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ABSTRACT OF THE DISSERTATION

Stationary Navier-Stokes Equations in an Exterior Domain, and Some Integral

Identities for Euler and Navier-Stokes Equations

By JEAHEANG BANG

Dissertation Director:

Yanyan Li

We study: 1) the stationary Navier-Stokes equations in a two-dimensional exterior

domain Ω, 2) some integral identities for the Euler and the Navier-Stokes equations.

For the first topic, we consider the non-homogenous boundary value problem in a

two-dimensional exterior domain together with a prescribed condition at infinity and

establish existence of a solution to the problem provided that the boundary value on

∂Ω is close to a potential flow; this assumption allows some large boundary value.

Indeed, we utilize results of Galdi [24] on the Oseen equations, a linearization around

a constant nonzero vector. Then we apply ideas used in Russo and Starita’s work in

three dimension, which is to perturb around a potential flow ([44]); in conjunction

with the compactness of some linear operator related to the Oseen equations, which

is a result again of Galdi [24].

For the second topic, Dobrokhotov and Shafarevich [12] in 1994 proved some

integral identities for the Euler and Navier-Stokes equations. Chae [4] in 2012 proved

these integral identities on a hyperplane for a weak solution with some integrability

assumptions on the solution. In this thesis, we prove the integral identities on a

hyperplane with some different integrability assumptions. It also furnishes a Liouville

type theorem as an immediate application, providing a different approach to some of

the results of Hamel and Nadirashvili [30],[31], Chae and Constantin [8].
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Chapter 1

Introduction

In this thesis, we study the Euler (ν = 0) and the Navier-Stokes equations (ν > 0):


∂tv + (v · ∇)v +∇p = ν∆v + f in Ω× (0, T ),

divv = 0 in Ω× (0, T )

where Ω is a domain in RN , N ≥ 2. The unknowns are the velocity field v = v(x, t) :

Ω× (0, T )→ RN and the pressure field p = p(x, t) : Ω× (0, T )→ R. Here we denote

by ν the viscosity and by f the external force.

The equations model incompressible inviscid ideal flow and viscous flow respec-

tively. These equations are ones of the most important equations in Nonlinear Anal-

ysis and in Fluid Mechanics, which have many open problems attracting various

researchers. Especially the topic of the stationary Navier-Stokes equations in a two-

dimensional exterior domain has various long-standing open problems. This is the

first topic of this thesis. We study this topic in Chapter 2.

The second topic is about some integral identities for the Euler and the Navier-

Stokes equations, that was first proved by Dobrokhotov and Shafarevich in 1994 [12]

and that shows each component of v = (v1, . . . , vN) has the same L2- norm and they

are orthogonal with respect to the L2 inner product. And Chae [4] in 2012 proved
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these integral identities on a hyperplane for a weak solution. And several researchers

improved these integral identities and applied them to solve other problems. We

study these integral identities in Chapter 3.

In this chapter (Introduction), we present on each topic of Chapter 2 and 3 very

briefly. At the beginning of Chapter 2 and 3, detailed history of the corresponding

topic is written. (For precise statements of theorems, see the introductions of Chapter

2 and 3.)

1.1 The Stationary Navier-Stokes Equations in Two-

Dimensional Exterior Domains

We first briefly present on the first topic. More detailed introduction is written at

the beginning of Chapter 2.

For an exterior domain Ω with non-empty boundary in R2, consider the stationary

(incompressible) Navier-Stokes equations:


ν∆v − (v · ∇)v −∇p = f in Ω,

divv = 0 in Ω,

(1.1)

with boundary conditions on ∂Ω and at infinity:

v|∂Ω = v∗ (1.2)

lim
|x|→∞

v = v∞ (1.3)

Here v∗ = v∗(x) denotes a prescribed boundary function on ∂Ω and f = f(x) a given

external force and v∞ a prescribed constant vector. The constant ν > 0 is a given

parameter, called the viscosity. We seek for a pair of a velocity field v : Ω→ R2 and

pressure p : Ω → R that satisfies the equations with the two boundary conditions.
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The boundary value problem of the stationary Navier-Stokes equations in a two-

dimensional exterior domain has attracted so much attention from many researchers.

The study of this problem was initiated by Leray in his seminal paper [40] in

1933. Leray established the existence of a solution to the problem (1.1),(1.2) that

satisfies additionally the finite Dirichlet energy condition,
∫

Ω
|∇v|2 dx < ∞, under

the assumption that the flux on each connected component of the boundary vanishes,

that is,

∫
∂Ωi

v∗ · n dσ = 0 for all i = 1, · · · ,M (1.4)

where the complement of the domain Ω is written as a disjoint union of several

connected components, that is, Ωc = ∪Mi=1Ωi.

Leray was not able to show that his solution satisfies the condition (1.3) at infinity

in the two-dimensional case as opposed to the three-dimensional case. A number of

remarkable partial results have been made to resolve this issue of convergence at

infinity in two-dimension, but still this is one of the big open problems in this area.

(For more history, see Section 2.1.)

Additionally, another open question was left out by Leray. The condition that

‘total flux’ on the boundary ∂Ω vanishes, that is,

∫
∂Ω

v∗ · n dσ = 0, (1.5)

is a compatibility condition for bounded domains Ω due to the incompressibility

condition divv = 0, which is no longer a priori a compatibility condition in the case

of exterior domains. In addition, condition (1.4) of Leray is even stronger than (1.5).

Leray’s method has been extensively studied in order to relax condition (1.4) and to

remove condition (1.5) eventually. Korobkov, Pileckas, Russo [37] in 2020 made a

major recent breakthrough: in two dimension, there exists a solution to (1.1), (1.2)
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with f ≡ 0 under assumption (1.5). (For more details about their theorems and

proofs, see Section 2.1 and Theorems 2.1.3, 2.1.4, 2.1.5.) However, it still remains

open to remove even condition (1.5).

On the other hand, we can also apply perturbation methods to investigate the

main problem, (1.1), (1.2), (1.3). For the case v∞ = 0, we can linearize equation

(1.1) around v∞ = 0, which leads to the following linear equation:


ν∆u−∇p = f in Ω

divu = 0 in Ω

(1.6)

These equations are called the Stokes equations. However, the boundary value prob-

lem of the Stokes equations (vanishing at infinity) is solvable if and only if the bound-

ary value u∗ and the external force f satisfy a certain condition. In particular, if

f = 0 and u∗ is a nonzero constant vector, then the boundary value problem does

not admit a solution. This phenomena is called the Stokes paradox. (For more details

about the Stokes paradox, see Theorem 2.3.3.) And this is the case only in two di-

mension, which gives yet another major difficulty in the study of the two-dimensional

case compared to the three-dimensional one.

However, in the case v∞ 6= 0, the situation is more manageable. To understand

the nature of the case v∞ 6= 0, we first write the problem (1.1), (1.2), (1.3) in

a dimensionless form. Indeed, in the case v∞ 6= 0, via scaling and rotation, we

can normalize the vector v∞ to the vector e1 = 〈1, 0〉, which leads to the following

dimensionless form: 
∆w − λ(w · ∇)w −∇π = λF in Ω

divw = 0 in Ω

(1.7)
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with the boundary conditions

w|∂Ω = w∗ (1.8)

lim
|x|→∞

w(x) = w∞ = e1 (1.9)

where λ > 0. Our main results of this chapter are to establish an existence theorem

of a solution (w, π) to the problem (1.7), (1.8), (1.9).

In a series of papers [17],[49],[18] from 1965 to 1967, Finn and Smith considered

the case of v∞ 6= 0 in two dimension and proved existence of a solution to (1.7), (1.8).

(1.9) with F = 0: if the norm of the quantity (w∗−w∞)/| log λ| is less than a certain

constant depending on Ω, λ0 (some upper bound of λ but independent of data w∗).

(See Theorem 4.1 of [18]) 1. This is the first existence theorem of the problem (1.7),

(1.8), (1.9) at least with some smallness assumption on data.

Setting u = w −w∞, equation (1.7) turns into


∆u− λ ∂u

∂x1

−∇π = λ(u · ∇)u+ λF in Ω

divu = 0 in Ω.

(1.10)

By formally removing the nonlinear term in (1.10), we obtain:


∆u− λ ∂u

∂x1

−∇π = λF in Ω

divu = 0 in Ω.

These linear equations are called the Oseen equations. The non-homogeneous bound-

ary value problem of the Oseen equations are solvable even in two dimension in

contrast to the Stokes problem. Finn and Smith achieved their existence theorem by

using the Oseen equations. (For more details, see Section 2.4)

1This statement might appear to be different from Finn and Smith’s, but they are actually
equivalent because here we have assumed w∞ = 〈1, 0〉 without loss of generality



6

On the other hand, Galdi investigated the same problem of proving existence of a

solution (w, π) to (1.7) , (1.8), (1.9) by using the Oseen equations as Finn and Smith

did, but Galdi investigated the Oseen problem in a way totally different from Finn

and Smith’s and used Sobolev type function spaces to prove that: if | log λ|−1‖w∗ −

w∞‖W 2−1/q,q(∂Ω) +λ2/q−1‖F ‖Lq(Ω) is less than some constant that depends on Ω, q, λ0,

then there exists a solution w, p to (1.7) , (1.8), (1.9) such that w −w∞ and p are

in some Sobolev type function spaces, X2,q(Ω), D1,q(Ω). See Theorem 2.0.1 for a

statement of this result. In Chapter 2, we mainly make use of these results of Galdi

on the Oseen equations.

It is worth to notice that Finn and Smith’s results as well as Galdi’s do not impose

any assumption on flux as like (1.5).

However, both Galdi’s result and Finn and Smith’s have some limitation: with λ

fixed, data w∗ must be chosen close to w∞ to ensure existence of a solution.

A mian objective of Chapter 2 is to overcome this limitation. The key idea toward

this end comes from A. Russo and Starita [44] in 2008. They proved existence of a

solution vanishing at infinity (v∞ = 0) to the stationary Navier-Stokes equations in

three dimensional exterior domain with a boundary condition which allows some large

data on the boundary. Their main idea is to perturb around a potential flow (see

below for a definition) rather than the constant vector v∞. (See Theorem 2.0.2 for a

statement of Russo and Starita’s work)

To incorporate this idea into our main problem (1.7), (1.8), (1.9) in the case

v∞ 6= 0 and in two dimension, we fix a harmonic function β in Ω such that ∇β decays

at infinity, (this type of flow ∇β is called a potential flow) and we derive another

form of the stationary Navier-Stokes equations rather than (1.10) by setting u =

w−w∞−µ∇β where µ is a scalar parameter whenw is a solution to (1.7), (1.8), (1.9)

with w∞ = e1. Then for u∗ = w∗−w∞−µ∇β on ∂Ω and p = π+ λµ2

2
|∇β|2 +λµ ∂β

∂x1
,
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equations (1.7) turn into


∆u− λ ∂u

∂x1

−∇p = λ(u · ∇)u+ λµ(∇β · ∇)u+ λµ(u · ∇)∇β + λF in Ω

divu = 0 in Ω

(1.11)

Deriving this form, we have used the fact that ∇β is the gradient of a harmonic

function.

In this form (1.11), we control the contribution of the additional terms on the right

hand side involving ∇β by a compactness result of an operator associated to these

additional terms, that was proved by Galdi, in order to establish existence theorems

that allow some large boundary value w∗.

Main result. One of our main results in Chapter 2 is to prove that, with a harmonic

function β fixed, for 1 < q < 6/5, µ ∈ R \ G where G is some countable set, if

‖w∗ − w∞ − µ∇β‖W 2−1/q,q(∂Ω) + ‖F ‖Lq(Ω) is less than a certain constant that only

depends on Ω, q, λ, µ,∇β, then there exists a solution w, π to the main problem (1.7),

(1.8), (1.9). (See Theorems 2.0.3 for a precise statement, and see also Theorem 2.0.8

for another main result of this topic.)

As G is countable, µ can be chosen large allowing some big boundary value w∗.
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1.2 Some Integral Identities of the Euler and the

Navier-Stokes Equations

Let Ω be a domain in RN , N ≥ 2. For this topic, we mainly consider the Euler (ν = 0)

or Navier-Stokes (ν > 0) equations:

∂tv + (v · ∇)v +∇p = ν∆v in Ω× (0, T )

divv = 0 in Ω× (0, T )

(1.12)

where v(x, t) = (v1(x, t), · · · , vN(x, t)) : Ω × (0, T ) → RN is a velocity field, p :

Ω× (0, T )→ R is a pressure field. The parameter ν ≥ 0 is called viscosity.

Dobrokhotov and Shafarevich [12] in 1994 proved some integral identities for the

Navier Stokes and the Euler equations for a classical solution (v, p) in three dimension:

if v and its derivatives ∂v/∂t, ∂v/∂xj, j = 1, 2, 3 decay faster than |x|−4 at some time

t, then

∫
R3

(vj(x, t)vk(x, t) + δjkp(x, t)) dx = 0 for all j, k = 1, 2, 3. (1.13)

Even though the integral identities are applicable to various problems, not only the

integral identities (1.13) but also this paper [12] does not seem to be well-known.

For this topic, we will focus on the study of the integral identities (1.13) of the

Euler and Navier-Stokes equations (1.12) in terms of the form of the integral identities

and assumptions on (v, p) that are needed, and then we will also study Liouville type

theorems of the stationary Euler equations as an immediate corollary of the integral

identities.

We first present on history of the integral identities (1.13) and then on one of

Liouville type theorems of the stationary Euler equations.

Some Integral Identities for the Euler and the Navier-Stokes equations
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Dongho Chae in 2011 [3] proved the integral identities (1.13) in RN for a weak solu-

tion: if (v, p) ∈ L1(0, T ;L2
loc,σ(RN))×L1(0, T ;S ′(RN)) is a weak solution to the Euler

or the Navier-Stokes equations (1.12) in RN such that (v, p) ∈ L1(0, T ;L2(RN)) ×

L1(0, T ;L1(RN)), then the integral identities (1.13) in RN holds for almost every

t ∈ (0, T ).

Chae [4] in 2012 proved that if (v, p) ∈ L1(0, T ;L2
loc,σ(RN)) × L1(0, T ;L1

loc(RN))

is a weak solution to the Euler or the Navier-Stokes equations (1.12) such that

(v(·, t), p(·, t)) ∈ L2(RN) × L1(RN) for some t ∈ (0, T ), then some integral identi-

ties on a hyperplane holds; precisely, for all k ∈ {1, · · · , N},

∫
RN−1

(
v2
k(x, t) + p(x, t)

)
dx′k = 0 for almost every xk ∈ R. (1.14)

(See Theorem 3.0.1 for a statement.) Here x′k = (x1, · · · , xk−1, xk+1, · · · , xN) and

dx′k = dx1 · · · dxk−1dxk+1 · · · dxN . The integral identities (1.13) involve two indices

j, k whereas these integral identities (1.14) only one index. We will call a type of

integral identities involving two indices like (1.13) a matrix form whereas the other

type, that involves one index, a vector form.

We derive integral identities on a hyperplane with assumptions slightly different

from Chae’s in [4].

Main Result. One of our main results is to prove that if (v, p) ∈ L1(0, T ;L2
loc(RN))×

L1(0, T ;L1
loc(RN)) is a weak solution to the Euler or the Navier-Stokes equations such
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that for some t ∈ (0, T ), and for all k ∈ {1, . . . , N}, 2

|v(x, t)|2 + |p(x, t)| ∈ L1(RN−1;x′k) for a.e. xk ∈ R,∥∥|v(x, t)|2 + |p(x, t)|
∥∥
L1(RN−1;x′k)

∈ L1
loc(R;xk),

lim inf
|xk|→∞

∥∥|v(x, t)|2 + |p(x, t)|
∥∥
L1(RN−1;x′k)

= 0


(1.15)

then the vector form of the integral identities (1.14) on a hyperplane holds in general

whereas the matrix form of the integral identities on a hyperplane holds for the

stationary Euler equations, that is, for all j, k ∈ {1, . . . , N},

∫
RN−1

(vj(x)vk(x) + p(x)δjk)dx
′
k = 0 for a.e. xk ∈ R.

(See Theorem 3.0.2 for a statement or Section 3.3 for more details.)

To compare this main result to the previous result [4], if we only consider v, p

satisfying

|v(x)|2 + |p(x)| ≤ C

1 + |x|α
, α > 0,

then the assumption |v|2 + |p| ∈ L1(RN) of [4] is satisfied if α > N whereas assump-

tions (1.15) are satisfied if α > N − 1, which is less restrictive. And it does not

seem clear whether the assumption of [4] along with the Euler or the Navier-Stokes

equations imply better decay of v, p, to the best of my knowledge. (See also Remark

3.0.4.) In addition, in this main result, we prove the matrix form of the integral iden-

tities on a hyperplane for the stationary Euler equations (in addition to the vector

form for the evolutionary Euler or Navier-Stokes equations) whereas the vector form

was proved in [4] (for the evolutionary Euler or Navier-Stokes equations.)

For the main ideas of our proof of this result, see the introduction of Chapter 3

2What we mean by the notation in the first assumption in (1.15) is that for almost every fixed
xk, the map x′k ∈ RN−1 → |v(x, t)|2 + |p(x, t)| is in L1(RN−1). Similarly for the second and third
assumption in (1.15), we treat the norm

∥∥|v(x, t)|2 + |p(x, t)|
∥∥
L1(RN−1;x′k)

as a function of xk.
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or Section 3.3.

We also prove the integral identities (1.14) on a section in a domain with bound-

ary for the stationary Euler equations and establish, as an immediate application of

the integral identities, Liouville type theorems, which provide a different approach to

some of the results of Hamel and Nadirashvili [30], [31] and Chae and Constantin [8].

Liouville type theorems of the stationary Euler equations

We now present biref history of Liouville type theorems of the stationary Euler

equations.

First of all, in Chae [5], a Liouville type theorem is established in a straightforward

way by using the integral identities (1.14) : for a continuous weak solution (v, p) ∈

L1(0, T ;L2
loc,σ(RN))×L1(0, T ;L1

loc(RN)) to the Euler and the Navier-Stokes equations

(1.12) in RN satisfying (v(·, t), p(·, t)) ∈ L2(RN) × L1(RN) for some time t ∈ (0, T ),

if p(·, t) ≥ 0 on almost every hyperplane of RN , then v(·, t) = 0 in RN .

In addition, for Liouville type theorems of the stationary Euler equations, several

researchers especially studied Liouville type properties of a Beltrami solution in R3.

(See Definition 3.5.1 for a definition of a Beltrami solution.)

Chae and Constantin [8] in 2015 provided two different sets of sufficient conditions

for a Beltrami solution v to be trivial: 1) if v ∈ L2(R3), then v ≡ 0 ; 2) if v ∈ L∞loc(R3)

satisfies either v ∈ Lq(R3) for some q ∈ [2, 3) or there exists ε > 0 such that |v(x)| =

O(1/|x|1+ε) as |x| → ∞, then v ≡ 0. 3 (For a statement, see Theorem 3.0.5)

For the first sufficient condition of Chae and Constantin’s result, they proved it

by using the integral identities (1.13) in the entire space. On the other hand, they

argued differently without using the integral identities for the second set of sufficient

conditions. (For these proofs, see page 110.)

3The first part of Theorem 3.0.5 is just part of Theorem 1.2 of [8]. In the omitted part, they
provided an alternative assumption that includes λ (the function λ from the definition of Beltrami
solutions).
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However, we can still prove a statement with conditions similar to the second set

of sufficient conditions of Chae and Constantin [8] by using the integral identities

(1.14) on a hyperplane under our assumptions (1.15).

Main Result. One of our main result is to prove by using the integral identities

(Theorem 3.0.2) that for a weak Beltrami solution v, if v(x) satisfies (1.15) (without

assumptions on p), or if v ∈ L∞loc((R3) satisfies |v(x)| = O(1/|x|1+ε) as |x| → ∞ for

some ε > 0, then v ≡ 0. (For a statement of this result, see Theorem 3.0.7.)

On the other hand, Hamel and Nadirashvili in 2017, 2019 [30], [31] provide a

new approach to Liouville type theorems of the stationary Euler equations in various

special domains in R2. Their theorems pertain to a shear flow, which is a flow parallel

to a vector everywhere. (See (3.21) for a definition.) Special examples of a shear flow

include the trivial solution v ≡ 0 and v(x) = (v1(x2), 0). Instead of asking what

assumptions lead to the trivial solution v ≡ 0, they ask what assumptions lead to a

shear flow.

For example, for Ω = (0, 1)×R, they proved that if v ∈ C2(Ω) and v is tangential

on the boundary such that infΩ |v| > 0, then v(x) = (0, v2(x1)) for all x ∈ Ω. 4 (For

a statement of this result, see Theorem 3.0.9.)

As for the other domains, Ω = R+×R,R2, that they considered, their statements

are slightly different, but they assumed infΩ |v| > 0 for all the cases.

Their theorems have a limitation as pointed out by them: the assumption, infΩ |v| >

0, is not equivalent to being a shear flow because, for instance, v = (v1(x2), 0) is a

shear flow but v1 may vanish at many points, which does not satisfy the assumption

infΩ |v| > 0.

However, we can also derive integral identities on a section of a domain with

boundary and, as an immediate corollary of that, we can establish assumptions on a

4As a matter of fact, Hamel and Nadirashvili investigated the problem in R×(0, 1), not (0, 1)×R.
But this is just a matter of rotation. And here we have just stated their theorem in (0, 1) × R for
the sake of comparison to our results.
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solution (v, p) to the stationary Euler equations with some boundary condition, that

are not only sufficient but also necessary to ensure that the solution is in fact a shear

flow.

Main Result. One of our main results is to show that, for example, for Ω = (0, 1)×R,

if (v, p) is a C1(Ω) solution to the stationary Euler equations satisfying v2|∂Ω = 0 and

lim inf
|x2|→∞

∫ 1

0

(
v2

2(x) + p(x)
)
dx1 = 0,

∫ 1

0

p(x)dx1 ≥ 0 for all x2 ∈ R, (1.16)

then v is a shear flow, that is, v(x) = (v1(x2), 0) for all x ∈ Ω. (Our main theorems of

this topic for various types of domains can be found in Theorems 3.0.10, 3.4.2, 3.4.3,

3.4.4, 3.4.9.)

The assumption on the integral of the pressure p is equivalent to to being a shear

flow. See also Remark 3.4.5.

Regarding the second assumption of (1.16), we cannot simply remove this assump-

tion because there are counterexamples, the example defined in (3.20).

One downside of our result is that we are making a non-standard boundary con-

dition. But example (3.20) even satisfy both the non-standard boundary condition

(3.23) and the standard boundary condition v ·n|∂Ω = 0, that is, v1|∂Ω = 0. See also

Remarks 3.4.6, 3.4.7
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Chapter 2

Stationary Navier-Stokes

Equations in Exterior Domains

Let Ω be an exterior domain with non-empty boundary in R2, that is, the complement

of a non-empty compact subset of R2. (In this chapter, we will mainly consider the

case of two dimension unless stated otherwise.) Consider the stationary (incompress-

ible) Navier-Stokes equations:


ν∆v − (v · ∇)v −∇p = f in Ω,

divv = 0 in Ω,

(2.1)

with boundary conditions on ∂Ω and at infinity:

v|∂Ω = v∗ (2.2)

lim
|x|→∞

v = v∞ (2.3)

where v∗ = v∗(x) is a prescribed boundary function on ∂Ω, and f = f(x) is a given

external force, and v∞ is a prescribed constant vector. The constant ν > 0 is a given

parameter, called viscosity. The unknowns are a pair of a velocity field v : Ω → R2
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and pressure p : Ω → R. This system models three-dimensional flow past a infinite

straight cylindrical body when it flows in the direction orthogonal to the axis of the

cylinder. For more details on the physical meaning of this system, see Galdi (Section

I.2 of [21]). The boundary value problem of the stationary Navier-Stokes equations in

a two-dimensional exterior domain has been undoubtedly one of the most intriguing

topics in fluid mechanics.

In his seminal paper [40] of 1933, Leray initiated the study of this problem with a

major breakthrough. Among many things, Leray proved the existence of a solution to

the problem (2.1),(2.2) (the first boundary condition only) that satisfies additionally

the finite Dirichlet energy condition

∫
Ω

|∇v|2 dx <∞ (2.4)

under the assumption that the flux on each connected component of the boundary

vanishes, that is,

∫
∂Ωi

v∗ · n dσ = 0 for all i = 1, · · · ,M (2.5)

where the complement of the domain Ω is written as a disjoint union of several

connected components, that is, Ωc = ∪Mi=1Ωi. A solution to the problem (2.1), (2.2)

with finite Dirichlet energy (2.4) is called a Dirichlet solution or D-solution.

The main idea of Leray’s method is to first find a sequence of solutions vk to
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analogous problems of bounded domains Ωk = Ω ∩BRk , that is,

ν∆vk − (vk · ∇)vk −∇pk = 0 in Ωk

divvk = 0 in Ωk

vk = v∗ in ∂Ωk

vk = v∞ for |x| = Rk


(2.6)

where Rk is a sequence such that Rk → ∞ as k → ∞. Then we prove an uniform

estimate of the Dirichlet energy

∫
Ωk

|∇vk|2 dx ≤ c for all k; (2.7)

for some constant c independent of k. It implies, in turn, that a subsequence vkl

weakly converges to a limit vL, which is a solution to the problem (2.1), (2.2) satisfying

(2.7). This solution vL is called Leray’s solution. And this approach is called the

method of “invading domains”.

Leray’s arguments were made for two- as well as three-dimension with a major

difference between these cases. As opposed to the three-dimensional case, Leray

was not able to show that2 his solution satisfies the condition (2.3) at infinity in

the two-dimensional case. In the three-dimensional case, Leray proved the following

inequality:

∫
Ω

|v(x)− v∞|2

|x|2
dx ≤ 4

∫
Ω

|∇v(x)|2dx.

This inequality, in turn, implies (2.3) in a generalized sense. On the other hand, in

the two-dimensional case, we only have the weaker inequality

∫
Ω

|v(x)− v∞|2

|x|2 log2 |x|
dx ≤ 4

∫
Ω

|∇v(x)|2dx.
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This inequality does not even ensure the convergence at infinity. (There is a simple

counterexample of a function that satisfies the finite Dirichlet energy condition but

grows at infinity in two dimension.) A number of remarkable partial results have been

made to resolve this issue of convergence at infinity in two-dimension, but still this is

one of the big open problems in this area. For more history, see Section 2.1.

In addition, Leray’s argument left out another long-standing open question. Note

that the condition that ‘total flux’ on the boundary ∂Ω vanishes, that is,

∫
∂Ω

v∗ · n dσ = 0, (2.8)

is a necessary condition for bounded domains Ω due to the incompressibility condition

divv = 0. This condition (2.8), however, is no longer a priori a compatibility condition

in the case of exterior domains. In addition, note that condition (2.5), that Leray

imposed, is even stronger than (2.8). Leray’s method has been extensively studied

in order to relax condition (2.5) and to remove condition (2.8) eventually. A. Russo

in 2009 [43] relaxed condition (2.5) into the one of small flux when ∂Ω has a single

connected component. (See Theorem 2.1.1.) There was a major recent breakthrough

made by Korobkov, Pileckas, Russo [37] in 2020 saying that, in two dimension, there

exists a solution to (2.1), (2.2) with f ≡ 0 under assumption (2.8). In other words,

they relaxed condition (2.5) of Leray into (2.8). For more details about their theorems,

and sketch of one of their proofs, see Section 2.1 and Theorems 2.1.3, 2.1.4, 2.1.5.

However, a further step, which is to get rid of condition (2.8), is still open. In other

words, it is open to establish an existence theorem under no restrictions on total flux

on the boundary ∂Ω by using Leray’s method.

On the other hand, we can also apply a perturbation theory to investigate problem

(2.1), (2.2), (2.3). For the case v∞ = 0, we can linearize equation (2.1) around
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v∞ = 0, which leads to the following linear problem:


ν∆u−∇p = f in Ω

divu = 0 in Ω

(2.9)

with the boundary conditions

u|∂Ω = u∗ (2.10)

lim
|x|→∞

u(x) = 0 (2.11)

These equations are called the Stokes equations. (We will use the letter u when

we deal with a linearized problem.) These equations have been extensively stud-

ied. However, this Stokes approximation involve a serious obstacle to the study of

a perturbation theory of problem (2.1), (2.2), (2.3) in the case v∞ = 0; the Stokes

problem above is not always solvable. In other words, the problem is solvable if and

only if the boundary value u∗ and the external force f satisfy a certain condition.

In particular, if f = 0 and u∗ is a nonzero constant vector, then the problem (2.9),

(2.10), (2.11) does not admit a solution. This phenomena is called the Stokes paradox.

For more details about the Stokes paradox, see Theorem 2.3.3. And this is the case

only in two dimension, which again gives another major difficulty in the study of the

two-dimensional case compared to the three-dimensional one.

In addition, Hamel in 1916 found examples in two dimension, which provides

another reason the two-dimensional case is more involved. Hamel’s examples are
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given by

vr = −λ
r
,

vθ =
ω

λ− 2

1

r

(
1− r−λ+2

)
p = −λ

∫ (
1

2

dv2
r

dr
− v2

θ

r

) (2.12)

This is a solution to 

∆v − λ(v · ∇)v −∇p = 0 in Ω,

divv = 0 in Ω

v|∂Ω = −λer

lim
|x|→∞

v(x) = 0

(2.13)

for arbitrary constant ω and λ 6= 2 when Ω is the complement of a unit ball in R2.

Note that, when λ is sufficiently close to 1, this family of examples provide solutions

which decay slower than any negative power of r. Hence in the case v∞ = 0, it is

unclear what asymptotic behavior solutions to the main problem (2.1), (2.2), (2.3)

might a priori have. Moreover, this family of examples assumes the same boundary

data for all ω, which provides examples of nonuniqueness in the case of v∞ = 0.

However, if we consider the case of the non-vanishing vector prescribed at infinity,

that is, v∞ 6= 0, then the situation is more manageable.

To understand the nature of the case v∞ 6= 0, we first write the problem (2.1),

(2.2), (2.3) in a dimensionless form. Indeed, in the case v∞ 6= 0, via scaling and

rotation, we can normalize the vector v∞ to the vector e1 = 〈1, 0〉 which leads to the
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following dimensionless form:


∆w − λ(w · ∇)w −∇π = λF in Ω

divw = 0 in Ω

(2.14)

with the boundary conditions

w|∂Ω = w∗ (2.15)

lim
|x|→∞

w(x) = w∞ = e1 (2.16)

where λ > 0. (In this chapter, we will use the letter w when we deal with the

Navier-Stokes equations in the dimensionless form (2.14) with the normalized vector

w∞ = e1 whereas v∞ still denotes a prescribed vector that is not re-scaled.) In

this dimensionless form, Reynolds number λ being small amount to small v∞ or big

viscosity ν in the original form. Our main results of this chapter are to establish

an existence theorem of a solution (w, π) to the problem (2.14), (2.15), (2.16) (see

Theorems 2.0.3, 2.0.8).

In a series of papers [17],[49],[18] from 1965 to 1967, Finn and Smith considered

the case of v∞ 6= 0 in two dimension and proved existence of a solution to (2.14),

(2.15). (2.16) with F = 0 if the norm of the quantity (w∗ −w∞)/| log λ| is less than

a certain constant depending on Ω, λ0 (some upper bound of λ which is independent

of data w∗). See Theorem 4.1 of [18] 1. This is the first existence theorem of the

problem (2.14), (2.15), (2.16) at least with some smallness assumption on data because

Leray’s method is not complete in the sense that Leray’s solution has not been proved

to satisfy the boundary condition at infinity (2.3). And this result is meaningful as

it rules out the famous Stokes paradox for the nonlinear problem at least for small

data.

1This statement might appear to be different from Finn and Smith’s, but they are equivalent
because here we have assumed w∞ = 〈1, 0〉.
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Indeed, they first linearize the stationary Navier-Stokes equations (2.14) (with

F = 0) around w∞ = e1. Setting u = w −w∞, problem (2.14) (with F = 0) turns

into


∆u− λ ∂u

∂x1

−∇π = λ(u · ∇)u in Ω

divu = 0 in Ω

(2.17)

with the boundary conditions

u|∂Ω = u∗ (2.18)

lim
|x|→∞

u(x) = 0 (2.19)

where x = (x1, x2) and u∗ = w∗−w∞. In [17], Finn and Smith studied on the linear

equation obtained by formally removing the nonlinear term in (2.17):


∆u− λ ∂u

∂x1

−∇p = 0 in Ω

divu = 0 in Ω

with the boundary conditions

u|∂Ω = u∗,

lim
|x|→∞

u(x) = 0.

This linear equation is called the Oseen equations, originally proposed by Oseen.

(see the introduction of Chapter V in Galdi [21] for detailed history of the Oseen

equations.) The non-homogeneous boundary value problem of the Oseen equations

are solvable even in two dimension in contrast to the Stokes problem.

Second, due to the term ∂u/∂x1 in the equation (2.17), a solution u has anisotropic

asymptotic behaviors at infinity. With help of this anisotropic asymptotic behavior, in
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1965, Smith [49] made a painstaking estimate of the nonlinear contribution associated

to the nonlinear term in (2.17). Combining these results of [17], [49] with a fixed

point argument, they proved existence of a solution to (2.17), (2.18), (2.19),with

F = 0, which in turn yields existence of a solution to (2.14), (2.15), (2.16) . (Here

the boundary condition at infinity is fulfilled in the sense that w converges to w∞

uniformly.) In this regard, see also [15], [16], [39], [14].

On the other hand, Galdi also studied the same problem and prove an existence

theorem as follows.

Theorem 2.0.1 (Theorem XII.5.1 Galdi [21]). Let Ω ⊂ R2 be an exterior domain of

class C2. Let F ∈ Lq(Ω),w∗ ∈ W 2−1/q,q(∂Ω) for some 1 < q < 6/5, and let w∞ = e1.

Then there exists λ0 > 0 such that for λ ∈ (0, λ0], if

| log λ|−1‖w∗ −w∞‖2−1/q,q,∂Ω + λ2/q−1‖F ‖q <
1

32c2

for some constant c = c(Ω, q, λ0), then there exists a solution w, p to (2.14), (2.15),

(2.16) such that w −w∞ ∈ X2,q(Ω) and p ∈ D1,q(Ω). Furthermore,

‖w −w∞‖X1,q ≤ c2(λ2(1−1/q)| log λ|−1‖w∗ −w∞‖2−1/q,q,∂Ω + λ‖F‖q).

If there exists another solution w̃, p̃ corresponding to the same data such that

cλ−2(1−1/q)‖w̃ −w∞‖X1,q < 13/64,

then w ≡ w̃, p ≡ p̃+ const.

For notations and function spaces, see the end of this introduction and Section

2.2.

Even though Theorem 2.0.1 is taken from Theorem XII.5.1 in Galdi 2011 [21], the

result was originally proved in Theorem 4.1 of Galdi 1993 [23].
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Galdi used a fixed point argument but studied the Oseen equations in a way

different from Finn and Smith’s. Galdi’s work involves Sobolev-type function spaces

as opposed to Finn and Smith’s. In this thesis, we mainly make use of these results

of Galdi on the Oseen equations rather than Finn and Smith’s.

And it is worth to notice that Finn and Smith’s results as well as Galdi’s do not

impose any assumption on flux as like (2.8).

However, both Galdi’s result and Finn and Smith’s have some limitation. With λ

fixed, data w∗ must be chosen close to w∞ = 〈1, 0〉 to ensure existence of a solution.

In this chapter, an improvement has been made to overcome this limitation. The

main theorem of this chapter implies that with λ fixed (in a certain range), there

exists a solution (w, π) to (2.14), (2.15), (2.16) even for some data w∗ which is big in

the sense that w∗ is “far” from w∞. See Theorem 2.0.3 below.

The key idea toward this end comes from A. Russo and Starita [44] in 2008.

Theorem 2.0.2 (Theorem 3.6 of Russo, Starita [44]). Let Ω be an exterior Lipschitz

domain in R3 and v∞ = 0. Let β be a harmonic function in Ω satisfying ∇β(x) =

O(|x|−2). Assume v∗ − µ∇β ∈ L∞(∂Ω). Then there exists a countable subset G ⊂ R

such that for any µ
ν
6∈ G, if

‖v∗ − µ∇β‖L∞(∂Ω) ≤ c (2.20)

for some constant c = c(Ω, µ, ν,∇β), then there exists a solution (v, p) to (2.1), (2.2),

(2.3) with f = 0 such that

(v, p) ∈ [L∞σ (Ω, r) ∩ C∞(Ω)]× [L∞(R2 \BR, r
2 log r) ∩ C∞(Ω)] (2.21)

and v converges to v∗ nontangentially.

The notation L∞(Ω, r), L∞(R2 \ BR, r
2 log r) refers to a weighted L∞ space with
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weights r, r2 log r respectively. 2

They proved existence of a solution (vanishing at infinity) to the stationary Navier-

Stokes equations in three dimensional exterior domain with the boundary condition

(2.20), which allows some large data w∗ because µ can be chosen large.

To explain their idea, if v is a solution to the stationary Navier-Stokes equations

(2.1) and β is a harmonic function in Ω such that∇β satisfies some decaying condition

at infinity, then setting u = v − µ∇β for a scalar parameter µ leads to equivalent

equations for u that have linear terms involving µ∇β:



ν∆u−∇p = f + (u · ∇)u+ µ(∇β · ∇)u+ µ(u · ∇)∇β in Ω

divu = 0 in Ω

u|∂Ω = u∗

lim
|x|→∞

u(x) = 0

(They, in fact, did not involve an external force in their work.) Here ∇β is called a

potential flow. They proved compactness of a volume potential associated with these

linear terms, which is actually a linear operator of u. Then they applied a spectral

theorem of compact linear operators along with a fixed point argument to make a

conclusion as desired. What they eventually proved implies existence of a solution u

for data v∗ close to µ∇β, whose parameter µ can be chosen large outside a countable

subset of R.

The idea of perturbing around a potential flow originated from H. Fujita and H.

Morimoto [19] in 1997 where they used the idea in a bounded domain. And after A.

Russo and Starita’s work [44], A. Russo and Tartaglione [45] in 2011 extended the

result of [44] to higher dimension. But all of these papers only concern with the case

of vanishing vector prescribed at infinity (and do not involve external force).

2the authors of [44] did not explicitly mention about the pressure or the radius R in their state-
ment or in the proof, and it is unclear to me how the radius R is determined.
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To incorporate this idea into our main problem (2.14), (2.15), (2.16) in the case

v∞ 6= 0 and in two dimension, we fix a harmonic function β in Ω such that ∇β decays

at infinity, and we derive another form of the stationary Navier-Stokes equations

rather than (2.17) by setting u = w−w∞−µ∇β where µ is a scalar parameter if w

is a solution to (2.14) with w∞ = e1 Then for u∗ = w∗ −w∞ − µ∇β on ∂Ω and

p = π +
λµ2

2
|∇β|2 + λµ

∂β

∂x1

,

the equations (2.14) turn into


∆u− λ ∂u

∂x1

−∇p = λ(u · ∇)u+ λµ(∇β · ∇)u+ λµ(u · ∇)∇β + λF in Ω

divu = 0 in Ω

(2.22)

with the boundary conditions

u|∂Ω = u∗ (2.23)

lim
|x|→∞

u(x) = 0 (2.24)

Here we have used the fact that ∇β is the gradient of a harmonic function. We will

use this equivalent form (2.22) in the proof of our main result.

Here is one of our main theorems in this chapter.

Theorem 2.0.3. Let Ω be an exterior domain in R2 of class C2. Let w∞ = e1, q ∈

(1, 6/5) and λ ∈ (0, λ0] for some constant λ0 = λ0(Ω). Fix a harmonic function

β in Ω. Assume ∇β ∈ X2,q(Ω). Let µ ∈ R \ G for some countable subset G =

G(λ,Ω, q,∇β) of R. If w∗ ∈ W 2−1/q,q(∂Ω) and F ∈ Lq(Ω) satisfies

‖w∗ −w∞ − µ∇β‖2−1/q,q,∂Ω + ‖F ‖q,Ω <
1

4c1c2

(2.25)
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for some constants cj = cj(Ω, q, λ, µ,∇β) > 0, j = 1, 2, then there exists a solution

(w, π) to (2.14), (2.15),(2.16) such that

(w −w∞ − µ∇β) ∈ X2,q(Ω), π +
λµ2

2
|∇β|2 + λµ

∂β

∂x1

∈ Y 1,q(Ω) (2.26)

‖w −w∞ − µ∇β‖X2,q(Ω) ≤ 2c1(‖w∗ −w∞ − µ∇β‖2−1/q,q,∂Ω + ‖F ‖q,Ω). (2.27)

If there exists another solution (w̃, π̃) corresponding to the same data w∗,F such that

(w̃ −w∞ − µ∇β) ∈ X2,q(Ω), π̃ +
λµ2

2
|∇β|2 + λµ

∂β

∂x1

∈ Y 1,q(Ω),

‖w̃ −w∞ − µ∇β‖X2,q(Ω) ≤
1

2c2

, (2.28)

then w ≡ w̃, π ≡ π̃ + const.

A proof of Theorem 2.0.3 is written in Section 2.8 (page 63).

Remark 2.0.4. In this Theorem 2.0.3, as mentioned earlier, fixing λ ∈ (0, λ0] (this

smallness assumption does not depend on the data w∗,F ), µ can be chosen large

because G is a countable set. Hence large boundary value w∗ is allowed, which is not

the case for Finn and Smith’s result and Galdi’s.

Remark 2.0.5. An example of ∇β ∈ X2,q(Ω), 1 < q < 6/5 is β = log |x|. Note that

this example ∇β have nonzero flux on the boundary ∂Ω. Therefore, as µ may be

large, µ∇β may have a large total flux.

Remark 2.0.6. The author of this thesis does not know whether the exceptional set

G = G(λ,Ω, q,∇β) is empty or not. But in the special case of Ω = {x ∈ R2 : R1 <

|x| < R2} and β = log |x|, H. Morimoto proved that the exceptional set G that he

got by applying the same method as the one for Theorem 2.0.3 is empty. See, for

example, [41].

Remark 2.0.7. Theorems 2.0.3, 2.0.8 pertain to the dimensionless form (2.14). If we

use the original form (2.1) with (2.2), (2.3), then let d = diam(Ω), and via scaling
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and rotation, the problem (2.1), (2.2), (2.3) turns into the problem (2.14), (2.15),

(2.16) with λ = (|v∞|d)/ν (and with diam(Ω) normalized to be 1). Hence small

Reynolds number λ amounts to small velocity |v∞| at infinity or small obstacle d or

large viscosity ν. Therefore, all the theorems of Finn and Smith, Galdi along with

Theorem 2.0.8 mean that a solution exists if the velocity |v∞| at infinity or the size

of the obstacle is small, or if viscosity ν is large.

Theorem 2.0.3 pertains to the case v∞ 6= 0 in two-dimension whereas Russo and

Starita’s result deal with the case v∞ = 0 in three-dimension.

The constants c1, c2 depend on λ. But Theorem 2.0.3 does not provide information

about how c1, c2 behave as λ varies. However, we can prove a theorem with estimates

with constants independent of λ ∈ (0, λ0] provided that µλ2/q−5/3 is sufficiently small.

(Note that the power 2
q
− 5

3
> 0 for q ∈ (1, 6/5))

Theorem 2.0.8. Let Ω be an exterior domain in R2 of class C2. Let w∞ = e1, q ∈

(1, 6/5) and λ ∈ (0, λ0] for some constant λ0 = λ0(Ω). Fix a harmonic function β

in Ω and assume ∇β ∈ X2,q(Ω). Let µ ∈ R \ G for some countable subset G =

G(λ,Ω, q,∇β) of R. Assume in addition that c3µλ
2
q
− 5

3 < 1 for some constant c3 =

c3(Ω, q, λ0,∇β). If w∗ ∈ W 2−1/q,q(∂Ω) and F ∈ Lq(Ω) satisfies

c2
4(| log λ|−1‖w∗ −w∞ − µ∇β‖2−1/q,q,∂Ω + λ

2
q
−1‖F ‖q,Ω)

(1− c3µλ
2
q
− 5

3 )2
<

1

4
(2.29)

for some constant c4 = c4(Ω, q, λ0), then there exists a solution (w, π) to (2.14),

(2.15),(2.16) such that

(w −w∞ − µ∇β) ∈ X2,q(Ω), π +
λµ2

2
|∇β|2 + λµ

∂β

∂x1

∈ Y 1,q(Ω)
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and

‖w −w∞ − µ∇β‖X2,q(Ω)

≤
c4(λ2(1−1/q)| log λ|−1‖w∗ −w∞ − µ∇β‖2−1/q,q,∂Ω + λ‖F ‖q,Ω)

1− c3µλ
2
q
− 5

3

If there exists another solution (w̃, π̃) corresponding to the same data w∗,F such that

(w̃ −w∞ − µ∇β) ∈ X2,q(Ω), π̃ +
λµ2

2
|∇β|2 + λµ

∂β

∂x1

∈ Y 1,q(Ω),

‖w̃ −w∞ − µ∇β‖X2,q(Ω) ≤
1− c3µλ

2
q
− 5

3

8c0

λ2(1−/q), (2.30)

then w ≡ w̃, π ≡ π̃ + const.

A proof of Theorem 2.0.8 is written in Section 2.8 (page 63).

Notations

In this thesis, we denote a vector-valued or tensor-valued function in boldface:

For example, we denote a scalar field by p, a vector field by v = (v1, v2) and a tensor

field by T = {Tjk}.

In this chapter, for a vector field u defined on Ω, 1 ≤ q ≤ ∞ we write

‖u‖q = ‖u‖Lq(Ω), |u|m,q = ‖Dmu‖Lq(Ω) =
∑
|α|=m

‖Dαu‖Lq(Ω), m = 1, 2, . . .

where the summation is taken over all multi-index α with |α| = m. Here, for α =

(α1, α2),

Dαu =
∂|α|

∂xα1
1 ∂x

α2
2

u

denotes the α-th weak derivative of u. For an arbitrary domain A, we write

‖u‖q,A = ‖u‖Lq(A), |u|m,q,A = ‖Dmu‖Lq(A).
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We denote the norm of Wm−1/q,q(∂Ω),m = 1, 2, . . . by

‖u‖m−1/q,q,∂Ω = ‖u‖Wm−1/q,q(∂Ω).

For 1 ≤ q ≤ ∞, m ∈ N, we denote

Dm,q = Dm,q(Ω) = {u ∈ L1
loc(Ω) : Dmu ∈ Lq(Ω)}.

We denote by Dm,q
0 (Ω) by the completion of the normed space {C∞0 (Ω); | · |m,q}. And

we denote by D−m,q0 (Ω) the completion of C∞0 (Ω) in the norm

|f |−m,q = sup

{∣∣∣∣∫ fu

∣∣∣∣ : u ∈ Dm,q
0 (Ω), |u|m,q = 1

}
. (2.31)

In addition, for a vector field v and pressure field p, we denote by T (v, p) = {Tjk(v, p)}

the Cauchy stress tensor given by

Tjk(v, p) = −pδjk +

(
∂vj
∂xk

+
∂vk
∂xj

)
.

For an exterior domain Ω with the origin of coordinates in Ωc, we set

Ωr = Ω ∩Br(0) = Ω ∩Br,

Ωr = Ω− Ωr.

Outline of this chapter

This chapter is divided into three parts: Leray’s method (Section 2.1), perturba-

tion methods (all the other sections except the last one), Liouville problem in three

dimension (Section 2.12). In Section 2.1, we provide more detailed history of Leray’s

method up to very recent breakthroughs by Korobkov, Pileckas, Russo.

For perturbation methods, Section 2.2 contains definitions, notations, properties
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of function spaces that Galdi used. In Section 2.3, we present on basic results of the

Stokes equations including the Stokes paradox. In Section 2.4, we study an existence

theorem of the Oseen equations and a compactness theorem, which will be used in

our main results of this chapter. Section 2.5 provides definitions of the Stokes and the

Oseen fundamental solutions and present on their asymptotic behavior. In Section 2.6,

we study representation formula of solutions to the Stokes and the Oseen equations.

Section 2.7 furnishes study of the nonlinear problem by perturbing around w∞ = e1.

In Section 2.8, we provide more history of perturbation methods around a potential

flow and our main results of this topic with their proofs. In the next Section 2.9, we

present a recent result by using perturbation methods in case v∞ = 0. In Section

2.10 we briefly study asymptotic behavior of a solution to the nonlinear problem. In

Section 2.11 we present a result about the behavior of a solution to the nonlinear

problem in the limit of vanishing Reynolds number.

In the last section 2.12, we briefly present on history of a Liouville problem in

three dimension of the stationary Navier-Stokes equations.

2.1 Leray’s Method

This section is devoted to provide more history of Leray’s method.

As mentioned in the introduction of this chapter, study of the non-homogeneous

boundary value problem of the stationary Navier-Stokes equations in a two-dimensional

exterior domain was initiated by J. Leray in 1933 [40]. He proved existence of a so-

lution to the problem (2.1),(2.2) with finite Dirichlet energy (2.4) under assumption

(2.5) on the flux of the boundary function on each connected component of the bound-

ary. But he was not able to prove that his solution satisfies the boundary condition

(2.3) at infinity only in the two-dimensional case.

Leray left out several important open problems other than the validity of (2.3):
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removing a condition on the flux of the boundary function and non-triviality of his

solution.

Regarding the validity of (2.3), in the three-dimensional case, Leray proved valid-

ity of the boundary condition (2.3) at infinity using the condition of finite Dirichlet

energy condition. But in two dimension, the condition of finite Dirichlet energy alone

no longer implies convergence at infinity because there are examples in two dimension

with finite Dirichlet energy condition which grows at infinity. Proving the validity

of the boundary condition in Leray’s method in two dimension is one of the major

challenging open problems, which is still open to date.

To overcome this difficulty, there have been numerous remarkable results. Gilbarg

and Weinberger [50], [27] proved that for arbitrary D-solution v, if v is bounded,

then there is a constant vector ṽ∞ such that

lim
r→∞

∫ 2π

0

|v(r, θ)− ṽ∞|2dθ = 0 (2.32)

(along with more information about the asymptotic behavior of v). Note that it does

not give information about the relation between v∞, ṽ∞ and it still remains open.

(Note that Leray’s construction of a solution involves the prescribed vector v∞ at

infinity.) Amick [1] proved that if v vanishes on the boundary, then v is bounded.

However if v vanishes on the boundary, then the solution could even be the trivial one.

Amick [1] proved non-triviality of Leray’s solution with some symmetry assumption

on the domain.

Regarding condition (2.5), that is,

∫
∂Ωi

v∗ · n dσ = 0 for all i = 1, · · · ,M,

where the complement of the domain Ω is written as a disjoint union of several

connected components, that is, Ωc = ∪Mi=1Ωi. A. Russo [43] relaxed this condition
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into a condition of small flux but in the case M = 1 (∂Ω has a single connected

component).

Theorem 2.1.1 (Theorem 4 of A. Russo [43]). Let Ω = R2\Ω0 where ∂Ω0 is connected

and Lipshitz. Let f ∈ D−1,2
0 (Ω) and v∗ ∈ W 1/2,2(∂Ω). If

ν >
ξ

2π

∣∣∣∣∫
∂Ω

v∗ · ndσ
∣∣∣∣ (2.33)

where

ξ = sup

{∣∣∣∣∫
R2

log |x|div(w · ∇w)

∣∣∣∣ ;w ∈ D1,2
σ (R2), ‖w‖D1,2

σ (R2) = 1

}

then there exists a weak solution v ∈ W 1,2
σ (Ω) to


ν∆v − v · ∇v = ∇p+ f in Ω

divv = 0 in Ω

v|∂Ω = v∗.

Here the subscript σ of D1,2
σ ,W 1,2

σ implies that we consider divergence free vector

fields, that is, D1,2
σ = {w ∈ D1,2 : divw = 0}, W 1,2

σ = {v ∈ W 1,2(Ω) : divv = 0}.

Very recently, Korobkov, Pileckas, Russo have made major breakthroughs for

various open problems in this topic with remarkable methods. They proved that

a Dirichlet solution converges uniformly to some vector ṽ∞ at infinity without any

additional assumptions in 2019 [36] and that a Dirichlet solution to (2.1), (2.2) with

f = 0 exist under the vanishing total flux assumption in 2020 [37] ; they also proved

uniform boundedness of a Dirichlet solution in 2020 [37] and non-triviality of Leray’s

solution in 2021 [38]. In addition, they also established an existence theorem of a

solution in an exterior axially symmetric domain in three dimension in 2018 [35].

Their idea is to study stream functions and head pressures and geometry of their
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level sets by using Bernouli’s law for a Sobolev solution to the stationary Euler equa-

tions, which was also recently proved. This method is very robust to address many

problems in the topic of the stationary Navier-Stokes equations in a two-dimensional

exterior domain.

We state here some of their recent theorems.

Theorem 2.1.2 (Theorem 1.2 of Korobkov, Pileckas, Russo [37]). Let Ω ⊂ R2 be an

exterior domain of class C2. Suppose that v∗ ∈ W 1/2,2(∂Ω) and

∫
∂Ω

v∗ · ndσ = 0. (2.34)

Then there exists a D-solution v to (2.1), (2.2) with f ≡ 0.

Theorem 2.1.3 (Theorem 1.1 of Korobkov, Pileckas, Russo [38]). Let Ω be an ex-

terior domain in R2 with smooth compact boundary and v∞ 6= 0. Take a sequence

vk of solutions to (2.6) with v∗ = 0 , and take further arbitrary weakly convergence

subsequence vkl that weakly converges to v. Then the limiting solution v to (2.1),

(2.2) with f = 0,v∗ = 0 is nontrivial. In particular, Leray’s solution is nontrivial.

Theorem 2.1.4 (Theorem 1.2 of Korobkov, Pileckas, Russo [36]). Let v be a D-

solution to the stationary Naiver-Stokes equations (2.1) with f = 0 in an exterior

domain Ω ⊂ R2. Then v converges uniformly at infinity to the constant vector ṽ∞

defined in (2.32).

Despite of these remarkable series of papers by Korobkov, Pileckas, Russo, there

are still challenging open problems in the direction of Leray’s method. It is still open

to relax condition (2.34) in order to allow at least small total flux, and it is open to

show v∞ = ṽ∞ (or they do not match).

In addition, as mentioned earlier, they solved a big open problem in a bounded

domain by using a similar method in 2015.
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Theorem 2.1.5 (Theorem 1.1 of Korobkov, Pileckas, Russo [34]). Let Ω ⊂ R2 be a

bounded domain of class C2. If f ∈ W 1,2(Ω) and v∗ ∈ W 3/2,2(∂Ω) satisfy

∫
∂Ω

v∗ · n dσ = 0,

then there exists a weak solution v to the problem

ν∆v − (v · ∇)v −∇p = f in Ω

divv = 0 in Ω

v|∂Ω = v∗.

(2.35)

To illustrate their methods, we present here the main idea of their proof of The-

orem 2.1.5. To this end, we first study Leray’s argument reductio ad absurdum.

Let H(Ω) be the subspace of all solenoidal vector fields from D1,2
0 (Ω) equipped with

‖∇v‖L2(Ω). Let V be a solenoidal extension of v∗ and w = v − V . Then by Leray-

Schauder Thereom, there exists a weak solution v to the problem (2.35) if and only

if all solutions w to the probem

ν

∫
Ω

∇w · ∇ηdx− λ
∫
∂Ω

((w + V ) · ∇)η ·wdx

− λ
∫

Ω

w · ∇η · V dx = λ

∫
Ω

V · ∇η · V dx, for all η ∈ H(Ω)

are uniformly bounded in H(Ω) with respect to λ ∈ [0, 1]. Assuming this is not true,

we can prove the following lemma.

Lemma 2.1.6 (Lemma 3.1 of Korobkov, Pileckas, Russo [34]). Let Ω be a bounded

domain of class C2. If there exists no weak solution to (2.35), then there exists u, p

that satisfies the following properties;
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• u ∈ W 1,2(Ω), p ∈ W 1,q(Ω), 1 < q < 2 is a solution to the Euler system

(v · ∇)v +∇p = 0 in Ω

divv = 0 in Ω

v|∂Ω = 0,

• there exists a sequence uk ∈ W 1,2(Ω), pk ∈ W 1,q(Ω) and numbers νk → 0+, λk →

λ0 > 0 such that ‖uk‖W 1,2(Ω), ‖pk‖W 1,q(Ω) are uniformly bounded for every q ∈

[1, 2), the pairs uk, pk satisfies

νk∆uk + (uk · ∇)uk +∇pk = fk in Ω

divuk = 0 in Ω

uk|∂Ω = v∗k

where fk =
λkν

2
k

ν2
f ,v∗k = λkνk

ν
v∗, and

‖∇uk‖L2(Ω) → 1, uk ⇀ u in W 1,2(Ω), pk ⇀ p in W 1,q(Ω) for all q ∈ [1.2).

(2.36)

Moreover, uk ∈ W 3,2
loc (Ω), pk ∈ W 2,2

loc (Ω).

Now the goal is to reach a contradiction. Korobkov, Pileckas, Russo derived a

contradiction as follows. For i = 1, 2, . . . and sufficiently large k, they construct a

set Ei ⊂ Ω consisting of level lines of Φk := pk + 1
2
|uk|2 such that Φk|Ei → 0 as

i→∞ and Ei separates the boundary component where Φ := p+ 1
2
|u|2 = 0 from the

boundary components where Φ < 0. By using Coarea formula, they established an

estimate from below for
∫
Ei
|∇Φk|. On the other hand, they established an estimate

from above for
∫
Ei
|∇Φk|2. From these estimates, we can reach a contradiction as

i→∞.
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2.2 Sobolev-Type Function Spaces

We first introduce appropriate function spaces that are used in Galdi’s approach.

(See Galdi [24] p.20-23). For 1 < q < 3/2, let q∗ = 2q/(2 − q), s1 = 3q/(3 − q), s2 =

3q/(3 − 2q). Note q < s1 < q∗ < s2. For 1 < q < 3/2, λ > 0,u = (u1, u2) ∈ L1
loc(Ω),

define

〈u〉λ,q = λ(‖u2‖q∗ + |u2|1,q) + λ2/3‖u‖s2 + λ1/3|u|1,s1 ,

(Recall the Oseen equations have an anisotropical structure, so it is natural to work

with anisotropic Sobolev-type norms like above.) Similarly, for an arbitrary domain

A in R2, we define

〈u〉λ,q,A = λ(‖u2‖q∗,A + |u2|1,q,A) + λ2/3‖u‖s2,A + λ1/3|u|1,s1,A,

We define

X1,q(Ω) = {u ∈ L1
loc(Ω) : divu = 0 weakly, 〈u〉λ,q <∞}

X2,q(Ω) = {u ∈ X1,q(Ω) : D2u ∈ Lq(Ω)}.

In these definitions of X1,q(Ω) and 〈u〉λ,q, scaling by λ does not affect the definition

of X1,q(Ω). In other words, even if we define 〈u〉λ,q with λ replaced by 1, it would

define the same space X1,q(Ω). But we use the scaled norm 〈·〉λ,q because we will

make estimates of the scaled norm 〈u〉λ,q for a solution u to a fluid equation with a

Reynolds number λ; and these estimates will involve constants independent of λ.

These X-spaces are set up for a velocity field u; we also introduce a space for

pressure p:

Y 1,q(Ω) = {p ∈ Lq∗(Ω) : Dp ∈ Lq(Ω)}.
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The spaces X1,q, X2,q are reflexive, separable Banach spaces when equipped with the

following norms respectively:

‖u‖X1,q = 〈u〉λ,q

‖u‖X2,q = 〈u〉λ,q + |u|2,q.

The space Y 1,q is also a reflexive, separable Banach space endowed with the norm:

‖p‖Y 1,q = ‖p‖q∗ + |p|1,q.

We observe that the continuous embedding holds: Xm,q(Ω) ↪→ Wm,q(ΩR) for m = 1, 2

and large R > 0 where ΩR = Ω ∩ BR(0) and Wm,q refers to the Sobolev spaces. If Ω

is locally Lipschitz, then the trace map is continuous:

u ∈ Xm,q(Ω) 7→ u|∂Ω ∈ Wm−1/q,q(∂Ω), m = 1, 2.

We observe that for every u ∈ X2,q(Ω), it holds that

lim
|x|→∞

u(x) = 0 uniformly.

For this convergence, see Remark 2.2.5 below.

The space that Galdi used in [24] is slightly different from the space X1,q(Ω) that

we define above. To understand the difference, we define a space X̃1,q(Ω) by

X̃1,q(Ω) =

{
u ∈ L1

loc(Ω) : divu = 0, 〈u〉q +

∥∥∥∥ ∂u∂x1

∥∥∥∥
q

<∞

}

〈u〉q = ‖u2‖q∗ + |u2|1,q + ‖u‖s2 + |u|1,s1 .

The space X̃1,q(Ω) equipped with the norm 〈u〉q+‖∂u/∂x1‖q is a Banach space. This
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is the space defined by Galdi, for example, in [24]. And we will use some results of

this paper [24].

Remark 2.2.1. We claim that X̃1,q(Ω) = X1,q(Ω) and their norms are equivalent. It

is obvious to see that X̃1,q(Ω) is continuously embedded in X1,q(Ω). On the other

hand, if u ∈ X1,q(Ω), then Du2 ∈ Lq(Ω). Then as u is divergence free, it holds that

∂u1

∂x1

= −∂u2

∂x2

∈ Lq(Ω).

Therefore, ∂u1/∂x1 ∈ Lq(Ω) and

∥∥∥∥ ∂u∂x1

∥∥∥∥
q

≤ C‖Du2‖q (2.37)

for some constant C. Hence, X1,q(Ω) is also continuously embedded in X̃1,q(Ω).

Therefore, we can use results of Galdi in [24] with X̃1,q(Ω) replaced by X1,q(Ω).

The rest of this section is devoted to investigate the asymptotic behavior of a

function in a homogeneous Sobolev space in an exterior domain. All of the material

in this section is taken from Galdi’s book [21].

First of all, the following preliminary result gives us information about the asymp-

totic behavior of a function u ∈ D1,q(Ω), 1 ≤ q < N .

Lemma 2.2.2 (Lemma II.6.3 of Galdi [21]). Let Ω ⊂ RN , N ≥ 2 be an exterior

domain and let u ∈ D1,q(Ω), 1 ≤ q < N . Then, there exists a unique u0 ∈ R such

that, for all R > diam(Ωc)

∫
SN−1

|u(R,ω)− u0|qdω ≤ γ0R
q−n
∫

Ω∩BR
|∇u|q (2.38)

where γ0 = [(q − 1)/(n− q)]q−1 if q > 1 and γ0 = 1 if q = 1.

The key idea of the proof in Galdi [21] is that we first show that u(r, ω) converges
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to u∗ ∈ Lq(SN−1) as r →∞ and then we establish the inequality (2.38) with

u0 =
1

|SN−1|

∫
SN−1

u∗(ω)dω.

The main tools used are Hölder inequality and Wirtinger inequality (see equation

(II.5.17) of Galdi [21]).

We next introduce a theorem about the Sobolev inequality that a function from

D1,q(Ω), 1 ≤ 1 < N , possibly modified by the addition of a uniquely determined

constant, enjoys.

Theorem 2.2.3 ([21]). Let Ω ⊂ RN , N ≥ 2 be a locally Lipschitz exterior domain.

Let u ∈ D1,q(Ω), 1 ≤ q < N . Then for w = u − u0 with u0 defined in Lemma 2.2.2,

w ∈ LNq/(N−q)(Ω) and

‖w‖Nq/(N−q) ≤ γ1|w|1,q

for some constant γ1 independent of u.

This theorem is just part of Theorem II.6.1 of Galdi [21]. See the theorem in Galdi

[21] for the full statement.

The main idea of the proof in Galdi [21] is that we first estimate a product of

w and a cut-off function “near” infinity by the sum of |w|1,q and Lq norm of w in

some bounded domain, which we control by |w|1,q with help of Lemma 2.2.2, and we

estimate w “near” ∂Ω in a similar manner.

Theorem 2.2.4 ([21]). Let Ω ⊂ RN , N ≥ 2, be an exterior domain and let

u ∈ Ls(Ω) ∩D1,q(Ω), for some s ∈ [1,∞)and some q ∈ (N,∞).

Then u(x) converges to 0 uniformly as |x| → ∞.
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This theorem is just part of Theorem II.9.1 of Galdi [21]. See the theorem in Galdi

[21] for the full statement.

The main idea of the proof in Galdi [21] is that, for a fixed x, we estimate |u(x)|

by the sum of L1 norm of u near x and Lq norm of ∇u near x, both of which converge

to zero as |x| → ∞ by using the assumptions of Theorem 2.2.4.

Remark 2.2.5. With help of these Theorems 2.2.3, 2.2.4, we can prove that for u ∈

X2,q(Ω),

lim
|x|→∞

|u(x)| = 0 uniformly.

Indeed, recall that for u = (u1, u2) ∈ X2,q(Ω), it holds that

u ∈ Ls2 ∩D1,s1 ∩D2,q in Ω

for

s1 =
3q

3− q
, s2 =

3q

3− 2q
, 1 < q <

3

2
.

Then as Du ∈ Ls1 ∩ D1,q in Ω, it follows, from Theorem 2.2.3, that u ∈ D1,q∗(Ω).

Then as u ∈ Ls2 ∩D1,q∗ in Ω and q∗ > 2, the claim follows by Theorem 2.2.4. This

remark comes from Remark XII.5.1 of Galdi [21] in 2011 and Remark 1.6 of Galdi

[24] in 2004. 3

2.3 The Stokes Equations

In this section, we are concerned with the linear equations in an exterior domain:

The Stokes equations. Most of the material in this section comes from Galdi [24].

See also Chang and Finn 1961 [10], R. Russo 2010 [46], Sections V.5, 7 of Galdi [21].

3For Galdi’s two remarks and this Remark 2.2.5, all of them pertain to slightly different function
spaces, but the essential idea is the same.
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First of all, considering the problem (2.1), (2.2), (2.3) with v∞ = 0, linearizing

the nonlinear equations (2.1) around v∞ = 0 leads to the Stokes equations


∆u−∇p = f in Ω

divu = 0 in Ω.

(2.39)

with the boundary conditions

u|∂Ω = u∗, (2.40)

lim
|x|→∞

u(x) = 0. (2.41)

(For simplicity, we assume ν = 1.)

To study the problem (2.39), (2.40), (2.41), we can first investigate the problem

with u∗ = 0 and without the boundary condition (2.41) at infinity .

Lemma 2.3.1 (Lemma 1.3 of Galdi [24]). Let Ω be an exterior domain of class

C2. Let Sq be the linear subspace of D1,q
0 (Ω) × Lq(Ω), 1 < q < ∞ constituted by the

distributional solutions (u, π) ∈ D1,q
0 (Ω)× Lq(Ω) to the following problem:


∆u = ∇p in Ω

divu = 0 in Ω

u|∂Ω = 0.

If 1 < q ≤ 2, then Sq = {(0, 0)}. If 2 < q <∞, then dimSq = 2. In this latter case,

there exists a basis {h(i), p(i)}i=1,2 in Sq satisfying the following properties

1. For all 1 < q <∞ and i = 1, 2, we have

(h(i), p(i)) ∈ [W 2,q
loc (Ω)× Lqloc(Ω)] ∩ [C∞(Ω)× C∞(Ω)];
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2. There exists h
(i)
∞ ∈ R2 and p

(i)
∞ ∈ R, i = 1, 2 such that as |x| → ∞, the following

representation holds

h(i)(x) = h(i)
∞ −U(x) · ei +O(|x|−1) p(i)(x) = p(i)

∞ + q(x) · ei +O(|x|−2).

3. For i = 1, 2, we have ∫
∂Ω

T (h(i), p(i)) · n = ei.

This Lemma 2.3.1 was originally proved in Galdi and Simader 1990 [25]. (See

Theorem 4.1 of [25].)

The main problem (2.39) , (2.40), (2.41) in two-dimension is not solvable for all

data u∗,f .

Here U , q are Stokes fundamental solutions which will be defined in (2.50).

Lemma 2.3.2 (Lemma 1.4 of Galdi [24]). Let Ω be an exterior domain of class C2.

Then for every f ∈ D−1,q
0 (Ω), 1 < q < 2 satisfying 〈f ,h(i)〉 = 0, i = 1, 2, the Stokes

equations (2.39) has one and only one solution (u, p) ∈ D1,q
0 (Ω)×Lq(Ω), in the sense

of distributions.

This Lemma 2.3.2 was originally proved in Galdi and Simader 1990 [25].

Theorem 2.3.3 (Theorem 1.1 of Galdi [24]). Let Ω be an exterior domain of class

C2. Let u∗ ∈ W 1−1/q,q(∂Ω), 1 < q < ∞, and let (u0, p0) ∈ W 1,q
loc (Ω) × Lqloc(Ω) satisfy

the Stokes equations (2.39) in the sense of distribution, (2.40) in the trace sense, and

(2.41) in the following averaged sense

lim
r→∞

∫ 2π

0

|u0(r, θ)− u∞|dθ = 0.
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Then u∗ and u∞ must satisfy the following condition

u∞,i =

∫
∂Ω

u∗ · T (h(i), p(i)) · n, i = 1, 2. (2.42)

Conversely, let u∗ ∈ W 1−1/q,q(∂Ω), 1 < q < ∞ and u∞ ∈ R2 satisfy (2.42). Then

there is a unique solution u0, p0 ∈ C∞(Ω) to (2.39) that assumes the boundary data

(2.40) in the sense of trace and that satisfies (2.41) uniformly pointwise. Moreover,

as |x| → ∞,

u0(x) = u∞ + ζ(|x|)

Dαζ(x) = O(|x|−1−|α|), all |α| ≥ 0.

In particular, if u∗ is a nonzero constant vector, then the problem with f = 0 does

not have a solution. This phenomena is called the Stokes paradox, which attracts so

much attention from various authors for long time. And this paradox makes it harder

to study the case v∞ = 0 of the nonlinear problem (2.1), (2.2), (2.3) in two dimension.

In addition, Stokes found an explicit solution to problem (2.9), (2.10), (2.11) in

some special case, which does not exhibit a wake region past the body. (See the

introduction of Chapter V of Galdi [21].)

2.4 The Oseen Equations

Now we are concerned with the other linear equations: the Oseen equations. Consider

the dimensionless form (2.14) (with w∞ = 〈1, 0〉), and linearize the equation (2.14)

around w∞ = 〈1, 0〉 to obtain the following problem:


∆u− λ ∂u

∂x1

−∇p = λF in Ω

divu = 0 in Ω

(2.43)
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with the boundary conditions

u|∂Ω = u∗, (2.44)

lim
|x|→∞

u(x) = 0. (2.45)

These linear equations (2.43) are called the Oseen equations. When it comes to flow

past a body, Oseen equations are more accurate to describe actual flow compared

to Stokes equations in several aspects: For the Oseen equations, the problem (2.43),

(2.44), (2.45) admits a solution even in the two-dimensional case (without restrictions

on data in contrast to the analogous problem of the Stokes equations); solutions to the

Oseen equations even exhibit wake phenomena. (For wake phenomena, see Section

2.5.)

In order to study the Oseen equations in an exterior domain, we can first define

a generalized solution to the problem (2.43), (2.44), (2.45) as follows.

Definition 2.4.1 (Definition VII.1.1 of Galdi [21]). A vector field u : Ω → RN is

called a q-generalized solution to (2.43), (2.44), (2.45) if

1. u ∈ D1,2(Ω);

2. u is weakly divergence free in Ω;

3. u assumes u∗ on ∂Ω in the trace sense, or if u∗ = 0, then u ∈ D1,2
0 (Ω);

4. lim
|x|→∞

∫
SN−1

|u(x)| = 0;

5. ∫
∇u : ∇ϕ+ λ

∫
∂u

∂x1

·ϕ = −λ[F ,ϕ]

for all ϕ ∈ C∞0 (Ω;RN) such that divϕ = 0 in Ω.

Here [·, ·] refers to duality pairing between D−1.2
0 (Ω), D1,2

0 (Ω).
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Proposed by Finn and Smith in [17], in order to solve the Oseen equations (2.43)

with (2.44), (2.45), we can first solve the modified problem:

∆u− λ ∂u
∂x1

− εu−∇p = λF in Ω

divu = 0 in Ω

u|∂Ω = u∗

lim
|x|→∞

u(x) = 0.

(2.46)

for ε ∈ (0, 1] along with suitable estimates uniform in ε ∈ (0, 1]. Then we show that

these solutions to the modified problem converge to a solution to the original problem

(2.43), (2.44), (2.45).

Galdi also used the same idea of utilizing the modified equations (2.46) but, other

than that, his proofs are totally different.

Galdi proved the following theorem.

Theorem 2.4.2 (Theorem VII.5.1 of Galdi [21]). Let Ω be a two-dimensional, locally

Lipschitz exterior domain. Then given

F ∈ D−1,2
0 (Ω) ∩ Lq(Ω), 1 < q < 3/2,

u∗ ∈ W 1/2,2(∂Ω),

then there exists a unique weak solution u to (2.43), (2.44), (2.45). Moreover, for all

R > diam(Ωc), this solution verifies

u ∈ D2,q(ΩR) ∩D1,3q/(3−q)(ΩR) ∩ L3q/(3−2q)(Ω)

u2 ∈ L2q/(2−q)(Ω) ∩D1,q(Ω)

∂u1

∂x1

∈ Lq(Ω)

p ∈ D1,q(ΩR),
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where p is the pressure field associated to v by Lemma VII.1.1 of Galdi [21]. Finally,

the following estimate holds:

‖u‖2,ΩR + |u|1,2 + λ

(
‖u2‖2q/(2−q) + |u2|1,q +

∥∥∥∥∂u1

∂x1

∥∥∥∥
q

)

+ min{1, λ2/3}‖u‖3q/(3−2q) + λ1/3|u|1,3q/(3−q),ΩR + |u|2,q,ΩR + |p|1,q,ΩR

≤ c
{
λ (‖F ‖q + (1 + λ)|F |−1,2) + (1 + λ)2‖u∗‖1/2,2,∂Ω

}
where c = c(q,Ω, R).

In Theorem 2.4.2, D−1,2
0 (Ω) refers to the completion of C∞0 (Ω) in the norm

|f |−1,2 = sup

{∣∣∣∣∫ fu

∣∣∣∣ : u ∈ D1,2
0 (Ω), |u|1,2 = 1

}
. (2.47)

Unlike Theorem 2.4.2 above, we can also prove existence, uniqueness and corre-

sponding estimates of a solution u, p to (2.43), (2.44), (2.45) in D2,q(Ω). Galdi proved

a theorem as follows.

Theorem 2.4.3 (Theorem VII.7.1 of Galdi [21]). Let Ω be an exterior domain in R2

of class C2. Given F ∈ Lq(Ω),u∗ ∈ W 2−1/q,q(∂Ω), 1 < q < 3/2, there exists a unique

solution (u, p) to the Oseen problem (2.43), (2.44), (2.45) such that

u ∈ Ls2(Ω) ∩D1,s1(Ω) ∩D2,q(Ω),

u2 ∈ L2q/(2−q)(Ω) ∩D1,q(Ω),

p ∈ D1,q(Ω)
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where s1 = 3q/(3− q), s2 = 3q/(3− 2q). Moreover, u, p verify

λ
(
‖u2‖2q/(2−q) + |u2|1,q

)
+ min{1, λ2/3}‖u‖s2+

λ

∥∥∥∥ ∂u∂x1

∥∥∥∥
q

+ min{1, λ1/3}|u|1,s1 + |u|2,q + |p|1,q

≤ c(λ‖F ‖q + ‖u∗‖2−1/q,q,∂Ω).

The constant c depends on q,Ω, λ.

This is part of Theorem VII.7.1 of Galdi [21]. The part omitted here is for higher

dimension and higher derivatives.

Even though Theorem 2.4.3 is taken from Theorem VII.7.1 of Galdi 2011 [21], the

result was originally proved in Galdi 1992 [22] (Theorem 2.2 of [22]).

As pointed out in the statement, the constant c involved in the estimate of The-

orem 2.4.3 depends on λ. However, Galdi established a theorem with estimates that

involve a constant independent of λ.

We state this theorem as follows, which we employ to prove our main theorems

(contained in the introduction of the this chapter with its proofs in Section 2.8.).

Theorem 2.4.4 (Theorem 1.6 of Galdi [24]). Let Ω be an exterior domain of class

C2. Given

F ∈ Lq(Ω), u∗ ∈ W 2−1/q,q(∂Ω), 1 < q < 6/5,

there exists a unique solution (u, p) ∈ X2,q(Ω)×Y 1,q(Ω) to the Oseen problem (2.43),

(2.44), (2.45). Moreover, there exists λ0 = λ0(Ω) ∈ (0, 1] such that for all λ ∈ (0, λ0],

this solution (u, p) satisfies the estimate

‖u‖X2,q + |p|1,q ≤ c0(λ2(1−1/q)| log λ|−1‖u∗‖2−1/q,q,∂Ω + λ‖F ‖q) (2.48)

where the positive constant c0 depends only on q,Ω and λ0 but independent of λ.
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The basic idea of the estimate of this Theorem 2.4.4 can be found in Remark 2.6.6

in Section 2.6

Even though Theorem 2.4.4 is taken from Theorem 1.6 of Galdi in 2004 [24], a

similar statement was originally proved in Galdi 1993 [23] (Lemma 3.5 of [23]), which

can be also found in Galdi 2011 [21] (Lemma XII.5.2 of [21]).

Note that in the estimate (2.48), the norm ‖u‖X2,q on the left hand side depends

on λ. For more details of this lemma, see also Theorem VII.7.1 of [21]

Remark 2.4.5. In the statement of this theorem 2.4.4, a pair (u, p) is a solution to

the Oseen problem (2.43),(2.44),(2.45) in sense that:

• (u, p) satisfies the Oseen equations (2.43) almost everywhere in Ω

• (u, p) assumes the boundary value u∗ in the trace sense

• u(x) converges to 0 uniformly as |x| → ∞.

For the rest of this section, we formally define an operator Kβ(u) = (∇β · ∇)u+

(u · ∇)∇β and study this operator.

Lemma 2.4.6 (Lemma 1.6 of [24]). Let A be an arbitrary domain in R2. For u,v ∈

X1,q(A), 1 < q ≤ 6/5, the following inequality holds that for all λ > 0

‖u · ∇v‖q,A ≤ 4λ−1−2(1−1/q)〈u〉λ,q,A〈v〉λ,q,A.

Recall for an arbitrary domain A in R2, we write

〈u〉λ,q,A = λ(‖u2‖q∗,A + |u2|1,q,A) + λ2/3‖u‖s2,A + λ1/3|u|1,s1,A,

Sketch of the proof of Lemma 2.4.6 in Galdi [24]. By using the divergence free con-
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dition of u and Hölder inequality, we obtain

‖u · ∇v‖q,A ≤ ‖u1‖s2,A|v2|1,3/2,A + ‖u2‖3,A|v|1,s1,A.

Now we apply elementary Lq-interpolation inequalities on |v2|1,3/2,A, ‖u2‖3,A (note

q < 3/2 < q∗ < 3 < s2), the claim follows.

By applying this lemma to the operator Kβ, it holds that

Kβ : X2,q(Ω)→ Lq(Ω)

is well-defined and that it satisfies

‖Kβ(u)‖q ≤ 8λ−1−2(1−1/q)〈u〉λ,q〈∇β〉λ,q. (2.49)

Furthermore, we can also prove compactness of this operator Kβ

Lemma 2.4.7 (Lemma 1.7 of [24]). The operator Kβ : X2,q(Ω)→ Lq(Ω) is compact

for q ∈ (1, 6/5].

Sketch of proof of Lemma 2.4.7. Let {uk}k∈N ⊂ X2,q(Ω) with ‖uk‖X2,q(Ω) = 1. Then

by reflexivity of X2,q(Ω) and the Rellich theorem, there exists a subsequence, still

denoted by {uk}k∈N, and a function u ∈ X2,q(Ω) such that

lim
k→∞
〈uk − u〉λ,q,ΩR = 0, ∀R > diam(Ωc).

We also find

‖Kβ(uk − u)‖q ≤ c(〈∇β〉q,ΩR〈uk − u〉q,ΩR + 〈∇β〉q,ΩR〈uk − u〉q,ΩR)

Then the lemma follows.
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2.5 The Stokes and the Oseen Fundamental Solu-

tions

In this section, we study fundamental solutions to the Stokes and the Oseen equations

especially about their asymptotic behaviors. Most of material of this section originates

from Sections IV.2 and VII. 3 of Galdi [21]. Note that we only investigate the two-

dimensional case.

The Stokes fundamental solution is given by

Uij(x− y) =

(
δij∆−

∂2

∂yi∂yj

)
Φ(|x− y|) (2.50)

qj(x− y) = − ∂

∂yj
∆Φ(|x− y|) (2.51)

where Φ(|x − y|) = 1
8π
|x − y|2 log(|x − y|). Hence as either |x| → 0 or |x| → ∞, it

holds that

U(x) = O(log |x|), DαU(x) = O(|x|−|α|), |α| ≥ 1

and

Dαq(x) = O(|x|−1−|α|), |α| ≥ 0.

On the other hand, for the Oseen equations in the form of

∆u− 2λ
∂u

∂x1

−∇p = 0, divu = 0,
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the Oseen fundamental solution is given by

Eij(x− y) =

(
δij∆−

∂2

∂yi∂yj

)
Φ(x− y) (2.52)

ej(x− y) = − ∂

∂yj

(
∆− 2λ

∂

∂y1

)
Φ(x− y) (2.53)

where

Φ(x− y) =
1

4πλ

∫ x1−y1

0

{
log
√
τ 2 + (x2 − y2)2 +K0

(
λ
√
τ 2 + (x2 − y2)2

)
e−λτ

}
dτ

− 1

4π

∫ y2−x2

0

(y2 − x2 − τ)K0(λ|τ |)dτ. (2.54)

and K0 denotes the modified Bessel function of the second kind.

Now from the property of K0, as λ|x− y| → 0, it holds that

Eij(x− y) = Uij(x− y)− 1

4π
δij log

1

2λ
+ o(1). (2.55)

On the other hand, we can also study asymptotic behavior of E as λr → ∞.

Denote by ϕ the angle made by a ray that starts from x and is directed toward y

with the direction of the positive x1-axis. And set r = |x− y|, s = λr(1− cosϕ). The

Oseen fundamental solution E has the following asymptotic behavior:

E11(x− y) = −cosϕ

4πλr
+

e−s

4
√

2λπr

(
1 + cosϕ− 1− 3 cosϕ

8λr
+R(λr)

)
E12(x− y) = E21(x− y) =

sinϕ

4πλr
− e−s sinϕ

4
√

2λπr

(
1 +

3

8λr
+R(λr)

)
E22(x− y) =

cosϕ

4πλr
+

e−s

4
√

2π(λr)3/2

(
s− 1 + 3 cosϕ

8
+R(λr)

)

where the remainder R(t) satisfies

dkR
dtk

= O(t−2−k), as t→∞, k ≥ 0.
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The Oseen fundamental solution has a “nonsymmetric” structure. And the Oseen

fundamental solution vanishes at infinity whereas the Stokes fundamental solution

grows logarithmically at infinity, which is closely related to the Stokes paradox.

The Oseen fundamental solution even exhibit a wake region. When y is interior

to the parabola |y|(1− cosϕ) = 1,

|E11(y)| ≤ C

|y|1/2
as |y| → ∞.

On the other hand, when (1− cosϕ) ≥ |y|−1+2σ for some σ ∈ [0, 1/2],

|E11(y)| ≤ C

|y|1/2+σ
as |y| → ∞.

This parabolic region is called a wake region.

For the remaining components of E, it holds that

|Ej2(y)| ≤ C

|y|
, j = 1, 2 as |y| → ∞.

For much more information about asymptotic behavior of the Oseen fundamental

solution, see Smith [49], page 347-348 and Krac̆mar, Novotný, Pokorý in 2001 [39]

2.6 Representation of Solutions to the Stokes and

the Oseen Equations

In this section, we investigate representation formula of solutions to the Stokes and

the Oseen equations. Most of the material is taken from Sections V.3 and VII.6 of

Galdi [21]. But see also Chang and Finn [10], Finn and Smith [17], Galdi [24].

We define the Cauchy stress tensor Tij(u, p) for a pair of a vector field u = u(x)
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and a pressure field p = p(x) by

Tij(u, p) = −pδij +

(
∂ui
∂xj

+
∂uj
∂xi

)
.

For the Stokes equations, we define the Stokes-Fujita truncated fundamental so-

lution U
(R)
ij , q

(R)
j by replacing Φ by ψRΦ in the definition (2.50) of the Stokes funda-

mental solution Uij, qj, that is,

U
(R)
ij (x− y) =

(
δij∆−

∂2

∂yi∂yj

)
(ψR(|x− y|)Φ(|x− y|))

q
(R)
j (x− y) = − ∂

∂yj
∆ (ψR(|x− y|)Φ(|x− y|))

where ψR(|x − y|) = ψ(|x − y|/R), R > 0 and ψ = ψ(t) is a smooth function in R

that equals one for |t| ≤ 1/2 and zero for |t| ≥ 1. This idea was first introduced by

Fujita in 1961 [20].

By using U
(R)
ij , q

(R)
j we can prove a theorem about representation formula of a

solution to the Stokes equations as follows.

Theorem 2.6.1 (Theorem V.3.2 of Galdi [21]). Let Ω be an exterior domain of class

C2 (in RN , N ≥ 2) and let u ∈ W 2,q
loc (Ω), q ∈ (1,∞) satisfy the Stokes equations (2.39)

with f ∈ Lq(Ω) in Ω in the sense of distribution. Assume that the support of f is

bounded. Then if at least one of the following conditions is satisfied as |x| → ∞:

• |u(x)| = o(|x|),

•
∫
|x|≤r

|u(x)|t

(1 + |x|)N+t
dx = o(log r), some t ∈ (1,∞),
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there exists vector and scalar constants u∞, p∞ such that for almost all x ∈ Ω

uj(x) =u∞j +
N∑
i=1

∫
Ω

Uij(x− y)fi(y)dy

−
N∑

i,l=1

∫
∂Ω

[Uij(x− y)Til(u, p)(y)− ui(y)Til(Uj, qj)(x− y)]nl(y)dσy

p(x) =p∞ −
N∑
i=1

∫
Ω

qi(x− y)fi(y)dy

+
N∑

i,l=1

∫
∂Ω

[
qi(x− y)Til(u, p)(y)− 2ui(y)

∂ql(x− y)

∂xi

]
nl(y)dσy

where Uj is the vector field whose i-component is Uij. Denote the term of the integral

on the boundary ∂Ω by u
(1)
j (x) and p(1)(x) respectively. Moreover, as |x| → ∞,

u(1)(x), p(1)(x) are infinitely differentiable and the following asymptotic representation

hold:

u
(1)
j (x) =

N∑
i=1

TiUij(x) + σj(x)

p(1)(x) =
N∑
i=1

Tiqi(x) + η(x)

where

Ti =

∫
∂Ω

fi −
N∑
l=1

∫
∂Ω

Til(u, p)nl,

and, for all |α| > 0

Dασ(x) = O(|x|1−N−|α|),

Dαη(x) = O(|x|−N−|α|).

This theorem is Theorem V.3.2 of Galdi [21], which is an extension of classical
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results of Chang and Finn in 1961 [10].

The main idea of the proof is that we apply the Green’s formula with the Stokes-

Fujita truncated fundamental solution in Ω and we can control a resulting volume

integral involving v by using the growth conditions.

A simple application of this representation formula is to prove a uniqueness result,

which furnishes another form of the Stokes paradox.

Theorem 2.6.2 (Theorem V.3.5. of Galdi [21]). Let (u, p) be a regular solution to


∆u−∇p = 0 in Ω

divu = 0 in Ω

u|∂Ω = 0

(2.56)

in a exterior domain Ω of RN of class C1 . Then if as |x| → ∞,

u(x) =


o(log |x|) if N = 2

o(1) if N > 2.

(2.57)

then it follows that u ≡ 0.

This provides another form of the Stokes paradox in two dimension; condition

(2.57) in two dimension means that there is no solution u to the Stokes equations

such that u|∂Ω = 0 and u converges to a nonzero constant vector.

The main idea of the proof of this theorem in Galdi [21] is to just take dot-

multiply the Stokes equations by u and integrate by parts over ΩR = Ω∩BR and use

the asymptotic behavior from Theorem 2.6.1 to control the resulting surface integrals

as R→∞.

This statement of Theorem 2.6.2 is taken from Galdi [21], and it is an extension

of classical results by Chang and Finn in 1961 [10].
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Now regarding the Oseen equations, we define the Oseen-Fujita truncated funda-

mental solution E
(R)
ij , e

(R)
j in a similar way as we did for the Stokes fundamental

solution. We replace Φ by ψRΦ in the definition (2.52) of the Oseen fundamental

solution, that is,

E
(R)
ij (x− y) =

(
δij∆ +

∂2

∂yi∂yj

)
(ψR(x− y)Φ(x− y))

e
(R)
j (x− y) = − ∂

∂yj

(
∆ + 2λ

∂

∂y1

)
(ψR(x− y)Φ(x− y)) .

Then again as we did for the Stokes equations, we apply the Green’s formula with

this truncated fundamental solution and control a resulting volume integral involving

v by using some growth condition on v to obtain a theorem about a representation

formula and asymptotic behavior of a solution to the Stokes equations in an exterior

domain as follows.

Theorem 2.6.3 (Theorem VII.6.2 of Galdi [21]). Let Ω be a exterior domain in RN

of class C2 and let u ∈ W 2,q(Ω), q ∈ (1,∞) satisfy the Oseen equations (2.43) with

F ∈ Lq(Ω). Assume that the support of f is bounded. Then if at least one of the

following conditions is satisfied as |x| → ∞:

•
∫
SN−1

|u(x)| = o(|x|),

•
∫
|x|≤r

|u(x)|t

(1 + |x|)N+t
dx = o(log r), some t ∈ (1,∞),
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there exist vector and scalar constants v0, p0 such that for almost all x ∈ Ω we have

uj(x) =u0j + λ
N∑
i=1

∫
Ω

Eij(x− y)fi(y)dy +
N∑

i,l=1

∫
∂Ω

[
ui(y)Til(Ej, ej)(x− y)

− Eij(x− y)Tij(u, p)(y)− λui(y)Eij(x− y)δ1l

]
nldσy

p(x) =p0 − λ
N∑
i=1

∫
Ω

ei(x− y)fi(y)dy +
N∑

i,l=1

∫
∂Ω

{
ei(x− y)Til(u, p)(y)

− 2ui(y)
∂

∂xl
ei(x− y)− λ[e1(x− y)ul(y)− ui(y)ei(x− y)δ1l]

}
nldσy

where Ej is the vector field whose i-component is Eij. Denote the terms of the integrals

on the boundary ∂Ω by u
(1)
j (x), p(1)(x). Moreover, as |x| → ∞, u(1)(x), p(1)(x) are

infinitely differentiable and there the following asymptotic representations hold:

u
(1)
j (x) =

N∑
i=1

Eij(x)Mi + σj(x)

p(1)(x) = −
N∑
i=1

ei(x)M∗
i + η(x),

where

Mi = −
N∑
l=1

∫
∂Ω

[Til(u, p) + λδ1lui]nl + λ

∫
Ω

fi

M∗
i = −

N∑
l=1

∫
∂Ω

{Til(u, p) + λ[δ1lui − δ1iul]}nl + λ

∫
Ω

fi

and, for all |α| ≥ 0,

Dασ(x) = O(|x|−N+|α|/2)

Dαη(x) = O(|x|−N−|α|).

This Theorem 2.6.3 is taken from Galdi [21] and it is an extension of a classical
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result of Chang and Finn in 1961 [10].

As an application of Theorem 2.6.3, we can derive a fundamental estimate for the

integral I(u) given by

I(u) =

∫
∂Ω

T (u, p) · n

where T (u, p) is the Cauchy stress tensor.

Theorem 2.6.4 (Theorem VII.8.1 of Galdi [21]). Let Ω be a two-dimensional exterior

domain of class C2. Assume for some q ∈ (1, 2],

u∗ ∈ W 2−1/q,q(∂Ω)

and denote by u, p the solution to



∆u− λ ∂u
∂x1

= ∇p in Ω

divu = 0 in Ω

u|∂Ω = u∗

lim
|x|→∞

u(x) = 0.

(2.58)

Then there exists constants λ̃0 and c = c(Ω, q, λ̃0) such that

∣∣∣∣∫
∂Ω

T (u, p) · n
∣∣∣∣ ≤ c| log λ|−1‖u∗‖2−1/q,q,∂Ω (2.59)

for all λ ∈ (0, λ̃0]

Again this Theorem 2.6.4 is taken from Galdi [21] but the basic idea of the proof in

Galdi [21] is due to Finn and Smith in 1967 [17], and this estimate plays an essential

role in investigating the nonlinear problem.
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Remark 2.6.5. The main idea of the proof of Theorem VII.8.1 of Galdi [21] is to

use the representation formula for a solution to the Oseen equations (Theorem 2.6.3)

and approximate the Oseen fundamental solution by the Stokes fundamental solution

from (2.55) giving rise to the constant λ̃0. From the construction of λ̃0, it follows that

λ̃0 only depends on Ω (independent of v∗).

Remark 2.6.6. Regarding Theorem 2.4.4, the main idea of the estimate (2.48) is to

use the representation formula of a solution to the Oseen equations in an exterior

domain (Theorem 2.6.3) and use summability properties of the Oseen fundamental

solution, that can be obtained from the asymptotic behavior of it, and finally use the

estimate (2.59) above. And in this process, we need to take λ0 = min{1, λ̃0}. Hence

λ0 only depends on Ω.

2.7 The Nonlinear Problem: Perturbation around

a constant vector

We can solve the nonlinear problem, (2.1), (2.2), (2.3) by linearizing the Navier-

Stokes equations around v∞. This section is devoted to the case v∞ 6= 0. In this

case, as mentioned in the introduction, we can rotate and normalize, without loss of

generality, v∞ to be w∞ = 〈1, 0〉.

In addition to Theorem 2.0.1, Galdi also proved an existence theorem as follows.

Theorem 2.7.1 (Theorem 2.1 of Galdi [24]). Let Ω be an exterior domain in R2 of

class C2. Let u∗ ∈ W 2−1/q.q(∂Ω), 1 < q < 6/5. Then there exists a constant λ0 such

that if for some λ ∈ (0, λ0],

| log λ|−1‖u∗‖2−1/q,q,∂Ω <
1

64c2

for some constant c > 0, then there exists a solution (u, p) ∈ X2,q(Ω) × Y 1,q(Ω) to
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the problem



∆u− λ ∂u
∂x1

= λu · ∇u+∇p,

divu = 0

u|∂Ω = u∗

lim
|x|→∞

u(x) = 0.

This solution can be written in the form of a series

u(x) =
∞∑
n=0

λnun(x, λ), p(x) =
∞∑
n=0

λnpn(x, λ)

where (u0, p0) is the solution to the Oseen problem



∆u0 − λ
∂u0

∂x1

= ∇p,

divu0 = 0

u0|∂Ω = u∗

lim
|x|→∞

u0(x) = 0,

and for n ≥ 0



∆un+1 − λ
∂un+1

∂x1

= ∇pn+1 +
n∑
k=0

uk · ∇un−k,

divun+1 = 0

un+1|∂Ω = u∗

lim
|x|→∞

un+1(x) = 0,

and these two series converge in X2,q(Ω), Y 1,q(Ω) respectively. Furthermore, this so-
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lution satisfies

〈u〉λ,q + |u|2,q + |p|1,q ≤ 2cλ2(1−1/q)| log λ|−1‖u∗‖2−1/q,q,∂Ω.

If (ũ, p1) ∈ X2,q(Ω)×Y 1,q(Ω) is another solution corresponding to the same data and

such that λ−2(1−1/q)〈ũ〉λ,q < 1/(8c), then u = ũ, p = p1.

In fact, Galdi used a function space in Theorem 2.1 of [24], that looks different.

But actually they are not different. See Remark 2.2.1.

As Galdi did above, Finn and Smith also found a solution in the form of a series

and used a contraction mapping theorem in 1967 [18], but Galdi and Finn, Smith

used a totally different function space and studied the Oseen problems by means of

a different method.

R. Russo and Simader [47] in 2006 also studied the case v∞ 6= 0 and applied a

perturbation method using the Oseen equations in three-dimension.

Theorem 2.7.2 (Theorem 4.1 of Russo, Simader [47]). Let Ω be an exterior domain

of R3 and let v∗ ∈ L∞(∂Ω). If ‖v∗ − v∞‖L∞(∂Ω) is sufficiently small, then there is a

C∞ solution (v, p) to (2.1), (2.2), (2.3) with ν = 1,F = 0. Moreover, v converges

to v∗ nontangentially and v = v∞ + O(r−1). If v∗ ∈ C0,µ(∂Ω), with µ ∈ [0, α) and

α depending on the Lipschitz character of ∂Ω, then v ∈ C0,µ(Ω) and the value v∗ is

taken in the classical sense.

2.8 The Nonlinear Problem: Perturbation around

a Potential Flow

Here, we study the nonlinear problem, non-homogeneous boundary value problem of

the Navier-Stokes equations in an exterior domain, by using a perturbation method

around a potential flow.
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Due to the Stokes paradox in two dimension, we need to investigate the two cases

v∞ = 0,v∞ 6= 0 separately.

For the case v∞ = 0, A. Russo and Starita in 2008 [44] linearized the Navier-Stokes

equations around a potential flow ∇β where β is a harmonic function and solved the

nonlinear problem (Theorem 2.0.2, which is already stated in the introduction). This

theorem pertains to the three-dimensional problem.

Later, A. Russo and Tartaglione in 2011 [45] extended the result [44] to higher

dimensions.

Theorem 2.8.1 (Theorem 1 of Russo, Tartaglione [45]). Let Ω be an exterior domain

of RN , N ≥ 4 of class C2 and let β ∈ D2,q(Ω), q > N/2 be a harmonic function

vanishing at infinity. There is a discrete at-most countable subset G of R \ (−α, α)

with α = (N−2)
√
N/((N−1)‖∇β‖LN (Ω)) such that if µ 6∈ G, then a positive constant

c0 = c0(N, β, µ,Ω) exists such that if ‖v∗ − µ∇β‖1−2/N,N/2,∂Ω ≤ c0, then there exists

a solution (v, p) to (2.1), (2.2), (2.3) with v∞ = 0,f = 0, ν = 1 such that

(v, p) ∈ [D
1,N/2
σ,0 (Ω) ∩ C∞(Ω)]× [LN/2(Ω) ∩ C∞(Ω)].

We can even extend these results by Russo, Starita and Tartaglione to two dimen-

sion but for the case v∞ 6= 0. In this case, we can use the Oseen equations, which

are solvable in contrast to the Stokes equations in two dimension.

Our first main result of this topic is already stated in the introduction, Theorem

2.0.3. Hence we leave several remarks about the theorem here.

Definition 2.8.2. In the statement of Theorem 2.0.3, (w, π) ∈ X2,q(Ω)× Y 1,q(Ω) is

called a solution to (2.14), (2.15), (2.16) in the following sense:

1. (w, π) satisfies the stationary Navier-Stokes equations (2.14) almost everywhere

in Ω,

2. w assumes the boundary data w∗ in the trace sense.



63

3. w(x) converges to w∞ uniformly as |x| → ∞.

2.8.1 A Proof of Theorems 2.0.3, 2.0.8

In order to prove Theorems 2.0.3, 2.0.8, we can first prove a lemma below which is a

simple application of the contraction mapping theorem. This lemma or some similar

statements must be well known.

For a Banach space X and an operator T : X → X, an element u ∈ X satisfying

T [u] = u is called a fixed point of T .

Lemma 2.8.3. Let X be a Banach space equipped with a norm ‖·‖X and Br the open

ball of radius r > 0 centered at the origin in the space X . And let B : X×X → X be a

bilinear continuous operator. Fix an element u0 ∈ X. Define an operator T : X → X

by T [u] = u0 + B[u,u] for all u ∈ X. Assume ‖u0‖X ≤ a and ‖B‖OP ≤ b for some

constants a, b > 0 where

‖B‖OP = sup
u,v 6=0,

‖B[u,v]‖X
‖u‖‖v‖

.

If ab < 1/4, then there exists a fixed point u ∈ B2a of T . Moreover, if there exists

another fixed point v ∈ B1/(2b) of T , then u = v.

Note in Lemma 2.8.3 above, if ab < 1/4, then the ball B2a, where existence of a

fixed point is established, is strictly smaller than the ball B1/(2b), where uniqueness

of a fixed point is guaranteed.

Proof of Lemma 2.8.3 . For u ∈ B2a, note that

‖T [u]‖X ≤ ‖u0‖X + ‖B[u, u]‖X ≤ a+ b‖u‖2
X ≤ a+ 4a2b.

Furthermore, a+ 4a2b < 2a due to the assumption ab < 1/4. Therefore, the operator

T maps B2a to B2a. Moreover, the operator T : B2a → B2a is a contraction mapping.
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Indeed, it holds that

T [u]− T [v] = B[u, u]− B[v, v] = B[u, u− v]− B[v − u, v].

Hence

‖T [u]− T [v]‖X ≤ b(‖u‖X + ‖v‖X)‖u− v‖X .

If u,v ∈ B2a, then

‖T [u]− T [v]‖X ≤ 4ab‖u− v‖X

Therefore, the operator T : B2a → B2a is a contraction mapping if ab < 1/4. By

virtue of the contraction mapping theorem, it implies that there exists a fixed point

u ∈ B2a of T .

Next, if there exists another fixed point v ∈ B1/(2b) of T , then

‖u− v‖X = ‖T [u]− T [v]‖X ≤ b(‖u‖X + ‖v‖X)‖u− v‖X ≤ b

(
2a+

1

2b

)
‖u− v‖X .

As we have assumed ab < 1/4, it holds that b(2a+ 1/(2b)) < 1 and thus u = v.

Now we are ready to prove the main Theorems 2.0.3, 2.0.8. Let 1 < q < 6/5. We

consider this mapping (u∗, λF ) 7→ u defined in Theorem 2.4.4. Denote this mapping

by L[u∗, λF ] = u. Note that the operator L : W 2−1/q,q(∂Ω) × Lq(Ω) → X2,q(Ω) is

bilinear.

Now to prove the main Theorems 2.0.3, 2.0.8, fix u∗ ∈ W 2−1/q,q(∂Ω),F ∈ Lq(Ω).
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We consider the following particular problem: find a solution (u0, p0) to



∆u0 − λ∂u
0

∂x1

−∇p0 = λF in Ω,

divu0 = 0 in Ω,

u0|∂Ω = u∗,

lim
|x|→∞

u0(x) = 0.

By Theorem 2.4.4, there exists a solution u0 to this problem and we can write u0 =

L[u∗, λF ], and also it holds that for λ ∈ (0, λ0]

‖L[u∗, λF ]‖X2,q(Ω) ≤ c0(λ2(1−1/q)| log λ|−1‖u∗‖W 2−1/q,q(∂Ω) + λ‖F ‖q). (2.60)

The next step is to investigate the following problem: given u ∈ X2,q(Ω), solve

for (u1, p1) the problem



∆u1 − λ∂u
1

∂x1

−∇p1 = λµ(∇β · ∇)u+ λµ(u · ∇)∇β (= λµKβ(u) ) in Ω,

divu1 = 0 in Ω,

u1|∂Ω = 0,

lim
|x|→∞

u1(x) = 0.

(2.61)

First of all, define an operator L1 on X2,q(Ω) by

L1[u] = L[0, Kβ(u)], u ∈ X2,q(Ω)

Then by Theorem 2.4.4 and (2.49), this operator L1 : X2,q(Ω) → X2,q(Ω) is well-



66

defined and satisfies the estimate that for all u ∈ X2,q(Ω), λ ∈ (0, λ0]

‖L1[u]‖X2,q(Ω) ≤ c0‖Kβ(u)‖q ≤ 8c0λ
−1−2(1−1/q)〈∇β〉λ,q〈u〉λ.q. (2.62)

As 〈∇β〉λ,q ≤ λ1/3〈∇β〉q for all λ ≤ 1, it holds that

‖L1[u]‖X2,q(Ω) ≤ 8c0λ
− 2

3
−2(1− 1

q )〈∇β〉q〈u〉λ,q.

Therefore, the operator norm ‖L1‖OP satisfies that for all λ ∈ (0, λ0]

‖L1‖OP ≤ 8c0λ
− 2

3
−2(1− 1

q )〈∇β〉q.

Note that u1 = λµL1[u] and for all λ ∈ (0, λ0]

λµ‖L1‖OP ≤ 8c0µλ
1
3
−2(1− 1

q )〈∇β〉q. (2.63)

In addition, we have

Lemma 2.8.4. L1 : X2,q(Ω)→ X2,q(Ω) is compact for q ∈ (1, 6/5].

Proof. By Lemma 2.4.7, the operator Kβ : X2,q(Ω) → Lq(Ω) is compact for q ∈

(1, 6/5]. Note L[0, ·] : Lq(Ω) → X2,q(Ω) is a continuous operator. As L1[·] =

L[0, Kβ(·)] and Kβ is compact, the operator L1 : X2,q(Ω)→ X2,q(Ω) is compact.

Next we consider the problem: given u ∈ X2,q(Ω), solve for (u2, p2) the problem



∆u2 − λ∂u
2

∂x1

−∇p2 = λ(u · ∇)u in Ω,

divu2 = 0 in Ω,

u2|∂Ω = 0,

lim
|x|→∞

u2(x) = 0.

(2.64)
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First, we define an operator N : X2,q(Ω)×X2,q(Ω)→ X2,q(Ω) by N [u,v] = λL[0, (u ·

∇)v] for all u,v ∈ X2,q(Ω). By Theorem 2.4.4 along with Lemma 2.4.6, the operator

N is well-defined, bilinear and continuous. Morever, the operator N satisfies that for

all λ ∈ (0, λ0], u,v ∈ X2,q(Ω),

‖N [u,v]‖X2,q(Ω) ≤ c0λ‖u · ∇v‖Lq(Ω) ≤ 4c0λ
−2(1−1/q)〈u〉λ,q〈v〉λ,q. (2.65)

Going back to the problem (2.64), it holds that u2 = N [u,u].

In view of Lemma 2.8.4, there exists a countable subset G̃(Ω, λ, q,∇β) of R such

that for any λµ ∈ R \ G̃, the operator (I − λµL1) : X2,q(Ω) → X2,q(Ω) is invertible

where I is an identity operator on X2,q(Ω). Define

G =
1

λ
G̃ =

{g
λ
∈ R : g ∈ G̃

}
. (2.66)

Then for any µ ∈ R \ G, the operator (I − λµL1) is invertible. And we denote the

operator norm of the inverse (I − λµL1)−1 by

R = R(Ω, λ, µ, q,∇β) = ‖(I − λµL1)−1‖OP . (2.67)

Moreover, if we assume 8c0µλ
1
3
−2(1− 1

q )〈∇β〉q < 1, then by (2.63),

R ≤ 1

1− 8c0µλ
1
3
−2(1− 1

q )〈∇β〉q
. (2.68)

Now we consider the main problem (2.22), (2.23), (2.24). Recall we have fixed

u∗ ∈ W 2−1/q,q(∂Ω),F ∈ Lq(Ω), 1 < q < 6/5. Let µ ∈ R \ G. Finding a solution

u ∈ X2,q(Ω) to (2.22),(2.23), (2.24) is equivalent to find u ∈ X2,q(Ω) such that

L[u∗, λF ] + λµL1[u] +N [u,u] = u.
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Furthermore, this is equivalent to find u ∈ X2,q(Ω) such that

(I − λµL1)−1 [L[u∗, λF ] +N [u,u]] = u. (2.69)

Here the inverse (I−λµL1)−1 is well-defined because µ ∈ R\G. We define an operator

T by

T [u] = (I − λµL1)−1 [L[u∗, λF ] +N [u,u]] . (2.70)

Then finding a solution u ∈ X2,q(Ω) to (2.69) is equivalent to finding a fixed point u

of the operator T . To this end, we apply Lemma 2.8.3.

In order to apply Lemma 2.8.3, we first observe that

‖(I − λµL1)−1L[u∗, λF ]‖X2,q(Ω) ≤ c0R(λ2(1−1/q)| log λ|−1‖u∗‖2−1/q,q,∂Ω + λ‖F ‖Lq(Ω))

(2.71)

≤ c1(‖u∗‖2−1/q,q,∂Ω + ‖F ‖Lq(Ω)) (2.72)

where we define the constant c1 = c1(Ω, q, λ, µ,∇β) by

c1 = c0Rmax{λ2(1−1/q)| log λ|−1, λ}. (2.73)

Moreover, if we assume 8c0µλ
1
3
−2(1− 1

q )〈∇β〉q < 1, then by (2.68), for all u ∈ X2,q()

‖(I − λµL1)−1L[u∗, λF ]‖X2,q(Ω)

≤ c0

1− 8c0µλ
1
3
−2(1− 1

q )〈∇β〉q
(λ2(1−1/q)| log λ|−1‖u∗‖2−1/q,q,∂Ω + λ‖F ‖Lq(Ω))

=
c0

1− c3µλ
1
3
−2(1− 1

q )
(λ2(1−1/q)| log λ|−1‖u∗‖2−1/q,q,∂Ω + λ‖F ‖Lq(Ω)) (2.74)
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where we define

c3 = 8c0〈∇β〉q. (2.75)

Next we observe that by (2.65), for all u ∈ X2,q(Ω)

‖(I − λµL1)−1N [u,u]‖X2,q(Ω) ≤ 4c0λ
−2(1−1/q)R〈u〉2λ,q. (2.76)

Hence

‖(I − λµL1)−1N‖OP ≤ 4c0λ
−2(1−1/q)R =: c2. (2.77)

Moreover, if we assume 8c0µλ
1
3
−2(1− 1

q )〈∇β〉q < 1 (which is equivalent to c3µλ
1
3
−2(1− 1

q ) <

1), then by (2.68),

‖(I − λµL1)−1N‖OP ≤
4c0λ

−2(1−1/q)

1− c3µλ
1
3
−2(1− 1

q )
. (2.78)

Therefore, in general (without the assumption c3µλ
1
3
−2(1− 1

q ) < 1), by applying

Lemma 2.8.3 with

a = c1(‖u∗‖2−1/q,q,∂Ω + ‖F ‖q,Ω), b = c2,

it follows that if

‖u∗‖2−1/q,q,∂Ω + ‖F ‖q,Ω ≤
1

4c1c2

,

then there exists a fixed point u ∈ B2a of the operator T defined in (2.70). Moreover,

if there exists another fixed point v ∈ B1/(2b) of the operator T , then u = v. Pressure

associated to each of the vector fields L[u∗, λF ], λµL1[u],N [u,u] exists in Y 1,q(Ω)

according to Theorem 2.4.4,and the sum of all these pressures is a pressure field
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associated to the fixed point u. The pair (u, p) solves the main problem (2.14),

(2.15), (2.16). This finishes the proof of Theorem 2.0.3.

Next, if we assume c3µλ
1
3
−2(1− 1

q ) < 1, then we now apply Lemma 2.8.3 with

a =
c0

1− c3µλ
1
3
−2(1− 1

q )
(λ2(1−1/q)| log λ|−1‖u∗‖2−1/q,q,∂Ω + λ‖F ‖Lq(Ω)) (2.79)

b =
4c0λ

−2(1−1/q)

1− c3µλ
1
3
−2(1− 1

q )
. (2.80)

Then we obtain that if

4c2
0

(1− c3µλ1/3−2(1−1/q))2
(| log λ|−1‖u∗‖2−1/q,q,∂Ω + λ1−2(1−/q)‖F ‖q,Ω) <

1

4
,

then there exists a fixed point u ∈ B2a of the operator T . Moreover, if there exists

another fixed point v ∈ B1/(2b) of the operator T , then u = v. This finishes the proof

of Theorem 2.0.8.

2.9 The Nonlinear Problem: Perturbation for flows

vanishing at infinity

In this section, we present an interesting result of Hillairet and Wittwer in 2013 [32].

Consider the nonlinear problem



∆v − (v · ∇)v −∇p = 0 in Ω

divv = 0 in Ω

v|∂Ω = v∗

lim
|x|→∞

v(x) = v∞

(2.81)
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In case v∞ 6= 0, we can essentially linearize the Navier-Stokes equations around

v∞ 6= 0, which leads to the Oseen equations, which we can solve. However, in case

v∞ = 0, linearization of the Navier-Stokes equations around v∞ = 0 leads to the

Stokes problem

∆v −∇p = 0 in Ω

divv = 0 in Ω

v|∂Ω = v∗

lim
|x|→∞

v(x) = 0.

In two dimension, due to the Stokes paradox, this Stokes problem is solvable if and

only if the boundary function v∗ satisfies condition (2.42) (with u∞ = 0), that is,

0 =

∫
∂Ω

v∗ · T (h(i), p(i)) · n, i = 1, 2

according to Theorem 2.3.3. This is the reason the Stokes paradox poses a difficulty

in studying the nonlinear problem in case v∞ = 0 by perturbation methods.

Moreover, Hamel’s example (2.12) provides solutions that decay slower than any

negative power of |x|. Hence we don’t know a priori asymptotic behavior of a solution

to the nonlinear problem (2.81) in case v∞ = 0. But these examples have nonzero

flux.

However, instead of perturbing around v∞ = 0, Hillairet and Wittwer in 2013

[32] perturbed around µx⊥/|x|2 where x⊥ = 〈−x2, x1〉 and µ is a scalar. And they

studied the problem in a special domain, R2 \B1(0) where B1(0) is the ball of radius

1 centered at the origin.

Theorem 2.9.1 (Theorem 2 of Hillairet, Wittwer [32]). Let µ0 > µcrit =
√

48 and
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let v∗ ∈ C∞(∂Ω),Ω = R2 \B1(0) satisfy

∫
∂Ω

v∗ · n dσ = 0.

If v∗ is sufficiently close to µ0eθ , then the problem (2.81) with v∞ = 0 and Ω =

R2 \ B1(0) has at least one solution (v, p) ∈ C∞(R2 \ B1(0)) × C∞(R2 \ B1(0)).

Moreover, there exist µ close to µ0 such that

lim
r→∞

r
∥∥∥v(r, θ)− µ

r
eθ

∥∥∥
L∞(−π,π)

= 0. (2.82)

In addition, for the topic of asymptotic behavior of a solution to the nonlinear

problem with zero velocity at infinity, we refer to the work of Guillod and Wittwer

in 2015 [29].

2.10 The Nonlinear Problem: Asymptotic Behav-

ior

In this section, we present results about the asymptotic behavior of a solution to the

Navier-Stokes equations in a two-dimensional exterior domain in the case v∞ 6= 0.

If v∞ = 0, Hamel’s examples provide explicit solutions that decay slower than any

negative power of |x|. On the other hand, in case of v∞ 6= 0, a solution to the Navier-

Stokes equations behaves like the Oseen fundamental solution at large distances.

Theorem 2.10.1 (Theorem XII.8.1 of Galdi [21]). Let F q(Ω) ∈ Lq(Ω) with bounded

support, w∗ ∈ W 2−1/q0,q0(∂Ω) for some q0 > 2, all q ∈ (1, q0]. And let (w, p) be a
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solution to 

∆w − λ(w · ∇)w −∇p = λF

divw = 0

w|∂Ω = w∗

lim
|x|→∞

w(x) = w∞ = e1

such that w ∈ D1,2(Ω). Then for all sufficiently large |x|, we have

w = w∞ +m ·E(x) + V(x)

where

mi = λ

∫
Ω

fi −
2∑
l=1

∫
∂Ω

[Til(u, p) + λ(δ1lui − uiul)]nl, i = 1, 2

and u = w −w∞ and V(x) verifies the estimate

V(x) = O(|x|−1+ε)

for arbitrary small ε > 0.

2.11 Limit of Vanishing Reynolds Number

We present here an interesting result about the behavior of a solution to the Navier-

Stokes equations in two-dimensional exterior domains in the limit of vanishing Reynolds

number.

The basic idea comes from the works of Finn and Smith in 1967 [18], [17]. But

here we state a result proved by Galdi. The following statement is taken from Galdi

[21], but it was originally proved by Galdi in 1993 [23].
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Theorem 2.11.1 (Theorem XII.9.1 of Galdi [21]). Let Ω be an exterior domain in

R2 of class C2. Let w∗ ∈ W 2−1/q,q(∂Ω), 1 < q < 6/5 and let w∞ = e1. Let (w, p) be

the solution constructed in Theorem 2.0.1 with F = 0. Then, denoting by u, π the

(uniquely determined) solution to the Stokes system



∆u = ∇π in Ω

divu = 0 in Ω

u|∂Ω = u∗

|u|1,2,Ω <∞.

Then, as λ→ 0, w, p tends to u, π in the following sense:

∇w ⇀ ∇u in L2(Ω)

w ⇀ u in W 2,q(∂Ω)

p ⇀ π in W 1,q(ΩR)

for all R > diam(Ωc). Moreover, there is a vector u∞ ∈ R2 such that lim|x|→∞ u(x) =

u∞ and we have

u∞ − e1 =
1

4π
lim
λ→
| log λ|

∫
∂Ω

T (w, p) · n.

Finally, the limit process preserves the condition at infinity, that is, u∞ = e1 if and

only if

∫
∂Ω

(w∗ − e1) · T (h(i), π(i)) · n = 0 i = 1, 2 (2.83)

where {h(i), p(i)}i=1,2 is the basis in Sq constructed in Lemma 2.3.1. In the particular

case where Ω is exterior to a unit circle, condition (2.83) reduces to

∫
∂Ω

(w∗i + δ1i) = 0 i = 1, 2.
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2.12 A Liouville Problem in Three Dimension

This last section does not pertain to the problem of the stationary Navier-Stokes

equations in two-dimensional exterior domains. Instead, we introduce short history

of a Liouville problem of the Navier-Stokes equations in R3, which is still open to

date.

For a smooth solution (v, p) to the Navier-Stokes problem


∆v = v · ∇v +∇p in RN

divv = 0 in RN

lim
|x|→∞

v(x) = 0

(2.84)

such that

∫
RN
|∇v(x)|2dx <∞. (2.85)

The trivial solution (identically vanishing) is apparently a solution to this problem.

However, a natural question arises: is the trivial solution the only smooth solution to

the problem? This has an affirmative answer for any dimension N other than three.

The three-dimensional case still remains a big open problem.

Theorem 2.12.1 (Theorem X.9.5 of Galdi [21]). Let v be a smooth solution to (2.84)

in R3 such that

v ∈ L9/2(R3). (2.86)

Then v ≡ 0

The basic idea of the proof by Galdi [21] is: 1) to multiply the Navier-Stokes

equations by ψRv where ψR is a standard cut-off function ψR; 2) integrate by parts
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over R3; 3) prove summability properties of v, p by utilizing the representation formula

of a solution to the Stokes equations (Theorem 2.6.1) and the uniqueness result,

Theorem 2.6.2, 4) control all the other integrals other than the one involving ψR|∇v|2

by using the summability properties.

In higher dimension n ≥ 4, we can replace the condition v ∈ L9/2(R3) by the

condition (2.85) (using Sobolev inequality). And we can solve the problem even

in two dimension; using pointwise behavior of a function in D1,2(Ω) and using the

equation satisfied by the vorticity of v, we can prove the vorticity is constant, which

leads to the triviality of v using condition (2.85). See Theorem XII.3.1 of Galdi [21]

and Gilbarg and Weinberger [27].

For the three-dimensional problem, there have been numerous outstanding partial

results. To name a few, Chae in 2014 [6] proved the triviality of a solution v to (2.84)

under the assumption that ∆v ∈ L6/5. And recently, Chae in 2021 [7] proved the

following theorem.

Theorem 2.12.2 (Theorem 1.1 of Chae [7]). Let (v, p) be a smooth solution to (2.84),

(2.85) in R3 and let Q = 1
2
|v|2 + p be its head pressure. If either

sup
x∈R3

|v(x)|2

|Q(x)|
<∞ or sup

x∈R3

|p(x)|
|Q(x)|

<∞, (2.87)

then v ≡ 0 and p = constant in R3.

In addition, Korobkov, Pileckas, Russo in 2015 [34] proved a Liouville type theorem

in R3 for an axially symmetric D-solution with no swirl.

Theorem 2.12.3 (Theorem 1.1 of Korobkov, Pileckas, Russo [34]). Let (v, p) be an

axially symmetric D-solution with no swirl to (2.84), then v ≡ 0
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Chapter 3

Some Integral Identities for the

Euler and the Navier-Stokes

Equations

Let Ω be a domain in RN , N ≥ 2. In this chapter, we will mainly consider special

domains, such as Ω = RN or Ω = R+ × R, (0, 1)× R when N = 2.

In this chapter, we mainly consider the (incompressible) Euler (ν = 0) or Navier-

Stokes (ν > 0) equations:

∂tv + (v · ∇)v +∇p = ν∆v in Ω× (0, T )

divv = 0 in Ω× (0, T )

(3.1)

where v(x, t) = (v1(x, t), · · · , vN(x, t)) : Ω × (0, T ) → RN is a velocity field, p :

Ω× (0, T ) → R is a pressure field. The parameter ν ≥ 0 is called viscosity. In some

cases, we consider steady solutions to the Euler or the Navier-Stokes equations.

Dobrokhotov and Shafarevich [12] in 1994 proved some integral identities for the

Navier Stokes and the Euler equations for a classical (twice differentiable) solution

(v, p) in space dimension three. If v and its derivatives ∂v/∂t, ∂v/∂xj, j = 1, 2, 3
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decay faster than |x|−4 at some time t, then

∫
R3

(vj(x, t)vk(x, t) + δjkp(x, t)) dx = 0 for all j, k ∈ {1, 2, 3}. (3.2)

The basic idea is to multiply j-th component of the equations by xk and k-th com-

ponent by xj for fixed j, k and to integrate the sum of the resulting equations in a

ball of radius R in R3 and pass to the limit as R → ∞. (See Section 3.2) They

established these integral identities in order to study the instantaneous spreading of

the equations in the entire space. And they proved these integral identities only in

space dimension three, but it can be easily extended to other space dimensions. Even

though the integral identities are applicable to various problems (see below for various

papers who used these integral identities), not only the integral identities (3.2) but

also this paper [12] do not seem to be well-known to the best of my knowledge.

In this chapter, we will mainly focus on the study of the integral identities (3.2)

of the Euler and Navier-Stokes equations (3.1) in terms of the form of the integral

identities and assumptions on (v, p) that are needed, and then we will also study

Liouville type theorems of the equations (3.1) as an immediate corollary of the integral

identities.

In this introduction, we will first focus on history of the integral identities (3.2)

and then on one of Liouville type theorems of the stationary Euler equations (related

to shear flows in two dimension and to Beltrami solutions in three dimension).

Some Integral Identities for the Euler and the Navier-Stokes equations

Dongho Chae in 2011 [3] proved the integral identities (3.2) for a weak solution:

if (v, p) ∈ L1(0, T ;L2
loc,σ(RN)) × L1(0, T ;S ′(RN)) is a weak solution to the Euler or

the Navier-Stokes equations (3.1) in RN and if the weak solution satisfies (v, p) ∈



79

L1(0, T ;L2(RN))× L1(0, T ;L1(RN)), then the integral identities

∫
RN

(vj(x, t)vk(x, t) + p(x, t)δjk) dx = 0 (3.3)

hold for almost every t ∈ (0, T ). (See Theorem 3.2.3. This statement comes from

the proof of Theorem 1.1 of Chae [3], which is a Liouville type theorem. But proving

these integral identities is the main part of the proof of Theorem 1.1 of Chae [3]. And

here the subscript σ of L2
loc,σ means v is weakly divergence free.)

These integral identities (3.3) are used in many papers for various objectives.

Chae, in the same paper [3], used these integral identities in order to prove a Li-

ouville theorem for the Euler and the Navier-Stokes equations (3.1) in RN as an

immediate corollary of the integral identities. Jiu and Xin [33] also used these in-

tegral identities to establish a strong convergence criterion of approximate solution

for the Euler equations in R3. Brandolese and Meyer [2] also studied these integral

identities for the instantaneous spreading of the evolutionary Navier-Stokes equations

in the entire space. Constantin and Chae [8] used the integral identities to prove a

Liouville theorem for a Beltrami solution to the stationary Euler equations in R3

(see Theorem 3.0.5). Sharafutdinov [48] improved these integral identities for higher

degree integral momentum. Hence, these integral identities seem to be applicable

to various problems for the Euler or the Navier-Stokes equations. However, these

integral identities are not well known and have not been studied extensively, to the

best of my knowledge.

These types of integral identities 3.3 are also studied in a totally different context.

Consider the system of equations

−∆v(x) +∇vH(v(x)) = 0, x ∈ RN (3.4)

for v ∈ H1(RN ,RM) and a potential function H ∈ C2 with H(0) = 0. When M = 1,
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the equations turn into the Allen-Cahn equation. This system enjoys a similar integral

identity,

∫
RN

{
1

2

(
N−1∑
l=1

|∂xlv(x)|2 − |∂xNv(x)|2
)

+H (v(x))

}
dx = 0, (3.5)

(which in turn can be used to derive Pohozaev identity in the entire space). This is

proved by Changfeng Gui in 2008 [28]. See (1.17) of [28]. To establish this integral

identity (3.5), the author first proved integral identities on a hyperplane,

∫
RN−1

{
1

2

(
N−1∑
l=1

|∂xlv(x)|2 − |∂xNv(x)|2
)

+H (v(x))

}
dx′N = constant (3.6)

for all xN ∈ R. (Gui called it a Hamiltonian identity.) Here x′N = (x1, · · · , xN−1)

and dx′N = dx1 · · · dxN−1. See Theorem 1.2 of [28]. Note that the integral of (3.6) is

carried out on a hyperplane RN−1 while the one of (3.5) is in the entire space RN . The

author used theses integral identities to prove Young’s law for the contact angles in

triple junction formation and to analyze structure of level curves of saddle solutions

to the Allen-Cahn equations. (See Remark 3.7.5.)

Integral identities on a hyperplane were also found for the Naiver-Stokes and the

Euler equations.

Theorem 3.0.1 (Theorem 1.1 of Chae [4] in 2012). Let (v, p) be a weak solution of

the incompressible Euler or the Navier-Stokes equations (3.30), (3.31). Assume

|v(·, t)|2 + |p(·, t)| ∈ L1(RN) (3.7)

for some t ∈ [0,∞). Then

∫
RN−1

(
|vk(x, t)|2 + p(x, t)

)
dx′k = 0 (3.8)
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for almost every xk ∈ R and for all k = 1, . . . , N .

Here x′k = (x1, · · · , xk−1, xk+1, · · · , xN) and dx′k = dx1 · · · dxk−1dxk+1 · · · dxN .

Note that the integral identities (3.2) involve two indices j, k whereas these inte-

gral identities (3.8) only one index. We will call a type of integral identities involving

two indices like (3.2) a matrix form whereas the other type with one index a vector

form.

To compare the integral identities (3.8) on a hyperplane to the ones (3.3) in the

entire space, the ones on a hyperplane hold in the vector form whereas the ones in the

entire space hold in the matrix form. Theorem 3.0.1 does not give information about

whether integral identities on a hyperplane also hold in the matrix form. However,

one of our main results is that integral identities hold in the matrix form when it

comes to the stationary Euler equations. (See Theorem 3.0.2.)

The basic idea of Chae’s proofs in the papers [3], [4], [5] of integral identities in

the entire space and on a hyperplane is to take divergence of the Navier-Stokes and

the Euler equations to obtain

N∑
l,m=1

∂xl∂xm(vlvm + pδlm) = 0. (3.9)

Then this equation (3.9) is in the form

N∑
l,m=1

∂xl∂xmFlm(x) = 0 (3.10)

where F (x) = (Flm(x)) : RN → MN×N(R) denotes a tensor field of order 2. This

equation (3.10) is called a double divergence free equation. And Chae used a various

special type of cut-off functions in the weak formulation of equation (3.10) to derive

the integral identities (3.3), (3.8).

To prove the matrix form of the integral identities (3.3) in RN , he used cut-off
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functions given by x2
jσR(x)/2, xjxkσR(x) for fixed j, k where σR(x) = σ(x/R) and

σ(x) is a standard cut-off function in RN , that equals one if |x| < 1 and vanishes if

|x| > 2. And to prove the vector form of the integral identities (3.8) on a hyperplane,

he used cut-off functions in the form of eiξjxjσR(x) for fixed j and used the method

of Fourier transform. (For more details, see Theorems 3.2.1, 3.2.3, 3.3.1 and sketch

of their proofs presented after the statements of the theorems.)

In this chapter, we derive the matrix or the vector form of integral identities (3.8)

on a hyperplane with assumptions slightly different from Chae’s in [4]. Here is one of

our main results of this thesis.

Theorem 3.0.2. Let (v, p) ∈ L1(0, T ;L2
loc(RN)) × L1(0, T ;L1

loc(RN)) be a weak so-

lution to the evolutionary Euler or Navier-Stokes equations (3.30), (3.31). Assume

that for some t ∈ (0, T ) and for all k ∈ {1, . . . , N}

|v(x, t)|2 + |p(x, t)| ∈ L1
loc,xk

L1
x′k
, (3.11)

lim inf
|xk|→∞

∥∥|v(x, t)|2 + |p(x, t)|
∥∥
L1(RN−1;x′k)

= 0. (3.12)

Then for the evolutionary Euler or Navier-Stokes equations, for all k ∈ {1, . . . , N}

∫
RN−1

(
v2
k(x, t) + p(x, t)

)
dx′k = 0 for a.e. xk ∈ R, (3.13)

whereas for the stationary Euler equations, for all j, k ∈ {1, . . . , N},

∫
RN−1

(vj(x)vk(x) + p(x)δjk)dx
′
k = 0 for a.e. xk ∈ R. (3.14)

For notations, see Section 3.1. For a proof, see page 124.

Remark 3.0.3. We compare our assumptions (3.11), (3.12) to Chae’s assumption (3.7),

that is, |v(·, t)|2 + |p(·, t)| ∈ L1(RN) for some t. If we only consider v, p satisfying
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that for some t,

|v(x, t)|2 + |p(x, t)| ≤ C

1 + |x|α
in RN , α > 0,

then assumption (3.7) is satisfied if α > N whereas assumptions (3.11), (3.12) are

satisfied if α > N − 1. This is a main benefit of Theorem 3.0.2, (which makes it

possible to prove Theorem 3.0.7).

Remark 3.0.4. In fact, Theorem 3.0.2 do not provide assumptions weaker than the

one of Theorem 3.0.1 in general; In other words, the assumption (3.7) of Theorem

3.0.1 does not imply the assumptions (3.11), (3.12) of Theorem 3.0.2. However, we

can simply replace assumption (3.12) by

∥∥|v(x, t)|2 + |p(x, t)|
∥∥
L1(RN−1;x′k)

∈ L1
weak(R;xk). (3.15)

Even with this replacement, we can reach the same conclusion, and assumption (3.7)

of Theorem 3.0.1 implies (3.11) and (3.15). Hence assumptions (3.11), (3.15) of

Theorem 3.0.2 are weaker than (3.7). However, a theorem with this replacement does

not provide good conditions in terms of decaying of |v|2 + |p|.

The main idea of our proof for the evolutionary equations is to use cut-off functions

different from the ones used by Chae in [4]. The main idea of our proof for the

stationary Euler equations is to use the stationary Euler equations directly without

taking the divergence of the equations. In order words, we use the divergence structure

of the stationary Euler equations directly rather than using the double divergence

structure of divergence of the stationary Euler equations. And we also used a different

cut-off function.

These main ideas can also be used to understand connection between the similar

integral identities for two different equations, the stationary Euler equations and

equation (3.4). This is because we can find divergence structure out of equation (3.4)
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as well as the stationary Euler equations. See Remark 3.7.5.

We also prove the integral identities (3.8) on a section in a domain with boundary

for the stationary Euler equations and establish, as an immediate application of the

integral identities, Liouville type theorems, which provide a different approach to the

result of Hamel and Nadirashvili [30], [31], Chae and Constantin [8]. We will see

history of Liouville type theorems of the stationary Euler equations in detail below

as it needs separate attention

As a matter of fact, the author of the present thesis in fact established the matrix

form of the integral identities (3.8) on a hyperplane for the stationary Euler equations

without even knowing Gui [28], Chae [4]. While the author of the present thesis was

presenting these results to his adviser, Yanyan Li, he suggested to read the paper by

Gui [28]. And the paper by Chae [4] was found by the author of the present thesis

after having established these results.

Liouville type theorems of the stationary Euler equations

We now present history of Liouville type theorems of the stationary Euler equa-

tions.

First of all, in Chae [5], a Liouville type theorem is established in a straightforward

way by using the integral identities (3.8): for a continuous weak solution (v, p) ∈

L1(0, T ;L2
loc,σ(RN))×L1(0, T ;L1

loc(RN)) to the Euler and the Navier-Stokes equations

(3.1) in RN satisfying (v(·, t), p(·, t)) ∈ L2(RN) × L1(RN) for some time t ∈ (0, T ),

if p(·, t) ≥ 0 on almost every hyperplane of RN , then v(·, t) = 0 in RN . As this is

just an immediate application of the integral identities (3.8) on a hyperplane, we can

simply replace the condition of positivity of pressure on hyperplanes by positivity of

integrals of pressure on hyperplanes: if pressure p satisfies that for some t ∈ (0, T )

and for all k ∈ {1, . . . , N}

∫
RN−1

p(x, t) dx′k ≥ 0 for a.e. xk ∈ R (3.16)
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then v(·, t) ≡ 0.

In addition, for Liouville type theorems of the stationary Euler equations, several

researchers especially studied Liouville type properties of a Beltrami solution in R3.

A pair of a vector field v and pressure p is called a Beltrami solution to the stationary

Euler equations in R3 if p + 1
2
|v|2 = c in R3 for some constant c and there exists a

function λ = λ(x) such that curlv = λv. (The pair satisfying these two conditions is

in fact a solution to the stationary Euler equations.) See Definition 3.5.1.

Enciso and Peralta-Salas [13] in 2012 constructed a non-trivial Beltrami flow

which decays of O(1/|x|) as |x| → ∞. On the other hand, Nadirashvili [42] in

2014 investigated a Liouville theorem for Beltrami solutions to the stationary Eu-

ler equations in R3: For a Beltrami solution v ∈ C1(R3), if we assume that either

v ∈ Lq(R3), 2 ≤ q ≤ 3 or v(x) = o(1/|x|), then v ≡ 0. See Theorem 3.5.2.

Chae and Constantin [8] in 2015 provided different, simple proofs of the following

theorem.

Theorem 3.0.5 (Chae, Constantin [8]). For a Beltrami solution v to the stationary

Euler equations,

• (Theorem 1.2 of [8]) if v ∈ L2(R3), then v ≡ 0,

• (Theorem 1.3 of [8]) if v ∈ L∞loc(R3) satisfies either v ∈ Lq(R3) for some

q ∈ [2, 3) or there exists ε > 0 such that |v(x)| = O(1/|x|1+ε) as |x| → ∞, then

v ≡ 0.

The first part of Theorem 3.0.5 is just part of the original Theorem 1.2 of [8].

In the omitted part, they provided an alternative assumption that includes λ (the

function λ from the definition of Beltrami solutions).

Remark 3.0.6. For the first part of Theorem 3.0.5, Chae and Constantin proved it by

using the integral identities (3.3) in the entire space. On the other hand, they argued

differently without using the integral identities for the second part. For the proofs, see
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page 110. However, we can prove one of our main theorems below, whose statement

is similar to the second part of Theorem 3.0.5 by using the integral identities (3.14)

on a hyperplane of Theorem 3.0.2.

Theorem 3.0.7. For a weak Beltrami solution v to the stationary Euler equations,

assume that for all k ∈ {1, 2, 3}

|v(x)|2 ∈ L1
loc,xk

L1
x′k

(3.17)

lim inf
|xk|→∞

∥∥|v(x)|2
∥∥
L1(R2;x′k)

= 0. (3.18)

Or assume that v ∈ L∞loc(R3) and that there exists ε > 0 such that |v(x)| = O(1/|x|1+ε)

as |x| → ∞. Then v ≡ 0.

A proof of this Theorem 3.0.7 can be found on page 112.

Remark 3.0.8. Even if we replace condition (3.18) by

∥∥|v(x)|2
∥∥
L1(R2;x′k)

∈ L1
weak(R;xk), (3.19)

the conclusion, v ≡ 0, is still true. And to compare these conditions (3.17), (3.19) to

the conditions of Theorem 3.0.5, the condition v ∈ L2(R3) of Theorem 3.0.5 implies

conditions (3.17), (3.19).

In contrast, there are simple examples of nontrivial smooth, compactly-supported

solutions to the stationary Euler equations in R2N , N ∈ N: Choose ϕ ∈ C∞c [0,∞)

such that ϕ(r) = 0 for r ≤ r0 with some r0 > 0. Then a pair of vector and pressure

given by

v2j−1(x) = −ϕ(|x|)x2j, v2j(x) = ϕ(|x|)x2j−1, j = 1, . . . , N, p(x) = −
∫ ∞
|x|

sϕ2(s)ds

(3.20)
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is a smooth, compactly-supported solution to the stationary Euler equations in R2N .

This example was taken from Sharafutdinov [48] but, as it was pointed out in the

paper, this example is highly likely well known.

Construction of a nontrivial, smooth, compactly-supported solution to the sta-

tionary Euler equations in odd dimension is still open with the exception of R3. Such

an example in R3 has been recently constructed in Gavrilov [26] and Constantin, La

and Vicol [11]. See Section 3.6.

On the other hand, Hamel and Nadirashvili in 2017, 2019 [30], [31] provide a

new approach to Liouville type theorems of the stationary Euler equations in various

special domains in R2. Their theorems pertain to a shear flow, which is by definition

a vector field v in the form

v(x) = V (x · e⊥)e, e⊥ = (−e2, e1) (3.21)

for some vector e = (e1, e2) ∈ S1 and a function V : R → R. Any such vector field

is a solution to the stationary Euler equations with p = constant. Special examples

include the trivial solution v ≡ 0 and v(x) = (v1(x2), 0). Instead of asking what

assumptions lead to the trivial solution v ≡ 0, the authors ask what assumptions

lead to a shear flow. In other words, the authors consider a solution (v, p) to the

stationary Euler equations with some assumptions on v, and instead of concluding

that v ≡ 0, their conclusion reads v is a shear flow.

Speaking of domains of Hamel and Nadirashvili’s results, they consider special

ones: (0, 1) × R,R+ × R and R2. Here we write their theorem in the case of Ω =

(0, 1)× R. See Theorem 3.4.1 for the other domains.

Theorem 3.0.9 (Theorem 1.1 of [30]). If v ∈ C2(Ω) is a solution to the stationary
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Euler equations in Ω = (0, 1)× R with v1 = 0 on ∂Ω (tangential on ∂Ω) such that

inf
Ω
|v| > 0, (3.22)

then v is a shear flow, that is, v(x) = (0, v2(x1)) for all x ∈ Ω.

As a matter of fact, Hamel and Nadirashvili investigated the problem in R×(0, 1),

not (0, 1) × R. But this is just a matter of rotation. And here we have just stated

their theorem in (0, 1)× R for the sake of comparison to our results.

As for the other domains, Ω = R+×R,R2, their statements are slightly different,

but they needed to assume (3.22) for all the cases.

Their theorems have a limitation as it was pointed out by them: the condition

infR2 |v| > 0 is not equivalent to being a shear flow because one can construct various

simple examples of a shear flow that does not satisfy this condition. For instance,

v = (v1(x2), 0) is a shear flow but v1 may vanish at many points, which does not

satisfy the condition infR2 |v| > 0.

However, we can also derive integral identities on a section of a domain with

boundary, and, as an immediate corollary of that, we can establish assumptions on a

solution (v, p) to the stationary Euler equations with some boundary condition, that

are equivalent to being a shear flow. We state here one of our main theorems of this

topic in the case Ω = (0, 1)×R. (The rest of our main theorems of this topic can be

found in Theorems 3.4.2,3.4.3, 3.4.4, 3.4.9.)

Theorem 3.0.10. Let (v, p) ∈ C1(Ω)× C1(Ω) be a solution to the stationary Euler

equations in Ω = (0, 1)× R satisfying

v2|∂Ω = 0 (3.23)
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and

lim inf
|x2|→∞

∫ 1

0

(v2
2(x) + |p(x)|)dx1 = 0.

If the pressure p satisfies

∫ 1

0

p(x)dx1 ≥ 0 for all x2 ∈ R, (3.24)

then v is a shear flow, that is, v(x) = (v1(x2), 0) for all x ∈ Ω.

This is a simple application of Lemma 3.7.7, whose proof can be found on page

132.

The assumption (3.24) is equivalent to being a shear flow. If v is a shear flow,

then from the stationary Euler equations, it holds that p = 0 up to a constant, which

obviously satisfies (3.24). See also Remark 3.4.5.

One downside of our result is that we are making a non-standard boundary con-

dition. But example (3.20) even satisfy both the non-standard boundary condition

(3.23) and the standard boundary condition v ·n|∂Ω = 0, that is, v1|∂Ω = 0. See also

Remarks 3.4.6, 3.4.7

In addition, example (3.20) satisfies all the assumptions of Theorem 3.0.10 except

(3.24) and is not a shear flows. Therefore, this is also an example that shows we

cannot simply remove (3.24). (See Example 3.8.4 and Remark 3.4.8.)

This chapter is organized in the following way. Section 3.1 is just devoted for

notations and definitions used in this chapter. Section 3.2 provides old theorems on

integral identities in the entire space for the Euler and the Navier-Stokes equations and

sketch of their proofs. In Section 3.3, we study integral identities on a hyperplane and

provide our main results of this topic, Theorem 3.3.2 in addition to Theorem 3.0.2,

which is already introduced in this introduction. Then in Section 3.4 we provide

Liouville type theorems of the stationary Euler equations related to shear flows in
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two dimension with our main results, Theorem 3.4.2, 3.4.3, 3.4.4, 3.4.9 in addition

to Theorem 3.0.10. Next, in Section 3.5, we investigate Liouville type theorems for

Beltrami solutions to the stationary Euler equations in R3 with a proof of our main

result of this topic, Theorem 3.0.7, which is already introduced in this introduction.

Lastly, Section 3.7 contains proofs of majority of our main theorems, Theorems 3.0.2,

3.3.2, 3.0.10, 3.4.2, 3.4.3, 3.4.9, along with various approaches to establish integral

identities on a hyperplane for equations with divergence structure.

3.1 Notations and Definitions

Throughout this chapter, we do not use the Einstein summation convention to avoid

confusions.

In this paper, we denote a vector-valued or tensor-valued function in boldface:

For example, we denote a scalar field by p, a vector field by v = (v1, . . . , vN) and a

tensor field by F = {Fjk}.

For k ∈ {1, . . . , N}, we denote the k-th variable of x ∈ RN by xk. For x =

(x1, . . . , xN) ∈ RN , we write x′k = (x1, . . . , xk−1, xk+1, . . . , xN) ∈ RN−1. For a vector

v, each component of v is denoted by vj, j = 1, . . . , N . A similar notation also applies

to a tensor. Subscripts are reserved only for this purpose. For indices, the letters j, k

are used to indicate fixed indices whereas the letters l,m are used to indicate dummy

indices (when we write a summation over l and/or m).

For k ∈ {1, . . . , N} and a function f(x) ∈ L1
loc(RN), we write

f(x) ∈ L1
loc,xk

L1
x′k

when

• for a.e. xk ∈ R, the map x′k → f(x) is in L1(RN−1), and
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• the map xk 7→
∫
RN−1 |f(x)|dx′k is in L1

loc(R).

A vector field v = (v1, . . . , vN) ∈ L1
loc,xk

L1
x′k

if and only if vj ∈ L1
loc,xk

L1
x′k

for all

j = 1, . . . , N.

Similarly, for k ∈ {1, . . . , N} and a function f(x, t) ∈ L1
loc(0, T ;L1

loc(RN)), we

write

f(x, t) ∈ L1
loc,tL

1
loc,xk

L1
x′k

when

• for a.e. xk ∈ R, a.e. t ∈ R, the map x′k 7→ f(x, t) is in L1(RN−1),

• for a.e. t ∈ R, the map xk 7→ ‖f(x, t)‖L1(RN−1;x′k) is in L1
loc(R;xk),

• for all bounded intervals I ⊂ R, the map t 7→
∫
I

∫
RN−1 |f(x, t)|dx′kdxk is in

L1
loc(0, T ).

We will call a type of integral identities involving two indices like (3.25) a matrix

form whereas the other type with one index a vector form.

A smooth function with compact support is called a test function. The letter ψ(x)

is reserved for a test function in RN . And we write φ(t) to indicate a test function

with respect to time variable t.

For a fixed index k ∈ {1, . . . , N}, ξ(xk) is reserved for a test function of xk ∈ R.

And we define specific test functions as follows. Fix k ∈ {1, . . . , N}. Let σ(x′k) be a

cut-off function in C∞c (RN−1) such that

σ(x′k) =


1 if |x′k| < 1

0 if |x′k| > 2

and 0 ≤ σ(x′k) ≤ 1 for 1 < |x′k| < 2. And for R > 0, we define σR(x′k) = σ(x′k/R).

Note that ξ(xk)σ(x′k) ∈ C∞c (RN). We will use this test function ξ(xk)σ(x′k) frequently

in Section 3.7.
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3.2 Some Integral Identities in the Entire Space

This section is devoted to study the integral identities (3.14) in the entire space RN

for the Euler and the Navier-Stokes equations. We present first more details about

the history of this topic.

In 1994, Dobrokhotov and Shafarevich [12] proved the integral identities in the

entire space R3 of a classical solution v to the Euler and the Navier-Stokes equations:

If v and its derivatives ∂v/∂t, ∂v/∂xj, j = 1, 2, 3 decay faster than |x|−4 at some time

t, then

∫
R3

(vj(x, t)vk(x, t) + δjkp(x, t)) dx = 0 for all j, k = 1, 2, 3. (3.25)

Their main idea is to multiply j-th equations by xk and k-th equations by xj and

integrate by parts the sum of the resulting equations in a ball BR of radius R, which

leads to

∂t

∫
BR

(vjxk + vkxj)dx− 2

∫
BR

(vjvk + pδjk)dx = some boundary integrals.

As vjxk + vkxj = div (vxjxk), the first volume integral can be written as a boundary

integral by applying the divergence theorem. And applying the decay conditions, all

the boundary terms vanish, which proves the integral identities above. .

In Brandolese and Meyer’s paper in 2002 [2] and in Chae and Constantin in 2015

[8] independently, they provided a proof of the integral identities in the entire space

by means of the Fourier transform.

Theorem 3.2.1 (Theorem 1.1 of Chae,Constantin [8]). If (v, p) satisfies

p = −
N∑

j,k=1

RjRk(vjvk) (3.26)
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where Rj, j = 1, . . . , N denote the Riesz transforms, and if |v|2 + |p| ∈ L1(RN), then

∫
RN
vjvkdx = −δjk

∫
RN
pdx. (3.27)

Here the Riesz transforms Rj, j = 1, . . . , N are given by

Rj(f)(x) = CN lim
ε→0

∫
RN\Bε(x)

(xj − yj)f(y)

|x− y|N+1
dy, CN =

Γ((N + 1)/2)

π(N+1)/2
. (3.28)

Note that by taking the divergence of the Euler or the Navier-Stokes equations

(3.1), we can obtain

∆p = −
N∑

j,k=1

∂xj∂xk(vjvk). (3.29)

Therefore, the pressure in the Euler and the Navier-Stokes equations (3.1) is given in

terms of the velocity up to addition of a harmonic function by (3.26).

Sketch of the proof of Theorem 3.2.1 in [8]. By the Fourier transform, we have

p̂(ξ) = −
N∑

l,m=1

ξlξm
|ξ|2

v̂lvm(ξ).

As |v|2 + |p| ∈ L1(RN), the left hand side and thus the right hand side is continuous

at ξ = 0, which implies

p̂(0)δjk = −v̂jvk(0).

This, in turn, implies the integral identities (3.27).

In 2011, Chae proved the integral identities (3.27) in the entire space by choosing

a special type of test functions in a weak formulation of (3.29).

We first define a weak solution to the Euler or the Navier-Stokes equations.
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Definition 3.2.2 (Weak Solution). A pair (v, p) ∈ L1(0, T ;L2
loc(RN))×L1(0, T ;L1

loc(RN))

is called a weak solution to the Euler and the Navier-Stokes equations (3.1) in RN if

and only if for all k ∈ {1, . . . , N} and all ψ(x) ∈ C∞c (RN), φ(t) ∈ C∞c (R),

∫ T

0

∫
RN
vk(x, t)ψ(x)∂tφ(t)dxdt

+
N∑
l=1

∫ T

0

∫
RN
vl(x, t)vk(x, t)∂xlψ(x)φ(t) dxdt+

∫ T

0

∫
RN
p(x, t) ∂xkψ(x)φ(t) dxdt

= −ν
N∑
l=1

∫ T

0

∫
RN
vk∂

2
xl
ψ(x)φ(t)dxdt (3.30)

and for a.e. t ∈ (0, T ),

N∑
j=1

∫
RN
vj(x, t)∂xjψ(x)dx = 0 for all ψ ∈ C∞0 (RN). (3.31)

This definition comes from Definition 1.1 of Chae [3], but there are small dif-

ferences between them. In Chae [3], he defined a weak solution for pressure in

L1(0, T ;S ′(RN)), not in L1(0, T ;L1
loc(RN)). Due to that difference, he wrote the

dual pairing 〈p(t), ∂kψ〉 in place of the product p(x, t)∂kψ(x) in the definition above.

Theorem 3.2.3 (Chae [3]). If (v, p) ∈ L1(0, T ;L2
loc(RN))×L1(0, T ;S ′(RN)) is a weak

solution to the Euler or the Navier-Stokes equations (3.1) in RN and (v, p) satisfies

|v| ∈ L1(0, T ;L2(RN)), |p| ∈ L1(0, T ;L1(RN)), (3.32)

then the integral identities (3.27) in the entire space hold for almost every t ∈ (0, T ).

This Theorem 3.2.3 is taken from Theorem 1.1 of Chae [3]. However, as a matter

of fact, this statement of Theorem 3.2.3 is slightly different from Theorem 1.1 of Chae

[3]. In Theorem 1.1 of [3], Chae divided cases by the sign of the integral of p in RN .

In one case, he made a Liouville type result whereas, in the other case, he showed
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the integral identities (3.27). In addition, Chae also gave an alternative condition

of p with L1(RN) replaced by the Hardy space Hq(RN). Moreover, Chae included

the condition |v| ∈ L1(0, T ;L2(RN)) in his definition of a weak solution rather than

stating it as an assumption explicitly.

Sketch of the Proof of Theorem 3.2.3 in [3]. We first use the test function given by

x2
j

2
σR(x)

for fixed j in a weak formulation of (3.29) where σR(x) = σ(x/R) and σ(x) is a

standard cut-off function, which equals to one for |x| < 1 but vanishes for |x| > 2.

Any integrals involving derivatives of σR(x) of any order vanish as R → ∞. On

the other hand, the integrals that do not contain derivatives of σR(x) remain after

taking R→∞. This yields us the integral identities (3.27) in the entire space in case

j = k.

Now using

xjxkσR(x)

as a test function in the weak formulation, similarly we obtain the other cases of the

integral identities (3.27) in the entire space for j 6= k.

And Chae also applied the same idea to the magnetohydrodynamic (MHD) equa-

tions in RN , N ≥ 2.

∂v

∂t
+ (v · ∇)v = (b · ∇)b−∇

(
p+

1

2
|b|2
)

+ ν∆v

∂b

∂t
+ (v · ∇)b = (b · ∇)v + µ∆b

div v = div b = 0

(3.33)

where v = (v1, . . . , vN),v = v(x, t) is the velocity of the flow, p = p(x, t) is the scalar

pressure, b = (b1, . . . , bN), b = b(x, t) is the magnetic field.
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Definition 3.2.4. A triple (v, b, p) ∈ [L1(0, T ;L2
loc(RN))]2×L1(0, T ;L1

loc(RN)) is said

to be a weak solution to the MHD equation (3.33) (µ, ν ≥ 0) on RN × (0, T ) if for all

k ∈ {1, . . . , N}

−
∫ T

0

∫
RN
vk(x, t)ψ(x)φ′(t) dxdt−

N∑
l=1

∫ T

0

∫
RN
vk(x, t)vl(x, t)∂xlψ(x)φ(t) dxdt

= −
N∑
l=1

∫ T

0

∫
RN
bk(x, t)bl(x, t)∂xlψ(x)φ(t) dxdt+

∫ T

0

∫
RN
p(x, t)∂xkψ(x)φ(t) dxdt

+
1

2

∫ T

0

∫
RN
|b(x, t)|2∂xlψ(x)φ(t) dxdt+ ν

∫ T

0

∫
RN
vk(x, t)∆ψ(x)φ(t) dxdt

(3.34)

and

−
∫ T

0

∫
RN
bk(x, t)ψ(x)φ′(t) dxdt−

N∑
l=1

∫ T

0

∫
RN
bk(x, t)vl(x, t)∂xlψ(x)φ(t) dxdt

= −
N∑
l=1

∫ T

0

∫
RN
vk(x, t)bl(x, t)∂xlψ(x)φ(t) dxdt+ µ

∫ T

0

∫
RN
bk(x, t)∆ψ(x)φ(t) dxdt

(3.35)

for all ξ ∈ C∞0 (0, T ) and φ ∈ C∞0 (RN), and if both fields v, b satisfy the divergence

free condition in the weak sense as in (3.31).

Theorem 3.2.5 (Chae [3]). Suppose (v, b, p) is a weak solution to the magnetohy-

drodynamic equations (3.33) with µ, ν ≥ 0 on RN × (0, T ) satisfying

|v|, |b| ∈ L1(0, T ;L2(RN)), |p| ∈ L1(0, T : L1(RN)). (3.36)

Then

∫
RN

(
v2
j + p+

1

2
|b|2 − b2

j

)
dx = 0 for all j = 1, . . . , N. (3.37)
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This Theorem 3.2.5 is taken from the proof of Theorem 3.1 of Chae [3]. The

Theorem 3.1 of Chae [3] is stated as a Liouville type theorem which can be obtained

by applying the integral identities (3.37) in the entire space. The main idea of the

proof is similar to the one of Theorem 3.2.3.

3.3 Some Integral Identities on a Hyperplane

This section is devoted to the study of the integral identities on a hyperplane either

in the matrix form

∫
RN−1

(vjvk + pδjk)dx
′
k = 0 for all xk ∈ R, j, k = 1, . . . , N (3.38)

or in the vector form

∫
RN−1

(v2
k + p)dx′k = 0 for a.e. xk ∈ R, k = 1, . . . , N (3.39)

for the Euler and the Navier-Stokes equations.

Note that by taking the divergence of the Euler and the Navier-Stokes equations,

we obtain

∆p = −
N∑

l,m=1

∂xl∂xm(vlvm), (3.40)

which can be re-written as

0 =
N∑

l,m=1

∂xl∂xm(vlvm + pδlm).
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This is in the form of double divergence free equations

0 =
N∑

l,m=1

∂xl∂xmFlm = 0 (3.41)

for a tensor field, Flm.

As the main idea of Chae’s proofs in [3] used the double divergence structure of

(3.40), Chae in 2012 [4] and in 2013 [5] studied the double divergence free equations

and proved the vector form of the integral identities on a hyperplane as follows.

Theorem 3.3.1 (Theorem 2.1 of Chae [5]). If a tensor Fjk(·, t) ∈ L1(RN) ∩ C(RN)

satisfies (3.41) in the sense of distribution, then

∫
RN−1

Fkk(x, t)dx
′
k = 0 for all k = 1, . . . , N (3.42)

(for all xk ∈ R).

As an immediate corollary of Theorem 3.3.1, we can obtain Theorem 3.0.1.

In addition, the stationary compressible Euler system is reduced to (3.41) with

Fjk = ρvjvk + δjkp, p = aργ. One can readily obtain a corollary as follows.

Corollary 3.3.1 (Corollary 2 of Chae [5]). If (ρ,v) is a continuous weak solution the

stationary compressible Euler equations in RN with

∫
RN

(ρ|v|2 + aργ)dx <∞,

then we have

∫
RN−1

(ρ|vk|2 + aργ)dx′k = 0 for all xk ∈ R, k = 1, . . . , N,

and thus ρ ≡ 0 (vacuum).
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Sketch of the proof of Theorem 3.3.1 in [5]. We use

eiξkxkσR(x)

as a test function in a weak formulation of (3.41) where σR(x) = σ(x/R) and σ(x) is a

standard cut-off function, which equals to one if |x| < 1 and vanishes if |x| > 2. Again

the integrals involving derivatives of σR(x) of any order vanishes as R→∞ whereas

the other integrals remain as R → ∞ and we can re-write the resulting integrals as

follows:

0 = −
N∑

l,m=1

∫
Flm∂xl∂xm(eiξkxk)dx

= ξ2
k f̂(ξk), f(xk) =

∫
RN−1

Fkk(x)dx′k.

Therefore, by using the continuity of f̂ , it follows that f(xm) = 0 for all xm ∈ R.

By using a test function different from the ones used by Chae in [3–5] and/or

by using equations (3.1) directly without taking the divergence of it, we can obtain

one of our main results of this thesis, Theorem 3.0.2, which is already stated in the

introduction of this chapter. A proof of Theorem 3.0.2 can be found in Section 3.7.

Remarks can be found in Remarks 3.0.3, 3.0.4.

In addition to Theorem 3.0.2, we can also prove the following theorem with another

type of additional integral identities of v if we make an additional assumption on v.

Theorem 3.3.2. Let (v, p) ∈ L1(0, T ;L2
loc(RN)) × L1(0, T ;L1

loc(RN)) be a weak so-

lution to the evolutionary Euler or Navier-Stokes equations (3.30), (3.31). Suppose
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that for all k ∈ {1, . . . , N},

(
|v(x, t)|2 + |p(x, t)|

)
∈ L1

loc,tL
1
loc,xk

L1
x′k

lim inf
|xk|→∞

∥∥|vk(x, t)|2 + |p(x, t)|
∥∥
L1(RN−1;x′k)

= 0 a.e. t ∈ (0, T ).

In addition, we assume that for all k ∈ {1, . . . , N}

v(x, t) ∈ L1
loc,tL

1
loc,xk

L1
x′k
,

and that for all k ∈ {1, . . . , N} there exists t0 ∈ (0, T ) and δ > 0 such that

lim inf
|xk|→∞

‖vk(x, t)‖L1(RN−1;x′k) = 0, a.e. t ∈ (t0 − δ, t0 + δ).

Then it holds that for all k ∈ {1, . . . , N} and for a.e. t ∈ (0, T )

∫
RN−1

(
v2
k(x, t) + p(x, t)

)
dx′k = 0 for a.e. xk ∈ R, (3.43)∫

RN−1

vk(x, t)dx
′
k = 0 for a.e. xk ∈ R. (3.44)

A proof of Theorem 3.3.2 is written on page 125.

The total flux,
∫
RN vdx, of velocity of the Euler equation is a well-known basic

conserved quantity. We can prove it by integrating the integral of (3.44) with respect

to xk. However, due to the lack of my knowledge about the evolutionary equations,

it is unclear what kind of meaningful application we can make out of (3.44).

As Chae [5] derived integral identities (in the entire plane) for the magnetohydro-

dynamic equations (see Theorem 3.2.5), we can also apply our idea to these equations

to obtain integral identities on a hyperplane.

Theorem 3.3.3. Let (v, b, p) ∈ [L1(0, T ;L2
loc(RN))]2 × L1(0, T ;L1

loc(RN)) be a weak

solution to the magnetohydrodynamic equations (3.33) with µ, ν ≥ 0 on RN × (0, T ).
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Assume that for some t ∈ (0, T ) and for all k ∈ {1, . . . , N}

(
|v(x, t)|2 + |b(x, t)|2 + |p(x, t)|

)
∈ L1

loc,xk
L1
x′k
,

lim inf
|xk|→∞

∥∥|v(x, t)|2 + |b(x, t)|2 + |p(x, t)|
∥∥
L1(RN−1;x′k)

= 0.

Then for the evolutionary magnetohydrodynamic equations (3.33) with µ, ν ≥ 0, for

all k ∈ {1, . . . , N} and for a.e. t ∈ (0, T )

∫
RN−1

(
v2
k(x, t)− b2

k(x, t) +

(
1

2
|b(x, t)|2 + p(x, t)

))
dx′k = 0 a.e. xk ∈ R, (3.45)

whereas for the stationary magnetohydrodynamic equations (3.33) with µ, ν = 0, for

all j, k ∈ {1, . . . , N},

∫
RN−1

(
vj(x)vk(x)− bj(x)bk(x) +

(
1

2
|b(x)|2 + p(x)

)
δjk

)
dx′k = 0 a.e. xk ∈ R,

(3.46)∫
RN−1

(vj(x)bk(x)− vk(x)bj(x)) dx′k = 0 a.e. xk ∈ R

(3.47)

A proof of Theorem 3.3.3 can be found on page 125

3.4 Liouville Type Theorems and Shear Flows

We study Liouville type theorems of the stationary Euler equations as simple appli-

cations of the integral identities on a hyperplane in various situations.

Our study of Liouville type theorems of the stationary Euler equations is twofold:

1) one related to Beltrami solutions, 2) one related to shear flows.

In this section, we present Liouville type theorems in two dimensional domains

related to shear flows.
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For the study related to shear flows, one of our main results of this topic is already

stated in Theorem 3.0.10 in the introduction of this chapter. This theorem pertains

to the domain Ω = (0, 1)×R. So in this section, we state our theorems for the other

domains Ω = R+ × R,R2 that Hamel and Nadirashvili considered in [30], [31].

To make comparison, we first state Hamel and Nadirahsilvi’s results in [30], [31].

We put all of their theorems together for each case of domains Ω = (0, 1)× R,R+ ×

R,R2.

Theorem 3.4.1 (Hamel, Nadirashvili [30], [31]). Let v ∈ C2(Ω) be a solution to the

stationary Euler equations in a domain Ω = I × R where I is an interval which will

be specified below. Assume

inf
x∈Ω
|v(x)| > 0

(for all the cases below). For each case of the following intervals I, we make the

following assumptions and obtain the following conclusions:

• Case 1) I = (0, 1). Assume v1|∂Ω = 0. Then v is a shear flow, that is, v(x) =

(0, v2(x1)) for all x ∈ Ω.

• Case 2) I = R+. Assume v1|∂Ω = 0 and v is bounded in Ω. Then v is a shear

flow, that is, v(x) = (0, v2(x1)) for all x ∈ Ω.

• Case 3) I = R. Assume v is bounded in Ω. Then v is a shear flow.

In Case 3, the conclusion does not give information about the direction of the

shear flow v as opposed to Case 1 and 2, which make sense because in Case 3 we do

not impose any assumptions regarding the direction of v whereas in Case 1 and 2 we

impose the boundary conditions, which determine the direction of v on the boundary.

For Case 1 and 2, the actual statements in [30] pertain to the domain R×(0, 1),R×

R+. These changes are made here in order to avoid confusions in comparing it to the

results of this thesis.
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We present the main idea of Hamel and Nadirashvili’s results. For the case of

domains with boundary (I = (0, 1),R+), the main tools of their proofs are the stuy

on geometric properties of the streamlines of a flow and one-dimensional symmetry

results for solutions of some semilinear elliptic equations. Consider a flow v satisfying

the assumptions of Theorem 3.4.1. Then there exists a potential function u such that

v = ∇⊥u. They showed all streamlines of v (connected components of level sets of

u) go from −∞ to ∞ and showed that the streamlines of v foliate the domain. By

using this, they constructed a function f that satisfy a semilinear elliptic equation

∆u+f(u) = 0. And to make a conclusion, they applied one-dimmensional symmetry

results for solutions with bounded gradient of such semilinear elliptic equations.

But in the case of the entire plane, R2, they worked with the argument ϕv of v and

eventually showed that ϕv is constant. To this end, they showed that the streamlines

foliate the domain R2. By using this, they again constructed a function f satisfying

a semilinear elliptic equation, ∆u + f(u) = 0. They used this semilinear elliptic

equations to derive an equation of the argument ϕv, which is div(|v|2∇ϕv) = 0.

Then they proved that the argument ϕv grows at most as lnR in balls of large radius

R. Lastly, they used a compactness argument and a result of Moser to conclude that

the argument ϕv is constant.

As it was mentioned in the introduction of this chapter, the theorems have one

limitation. There are shear flows that do not satisfy the condition infx∈Ω |v(x)| > 0.

Hence the condition infx∈Ω |v(x)| > 0 is not equivalent to being a shear flow.

However, by using the integral identities on a hyperplane, we can find conditions

that are equivalent to being a shear flow. Our main results of this topic are Theorem

3.0.10 (in the introduction) and Theorems 3.4.2, 3.4.3, 3.4.4, 3.4.9 below.

Now we present our main results of this topic. In addition to Theorem 3.0.10,

which is already stated in the introduction, we can also prove theorems in other

domains Ω = R+ × R,R2 as follows.
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Theorem 3.4.2. Let Ω = R+ × R and let (v, p) ∈ C1(Ω) × C1(Ω) be a classical

solution to the stationary Euler equations in Ω. Assume

v2|∂Ω = 0. (3.48)

In addition, suppose that

v2
2(x) + |p(x)| ∈ L1(R+;x1) for all x2 ∈ R

lim inf
|x2|→∞

∫
R+

(v2
2 + |p|) dx1 = 0,∫ s

0

∫
R+

|v1(x)v2(x)|
1 + |x1|

dx1dx2 <∞ for all s ∈ R

and that

∫
R+

p dx1 ≥ 0 for all x2 ∈ R.

Then v is a shear flow, that is, v(x) = (v1(x2), 0) for all x ∈ R+ × R.

This theorem is a simple application of Lemma 3.7.8, whose proof is written on

page 130.

Theorem 3.4.3. Let (v, p) ∈ C1(R2)× C1(R2) be a solution to the stationary Euler

equations in R2. Suppose that

(v2
2 + |p|), v1v2 ∈ L1

loc,x2
L1
x1
, lim inf

|x2|→∞

∫
R
(v2

2 + |p|) dx1 = 0,

and that

∫
R
p dx1 ≥ 0 for all x2 ∈ R.

Then v is a shear flow, that is, v(x) = (v1(x2), 0) for all x ∈ R2.
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This theorem is also a simple application of Lemma 3.7.3, whose proof is written

on page 121.

Theorem 3.4.4. Let (v, p) ∈ C1(R2)×C1(R2) be a classical solution to the stationary

Euler equations in R2. Assume that there exists a constant a > 0 such that

v(x+ ae1) = v(x) for all x ∈ R2.

and

lim inf
|x2|→∞

∫ a

0

(v2
2 + |p|) dx1 = 0.

If the pressure p satisfies

∫ a

0

p dx1 ≥ 0 for all x2 ∈ R, (3.49)

then v is a shear flow, that is, v(x) = (v1(x2), 0) for all x ∈ R2.

This theorem is a simple application of Lemma 3.7.9.

We leave here some remarks about all these theorems above as well as Theorem

3.0.10.

Remark 3.4.5. For Theorems 3.0.10, 3.4.2, 3.4.3, 3.4.4, the condition

∫
I

p dx1 ≥ 0 for all x2 ∈ R (3.50)

is equivalent to being a shear flow under the boundary and integrability assumptions

as well as the assumption

lim inf
|x2|→∞

∫
I

(v2
2 + |p|)dx1 = 0
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for a corresponding interval I = (0, 1),R+,R. Indeed, if v is a shear flow, then by

using the stationary Euler equations, it follows that p = 0 up to a constant. Therefore,

it obviously satisfies (3.50). Consequently, the condition (3.50) is equivalent to being

a shear flow.

Remark 3.4.6. For Theorems 3.0.10, 3.4.2, we assume the non-standard boundary

condition v2|∂Ω = 0 (normal, not tangential, on the boundary). However, as it was

mentioned in the introduction, there are even simple flows that satisfy not only the

non-standard but also the standard boundary condition. See (3.20) and Example

3.8.4.

Remark 3.4.7. For Theorem 3.0.10, 3.4.2, in fact, even if we simply replace boundary

conditions (3.23), (3.48) by

v1(0, x2)v2(0, x2) = v1(1, x2)v2(1, x2) for all x2 ∈ R (3.51)

v1(0, x2)v2(0, x2) = 0 for all x2 ∈ R (3.52)

respectively. the conclusion is still true. And these boundary condition (3.51), (3.52)

are satisfied if we assume the standard boundary condition v1|∂Ω = 0. However, in

that case, the conclusion becomes v ≡ 0, not just that v is a shear flow. So in this

case, the theorem is not comparable to Hamel and Nadirashvili’s result, Theorem

3.0.9. On the other hand, for Theorem 3.0.10 it is worth to note that the boundary

condition (3.51) is satisfied if we assume a periodic boundary condition on ∂Ω, that

is, v(0, x2) = v(1, x2) for all x2 ∈ R. Theorem 3.4.4 pertains to the periodic case.

Remark 3.4.8. Example (3.20) satisfies all the assumptions of Theorems 3.0.10, 3.4.2,

3.4.3 except

∫
I

p dx1 ≥ 0 for all x2 ∈ R (3.53)
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where I = (0, 1),R+,R respectively; and the example is not a shear flow. Therefore,

we cannot simply remove this condition (3.53) from Theorems 3.0.10, 3.4.2, 3.4.3.

(See also Examples 3.8.1, 3.8.2, 3.8.3, 3.8.4.)

In the entire plane R2, we can also prove a Liouville type theorem with no sign

condition on the pressure but on v1v2 as follows.

Theorem 3.4.9. Let (v, p) be a continuous weak solution to the stationary Euler

equations in R2. Assume that

vjvk + pδjk ∈ L1
loc,x1

L1
x2
, (3.54)

for all j, k except (j, k) = (1, 1) and that

lim inf
|x1|→∞

‖v1v2‖L1(R;x2) = 0.

In addition, suppose either

v1v2 ≥ 0 in R2 or v1v2 ≤ 0 in R2. (3.55)

And assume

|v(x)| > 0 for all x ∈ R2. (3.56)

Then v is a shear flow, that is, v = (v1(x2), 0) in R2.

A proof of this Theorem 3.4.9 is written on page 132.

It is worth to compare this theorem to a result of Hamel and Nadirashvili’s in

[31].

Theorem 3.4.10 (Hamel, Nadirashvili [31]). Let v ∈ C2(R2)∩L∞(R2) be a solution
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to the stationary Euler equations. Assume either

v · e > 0 in R2 or v · e < 0 in R2 (3.57)

for some unit vector e. And assume

inf
R2
|v(x)| > 0. (3.58)

Then v is a shear flow.

As a matter of fact, this Theorem 3.4.10 is not stated as a theorem in Hamel

and Nadirashvili [31]. (This Theorem 3.4.10 has one more extra condition, (3.57),

compared to their main result, Theorem 1.1 of [31].) But they provided a proof of

this statement separately because this statement can be proved more easily compared

to their main result. See Remark 1.2 and Section 2.4 of [31].

Now we write remarks about Theorem 3.4.9.

Remark 3.4.11. For Theorem 3.4.9, it does not provide conditions that are equivalent

to being a shear flow due to condition (3.56).

Remark 3.4.12. To compare Theorem 3.4.9 with Theorem 3.4.10, condition (3.56)

does not exclude the case where v converges to zero at infinity, as opposed to (3.58).

However, given condition (3.56), condition (3.55) is stronger than (3.57). This is

because if, for example, v1v2 ≥ 0 in R2 and condition (3.56) holds, then for e =

〈 1√
2
, 1√

2
〉, condition (3.57) holds, too.

Remark 3.4.13. Without conditions (3.55), (3.56), there is a counterexample (3.20).

This example satisfies all the assumptions except (3.55), (3.56), and it is not a shear

flow.
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3.5 Liouville Type Theorems for Beltrami Solu-

tions

In this section, we present Liouville type theorems for Beltrami solutions to the

stationary Euler equations in R3

(v · ∇)v +∇p = 0 in R3

divv = 0 in R3.

(3.59)

Let us first recall the definition of Beltrami solutions to the stationary Euler

equations in R3.

Definition 3.5.1. A pair of a vector field v and pressure p is called a Beltrami

solution to the stationary Euler equations in R3 if

p+
1

2
|v|2 = c in R3 (3.60)

for some constant c and there exists a function λ = λ(x) such that

curlv(x) = λ(x)v(x) in R3. (3.61)

The pair satisfying these two conditions is in fact a solution to the stationary

Euler equations. Indeed, the first equation of the stationary Euler equations (3.59)

can be re-written as

v × ω = ∇(p+
1

2
|v|2), ω = curlv.

Therefore, if both conditions (3.60), (3.61) are satisfied, then the vector field v and

pressure field p is a solution to the stationary Euler equations. (A vector field satis-

fying the first condition (3.60) is sometimes called a Beltrami flow. For more details
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about the definition of Beltrami solutions, see Chae and Constantin [8].)

As it was mentioned in the introduction, Enciso and Peralta-Salas [13] in 2012

constructed a non-trivial Beltrami flow which decays of O(1/|x|) as |x| → ∞.

On the other hand, Nadirashvili [42] in 2014 proved a Liouville type theorem for

Beltrami solutions as follows.

Theorem 3.5.2 (Theorem of Nadirashvili [42]). Let v ∈ C1(R3) be a Beltrami so-

lution. Assume that either v ∈ Lp(R3), 2 ≤ p ≤ 3, or v(x) = o(1/|x|) as |x| → ∞.

Then v ≡ 0.

At the time when the paper [42] was published, the problem of constructing a

smooth compactly-supported solution to the stationary Euler equations in R3 was

open. Hence the theorem [42] provided a negative result for this problem. We present

more details about this problem in the next section.

In 2015, Chae and Constantin proved a similar statement with different, simple

proofs. Their theorems have already been stated in the introduction of this chapter

(Theorem 3.0.5).

They first proved the integral identities (3.27) in the entire space. See Theorem

3.2.1.

Using the integral identities (3.27) in the entire space, they proved the first part

of Theorem 3.0.5 as follows.

Proof of the first part of Theorem 3.0.5. As (v, p) is a Beltrami solution to the sta-

tionary Euler equations, condition (3.60) is satisfied and thus it implies that p̃ :=

p− c = −1
2
|v|2 is in L1(R3). Therefore, the integral identities (3.27) hold. And using

these integral identities along with condition (3.60), we can obtain

∫
R3

p̃dx = −
∫
R3

v2
j (x)dx for all j = 1, 2, 3.
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Hence we have

∫
R3

p̃dx = −1

3

∫
R3

|v(x)|2dx.

By using p̃ = −1
2
|v|2, it follows that

∫
R3

p̃dx = −1

3

∫
R3

|v|2dx = −1

2

∫
R3

|v|2dx.

Therefore, v ≡ 0.

For the second part of Theorem 3.0.5, they provided a different proof. We only

present sketch of their proof.

Sketch of the proof of the second part of Theorem 3.0.5. Under the assumptions of the

second part of Theorem 3.0.5, it holds that

∫
R3

|v|2|x|µ−2dx <∞

for some µ ∈ (1, 2). As a Beltrami solution (v, p) satisfies the equation

3∑
j,k=1

∂xj∂xk(vjvk) =
1

2
∆|v|2

in a weak sense, we can obtain

(µ− 1)

∫
R3

|v|2|x|µ−2dx = 2(µ− 2)

∫
R3

(v · x)2|x|µ−4dx,

which implies v ≡ 0.

Regarding Theorem 3.0.5, the integral identities (3.27) were used to prove the first

part of the theorem and could not be used to prove the second part. We can prove a

theorem similar to the second part by using the integral identities on a hyperplane as
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an immediate application. See one of our main result, Theorem 3.0.7. For a remark,

see Remark 3.0.8.

Proof of Theorem 3.0.7. If we assume that v ∈ L∞loc(R3) and that there exists ε > 0

such that |v(x)| = O(1/|x|1+ε) as |x| → ∞, then the other two conditions (3.17),

(3.18) are satisfied. Therefore, we can apply the integral identities on a hyperplane

(3.14) according to one of our main results, Theorem 3.0.2. By integrating the integral

on a hyperplane in (3.14) with respect to xk, we obtain the integral identities

∫
RN

(vj(x)vk + p(x)) δjkdx = 0 for all j, k = 1, 2, 3. (3.62)

Therefore, as in the proof of the first of Theorem 3.0.5, it follows that v ≡ 0.

For the rest of this section, we introduce another result in this topic briefly. Chae

and Wolf [9] in 2016 extended the result of Chae and Constantin [8] by providing

a weaker assumption to ensure the triviality of (weak) Beltrami solutions. We first

provide a definition of a weak Beltrami solutions to the stationary Euler equations in

R3.

Definition 3.5.3 (Definition 1.1 and 1.2 of Chae, Wolf [9]). A pair (v, p) ∈ L2
loc(R3)×

L1
loc(R3) is said to be a weak solution to the stationary Euler equations in R3 if and

only if

3∑
l,m=1

∫
R3

vl(x)vm(x)∂xlϕm(x) dx = −
N∑
m=1

∫
R3

p(x)∂xmϕm(x)dx for all ϕ ∈ C∞c (R3)

(3.63)

and
3∑
l=1

∫
R3

vl(x)∂xlψ(x)dx = 0 for all ψ ∈ C∞0 (RN).

A weak solution (v, p) to the stationary Euler equations is said to be a Beltrami
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solution 1 if it satisfies

p = −|v|
2

2
a.e. in R3. (3.64)

Theorem 3.5.4 (Theorem 1.3 of Chae, Wolf [9]). Let v ∈ L2
loc be a weak Beltrami

solution. Then

∫
BR

|vN |2

|x|
dx ≤ 1

2R

∫
BR

|v|2dx =
1

2

∫
∂BR

(|vT |2 − |vN |2)dσ for all R ∈ (0,∞)

(3.65)

where vN :=
(
v · x|x|

)
x
|x| ,vT := v−vN . Therefore, if there exists a sequence Rk →∞

such that

∫
∂BRk

|vT |2dσ → 0 as k →∞, (3.66)

then v ≡ 0.

Remark 3.5.5. Theorem 3.5.4 extends the results of Chae, Constantin [8]. Indeed, if

a weak Beltrami solution v ∈ L2
loc satisfy one of the following conditions:

• |vT (x)| = o(|x|−1) as |x| → ∞

• vT ∈ Lq(R3) for some q ∈ [2, 3]

• |vT |2
|x|µ ∈ L

1(R3) for some µ ∈ (−∞, 1],

then there exists a sequence Rk → ∞ such that condition (3.66) holds. For more

details, see Remark 1.4 of Chae, Wolf [9].

The main tool of their proof is the mean value formulas for weak solutions to the

stationary Euler equations given below.

1In fact, they call it a Beltrami flow. But to be consistent with the definition given in Chae and
Constantin, we call it a Beltrami solution.
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Lemma 3.5.6 (Lemma 2.1 of Chae, Wolf [9]). Let v, p be a weak solution to the

stationary Euler equations. Then there holds

∫
∂BR

(p+ |vN |2) dσ =
1

R

∫
BR

(3p+ |v|2)dx for a.e. 0 < R <∞. (3.67)

3.6 Smooth Compactly-Supported Solutions to the

Stationary Euler Equations

In this section, we briefly present history of the topic of construction of smooth

compactly-supported solutions to the stationary Euler equations. For any even-

dimension, we can easily construct an example as already mentioned in the intro-

duction of this chapter. But for readers’ convenience, choose ϕ ∈ C∞c [0,∞) such that

ϕ(r) = 0 for r ≤ r0 with some r0 > 0. Then a pair of vector and pressure given by

v2j−1(x) = −ϕ(|x|)x2j, v2j(x) = ϕ(|x|)x2j−1, j = 1, . . . , N, p(x) = −
∫ ∞
|x|

sϕ2(s)ds

is a smooth, compactly-supported solution to the stationary Euler equations in R2N , N ∈

N.

Construction of such a solution in odd dimensions has been a big open problem.

As was already mentioned in the previous section, Nadirashilvi [42] in 2014 proved

a Liouville type theorem for a Beltrami solution in R3, which furnishes a negative

result for the open problem at least for Beltrami solutions.

Recently, Gavrilov [26] in 2019 established a remarkable result by constructing a

smooth, compactly-supported solution to the stationary Euler equations in R3 resolv-

ing the open problem in case of three dimension. Gavrilov’s construction is explicit

but somewhat obscure. And Constantin, La, Vicol in 2019 [11] provided a proof of

Gavrilov’s result, which provides a general method applicable to many other hydro-
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dynamic equations, such as the incompressible 2D Boussinesq system, the incom-

pressible porous medium equation. We present their main ideas briefly step by step:

1) we seek for an axisymmetric solution v to the stationary Euler equations via the

Grad-Shfranov ansatz:

v =
1

r
(∂zψ)er −

1

r
(∂rψ)ez +

1

r
F (ψ)eϕ;

2) Step 1 leads to the Grad-Shafranov equation augmented by a localizability condi-

tion

|v|2

2
= A(ψ);

3) we apply a hodograph transformation to construct a solution to the equations

above; 4) we localize the solution by using the localizability condition.

3.7 Equations with Divergence Structure

In this section, we prove most of our main theorems, Theorems 3.0.2, 3.3.2, 3.3.3,

3.0.10, 3.4.2, 3.4.3, 3.4.4, 3.4.9.

Recall that we are mainly interested in deriving the integral identities on a hyper-

plane

∫
RN−1

(vjvk + pδjk) dx
′
k = 0 for a.e. xk ∈ R, for all j, k (3.68)

for a solution (v, p) to the Euler or the Navier-Stokes equations in RN . But the main

idea of our proof (as well as many other proofs in [3], [4]) is in fact only related to

divergence structure of the Euler and the Navier-Stokes equations. Hence, we first

work on several types of equations with divergence structure in this section, and later
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we will re-write the Euler and the Navier-Stokes equations in the form of these types

of equations.

Type 1. A double divergence free equation

N∑
l,m=1

∂xl∂xmFlm(x) = 0 in RN , (3.69)

for a tensor field F (x) = {Fjk(x)} of order 2 (j, k = 1, . . . , N).

Type 2. A divergence free equation

N∑
l=1

∂xlFlk(x) = 0 in RN , k = 1, . . . , N (3.70)

for a tensor field F (x) = {Fjk(x)} of order 2 (j, k = 1, . . . , N).

Type 3.

∂tvk(x, t) +
N∑
l=1

∂xlFlk(x, t) = ν∆vk(x, t) in RN , k = 1, . . . , N. (3.71)

for a tensor field F (x) = {Fjk(x)} of order 2 (j, k = 1, . . . , N) and divergence free

vector field v and a parameter ν ≥ 0.

In order to see how the Euler and the Navier-Stokes equations are related to the

types of equations given above, first we can formally take the divergence of the Euler

or the Navier-Stokes equations, which leads to

N∑
l,m=1

∂xl∂xm (vl(x, t)vm(x, t) + p(x, t)δlm) = 0 in RN × (0, T ). (3.72)

Note that in taking divergence of the Euler and the Navier-Stokes equations, both

the time derivative ∂tv and the Laplace term ∆v disappear because v is assumed to

be divergence free. Fixing t ∈ (0, T ), setting Fjk(x) = vj(x, t)vk(x, t) + p(x, t)δjk in

RN , the Euler and the Navier-Stokes equations fall into the form of Type 1, a double
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divergence free equations. This reformulation of the Euler and the Navier-Stokes

equations is well known especially to study pressure p and it has been a main tool

to study the integral identities (3.3) for the Euler and the Navier-Stokes equations in

various papers, such as Chae [3], [4], Chae and Constantin [8], Brandolese and Meyer

[2].

On the other hand, when it comes to the stationary Euler equations, we can write

the equations into

N∑
l=1

∂xl (vl(x)vk(x) + p(x)δlk) = 0. (3.73)

which apparently falls into Type 2, a divergence free equation.

We now provide a definition of a weak solution to each type of equations.

Definition 3.7.1. Type 1. A tensor field F (x) = {Fjk(x)} in L1
loc(RN ;MN×N(R)) is

called a weak solution to the double divergence free equations (3.69) if and only if

N∑
l,m=1

∫
RN
Flm(x)∂xl∂xmψ(x)dx = 0 for all ψ ∈ C∞c (RN). (3.74)

Type 2. A pair of a tensor field F (x) = {Fjk(x)} in L1
loc(RN) is called a weak solution

to the divergence free equation (3.70) if and only if for all k ∈ {1, . . . , N}

−
N∑
l=1

∫
RN
Flk(x)∂xlψ(x)dx = 0 for all ψ ∈ C∞c (RN). (3.75)

Type 3. A triplet of a tensor field F (x, t) = {Fjk(x, t)} in L1(0, T ;L1
loc(RN)) and

weakly divergence free vector field v(x, t) in L1(0, T ;L1
loc(RN)) is called a weak solution
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to equation (3.71) of Type 3 if and only if for all k ∈ {1, . . . , N}

−
∫ T

0

∫
RN
vk(x, t)ψ(x)∂tφ(t)dxdt−

N∑
l=1

∫ T

0

∫
RN
Fjk(x, t)∂xjψ(x)φ(t)dxdt

=

∫ T

0

∫
RN
vk(x, t)∆ψ(x, t)φ(t)dxdt (3.76)

for all ψ ∈ C∞c (RN) and all φ ∈ C∞c (0, T ).

Now for each type of equations, we can prove an analogue of the integral identities

(3.8) on a hyperplane.

Lemma 3.7.2. Assume a symmetric tensor field F (x) = {Fjk(x)} of order 2 is a

weak solution to the double divergence free equation (3.69) in RN . Fix k ∈ {1, . . . , N}.

Suppose that

Fkk(x) ∈ L1
loc,xk

L1
x′k
. (3.77)

Fkm(x)

1 + |x′k|
∈ L1

loc,xk
L1
x′k
∀m 6= k (3.78)

Flm(x)

(1 + |x′k|)2
∈ L1

loc,xk
L1
x′k
∀m 6= k, l 6= k (3.79)

Then there exist constant Ak, Bk ∈ R such that

∫
RN−1

Fkk(x)dx′k = Akxk +Bk for a.e. xk ∈ R. (3.80)

Therefore, if we additionally assume either

‖Fkk(x)‖L1(RN−1;x′k) ∈ L1
weak(R), or

lim inf
|xk|→∞

‖Fkk(x)‖L1(RN−1;x′k) = 0,
(3.81)
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then

∫
RN−1

Fkk(x)dx′k = 0 for a.e. xk ∈ R.

Proof of Lemma 3.7.2. Fix k ∈ {1, . . . , N}. The product ξ(xk)σ(x′k) is smooth with

compact support in RN so we use this product function in the weak formulation (3.74)

of Type 1 to obtain

N∑
l,m=1

∫
RN
Flm(x)∂l∂m (ξ(xk)σ(x′k)) dx = 0, (3.82)

which leads to

N∑
l=1

∫
RN
Flk(x)∂l (∂kξ(xk)σ(x′k)) dx

+
N∑
l=1

∑
m 6=k

∫
RN
Flm(x)∂l (ξ(xk)∂mσ(x′k)) dx = 0 (3.83)

where we have just applied the derivative ∂m to the product ξσ. Furthermore, we

apply the derivative ∂l to the various products to obtain

∫
RN
Fkk(x)∂2

kξ(xk)σ(x′k) dx+
∑
l 6=k

∫
RN

(
Flk(x) + Fkl(x)

)
∂kξ(xk)∂lσ(x′k) dx

+
∑
l 6=k

∑
m6=k

∫
RN
Flmξ(xk)∂l∂mσ(x′k) dx = 0. (3.84)

Now we set σR(x′k) = σ(x′k/R) and simply replace σ in (3.84) by σR. Denoting each

term in (3.84) with σR by I1, I2, I3, we can compute the limit of each term as R→∞.
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First, note that

I1 =

∫
R
∂2
kξ(xk)

(∫
RN−1

Fkk(x)σR(x′k)dx
′
k

)
dxk

−→
∫
R
∂2
kξ(xk)

(∫
RN−1

Fkk(x)dx′k

)
dxk (3.85)

where we have applied the dominated convergence theorem by using (3.77).

Next, we claim that I2 → 0 as R→∞. Indeed, note that

I2 =
∑
l 6=k

∫
R
∂kξ(xk)

(∫
RN−1

(Flk(x) + Fkl(x)) ∂lσR(x′k)dx
′
k

)
dxk.

Here the inner integral converges to 0 as R→∞ because

∫
RN−1

(|Flk(x)|+ |Fkl(x)|) |∂lσR(x′k)|dx′k ≤
C

R

∫
{R<|x′k|<2R}

(|Flk(x)|+ |Fkl(x)|) dx′k

and we can use (3.78). Therefore, we can apply the dominated convergence theorem

to prove that I2 converges to 0 as R→∞.

Similarly, we can prove that I3 converges to 0 as R tends to ∞. We can rewrite

the integrals of I3 as follows:

I3 =
∑
l 6=k

∑
m 6=k

∫
R
ξ(xk)

(∫
RN−1

Flm(x)∂l∂mσR(x′k)dx
′
k

)
dxk.

Again with the help of assumptions (3.77), we can apply the dominated convergence

theorem to establish the claim.

Therefore, given all the limits of I1, I2, I3, we can conclude that

∫
R
∂2
kξ(xk)

(∫
RN−1

Fkk(x)dx′k

)
dxk = 0
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Note that this is true for all ξ(xk) ∈ C∞c (R). Then due to (3.78), it follows that

∫
RN−1

Fkk(x)dx′k = Axk +B for a.e. xk ∈ R.

Finally, by using (3.81), it follows that A = 0, B = 0, which completes the proof

of Lemma 3.7.2.

Now we can work on the divergence equation (3.70) (Type 2) by using a similar

idea. To the best of my knowledge, this type of equations have not been investigated

yet in order to study the integral identities (3.14) on a hyperplane.

Lemma 3.7.3. Let a tensor field F = {Fjk} ∈ L1
loc(RN) of order 2 (which are not

necessarily symmetric) satisfy the weak formulation of the divergence free equation,

that is, satisfying (3.75). Fix j, k ∈ {1, . . . , N}. Assume that

Fjk(x) ∈ L1
loc,xj

L1
x′j
,

Flk(x)

1 + |x′j|
∈ L1

loc,xj
L1
x′j
, ∀ l 6= j (3.86)

Then there exists a constant Ajk ∈ R such that

∫
RN−1

Fjk(x)dx′j = Ajk for a.e. xj ∈ R.

Therefore, if we additionally assume either

‖Fjk(x)‖L1(RN−1;x′j)
∈ L1

weak(R), or

lim inf
|xj |→∞

‖Fjk(x)‖L1(RN−1;x′j)
= 0,

Then it holds that

∫
RN−1

Fjk(x)dx′j = 0 for a.e. xj ∈ R.
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Proof of Lemma 3.7.3. We fix j, k ∈ {1, . . . , N} and let ξ(xj), σ(x′j) be cut-off func-

tion defined as in Section 3.1 but now with the variables xj, x
′
j. We use the product

ξ(xj)σ(x′j) as a test function in the weak formulation (3.75) of the equation of Type

2 to obtain

−
∫
R
∂jξ(xj)

(∫
RN−1

Fjk(x)σ(x′j)dx
′
j

)
dxj

−
∑
l 6=j

∫
R
ξ(xj)

(∫
RN−1

Flk(x)∂lσ(x′j)dx
′
j

)
dxj = 0.

Replacing σ(x′j) by σR(x′j) and letting R→∞, we obtain

∫
R
∂jξ(xj)

(∫
RN−1

Fjk(x)dx′j

)
dxj = 0.

Consequently, it follows that

∫
RN−1

Fjk(x)dx′j = 0 for a.e. xj ∈ R.

This finishes the proof.

Finally we can work on equation (3.71) of Type 3. If we take the divergence of

(3.71), then equation (3.71) turns into the double divergence free equation (3.69).

Hence we may apply 3.7.2. Not only that, but also we can apply Lemma 3.7.3 to

v because v is divergence free. Moreover, we can apply our main idea of deriving

integral identities on a hyperplane to equation (3.71) directly to obtain something

that we would not obtain if we only work with the divergence of (3.71).

Lemma 3.7.4. Let v(x, t) ∈ L1
loc(0, T ;L1

loc(RN)) be a weakly divergence free vector

field and let F = {Fjk} be a symmetric tensor field of order 2 in L1
loc(0, T ;L1

loc(RN)).

Assume these fields (v,F ) form a weak solution to the equation of Type 3, that is,
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satisfying (3.76). Fix k ∈ {1, . . . , N}. Assume that

Fkk(x, t) ∈ L1
loc,tL

1
loc,xk

L1
x′k

Fkm(x, t)

1 + |x′k|
∈ L1

loc,tL
1
loc,xk

L1
x′k
, m 6= k

Flm(x, t)

(1 + |x′k|)2
∈ L1

loc,xk
L1
x′k
, a.e. t ∈ (0, T ), l 6= k,m 6= k,

lim inf
|xk|→∞

‖Fkk(x, t)‖L1(RN−1;x′k) = 0 a.e. t ∈ (0, T )

vk(x, t) ∈ L1
loc,tL

1
loc,xk

L1
x′k
,

vl(x, t)

1 + |x′k|
∈ L1

loc,xk
L1
x′k
, a.e. t ∈ (0, T ), l 6= k



(3.87)

Then for a.e. t ∈ (0, T )

∫
RN−1

Fkk(x, t)dx
′
k = 0,

∫
RN−1

vk(x, t)dx
′
k = Ak, a.e. xk ∈ R (3.88)

for some constant Ak ∈ R. Hence if we additionally assume

lim inf
|xk|→∞

‖vk(x, t)‖L1(RN−1;x′k) = 0, a.e. t ∈ (t0 − δ, t0 + δ) (3.89)

for some t0 ∈ (0, T ) and δ > 0, then for a.e. xk ∈ R, t ∈ (0, T )

∫
RN−1

vk(x, t)dx
′
k = 0. (3.90)

Proof of Lemma 3.7.4. If we take the divergence of equation (3.71) of Type 3, then

it turns into the double divergence free equation (3.69) . Hence according to Lemma

3.7.2, the first integral identity of (3.88) follows.

As v is divergence free for a.e. t ∈ (0, T ), according to Lemma 3.7.3, there

exists a constant Ak(t) ∈ R, which is, in fact, a function of t, such that for a.e.
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xk ∈ R, t ∈ (0, T )

∫
RN−1

vk(x, t)dx
′
k = Ak(t) (3.91)

Now we go back to the weak formulation of equation (3.76) of Type 3. Use

ξ(xk)σ(x′k) as a test function in the weak formulation to obtain

−
∫ T

0

∫
RN
vk(x, t)ξ(xk)σ(x′k)∂tφ(t)dxdt

−
∫ T

0

∫
RN
Fkk(x, t)∂kξ(xk)σ(x′k)φ(t)dxdt−

∑
l 6=k

∫ T

0

∫
RN
Flk(x, t)ξ(xk)∂lσ(x′k)φ(t)dxdt

= ν

∫ T

0

∫
RN
vk(x, t)∂

2
kξ(xk)σ(x′k)φ(t)dxdt

+
∑
l 6=k

ν

∫ T

0

∫
RN
vk(x, t)ξ(xk)∂

2
l σ(x′k)φ(t)dxdt (3.92)

Now we replace σ(x′k) by σR(x′k) and let R → ∞. Then by using the integral

identity of F and the one of vk proved above, we get

∫ T

0

∫
RN
vk(x, t)ξ(xk)∂tφ(t)dxdt = 0.

This holds for all ξ ∈ C∞c (R), φ ∈ C∞c (0, T ). Hence it implies Ak(t) is actually a

constant for a.e. t ∈ (0, T ). The rest of Theorem 3.7.4 follows straightforwardly.

Now using all these lemmas, we can prove our main theorems, Theorem 3.0.2,

3.3.2, 3.3.3, 3.4.3.

Proof of Theorem 3.0.2. For k ∈ {1, . . . , N} and ψ ∈ C∞0 (RN), we put ∂xkψ into

the weak formulation (3.30) as a test function. And taking the sum of the resulting

equations over k ∈ {1, . . . , N}, by using the divergence free condition (3.31), we can
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obtain

N∑
l,m=1

∫ T

0

(∫
RN

(vl(x, t)vm(x, t) + p(x, t)δlm) ∂xl∂xmψ(x) dx

)
φ(t) dt = 0.

This holds for all φ ∈ C∞0 (R), and thus for a.e. t ∈ (0, T )

N∑
l,m=1

∫
RN

(vl(x, t)vm(x, t) + p(x, t)δlm) ∂xl∂xmψ(x) dx = 0,

which is the weak formulation (3.74) of the double divergence free equation with

Flm = vlvm + pδlm. Let t ∈ (0, T ) be the time value such that assumptions (3.11),

(3.12) are satisfied. Then applying Lemma 3.7.2, we obtain (3.13) for the evolutionary

Euler or Navier-Stokes equations.

Now in the case of the stationary Euler equations (ν = 0), the weak formulation

(3.30) can be directly re-written as

N∑
l=1

∫
RN

(vl(x)vk(x) + p(x)δlk) ∂xkψ(x)dx = 0. (3.93)

Hence we can apply now Lemma 3.7.3 to obtain (3.14). This finishes the proof.

Proof of Theorem 3.3.2. By using the fact that v is divergence free, it is straightfor-

ward to see that the evolutionary Euler or Navier-Stokes equation is in the form of

equation (3.71) of Type 3 with Flm = vlvm + pδlm. Hence Theorem 3.3.2 directly

follows from Lemma 3.7.4.

Proof of Theorem 3.3.3. For k ∈ {1, . . . , N} and ψ ∈ C∞0 (RN), we can put ∂xkψ(x)

into the weak formulation (3.34) as a test function and take the sum of the resulting

equations over k ∈ {1, . . . , N}. Then by using the weakly divergence free condition
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of v, it leads to

N∑
l,m=1

∫ T

0

[∫
RN

{
vlvm + blbm −

(
p+

1

2
|b|2
)}

∂xl∂xmψ(x) dx

]
φ(t) dt = 0.

As it holds for all φ ∈ C∞0 (R),

N∑
l,m=1

∫
RN

{
vlvm + blbm −

(
p+

1

2
|b|2δlm

)}
∂xl∂xmψ(x)dx = 0.

This is in the form of the double divergence equation (3.69) with Flm = vlvm + blbm−

(p+ 1
2
|b|2)δlm. Therefore, applying Lemma 3.7.2, we can obtain (3.45).

Now for the stationary MHD equation with µ, ν = 0, the first equation (3.33) is in

the form of a divergence free equation (3.70) with the same tensor field Flm as above.

Hence we can apply Lemma 3.7.3 to obtain (3.46).

Similarly we can work with the second equation of (3.33), which can be written

in the form of Type 2 with Flm = vlbm − blvm in the stationary case. Therefore, we

also obtain (3.47). It finishes the proof.

Remark 3.7.5. In addition to the MHD equations, we can also find divergence struc-

ture out of equation (3.4). Take dot product of equation (3.4) with ∂xkv for a fixed

k. After a simple calculation, the resulting equation turns into

∑
l 6=k

∂xl(∂xlv · ∂xkv) + ∂xk

{(∑
m 6=k

|∂xmv|2

2

)
− |∂xkv|

2
+H(v)

}
= 0.

This equation can be written in the form of the divergence free equation (3.70) with

Flk given by

Flk =


∂xlv · ∂xkv if l 6= k(∑

m6=k
|∂xmv|2

2

)
− |∂xkv|

2
+H(v) if l = k
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Hence it explains why integral identities on a hyperplane could be found in two totally

different contexts, the stationary Euler equations (3.1) and the vector-valued Allen-

Cahn equations (3.4). See (3.6). This is because both equations can be re-written

in the form of the divergence free equation (3.70), which enjoy integral identities on

a hyperplane. Rewriting equation (3.4) in the form of the divergence free equation

(3.70) is implicitly used in Gui [28] to prove integral identities on a hyperplane for

equation (3.4).

Now for the rest of this section, we consider domains with boundary.

Lemma 3.7.6. Let Ω = Ω′ × I where I is a nonempty (possibly unbounded) open

interval in R and Ω′ is a bounded locally Lipschitz domain in RN−1, N ≥ 2. Let

(v, p) ∈ C1(Ω) × C1(Ω) be a solution to the stationary Euler equations in Ω. Then

for all j ∈ {1, · · · , N},

d

dxN

∫
Ω′

(vj(x)vN(x) + δNjp(x))dx′N

+

∫
∂Ω′
n · (vj(x)v(x) + p(x)ej) dσ(x′N) = 0 (3.94)

for all xN ∈ I where n is the unit outward normal vector on ∂Ω.

Proof of Lemma 3.7.6. Fix j ∈ {1, · · · , N}. We can re-write j-th component of the

stationary Euler equations as

∇ · (vjv + pej) = 0

by using the divergence free condition of v. Separating the derivative with respect to

xN from the others, it follows that

∂xN (vjvN + δNjp) +
∑
l 6=N

∂xl(vjvl + pδjl) = 0.
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Integrating this equation in Ω′, we can obtain that for all xN ∈ I

d

dxN

∫
Ω′

(vjvN + δNjp)dx
′
N +

∫
Ω′

∑
l 6=N

∂xl(vjv
′
l + pδjl) dx

′
N = 0

Now we can apply the divergence theorem to the second integral above. As nN = 0

on ∂Ω′ where n = (n1, . . . , nN), we can obtain the conclusion (3.94).

We can apply this Lemma 3.7.6 with a boundary condition.

Lemma 3.7.7. Let Ω = Ω′ × R where Ω′ is a bounded locally Lipschitz domain in

RN−1, N ≥ 2. Let (v, p) ∈ C1(Ω) × C1(Ω) be a classical solution to the stationary

Euler equations in Ω. Assume that

(v · n)vN |∂Ω′×R = 0 (3.95)

where n is the unit outward normal vector on ∂Ω. Then there exists a constant cN

∫
Ω′

(v2
N + p)dx′N = cN for all xn ∈ R.

Furthermore, if one additionally assumes

lim inf
|xN |→∞

∫
Ω′

(v2
N + p) dx′N = 0 (3.96)∫

Ω′
p dx′N ≥ 0 for all xN ∈ R, (3.97)

then vN ≡ 0 in Ω.

Proof of Lemma 3.7.7. Applying Lemma 3.7.6 with j = N , we can obtain (3.94) with

j = N . From the boundary assumptions (3.95), the boundary integral in (3.94) with
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j = N vanishes. Therefore, we can get

d

dxN

∫
Ω′

(v2
N + p) dx′N = 0 for all xN ∈ R.

Therefore, for some constant cN ∈ R

∫
Ω′

(v2
N + p) dx′N = cN for all xN ∈ R.

Now from assumption (3.96), it holds that cN = 0. The last conclusion of Theorem

3.7.7 follows directly from (3.97).

We can also apply Lemma 3.7.6 to the half space, RN−1
+ × R.

Lemma 3.7.8. Let (v, p) ∈ C1(Ω) × C1(Ω) be a classical solution to the stationary

Euler equations in Ω = RN−1
+ × R. On the boundary (∂RN−1

+ )× R assume

(v · n)vN |(∂RN−1
+ )×R = 0. (3.98)

where n is the unit outward normal vector on (∂RN−1
+ )× R. Suppose

v2
N(x) + |p(x)| ∈ L1(RN−1

+ ;x′N) for all xN ∈ R, and (3.99)

N−1∑
l=1

∫ s

0

∫
RN−1
+

|vN(x)vl(x)|
1 + |x′N |

dx′NdxN <∞ for every s ∈ R. (3.100)

Then there exists a constant cN ∈ R such that

∫
RN−1
+

(v2
N + p) dx′N = cN for all xN ∈ R.
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Furthermore, if one additionally assumes that

lim inf
|xN |→∞

∫
RN−1
+

(v2
N + |p|) dx′N = 0, and∫

RN−1
+

p dx′N ≥ 0 for all xN ∈ R,

then vN ≡ 0 in RN .

Proof of Lemma 3.7.8. Let B′R denote the ball of radius R centered at the origin in

RN−1
+ . Apply Lemma 3.7.6 with Ω′ = B′R ∩ RN−1

+ , j = N , we can obtain that for all

xN ∈ R

d

dxN

∫
B′R∩R

N−1
+

(v2
N(x) + p(x))dx′N

+
N−1∑
l=1

∫
∂(B′R∩R

N−1
+ )

nl(x
′
N)vN(x)vl(x)dσ(x′N) = 0

where n = (n1, . . . , nN−1) is the unit outward normal vector on ∂(B′R ∩RN−1
+ ). Note

the boundary integral on ∂(B′R ∩ RN−1
+ ) above can be written as the sum of the one

on (∂B′R) ∩ RN−1
+ and the one on B′R ∩ ∂RN−1

+ . The latter one vanishes due to the

boundary condition (3.98). Therefore, it follows that

d

dxN

∫
B′R∩R

N−1
+

(v2
N + p)dx′N +

N−1∑
l=1

∫
(∂B′R)∩RN−1

+

nl(x
′
N)vN(x)vl(x)dσ(x′N) = 0

For s ∈ R, integrating the equation above with respect to xN from xN = 0 to xN = s,

∫
B′R∩R

N−1
+

(v2
N + p)|xN=s

xN=0dx
′
N +

N−1∑
l=1

∫ s

0

∫
(∂B′R)∩RN−1

+

nl(x
′
N)vN(x)vl(x)dσ(x′N) dxN

We claim that there exists a sequence Rk that converges to infinity such that the

second integral over (∂B′Rk) ∩ RN−1
+ converges to zero as k → ∞. Fixing s ∈ R, we
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can re-write the following integral

∑
l 6=N

∫ s

0

∫
RN−1
+

|vN(x)vl(x)|
1 + |x′N |

dx′NdxN

=
∑
l 6=N

∫ ∞
0

(∫ s

0

∫
∂B′r∩R

N−1
+

|vN(x)vl(x)|
1 + |x′N |

dσ(x′N)dxN

)
dr

And this whole integral is finite due to assumption (3.100). Therefore, the claim

follows.

Hence it holds that there exists a constant cN ∈ R such that

∫
RN−1
+

(v2
N + p)dx′N = cN for all xN ∈ R.

And the very last part of Lemma 3.7.8 directly follows from this conclusion.

This proof is motivated by the proof of Theorem 1.2 of Changfeng Gui [28].

Now, we impose periodic boundary conditions.

Lemma 3.7.9. Let (v, p) ∈ C1(RN)×C1(RN) be a classical solution to the stationary

Euler equations in RN . Assume that there exist constant aj > 0, j = 1, . . . , N − 1

such that v(x + ajej) = v(x) for all x ∈ RN . Then there exists a constant c0 such

that

∫
Ω′

(v2
N(x) + p(x))dx′N = c0 for all xN ∈ R. (3.101)

where Ω′ = (0, a1)× · · · × (0, aN−1). Therefore, if we additionally assume either

lim inf
|xN |→∞

∫
Ω′

(v2
N(x) + p(x)) dx′N = 0 and

∫
Ω′
p dx′N ≥ 0 for all xN ∈ R,
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or

∫
Ω′
p dx′N ≥ c0 for all xN ∈ R,

then vN ≡ 0.

Proof of Lemma 3.7.9. Applying Lemma 3.7.6, due to the periodic boundary condi-

tion, it follows that

d

dxN

∫
Ω′

(v2
N(x) + p(x))dx′N = 0, for all xN ∈ R,

which proves (3.101). The rest of Lemma (3.7.9) is straightforward.

Finally we can prove Theorem 3.4.9.

Proof of Theorem 3.4.9. Applying Lemma 3.7.3, it follows that

∫
R
v1(x)v2(x) dx2 = 0 for all x2 ∈ R.

Hence due to (3.55), it follows that v1(x)v2(x) = 0 for all x ∈ R2. Therefore, the sets

S1, S2 given by

S1 = {x ∈ R2 : v1(x) = 0}, S2 = {x ∈ R2 : v2(x) = 0}

satisfy S1 ∪ S2 = R2. And the two sets S1, S2 are disjoint because of (3.56). As v is

assumed to be continuous, the two sets S1, S2 are closed.

We claim S1 is open. If it is not, then there exists a sequence {Xj}∞j=1 in S2 and

X0 ∈ S1 such that Xj → X0 as j → ∞. However, v2(Xj) = 0 for all j and v2 is

continuous, and thus v2(X0) = 0. So X0 ∈ S2, which contradicts to the fact that S1

and S2 are disjoint. Therefore, S1 is open.
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As the set S1 is open and closed, it is either empty or the entire space R2. We

claim S1 is empty. If it is not, then S1 = R2, and by the divergence free condition of

v, it holds that v2 = v2(x1). Then by the assumption (3.54), v2 ≡ 0, which implies

v ≡ 0, a contradiction to (3.56) again. Therefore, S1 is empty.

This implies S2 = R2. By the divergence free condition of v again, it follows that

v1 = v1(x2), which completes the proof.

3.8 Examples

This section is devoted to the study of some simple examples. There are various basic

example flows that enjoy the integral identities on a hyperplane (or on a section of

a domain). These flows are not shear flows and they do not satisfy the condition

involving sign of an integral of pressure from our main theorems. All the examples

here are well-known, but not in this context to the best of my knowledge.

Example 3.8.1. In R2, define

v(x) = ( sin(2πx1) sin(2πx2), cos(2πx1) cos(2πx2) ) ,

p(x) =
1

4
{cos(4πx1)− cos(4πx2)} − 1

4
.

This is a solution to the Euler equations. The vector field v and pressure field p are

periodic in terms of both x1 and x2. A simple computation yields

∫ 1

0

v2
1 + p dx1 = 0,

∫ 1

0

v2
2 + p dx2 = 0∫ 1

0

p dx1 = −1

4
cos(4πx2)− 1

4

∫ 1

0

p dx2 =
1

4
cos(4πx1)− 1

4∫ 1

0

v1v2 dx1 = 0,

∫ 1

0

v1v2 dx2 = 0.

This solution satisfies all the assumptions of Theorem 3.4.4 except (3.49) and is not a
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shear flow. Therefore, if we simply remove assumption (3.49) in Theorem 3.4.4, then

the conclusion of the theorem does not hold any more.

In addition, this solution in (0, 1) × R satisfies the standard boundary condition

whereas this solution in (−1/4, 1/4) × R satisfies the non-standard boundary condi-

tion, v2|∂Ω = 0, of Theorem 3.0.10.

Example 3.8.2. Define

v(x) = (sin(πx1)ex2 ,−π cos(πx1)ex2) , p(x) = −π
2

2
e2x2 .

This example is a solution to the stationary Euler equations in R2. But if we restrict

our attention to (0, 1) × R, then it satisfies the standard boundary condition on the

boundary ∂ ((0, 1)× R), that is, v1(0, x2) = 0, v1(1, x2) = 0 for all x2 ∈ R. Moreover,

v, p are periodic in terms of x1; v(x+ e1) = v(x), p(x+ e1) = p(x) for all x ∈ R2. A

simple calculation yields

∫ 1

0

v2
2 + p dx1 = 0,

∫ 1

0

p dx1 = −π
2

2
e2x2 ,

∫ 1

0

v1v2 dx1 = 0.

In this case, this example satisfies all the assumptions of Lemma 3.7.7 (N = 2) except

(3.97) and is not a shear flow. Hence if we remove (3.97) in Lemma 3.7.7, then the

conclusion of Lemma 3.7.7 does not hold.

Now if we consider this solution in (−1/2, 1/2) × R, then the vector field v has

only normal component on the boundary ∂((−1/2, 1/2)×R), that is, v2(−1/2, x2) =

0, v2(1/2, x2) = 0 for all x2 ∈ R. And again a simple calculation yields

∫ 1/2

−1/2

v2
2 + p dx1 = 0,

∫ 1/2

−1/2

p dx1 = −π
2

2
e2x2 ,

∫ 1/2

−1/2

v1v2 dx1 = 0.

Hence in the second case, this example satisfies all the assumptions of Theorem

3.0.10 except (3.24) and is not a shear flow. Therefore, it also shows that we cannot
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simply remove (3.24) in Theorem 3.0.10.

Example 3.8.3. Define Ω = B1×R where B1 ⊂ R2 is the unit ball centered at (0, 0),

and define

v(x) = (−x2, x1, 1), p(x) =
1

2
(x2

1 + x2
2)− 9

4
.

This example is a solution to the stationary Euler equations in Ω. The standard

boundary condition holds on the boundary ∂Ω;

n · v = 0 on ∂B1 × R.

(This example comes from Hamel and Nadirashvili [30].) A simple calculation yields

∫
B1

v2
3 + p dx1,2 = 0,

∫
B1

p dx1,2 = −2π.

Therefore, this example satisfies all the assumptions of Lemma 3.7.7 except (3.97),

which again shows that we cannot simply remove (3.97) from Lemma 3.7.7.

Example 3.8.4. Let ϕ ∈ C∞0 [0,∞), and in R2, define

v1(x) = −ϕ(|x|)x2, v2(x) = ϕ(|x|)x1,

and

p(x) = −
∫ ∞
|x|

sϕ2(s)ds.

This vector field v = (v1, v2) is a solution to the stationary Euler equations in R2

with pressure field p. Moreover, this example (v, p) has compact support in R2. (This
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example is very likely well-known. It comes from [48].) Note

∫
R
p dx2 = −

∫
R

∫ ∞
|x|

sϕ2(s) dsdx2

By changing the order of the integrations, the above integral equals to

−
∫ ∞
|x1|

∫ √s2−x21

−
√
s2−x21

sϕ2(s) dx2ds

A simple calculation show that the above integral equals to

−
∫ ∞
|x1|

2sϕ2(s)
√
s2 − x2

1 ds = −
∫ ∞

0

2ϕ2(|x|)x2
2dx2

= −
∫
R
ϕ2(|x|)x2

2dx2

= −
∫
R
v2

1 dx2.

Therefore, ∫
R
(v2

1 + p) dx2 = 0 for all x1 ∈ R.

Similarly, ∫
R
(v2

2 + p) dx1 = 0 for all x2 ∈ R.

Here the right hand side being zero is even expected from the beginning due to the fact

that this solution has compact support. This example satisfies all the assumptions of

Theorem 3.4.3 except the positivity condition of the integral of p with respect to one

variable and is not a shear flow.
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