfying safety requirements.

The studies in [63] reveal that autonomous vehicles can perform similar to professional
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drivers to operate the vehicles outside, rather than within, the stability regions to

achieve superior agility. Therefore, to achieve highly aggressive maneuvers as a safety

feature, it is required to design a stable controller to relax the restrictions and allow

the aggressive vehicle maneuvers for protecting vulnerable road users [123].

However, learning and analytical methods have proven to successfully control au-

tonomous vehicles for aggressive maneuvering, ensuring a learning policy’s safety and

stability, and the scalability of an analytical method is still questionable. Due to the

vehicle dynamics’ complexity, verifying the stability and effect of uncertainties is typ-

ically inefficient if not infeasible. SOS is used to implement a verifiable predictive

control [124, 125] and learning policy [126]. Numerical and data-driven methods are

the only approaches for stability verification capable of dealing with complex control

policies, such as learning-based controllers with model and environment uncertainties.

SOS techniques provide an algorithmic method based on Semi-Definite Programming

(SDP) to guarantee non-negativity of a constrained polynomial function such as the

Lyapunov function to design control policies with stability analysis and estimation of

the region of attraction.

SOS has provided a tractable algorithmic way to deal with constraints appearing in

many control problems such as uncertainty compensation and determining the region

of attraction. SOS has been recently applied to various control problems such as Hinf

optimal control [127], sliding mode control [128], nonlinear robust stabilization [129],

and the nonlinear SOS-MPC [124]. A two-step strategy utilizes SOS to propose MPC

for input constrained nonlinear systems, which defines a set of policies and an on-line

optimization [124]. SOS is experimentally validated for tracking a given trajectory on

a severe torque limited underactuated double pendulum [130].

Similarly, it is demonstrated that drifting puts the system’s states very close to an

Unstable Equilibrium Condition (UEC) of the vehicle dynamic [74] and controlling the

vehicle to maneuver. In contrast, the system’s states are very close to a UEC requires

a reliable and robust control policy with provable guaranteed stability. Due to the

complexity of model and maneuvers, we are using a numerical optimization method

specifically designed for stability verification called SOS instead of analytical Lyapunov
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algorithm to find a controller with guaranteed stability.

5.2 Finding the stability region using SOS

This section explains the SOS-based design to estimate the safety region and calculate

the state-space of the system where the learning-predictive control can guarantee the

system’s states will stay inside the safety region. The main goal of this method is

to extend the definition of the “safety” region estimated by existing approaches [74]

and maximize the feasible state space to design a safe motion controller to perform

autonomous aggressive maneuvers.

Similar to the stability region discussed in Chapter 2, the SOS-based method is uti-

lized to estimate the feasible and safe actuation space for the aggressive maneuverings.

Similarly, the phase portrait of yaw-rate/side-slip (ψ̇/β) is used to demonstrate the

safety region of the closed-loop control systems [10]. The pseudo-code in Algorithm 5.1

describes how AMSF uses a tractable policy iteration method using SOS to find a feasi-

ble actuation space based on the nonlinear closed-loop system in (5.10) and use NMPC

to enhance the performance and guaranteed safety.

The advantage of using the proposed numerical attraction funnel instead of a rigid

boundary in [74] is that the funnel can take the system’s uncertainty into account while

using a closed-loop control system to maximize the feasible maneuvers for autonomous

vehicle systems. Figure 5.1 compares the stable funnel found by the SOS method with

the LQR based region found in Chapter 2 which is shown by the rectangle.

5.2.1 Reassert Vehicle Dynamics for Learning Predictive Control

The scaled vehicle, RURacer-2 prototype shown in Figure 2.1 is used for the exper-

imental tests in this chapter. A new state-space representation of the vehicle model

is formulated as an explicit distinct of a nominal system model fn(·) which represent

the known part of the dynamical model and the unknown part of the model which is

approximated using learning methods. These longitude and lateral forces are consid-

ered as uncertain part of the model which are identified using GPPB. Let’s define the
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Figure 5.1: Stable region found by SOS and a GP model.

nominal model as

ż(t) = fn(z(t),u(t)), (5.1)

where z = [qT vT ωT ]T is the state vector where v = [vx vy ψ̇] and ω is the vector of

wheels velocity. u = [δ ζ]T is the input vector, where δ is the steering wheel angle and

ζ is the throttle rate which controls the motor’s voltage. Using (2.2)-(2.15), the state

space of the nominal model included with the electric motor in (5.1) is expressed as

fn =



z2

M−1 [BxFx(z2, z3) + ByFy(z2, δ)−C(z1, z2)]

Kζζ −Km(ω + rwFx)


. (5.2)

More details about state-space model fn in (5.1) is represented in Chapter 2. The

complexity of the model has been a serious challenge for a precise and safe control design

for agile maneuvers. In addition, the vehicle uses soft-rubber tires, and the motion

heavily depends on the tire-road interactions and friction conditions. The longitudinal

and lateral friction forces can be calculated using tire slip ratio and slip angle using

Magic formula in Eq. (2.10). Still, the parameters are estimated and are not always

constant during a trip and can cause uncertainties and disturbances of the system.
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Algorithm 5.1: Safe nonlinear learning predictive control.

1 DATA: Initialize the Polynomial models, Gaussian process and SOS
decomposition;

2 Results: Finds the initial stability region;
3 Initialization;

while AMSF==1 do
4 Gaussian Process updates the Polynomial models;

if Collected data is enough then
5 Run SOS and evaluate the new safe aggressive maneuvering region Ωs;
6 Update the current model and safe aggressive maneuvering region Ωs;

else
7 Continue Use NMPC with the current model;

end

end

end

Using GPPB learning algorithms to estimate longitudinal and lateral friction models is

advantageous to enhance NMPC and design a nonlinear learning predictive controller.{
GPPBFijx : Fijx = fFijx(v,ω), GPPBFijy : Fijy = fFijy(v, δ)

(5.3)

To formulate the GPPB we are making the following assumptions

Assumption 5.1 The prior and the measurement noise distributions are Gaussian.

Assumption 5.2 Based on the universal approximation theory, the dynamical mod-

els have an estimation with special polynomial form. The accuracy of the polynomial

function relates to the amount of data used to train the model.

The proposed control design consists of four parts:

� A model-based feedback linearization to compute the desired tire friction forces

using nominal and learning models.

� An inverse learning model to estimate the calculate the steering wheel angle and

the throttle rate using the inverse of the tires-road models in (5.3).

� NMPC controller uses Nonlinear Conjugate gradients to predict and guarantee

the controller’s safety.
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� SOS finds the safety region.

From Eq. (2.2), we formulate the vehicle’s dynamical model in the matrix form as

Mv̇ + C(q,v) = Bx(δ)Fx(v, ω) + By(δ)Fy(v, δ), (5.4)

where the longitude force is a function of Fx(v, ω) and the lateral force is also a function

of Fy(v, δ). GPPB is used to approximate the longitude and lateral forces shown in

Eq. (5.3). We obtain the motor voltages as the inputs of the system to design a direct

learning-based controller. A simplified model for the electric motor and the power

transmission system in Eqs. (2.11)-(2.15) is written in the below matrix form as

ω̇ +Km(ω + rwFx) = Kζζ, (5.5)

where Kζ is the scaling factor for the throttle rate to motor voltage and Km is a nominal

constant matrix obtained from motor and transmission system parameters. Suppose

that the initial training data set for input-output controller uses the learning data pairs

and updates during the experimental tests. Fijx, and Fify are estimated using the

GPPB in (5.3) to enhances the model and the controller performance.

5.2.2 Redesign feedback linearization

Similar to Section 3.2, a modified version of FLC is outlined in this section. The new

design of FLC finds longitude and lateral forces where in Section 3.2 FLC is designed

to find longitude forces. The hybrid FLC-NMPC control design uses the GPPB to

estimates the tire-road friction model based on the Assumption 5.3.

Assumption 5.3 The system’s states, z are observable using sensors or any estima-

tion method and the robot’s dynamical model is available. The motor model is evaluated

with a fair amount of accuracy, and the only uncertain part of the system is the tire-road

interaction model.

Let’s rewrite the model in (3.6) as

r̈P = ΓxFx + ΓyFy + ϑ (5.6)
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where Γx = ΛM−1Bx and Γy = ΛM−1By and ϑ = (Λ̇−ΛM−1C)v. Using FLC The

force vectors Fx and Fy can be obtained as
Fx = Γ−1

x [r̈d +Kdė +Kpe− ϑ̂x]

Fy = Γ−1
y [r̈d +Kdė +Kpe− ϑ̂y]

(5.7)

where error is e = rd − rp and ė and ë are the first and second derivative of the error.

ϑ̂x and ϑ̂y are the estimation of ϑx = ϑ+ΓyFy and ϑy = ϑ+ΓxFx, respectively. Based

on the Assumption 5.3, Γx and Γy are known and the longitude and lateral forces can

be estimated using (5.3). ϑ̂x and ϑ̂y can be written as{
ϑ̂x = Λ̇v + ΛM−1ByfFy(v, δ), ϑ̂y = Λ̇v + ΛM−1ByfFy(v, δ)

(5.8)

Fx and Fy can be controlled implicitly using the the steering wheel δ and throttle ζ

using an inverse GPPP model as

{
GPPBδ : δ = f−1

δ (v,F y), GPPBζ : ζ = f−1
ζ (v, δ,ω,F x) (5.9)

Substituting the control law (5.7) in to (5.6) and using (5.9) forms the dynamic of

the closed-loop control system as,

ë + Kdė + Kpe = η(t) (5.10)

where η(t) = ϑ− ϑ̂ is called lumped uncertainty and can also be approximated by the

polynomials to any degree of accuracy using GPPB. As it is discussed in Chapter 3,

the lumped uncertainty η(t) is bounded and the error will converge to a small value in

Eq. (3.15).

Assumption 5.4 η(t) is bounded with an upper limit as ||η(t)|| ≤ ε.

Longitude and lateral forces are controller indirectly using inverse learning control

method in (5.9). The steering wheel and throttle control commands found by inverse

learning method are subjected to the FLC control law in (5.7) as constraints. Knowing

the upper bound of the uncertainty η(t) and using SOS we are able to find the stable
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region numerically for the worst-case scenario of the uncertainties. Similar to Chap-

ter 3, NMPC can predict the future states of the system and guarantee the system will

stay inside the safety region approximated by SOS.

5.2.3 SOS estimation of the safety region

This section briefly describes how SOS enables us to estimate the attraction region

for the closed-loop control system with a bounded uncertainty region. In order to

compare the SOS numerical method with the analytical method, we propose the use

of composite Lyapunov functions. Considering the upper bound of the uncertainties, a

funnel of attraction region, instead of a rigid attraction region, is calculated by defining

invariant sets of variables. We consider a fixed Lyapunov function during each SOS

optimization step. In the case of xsos = [ė; e] in (3.10) and using similar equations for

the closed-loop system (3.9), we can write

ẋsos = Asosxsos + bsosusos (5.11)

where Asos = AL, bsos = BL from Eq. (3.10) and usos = η(t). The closed loop form

of the system in (5.10) demonstrates that η(t) is a function of xsos a and ẋsos and can

be estimated as GPPBη : η = fη(ẋsos,xsos) using GPPB and we consider:

Assumption 5.5 The origin is an equilibrium point of fη with fη(0, 0) = 0, which

means {η(t)→ 0 if e, ė, ë→ 0} from Eq.(5.10).

Lemma 5.1 A two-times continuously differentiable Lyapunov function V(xsos) is given.

Moreover, there exists a constant cs > 0 such that ∂V (xsos)
∂xsos

(Asosxsos + bsosfη) < 0 for

all xsos ∈ Ωs = V (cs), where V(c) = {xsos ∈ Xsos|V(xsos) ≤ c}.

Knowing that driving motor’s input voltage is bounded and it capable of generating

bounded torques we can assume tire forces will be bounded at all times. Also, the tire

models presented in Section 2 shows that the tire forces are bounded to the coupling

circle’s limits which the limited force will generate finite acceleration and speed for the

wheels and the vehicles. Knowing the states of the system are limited and using the

BIBO theory, V(xsos) should be bounded in a finite time horizon [53].
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Lemma 5.2 The function fη is Lipschitz continuous and bounded by ηmax, where ηmax

the upper limit of the uncertainties winch can be considered as the worst-case scenario

for the stability region estimations. This can be proved using the boundlessness of the

system inputs and states.

The safety region Ωs is the inner region of that, which is larger than the open-loop sta-

bility rectangle shown in Figure 2.3(a). Using Assumptions 5.4 and 5.5, it is guaranteed

that any initial condition starts inside the safe region xsos(0) ∈ Ωs would stay inside

the {xsos(t) ∈ Ωs ∀ t > 0} by using controller (5.9) subjected to FLC rules in (5.7).

SOS is a nonparametric optimization method from machine learning, where the goal

is to find an approximation of a nonlinear map from a state x to the function value

ẋsos = y(t) = f(xsos,usos) in (5.11). For any bounded initial state and bounded input

value the system states will be bounded which there will be a finite value α > 0 such

that the signal magnitude never exceeds ‖y(t)‖ < α.

Assumption 5.6 Domain Xsos is a sub-domain of the safety region Xsos ⊆ Ωs if

{‖y(t)‖ < α ∀ t > 0, xsos(0) ∈ Xsos,usos(t) ∈ Usos}, where Xsos and Usos are bounded

domains for the states and input signals.

To formulate Assumption 5.6 using the attractive feature of SOS that are optimizing

over it to cast as a tractable semi-definite programming of nonlinear systems estimated

by polynomials. Indeed, it is known that a polynomial function discussed later in

Eq. (5.14) of degree d is even more instrumental for control applications. The fact

that when a polynomial function is not precisely determined but its coefficients are

otherwise affinely parameterized in terms of some unknowns, the search for coefficient

values exploited for algorithmically constructing Lyapunov functions for an approxi-

mated nonlinear systems using SOS by

V =

{
V(xsos) : V(xsos) = v0(xsos) +

m∑
i=1

civi(xsos)

}
(5.12)

where, cl, ..., cm ∈ R are real coefficients and vi(xsos) are some monomials. The search

for a V(xsos) − φ(xsos) > 0 and −V̇(xsos) > 0 performed using semi-definite program-

ming where φ(xsos) is some positive definite polynomial. GP approximates the system’s
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polynomials as an estimator for the closed-loop control system and SOS designs the

tractable convex optimization technique to find the safety region Ωs for the predictive

control of the vehicle.

minimize
∑m

i=1 aici

subject to vT (F0(xsos) +
∑m

i=1 ciFi(xsos)) v is a sum of squares,

(5.13)

where ai ∈ R are fixed coefficients, and ci ∈ R are decision variables, and Fi(xsos) are

some symmetric matrix functions of the state variables xsos ∈ Rn. In Algorithm 5.2,

semi-definite programming is used in Matlab and SOSTOOLS to find the a subset of

state space with guaranteed stability V̇ = ∂V(xsos)
∂xsos

(Asosxsos + bsosfη) < 0.

Algorithm 5.2: Safe region exploration

1 Star: Initialize the model (5.11) and the polynomial model for fη(·);
2 Results: Initialize safety region Ωs = Ωc (Ωc is he closed-loop safety region in

Section 2.3);
3 Initialization;

while (Update Ωs)==1 do
4 Choose an initial state xsos ∈ Xsos;
5 Construct a Lyapunov function using (5.12);

if Assumption 5.6 is true and V̇ < 0 ∀ t > 0 then
6 Update Ωs ← Ωs

⋃
Xsos.;

else

end
7 Continue Choose a new sob-domain Xsos.;

end

end

5.3 Learning framework for predictive controller

According to Assumption 5.2, we can take advantage of Bayesian learning to actively

learn the unknown part of the model-dynamics from collected data in experiments.

The learning predictive controller is subjected to the SOS-based safety region as a

constraint to guarantee the stability and safety of the vehicle’s aggressive maneuvering

with uncertain tire models. Figure 5.2 shows the diagram of the proposed safe learning-

predictive controller. Gaussian Process is used to directly calculate the tire forces
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Figure 5.2: Proposed safe predictive control for aggressive autonomous maneuvering.

and then calculate the wheel’s speed using the tire’s inverse model. The uncertainties

from the closed-loop control process can be propagated to the final GP polynomial

conjecture. GPs are a nonparametric regression method from machine learning, where

the goal is to find an approximation of a nonlinear map from a given state vector xgp

to the approximation function value f(xgp). Then, SOS uses the upper limit of the

approximation error to find the safety region Ωs for the worst-case scenario, as it is

demonstrated in Figure 5.2.

5.3.1 Polynomial Gaussian processes

Initially, the longitude and lateral tire-road interaction model in (5.3) estimate the tires

models to enhance the vehicle modeling for FLC and NMPC control design. Then,

GPPB estimates the steering wheel δ and throttle rate ζ in (5.9) using longitude and

lateral forces calculated by FLC in (5.7) by inverse models. However, due to the compu-

tational complexity of GP, which scales cubically with the number of training points N

(i.e
(
O
(
N3
))

). The learning is performed initially offline based on simulations. Then

the trained model is used to initialize the online learning. Online learning is achieved

by implementing local learning, using only a fraction of the real time data.

We can obtain the posterior distribution of a polynomial Gaussian function to es-

timate the control commands in (5.9) at an arbitrary state xgp ∈ Rnx , where nx is

the length of state vector x. The steering wheel δ = fδ(v,F y) + εδ where {fδ(xgp) ∈

Ωδ → R : xgp = [v,F y]} is the real function underneath and εδ ∼ N
(
0, σ2

εδ

)
. We

consider a set of D input and output data pairs (xi fi) with length m forming the
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dictionary where, D = {Y =
[
yT0 . . . yTm

]
∈ Rm×nf , X =

[
xT0 . . . xTm

]
∈ Rm×nx

}
. In

the context of GPPB, we aim to seek a representation of the model fδ and similarly

{fζ(xgp) ∈ Ωζ → R : xgp = [v F x δ ω]}, and {fF ijx(xgp) ∈ Ωfx → R : xgp = [v ω]},

and {fF ijy(xgp) ∈ Ωfy → R : xgp = [v δ]}, and {fη(xgp) ∈ Ωη → R : xgp = [e ė ë]}

as expansions of a series of orthogonal and normalized polynomials of Gaussian process

φα(xgp).

fκ(xgp) =
∑
α∈Nd

βαφα, α = {α1, . . . , αd} (5.14)

where α is the multi-index and φα(xgp) =
∏d
i=1 φ

(i)
αi (xi) and κ ∈ {ζ, δ, η, Fijx, Fijy}.

The computational complexity of GPPB depends on the number of data points, which

motivates using a limited number of points. The goal of these approximations is to

calculate the control inputs using GPPB and enhance the model of the system for

model-based FLC (5.7), safety region estimation in (5.13) and NMPC.

The main idea supporting this method is related to the existence of a suitable

polynomial function of the generalized inputs xgp with a certain accuracy. Inspired by

this property, we propose a GPPB approximation method, introduced in [131], which

is enabling us to use SOS for algorithmic stability and safety assurance for learning

algorithms. The resulting multivariate polynomial GP approximation is given by

f(x) ∼ N
(
µd(x),Σd(x)

)
(5.15)

where µ(x) and Σ(x) are the posterior mean and covariance functions as

µ(x) = kxZ

(
KXX + Iσ2

)−1
[Y]·

Σ(x) = kxx − kxX

(
KXX + Iσ2

)−1
kXx

(5.16)

To estimate the unknown part of the systems, GPPB requires collecting a set of data

pairs. We have used nonlinear model of the vehicle and the closed-loop form of the

system from (5.6). Let’s assume that we can create certain maneuvers with no lateral

forces Fy = 0, and then we can obtain data pairs for longitude forces as

Fx = Γ†x (r̈P − ϑ) (5.17)
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Similarly, let’s assume that we can perform certain maneuvers that longitude forces are

negligible Fx = 0, and then we can obtain data pairs for longitude forces as

Fy = Γ†y (r̈P − ϑ) (5.18)

These test scenarios are conducted in simulations for preparing the initial data pairs

for the longitude and lateral forces. The collected data in experiments should satisfy

Eq. (5.17) and (5.17) to be selected as a training data pair in real time. For example,

the straight line trajectories satisfy the conditions for collecting data pairs for longitude

forces.

5.3.2 Learning-predictive control

For a given desired trajectory rp, a model-based nonlinear conjugate gradient opti-

mization is used to enhance the controller commands found by Eqs. (5.7) and (5.9).

The implemented NMPC, similar to Chapter 3, guarantees the vehicle will not violate

safety region, Ωs found in (5.13), during the aggressive maneuverings. We formulate

the NMPC control problem by using model regression for the tire-road friction learning

model estimated by (5.3) as

min
∆u(t)

k+Hp∑
i=k

(l1‖ei‖2 + l2‖ėi‖2 + l3‖∆ui‖2) + l4Js

subject to zk+1,t = f(zk,t,uk,t)

umin ≤ |uk,t| ≤ umax,∆umin ≤ |∆uk,t| ≤ ∆umax

uk+1,t = ∆uk+1,t + uk,t, k = t, . . . , t+Hp,

(βk,t+Hp , ωψk,t+Hp) ∈ Ωs. (5.19)

where lj , j = 1, · · · , 4, are constant weights, z(t) = [zt,t zt+1,t · · · zt+Hp,t] with zt,t =

z(t) is the sequence of states z(t) over the prediction horizon Hp at time t. Terms uk,t,

∆uk,t, and ut,t = u(t) are the kth input sequence ut and ∆ut respectively. Cost Js

penalizes the possible robot motion outside Ωs, determines using SOS as represented

in Figure 5.1.
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5.4 Experimental results

RURacer-2 shown in Figure 2.1 is used for the experiments on the race track shown in

Figure 5.4. The controller performance is tested for the aggressive vehicle maneuvers to

follow a minimum-time desired trajectory on the track. In Figure 5.4, SRRT* explained

in Chapter 4 is used to find the minimum time trajectory, and learning-predictive

controller in Figure 5.2 is used to perform safe-aggressive maneuvers. Thin lines in

Figure 5.4 represent the explored trajectories, and the thick multi-color line shows the

controlling performance funnel. It is evident during the drifting we have a massive

funnel due to uncertainty of modeling for the nonlinear part of the tire that have

demonstrated the ”friction-slip ratio” and ”friction-side slip angle” relationships shown

in Figure 5.3. The controller was tested for different and variable surface conditions

to validate the GP learning method and updated safety region. The vehicle’s phase

portrait as one of the behavior and performance outcomes is compared with other

methods without learning and/or safety features. For comparison purposes, we also

implemented the Cautious NMPC (CNMPC) in [120] that uses the GP in the design

without an approximated safety assurance. The GP can approximate the tire model

and enhance the model by collecting more information, Data1 is only 30 data pairs,

and Data2 is 110 data pairs and can improve the model by collecting more data in real

time as is presented in Figure 5.3.
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Figure 5.3: GPPB based estimation of tire model. (a) Longitude model
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Figure 5.4: Minimum-time feasible trajectory found by SRRT* and the tracking funnel
for the vehicle on the race track.

SRRT* is used to find the desired trajectory and NMPC is executed to follow this

trajectory for the worst-case scenario of the uncertainties at the time to calculate the

funnel presented in Figure 5.4. The experimental results shown in Figure 5.5 demon-

strates that the vehicle controlled with NMPC stayed inside the funnel discovered in

Figure 5.4. Under the control systems design, the vehicle tries to follow the desired

trajectory within the shortest time while maintaining the safe motion inside the safety

region
(
β(t), ψ̇(t)

)
∈ Ωs. Figure 5.6 further shows the vehicle motion comparisons

under the two other control designs along with the performance of the proposed control

method. Figure 5.6(a) shows the longitudinal and lateral velocities (vx and vy) and

Figure 5.6(b) demonstrates the yaw-rate ψ̇ comparisons. From both figures, we observe

that under the AMSF, the magnitudes of the velocity and the yaw-rate are in general

larger than those under the CNMPC design, while under the RBNMPC driver, these

values are even smaller than those of the CNMPC. To clearly see such a trend, Fig-

ure 5.6(c) shows the slip angle comparisons under the three control designs. Under the

Table 5.1: Tracking performance of the best lap for 10 round of the tests.

Controller Time (s) ||e|| Agility metric 1
(
m/s3

)
Agility metric 2

AMSF 4.37 0.11 6.28 0.62

CNMPC [120] 4.61 0.12 5.76 0.57

RNMPC [26] 5.08 0.78 4.65 0.32
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Figure 5.5: Tracking performance for U-turn which the change of the color shows the
change in vehicle’s speed on the track and the black line is the desired trajectory.
(yellow is the fastest and blue is the slowest)

AMSF, the slip angle β reaches and keeps large values (around more than 15 degrees)

over a longer period, while the slip angle under the RBNMPC and CNMPC maintains

at relatively smaller values.

It is also interesting that from the results shown in Figure 5.6(d), the AMSF gen-

erates larger steering inputs than those of RBNMPC (e.g., over 2.5-5s and 10-15 s

periods). On the other hand, the RBNMPC did not use any larger steering angles,

and the changes are smoother. Moreover, the AMSF uses rapid changes in steering the

vehicle to drift while turning in Figure 5.5. The saturated steering angle differences

under the two controllers shown in the figure are due to the augmented, larger stability

regions of AMSF, Ωo ⊂ Ωs. Figures 5.6(c) and 5.6(b) also show the vehicle motion

inside the safe stability region Ωs of the vehicle dynamics in Figure 5.1.

5.5 Summary

This chapter presented a safe learning-optimization based motion control method for

autonomous aggressive vehicle maneuvers with tire model uncertainties. The AMSF

motion controller took advantage of the polynomial GP learning and the SOS machinery

to approximate the vehicle’s model while the stability of the closed-loop controller is

guaranteed. The flexibility of NMPC for approximating the model uncertainties, or
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Figure 5.6: Comparison results under three autonomous controllers. (a) Vehicle velocity
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part of it, in real time helped to enhance the controller performance. The attractive

property of the method in this chapter lies in adaptive guaranteed stability with a

proper tracking performance capable of aggressive maneuvers. We implemented and

tested the motion controller using a RURacer-2 autonomous vehicle. A comparison

with other predictive and learning methods was presented in the experimental results

section of this chapter. The comparison results have demonstrated the higher agility

and performance under the proposed learning-predictive motion controller.
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Chapter 6

Autonomous Stunt Maneuvering: From Simulations to

Real-World

Since simulations are inexpensive and more accessible, they have been extensively used

for policy learning and controller test purposes. A control policy designed or tested

in simulation often does not perform exactly the same when it is deployed in the real

world. In this chapter, we focus on using simulations to generate a safe control pol-

icy utilizing Constrained Markov Decision Processing (CMDP). The simulation to real

world performance and safety are analyzed using the worst-case scenario of uncertain-

ties. The learning method in Chapter 5 is also used to approximate the uncertain

part of the dynamic model and disturbances. We demonstrate experimentally that

this method permits the development of control policy design in simulations to enable

safe autonomous stunt maneuvering for the RURacer2 with disturbances and uncer-

tainties. The proposed method can be used for the safe control policy design for other

autonomous stunt maneuvers.

6.1 Introduction

Similar to other aggressive vehicle maneuvers studied in the previous chapter, stunt

maneuverings can be used as an active emergency feature to achieve the vehicle’s max-

imum maneuverability. This chapter proposes a novel method for integrating the ex-

pert’s knowledge with a safe reinforcement learning algorithm. Compared with previous

works, the proposed approach formulates a J-turn as a sequence of continuous policies

with safety constraints. Constrained Markov Decision Processing (CMDP) solves an

optimization problem to find a safe control policy for these maneuvers. Instructions

provided by professional stunt drivers construct sequences actions with fuzzy values for



93

the commands. We studied the problem of taking numerical simulations to real world

with guaranteed safety. The Proposed policy search finds an autonomous J-turn ma-

neuver similar to what stunt car drivers would do. Taking the model and enlivenment

uncertainties into consideration during the policy search enables us to find a safety-

guaranteed control design for the real world test. We demonstrate experimentally that

this method permits the development of policy design for the safe stunt J-turn using

simulations to test in real world.

The instructions provided by a professional stunt driver are itemized steps without

explicit details. In this chapter, we want to achieve an Autonomous Stunt J-turn Vehicle

Maneuver (ASVM) using a Safe Reinforcement Learning (SRL) approach. Those aston-

ishing maneuvers by professional drivers motivate the realm of autonomous vehicles to

mimic these highly agile motions in emergency situations. To address this, we develop

a method that interprets natural language instructions into a sequence of actions with

fuzzy representations of the vehicle actions and states. For example, one can tell his or

her future autonomous vehicle to stay on the right line and do not go beyond the speed

limit; however, it will be more complicated when an emergency car driver wants to per-

form a quick turn and possibly uses ASVM. Constrained nonlinear optimization uses

the sequence of actions to find a safe control policy. The constraints represent physical

limitations and safety of humans and the vehicle where the CMDP framework is used

to model such circumstances [132]. Worst-case criterion under bounded uncertainty is

integrated into our policy search to take the simulation results into the real world with

guaranteed safety.

Professional stunt vehicle operations usually occur at the maximum limit of the

vehicle’s maneuverability on the stability limits’ edge. In recent years, RL is used

for aggressive maneuvering of aerial [133] and ground vehicles [75], but the safety of

the maneuvers are compromised. Safe control policy search attracts more attention in

recent years [134, 135], where natural language can be used to add safety conditions

to the policy search algorithms [136]. SRL enables us to find feasible and safe stunt

maneuvers viable for future emergency autonomous vehicles.

Random exploration for a specific control policy is often highly inefficient and may
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(a) (b)

Figure 6.1: Stunt vehicle maneuvers performed by professional drivers at stunt
driving events. (a) Driving on two wheels (also known as ski-stunt driving)
and drifting of two cars very closely. (Ken Block Does the Ultimate Play-
ground; https://oldtripod.com/ken-block-does-the-ultimate-playground) (b) Two cars
are jumping while a third car is performing ski-stunt maneuvers.

completely fail. Expert suggestions are incorporated with policy search algorithms

to find a rewarding policy with less number of learning iterations [137]. It is shown

that good advice can reduce the amount of exploration required to learn a control

policy [138]. Policy search approaches can convert human instructions into synthetic

training experiences to scaffold the basic representations of RL [139]. Also, natural

language can be directly translated into safety conditions for the policy search with time

and sequential ordering [136]. The external knowledge can initialize a policy search to

avoid unnecessary random exploration. Still, the safety and effect of uncertainties are

not part of the instructions since these methods are tested only in simulations [137,138].

However, the instructed RL control policy search might perform well in simulations but

poorly in the real world, and the safety of the policy in real world is not guaranteed [139].

Control policies trained in simulation should satisfy the safety criteria for successful

deployment in the real world to avoid any possible damages to the vehicle and the

environment.

To address the problem of the safe control policy search, various methods are in-

corporated safety features into policy learning algorithms. A safe learning algorithm is

subjected to inequality and equality constraints to find a competent control policy with

model uncertainty [31, 134, 140]. The global safety of an RL during training via a set

of local linear constraints is guaranteed by constructing Lyapunov functions to system-

atically transform optimizations and RL algorithms into their safe counterparts [135].
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Similarly, Control Barrier Functions (CBF) are used to guarantee safety with high prob-

ability during the learning process [141]. A reinforcement learning framework combines

the different simulation levels for steady-state drifting of a car without considering the

safety criteria [75]. Also, a similar framework for RL with multiple simulators of a target

task with varying levels of fidelity is tested on a remote-controlled car [142]. Vehicle’s

behavior during extreme maneuvers is less predictive, and finding a safe control policy

for a stunt J-turn is more challenging without understanding the vehicle’s dynamics

during agile maneuvering.

Autonomous vehicles attempting to perform these types of maneuvers are confronted

with many new challenges, most notably the unstable nature of stunt maneuvering, the

difficulty of accurate numerical and analytical modeling, and unpredictability of the

performance in a new environment [10, 74, 143]. A small change such as the road-tire

property can completely change the behavior of the vehicle specifically for agile maneu-

vers [76]. Analytical methods successfully have controlled the vehicle for agile maneu-

vering or even drifting, but they cannot be generalized for stunt maneuvers [24,144,145].

The majority of state-of-the-art works in vehicle control focuses on normal maneuvers

that either does not need a precise model for a control design where the difference

between the simulation and real world is negligible [146]. Model-based reinforcement

learning requires a precise analytical model to find a control policy for stunt maneu-

vering using simulations. Then, the safety of the control policy in real world can be

guaranteed for the worst-case situations by knowing the range of the uncertainties [75].

Motivated by these observations, an example is shown in Figure 6.1. This chapter

proposes an instructed learning method to find safe stunt J-turn vehicle maneuvers with

bounded model uncertainties. A safety factor based on the probability of violating the

worst-case scenario’s constraints is embedded into the admissible action sets. This

instructed learning formulation initializes the policy search that is restricted to the

admissible set of actions for any control sequence. Also, the performance and safety of

the policy will be improved by implementing a learning-based NMPC in Chapter 5.

We propose approaching the problem of learning stunt maneuverings in their native



96

form, i.e., as sequential instructed learning, while evaluating the safety for the worst-

case scenarios during autonomous stunt J-turn maneuvers. The proposed model-based

RL algorithm finds a safe control policy with both continuous and discrete action spaces

while it incorporates the uncertainties of the tire-road friction model. Being able to

initiate the control policy from an expert’s instruction and handling both discrete and

continuous actions allows us to learn a natural policy similar to the instructions given

by a professional stunt driver. We demonstrate our approach’s guaranteed-safety and

effectiveness on a J-turn stunt maneuvering, focusing on using a policy trained from

simulation for real world experiments. The native hybrid policy search initiated by a

professional stunt’s instruction ensures the safety and performance for the worst-case

scenario of the uncertainties in simulations. The selected control policy should achieve

the maximum rewards for the nominal model of the system. Simultaneously, it satisfies

the safety and minimum requirements of the performance for the different simulated

scenarios of uncertainty and disturbances.

During the learning process, the vehicle must try different actions for each sequence

in order to satisfy the requirements of the provided instructions. The control policy

should address the effect of the uncertainties for real world implementation to guarantee

the safety of the maneuver for a collision-free stunt J-turn. The learning algorithm

searches within the instructed parts of the state-action space to converge with fewer

samples. A complete and rewarded J-turn stunt maneuver is the one with the maximum

energy efficiency and no risk of a collision to maintaining safety. More specifically, the

purpose of this algorithm is to find a control policy that can perform a complete J-turn

without losing much speed and violating the safety lines. In this method, we might

scarify the performance to the safety, which it means we might lose speed during the

J-turn maneuver while minimizing the risk to collide.

6.2 Safe Autonomous Stunt Vehicle Maneuvers

A professional stunt driver incorporates a precise set of actions to maximize the vehicle’s

maneuverability, shown in Figure 6.1(a). A complete and rewarded autonomous ma-

neuver has the maximum energy efficiency in the shortest amount of time and distance
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(a)

(b)

Figure 6.2: (a) Stunt J-turn performed by professional drivers at stunt driving events.
(Cropped from youtube.com/watch?v=IlaDkxFKD9U) (b) Ski-stunt maneuver tested
by RC truck.

without risk of collision or failure. This chapter demonstrates the feasibility of using

simulation-based learning for performing autonomous stunt J-turn vehicle maneuvers

in real world using the proposed safe policy search method. A professional stunt driver

should knows how to perform a 180◦ (J-turn), 180◦ handbrake turn (bootleg-turn), and

driving on two wheels (Ski-stunt) and over or under-steer. The same strategy can be

developed for other stunt maneuvers in future works.

6.2.1 Stunt J-turn maneuvering

A J-turn also called a ”reverse 180◦” is a stunt maneuver in which a reversing vehicle

is spun 180 degrees until facing forward, without changing the direction of travel. A

perfect J-turn reaches a large yaw-rate for a short amount of time without losing much

speed. Also, the maneuver’s performance might change dramatically with a small

change in speed, tire, or road’s property. We have received these instructions from a

professional stunt driver.

1. Check your surroundings and make sure there is enough space and nothing the

car might hit.

2. Move reverse until you get enough speed.
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(a)

(b)

Figure 6.3: Initiate the learning to J-turn based on professional paradigms. The figure
shows (1) three sequence of motions (2) two switching windows between different motion
sequences, and (3) a bounding box of the safe subset of the inputs. The objective is
to minimize the time and distance for J-turn as total reward without violating safety
constraints for the WC friction uncertainty.

3. Spin the steering wheel all the way, be careful of not to roll the car.

4. Once your turn is around 90°, start to straighten up the wheel.

5. Control the steering wheel until you’re facing the right direction.

Taking advantage of the instructions, our proposed method finds the policy control for

an autonomous J-turn maneuver in three steps; 1) The instruction is interpenetrated

to a set of maneuvers as it is shown in Figure 6.3, 2) RL finds the controller policy

that works in simulation with verified safety for the Worst-Case (WC) scenario using

upper bound of the uncertainty, 3) test the controller on the vehicle and improve the

performance by increasing the model’s precision. A safe control policy will not violate

any safety criteria for any of the situations inside the uncertainty range during the

J-turn maneuver {zt+1(zt,ut) /∈ U ∀ µt ∈ [µL, µH ], t > 0}, where z and u are the

states and inputs vector of the vehicle and U the unsafe subset of states.
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Figure 6.4: (a) The schematic view of a tire. (b) Coupling circle of the friction with
the friction range.

6.3 Model uncertainties for safe policy design

The tire’s force model caused by the contact patch between the tire and ground is com-

monly uncertain and difficult to measure in real time [83]. However, the boundedness

nature of the tire friction model can help to find the upper limit of the model uncer-

tainties, shown as a frictional circle in Figure 6.4(b). The friction circle is captured as√
F 2
x + F 2

y ≤ Fzµt, where Fx, Fy, and Fz are the longitude, lateral and normal forces,

and µ is the total friction coefficient. However, knowing the upper limit µH and the

lower limit µL of the friction models shown in Figure 6.4(a), can be utilized to find a

control policy for a stunt J-turn by assuring the safety with an unknown friction model.

In this chapter we are using the same scaled car platform shown in Figure 2.1(a)

for experimental tests. The vehicle’s model is considered as a mechanical system with

non-ideal nonholonomic constraints, due to existence of slipping and skidding of the

tires during a stunt maneuver. However, knowing the range of the system actuation,

a funnel of the states of the system is predictable for safety assurance of the control

policy.

Remark 6.1 An uncertain constrained mechanical system with limited inputs subjected

to non-ideal nonholonomic constraints evolves in time in such a way that its acceleration

at each instant of time has overall possible accelerations and forces at that instant of

time [147]. The overall limits on accelerators and forces can be used to calculate the
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WC scenario within these limits for safety checks.

In a closed-loop control system of an autonomous vehicle, we should consider that the

magnitude of the tire/road forces acting to accelerate, decelerate and rotate the vehicle

are bounded {||Fx,y,z(t)|| < Fx,y,zmax , ∀ t > 0}, the generated torques and speed by the

electric motor are bounded {||τm(t)|| < τmmax , ||ωm(t)|| < ωmmax , ∀ t > 0} and steering

wheels rotations in limited as δ(t) ∈ [δmin, δmax]. The tire-road friction model is highly

nonlinear and uncertain but limited where µ ∈ [µL, µH ]. Knowing the maximum and

minimum capability of the vehicle’s actuators and range of model uncertainties, we can

predict states the vehicle will possibly reach.

6.3.1 Vehicle model with model uncertainties

To formulate our safe policy search method, we use a representation of the nominal and

uncertain part of the vehicle dynamics is given as

zt+1 = fn(zt,ut) + fu(zt,ut), (6.1)

where the nominal model fu is the vehicle’s presented in Eq. (5.1) and fu is a bounded

function for unknown part of the vehicle model. The detail of the model matrices in (6.1)

can be found in (5.2). Similarly, tire forces F x and F y in (5.2) are controlled implicitly

using the steering wheel δ and throttle ζ. Using the GP for tire model estimations

in (5.3), the upper and lower bound of the tire model uncertainty, µL and µH can be

approximated, as it is demonstrated in Figure 6.4. The range of the uncertainties in

tire modeling will be used for safety assurance during the control policy search.

The design consists of four parts: interpret an expert’s instruction to compute

a fuzzy range of steering angle and the throttle rate, estimating the upper bound of

uncertainties for the worse-case scenario, a model-based RL to search for the safe policy,

and an NMPC controller tracks the desired trajectory in real time outlined in Chapter 3.

6.4 Safe Reinforcement Learning

The proposed SRL procedure involves two decision-making scenarios, choosing the con-

trol sequence and action signals which are used by the controllers. We propose to treat
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the stunt maneuvering problems as instructed by an expert and solving them as hybrid

constrained optimization problems. This section briefly explains how to use a modi-

fied CMDP to find the sequence of safe maneuvers and actions simultaneously for an

autonomous stunt J-turn maneuver.

6.4.1 Preliminaries

Let’s formulate our CMDP as a tuple of T = {Z,A, , fn, fu, P, r, γ,U , C}, where Z is a

finite set of states, A is a hybrid set of continuous and discrete action which contains

the J-turn stage shown in Figure 6.3(a) and the inputs vector u. fn : Z × A → Z

is the nominal dynamics model of the system, fu : Z → Z is a bounded function for

approximations of the unknown system dynamics, U is a set of unsafe states. Also,

r(z,a) : Z × A → R is the reward function, γ ∈ (0, 1) is a discount factor, and

P (zt+1|zt,at) : Z×A×Z → [0, 1] denotes the probability distribution for the transition

kernel. The set of safety penalty cost functions C : Z × A → R, where c(z,a) is the

immediate risk for state z with action a. We assume the set of unsafe states is initially

empty Ut=0 = ∅, where Z = {Z ′ ∪ U}.

A policy π : Z → M(A) maps each state to a probability distribution over the

actions. The value of a state z under policy π is denoted V π,P (z) and represents the

expected sum of discounted returns when starting from an initial state and executing

policy π,

V π,P (z) = Eπ,P
[ ∞∑
t=0

γtr (zt,at) | z0 = z

]
(6.2)

where the value function V π,P (z) for policy π relates to action-value function for the

expected discounted return according to policy π when choosing action a in state z as

V π,P (z) = Eπ,P [Qπ(z,a)] (6.3)

which both value function and action-value function both satisfy the recursive expres-

sion as

Q(zt,at) = EP(zt+1|zt,at) [r(zt,at) + γV (zt+1)] (6.4)

At each state in any episode, the state will move to the next state if the next

simulated state is in the safe region. A state will move to the set of unsafe states if the
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Algorithm 6.1: Safe IRL-ASVM initialized by a sequence of fuzzy instructions
(6.6)

1 Initialize RL Policy using the instructions provided by a professional stunt
driver π0

sim;
2 Initialize the analytical model knowing uncertainty and safety criteria in

simulation;

3 Approximate the initial policy for simulations with no uncertainty as πfsim
using π0

sim;
4 Collect Episode Reward, (the fastest full 180 degree turn is the most rewarded

one);

5 Start: Safe RL search with πfsim while safe policy for real world is not found
do

6 Evolve the policy search through constrained MDP for simulations;
7 Run the simulations and evaluate safey criteria for the worst case scenario;

if Policy is safe then
8 Update the policy πrw for real world experiments

end
9 i← i+ 1;

end
10 Initialize the controller for the real world;
1112 Apply learning rules for safety and performance improvements;

safety penalty cost violates the upper bound of the uncertainty criteria ||c(z,a)||inf > σ,

where the upper bound of safety criteria is a limited positive value σ(z, t) ∈ R≥0. We

study safe exploration as a constrained policy optimization to find the optimal policy

in the subset of safe states.

6.4.2 Hybrid optimization Procedure

We consider a stunt J-turn maneuvering as a hybrid policy of a simple class in which

the action spaces are represented with both continuous and discrete dimensions. A

generalized state-dependent distribution of action policy π(a|z) models both discrete

and continuous random variables as

π(a | z) = πς (aς | z)πd
(
aD | z

)
=

∏
ai∈aς π

ς
(
ai | z

)∏
ai∈aD π

d
(
ai | z

) (6.5)

where ς and D represent the continuous and sequential discrete action spaces. The

subset of discrete actions for a J-turn, i = 1, 2, 3 discrete choices of action sequences.
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The subset of continuous actions is a normal distribution continuous range of values

based on the expert’s instruction uk ∈ Uk, shown in Figure 6.3(a). Then the optimal

policy will be discovered inside this region instructed by an expert.

6.4.3 Worst-case scenario

Instead of maximizing the expectation of the return for the WC policy over all possible

models, the WC scenario of all safety functions should be limited to the upper bound of

uncertainty criteria [148]. We formulate the WC scenario for any given set of state and

action as an optimization problem subjected to the system’s dynamic to maximize the

cost for spatial and temporal constraints within the range of uncertainties. By utilizing

the proposed CMDP, the safe control policy problem is solved without violating the

robot motor capability. In general, the CMDP problem we wish to solve is given as

follows.

minπ Eπ,P {
∑∞

t=0 γ
tr (zt, µ

π(zt)) | z0 ∈ Z ′}

s.t. [maxσ ||c(zt,at)||inf ] < εsafet , ∀t ∈ [0, T ],

(6.6)

where Eπ,p(·) stands for the expectation with respect to the policy π and the transition

model P . The proposed policy search for a safe stunt J-turn as a constrained optimiza-

tion can lead to a risk-free desirable maneuver with imprecise modeling. This imprecise

modeling is a result of two types of uncertainties: a) the inherent uncertainty related to

the tire-road interactions, and b) the parameter uncertainty and sensing noise related

to the vehicle. The maximum safety penalty cost associated with the WC scenario is

limited to the upper bound of safety criteria εsafet . Knowing the limits of the unknown

part of the physical model of the vehicle, we can assume that all reachable states for

the vehicle with a certain set of actions from a given state are predictable. The policy’s

safety is ultimately guaranteed by the proposed pseudo-code for a modified CMDP in

Algorithm 6.1.

However, using Eq. (6.1) for numerical simulations of the vehicle’s motion, and the

model parameters such as the friction coefficients are still not measured precisely or

we only have a bounded estimations using GPPB in Chapter 5. Hence, the range of
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uncertainties for the system in real world are mapped into the simulations as fu(·)

to find a risk-free control policy for autonomous stunt maneuvers. The initial control

policy πinits is based on the nominal model fn(·) when the optimal controller is designed

for a nominal system, and then the safe control policy is explored whiteout violating

the safety criteria for the worst-case scenario of uncertainties.

6.5 Simulations and real world tests

The main difference between our method and RL-CBF is that we are using a hybrid

policy search. Using a hybrid policy search enables us to incorporate a professional

stunt driver’s instruction as a discrete seance of continuous actions. The vehicle will

not enter the unsafe sub-set of state space for the future prediction horizon Hp, {skt /∈

D∀t > 0, k = 1, ...,Hp} using the NMPC. Unlike RL, NMPC is able to solve convex

constrained optimizations in real time to provide the minimal control deviation from

the safe control policy. The proposed controller is compared with the safe control

policy without NMPC, and with RL-CBF method [141]. Safe RL policy with NMPC

provides higher probability of safety guaranteed J-turn maneuvers during the learning

process and can maintain the performance-guaranteed policy for a wider range of model

uncertainties. If we have no dynamics uncertainties, then safety is always guaranteed

for the learned policy using RL. The deployed NMPC is able to drive the vehicle to the

safe region in real time.

6.5.1 Experimental Results

To find the desired control policy, the CMDP computes the sequence of input commands

and predicts trajectory of states using numerical simulations. The learned safe control

policy and the NMPC are embedded to the robot and it communicates to the edge

computer for the heavy computation such as the learning process and image processing

for robotic vehicle’s localization. In the experiment, safe RL finds the optimal solution

within the safe sub-set of the feasible controllers for the desired stunt maneuvering

with the guaranteed stability for the worst-case scenario. The proposed methods has
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Figure 6.5: Simulations for a J-turn in a narrow road. (a) The control policy in simu-
lations is safe for the WC scenario of the uncertainties during a J-turn Maneuver. (b)
Experimental results for the J-turn using the same control policy found in simulations
(red squires show the front of the vehicle).

the highest probability of successful and safe maneuvers shown in Table 6.1.

Feasibility funnel approximation is a popular tool to approximate all the future

states that the robot might go in the future prediction horizon with existing uncer-

tainties. We have implemented the simulations and calculated the feasibility range for

the vehicle’s state such as location, speed and acceleration for the worst-case scenarios

of the uncertainties. The feasibility funnel of the vehicle’s speed and accelerations are

wider during the spin and thinner during the straight motions, shown in Figure 6.6(a)

and Fig 6.6(b). The large chattering seen during 0 − 0.5s in Figure 6.6(b) are the

measurement noises. Knowing the range of the uncertainties for the tire model and

assuring the safety for the worst-case scenario during RL policy search, we are able to

guarantee the vehicle will perform the J-turn maneuver in real world inside the safe

zone as it is shown in Figure 6.5(b). Figure 6.5(a) demonstrates the policy never passes

the safety lines even for the worst-case scenarios during the simulations.
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Figure 6.6: Showing the range of feasible states for the worst-case scenarios of a simu-
lated episode with policy πrw. (a) Feasible range of longitude, lateral and the rotational
velocities of the vehicle. (b) Feasible range of longitude, lateral and the rotational ac-
celerations of the vehicle.

6.6 Summary

Adding the information about the model uncertainties and safety criteria into the

model-based RL framework allows us to explore a safety-guaranteed control policy

for stunt vehicle maneuvering. The proposed safe RL algorithm was initiated with an

expert’s instruction to improve exploration efficiency. The control policy was explored

based on the vehicle model in the simulation where the safety-guaranteed was imple-

mented in real world. This framework, which combines the analytical model of the

vehicle and range of uncertainty with the expert’s instruction, has the advantages of

starting the safe real world maneuvering and incorporating a better uncertainty esti-

mation from measurements for real time improvement. A significant assumption in this

Table 6.1: Comparisons results for autonomous stunt J-turn maneuvers under different
control policies (for 50 simulations with various random uncertainty situations and 8
real world tests).

Method WC scenario real world J-turn time

Safe IRL 96.00% 87.50% 1.72ms

RL-CBF [141] 96.00% 75.00% 1.82ms

Safe IRL-NMPC 100.00% 100.00% 1.51ms
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work was that the physical model of the vehicle can be represented by the nominal and

unknown functions. However, computing the valid safe set of control policies was based

on the boundedness of the uncertainties.
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Chapter 7

Conclusions and Future Work

This dissertation studied constrained motion planning and control approaches for safe

autonomous aggressive vehicle maneuverings. In the future of the autonomous car

industry, saving lives might depend on more demanding maneuvers than what the av-

erage drivers know how to do. Studying the professional driver performance reveals

that these drivers are safely operating the vehicle outside the commonly used stable

regions to achieve high motion agility [10]. To benefit aggressive maneuverings as a

safety feature, an autonomous car should be able to disable ESC and ABS and step

beyond what is defined as a safety boundary [4]. This dissertation takes a safety view-

point and approach for aggressive maneuverings and designs the constrained planner

and controllers for autonomous vehicles.

7.1 Conclusions

In Chapter 2, a closed-loop safety region was introduced for aggressive vehicle ma-

neuverings. Using a closed-loop safety region instead of a previously used open-loop

one, we designed a safety-guaranteed motion controller when without scarifying the

maneuverability. Hence, this safety region can be used during real time optimizations

of an iterative constrained controller such as NMPC. The car-like robots, RURacer-1

and RURacer-2, were used for the experiments. The vehicle was localized by a mo-

tion capture system and communicated with a local computer through WiFi. There

were multiple sensors, motor controllers, and independent beak systems attached to

the robots. A tire testing setup was utilized to measure the tire-road friction model

characteristics. An results, state-space models of the vehicle’s dynamic based on its

physical properties were presented for the model based motion planning and control
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purposes.

In Chapter 3, we presented a control design by formulating the NMPC on top of

the FLC for aggressive vehicle maneuvers. The stability of the closed-loop controller

was analyzed using Lyapunov stability theories. The convergence of NMPC was im-

proved using nonlinear Conjugate gradient as our constrained nonlinear programming

algorithm. The safety of the maneuvers were guaranteed with NMPC’s capabilities

of handling different type of constraints. The control system design was built on the

extended safety region concept in the phase plane of the robotic vehicle dynamics. We

used an LQR-based feedback design to compute the safety boundary that was less con-

servative than the stability region used in the existing controller design. The safety

region was then used in a modified nonlinear model predictive control design to achieve

high agility maneuvers. The control design was tested and validated on a scaled vehicle.

Finally, a comparison with human expert driving was also presented to demonstrate

the controller performance.

Chapter 4 presented a sparse and optimal motion planning algorithm SRRT*. This

planner was able to find trajectories for autonomous aggressive vehicle maneuvers such

as the race-line for a minimum time lap or agile turns. The SRRT* motion planner took

advantage of the Sparse-RRT and the RRT* algorithms. This advantage of the sparse

property for motion planning helped to reduce the computational burden by removing

useless nodes in the searching process. The most attractive property of the RRT*

lies in fast convergence to the optimal solution. We tested the motion planner using

RURacer-1 for minimum-time scenarios. The experimental results have demonstrated

a high agility maneuvering performance under the autonomous driving control with the

motion planner.

Chapter 5 presented a learning-optimization-based motion control method for au-

tonomous aggressive vehicle maneuvers. The AMSF motion controller took advantage

of the polynomial GP learning and the SOS machinery to approximate the vehicle’s

model while the closed-loop controller’s stability was guaranteed. The flexibility of

NMPC for using model approximation functions can improve the performance in real

time. The attractive property of the method in this chapter lies in adaptive guaranteed
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stability with optimal performance. We implemented and tested the motion controller

using a RURacer-2 autonomous vehicle. The experimental results have demonstrated

the high agility maneuvering performance under the autonomous driving control with

the motion controller. However it is demonstrated that SOS and PBGP can be used to

address a safety-guaranteed control design, this method was limited due since SOS al-

gorithm works only for polynomial based systems. If there was no accurate polynomial

based estimation for the system, this method will not be applicable.

In Chapter 6, a model-based RL framework was introduced to explore a safety-

guaranteed control policy search for stunt vehicle turns. Tire model uncertainties were

addressed during the control policy search using the worst-case scenario approach. A

safe policy search approach initialized with an expert’s instruction to improve explo-

ration efficiency. A model-based control policy search used simulations to find a safe

policy for stunt J-turn maneuvers in real world implementations.

7.2 Future Work

There are two main directions to extend this dissertation’s work, practically and theo-

retically. The dissertation’s work can be extended practically by optimizing the motion

planner and motion controller’s architecture for real ime performance. On the other

hand, a real time integrated motion planning and control framework for safe, agile ve-

hicle maneuvers can be used to minimize the risk of accidents in future autonomous

vehicles. The next step can be addressing more demanding maneuvers such as those

performed by professional stunt drivers in Figure 6.1(a).

Theoretically, there are a few research directions that can follow this dissertation’s

work. Chapter 2 has introduced an extended safety region for aggressive maneuvering,

which was improved using SOS-based approaches to estimate this region dynamically

for a class of learning-based controller proposed in Chapter 5. It was expected that

determining maneuver’s safety region could be extended to learning-based controllers

and vehicle’s model with higher degrees of freedom to prevent roll-over and other pre-

ventable dangers during aggressive maneuverings. Even though the vehicle’s roll-over
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problems have been studied in [149], preventing roll-over for autonomous aggressive ma-

neuvering problems still needs to be solved to achieve a fully safe autonomous aggressive

maneuvering goal.

In Chapter 3, a model-based was NMPC subjected to a safety region as a constraint

was proposed. The model-based NMPC was also used in Chapter 4 for in the steer

function of RRT* during the rewiring process. Using the NCG dynamic programming

and applying the safety region constraints, we can determine a configuration for the

vehicle’s state-space with guaranteed safety. In Chapter 4, the sparse motion planning

algorithm was able to find a minimum time trajectory on the race-track off-line and used

NMPC to follow that trajectory in real time to compete with a professional driver. A

real time motion planning for agile maneuvers with guaranteed safety for systems with

model uncertainty needs to be implemented to achieve a fully autonomous algorithm

in a dynamic environment with unknown parameters.

In Chapter 5 a GPPB-based learning-predictive controller was proposed to improve

the model-based NMPC in Chapter 3. GPPB was used to estimate the tire-road model

and SOS was used to estimate the safety region. The proposed method was a par-

tially learning-predictive controller since we assume we had known part of the vehicle

model. In Cha pter 6, the safety guaranteed control policy was studied using a safe

IRL approach for stunt J-turn maneuvers. However the learning-based controllers have

been studied, a predictive controller with a provable guaranteed safety with model

uncertainties is still a challenging problem.

Professional stunt drivers have been trained and practiced for thousands of hours

to achieve the maximum maneuverability of the vehicle safely. Understanding these

maneuvers better can help us to design a safe control policy which can be used as an

automated safety feature in emergency situations for the future driver-less vehicles. Due

to the differences between different stunt maneuvers and the uncertain nature of tire-

road model, the autonomous aggressive maneuvering cannot be directly integrated as

a safety feature and must be customized for any maneuver and condition. Generalizing

aggressive maneuvering as a safety feature and all of these research topics can be the

future works of this dissertation.
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