
© 2021

Vahid Azizi

ALL RIGHTS RESERVED

GRAPH-REPRESENTATION LEARNING FOR HUMAN-CENTERED
ANALYSIS OF BUILDING LAYOUTS

By

VAHID AZIZI

A dissertation submitted to the

School of Graduate Studies

Rutgers, The State University of New Jersey

In partial fulfillment of the requirements

For the degree of

Doctor of Philosophy

Graduate Program in Computer Science

Written under the direction of

Mubbasir Kapadia

And approved by

New Brunswick, New Jersey

May 2021

ABSTRACT OF THE DISSERTATION

Graph-Representation Learning for Human-Centered Analysis of Building Layouts

by Vahid Azizi

Dissertation Director: Mubbasir Kapadia

Floorplans are a standard representation of building layouts. Computer-Aided Design

(CAD) applications and existing Building Information Modeling (BIM) tools rely on sim-

ple floorplan representations that are not amenable to automation (e.g., generative design).

They do not account for how people inhabit and occupy the space. These are two cen-

tral challenges that must be addressed for intelligent human-aware building design and this

thesis’s focus. This thesis addresses these challenges by exploring graph representation

learning techniques to implicitly encode the latent state of floorplan configurations, which

is more amenable to automation and related applications. Specifically, we use graphs as

an intermediate representation of floorplans. Rooms are nodes, and edges indicate a con-

nection between adjacent rooms, either through a door or passageway. The graphs are

annotated with various attributes that characterize the semantic, geometric, and dynamic

properties of the floorplan with respect to human-centered criteria. To address the variation

in graphs’ dimensionality, we utilize an intermediate sequential representation (generated

by random walks) to encode the graphical structure in a fixed-dimensional representation.

We propose the use of RNN-based vanilla/variational autoencoder architectures to embed

attributed floorplans. We enhance graph-based representations of floorplans with human

occupancy attributes extracted by statically analyzing the floorplan geometry and running

simulations on large datasets of real and procedurally generated synthetic floorplans. We

ii

explore the potential of our proposed methods and floorplan representations on various

tasks, including finding semantically similar floorplans, floorplan optimization, and gen-

erative design. Our approach and techniques are extensively evaluated through a series of

quantitative experiments and user studies with expert architects to validate our findings.

The qualitative, quantitative, and user-study evaluations show that our embedding frame-

work produces meaningful and accurate vector representations for floorplans. Our models

and associated datasets have been made publicly available to encourage adoption and spark

future research in the burgeoning research area of intelligent human-aware building design.

iii

ACKNOWLEDGMENTS

First of all, I would like to express my deepest gratitude to my thesis adviser, Professor

Mubbasir Kapadia, for his continuous encouragement and creative advice. I had this honor

to complete my Ph.D.under his supervision.

Furthermore, I would like to thank all of my thesis committee members: Professor

Mridul Aanjaneya, Professor Gerard de Melo, and Professor M. Brandon Haworth, for

kindly accepting to be among my committee members and their helpful comments.

Finally, I would like to thank all of my labmates and collaborators, especially Professor

Petros Faloutsos at York University, for their outstanding collaboration and helpful com-

ments.

iv

DEDICATION

To

My Parents, for their unconditional love and support.

v

TABLE OF CONTENTS

Abstract . ii

Acknowledgments . iv

Dedication . v

List of Figures . xi

List of Tables . xiii

Chapter 1: Introduction . 1

1.1 Problem Statement and Motivation . 1

1.2 Limitations in Prior Work . 3

1.3 Proposed Approach . 4

1.4 Main Contributions . 5

1.5 Thesis Outline . 6

Chapter 2: Related Work . 7

2.1 Analysis of Floorplans . 7

2.1.1 Static Analysis of Floorplans . 7

2.1.2 Dynamic Analysis of Floorplans 8

2.2 Floorplan Representation . 9

vi

2.2.1 Image-based Methods . 9

2.2.2 Graph-based Methods . 10

2.2.3 Symbol Spotting Methods . 10

2.3 Floorplan Generation . 11

2.3.1 Procedural Methods . 11

2.3.2 Deep Learning Methods . 12

2.4 Floorplan Optimization . 12

Chapter 3: Floorplan Embedding with Latent Semantics and Human Behavior
Annotations . 14

3.1 Introduction . 14

3.2 Method Overview . 14

3.3 Dataset . 15

3.4 Floorplans to Attributed Graphs . 15

3.5 Floorplan Dataset Features . 16

3.6 Floorplan Embedding . 18

3.7 Training . 20

3.8 Pairwise Similarity between Floorplans 21

3.9 Behavioral and Geometrically-powered Floorplans Retrieval 22

3.10 Generation of a Composite Floorplan . 26

Chapter 4: Graph-Based Generative Representation Learning of Semantically
and Behaviorally Augmented Floorplans 28

4.1 Introduction . 28

4.2 Method Overview . 30

vii

4.3 HouseExpo++ Dataset . 30

4.4 Floorplans to Attributed Graphs . 31

4.5 Floorplan Embedding . 35

4.6 Model . 37

4.7 Graphs to Sequences . 38

4.8 Training . 39

4.9 Quantitative Evaluation . 40

4.9.1 Nearest Neighbours Ranks . 40

4.9.2 Clustering . 42

4.10 Qualitative Evaluation . 44

4.10.1 Nearest Neighbours (NNs) . 44

4.11 Floorplan Generation . 45

4.11.1 Sampling from Posterior Distribution 45

4.11.2 Homotopies . 46

4.12 User Study . 49

4.12.1 Hypothesis . 49

4.12.2 Apparatus . 49

4.12.3 Participants . 49

4.12.4 Procedure and Task . 50

4.12.5 Independent and Dependent Variables 50

4.12.6 Results . 51

4.13 Conclusion . 52

viii

Chapter 5: The Role of Latent Representations for Design Space Exploration . . 55

5.1 Introduction . 55

5.2 Overview . 57

5.3 Synthetic Dataset of Attributed Floorplans 58

5.3.1 Procedural Generation of Environments 59

5.3.2 Image to Graph Conversion of Environments 60

5.3.3 Computation of Node Attributes 62

5.4 Latent Representation of Attributed Floorplans 62

5.5 Local Search Over the Latent Space . 63

5.5.1 Retrieval-based Approach . 64

5.5.2 Generative Approach . 64

5.5.3 Final Floorplan Candidates for Local Search 64

5.5.4 Multi-objective Search . 66

5.6 Experiments . 66

5.6.1 Training Details . 66

5.6.2 Optimizing Individual Features . 67

5.6.3 Optimizing Compound Features 69

Chapter 6: Concluding Remarks and Future Directions 72

6.1 Conclusion . 72

6.2 Limitations and Future Work . 73

Appendices . 75

ix

Appendix A: Geometric Reachability Analysis for Grasp Planning in Cluttered
Scenes for Varying End-Effectors 76

References . 94

x

LIST OF FIGURES

3.1 LSTM Autoencoder . 17

3.2 Sample of Feature Extraction . 18

3.3 GED for Comparing Floorplans Structure 23

3.4 GED for Comparing Behavioral Features 23

3.5 Floorplan Retrieval with Respect to Design Semantic Features 24

3.6 Floorplan Retrieval with Respect to Behavioral Features 24

3.7 Floorplans Retrieval with Respect to Combined Features 24

3.8 Floorplan Generation by Integrating Two Floorplans 27

4.1 Parallel LSTM VAE . 30

4.2 Crowd Simulation in the Presence of the Obstacles 34

4.3 Crowd Simulation for Computing Behavioral Features 36

4.4 Clustering Embedding Space . 43

4.6 Floorplan Generation with Interpolating 47

4.5 Floorplan Generation with Sampling . 47

4.7 Top 5 NN with Three Models. 53

4.8 The Accuracy of User-ordered Sequences of the Nearest Neighbours 54

5.1 Floorplan Optimization Framework . 58

xi

5.2 Four Phases of Floorplan Generation . 59

5.3 12 Types of Floorplans that Differ Based on Their Exterior Shape 60

5.4 Image to Graph Conversion (Synthesis Dataset) 61

5.5 Retrieval Based Approach Results for Different Objective Function 67

5.6 Compound Objective Function Results . 71

A.1 A Cluttered Tabletop Scene . 77

A.2 A Motion Constraint Graph . 81

A.3 GRA Pipeline . 82

A.4 The Benchmarks Used in All Experiments 86

A.5 Experimental Results for Grasp Generation 90

A.6 Experimental Results for Database Pruning 91

xii

LIST OF TABLES

3.1 Design Semantic and Behavioral Features 19

3.2 Rank Percentage of Proxy Graphs . 26

4.1 Features on Nodes and Edges . 32

4.2 Average of Nearest Neighbor Ranks . 42

4.3 Average of Standard Deviation for Clustering Metrics 44

4.4 Demographic Information and Domain Knowledge of Participants 48

5.1 Node Attributes in Synthetic Dataset . 63

5.2 Comparison Retrieval Approach Results for Minimizing Room Area 68

5.3 Comparison Retrieval Approach Results for Maximizing Room Area 68

5.4 Results of Single and Compound Feature Optimizations 70

A.1 Computation Time for Generating graspable surfaces 88

xiii

1

CHAPTER 1

INTRODUCTION

1.1 Problem Statement and Motivation

Floorplans provide a well-established means to represent buildings. As such, they afford a

wide range of design activities such as ideation, analysis, evaluation, and communication.

Computer-Aided Design (CAD) and Building Information Modeling (BIM) approaches to

support the creation of digital building models, from which floorplans can be extracted.

Current approaches, however, do not support the systematic comparison of floorplan fea-

tures derived from geometric and semantic properties as well as more advanced perfor-

mance metrics, such as space utilization and occupant dynamics features generated via

simulation. While prior research has proposed computational strategies to extract floorplan

features by processing them as images or graphs, these approaches ignore semantic infor-

mation that describes each space’s function and time-based analytic of human movements

and activities.

From design inspiration to the democratization of housing layouts for affordable living,

matching the desired features of a space to a floorplan is crucial to these desired interfaces.

This goal requires some challenges to be overcome; the ability to retrieve an optimal floor-

plan and generate new ones as well. While it is trivial to lookup a value of a floorplan, such

as the number of bathrooms, it is much more difficult to look up a floorplan with a certain

number of bathrooms and similar room sizes (and other attributes). As the complexities

of design and architecture are well known, the relationship between a single floorplan and

the numerous measures one would associate with it makes this a challenging search task

(i.e., floorplans’ configuration space is extremely high-dimensional, continuous, and non-

convex). The use of visual search tools (e.g., shape-grammars[1]) to match similarity is an

2

active research topic in Architecture and Design. However, in such an ample search space

and intrinsically tracking multiple quantitative metrics, the utility of geometric similarity

quickly diminishes. Recently, research has shown the use of machine learning techniques

for associating environment configurations with metrics [2, 3]. However, these works re-

quire an explicit search through the environment configuration space.

This thesis addresses the mentioned challenges by representing floorplans with low

dimensional vectors that accurately encode geometric, semantic, and human dynamic fea-

tures. These features are extracted statically or by running simulations to extract the dy-

namic features. We formalize floorplans as graphs, where nodes are rooms, and they are

connected if there is a door or passageway between them. By representing floorplans with

graphs, their geometric structure is captured. Though the geometric structure of floorplans

is a necessity, it is not enough. We need to integrate semantic design features and human

dynamic features as well. Therefore, we augment the graphs with semantic and dynamic

features. To capture global graph structures, we utilize random walk to convert them to

sequences as intermediate data. Then, we propose deep learning methods to embed these

sequences into low-dimensional vector representations. These vector representations are

used to cluster and query floorplans with similar characteristics and attributes. Some of the

advantages of representing floorplans as vectors are:

• Compact representation.

• An efficient way to compare designs and fast retrievals.

• Scoring designs and providing feedback/recommendations.

• Categorizing design according to our target features.

Moreover, these representations’ potential on a variety of tasks, including floorplan opti-

mization and generative design, are studied. We conduct a series of quantitative, qualitative

experiments and user studies with expert architects to evaluate our works. The evaluations

3

show that our embedding framework produces meaningful and accurate vector represen-

tations for floorplans. As part of this thesis, two datasets (the extended housExpo dataset

and a newly created synthetic dataset) are released to maximize adoption and spark new

research in this burgeoning area.

1.2 Limitations in Prior Work

Prior methods have used different image processing techniques and deep learning meth-

ods to extract meaningful information from floorplan images for representation. However,

these methods are suitable for object-centric datasets in which floorplans are annotated with

furniture or specific visual symbols. These features do not correctly capture the high-level

design structures [4, 5, 6, 7, 8, 9]. Moreover, human behavioral features are not consid-

ered in these methods, whereas occupants’ behaviors (i.e., trajectories) are often highly

correlated with environments [10].

In order to improve floorplan representation, some other works aim to use graphs for

representing floorplans. Since in these works, floorplans are represented with graphs, all

of them capture the floorplans structure, and some of them add attributes to nodes like fur-

niture annotated in rooms. However, they do not include semantic and high-level features

as well as human dynamic features. Moreover, all of these methods use graphs as a final

representation and do not convert graphs to low dimensional vectors. These methods use

graph matching methods for finding similarity, which is directly applied over graphs and

are computationally expensive [11, 12, 13, 14].

Symbol-spotting methods are utilized for providing operations over floorplans, like re-

trieving similar floorplans. The query image (floorplan) is divided into some sub-images,

and these sub-images are searched over other images. Based on the availability of queries

(sub-images), the similarity is scored. Symbol spotting methods are applied to small object-

centric datasets which do not have complex images [15, 16, 17, 18, 19].

As part of automation in floorplan analysis, generative design is an emerging topic that

4

relies on procedural techniques or deep learning. These methods are usually human-in-

the-loop, where experts specify some constraints regarding their target floorplan. These

methods generate a floorplan with satisfying those constraints either via procedural or deep

learning methods [20, 21]. The ability to optimize environment structures is an emerg-

ing trend in design toward assisting in designing more context-aware layouts. In [2, 22],

they optimize environment layouts within user-desired parameters like current generation

methods. Training a model to learn the correlation between structure and design semantic

and dynamic features can be a more robust approach for generating new floorplans and

optimizing floorplans.

1.3 Proposed Approach

We propose floorplan embedding – “latent” representations of building layouts using an

attributed graph as an intermediate representation that encodes not only design and struc-

tural features but also human dynamic features. Specifically, a Long Short-Term Memory

(LSTM) autoencoder [23, 24] is trained to represent these graphs as vectors in a low di-

mensional vector space. To integrate features on edges (direction of room connections),

we extend our model, and we propose a novel technique for floorplan representation that

uses a parallel Long Short-Term Memory (LSTM) Variational Autoencoder (VAE) with

attributed graphs as intermediate representations. We integrate the direction of room con-

nections which means our representation is more accurate because the room symmetry is

encoded. This model’s generative nature also facilitates generative design applications that

are studied in this thesis [25, 26].

In order to study the role of latent floorplan representations for design space exploration,

we first develop a synthetic dataset of 5000 plausible floorplans of 12 unique styles, seman-

tic and isovisit metrics associated with each. We then develop a new embedding model for

this synthetic dataset using a Gated Recurrent Unit Variational Autoencoder (GRU-VAE)

to represent floorplans in a latent space. Next, we demonstrate two local search approaches

5

over the latent space: (1) retrieval-based approach with nearest-neighbor queries, and (2)

generative approach exploring the optimal vector sequences . We then run a series of ex-

periments for the two approaches that search the floorplan dataset for 5 different metrics

and interesting combinations of them. Besides, we release two annotated floorplan dataset

with semantics and human dynamic features generated from simulations.

In this thesis, our main focus is on floorplan representations. However, we also consider

the role of graphical representations in other application domains such as robotic manipu-

lation, which is provided as an appendix to this thesis. We present a geometric approach

to identify a complete set of object subsurfaces in a cluttered scene, which permits an end-

effector to approach and grasp the object. This work proposes the motion constraint graph

(MCG) representation for this purpose. It is able to efficiently reason about the space of

permissible end-effector poses by placing constraints on the hand’s configuration space.

These constraints account for the surface area of contact points, end-effector kinematics,

and collisions with objects in the scene. For a given end-effector and an arbitrary scene, it

is possible to formulate and solve a constraint satisfaction problem to compute the set of

reachable subsurfaces, which permit valid grasps. The proposed approach is general and

applicable to any kind of scene geometry, such as arbitrarily cluttered scenes and curved

surfaces and complex end-effectors with multiple degrees of freedom. In simulation exper-

iments, the approach increases the success rate of grasp planning while also reducing total

online planning time at the cost of a small amount of precomputation [27].

1.4 Main Contributions

The main contributions of this thesis are listed below:

1. A novel graph-based representation to efficiently encode attributed floorplans that

contain semantic and dynamic behavioral attributes. Specifically, we propose RNN

Autoencoder to embed graphs with features on nodes and edges.

6

2. We are extending the representations to have generative capacity using Variational

Autoencoders (VAE’s).

3. We are exploring the use of these representations for design space exploration and

optimization. We utilize the embedding space by finding neighbors as well as sam-

pling from embedding space.

4. A comprehensive set of quantitative experiments to validate our approach and demon-

strate its efficacy on various tasks includes retrieval, generation, and optimization.

5. An expert user study to evaluate the validity of floorplans retrieved from the embed-

ding space with respect to a given input (e.g., design layout).

6. The release of two datasets (the extended housexpo dataset and a newly created syn-

thetic dataset) to maximize adoption and spark new research in this burgeoning area.

7. Appendix: A novel geometric approach to identify a complete set of object subsur-

faces in a cluttered scene, which permit an end-effector to approach and grasp the

objects in real-time.

1.5 Thesis Outline

The remainder of this thesis is organized as follows. In chapter 2 we review prior works in

floorplan analysis, representation, generation, and optimization. In chapter 3 we describe

our initial model for representing floorplans. In chapter 4 we present our extended model

for integrating edge features and generative capabilities. In chapter 5 we investigate the

role of latent floorplan representations for design space exploration. Finally, we provide

concluding remarks and discuss avenues of future investigations. Appendix A presents the

role of graphical models of environment geometry for robotic manipulation.

7

CHAPTER 2

RELATED WORK

Section 2.1 summarizes techniques for floorplan analysis using static, geometric methods

and using dynamic simulation-based methods. Chapter 2.2 reviews prior work in floorplan

representation for computer-aided design applications. Chapter 2.3 reviews prior work in

floorplan generation for generative design. Chapter 2.4 summarizes prior work in floorplan

optimization and design space exploration.

2.1 Analysis of Floorplans

Analyzing building layouts, whether for virtual or built-environment, is a critical phe-

nomenon in environment design. There has been a tremendous amount of work that an-

alyzes different aspects of the environment such as structure [28], lighting [29, 30], en-

ergy [31, 32], construction efficiency [33], and building HVAC [34, 35].

It is also important to estimate how a design layout would impact the movement be-

havior of potential occupants of the space. Overlooking this can result in producing envi-

ronment layouts that do not perform as expected in terms of operational productivity and

user experience, and safety [36, 37]. Computational approaches are used to evaluate envi-

ronment layouts for human occupancies. Researchers have used both static and dynamic

workflows using geometric and topological environment design information and crowd

simulations, respectively, to assess environments for occupants’ movement behaviors.

2.1.1 Static Analysis of Floorplans

The Space-Syntax [38] methodology has been widely used among the static approaches to

analyze human spatial behaviors in space [39]. It represents the environment as a spatial

graph (e.g., visibility graph [40]) and computes spatial relations and connectivity among

8

the graph nodes to infer user behaviors. Some of the salient measures from Space-Syntax

include accessibility, visibility and organization of space, and have been used to analyze

occupants’ movement behaviors [41, 42]. An interactive user-in-the-loop framework is

presented in [43] that utilizes measures from Space-Syntax analysis to compute diverse

alternate design layouts. A study is presented in [44] to investigate occupant navigation

and way-finding tasks in a single and multi-level building design using Space-Syntax. The

work presented in [45] uses Space-Syntax measures and allows designers to interactively

analyze their environments for occupant movements from within the environment modeling

platform (e.g., Autodesk Revit).

However, the static approach lacks any explicit modeling of occupants and their activi-

ties over time and solely relies on static spatial environment configurations.

2.1.2 Dynamic Analysis of Floorplans

Occupant movements and behaviors are contextual and dynamic in nature, and therefore,

it is essential to evaluate the impact of the design layout on its potential inhabitants. To

this end, the dynamic approach uses an agent-based simulation (e.g., crowd simulation)

to analyze the dynamics of human movements in the environment. The crowd simulation

methods explicitly model the individual virtual occupants or occupancy groups [46, 47],

their behavioral characteristics (e.g., walking speed), and the activities they will engage in,

to provide a time-based representation of the occupant–building interactions.

Crowd simulation techniques have been applied to simulate pedestrian movements [48]

in numerous contexts, for example, to simulate day-to-day occupant behaviors in uni-

versities [49], hospitals [50], and in a retail environment and shopping mall [51]. They

have also been used to understand and analyze emergent egress activities [52, 53]. The

works presented in [54, 55, 56, 57, 58, 59] evaluate virtual corridors and hallway cross-

ings by simulating crowds to approximate the egress flow as a function of design layout.

Researchers have also explored parametric approaches where environment and crowd be-

9

haviour parameters were jointly explored to find optimal environment-crowd configurations

for egress [60]. A multi-paradigm framework is presented for event-based simulations of

dynamic crowds in built-environments to account for environmental conditions such as

temperature and acoustics [61]. The work in [62, 63] presented a gamification approach to

adopt crowdsourcing and community-driven design of environments based on crowd sim-

ulations using multiplayer games and networking. More recently, crowd simulation tech-

niques have been used to compute and validate egress plans for the environment layouts by

complying with building codes for means of egress [64].

By simulating and analyzing occupant movements in space, designers can generate

more human-aware environment layouts.

2.2 Floorplan Representation

Floorplan representation aims to represent floorplans with numerical vectors that their

structure and their features are encoded in these vectors. To the best of our knowledge,

representing floorplans by numerical vectors is not done to date. There are some prior

works for retrieving similar floorplans with representing floorplans as images or graphs.

They can be mainly divided into three categories: image-based, graph-based, and symbol-

spotting methods.

2.2.1 Image-based Methods

Several approaches based on conventional image processing techniques for comparing

floorplans are proposed. In these approaches, floorplans are represented as images and

Histogram of Oriented Gradients (HOG) [4], Bag of Features (BOF) [5], Local Binary Pat-

tern (LBP) [6] and Run-Length Histogram [7] have been utilized for extracting features

from these images. Then, these extracted features are used for comparison and retrieving

floorplans. In [65] a deep CNN is presented for feature extraction to address the limi-

tation of conventional image processing techniques for extracting features. This method

10

suits object-centric floorplans datasets in which floorplans are annotated with furniture or

specific visual symbols. However, these features are not semantics and do not correctly

capture the high-level design structures. Moreover, human behavioral features are not con-

sidered in these methods, whereas occupants’ behaviors (i.e., trajectories) are often highly

correlated with environments [10].

2.2.2 Graph-based Methods

In this category, floorplans are represented with graphs, and graph matching methods are

utilized for measuring their similarity. Different strategies are used for representing floor-

plans as a graph. In [11] rooms are nodes, and edges capture the adjacency between the

rooms. In addition, nodes are augmented with furniture types annotated in floorplans.

In [12], the graphs are augmented with more attributes like room area and furniture style

in three different representation layers. Since in these works, floorplans are represented

with graphs, all of them capture the floorplans structure, and some of them add attributes

to nodes. However, mainly they do not include semantic and high-level features as well as

human behavioral features. Moreover, all of these methods use graphs as a final represen-

tation and do not provide numerical vectors. These methods use graph matching methods

for finding similarity, which is directly applied over graphs.

2.2.3 Symbol Spotting Methods

Symbol spotting is a special case of Content-based Image Retrieval (CBIR) [15, 16] which

is used for document analysis. By giving a query, system retrieves zones from the docu-

ments which are likely to contain the query. Queries could be a cropped or hand-sketched

image. Pattern recognition techniques are used in symbol spotting methods like moment

invariants such as Zernike moments in [17]. Reducing search space in symbols spotting

methods is proposed based on hashing of shape descriptors of graph paths (Hamiltonian

paths) in [18]. SIFT/SURF [19] features being efficient and scale-invariant are commonly

11

used for spotting symbols in graphical documents. Symbol spotting methods are applied to

small datasets which do not have complex images, and they are only applicable for retrieval

purpose.

2.3 Floorplan Generation

Floorplan generation aims to generate floorplan designs automatically by satisfying some

constraints like room sizes and adjacency between rooms. We can divide them into two

groups: Procedural methods and recently deep learning methods.

2.3.1 Procedural Methods

Procedural modeling techniques have been proposed for a wide range of virtual words, in-

cluding buildings. In [66] an extensive survey is provided. In these methods, the constraints

like dimension and adjacency constraints are manually defined, and optimization methods

are used for constraint satisfaction to generate new floorplans [67]. In [21], they used the

Bayesian network to synthesize floorplans with given high-level requirements. In [68] they

proposed an enhanced Evolutionary Strategy (ES) with a Stochastic Hill Climbing (SHC)

technique for floorplan generation. In [69] floorplans are generated with a combination of

2D shapes, which are used for extruding building facades. Shapes grammars is proposed

in [70] for floorplan generation. They utilized shape grammars for generating a floorplan

schema with its basics units(rooms). The rooms’ functionality is assigned, and rooms are

filled with furniture by an extensive library of individual room layouts. A graph-based

method is proposed in [71]. User-defined grammars generate the graphs. The start point

is the front door, and then public rooms are added, and their specific function is assigned.

After this step, private rooms are created, and finally, stick-on rooms are introduced. With

determining a 2D position for each room, these graphs are converted to a spatial layout.

In [66] a generic semantic layout solving approach is proposed. By utilizing a semantic

library, rooms are mapped to a class, and the constraints are defined based on semantic

12

adjacency between rooms. Our work is complementary to the wide body of work in pro-

cedural content generation [66] and focuses on the use of deep learning, specifically graph

representation learning, for encoding floorplans.

2.3.2 Deep Learning Methods

There are a limited number of works with this approach. In [20] a deep network was pro-

posed for converting a given floorplan layout as input to a floorplan with predicting rooms

and walls location. In [72] they proposed a method comprising three deep network models

to generate floorplans. In the first step, the model generates the layout, room locations, and

furniture locations. In this model, users are in the loop, and they can modify the input for

the next steps. In [73] they proposed a framework based on deep generative network. Users

specify some properties like room count, and their model converts a layout graph, along

with a building boundary, into a floorplan. A graph-constrained generative adversarial net-

work is proposed in [74]. They took an architectural constraint as a graph (i.e., the number

and types) and produced a set of axis-aligned bounding boxes of rooms.

2.4 Floorplan Optimization

The ability to optimize environment structures is becoming an increasing trend to help

designers design more context-aware layouts. The work presented in [75] used current-

generation crowd simulators with an adaptive mesh refinement approach to optimize the

placement of pillars to increase the crowd flow in egress scenarios. A user-in-the-loop ap-

proach is presented [43] to optimize environment layouts for diverse design alternatives

within user-set parameter bounds of design alteration using spatial environment configura-

tions (e.g., topological and geometric information). The work in [22] presented a frame-

work for a parameterized procedural representation of virtual environments, which are then

altered using Markov Chain Monte Carlo (MCMC) to obtain the desired crowd behaviors

during the simulations. However, all of these works explicitly search through the whole

13

solution space of the set parameters, which are usually high-dimensional and require ex-

tensive computation cycles. And for that very reason, these approaches are often prohibitive

for complex and large-scale environment configurations.

An alternate approach to avoid the extensive search of the solution space is to use ma-

chine learning techniques to learn the relationship between the environment (e.g., a floor-

plan) and the desired objective (e.g., crowd flow). The work in [2] presented a neural

network-based model to learn the relationship between environment layouts and crowd

movements, which is then used in an optimization framework to automatically generate

environments that yield user-desired crowd behaviors without running extensive simula-

tions.

14

CHAPTER 3

FLOORPLAN EMBEDDING WITH LATENT SEMANTICS AND HUMAN

BEHAVIOR ANNOTATIONS

3.1 Introduction

In this chapter we propose floorplan embedding – “latent” representations of building lay-

outs using an attributed graph as intermediate representation that encode not only design

and structural features, but also human behavior features. Specifically, a Long Short-Term

Memory (LSTM) [23] autoencoder [24] is trained to represent these graphs as vectors in

a continuous space. These vector representations are used to cluster and query floorplans

with similar characteristics and attributes. Some of the advantages of presenting floorplans

as vectors are: (a) compact representation, (b) efficient way to compare designs and fast

retrievals, (c) scoring designs and providing feedback/recommendations, and (d) catego-

rizing design according to our target features. In addition, since there is not any dataset

augmented with semantics and human behavioral features, we release a novel annotated

floorplan dataset with semantics and human behavioral features generated from simula-

tions. The key contributions can be summarized as follows: (i) intermediate representation

of floorplans as attributed graphs and augmented with crowd behavioral features (ii) novel

unsupervised deep learning model to learn a meaningful vector representation of floor-

plans (iii) creation of a floorplan dataset augmented with semantic and crowd behavioral

attributes generated from simulations.

3.2 Method Overview

The proposed framework is illustrated in Figure 3.1. It consists of two components. The

first component is for preprocessing floorplans and convert them into attributed graphs. The

15

result of this step is a novel floorplan dataset augmented with design semantic and crowd

behavioral features. The second component is the embedding for creating latent vectors of

these graphs. These latent vectors represent floorplans as numerical vectors in a continues

space. Further details on each component are presented in the following sections.

3.3 Dataset

HouseExpo dataset [76] is used in this work. It includes about 35000 2D floorplan layouts

that are presented in JavaScript Object Notation (JSON) format. They are mostly floorplan

segments belong to big buildings. A sparse labeling for layout components is also given

for each floorplan. Figure 3.2 shows an image of a raw floorplan compiled as image. There

are about 25 different components types in the whole dataset. Some of them, however,

have similar semantics (e.g. toilet and bathroom, terrace and balcony, etc.). We reduce the

components types to 11, considering only single type-name for rooms labeled for similar

purposes and removing minor components like freight elevator.

3.4 Floorplans to Attributed Graphs

In order to convert floorplans into attributed graphs, first we recognize all potential room

boundaries by a series of image processing operations. Then, we assign labels based on

provided annotations. Some of the floorplans are not annotated perfectly (e.g. the given

coordinates for the labels are not match with room coordinates). In such cases, we calculate

overlaps of each room with given label coordinates, and then assign labels to rooms which

have the maximum overlap.

The rooms are the nodes in the graph and edges are the potential connections between

them. There will be an edge between two rooms if there is an immediate door between

them. Edges are formed by image processing techniques. To detect doors, we create a

combined image of two rooms and apply blob detection on it. If the number of blobs found

is one, it means there is a door between them, otherwise, there is no connection between

16

the two rooms. Up to now, graphs are representing the structure of floorplans but they are

not attributed. Next, we assign to nodes (rooms) their respective semantic features like

square footage and room type, which are calculated using image processing techniques. To

generate crowd related features, the 2D floorplans are converted to 3D models loadable in

a crowd simulator, SteerSuits [77]. The simulator automatically populates virtual agents in

each room with the target to exit the floorplan. It then calculates features like maximum,

minimum and average evacuation times and traveled distances, as well as overall exit flow

for all the agents in room. More details on these crowd aware features is presented in the

following section. This part is done in an end to end procedure and does not need human

interactions.

As mentioned, as a part of this work we are generating a novel floorplan dataset aug-

mented with semantic and crowd behavioral features which is the result of this section.

In this dataset, for each sample we have a JSON file augmented with semantic and crowd

behavioral features.

3.5 Floorplan Dataset Features

This section presents the procedure for generating a floorplan dataset augmented with se-

mantic and crowd behavioral features. At this point, we have floorplans which are presented

as attributed graphs. The formation of a graph captures the structure of a floorplan, and at-

tributes of nodes present its features. The available set of features can be seen in Table 3.1.

These are divided into two groups: design semantic and crowd behavioral features which

are generated with simulations. Design semantic features include room types and square

footage which are generated by image processing techniques. Since room types are cate-

gorical features, they are presented as one-hot vector with 11 dimension and footage square

is represented with an one dimensional scalar. The total dimension of semantic features is

12. All crowd behavioral features are represented with a one dimensional scalar value.

In total we have 9 crowd features which lead to have a 9 dimensional vector for crowd

17

F
ea

tu
re

 E
xt

ra
ct

io
n

Sample Floorplan Recognizing rooms and
extracting semnatic

features

Generating human
behavioral features with

simualtions
Converting to attributed

graphs

[Square fotage, Room type, Population features]

.

.

.

Features

F
loorplan E

m
beddingsE
m

b
ed

d
in

g

Random Walk

.

.

.

LSTM

LSTM

LSTM

LSTM

.

.

.

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

.

.

.

LSTM

LSTM

LSTM

LSTM

.

.

.

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

.

.

.

{Intermediate vector}
{Embedding vector}

Encoder Decoder
Latent Vector

Long Short-Term Memory Auto-Encoder

Train
in
g

Floorplans Dataset

t-SNE

Figure 3.1: An overview of the proposed framework. In pre-processing, rooms and their
design semantic properties are identified, then a 3D model is generated as input for crowd
simulator to generate dynamic behavioral features, and at the end, the floorplan is converted
to an attributed graph. In the embedding part, first a random walk is performed to convert
attributed graphs to a set of sequences. Next, a LSTM autoencoder is proposed for training
and floorplan predictions. The encoder has a 2 layer LSTM: first has 84 and second one
has 64 LSTM units. The decoder has same architect contrariwise.

18

(a)Raw (b)Semantic Graph (c)Behaviour

Figure 3.2: (a) A sample raw floorplan from the dataset. (a) The black pixels are wall (or
outdoors) and white pixels are building components (or indoors). (b) These floorplans are
converted to graphs and augmented with design semantic and behavioral features in our
preprocessing step. (c) Shows the visualization of behavioral features on floorplan.

features. Sum of all feature dimensions is 21.

However, our approach is not bound to use only the selected features, and more can

be adapted into the framework depending on the application. The values of scalar features

have different ranges. In order to keep all of them within a same range for robust training,

we normalize them between [0, 1] except for features which are presented with one-hot

vector. All the outliers are removed before normalization.

3.6 Floorplan Embedding

In this section we discuss the conversion of attributed graphs into continues latent vectors

which encode both structure and semantics of the floorplans, as well as their crowd behav-

ioral features. We use graph embedding approach to transform graph nodes, edges, and

their features into a vector space (lower dimensional) while preventing any information

loss. Graphs, however, are tricky to deal with because they can vary in terms of their scale,

specificity, and subject [78].

There exist some approaches to perform graph embedding [79, 80, 81, 82]. However,

they are only suitable for unattributed graphs and mostly capture just the graph structure.

But in our case, the graphs are attributed. So in order to account for these attributes, we pro-

19

Feature Class Features types Dimension

Design semantic Square footage
Room type

1
11

Behavioral

Not completed agents
Max evacuation time
Min evacuation time

Exit flow rate
Completed agents

Max traveled distance
Ave evacuation time
Avg traveled distance
Min traveled distance

1
1
1
1
1
1
1
1
1

Table 3.1: First column shows the two feature classes, second column shows features avail-
able in each class and third columns is their dimension. Dimension for semantics features
is 12 and for behavioral is 9, in total the features dimension is 21, all scaled between [0 1].

posed an Long Short-Term Memory (LSTM) autoencoder. Autoencoders [24] are trained

to learn the full properties of the data and reconstruct their inputs. They generally have two

parts: an encoder that maps the input to an intermediate representation and a decoder that

reconstructs the inputs from intermediate representation. The intermediate representations

are latent vectors. LSTM is a recurrent neural network (RNN) for capturing long-distance

dependencies in sequential data and also supports varying data lengths.

We propose a LSTM autoencoder to learn embedding space in a way that keeps floor-

plans of similar structure, design semantic and crowd behavioral features, close to each

another in the embedding space. Our proposed model is illustrated in Figure 3.1. We learn

the function for mapping graph G to vector R in a d-dimensional space. In a floorplan

(graph) G = (V,E), V denotes its vertex set (rooms) and E ⊆ V xV denotes its edge set

(potential doors between rooms). We have unlabeled graphs in our dataset. Each node has

a constant dimensional feature-vector FV .

Adjacency matrix is one of the ways to present graphs as input to algorithms. But

since the graphs are varying in number of nodes and edges, presenting them as adjacency

matrix opens new challenges. This is because the dimension of the adjacent matrix is

different for different graphs. To address this, we convert graphs to multiple varying length

20

sequences. This conversion is done by using Random Walk. In a random walk we start from

a given source node and the next node will be selected randomly with probability 1/D(N),

where D(N) is the degree of node N . Each graph is converted to a set of sequences

and these sequences are feed to the model for training. Then the average latent vectors

of corresponding sequences to a graph are used as a representation vector for the graphs

(Equation 3.1).

Φ(G) =
1

Nseq

Nseq∑
n=1

RSn (3.1)

The Nseq is the number of sequences and RS is corresponding latent vector to each

sequence.

3.7 Training

Some of malformed graphs are removed from the dataset. We use about 33000 floorplans’

graphs which are converted to a set of sequences. We run random walks on the graphs to

generate corresponding sequences. These sequences are feed into our model for training,

both as input and output since the method is unsupervised. The loss function in our model

is Mean Squared Error (MSE) (Equation 3.2).

loss(s) =
1

|s|

|s|∑
i=1

(Ȳ − Y)2 (3.2)

Which s is the given sequence and |s| is the number of nodes in the sequence. Ȳ is the

21

reconstructed vector for a node and Y is the true vector for that node. Loss function calcu-

lates the difference between reconstructed vector(output of decoder) and input sequences

which each node has feature vectors Fv. In other words the encoder is trying to reconstruct

the node features in the sequence.

This section validates and showcases the potential of our embedding methodology with

the help of 3 different use cases. For these use cases, we trained three models with the

architecture described. The difference between these models is the considered features.

First model is trained only with design semantic features, second only with behavioral

features and the third with all of the features.

3.8 Pairwise Similarity between Floorplans

In this use case we demonstrate a pairwise comparison between input floorplan and its

second nearest neighbour from the embedding space. Underline graphs of both floor-

plans are compared using a popular graph similarity distance metric, Graph Edit Distance

(GED) [83]. The edit distance between G1 and G2, GED(G1, G2), is the count of edit

operations that transform G1 into G2, where the edit operations on a graph G can be an

insertion or deletion of an edge or node. All edit operations have the same constant cost

which is 1. If two graphs are identical, their GED is 0.

First, we retrieved a semantically similar design (second nearest neighbour) from the

embedding space for the given input floorplan such that they have similar structural at-

tributes but significantly different behavioral attributes, Figure 3.3. The GDP value is re-

ported as 0, showcasing that the graphs are similar in their design semantics. Average exit

flow values and color-coded density heatmaps are also shown for both floorplans. Querying

floorplan yielded comparatively lower exit flow than its nearest neighbour found from the

embedding.

Second, we retrieved a behaviorally similar floorplan (second nearest neighbour) from

the embedding space for the given floorplan such that they have similar behavioral attributes

22

but significantly different design semantics. A GDP value of 10 is reported from the graphs

comparison, showcasing the two graphs are design semantically different. However, their

corresponding floorplans yielded similar exit flow values. A GDP graph transformation as

well as density heatmaps are shown, Figure 3.4.

3.9 Behavioral and Geometrically-powered Floorplans Retrieval

In this use case we demonstrate the potential of using our embedding methodology to

retrieve geometrically-powered (includes static features), behaviorally-powered (includes

crowd-based features) and combined, similar and related floorplans.

Figure 3.5 showcases an example for geometrically-powered floorplans retrieval. This

embedding setting contains a 12 dimensional design semantic vector, 11 for room types

and 1 for room dimensions. Given an input floorplan, a set of 5 nearest neighbors from

the embedding space are retrieved. For an embedding space to be meaningful and valid, a

queried graph should have itself as the first nearest neighbor during a retrieval, and there-

fore, in the figure, the first neighbor is same as the queried floorplan itself. For first query,

the second and third nearest neighbours have same structure, the hallway in the middle

and two bedrooms, one kitchen and one bathroom around it. Though, they have different

design semantic features as annotated in the image. Fourth neighbour has close structure

and only with missing the kitchen node. The last neighbour almost has same structure but

the middle node is different.

Figure 3.6 showcases an example for behaviorally-powered floorplans retrieval. In this

example the query graph is the same as last one and we retrieve the top 5 nearest neigh-

bours. The model trained by behavioral features is used. All the neighbors have one node

in the middle and four in the surroundings with same node degree. The second row shows

simulation heatmaps for behavioral features. Since semantic features are not considered in

this use case, two of the neighbours have totally different room types and more-less sim-

ilar square footage. Also, the second nearest neighbour is exactly same as second nearest

23

Encoder

2nd	NN

Input	Floorplan

33.60

14.1014.12

14.18

6.50

33.55
7.48

17.60

14.12 10.48

14.18 17.60

33.5533.60

6.5014.10

Bedroom

Balcony
Office

Bathroom

Behaviorally
Different

Avg. Crowd Flow =
3.78 agents/s

Δ	3.64

Δ	3.42

Δ	0.50

Δ	7.60

Difference in
Space Area

Similar Design Semantics

Graph Edit Distance
(GED) = 0

Avg. Crowd Flow =
2.45 agents/s

Figure 3.3: Two floorplans which are structurally similar (Graph Edit Distance (GED) = 0)
but have different crowd behavioral attributes.

Input	Floorplan

Behaviorally
Similar

Avg. Crowd Flow =
4.93 agents/s

Avg. Crowd Flow =
4.81 agents/s

Encoder

2nd	Nearest
Neighbour

33.86

16.20

8.54

17.66

11.62

30.42

8.06

42.48

11.62

42.48

8.06

30.42

11.62

42.48

33.86
8.54

16.20

17.66

33.86

16.20

8.54

17.66

+5

+5

=10

G
ra

ph
 E

di
t D

is
ta

nc
e

(G
ED

) =
 1
0

Semantically Different

Figure 3.4: Two floorplans which are behaviorally similar (having similar average exit
flows) but design semantically different (Graph Edit Distance (GED) = 10).

24

Figure 3.5: Floorplans retrieval from the embedding with respect to design semantic fea-
tures alone. Top 5 nearest neighbours of two queried floorplans are shown.

Figure 3.6: Floorplans retrieval from the embedding with respect to behavioral features
alone. Top 5 nearest neighbours of for queried floorplan is shown. The ranking of the neigh-
bours is computed based on differences in their behavioral attributes. Time-based behav-
ioral dynamics for human-building interactions are also shown as color-coded heatmaps,
where red areas highlight over crowded regions in space.

Figure 3.7: Floorplans retrieval from the embedding with respect to combined design se-
mantics and behavioral features. Top 5 nearest neighbours for the queried floorplan is
shown. Time-based behavioral dynamics for human-building interactions are also shown
as color-coded heatmaps, where red areas highlight over crowded regions in space.

25

neighbour in case 1. It shows even without design semantic features, the structure and

behavioral features can capture floorplans similarity.

Figure 3.7 showcases an example of floorplans retreival from a collectively trained

model with both semantic and behavioral features. The features dimension for each node

is 21. The top 5 nearest neighbours for the same input floorplan are retrieved from the em-

bedding. Since in this case all of the features are considered, the neighbours must follow

similar structure, similar design semantic and also similar behavioral pattern. Regarding

structure, they almost have same structure, one node is missing in fourth and fifth neigh-

bours and one node is different in fourth neighbour. But node degrees and structure of

the graphs are almost same. The heat-maps visualizing the behavioral features are shown

in second row and as it is clear their similarity decreases for later neighbours. Semantic

features as annotated in the images are more-less similar. There are some noticeable points

in this study. First the floorplan in second rank has the second rank in two later cases.

This shows the validity of embedding space which the similarity and dissimilarity between

floorplans are captured perfectly in vectors in embedding space. The third neighbours is

also seen in last two cases. Semantically it was the third neighbour but behaviorally it was

in fourth rank, the accumulation of both class features push it in third rank. This behavior

is another justification for embedding space validity and benefit of considering behavioral

features. Behavioral features weakly represent the semantic attributes and integrating them

helps to fin the best fit nearest neighbours. Third point is the presence of a new floorplan

in fourth rank which is not seen in both cases but the accumulation of features classes as

discussed later lead it to get fourth rank. Fifth neighbour was the fourth neighbour in first

study and was not seen in second study. It means this floorplan has similar structure design

semantic but behaviorally different pattern which their accumulation keeps it in fifth rank.

In order to have an evaluation over embedding space, we find the rank of each floorplan

by itself between top 5 nearest neighbours. A meaningful embedding space should lead

to a case that each graph has its own as first nearest neighbor. We repeat this process for

26

Ranks/Models Model1 Model2 Model3
First rank(query graph itself) 100% 100% 100%
Second rank(proxy graph) 86% 83% 85%
Third rank(proxy graph) 13% 13% 14%
Fourth rank(proxy graph) 1% 3% 1%
Fifth rank(proxy graph) 0 2% 0

Table 3.2: This table shows the percentage of the floorplans that have them-self as first
nearest neighbours and the rank percentage of their proxy graphs.

all three models, model trained with only design semantic features, model trained with

only behavioral features and model trained with all features. As Table 3.2 shows, in all

models the query graph by itself is first nearest neighbor. As additional metric, we generate

one proxy graph for each floorplan. Proxy graphs are the result of running random walk

one more time that makes different sequence for each floorplan. These proxy graphs are

not involved in training. We feed them to the trained model and add their representative

vectors to embedding space. Then we find the top 10 nearest neighbors for each floorplan.

The reason for top 10 nearest neighbours is to make sure we see them between neighbours.

Having these proxy graphs in higher ranks shows the validity of embedding space. The

result is provided in Table 3.2 for all three models. The reason that all of the proxy graphs

are not seen in second rank is because our graphs are unidirectional and we allow having

loop in random walk. The randomness in random walk could lead to sequences that is back

and fourth between only two nodes or a repeated subsequence because of loop. In both

cases the generated sequences are not presenting the graph properly. This situation also has

dependency to node degrees in the graphs since next node in random walk is selected based

on weighted probability of nodes degree. This can be addressed by running random walk

more than one time for each node or avoiding loops, both in training and test time.

3.10 Generation of a Composite Floorplan

Embedding spaces have commonly been used to make predictions and retrieving similar

objects given some input criterion or an object. In this use case we demonstrate that our

27

Embedding SpaceFloorplan #1 Floorplan #2

Feature Set #1 Feature Set #2

Floorplan

Input Output

Combined Features

Bedroom

Kitchen

Bathroom

Room

Lobby

E
n
co
d
er

Figure 3.8: Generation of a single floorplan with combined features from an embedding
space given two floorplans with different set of features as input. Nodes of underline graph
for each floorplan are color-coded based on room types.

embedding methodology can also be used to generate a compound floorplan with collective

features given multiple floorplans with a set of completely or partially different features.

Figure 3.8 showcases one such example. Two floorplans with 2 and 3 different room types

respectively, are given as input to our autoencoder, and the first nearest neighbour is a com-

posite floorplan consist of 5 different room types. It not just contains all the features from

input floorplans but also maintains a significant proportion of their geometric symmetries.

28

CHAPTER 4

GRAPH-BASED GENERATIVE REPRESENTATION LEARNING OF

SEMANTICALLY AND BEHAVIORALLY AUGMENTED FLOORPLANS

4.1 Introduction

Floorplan representations support a set of fundamental activities in the architectural design

process, such as the ideation and development of new designs, their analysis and evalua-

tion for any selected performance criteria, and the communication among the stakehold-

ers. While Computer-Aided Design (CAD) and Building Information Modeling (BIM)

approaches to support the creation of digital building models from which floorplans can

be extracted, these methods do not support the systematic representation or comparison

of floorplan features, which could be derived from geometric and semantic properties, as

well as more advanced performance metrics, such as space utilization and occupant behav-

iors [21, 54]. Image processing techniques and Convolutional Neural Networks (CNNs)

have been utilized to extract features from floorplan images [11, 65]. These features are

used for floorplan representation. In another branch, the floorplans are represented with

graphs, and graph matching methods are utilized for comparing and retrieving similar floor-

plans [13, 12]. Other approaches like symbol spotting methods are utilized for retrieving

similar floorplans. However, none of these works represent floorplans with numerical vec-

tors. Besides, they overlooked the design semantic and human behavioral features.

We propose a novel technique for floorplan representation that models floorplans with

attributed graphs as an intermediate representation to address the limitations in previous

works. A novel Long Short-Term Memory (LSTM) Variational Autoencoder (VAE) model

is proposed to embed the attributed graphs in a continuous space. This method considers

the design semantics and high-level structural characteristics, and crowd behavioral at-

29

tributes of potential human-building interactions. This approach represents floorplans with

numerical vectors in which design semantics and human behavioral features are encoded.

These vectors facilitate different applications related to floorplans, such as recommenda-

tion systems, real-time evaluation of designs, fast retrieval of similar floorplans, and any

application that needs to cluster floorplans. The qualitative and quantitative results show

the performance of our model for generating representative embedding vectors such that the

considered features are encoded accurately. A user-study is conducted to validate floorplan

retrievals from embedding spaces to their similarity with the input floorplans. Floorplan

generation is an active area of research in computer graphics. Recently floorplan gener-

ation methods based on machine learning have been integrated into design workflows to

facilitate and enhance the design process, [73, 72, 20]. Although floorplan generation is

not our approach’s primary goal, the proposed model is generative. We can automatically

generate floor plans with desired characteristics, as demonstrated by our experiments.

Our contributions can be summarized as follow:

• A workflow to represent floorplans as attributed graphs, augmented with design se-

mantic and crowd behavioral features generated by running crowd simulations.

• A novel unsupervised generative model to learn a meaningful vector representation

of floorplans using LSTM Variational Autoencoder.

• Generation of new floorplans using the proposed model. A user study to evaluate the

qualitative performance of our approach.

• Provision of a publicly released dataset of floorplans of indoor environments, which

are augmented with semantic and behavioral features. The semantic design features

are extracted by our automated tool, and the human behavioral features are generated

by hours of the running simulation.

30

Figure 4.1: An overview of the proposed approach. (a) floorplan is firstly converted to
an attributed graph as immediate representation, with attributes residing on both nodes and
edges; (b) random walk is applied to the attributed graph to generate a set of node sequences
and edge sequences; (c) floorplan embedding vector is learned with a novel parallel LSTM
VAE model; (d) the learned floorplan embedding vector can be used for visualization and
many other downstream tasks.

4.2 Method Overview

Figure 4.1 illustrates the proposed framework, comprising of two components. The first

component models floorplans with attributed graphs that nodes and edges of these graphs

are augmented with design semantic and human behavioral features. The second com-

ponent embeds attributed graphs in a continuous space. The details are provided in the

following sections.

4.3 HouseExpo++ Dataset

We used the HouseExpo dataset [76] that includes 35, 126 2D floorplan layouts in JavaScript

Object Notation format. There are 25 room types in this dataset where some of them share

similar semantic labels (e.g. toilet and bathroom or terrace and balcony). We reduced the

types to 10, including unknown types. This reduction is done by removing less common

31

types based on reported statistical metrics in the dataset (e.g. freight elevator) and consid-

ering a unique type for similar propose components. The final room types are Bedroom,

Bathroom, Office, Garage, Dining Room, Living Room, Kitchen, Hall, Hallway and Un-

known. Unknown type is considered for room segments with a noisy label. Additionally,

we remove from the set the floorplans with inaccurate or missing labels. At the end of this

process, we obtain 8, 729 floorplan layouts. This preprocessing is done to make the dataset

solid for training. Corrupted data will decrease the training accuracy and, consequently, the

test accuracy with undesirable outcomes of misleading the model.

The original HouseExpo dataset includes 35, 126 2D floorplans. For each floorplan, the

number of rooms, bounding box of the whole floorplan, a list of vertices and a dictionary

of room categories, as well as their bounding boxes are provided [76]. While we can use

the provided bounding boxes of the rooms for segmentation, these bounding boxes are not

accurate, so we use them only for labeling. We compile these floorplans (in JSON format)

to images. Then, we segment the images to find the rooms, their connections if there are

any, the direction of connections and their square footage. The provided bounding boxes

in the original dataset are used for assigning labels to room segments by the criterion of

maximum overlapping. The described processes are done with our automated tool by image

processing techniques. Moreover, we convert these JSON-formated floorplans to files in a

readable format with our 3D crowd simulator (SteerSuite), and by running simulations, we

record the human behavior features (features are provided in Table 4.1).

4.4 Floorplans to Attributed Graphs

After pruning the dataset, we model each floorplan with an attributed graph. The rooms

compose nodes, and the edges are their connectivity if there is an immediate door between

the room pairs. For this conversion, we compiled HouseExpo samples as images. Then

we utilized a series of image processing techniques for room segmentation and finding

their connectivity. Graph structure resembles the structure of floorplans like the number of

32

Feature
Classes

Feature
Types Dimension

Node
Features

Design
Semantic

Square Footage 1
Room types 1

Behavioral

Not completed agents 1
Max evacuation time 1
Min evacuation time 1

Exit flow rate 1
Completed agents 1

Max traveled distance 1
Avg evacuation time 1
Avg traveled distance 1
Min traveled distance 1

Edge
Feature

Design
Semantic Direction 4

Table 4.1: Features on nodes and edges.

rooms and their connectivity. Considering floorplan structure is necessary but not enough.

To have a better and more meaningful representation, we need to integrate high-level design

semantic features. Moreover, humans inhabit these buildings, and their interaction with the

environment provides valuable implicit information. Integration of how they interact with

environments is necessary for safety or other types of design metrics like visibility and

accessibility. Therefore, we augmented the graphs with both high-level design semantic

features and human behavioral features (Table 4.1).

The semantic design features include room type, square footage, and the connection

direction. The room types represented with a 10-dimensional one-hot vector where if the

type is ith type and other entities are zero roomTypei = 1. The square footage is repre-

sented with a scalar value and direction of connection with a 4-dimensional one-hot vector.

We considered four main directions: North, East, South, and West. Thus, directioni = 1 if

direction belongs to ith direction and other entities are zero. The room types are provided

as a label in the dataset, and image processing techniques extract both square footage and

direction of the connection. We are not given the cardinal directions. Therefore, we consid-

ered the top left corner of floorplan images as the origin. Hence, the +y axis points to the

33

north, and other directions are considered relatively. For calculating the direction, we need

a reference point (i.e., room). The direction between rooms is the direction from the node

(i.e., room) with the highest degree (room with more connections) to the node with a low

degree. Usually, the node (i.e., room) with the highest degree is the main room in the floor-

plans like the living room or hallway. In other words, the node with the highest degree is

the reference for setting the directions. Please note in the graph the edges are bidirectional

if there is a door between two rooms, and connection direction is the assigned feature to

edges. The room type and square footage are specific to each room, and we consider them

as node features. However, the connection direction is a shared property between room

pairs; we add it to the edge features (edge between room pairs).

The human behavioral features are generated by simulation (Figure 4.3). They include

metrics regarding evacuation time, traveled distance, flow rate, and the number of success-

ful/unsuccessful agents to exit from the corresponding building (Table 4.1). To generate

these behavioral features, we converted 2D floorplans to 3D models loadable in a crowd

simulator, SteerSuite [84]. The simulator automatically populates virtual agents in each

room with the target to exit the floorplan. Note that in our simulations, the only obstacles

the agents interact with are the walls of the environment (static obstacle) or the other agents

(dynamic obstacle). However, our simulation setup does not restrict us from including dif-

ferent kinds of obstacles in the environment (e.g., pillars or other physical objects). The past

research has shown that the placement of pillars or other obstacles at proper locations can

often facilitate movements (e.g., crowd flow) during the evacuation of the environment [56,

57, 55].

Figure 4.2 shows a snapshot of the simulation in the presence of 4 obstacles in the

environment. All human behavioral features are presented with one scalar value with a

total dimension of 9. These features are generated for each room; hence we added them to

the nodes feature vector.

34

Figure 4.2: A snapshot of the simulation in the presence of the obstacles (e.g., pil-
lars/hurdles). Top: the crowd simulation in 3D. Bottom: Crowd trajectories overlayed
on top of the environment layout.

35

4.5 Floorplan Embedding

We model the floorplans with attributed graphs with features on both nodes and edges as

described in section 4.4. These graphs represent floorplan geometry, their design semantics,

and behavioral features. They can be used directly for floorplan representation. However,

graph analysis is expensive in terms of computation and space cost. This challenge is ad-

dressed by proposing efficient graph analysis methods like [85, 86, 87] but are not efficient

enough. Besides, These methods do not represent graphs with a compact numerical vec-

tor. Another solution for addressing the complexity of graph analysis is graph embedding.

Graph embedding maps the graphs to a low dimensional space in which their properties

and information are maximally preserved. In this low dimensional space, the graphs with

similar properties are close. We have different graphs like the heterogeneous graph, ho-

mogeneous graph, attributed graph. It means the input for graph embedding methods are

varying, and a single method can not handle all types. Graph embedding can mainly be

divided into node embedding, edge embedding, hybrid embedding, and whole-graph em-

bedding [88].

We are dealing with whole attributed graph embedding. We want to represent each

attributed graph with a vector. These vectors encode graph (floorplan) structure as well as

their design semantics and behavioral features. Besides, these graphs are unlabeled, i.e.,

we do not have a label for each graph to perform supervised classification or regression.

Moreover, the graphs vary (in terms of the number of nodes), and the number of nodes is

relatively small. We can use other types of embedding like node embedding and then use

the node embedding vectors’ average as the whole-graph representation. However, with

this strategy, the whole graph structure is not appropriately captured and does not lead to

accurate vector representation [89, 80].

There are quite a few works for the whole graph embedding. Some whole-graph embed-

ding methods rely on the efficient calculation of graph similarities in graph classification

36

Figure 4.3: Crowd simulations are used to compute behavioral features for the floorplans.
Crowd simulations are used to compute behavioral features for the floorplans. Layout walls
are shown in Brown, crowds are shown in Green, and the Blue Flag shows the building exit
point (for evacuation).

tasks [90, 91, 92, 89]. These methods are supervised and need a labeled dataset. Besides,

they are designed for unattributed graphs. On the contrary, our graphs are attributed and

unlabeled. Therefore, these methods do not apply to our problem, and we need an unsuper-

vised method. Graph2Vec [82] is an unsupervised method that maximizes the likelihood

of graph subtrees given graph embedding and generates vector representations. However,

since this model uses subgraphs, the global graph information is not captured correctly

[80]. Besides, this method is not applicable for graphs with attributes both on nodes and

edges. In [80] for capturing the whole-graph structures, they take advantage of random

walk for converting graphs to a set of sequences. Then an LSTM autoencoder is presented

to learn graph representations. However, this method suits unattributed graphs.

Sentences are presented with a sequence of words. Each word in sentences is repre-

sented with a (embedding vector). In other words, we have a sequence of vectors in sen-

tences. In [93, 94] LSTM Variational Autoencoder is used for text and sentence embedding

and generation. The methods proposed in [93, 94, 80] motivate us to convert our graphs

to sequences (like sentences which are a sequence of vectors) and propose a novel LSTM

Variational Autoencoder model that suits our unlabeled attributed graphs with feature both

37

on nodes and edges. In particular, we convert each floorplan (graph) into a set of sequences

(section 4.7), and we propose a generative model that maps our graphs (sequences) to a

d-dimensional space θ : G→ Rd. The proposed model is detailed in the next section.

4.6 Model

We present a novel LSTM Variational Autoencoder architecture illustrated in Figure 4.1.

LSTM is a special kind of Recurrent Neural Network (RNN). It is designed for learning

long-term dependencies by introducing state cell [23] to address the vanishing gradient in

vanilla RNN with long-term sequences [95]. Autoencoders are a type of unsupervised neu-

ral network with two connected networks. The first network is an encoder that converts

the inputs to latent vectors in a low dimensional space. The second network is the de-

coder, which reconstructs the original input vector from latent vectors [96]. However, the

vanilla autoencoders map each input to a constant vector. The embedding space with vanilla

autoencoder is not continuous, and interpolation is not allowed. Variational Autoencoder

(VAE) is a generative model designed to address vanilla autoencoders’ limitations by learn-

ing the Probability Density Function (PDF) of the training data [97]. The VAE generates a

continuous embedding space in which vector operations are allowed.

As mentioned we have attributes both on nodes and edges with different dimensions.

To address this difference in dimension, we consider two parallel LSTM VAE, one for

node sequences and one for corresponding edge sequences. Let Sn = sn1 , sn2 , ..., sni
be

a node sequence and Se = se1 , se2 , ..., sei−1
be the corresponding edge sequence. We aim

to learn an encoder and decoder to map between the space of these two sequences and

their continuous embedding z ∈ Rd where d is a hyperparameter. In each branch, the

encoder is defined by a variational posterior qφ(z|Sn) and qφ(z|Se) and the decoder by a

generative distribution pθ(Sn|z) and pθ(Se|z), where θ and φ are learned parameters. For

each branch, loss function has two terms (Equation 4.1). The first term is reconstruction

error that we used Mean Square Error (MSE). This term encourages the decoder to learn

38

to reconstruct the data S̄n, S̄e. The second term which is a regularizer is Kullback-Leibler

(KL) divergence to penalize loss if the encoder outputs representations that are different

than a standard normal distribution N(0, 1) [98]. In training, two branch loss functions are

summed for back-propagation (Equation 4.1).

Losstotal = (||Sn−S̄n||2+KL[qφ(z|Sn), N(0, 1)])+(||Se−S̄e||2+KL[qφ(z|Se), N(0, 1)])

(4.1)

In both branches for the encoder, we have an LSTM layer with 256 units. In the fol-

lowing, we have two fully connected layers with dimension 16 for generating µ and σ and

consequently the d = 16. Then we have the sampling, and finally, we have the decoder

with one LSTM layer with 256 units for reconstructing the input sequences. The number

of layers and number of units/neurons are set experimentally for best performance. Adam

[99] is used as optimizer. Before training, each graph is converted to a set of sequences

(section 4.7), and these sequences are used as input for training. After training, each graph

is represented by averaging its sequences’ embedding vectors.

4.7 Graphs to Sequences

Graphs can be converted to sequences by methods including but not limited to random walk

or Breadth-First Search (BFS). In [80] the random walk, BFS, and shortest path between

all pairs of nodes are utilized. The experiments show sequences generated by random

walk lead to a better vector representation. The reason is random walk captures more than

immediate neighbors of nodes. The random walk is introduced in [100] for converting

graphs to sequences. In this version, we pick a node, and then we choose one of its edges

randomly to move to the next node. We repeat this procedure until we get a walk of some

predefined length (length of a walk is defined by the number of nodes on the walk, and a

39

shorter walk than the predefined length will be padded into the predefined length). Later,

two other versions are proposed.

Random Walk 1. In [79] the random walk is modified to have two parameters Q and P .

ParameterQ is the probability of discovering the graph’s undiscovered parts, and parameter

P is the probability of returning to the previous node. We call the random walk proposed

in [79] ‘Random Walk 1’.

Random Walk 2. In [80] the random walk is modified by adding probability 1/D(N),

where D(N) is the degree of node N . We start from a node in this walk, and the next node

will be selected by its probability 1/D(N). We call this random walk presented in [80] as

‘Random Walk 2’.

We used both walks with different walk lengths to find the best performer walk and

walk length. Besides node sequences, the edge sequences are captured at the same time.

Both nodes and edge sequences are used for training the model.

4.8 Training

As described in section 4.7, we converted graphs to nodes and edge sequences. We utilized

both mentioned walks with walk lengths 3, 5, and 7. For random walk 1, we set both Q and

P to 0.5. For each graph, we run the random walk 11 times. Therefore, we have 11 sets

of node and edge sequences for each graph. Out of 11, one set is considered as a proxy set

(proxy graph). These proxy sets do not participate in training and are only used later for

evaluation. As mentioned, we have two random walks, and we run each of them with walk

lengths 3, 5, and 7. In total, we have 6 different sets of sequences. On average, we have 5

nodes in each graph. However, because of randomness in random walks, all sequences are

not valid. For example, it happens to have a sequence which is the repetition of two nodes.

These types of irregularities are pruned. On average, we have 306440 node sequences and

306440 corresponding edge sequences in these 6 sets. The sequences with lengths less than

the target length are padded with zeros. We trained three models considering a different set

40

of features.

Model 1. In this model, we only considered the design semantic features on nodes.

We removed the edge branch, and the model is trained only with nodes sequences. The

dimension of node features is 11.

Model 2. In this model, we considered semantic design features both on nodes and

edges. The model is trained with both branches. The features dimension on nodes is 11

and on edges is 4.

Model 3. In this model, we considered all semantic design features and human behav-

ioral features. The model is trained with two branches. The features dimension on nodes is

20 and on edges is 4.

All three models have the same described architecture and loss function. Note that in

Model 1, the edge branch is removed, and we have only the node branch’s loss function.

However, in the other two models, the loss is the summation of two branches’ loss. The

learning rate was set empirically as 0.001. All three models are trained on a machine with

32 GB RAM, 12 * 3.50 GHz cores CPU, and Quadro K620 GPU with 2 GB Memory. On

average, each model takes about 4 hours for training with 50 epochs.

4.9 Quantitative Evaluation

This section presents quantitative results from the experiments.

4.9.1 Nearest Neighbours Ranks

As mentioned, by embedding, the graphs are mapped to a continuous embedding space.

The graphs with similar structures and properties should be close to each other in the em-

bedding space. The closeness of two floorplans can be measured by the euclidean distance

of the two corresponding embedding vectors (smaller distance denotes higher similarity). If

this embedding space is well constructed, similar floorplans in terms of structure, semantic

and behavioral properties should be closed. Therefore, for each graph (called query graph),

41

we compute the euclidean distance from this graph to other graphs (including itself) and

rank the other graphs for this graph according to the distance. We hypothesize that each

graph should find itself as the first nearest neighbor and its proxy graph (a different set of

sequences for query graph) in close ranks. This study is independent of considered features

on graphs and only shows the model’s effectiveness for generating valid embedding vec-

tors. Therefore, we use all 3 models to obtain the top 5 nearest neighbors for each floorplan

in their corresponding learned embedding space. We calculate the average percentage of

graphs that have themselves in the first rank and the percentage of proxy graphs in the other

four ranks. Table 4.2 shows these average percentages with different walk lengths for both

random walks.

As Table 4.2 shows, in both random walks, walk length 5 leads to better performance.

In addition, the random walk 2 is superior. By random walk 2 and walk length 5, each

graph by itself is in the first rank and 94% of proxy graphs in second rank. Since proxy

graphs are a different set of sequences on the graphs, if the model performs properly, a good

percent of the proxy graphs should be present in top ranks. Random walk 2 performs better

since it captures our graphs structure better because in graphs (i.e., floorplans) we have

always a main node (i.e., room) with high degree. Then moving toward this node gives the

sequences that capture our graph structure better. The walk length has dependency to size

of the available graphs in dataset. For us walk length 5 is the suitable length since in both

random walks, the embedding performance is better in compare to walk length 3 and 5.

As Table 4.2 shows, in both random walks, walk length 5 leads to better performance.

Besides, random walk 2 is superior. By random walk 2 and walk length 5, each graph

is in the first rank and 92% of proxy graphs in the second rank. Since proxy graphs are

a different set of sequences on the graphs, a good percent of the proxy graphs should be

present in top ranks if the model performs properly. Random walk 2 performs better since

it captures our graph’s structure better because, in graphs (i.e., floorplans), we always have

the main node (i.e., room) with a high degree. Then moving toward this node gives the

42

Walk
Length

Rank of
query floorplan

within 5 NN

Rank of
proxy graph
within 5 NN

Random
Walk 1

3
5
7

[100, 0, 0, 0, 0]
[100, 0, 0, 0, 0]
[100, 0, 0, 0, 0]

[0, 51, 2, 1, 1]
[0, 76, 4, 2, 2]
[0, 56, 2, 1, 1]

Random
Walk 2

3
5
7

[100, 0, 0, 0, 0]
[100, 0, 0, 0, 0]
[100, 0, 0, 0, 0]

[0 , 85, 3, 2, 1]
[0, 92, 2 , 1, 1]
[0, 88, 3, 1, 1]

Table 4.2: Average of nearest neighbor ranks (subsection 4.9.1) with two types of ran-
dom walks and walk length 3, 5, or 7 for our three models. For each graph, we compute
the euclidean distance from this graph to other graphs (including itself and a proxy graph
which is a different set of sequences of the query graph) and rank the other graphs for this
graph according to the euclidean distance. Each graph should find itself as the first nearest
neighbor and its proxy graph in close ranks. We calculate the percentage of graphs that
have themselves in the first rank and the percentage of proxy graphs in the other top four
ranks (e.g., ‘[0, 76, 4, 2, 2]’ in the table denotes that 76% graphs have their proxy as the top
2 nearest neighbor, 4% as top 3, 2% as top 4, and 2% as top 5). This analysis showcases
that walk length 5 can lead to better performance, and random walk 2 is superior.

sequences that capture our graph structure better. The walk length has a dependency on

the size of the available graphs in the dataset. For us, walk length 5 is the suitable length

since, in both random walks, the embedding performance is better compared to walk length

3 and 5. In [25] with vanilla LSTM Autoencoder, on average 84% of proxy graphs were

the second rank. However, this new model improves this percentage 92%.

4.9.2 Clustering

As mentioned in the previous section, floorplans with similar properties are close in the

embedding space. This similarity is in terms of floorplans structure, design semantics, and

human behavioral features. There are many parametric methods for clustering like KMeans

[101] that we need to give the number of clusters as the input parameter. Since we do not

want to limit ourselves to a specified number of clusters, we used Density-Based Spatial

Clustering of Applications with Noise (DBSCAN). It is a non-parametric clustering method

based on density. Each dense region (close-packed points) represents a cluster, and the

43

Figure 4.4: The clusters after running DBSCAN over 1000 random samples. Two samples
from one of the clusters are shown. They have the same number of nodes, same node
degrees, and similar room types (blue nodes are bedrooms, and yellow nodes are living
rooms). Besides, the average square footage for the top floorplan is 23.49, and for the
bottom floorplan is 25.38. This shows the embedding space indeed captures the design
semantics of floorplans.

points in the low-density areas are marked as outliers. It has two parameters, the minimum

number of points in each cluster and the maximum distance between two samples in each

cluster [102].

We sampled 1000 floorplans, and we run DBSCAN over their embedding vectors gen-

erated by our three models to cluster them. We calculated the standard deviation for the

number of nodes, average node degrees, node types, edge types, and flow rate for each clus-

ter. The average of mentioned metrics on all clusters is provided in Table 4.3. The number

of nodes and average node degrees is almost similar in all three models. The reason is all

the corresponding features to these metrics are available in three models. The node type is a

common feature in all three models. However, in models 2 and 3, the performance is better.

It is because of integrating edge types in these two models. Edge type is not a considered

feature in model 1, and we have the worse performance in model 1. Flow rate is only avail-

able in model 3, which we have the best performance. However, model 2’s performance

for the flow rate is satisfactory and shows that integrating edge direction helps find more

44

Number
of nodes

Average of
node degrees

Node
types

Edge
types

Flow
rate

Model #1 0.164 0.092 1.11 2.12 1.71
Model #2 0.168 0.091 1.06 1.34 0.68
Model #3 0.161 0.093 1.07 1.41 0.34

Table 4.3: Average of standard deviation for number of nodes, node degrees, node types,
edge type and flow rate in clusters out of 1000 samples in our three models.

similar floorplans with similar flow rate. Figure 4.4 shows the resulting clusters over 1000

samples in model 3. For visualization, the vectors’ dimension is reduced to two by TSNE

[103], and two sample floorplans from one of the clusters show the graph properties are

encoded accurately with our model.

4.10 Qualitative Evaluation

This section presents qualitative results from the experiments.

4.10.1 Nearest Neighbours (NNs)

As described we trained three models with different set of features. Each model makes

an embedding space. We selected three random floorplans and found their top 5 nearest

neighbours in the corresponding embedding space of each model. The Figure 4.7 shows

the query floorplans and their top 5 nearest neighbours. For each sample, first row shows

the NNs in the first model’s embedding space, second line shows the NNs in the second

model’s embedding space and third row shows the NNs in the third model’s embedding

space. As shown in the image, with the first model, the floorplans have the same struc-

ture in term of the rooms numbers, room (node) degrees and room types. But the room

arrangements are not similar. In the second model, since the edge features are added, the

high rank NNs follow the same arrangement and with moving toward low rank NNs the

arrangement similarity is dcreased. However, they have similar structure yet. In the third

model, the human behavior features are added as well and now floorplans with similar be-

45

havioral features get close to query floorplans. The last row for each sample shows the

visualization of crowd flow rate. The numbers inside floorplans in first and second row

shows the square footage of each room. In third rows the numbers depict flow rates. Please

note, as mentioned in section 4.4, the north is at the top and other directions are recognized

correspondingly.

4.11 Floorplan Generation

Given that variational autoencoders are generative, we study the skill of our model for

generating new floorplans. Generating new floorplans can be done with sampling from the

posterior distribution of sequences or with homotopies [93, 94].

4.11.1 Sampling from Posterior Distribution

VAE learns the data distribution instead of deterministic mapping. Therefore, we can sam-

ple from these posterior distributions for generating new data. As mentioned in section 4.8,

for each graph, we run random walk 11 times to generate 11 sets of node and edge se-

quences. To generate a new floorplan, we select a floorplan and a set from its 11 sets of

node and edge sequences. By decoding the samples from posterior distribution of these

sequences, we get new sequences. There could be different strategies to produce a new

floorplan with these newly generated sequences. We select the node with the highest de-

gree that is repeated in all sequences as the main node. Therefore, the arrangement of other

rooms can be fixed relatively. These new sequences give us information about room types

and square footage. Our method does not encode the geometry shape of rooms, there-

fore, we can assume the room shapes are similar to the originally selected floorplan or any

arbitrary shapes that satisfy the generated square footages, Figure 4.5. Generating new

floorplans with this approach is limited and gives us similar floorplans in terms of the num-

ber of rooms and room types, the only changes in new floorplans are the square footage

and geometry shape of rooms. The square footage generated in the new sequences do not

46

have the same value for each room, however, with considering the original sequences as

references, the average of generated square footage can be used for a new floorplan.

4.11.2 Homotopies

VAE makes a continues embedding space, and it allows interpolation in this space. We used

the concept of homotopy that means the set of points on the line between two embedding

vectors. Instead of a set of random points, we limit our experiment to the point in the mid-

dle of the line. We can select two random sequences from two random floorplans, and after

encoding them, we can calculate the difference of their embedding vectors. Adding half

of their difference to the base vector and decoding it gives us a new sequence. Figure 4.6

shows an example. By replacing the newly generated sequence with the old random se-

quence from the original floorplan, we can generate new floorplans. It can happen between

any other random sequences, and in this way, we can generate more derivative samples.

Different strategies for interpolation and generating new floorplans could be used here.

With homotopy, we do not have the mentioned limitations in sampling from the posterior

distribution. Floorplans with varying room types can be generated as a result of interpola-

tion, and the only limitation is the geometry shape of rooms, which is not encoded. We can

assume the geometry shapes are the same as reference floorplans or any arbitrary shapes

that satisfy the generated square footages to address this limitation.

47

14.45 11.32

6.7

14.09

14.45

11.32
7.51

3.01

11.50

9.10

8.42

8.40

8.10

7.51

8.109.10 11.50

6.1 9.3

14.09

6.7
3.01

6.1

8.42

8.40

6.7

9.3

9.3

6.1

E
n
c
o
d
e
r

a

b

a

b diff/2

Input Generated Floorplans

E
n
c
o
d
e
r

D
e
c
o
d
e
r

9.3

6.7
8.40

8.42 6.1

9.3

6.7
14.09

3.01 6.1

Figure 4.6: Floorplan generation with interpolating in embedding space. We select two
random sequences from two random floorplans, and after encoding them, we calculate the
difference of their embedding vectors. Adding half of their difference to the base vector
and decoding it gives us a new sequence. These new sequences can be used for generating
new floorplans. See section 4.11 for details.

E
n

c
o

d
e

r D
e

c
o

d
e

r20.17 24.58 17.92

39.71

20.17 39.71 17.92

39.71 24.58 39.71

24.58 39.71 20.17

17.92 39.71 17.92

17.4 30.1 18.8

31.2 18.6 28.4

18.3 26.7 18.7

21.3 33.6 15.4

Sampling

30

30

18.518.4526.75

26.75
18.45

18.5

Input

Generated Floorplans

Figure 4.5: Floorplan generation with sampling from posterior distributions. To generate a
new floorplan, we select a floorplan from our dataset and a set from this floorplan’s 11 sets
of node and edge sequences. By decoding the samples from posterior distribution of these
sequences, we obtain new sequences and then map them into new floorplans.

48

Demographic Information
Gender Sex Age Country of Residence

Female: 4 (40%) Female: 4 (40%) 18 - 24 years old: 4 (40%) China: 1 (10%)
Male: 6 (60%) Male: 6 (60%) 25 - 34 years old: 4 (40%) United States: 4 (40%)

35 - 44 years old: 2 (20%) Canada: 5 (50%)

Domain Knowledge
Poor Below Average Average Above Average Excellent Avg.

scale

Ability to
interpret ar-
chitectural
or interior
designs?

0 (0%) 1 (10%) 1 (10%) 7 (70%) 1 (10%) 3.80

Prior expe-
rience with
architecture
or interior
designs?

2 (20%) 0 (0%) 1 (10%) 6 (60%) 1 (10%) 3.40

Prior experi-
ence in urban
planning and
design?

3 (30%) 0 (0%) 2 (20%) 5 (50%) 0 (0%) 2.90

Prior under-
standing of
computational
tools for ar-
chitectural
design-space
exploration?

2 (20%) 0 (0%) 3 (30%) 5 (50%) 0 (0%) 3.10

Prior under-
standing of
pedestrian
movement
flow or crowd
flow?

0 (0%) 2 (20%) 4 (40%) 3 (30%) 1 (10%) 3.30

Table 4.4: Demographic information and domain knowledge ratings of expert participants
(self-reported).

49

4.12 User Study

In this section, we present a user study to evaluate the quality and efficiency of our models

of graph embeddings. Three different embedding models are tested: (1) trained with design

semantic features alone, (2) design semantic and edge features, and (3) design semantic,

edge and behavioral features. Given a floorplan (input), we query five similar floorplans

(nearest neighbours) from each embedding model.

4.12.1 Hypothesis

Our hypothesis is twofold: (a) the user perceived sequence of floorplans as top-five nearest

neighbours matches with the sequence captured by our model as nearest neighbours, and (b)

users perform better in their perceived sequence of top-five nearest neighbours for models

(2) and (3) than model (1) which is only trained with design semantic features.

4.12.2 Apparatus

Floorplans are presented as 2D blueprints (e.g. a top-down skeletal view of an environment

layout). The users (e.g. study participants) viewed these blueprints as high-resolution

images on their own computer screens via an online survey. For model (1), each room in

a floorplan is annotated with room dimension (e.g., square footage area) and color-coded

with respect to its room type. The annotation for model (2) is similar to model (1) with an

addition of edges between rooms and their respective directions (e.g., North, East, West,

South). For model (3), we showed color-coded trajectories of virtual occupants from the

rooms they spawned-in to the exit, along with square footage area of each.

4.12.3 Participants

Ten (10) domain experts from the architecture community (4 female and 6 male) voluntar-

ily participated in the user study. Table 4.4 shows the demographic information and domain

50

knowledge of the experts. On average, all the participants had above-average experience

and expertise in interpreting architecture designs and were Knowledgeable of computa-

tional tools for design space exploration (self-reported). In addition, every participant was

asked for consent before the start of the study.

4.12.4 Procedure and Task

The user study is conducted as an online survey and delivered in four parts. In part (a),

users are asked to provide their demographic information and report the domain knowledge

and expertise in architecture and urban design. In part (b), users are presented with five

different input floorplans. For each input floorplan, a sequence of 5 nearest neighbours are

presented in a randomized order, which are retrieved using model (3), and presented to the

users “without” any visual annotations. Users are asked to interactively reorder the given

sequence of floorplans (e.g., via drag and drop), based on their perceived ”similarity” of

these floorplans with respect to input floorplan. The ordering sequence is arranged such

that, more a floorplan is towards left in the order, the nearest it gets to the input floorplan.

In parts (c), (d) and (e), the nearest neighbours are retrieved using models (1), (2) and

(3) respectively, for the same five input floorplans which are used in part (b). In parts

(c), (d), and (e), the floorplans are presented to the users “with” visual annotations for their

respective features. We estimated that the user study will take up to 15 minutes at maximum

to complete.

4.12.5 Independent and Dependent Variables

Input floorplans and the retrieved nearest neighbours from the models are the primary in-

dependent variables. The rearranged sequences of floorplans by the users are the only

dependent variables.

51

4.12.6 Results

Figure 4.8 shows the user-ordered sequences of the nearest neighbours for the three models

from user study. The colored bars for each neighbour of an input floorplan represent the

number of users who correctly perceived the order of the neighbour in the given sequence.

Overall, about 28.68% of the neighbours are accurately ordered in their sequences based on

their perceived similarity with respect to input flooplans for model (1), 59.28% for model

(2) and about 77.6% for model (3), collectively by all the users. These results highlight

that users least performed when they had to perceive the similarity between floorplans by

considering the design semantic features alone, whereas they performed comparatively bet-

ter when presented with the neighbours annotated with edge and/or behavioural attributes.

The users performed the best for the model (3) when presented with the floorplans visually

annotated with design semantics (e.g., room types), edge (e.g., movement direction of the

agents), and behavioural (e.g., movement flow of the agents) features. The findings from

the user study suggest that both of our hypothesis stand valid.

We also wanted to analyze the users’ performance in perceiving the ordering sequence

of the neighbours when floorplans are not visually annotated with their respective features.

To test this, we used the input floorplans and their neighbours from model (3) and presented

them as model (0) in the user study. These floorplans were presented to the users without

any visual annotations. This was so we could analyze how important is the visual anno-

tation of the features, and its significance to assist users in perceiving the neighbours in

their correct order. Interestingly, about 45.68% of the neighbours were accurately ordered

in their sequences based on their perceived similarity with respect to input flooplans for

model (0). This result revealed that the annotations for design semantic features, alone, are

not a good representative to convey the spatial feature information of the floorplans. As

well, that the users better perceive the floorplans retrieved from the embedding space that

is trained not only with the design semantic feature alone but also with the additional edge

or/and dynamic behavioural features.

52

4.13 Conclusion

This proposed model in this chapter aims to represent floorplans with numerical vectors

such that design semantic and human behavioral features are encoded. Specifically, the

framework consists of two components. In the first component, an automated tool is de-

signed for converting floorplan images to attributed graphs. The attributes are designed

semantic and human behavioral features generated by simulation. In the second compo-

nent, we proposed a novel LSTM Variational Autoencoder for both embedding and gener-

ating floorplans. The qualitative, quantitative, and expert evaluation shows our embedding

framework produces meaningful and accurate vector representations for floorplans, and its

abilities for generating new floorplans are showcased. In addition, we make our dataset

public to facilitate the research in this domain. This dataset includes both the extracted

design semantics features and simulation-generated human behavioral features. This con-

tribution holds promise to pave the way for novel developments in automated floorplan

clustering, exploration, comparison, and generation. By encoding latent features in the

floorplan embedding, designers can store multi-dimensional information of a building de-

sign to quickly identify floorplan alterations that share similar or different features. While

in this work, we encode features derived from dynamic crowd simulations of building oc-

cupancy, the proposed approach can virtually scale to encode any kind of static or dynamic

performance metric.

53

Figure 4.7: The top 5 NNs for three floorplans found with three models. The first row
shows the NNs with first model, second row shows the NNs with second model and third
row shows the NNs with third model. The color of the room denotes the room type, and
the numerical value inside each node denotes the square footage of the room. In the third
row of each sample, the crowd flow is visualized and the numbers depicts flow rates. See
subsection 4.10.1 for details.

54

Figure 4.8: The accuracy of user-ordered sequences of the nearest neighbours. Colored
bars for each neighbor of an input floorplan represent the number of users who correctly
perceived the neighbor’s order in the given sequence. Gray bars are for the nearest neigh-
bours which are queried using model (3) but were presented to users without any annota-
tions, Green bars are for nearest neighbours which are queried using model (1) and were
presented with annotations, blue bars using model (2) – with annotations, and orange bars
using model (3) – with annotations.

55

CHAPTER 5

THE ROLE OF LATENT REPRESENTATIONS FOR DESIGN SPACE

EXPLORATION

5.1 Introduction

From design inspiration to democratization of housing layouts for affordable living, match-

ing the desired features of a space to a floorplan is crucial to these desired interfaces. This

goal requires some challenges to be overcome; the ability to not only retrieve an optimal

floorplan, but generate new ones as well. While it is trivial to lookup a value of a floorplan,

such as the number of bathrooms, it is much more difficult to lookup a floorplan with a cer-

tain number of bathrooms and similar room sizes (and other attributes). As the complexities

of design and architecture are well known, the relationship between a single floorplan and

the numerous measures one would associate with it makes this an extremely difficult search

task (i.e., the configuration space of floorplans is extremely high-dimensional, continuous,

and non-convex).

The use of visual search tools (e.g., shape-grammars[1]) to match similarity in form is

an active research topic in Architecture and Design, although in such a large search space

and intrinsically tracking multiple quantitative metrics, the utility of geometric similarity

quickly diminishes. Recently, research has shown the use of machine learning techniques

for associating environment configurations with metrics [43, 2]. However, these works

require an explicit search through the environment configuration space. In comparison,

our work explores the potential of using a lower dimensional representation that eliminates

the need for such explicit searches. While there are numerous ways to represent a floor-

plan (i.e., different data descriptions), a common method for reducing the complexity of a

description is to use latent representations, which have been shown to provide promising

56

results through machine learning and associations of metrics and the environment [25]. In

our work, we demonstrate the full potential of using these latent representations as a basis

for optimizing the floorplans with respect to the target objective functions and returning the

similar floorplans efficiently.

The foundation of our work lays in the relationship between an input floorplan and

its location in an abstracted space, relative to other floorplans. This abstraction, which

takes a floorplan and represents it as a set sequence of graph nodes, maintains the metrics

associated with it. For clarity, we refer to the abstraction as the latent representation, the

mapping from the floorplan to the latent representation as an embedding, and the space that

this representation exists within as the embedded space or latent space.

Our work is centered on the following contributions. First, we build a synthetic dataset

of 5000 plausible floorplans of 12 unique styles, generating metrics associated with each.

We then develop a new embedding model for this synthetic dataset using a Gated Recurrent

Unit Variational Autoencoder (GRU-VAE) to represent floorplans in a latent space. Next,

we demonstrate two local search approaches over the latent space: (1) retrieval-based ap-

proach with nearest-neighbour queries, and (2) generative approach exploring the optimal

vector sequences . We then run a series of experiments for the two approaches that search

the floorplan dataset for 5 different metrics, as well as interesting combinations of them.

Our results show the potential for both rapid design iteration tools and consumer searches

of real-estate. Given an initial design layout, the designers can minimize or maximize quan-

titative metrics within the similarity space of the initial design while finding alternative

solutions that improve one or more metrics. Likewise, this technique enables online floor-

plan designers and consumers to explore residencies, not unlike what we do with major

e-commerce.

57

5.2 Overview

The foundation of our work is in the representation, abstraction, and manipulation of floor-

plans in the latent space. Beginning with a floorplan image, we extract regions based on

rooms and corridors that are represented as a graph, with nodes that are assigned attributes

relating to space-syntax. These graphs are then embedded in a lower-dimensional space,

which we leverage this low dimensional embedding space to optimize floorplans by using

nearest neighbours and using generative power of model, Figure 5.1.

Graph Representation. Our framework represents the floorplan as an attributed graph

with nodes representing the non-overlapping navigable rectangular spaces in the environ-

ment. Two nodes are connected by an edge if they are connected by a navigable path that

does not go through any other nodes. Five common attributes considered in space syntax

relating to the geometric and visible features of the environment are embedded in each

node, as well as a room label that is defined by the geometric characteristics (e.g., m2 area

of room). For the five continuous attributes, geometric features such as Area and Perimeter

are used, as well as visibility-based features such as isovists. These measures are discussed

in detail in subsection 5.3.2 and subsection 5.3.3.

Embeddings. While floorplans can be simply represented by graphs with associated met-

rics, performing an optimization or analysis is computationally expensive [85, 86, 87]. A

common approach to reducing the complexity, or dimensionality of a dataset, is to map

the original data to a lower dimension through an embedding. This technique preserves

the properties of the original data, with an additional benefit of locating (in the embedded

space) similar data near each other, Figure 5.1.

Local Search. Our use of embeddings to represent the graphs means that floorplans with

similar properties are closer to each other, and by using a VAE we are able to perform vector

operations in the embedded space. Between these two features of our model, we are able

to demonstrate two strategies: (1) we can perform fast retrieval-based nearest-neighbour

58

S
yn

th
et

ic
 F

lo
o

rp
la

n
s

(a) Floorplan to Attributed Graph

[Room type,
Room area,
Room perimeter,
Visibility area,
Visibility perimeter,
Visibility convexity]

Attributes:

...

Random Walk

...

Node
Sequences

pre-defined
length: 3

(b) Graph to Sequences

Loss

Encoder

Linear
GRU

SamplingGRU

GRU

...

GRU

GRU

GRU

...Linear

μ

�

Encoded
distribution

Sampled latent
vector Z

Decoder

P
re

d
ic

te
d

 S
eq

u
en

ce

N
o

d
e

S
eq

u
en

ce

(c) Learning Embeddings with a parallel GRU VAE

Node Sequences

(d) Retrieval-based optimization

...

(e) Generative optimization

Graph Representation Isovist Polygons

E
m

b
ed

d
in

g
 S

p
ac

e

Offline Learning
Input Floorplan

Embedding Space

New Floorplans

[..., ..., ..., ...],
[..., ..., ..., ...],

.

.
[..., ..., ..., ...]

E
m

be
dd

in
g

V
ec

to
rs

...

Neighbouring Sequences

Gaussian Noise
... ...

...

Generated Sequence

New Floorplans

Online Search

Figure 5.1: Our framework consists of two phases: (1) offline phase – First, the input
floorplans are converted into attributed graphs. We then generate sequences of the attributed
graphs using random walks. These sequences are then fed into the embedding model to
train and learn the embedding space. (2) online phase – Given an input floorplan, we
convert it into an attributed graph and generate its sequences using a random walk. These
sequences are then fed into our embedding space. We then call Retrieval or Generative
procedures for retrieving similar nearest neighbours or generating a new graph for the input
floorplan in the direction of the targeted objective, respectively.

queries in the embedding space, and (2) we can generate new optimized sequences of the

vectors representing a floorplan by adding Gaussian noise.

5.3 Synthetic Dataset of Attributed Floorplans

In order to create graphs that represent realistic or real-world floorplans, a well-labeled

dataset is required. Although we can extract the graph structure from some existing datasets,

such as HouseExpo [76], there are many environments that do not have accurate bounds

for rooms or accurate room labels, which the original task of robot navigation does not

require but our task demands. Therefore, we rely on procedural generation to create plau-

sible environments that have accurate room labels and node attributes. Furthermore, the

ability to synthesize floorplans is vital to searching the embedding space, because as the

number of synthesized floorplans increases, the probability that the embedding space has

a discontinuity decreases. The following subsections describe the process of generating

5,000 floorplans of 12 unique styles, and converting the images into attributed graphs. The

59

Figure 5.2: The images above show the four phases of floorplan generation: (a) defining the
exterior, (b) creating corridors, (c) creating rooms, and (d) connecting rooms and corridors.

dataset of floorplans and graphs will be released after publication.

5.3.1 Procedural Generation of Environments

The procedural generation of floorplans in our synthetic dataset relies on the four-phase

methodology from [10], illustrated in Figure 5.2. In general, the arrangement of rooms

and corridors in real-world environments can be described by a shape typology and an

organization typology [104], where the former categorizes the exterior morphology of an

environment and the latter categorizes the corridors within.

Phase 1. The shape typology is determines what is inside and outside of the environment

by masking an empty floorplan (Figure 5.2.a). The mask can resemble either a square

(Figure 5.3.e), a square with a rectangular hole (Figure 5.3.f), or an elongated rectangle

(Figure 5.3.g).

Phase 2. The chosen organization typology populates the environment with corridors (Fig-

ure 5.2.b), which can either be single points, segments centered between walls, segments

adjacent to walls, or free-form segments (Figure 5.3.a–Figure 5.3.d).

Phase 3. The remaining space is populated with rectangular rooms that have either ran-

dom dimensions with probability p, or the same dimensions as the previous room with

probability 1− p (Figure 5.2.c).

Phase 4. Small openings are then made between rooms such that a room is connected

via the opening to its neighbor which is nearest to a corridor (Figure 5.2.d). This ensures

60

Figure 5.3: The above table shows 12 types of floorplans that differ based on their exterior
shape (e–g) and interior arrangement of corridors (a–b).

corridors are areas in the environment that have high centrality, meaning that they facilitate

navigation between many rooms [10].

5.3.2 Image to Graph Conversion of Environments

Our dataset is composed of binary images that are parsed into rooms and corridors. Each

room is a non-overlapping rectangle, which is associated with a single node (Figure 5.4(bottom)).

The corridors, however, can have non-rectangular shapes, and are therefore decomposed

into multiple rectangles, which group areas that have similar isovists [10]. Next, edges are

defined between two nodes when they are connected by a path that does not go through

any other nodes. Edges often go through the small openings created during Phase 4, but

these are not considered as nodes since they play a much less significant role than rooms

and corridors.

61

Figure 5.4: The top image shows a graph (red) overlaid on its corresponding floorplan.
The bottom image shows the nodes’ isovists overlaid on the same floorplan. Pixels that are
overlapped by many isovists are dark blue, and pixels that are covered by few isovsts are
light blue.

62

5.3.3 Computation of Node Attributes

Each node in the graph is given 5 continuous attributes that are either physical or visibility-

based (Table 5.1), with a 6th attribute that describes a room’s function (e.g., as a kitchen

or bedroom). The physical measures include the area and perimeter of the node’s rectan-

gle. The visibility measures are computed on an isovist–a polygon representing the visible

region from a given location–with a viewpoint at the center of the node’s rectangle. Fig-

ure 5.4(top) shows the isovist of each node in an environment. Finally, we convert each

room label into a value between [0 − 1] to provide the vector representation a continuous

(rather than discrete) value.

5.4 Latent Representation of Attributed Floorplans

Our framework uses embeddings, a low-dimensional representation of the attributed graphs

of floorplans. The benefits of using embeddings are twofold: (1) users can preserve the

original data into a low-dimensional space (e.g., layout structure, design semantics, and

other behavioral attributes), and (2) data with similar characteristics can be located near

each other within the embedding space, making it easier to perform machine learning tasks

such as clustering of floorplans with similar attributes.

One challenge in mapping various graphs to embedding space, in particular for floor-

plans is the lack of consistency between nodes, edges, and connectivity between. Although

some techniques such as padded adjacency matrices may normalize the input dimensions,

the variety in rooms creates excessive gaps in the data and make training a model difficult.

We therefore utilize a random walk technique which is ideal for capturing the global graph

structure– similar to constructing sentences by composing multiple elements. More details

on random walks can be found in [25].

A set of sequences is extracted from each graph by applying random walks. These

sequences are then used as input into the embedding model which is a Gated Recurrent Unit

63

Node Attribute Description

Room Area Area of the rectangular region corresponding to the node.
Room Perimeter Perimeter of the node’s rectangle.
Visibility Area Area of the isovist from the center of the node’s rectangle.

Visibility Perimeter Perimeter of the node’s isovist.
Visibility Convexity Quotient between the isovist’s area and the area of its convex hull.

Room Label Identifying value associated with a room label in the range [0,1].

Table 5.1: The table above defines each type of node attribute in the graphs.

Variational Autoencoder (GRU-VAE). The GRU-VAE has fewer parameters, and hence,

leads to faster training. This is particularly useful when dealing with short length input

sequences. After running through the embedding process, embedding vectors are generated

for each input sequence. As described in [25] the best aggregator for embedding vectors

is average. The resulting vectors from the embedding are then averaged to represent a

floorplan graph in the embedding space.

5.5 Local Search Over the Latent Space

This section describes two local search approaches in the trained latent space: (1) a retrieval-

based approach and (2) a generative approach. Algorithm 1 shows the steps involved in

searching through the latent space for both approaches. First, the input floorplan is con-

verted into an attributed graph (Line 8). The graph is then converted into a set of sequences

using random walks (Line 9), and finally the corresponding set of embedding vectors is

computed from the model (Line 10). The process of optimizing features takes place in the

latent space.

Our search methods consider two types of stopping criteria: (1) when the maximum

iteration count is reached (set to 200 for the experiments), and (2) when the change in the

objective value is not significant after a specific number of iterations.

64

5.5.1 Retrieval-based Approach

Sequences with similar attributes are proximate in the embedding space. By leveraging this

property, we find the k-nearest neighbours of the each of the sequences of initial floorplan,

where k = 10. Next, the best combination of the nearest neighbours that satisfy the de-

fined objective is identified and replaces the original sequences. This procedure is repeated

iteratively to find the best alternate sequences until the stopping criteria is met.

Implementation-wise, we first precompute the nearest neighbours from the embedding

space before running the optimization to reduce the time complexity (Line 3 of Algorithm

1). We then call the Retrieval procedure from Algorithm 1, which computes the objective

value for each nearest neighbour and identifies a set of neighbour sequences (representing

a floorplan) which improves the objective. This improved set of sequences is then used in

the next iteration.

5.5.2 Generative Approach

We use a Gated Recurrent Unit Variational Autoencoder (GRU-VAE) to learn the distri-

bution of sequences, which can sample the distributions to create new sequences since the

GRU-VAE is a generative model. In particular, we perturb the embedding vectors of a

floorplan’s sequences by adding Gaussian Noise (GN). These new embedding vectors are

then fed into the GRU-VAE decoder for generating new sequences. We then calculate the

objective function with the new set of sequences. If the new sequences improve the ob-

jective value, we replace the original sequences and repeat this process until the stopping

criteria is met. Algorithm 1 shows the pseudocode for this process within the Generative

procedure.

5.5.3 Final Floorplan Candidates for Local Search

Each search approach ultimately produces an optimized set of sequences. However, this

set is not interpretable without a corresponding floorplan. Since each floorplan samples

65

66

its sequences randomly, a floorplan represents a fuzzy area in the latent space instead of

a single point. Therefore, we average the optimized set in the latent space as well as all

floorplans’ sequences in the latent spaceEf [25], which produces the centroids of the fuzzy

areas. We then find the five nearest floorplans to the optimized set of sequences according

to the distances of their average embedding vectors (Top5NN).

5.5.4 Multi-objective Search

Since the latent space has been learned using multiple features, it enables multi-objective

exploration. Given an initial floorplan and a set of features to each be minimized/maximized,

the local search will find a latent representation which improves on the initial floorplan’s

embedding w.r.t. all desired features. For example, the optimizer can simultaneously maxi-

mize the average room area and minimize the average room perimeter to get relatively large

and square-shaped rooms and fewer, less-elongated corridors. This process is repeated un-

til a local extremum is reached, which we assume is the most improved floorplan to the

original that still remains similar according to the unconsidered features. Through a multi-

objective search, we can be more specific about the desired geometries and arrangements

of rooms in a floorplan.

5.6 Experiments

5.6.1 Training Details

The method described in section 5.3 was used to produce a total of 5,000 floorplans. As

mentioned, each floorplan is converted to a set of sequences. We utilized random walk with

walk length 10 for this dataset experimentally and both P and Q are set to 0.5. Parameter

Q is the probability of discovering the undiscovered parts of the graph and parameter P is

the probability for returning to the previous node. As mentioned we have 5000 floorplans

and in total we have 363983 sequences. The sequences are divided to train and test set with

rate 80 to 20 percent. The sequences are normalized to make all features in same scale and

67

Figure 5.5: Each row in the above table shows an initial graph and 5 graphs that improve
upon an objective function using a retrieval-based approach.

fed for training. The learning rate was set empirically as 0.001. The model is trained on a

machine with 32 GB RAM, 12 * 3.50 GHz cores CPU and Quadro K620 GPU with 2 GB

Memory. In average the model takes about 30 minutes for training with 50 epochs.

5.6.2 Optimizing Individual Features

For each continuous type of node attribute (i.e., room area, perimeter and visibility area,

visibility perimeter, visibility convexity) in the floorplan dataset’s graphs, the retrieval-

based and generative approaches were used to find graphs that increase or decrease the av-

erage value of the attribute compared to an initial graph. This yields a total of 20 searches.

An initial graph serves as the starting point of each search, which has been varied to show-

case the improvement in graphs found by the two search methods. Each method is used

to produce 5 improved graphs, which are ordered from closest (#1) to furthest (#5) from

the initial graph in the embedding space. In other words, the best candidate has the largest

difference in the desired features and the smallest difference in all other features compared

to the initial graph.

68

Graph Room
Area

Room
Perimeter

Visibility
Area

Visibility
Perimeter

Visibility
Convexity

Initial 772.0 139.3 746.0 154.6 0.84

Improved #1 486.9 109.1 509.5 144.2 0.69
Improved #2 438.4 95.6 525.9 158.7 0.59
Improved #3 582.0 117.0 601.5 162.9 0.65
Improved #4 586.3 119.4 597.0 147.5 0.77
Improved #5 395.6 90.9 403.0 120.5 0.70

Table 5.2: This table compares graphs produced by the retrieval approach when minimizing
room area.

Graph Room
Area

Room
Perimeter

Visibility
Area

Visibility
Perimeter

Visibility
Convexity

Initial 381.3 100.0 417.9 138.5 0.65

Improved #1 955.2 154.4 905.8 163.8 0.91
Improved #2 491.2 101.6 635.6 169.3 0.68
Improved #3 584.0 111.5 624.4 156.1 0.69
Improved #4 1324.0 164.0 1300.5 190.2 0.83
Improved #5 955.2 154.4 966.4 180.3 0.80

Table 5.3: This table compares graphs produced by the retrieval approach when maximiz-
ing room area.

For single-feature optimization, the average improvement in a desired feature relative

to the initial value is 32.96% for the retrieval-based approach and 26.17% for the generative

approach. Therefore, we showcase examples of the retrieval-based approach in Figure 5.5.

The feature values from all 20 searches can be found in Table 5.4, which shows that both

search methods are able to successfully retrieve graphs that have improved upon the initial

graph in terms of the desired feature. The Improved Graph columns of images in Fig-

ure 5.5 directly correspond to the columns of feature values in Table 5.4. Table 5.2 and

Table 5.3 each compare the average feature values of the initial and improved graphs for

different single-feature objective functions, which shows that the best improved graph aims

to balance a large change in the desired feature with small changes in all other features.

69

5.6.3 Optimizing Compound Features

By considering compound-feature as an objective function, we can be more specific about

the desired geometries and arrangements of rooms. An environment that simultaneously

maximizes the average room area and minimizes the average room perimeter is expected

to have rooms that are relatively large and square-shaped and have fewer, less-elongated

corridors. Using the generative approach (subsection 5.5.2), the optimization of floorplans

according to the objective confirms this expectation (Figure 5.6). The inverse objective

of minimizing room area and maximizing room perimeter is expected to produce small,

elongated rooms that are connected to multiple elongated corridors. Figure 5.6’s second

row shows that the generative approach is able to identify these types of floorplans. The

average room area and perimeter values of the graphs are reported in Table 5.4. In the fol-

lowing compound-feature optimizations, we showcase the visual results for the generative

approach, because it improved the desired features by 18% on average, while the retrieval

approach improved features by 14% on average.

While the prior compound-feature objectives influence the size and shape of rooms and

corridors, optimizing compound visibility-based features can influence the connections be-

tween rooms. For example, an objective function maximizing visibility area and minimiz-

ing visibility perimeter is optimized with rooms that are large in size and are not visible

to many areas outside (relative to the area inside). The inverse of this objective function

is optimized with rooms that are small in size and are visible to more areas outside. This

leads to fewer, less-elongated corridors that have a high connectivity with rooms, which

are arranged in such a way that rooms are visible to each other across other rooms and cor-

ridors. The generative approach has evidenced the formation of floorplans that have these

characteristics for both visibility-based objectives (Figure 5.6, Table 5.4).

70

Search
Method

Minimized
Feature

Maximized
Feature

Initial
Graph

Improved
Graph #1

Improved
Graph #2

Improved
Graph #3

Improved
Graph #4

Improved
Graph #5

R
et

ri
ev

al
A

pp
ro

ac
h

Gray Room Area 381.33 955.2 491.2 584 1324 955.2
Room Area Gray 772 486 438 582 586.28 395.63

Gray Room Perimeter 87.63 129 137.33 119.33 96.4 104.8
Room Perimeter Gray 104.22 76.11 72 81.33 84.66 80.92

Gray Visibility Area 621.88 894.18 905.8 683.62 737.8 1136.8
Visibility Area Gray 741.11 567.37 673.91 487.25 624.20 623.22

Gray Visibility Perimeter 165.44 175.71 199.15 172.68 188.65 178.11
Visibility Perimeter Gray 185.75 160.86 128.57 180.79 157.13 128.31

Gray Visibility Convexity 0.65 0.83 0.74 0.82 0.67 0.72
Visibility Convexity Gray 0.62 0.61 0.59 0.60 0.61 0.55

G
en

er
at

iv
e

A
pp

ro
ac

h

Gray Room Area 381.33 476 1512 580.23 476.44 555.55
Room Area Gray 772 629.33 645.71 452.8 586.28 468

Gray Room Perimeter 87.63 106.85 92.72 102.18 127 101.6
Room Perimeter Gray 104.22 76.36 90.33 87.33 101.6 92.33

Gray Visibility Area 621.88 848.5 905.8 905.85 672.5 955.57
Visibility Area Gray 741.11 653.21 574.71 406.54 420.3 475.4

Gray Visibility Perimeter 185.75 179.91 187.04 189.83 216.49 196.84
Visibility Perimeter Gray 165.44 165.61 134.50 159.92 144.67 117.08

Gray Visibility Convexity 0.65 0.89 0.76 0.72 0.72 0.69
Visibility Convexity Gray 0.62 0.61 0.55 0.56 0.60 0.61

R
et

ri
ev

al
A

pp
ro

ac
h Room Area Room Perimeter 524.36 : 96.36 450.0 : 103.5 491.2 : 101.6 494.22 : 104.0 503.27 : 101.09 476.0 : 106.0

Room Perimeter Room Area 182.76 : 554.44 109.6 : 596.8 111.55 : 557.77 119.0 : 602.0 126.28 : 709.71 117.0 : 582.0
Visibility Area Visibility Perimeter 587.2 : 146.12 523.6 : 150.81 562.26 : 178.70 505.05 : 162.75 568.68 : 148.90 560.25 : 159.18

Visibility Perimeter Visibility Area 178.28 : 537.56 151.45 : 579.43 140.63 : 550.18 158.36 : 760.92 169.28 : 635.65 148.39 : 604.43

G
en

er
at

iv
e

A
pp

ro
ac

h Room Area Room Perimeter 524.36 : 96.36 480.0 : 100.4 453.81 : 96.77 433.6 : 98.4 452.44 : 103.55 365.33 : 97.33
Room Perimeter Room Area 182.76 : 554.44 105.14 : 690.28 113.5 : 556.0 114.0 : 776.0 130.0 : 768.0 125.14 : 628.57
Visibility Area Visibility Perimeter 587.2 : 146.12 569.04 : 194.78 564.81 : 154.29 568.54 : 171.08 497.66 : 175.85 510.17 : 162.81

Visibility Perimeter Visibility Area 178.28 : 537.26 169.60 : 617.72 165.59 : 824.0 137.06 : 547.5 155.96 : 651.4 163.79 : 905.8

Table 5.4: The above table shows the results of single and compound-feature optimizations.
For single features, each right-hand column shows the value of either the initial graph or
one of the top 5 improved graphs found by the respective search method. For compound
features, each right-hand column shows two values: one for each optimized feature, where
the left-hand value corresponds to the minimized feature and the right-hand value to the
maximized feature.

71

Figure 5.6: Each row in the above table shows an initial graph and 5 graphs that improve
upon the minimization of one feature and maximization of another.

72

CHAPTER 6

CONCLUDING REMARKS AND FUTURE DIRECTIONS

6.1 Conclusion

This thesis aims to represent floorplans with numerical vectors such that design semantic

and human dynamic features are encoded. Specifically, we represent floorplans with at-

tributed graphs and augment them with static and dynamic features. These features are

extracted either by image processing and geometric techniques (statically) or by running

simulations. We propose embedding methods to convert floorplans to low dimensional vec-

tors to address the time complexity of operations on graphs and the limitation of machine

learning methods on graphs. To address the variation in graphs’ dimensionality, we utilize

an intermediate sequential representation (generated by random walks) which allows us to

encode the graphical structure in a fixed-dimensional representation. First, we propose an

LSTM Autoencoder for encoding floorplans with semantic and dynamic features. Then,

the model is extended to integrate edge features with generative capabilities. We propose a

parallel LSTM VAE for handling features both on nodes and edges. These vector represen-

tations are used to cluster and query floorplans with similar characteristics and attributes.

Some of the advantages of presenting floorplans as vectors are: (a) compact representation,

(b) efficient way to compare designs and fast retrievals, (c) scoring designs and providing

feedback/recommendations, and (d) categorizing design according to target features. The

generative capabilities of the model are studied for design space exploration. We use ho-

motopies and sampling from sequences distribution for generating floorplans. Finally, the

floorplan optimization is proposed based on the inseparability of embedding space. We

explore the potential of latent representations for identifying floorplans that meet specific

criteria, which can serve as the basis for interactive design space exploration and other

73

search-based design applications. Through experiments, we have demonstrated the effi-

cacy of such an approach. In theory, a key advantage of a latent space is that searching for

improved floorplans can potentially achieve near-constant computational cost with spatial

hashing [105], while existing methods have a linear cost for iterating through all floorplans.

These contributions hold promise to pave the way for novel developments in automated

floorplan clustering, exploration, comparison, and generation. By encoding latent features

in the floorplan embedding, designers can store multi-dimensional information of a build-

ing design to quickly identify floorplan alterations that share similar or different features.

While in this work, we encode features derived from dynamic crowd simulations of build-

ing occupancy, the proposed approach can virtually scale to encode any kind of static or

dynamic performance metric.

6.2 Limitations and Future Work

This study considers a subset of geometric, semantic, and human dynamic features for at-

tributed floorplans. There are a wide variety of other features (e.g., shapes) that can also be

encoded into latent representations and is the subject of future exploration. In the current

study, rooms are assumed to be of a fixed rectangular shape, thus limiting the model’s gen-

erative capabilities to axis-aligned rooms and environments. Similarly, additional dynamic

and behavioral features can be extracted from simulations, or possibly observations of real

people can also be integrated into our models.

Currently, our methods perform a search on a set of available floorplans, which relies

on procedural generation to ensure that the set is comprehensive according to 2 coarse fea-

tures: exterior shape and interior corridor arrangement. The latent space of floorplans can

be used with a more exhaustive set of features to create clusters that consider more than

just the prior two features. This would increase the fidelity of the representative sample.

Furthermore, the embedding of floorplans into the latent space can be reversed to generate

a new floorplan image from an arbitrary latent vector, which would enable integration with

74

automated CAD workflows. This would remove the local search’s dependence on exist-

ing floorplans, enriching the exploration of the latent space where floorplan samples were

sparse during training.

Appendices

76

APPENDIX A

GEOMETRIC REACHABILITY ANALYSIS FOR GRASP PLANNING IN

CLUTTERED SCENES FOR VARYING END-EFFECTORS

A.1 Introduction

As the capability of robots has increased significantly, they can perform more complex

tasks. The research in robotics and automation includes but not limited to humanoid walk-

ing [106], medical robotics [107, 108, 109, 110, 111, 112], mobile robots [113, 112] and

multi-agent systems [114, 115]. Emerging automation applications will necessitate robotic

equipment to manipulate a large variety of objects in unseen, cluttered scenes. One key

requirement towards meeting this far-reaching goal is to develop efficient, yet complete

algorithms for grasp planning in complex, cluttered scenes (Figure A.1). This work seeks

to accelerate existing grasp planners by geometrically analyzing scene geometry to auto-

matically identify a complete set of object subsurfaces, which permit an end-effector to

approach and grasp the object.

Many existing approaches precompute a grasping database [116, 117] for each target

object type and end-effector, to generate a discrete set of feasible grasps, which are scored

using a variety of robustness measures [118]. During an online planning process, these

grasps are sampled to check for reachability and collisions. Nevertheless, some critical

challenges arise in this context:

1. The granularity of the database is resolution-dependent, which presents a trade-off

between completeness and efficiency.

2. Time and space complexity increases combinatorially with the complexity and clutter

of objects.

3. A database is needed for each end-effector/object pair. In cluttered scenarios, as in

77

Figure A.1: A cluttered tabletop scene.

Figure A.1, the goal object could be heavily occluded by other objects, resulting in a

narrow range of viable grasps. Existing discrete grasp databases do not account for

collision constraints, and may not even provide a single collision-free grasp.

In this context, we propose a method for precomputing grasp contact semantics, or

graspable surfaces, in arbitrarily complex, cluttered scenes, which can be effectively used

to accelerate online grasp planning. The proposed method abstracts the capabilities of

an end-effector through a graphical representation of interval constraints, referred to as a

motion constraint graph (MCG).

Given the MCG and an arbitrary scene, an interval constraint satisfaction problem is

defined to compute a complete set of subsurface combinations that give rise to all possible

grasp configurations for a particular end-effector. The following constraints can be satisfied

as part of the solver:

• End-effector constraints, which include the distance ranges between contact points

78

of the end-effector, as well as the surface area of each contact point.

• Collision constraints between objects in the scene and the end-effector.

The proposed approach is applicable to any kind of scene geometry, including arbi-

trarily cluttered scenes and curved surfaces. It also allows reasoning for a variety of end-

effectors with multiple degrees of freedom. Experiments in simulation indicate that the

proposed geometric reachability analysis increases the success rate of grasp and motion

planning processes, while also reducing online planning time, at the cost of a small amount

of precomputation. The proposed approach can be applied in a variety of contexts, includ-

ing:

• recommending permissible grasps for grasp planning.

• pruning existing grasp databases such as GraspIt [116].

• identifying optimal end-effector designs for a given scene.

A.2 Background

This section reviews a small portion of the significant literature on grasp generation and

planning [119, 117].

Model-based Approaches for Grasping Known Objects: Computing grasps that op-

timize metrics, such as stability [120], task coverage [121], or contact point uncertainty

[122], can help to safely grasp and manipulate objects. This can be a time-consuming pro-

cedure, which often means precomputation is desirable. If both the objects and type of

end-effector are known, then the grasps can be sampled and optimized offline [123]. Such

“grasp databases” can also be used for objects that share some similarity in shape [116].

Agglomerative Clustering [124] groups points that share similar normals and position val-

ues into a hierarchical data structure so as to adapt precomputed, reachable grasps online

using optimization methods. Other methods focus on generating collision-free grasps given

79

a set of sampled preshapes [125]. The method proposed in this work assumes the object

model but can work directly over a geometric representation of a scene to generate “gras-

pable surfaces”, which satisfy constraints for:

• the end-effector kinematics

• the contact point geometry and

• the proximity of other objects. The resulting surfaces can then be used for several

different applications, with grasp generation being one of them.

Grasping Unknown Objects: Without an object model, grasp generation can focus on

“graspable” features given sensor data [126]. A method uses the swept volume of the end-

effector and a bounding box decomposition of the sensed object, to generate grasps [127].

Another approach incrementally learns a heuristic reachability function from experimental

data [128]. Learning has been used for detecting graspable points over a point cloud [129]

and has been integrated with geometric reasoning to detect grasps in cluttered scenes for

a parallel-jaw gripper [130]. A recent method needs a single kinesthetic demonstration

for learning to recommend grasps for unknown objects, which then have to be tested for

collisions and reachability [131]. In automation where the objects are known, the benefit

of the proposed approach is that:

• it does not require extensive training

• it can easily generalize to different and new types of end-effectors. Integration of

the current work with machine learning methods can assist to operate directly over

sensing data.

End-Effector Abstraction: Task Space Regions [132] specify constraints on the end-

effector and the target object to guide grasp generation and motion planning. For known

end-effectors, it is possible to define the contact points and motion capability of the end-

effector, so as to enforce constraints on grasp generation [133, 134]. The current work

80

similarly aims to abstract end-effector kinematics and takes advantage of fast computa-

tional geometry primitives, which are effective in analyzing geometric surfaces to compute

affordances for locomotion behaviors [135]. The idea is to quickly operate over the con-

tinuous surfaces of the objects directly instead of a sampled set of grasps given descriptions

of the end-effector and a complex, cluttered scene.

A.3 Problem

Consider a setup similar to Figure A.1, where a manipulator R is equipped with a set of

end-effectors F, and is tasked with grasping a set of known movable objects M amidst a

set of static obstacles O (e.g. the table). Then, for a movable object m ∈ M and an end-

effector f ∈ F, the objective is to compute the continuous graspable regions, or graspable

surfaces, of m s.t. f is capable of grasping the object m.

Each end-effector f ∈ F can achieve a set of grasping modes G. A grasping mode

defines a spectrum of distinctly different configurations an end-effector can achieve for

grasping objects (e.g., open-palm or pinch grasps for a fingered end-effector). Each mode

can be abstracted into a series of kinematic, geometric, and spatial constraints, which ac-

cordingly forms the basis of a motion constraint graph (MCG) [135].

By defining the primary contact points C of the grasping mode (e.g., fingertips for pinch

grasps), as well as the pairwise spatial constraints E that contact points are subject to, each

mode g ∈ G can be represented as a motion graph MCGf (g) = {C, E}. Each contact

point c ∈ C defines a relative position on the end-effector, a normal pointing outward, and

a bounding circle (although other geometric representations could be used). Other contact

point constraints, such as friction, could also be incorporated as a constraint. Each spatial

constraint e(i, j) ∈ E defines the valid distance interval between the contact points. If a

contact point can rotate, the MCG also specifies the rotation axis and a possible range of

rotations for that contact point. An example MCG is shown in Figure A.2.

Given the mesh of an objectm, a surface s consists of the set of triangles whose normals

81

Figure A.2: A motion constraint graph (MCG) defining a grasp mode for the ReFlex.
Arrows are contact normal vectors. Edges are distance constraints between pairs of contact
points (min & max).

are all within an ε threshold, while also sharing at least one common vertex to another

triangle in the surface. A graspable surface is the subset of a surface (subsurface) in which

the constraints of anMCG have been satisfied. An objectm ∈M is said to be graspable if

it has at least one graspable surface, and is reachable if there is a collision-free trajectory

for the arm to the object.

An assumption of this work is that both the type object, and its mesh, are known.

Although the underlying techniques of this work could be extended to work with sensing

data and unknown objects, this is not the focus of the current work. Accordingly, given

an observation of the scene, the framework loads the meshes of all detected objects and

obstacles at estimated poses assuming access to a vision-based solution for pose estimation.

A.4 Geometrics Reachability Analysis

The proposed Geometric Reachability Analysis (GRA) consists of three major components

which are Adaptive Surface Clustering, Surface Pruning and Constraint Satisfaction

82

Figure A.3: The meshes of all objects are clustered into surfaces as part of Adaptive
Surface Clustering. Surfaces proximal to surfaces of target object pruned in Surface
Pruning. Given an end-effector, Constraint Satisfaction computes the graspable surfaces
of the target object for each given motion constraint graph. An invalid grasp which causes
the end-effector to collide, or violate kinematic constraints, cannot be produced from these
graspable surfaces.

as shown in Figure A.3 Details of these components are explained in the following subsec-

tions.

A.4.1 Adaptive Surface Clustering

The purpose of Surface Clustering is to produce a set of surfaces given the meshes of all

movable objects M and static obstacles O in the scene. This allows later portions of the

framework, primarily Constraint Satisfaction, to operate over a compact representation of

the entire scene. A surface consists of triangles which share normals within an ε threshold,

with the additional constraint that a contact point from anMCGmust have sufficient area to

be placed on the surface. In this version of the work, contact points are modeled as circles,

however this was an implementation detail and not a requirement of the framework. Any

arbitrary polygon could be used to represent the contact point.

Instead of tuning ε based on which motion constraint graphs MCG and objects are

present, we instead employ Adaptive Surface Clustering, which incrementally constructs

the surface set S. First, over all available MCG, we find the smallest contact point geom-

83

etry - this is the minimum area constraint that is used to validate a surface. Then, ε is set

to zero and surface clustering is applied. Any surface which meets the contact point con-

straint (i.e. minimum area constraint) is added to the set. If there are remaining triangles

which have not yet been added to an existing surface, then ε is incresed by δ and the process

continues. The terminating condition is that all triangles belong to at least one surface, or

some maximum threshold εmax has been reached.

A.4.2 Surface Pruning

This framework also considers the geometric constraints imposed by the scene - in partic-

ular, due to clutter from other objects. The objective of surface pruning is to remove any

portion of a surface in which it is impossible to place a contact point in a collision-free

manner. This condition happens when two surfaces are too close. This can occur, for ex-

ample, if one object is resting on top of another object, since the resting surfaces of the

objects will be unreachable. The resulting “pruned” surface is referred to as a subsurface,

which are subsets of their original surfaces.

The algorithm for surface pruning is shown in Alg. 1. The inputs are the surface

set S and the contact point width υ of the target end-effector. If the distance between

each pair of surfaces s, s′ is less or equal to contact point width υ, then the two surfaces

are proximal and must be pruned. To accomplish this pruning, the proximal surface s′

is swept in the reverse normal direction ŝ of s, with the magnitude υ, producing a swept

surface s′′. Then, the intersection between the swept surface s′′ and the target surface s is

computed, and intersecting portions from s and s′′ are subsequently removed. This in turn

creates a subsurface for s and s′, as they have had their original surfaces altered by this

procedure. If there are no intersections between the surfaces, then the resulting subsurface

after intersection is the same as s. If they have complete overlap, then the final subsurface

is empty.

The subsurfaces must satisfy contact point geometry and area constraints, otherwise

84

they will be ignored for further consideration. After this step, for any point on the sub-

surfaces, the end-effector will not collide with any neighboring objects when attempting to

place contact points over these subsurfaces.

A.4.3 Constraint Satisfaction

After all triangles in the scene have been clustered, with any proximal subsurfaces removed,

the algorithm proceeds to apply constraint satisfaction over the remaining subsurfaces using

the motion constraint graphs MCG defined for each end-effector. This results in a mapping

from end-effector grasping modes to valid graspable surfaces. The algorithm is shown in

Alg. 2, where the input is the surface set after surface pruning S ′, the defined MCG for

the target end-effector, and the normal threshold δ.

The algorithm iterates over the defined contact points C of the current MCG and over

each surface. Then, the current surface is set to be the corresponding surface CS of the

current contact point, and the rotation r between the normal of CS and the normal of

the current contact point is calculated. Consequently, we need to rotate all other fingers

with r and find the corresponding surfaces for them if there is any(by Match Surface

function). Finding a corresponding surface for the other fingers follows a similar procedure,

with the only difference being that we consider their permissible rotations only if it is

specified. This allows us to account for all the degrees of freedom of the end-effector while

searching for valid surfaces.

Once the corresponding surfaces for each contact point are found, and if all contact

points have corresponding surfaces, then constraint satisfaction can be applied to find the

graspable surfaces. The result of the first step is a vector of IDS (intermediate data struc-

85

tures) which stores the contact points with their corresponding surfaces. Then, all IDSs are

iterated over in order to find valid surfaces. The SWEEP operation and then intersection is

applied to find any intersection between each pair of corresponding surfaces CS with each

pair of contact points. For sweeping we need a sweep direction ŝd, which is calculated

using the normalized direction between position p of two contact points.

If there is any intersection, the resulting subsurface after intersection is a valid area for

placing corresponding contact points. Finally, the result of the this step is a set of “graspable

surfaces” which satisfy the geometric and kinematic constraints of the end-effector subject

to the constraints of the scene, which can then be used by other processes (e.g. a grasp

planner).

A.5 Use Case of Our Approach

This section describes some of the potential use cases of the graspable surfaces produced

by this framework.

Grasp Generation: The procedure behaves in the following way: first, a random gras-

pable surface srand ∈ S(m) is selected. Then, a contact point from the corresponding MCG

is randomly selected and then placed randomly onto srand. This automatically constrains

the placements of all other remaining contact points, and defines a grasping configuration

g. The end-effector is placed at g and rotated around the normal of the fixed contact point

86

Figure A.4: The benchmarks used in all experiments. (Top) Parallel Gripper Benchmarks:
DVD, Crayola, and Duct Tape. (Bottom) ReFlex Hand Benchmarks: Cheezit, Kleenex
Paper Towels, and Bear. Left 3 Images (S)parse Clutter, Right 3 Images (D)ense Clutter.

87

in increments of Θ. Each rotation generates a new grasping configuration gΘ. If gΘ is

collision-free for the end-effector alone (disregarding the rest of the robot), it is then added

to the set of grasping configuration GRAND.

This sampling procedure repeats until N grasps have been sampled and added to GRAND

Each grasp g ∈ GRAND is given as input to an IK solver[136] and the resulting state of the

manipulator is collision checked. Collision-free grasps are added to the final set of grasps

G. After grasp generation, the planning framework receives a set of valid grasps, G, along

with their corresponding IK solutions. The reachability of each grasp g ∈ G is evaluated

through a standard manipulation planning framework, such as the Grasp-RRT [137]. The

first collision-free trajectory to any of the grasps in G is returned to the robot for execution.

Database Pruning: The advantage of using a grasp database [123, 116], over an online

grasp generation method, is that additional time can be spent optimizing various criteria

(e.g. stability[120], task coverage[121], or contact point uncertainty [122]), which can

greatly increase the grasp success rate of the robot. If the robot must deal with clutter

in its workspace, these databases must be sufficiently large enough so that the probability

of finding a successful grasp is high. Rather than blindly searching through the database,

the graspable surfaces could be leveraged to search a focused subsection of the database.

This could be accomplished by using the aforementioned grasp generation method on the

graspable surfaces, and performing a nearest-neighbor query on the database to extract

similar grasps.

End-Effector Selection: For multiple different end-effectors, the graspable surfaces

provide an evaluation criteria that a task planner could use to select which end-effector of

the robot to grasp with. By computing graspable surfaces for each available end-effector,

a planning framework could avoid spending extra time collision checking grasps, or even

motion planning, for end-effectors that do not have any viable surfaces. Being able to skip

planning on an end-effector becomes critical as the number and complexity of available

end-effectors increases for the robot.

88

ID G Object C GOC EC CT(s)
S0 P DVD S 6/12 58/172 1.95798
D0 P DVD D 6/12 1049/2276 2.78367
S1 P Crayola S 6/12 24/48 0.565691
D1 P Crayola D 6/12 1021/2164 1.7192
S2 P Tape S 66/256 24/48 4.6155
D2 P Tape D 66/256 1028/2179 11.4858
S0 R Cheezit S 6/12 30/60 1.5875
D0 R Cheezit D 6/12 1027/2176 4.63645
S1 R Towel S 34/124 30/60 3.2792
D1 R Towel D 34/124 1033/2188 11.734
S2 R Bear S 77/604 36/72 18.939
D2 R Bear D 77/604 1065/2254 30.4325

Table A.1: Computation time for generating graspable surfaces, relative to the geometric
complexity of the scene. G: Gripper: Parallel (P) or ReFlex (R). C: Clutter: Sparse (S) or
Dense (D). GOC: Goal Object Complexity in # of surfaces and triangles triangles. EC:
Total Scene Complexity in # of surfaces and triangles. CT: Computation Time.

A.6 Experiments

This section evaluates the applicability of the proposed method relative to the use cases

described in section A.5 (grasp generation, database pruning, and end-effector selection)

through evaluation in simulation.

Setup: Each experiment was conducted on a single computer with an Intel(R) Xeon(R)

E5-1650 3.50GHz CPU using a motion and task planning simulation framework [138].

The robot used in the experiments was a Yaskawa SDA10F equipped with both a parallel

gripper and a 3-finger ReFlex hand. Each benchmark had a designated “goal object” for

the manipulator to grasp, and two variations of clutter in the scene: sparse (3+ objects) and

dense (11+ objects). The benchmarks used in all experiments are shown in Figure A.4.

Motion Constraint Graphs: Constructing the MCG set consisted of evaluating the ge-

ometric and kinematic properties of both end-effectors. The relative position, approximate

radius, and distance constraints of each contact point was found through documentation of

the end-effectors, as well as physical experimentation. For example, the Parallel-JawMCG

consists of 2 contact points, one each placed at the center of the parallel-gripper with normal

89

vectors pointing inwards. A single edge between the contact points was added, represent-

ing the closing and opening distances of the jaw. For the 3-finger ReFlex hand, a single

MCG was used, which consisted of one vertex per finger, positioned at the fingertips, with

rotation and distance constraints imposed between each pair of fingers (Figure A.2). This

MCG was sufficient in representing the kinematics of the ReFlex.

Computational Overhead: Table A.1 reports the amount of time spent by the proposed

method for computing graspable surfaces for each benchmark. The computation time

increases as a function of the geometric complexity in the scene, expressed by the number

of surfaces generated by MCG and the total number of triangles in the scene’s meshes. It

should be noted that the parameters used to generate the surfaces in all benchmarks were

kept static and not changed - with some tuning, it would be possible to achieve faster times

on more complex objects (such as the Bear).

Grasp Generation: This experiment evaluated the applicability of MCG for generating

grasps using the approach described in section A.5 (benchmarks shown in Figure A.4). We

compare against a baseline method, RAND, which used the same grasp generation method,

but did not compute graspable surfaces, and instead sampled over the entire object mesh.

The purpose of such a comparison was to establish a potential use case of MCG. Both

methods used the same parameters (N of 500 and Θ set to 15).

The evaluation metrics were: number of valid grasps, success rate, grasp generation

time and motion planning time. The number of valid grasps measures how many collision-

free grasps were found by the grasp generator. The success rate corresponds to whether a

collision-free trajectory for grasping the goal object was found within a time limit of 60

seconds. Grasp generation time measures how long it took to compute collision-free IK

solutions for each valid grasp. If grasp generation fails to produce a collision-free solution,

it continues to sample and collision-check new grasps run up to 60 seconds, after which

point the run is reported as a failure. Motion planning time measures how long it took the

motion planner to compute a solution trajectory.

90

Figure A.5: Experimental Results for Grasp Generation. Success Ratio corresponds to
whether a collision-free trajectory for grasping the goal object was found within a time
limit of 60 seconds. Avg. Grasps is the average number of collision-free grasps that were
computed, the Grasp Generation (G.G.) Time is the average time the grasp planner spent
to compute IK-solutions and approach motion plans, and the Motion Planning (M.P.)
Time is the average time the motion planner took to compute a collision-free trajectory.

91

Figure A.6: Experimental Results For Database Pruning. Success Ratio corresponds to
whether a collision-free trajectory for grasping the goal object was found within a time
limit of 60 seconds.Execution Time represents the average total accumulated time by all
components (grasp database validation, motion planning, and when applicable, MCG sur-
face construction.)

92

Grasp Generation Analysis: The results are shown in Figure A.5 (the four leftmost

graphs). In all of the benchmarks, MCG provided a larger number of valid grasps, spent less

time during grasp generation, and improved the overall success rate of the manipulation

planning framework. Although RAND did not spend any time computing graspable sur-

faces, MCG was able to produce a viable grasp for the planner faster. For some of the easier

benchmarks, the differences between the methods were not as significant. This was to be

expected, as the benefit of using MCG arises when the goal object is severely occluded by

other objects in the scene.

Database Pruning: This experiment examined how effective MCG can be for decreas-

ing the amount of time it takes for finding a valid grasp in a precomputed grasp database.

As before, the environments used are shown in Figure A.4. As described in section A.5,

the graspable surfaces can be used to reduce the number of grasps evaluated from the

database. The comparison method, DATABASE, did not compute graspable surfaces, and

instead evaluated grasps from an existing database incrementally until a collision-free grasp

was found or the amount of allotted time ran out.

The evaluation metrics were: success rate and execution time. Success rate corresponds

to the same metric as the previous experiment. Execution time represents the total time

taken by the method, but only for the instances where the method was successful in solving

the problem. Of important note here is that since grasp databases were being used, no time

was spent by either method in grasp generation. To account for the randomness inherit in

the motion planning framework, each benchmark was executed 30 times and the resulting

averages and standard deviation are reported.

Database Pruning Analysis: The results shown in Figure A.6 (the two rightmost

graphs) indicate that MCG was able to significantly reduce the execution time in the bench-

marks, as well as improve upon the overall success rate of the motion planner. In terms

of where the time was spent, the bottleneck in the experiments was during grasp valida-

tion, which evaluated IK-solutions for the grasps, as well as grasp approach plans for the

93

manipulator.

End-Effector Selection: By examining the time efficiency in each benchmark as shown

in Table A.1, there is an indication that MCG could be used as a selection criteria for end-

effectors. The computation time spent by MCG scaled with the complexity of the scenes; in

all cases, it was much faster to query MCG than to wait for a failure criterion (i.e. evaluating

grasps for 60 seconds). The method could therefore be used by a task planning framework

to first evaluate whether or not an end-effector can grasp the target object, without resorting

to more expensive processes.

A.7 Conclusion

We presented a method for annotating an unstructured scene with graspable surfaces given

constraints for end-effectors. It utilizes geometric reasoning and constraint satisfaction to

quickly extract a continuous representation of viable grasp surfaces. The approach can be

used to generate candidate grasps, prune existing grasp databases or alternatively select

end-effectors suitable for a scene. In contrast to methods for grasp generation, this work

sets the foundations for reasoning in a continuous manner about a scene and the affordances

it provides to an end-effector.

The underlying methodology can be extended to operate even when models of the ob-

jects and their poses are not known. Instead, mesh-approximation methods can be used to

operate over point cloud data. Furthermore, there is work in learning effective grasping

shapes for specific end-effectors [129, 133]. Developing a method for creating MCG repre-

sentations of these shapes, would allow the proposed method to not require user input.

94

REFERENCES

[1] A. Economou, T.-C. (Hong, H. Ligler, and J. Park, “Shape machine: A primer
for visual computation,” in A New Perspective of Cultural DNA, J.-H. Lee, Ed.
Singapore: Springer Singapore, 2021, pp. 65–92, ISBN: 978-981-15-7707-9.

[2] K. Hu, S. Yoon, V. Pavlovic, P. Faloutsos, and M. Kapadia, “Predicting crowd
egress and environment relationships to support building design optimization,” Com-
puters & Graphics, 2020.

[3] M. Usman, D. Schaumann, B. Haworth, M. Kapadia, and P. Faloutsos, “Joint explo-
ration and analysis of high-dimensional design–occupancy templates,” in Motion,
Interaction and Games, 2019, pp. 1–5.

[4] N. Dalal and B. Triggs, “Histograms of oriented gradients for human detection,”
2005.

[5] S. Lazebnik, C. Schmid, and J. Ponce, “Beyond bags of features: Spatial pyramid
matching for recognizing natural scene categories,” in CVPR, IEEE, vol. 2, 2006,
pp. 2169–2178.

[6] T. Ahonen, A. Hadid, and M. Pietikainen, “Face description with local binary pat-
terns: Application to face recognition,” TPAMI, no. 12, pp. 2037–2041, 2006.

[7] L.-P. de las Heras, D. Fernández, A. Fornés, E. Valveny, G. Sánchez, and J. Lladós,
“Runlength histogram image signature for perceptual retrieval of architectural floor
plans,” in Workshop on Graphics Recognition, Springer, 2013, pp. 135–146.

[8] S. Macé, H. Locteau, E. Valveny, and S. Tabbone, “A system to detect rooms in
architectural floor plan images,” in Workshop on DAS, ACM, 2010, pp. 167–174.

[9] P. Dosch and G. Masini, “Reconstruction of the 3d structure of a building from
the 2d drawings of its floors,” in Document Analysis and Recognition, IEEE, 1999,
pp. 487–490.

[10] S. S. Sohn, H. Zhou, S. Moon, S. Yoon, V. Pavlovic, and M. Kapadia, “Laying the
foundations of deep long-term crowd flow prediction,” in European Conference on
Computer Vision, Springer, 2020, pp. 711–728.

[11] D. Sharma, C. Chattopadhyay, and G. Harit, “A unified framework for semantic
matching of architectural floorplans,” in Pattern Recognition, IEEE, 2016, pp. 2422–
2427.

95

[12] D. Sharma and C. Chattopadhyay, “High-level feature aggregation for fine-grained
architectural floor plan retrieval,” IET Computer Vision, vol. 12, no. 5, pp. 702–709,
2018.

[13] Q. U. Sabri, J. Bayer, V. Ayzenshtadt, S. S. Bukhari, K.-D. Althoff, and A. Den-
gel, “Semantic pattern-based retrieval of architectural floor plans with case-based
and graph-based searching techniques and their evaluation and visualization.,” in
ICPRAM, 2017, pp. 50–60.

[14] A. Karambakhsh, V. Azizi, M. Hoseini, K. Heiran, M. Y. A. Khanian, and M. R.
Meybodi, “A novel graph-based matching method to merge the extracted maps
from mobile robots,” in 2012 IEEE International Conference on Information and
Automation, IEEE, 2012, pp. 317–321.

[15] A. Heylighen and H. Neuckermans, “A case base of case-based design tools for
architecture,” Computer-Aided Design, vol. 33, no. 14, pp. 1111–1122, 2001.

[16] K. Richter, A. Heylighen, and D. Donath, “Looking back to the future. an updated
case base of case-based design tools for architecture,” Jan. 2007.

[17] G. Lambert and H. Gao, “Line moments and invariants for real time processing
of vectorized contour data,” in International Conference on Image Analysis and
Processing, Springer, 1995, pp. 347–352.

[18] A. Dutta, J. Llados, and U. Pal, “Symbol spotting in line drawings through graph
paths hashing,” in DAR, IEEE, 2011, pp. 982–986.

[19] M. Weber, M. Liwicki, and A. Dengel, “A. scatch-a sketch-based retrieval for
architectural floor plans,” in Frontiers in Handwriting Recognition, IEEE, 2010,
pp. 289–294.

[20] W. Wu, X.-M. Fu, R. Tang, Y. Wang, Y.-H. Qi, and L. Liu, “Data-driven interior
plan generation for residential buildings,” ACM Transactions on Graphics (TOG),
vol. 38, no. 6, pp. 1–12, 2019.

[21] P. Merrell, E. Schkufza, and V. Koltun, “Computer-generated residential building
layouts,” in ACM SIGGRAPH Asia 2010 papers, 2010, pp. 1–12.

[22] C. T. Mathew, P. R. Knob, S. R. Musse, and D. G. Aliaga, “Urban walkability
design using virtual population simulation,” in Computer Graphics Forum, Wiley
Online Library, vol. 38, 2019, pp. 455–469.

[23] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computa-
tion, vol. 9, no. 8, pp. 1735–1780, 1997.

96

[24] G. E. Hinton and R. S. Zemel, “Autoencoders, minimum description length and
helmholtz free energy,” in Advances in neural information processing systems,
1994, pp. 3–10.

[25] V. Azizi, M. Usman, S. Patel, D. Schaumann, H. Zhou, P. Faloutsos24, and M.
Kapadia, “Floorplan embedding with latent semantics and human behavior annota-
tions,” in Proceedings of the Symposium on Simulation for Architecture and Urban
Design, 2020, pp. 337–344.

[26] V. Azizi, M. Usman, H. Zhou, P. Faloutsos, and M. Kapadia, Graph-based gen-
erative representation learning of semantically and behaviorally augmented floor-
plans, 2020. arXiv: 2012.04735 [cs.LG].

[27] V. Azizi, A. Kimmel, K. Bekris, and M. Kapadia, “Geometric reachability analysis
for grasp planning in cluttered scenes for varying end-effectors,” in 2017 13th IEEE
Conference on Automation Science and Engineering (CASE), IEEE, 2017, pp. 764–
769.

[28] M. Weizmann, O. Amir, and Y. J. Grobman, “Topological interlocking in architec-
ture: A new design method and computational tool for designing building floors,
Topological interlocking in architecture: A new design method and computational
tool for designing building floors,” International Journal of Architectural Comput-
ing, vol. 15, no. 2, pp. 107–118, Jun. 2017.

[29] S. Rockcastle and M. Andersen, “Measuring the dynamics of contrast & daylight
variability in architecture: A proof-of-concept methodology,” Building and Envi-
ronment, vol. 81, pp. 320–333, Nov. 2014.

[30] A. Kaminska and A. Ożadowicz, “Lighting control including daylight and energy
efficiency improvements analysis,” Energies, vol. 11, no. 8, p. 2166, 2018.

[31] J. Clarke, Energy simulation in building design. Routledge, 2007.

[32] N. Delgarm, B. Sajadi, K. Azarbad, and S. Delgarm, “Sensitivity analysis of build-
ing energy performance: A simulation-based approach using ofat and variance-
based sensitivity analysis methods,” Journal of Building Engineering, vol. 15, pp. 181–
193, 2018.

[33] L. Ben-Alon and R. Sacks, “Simulating the behavior of trade crews in construc-
tion using agents and building information modeling,” Automation in Construction,
vol. 74, pp. 12–27, Feb. 2017.

[34] M. Shin and J. S. Haberl, “Thermal zoning for building hvac design and energy
simulation: A literature review,” Energy and Buildings, vol. 203, p. 109 429, 2019.

https://arxiv.org/abs/2012.04735

97

[35] Z. Du, X. Jin, X. Fang, and B. Fan, “A dual-benchmark based energy analysis
method to evaluate control strategies for building hvac systems,” Applied Energy,
vol. 183, pp. 700–714, 2016.

[36] B. Lawson, How designers think: The design process demystified. Routledge, 2006.

[37] B. Lawson, What Designers Know. Architectural Press, 2004.

[38] B. Hillier and J. Hanson, “The social logic of space, 1984,” Press syndicate of the
University of Cambridge, 1984.

[39] S. Bafna, “Space syntax: A brief introduction to its logic and analytical techniques,”
Environment and Behavior, vol. 35, no. 1, pp. 17–29, 2003.

[40] J. Desyllas and E. Duxbury, “Axial maps and visibility graph analysis,” in Proceed-
ings, 3rd International Space Syntax Symposium, Georgia Institute of Technology
Atlanta, vol. 27, 2001, pp. 21–13.

[41] J. Gil, E. Tobari, M. Lemlij, A. Rose, and A. Penn, “The differentiating behaviour
of shoppers: Clustering of individual movement traces in a supermarket,” 2009.

[42] S. Sharmin and M. Kamruzzaman, “Meta-analysis of the relationships between
space syntax measures and pedestrian movement,” Transport Reviews, vol. 38,
no. 4, pp. 524–550, 2018.

[43] G. Berseth, B. Haworth, M. Usman, D. Schaumann, M. Khayatkhoei, M. T. Ka-
padia, and P. Faloutsos, “Interactive architectural design with diverse solution ex-
ploration,” IEEE Transactions on Visualization and Computer Graphics, vol. 27,
no. 1, pp. 111–124, 2019.

[44] C. Hölscher, S. J. Büchner, T. Meilinger, and G. Strube, “Adaptivity of wayfind-
ing strategies in a multi-building ensemble: The effects of spatial structure, task
requirements, and metric information,” Environmental Psychology, vol. 29, no. 2,
pp. 208–219, 2009.

[45] M. Usman, D. Schaumann, B. Haworth, G. Berseth, M. Kapadia, and P. Falout-
sos, “Interactive spatial analytics for human-aware building design,” in Proceedings
of the 11th Annual International Conference on Motion, Interaction, and Games,
2018, pp. 1–12.

[46] M. Kapadia, N. Pelechano, J. Allbeck, and N. Badler, “Virtual crowds: Steps to-
ward behavioral realism,” Synthesis lectures on visual computing, vol. 7, no. 4,
pp. 1–270, 2015.

98

[47] D. Thalmann, “Populating virtual environments with crowds,” in Proceedings of
the 2006 ACM international conference on Virtual reality continuum and its appli-
cations, 2006, pp. 11–11.

[48] W. Yan and Y. E. Kalay, “Simulating the behavior of users in built environments,”
Journal of Architectural and Planning Research, pp. 371–384, 2004.

[49] W. Shen, Q. Shen, and Q. Sun, “Building Information Modeling-based user activity
simulation and evaluation method for improving designer–user communications,”
Automation in Construction, vol. 21, pp. 148–160, 2012.

[50] D. Schaumann, S. Breslav, R. Goldstein, A. Khan, and Y. E. Kalay, “Simulating
use scenarios in hospitals using multi-agent narratives,” Journal of Building Per-
formance Simulation, vol. 10, no. 5-6, pp. 636–652, Nov. 2017.

[51] M. Usman, T.-C. Lee, R. Moghe, X. Zhang, P. Faloutsos, and M. Kapadia, “A social
distancing index: Evaluating navigational policies on human proximity using crowd
simulations,” in Motion, Interaction and Games, 2020, pp. 1–6.

[52] X. Pan, C. S. Han, K. Dauber, and K. H. Law, “A multi-agent based framework for
the simulation of human and social behaviors during emergency evacuations,” Ai
& Society, vol. 22, no. 2, pp. 113–132, 2007.

[53] M. L. Chu, P. Parigi, K. Law, and J.-C. Latombe, “Modeling social behaviors in an
evacuation simulator,” Computer Animation and Virtual Worlds, vol. 25, no. 3-4,
pp. 373–382, 2014.

[54] T. Feng, L.-F. Yu, S.-K. Yeung, K. Yin, and K. Zhou, “Crowd-driven mid-scale
layout design.,” ACM Trans. Graph., vol. 35, no. 4, pp. 132–1, 2016.

[55] G. Berseth, M. Usman, B. Haworth, M. Kapadia, and P. Faloutsos, “Environment
optimization for crowd evacuation,” CAVW, vol. 26, no. 3-4, pp. 377–386, 2015.

[56] B. Haworth, M. Usman, G. Berseth, M. Kapadia, and P. Faloutsos, “Evaluating and
optimizing level of service for crowd evacuations,” in Proceedings of the 8th ACM
SIGGRAPH Conference on Motion in Games, 2015, pp. 91–96.

[57] B. Haworth, M. Usman, G. Berseth, M. Kapadia, and P. Faloutsos, “On density–
flow relationships during crowd evacuation,” Computer Animation and Virtual Worlds,
vol. 28, no. 3-4, e1783, 2017.

[58] B. Haworth, M. Usman, G. Berseth, M. Khayatkhoei, M. Kapadia, and P. Faloutsos,
“Towards computer assisted crowd aware architectural design,” in Proceedings of
the 2016 CHI Conference Extended Abstracts on Human Factors in Computing
Systems, 2016, pp. 2119–2125.

99

[59] B. Haworth, M. Usman, G. Berseth, M. Khayatkhoei, M. Kapadia, and P. Falout-
sos, “Using synthetic crowds to inform building pillar placements,” in 2016 IEEE
Virtual Humans and Crowds for Immersive Environments (VHCIE), IEEE, 2016,
pp. 7–11.

[60] M. Usman, D. Schaumann, B. Haworth, M. Kapadia, and P. Faloutsos, “Joint para-
metric modeling of buildings and crowds for human-centric simulation and analy-
sis,” in International Conference on Computer-Aided Architectural Design Futures,
Springer, 2019, pp. 279–294.

[61] D. Schaumann, S. Moon, M. Usman, R. Goldstein, S. Breslav, A. Khan, P. Falout-
sos, and M. Kapadia, “Join: An integrated platform for joint simulation of occupant-
building interactions,” Architectural Science Review, pp. 1–12, 2019.

[62] N. Chakraborty, B. Haworth, M. Usman, G. Berseth, P. Faloutsos, and M. Kapadia,
“Crowd sourced co-design of floor plans using simulation guided games,” in Pro-
ceedings of the Tenth International Conference on Motion in Games, 2017, pp. 1–
5.

[63] M. B. Haworth, M. Usman, D. Schaumann, N. Chakraborty, G. Berseth, P. Falout-
sos, and M. Kapadia, “Gamification of crowd-driven environment design,” IEEE
Computer Graphics and Applications, 2020.

[64] M. Usman, Y. Mao, D. Schaumann, P. Faloutsos, and M. Kapadia, “From semantic-
based rule checking to simulation-powered emergency egress analytic,” in Proceed-
ings of the Symposium on Simulation for Architecture and Urban Design, 2020,
pp. 43–50.

[65] D. Sharma, N. Gupta, C. Chattopadhyay, and S. Mehta, “Daniel: A deep architec-
ture for automatic analysis and retrieval of building floor plans,” in DAR, IEEE,
vol. 1, 2017, pp. 420–425.

[66] R. M. Smelik, K. J. De Kraker, T. Tutenel, R. Bidarra, and S. A. Groenewegen,
“A survey of procedural methods for terrain modelling,” in Proceedings of the
CASA Workshop on 3D Advanced Media In Gaming And Simulation (3AMIGAS),
vol. 2009, 2009, pp. 25–34.

[67] P. Charman, “Solving space planning problems using constraint technology,” Insti-
tute of Cybernetics-Estonian Academy of Sciences, 1993.

[68] E. Rodrigues, A. R. Gaspar, and Á. Gomes, “An evolutionary strategy enhanced
with a local search technique for the space allocation problem in architecture,
part 2: Validation and performance tests,” Computer-Aided Design, vol. 45, no. 5,
pp. 898–910, 2013.

100

[69] S. Greuter, J. Parker, N. Stewart, and G. Leach, “Real-time procedural genera-
tion ofpseudo infinite’cities,” in Proceedings of the 1st international conference on
Computer graphics and interactive techniques in Australasia and South East Asia,
2003, 87–ff.

[70] A. Rau-Chaplin, B. MacKay-Lyons, and P. Spierenburg, “The lahave house project:
Towards an automated architectural design service,” Cadex, vol. 96, pp. 24–31,
1996.

[71] J. Martin, “Procedural house generation: A method for dynamically generating
floor plans,” in Proceedings of the Symposium on Interactive 3D Graphics and
Games, 2006, pp. 1–2.

[72] S. Chaillou, “Ai+ architecture: Towards a new approach,” Harvard University,
2019.

[73] R. Hu, Z. Huang, Y. Tang, O. van Kaick, H. Zhang, and H. Huang, “Graph2plan:
Learning floorplan generation from layout graphs,” arXiv preprint arXiv:2004.13204,
2020.

[74] N. Nauata, K.-H. Chang, C.-Y. Cheng, G. Mori, and Y. Furukawa, House-gan: Re-
lational generative adversarial networks for graph-constrained house layout gen-
eration, 2020. arXiv: 2003.06988 [cs.CV].

[75] B. Haworth, M. Usman, G. Berseth, M. Khayatkhoei, M. Kapadia, and P. Falout-
sos, “Code: Crowd-optimized design of environments,” Computer Animation and
Virtual Worlds, vol. 28, no. 6, e1749, 2017.

[76] T. Li, D. Ho, C. Li, D. Zhu, C. Wang, and M. Q. .-H. Meng, Houseexpo: A large-
scale 2d indoor layout dataset for learning-based algorithms on mobile robots,
2019. arXiv: 1903.09845 [cs.RO].

[77] S. Singh, M. Kapadia, P. Faloutsos, and G. Reinman, “An open framework for de-
veloping, evaluating, and sharing steering algorithms,” in Motion in Games, Springer,
Springer-Verlag, 2009, pp. 158–169.

[78] P. Goyal and E. Ferrara, “Graph embedding techniques, applications, and perfor-
mance: A survey,” Knowledge-Based Systems, vol. 151, pp. 78–94, 2018.

[79] A. Grover and J. Leskovec, “Node2vec: Scalable feature learning for networks,” in
KDD, ACM, 2016, pp. 855–864.

[80] A. Taheri, K. Gimpel, and T. Berger-Wolf, “Learning graph representations with
recurrent neural network autoencoders,” KDD, 2018.

https://arxiv.org/abs/2003.06988
https://arxiv.org/abs/1903.09845

101

[81] Q. Ai, V. Azizi, X. Chen, and Y. Zhang, “Learning heterogeneous knowledge base
embeddings for explainable recommendation,” Algorithms, vol. 11, no. 9, p. 137,
2018.

[82] A. Narayanan, M. Chandramohan, R. Venkatesan, L. Chen, Y. Liu, and S. Jaiswal,
“Graph2vec: Learning distributed representations of graphs,” arXiv:1707.05005,
2017.

[83] H. Bunke, “What is the distance between graphs,” Bulletin of the EATCS, vol. 20,
pp. 35–39, 1983.

[84] S. Singh, M. Kapadia, P. Faloutsos, and G. Reinman, “An open framework for de-
veloping, evaluating, and sharing steering algorithms,” in International Workshop
on Motion in Games, Springer, 2009, pp. 158–169.

[85] P. Kumar and H. H. Huang, “G-store: High-performance graph store for trillion-
edge processing,” in SC’16, IEEE, 2016, pp. 830–841.

[86] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and J. M. Hellerstein,
“Distributed graphlab: A framework for machine learning in the cloud,” arXiv
preprint arXiv:1204.6078, 2012.

[87] J. E. Gonzalez, R. S. Xin, A. Dave, D. Crankshaw, M. J. Franklin, and I. Stoica,
“Graphx: Graph processing in a distributed dataflow framework,” in 11th {USENIX}
Symposium on Operating Systems Design and Implementation ({OSDI} 14), 2014,
pp. 599–613.

[88] H. Cai, V. W. Zheng, and K. C.-C. Chang, “A comprehensive survey of graph
embedding: Problems, techniques and applications,” CoRR, vol. abs/1709.07604,
2017. arXiv: 1709.07604.

[89] Y. Bai, H. Ding, Y. Qiao, A. Marinovic, K. Gu, T. Chen, Y. Sun, and W. Wang,
“Unsupervised inductive graph-level representation learning via graph-graph prox-
imity,” arXiv preprint arXiv:1904.01098, 2019.

[90] N. Shervashidze, P. Schweitzer, E. J. v. Leeuwen, K. Mehlhorn, and K. M. Borg-
wardt, “Weisfeiler-lehman graph kernels,” Journal of Machine Learning Research,
vol. 12, no. Sep, pp. 2539–2561, 2011.

[91] M. Niepert, M. Ahmed, and K. Kutzkov, “Learning convolutional neural networks
for graphs,” in International conference on machine learning, 2016, pp. 2014–
2023.

https://arxiv.org/abs/1709.07604

102

[92] S. F. Mousavi, M. Safayani, A. Mirzaei, and H. Bahonar, “Hierarchical graph em-
bedding in vector space by graph pyramid,” Pattern Recognition, vol. 61, pp. 245–
254, 2017.

[93] S. R. Bowman, L. Vilnis, O. Vinyals, A. M. Dai, R. Józefowicz, and S. Ben-
gio, “Generating sentences from a continuous space,” CoRR, vol. abs/1511.06349,
2015. arXiv: 1511.06349.

[94] W. Wang, Z. Gan, H. Xu, R. Zhang, G. Wang, D. Shen, C. Chen, and L. Carin,
“Topic-guided variational autoencoders for text generation,” arXiv:1903.07137,
2019.

[95] Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term dependencies with gra-
dient descent is difficult,” IEEE transactions on neural networks, vol. 5, no. 2,
pp. 157–166, 1994.

[96] M. A. Kramer, “Nonlinear principal component analysis using autoassociative neu-
ral networks,” AIChE journal, vol. 37, no. 2, pp. 233–243, 1991.

[97] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” arXiv preprint
arXiv:1312.6114, 2013.

[98] M. Simonovsky and N. Komodakis, “Graphvae: Towards generation of small graphs
using variational autoencoders,” in International Conference on Artificial Neural
Networks, Springer, 2018, pp. 412–422.

[99] D. P. Kingma and J. Ba, Adam: A method for stochastic optimization, 2014. arXiv:
1412.6980 [cs.LG].

[100] B. Perozzi, R. Al-Rfou, and S. Skiena, “Deepwalk,” Proceedings of the 20th ACM
SIGKDD international conference on Knowledge discovery and data mining - KDD
’14, 2014.

[101] K. Wagstaff, C. Cardie, S. Rogers, S. Schrödl, et al., “Constrained k-means clus-
tering with background knowledge,” in Icml, vol. 1, 2001, pp. 577–584.

[102] M. Ester, H.-P. Kriegel, J. Sander, X. Xu, et al., “A density-based algorithm for
discovering clusters in large spatial databases with noise.,” in Kdd, vol. 96, 1996,
pp. 226–231.

[103] L. v. d. Maaten and G. Hinton, “Visualizing data using t-sne,” Journal of machine
learning research, vol. 9, no. Nov, pp. 2579–2605, 2008.

[104] T. Dogan, E. Saratsis, and C. Reinhart, “The optimization potential of floor-plan
typologies in early design energy modeling,” 2015.

https://arxiv.org/abs/1511.06349
https://arxiv.org/abs/1412.6980

103

[105] M. Teschner, B. Heidelberger, M. Müller, D. Pomerantes, and M. H. Gross, “Opti-
mized spatial hashing for collision detection of deformable objects.,” in Vmv, vol. 3,
2003, pp. 47–54.

[106] V. Azizi and A. T. Haghighat, “Fast and robust biped walking involving arm swing
and control of inertia based on neural network with harmony search optimizer,”
in 2011 16th International Conference on Methods & Models in Automation &
Robotics, IEEE, 2011, pp. 375–380.

[107] F. Koochaki, I. Sharifi, H. A. Talebi, and A. D. Mohammadi, “Nonlinear control of a
non-passive bilateral teleoperation in presence of unsymmetric time varying delay,”
in 2014 Second RSI/ISM International Conference on Robotics and Mechatronics
(ICRoM), IEEE, 2014, pp. 019–023.

[108] F. Koochaki, I. Sharifi, A. Doostmohammadi, and H. A. Talebi, “A cooperative re-
mote rehabilitation system,” in 2015 3rd RSI International Conference on Robotics
and Mechatronics (ICROM), IEEE, 2015, pp. 085–090.

[109] F. Koochaki and H. A. Talebi, “Position coordination of nonlinear teleoperation for
unrestricted non-passive environment and operator in the presence of time delay,”
in 2016 4th International Conference on Control, Instrumentation, and Automation
(ICCIA), IEEE, 2016, pp. 407–412.

[110] F. Koochaki, I. Sharifi, and H. A. Talebi, “A novel architecture for cooperative re-
mote rehabilitation system,” Computers & Electrical Engineering, vol. 56, pp. 715–
731, 2016.

[111] F. Khosrosereshki, F. Rasouli, H. A. Talebi, F. Koochaki, and I. Sharifi, “Path plan-
ning for insertion of a bevel tip steerable needle into a soft tissue in the presence
of obstacles,” in 2014 22nd Iranian Conference on Electrical Engineering (ICEE),
2014, pp. 1348–1353.

[112] A. Karambakhsh, V. Azizi, M. Hoseini, K. Heiran, M. Y. A. Khanian, and M. R.
Meybodi, “A novel graph-based matching method to merge the extracted maps
from mobile robots,” in 2012 IEEE International Conference on Information and
Automation, 2012, pp. 317–321.

[113] S. Habibian, M. Dadvar, B. Peykari, A. Hosseini, M. H. Salehzadeh, A. H. Hos-
seini, and F. Najafi, “Design and implementation of a maxi-sized mobile robot
(karo) for rescue missions,” ROBOMECH Journal, vol. 8, no. 1, pp. 1–33, 2021.

[114] M. Dadvar, S. Moazami, H. R. Myler, and H. Zargarzadeh, “Multiagent task al-
location in complementary teams: A hunter-and-gatherer approach,” Complexity,
vol. 2020, 2020.

104

[115] M. Islam, M. Dadvar, and H. Zargarzadeh, “A dynamic territorializing approach
for multiagent task allocation,” Complexity, vol. 2020, 2020.

[116] C. Goldfeder, M. Ciocarlie, H. Dang, and P. K. Allen, “The columbia grasp database,”
in ICRA, IEEE, 2009, pp. 1710–1716.

[117] J. Bohg, A. Morales, T. Asfour, and D. Kragic, “Data-driven grasp synthesis—a
survey,” IEEE TRO, vol. 30, no. 2, pp. 289–309, 2014.

[118] M. A. Roa and R. Suárez, “Grasp quality measures: Review and performance,”
Autonomous Robots, vol. 38, no. 1, pp. 65–88, 2015.

[119] A. Sahbani, S. El-Khoury, and P. Bidaud, “An overview of 3d object grasp synthesis
algorithms,” Robotics and Autonomous Systems, vol. 60, no. 3, pp. 326–336, 2012.

[120] S. Liu and S. Carpin, “A fast algorithm for grasp quality evaluation using the ob-
ject wrench space,” in Automation Science and Engineering (CASE), 2015 IEEE
International Conference on, IEEE, 2015, pp. 558–563.

[121] Y. Lin and Y. Sun, “Grasp planning to maximize task coverage,” The International
Journal of Robotics Research, vol. 34, no. 9, pp. 1195–1210, 2015.

[122] S. Liu and S. Carpin, “Kinematic noise propagation and grasp quality evaluation,”
in Automation Science and Engineering (CASE), 2016 IEEE International Confer-
ence on, IEEE, 2016, pp. 1177–1183.

[123] A. T. Miller and P. K. Allen, “Graspit! a versatile simulator for robotic grasping,”
IEEE Robotics & Automation Magazine, vol. 11, no. 4, pp. 110–122, 2004.

[124] K. Hang, J. A. Stork, and D. Kragic, “Hierarchical fingertip space for multi-fingered
precision grasping,” in 2014 IEEE/RSJ International Conference on Intelligent Robots
and Systems, IEEE, 2014, pp. 1641–1648.

[125] F. Zacharias, C. Borst, and G. Hirzinger, “Online generation of reachable grasps
for dexterous manipulation using a representation of the reachable workspace,” in
Advanced Robotics, 2009. ICAR 2009. International Conference on, IEEE, 2009,
pp. 1–8.

[126] M. Popović, G. Kootstra, J. A. Jørgensen, D. Kragic, and N. Krüger, “Grasping
unknown objects using an early cognitive vision system for general scene under-
standing,” in Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ International
Conference on, IEEE, 2011, pp. 987–994.

[127] Z. Xue and R. Dillmann, “Efficient grasp planning with reachability analysis,” In-
ternational Journal of Humanoid Robotics, vol. 8, no. 04, pp. 761–775, 2011.

105

[128] D. Berenson and S. S. Srinivasa, “Grasp synthesis in cluttered environments for
dexterous hands,” in Humanoids, IEEE, 2008, pp. 189–196.

[129] I. Lenz, H. Lee, and A. Saxena, “Deep learning for detecting robotic grasps,” The
International Journal of Robotics Research, vol. 34, no. 4-5, pp. 705–724, 2015.

[130] A. ten Pas and R. Platt, “Using geometry to detect grasp poses in 3d point clouds,”
in Int’l Symp. on Robotics Research, 2015.

[131] M. Kopicki, R. Detry, M. Adjigble, R. Stolkin, A. Leonardis, and J. L. Wyatt, “One-
shot learning and generation of dexterous grasps for novel objects,” The Interna-
tional Journal of Robotics Research, vol. 35, no. 8, pp. 959–976, 2016.

[132] D. Berenson, S. Srinivasa, and J. Kuffner, “Task space regions: A framework for
pose-constrained manipulation planning,” The International Journal of Robotics
Research, vol. 30, no. 12, pp. 1435–1460, 2011.

[133] A. T. Miller, S. Knoop, H. I. Christensen, and P. K. Allen, “Automatic grasp plan-
ning using shape primitives,” in Proceedings. ICRA’03. IEEE International Con-
ference on, IEEE, vol. 2, 2003, pp. 1824–1829.

[134] M. Ciocarlie, C. Goldfeder, and P. Allen, “Dimensionality reduction for hand-
independent dexterous robotic grasping,” in IROS, IEEE, 2007, pp. 3270–3275.

[135] M. Kapadia, X. Xianghao, M. Nitti, M. Kallmann, S. Coros, R. W. Sumner, and M.
Gross, “Precision: Precomputing environment semantics for contact-rich character
animation,” in ACM Symposium on Interactive 3D Graphics and Games, ACM,
2016, pp. 29–37.

[136] P. Beeson and B. Ames, “TRAC-IK: An open-source library for improved solving
of generic inverse kinematics,” in Humanoids, IEEE, 2015, pp. 928–935.

[137] N. Vahrenkamp, T. Asfour, and R. Dillmann, “Simultaneous grasp and motion plan-
ning: Humanoid robot armar-iii,” IEEE Robotics & Automation Magazine, vol. 19,
no. 2, pp. 43–57, 2012.

[138] Z. Littlefield, A. Krontiris, A. Kimmel, A. Dobson, R. Shome, and K. E. Bekris,
“An extensible software architecture for composing motion and task planners,”
in International Conference on Simulation, Modeling, and Programming for Au-
tonomous Robots, Springer, 2014, pp. 327–339.

	Title Page
	Abstract
	Acknowledgments
	Dedication
	Table of Contents
	List of Figures
	List of Tables
	1 | Introduction
	Problem Statement and Motivation
	Limitations in Prior Work
	Proposed Approach
	Main Contributions
	Thesis Outline

	2 | Related Work
	Analysis of Floorplans
	Floorplan Representation
	Floorplan Generation
	Floorplan Optimization

	3 | Floorplan Embedding with Latent Semantics and Human Behavior Annotations
	Introduction
	Method Overview
	Dataset
	Floorplans to Attributed Graphs
	Floorplan Dataset Features
	Floorplan Embedding
	Training
	Pairwise Similarity between Floorplans
	Behavioral and Geometrically-powered Floorplans Retrieval
	Generation of a Composite Floorplan

	4 | Graph-Based Generative Representation Learning of Semantically and Behaviorally Augmented Floorplans
	Introduction
	Method Overview
	HouseExpo++ Dataset
	Floorplans to Attributed Graphs
	Floorplan Embedding
	Model
	Graphs to Sequences
	Training
	Quantitative Evaluation
	Qualitative Evaluation
	Floorplan Generation
	User Study
	Conclusion

	5 | The Role of Latent Representations for Design Space Exploration
	Introduction
	Overview
	Synthetic Dataset of Attributed Floorplans
	Latent Representation of Attributed Floorplans
	Local Search Over the Latent Space
	Experiments

	6 | Concluding Remarks and Future Directions
	Conclusion
	Limitations and Future Work

	Appendices
	A | Geometric Reachability Analysis for Grasp Planning in Cluttered Scenes for Varying End-Effectors

	References

