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ABSTRACT OF THE DISSERTATION

On the Fukaya category of Grassmannians

by MARCO CASTRONOVO

Dissertation Director:

Christopher Thomas Woodward

The Grassmannian of k-dimensional planes in a complex n-dimensional vector space

has a natural symplectic structure, that one can use to construct a deformation of its

cohomology ring. We begin the study of its Fukaya category, which is a refinement of

the category of modules over this ring. When n is a prime number, we prove that a fiber

of an integrable system introduced by Guillemin-Sternberg split-generates the Fukaya

category. If n is not prime this generally fails, and we construct examples of Lagrangian

tori that support nonzero objects in the missing part of the Fukaya category. The tori

are parametrized by seeds of a cluster algebra in the sense of Fomin-Zelevinsky, and

have associated Laurent polynomials with positive integer coefficients. We program a

random walk that computes these Laurent polynomials explicitly, and observe that they

encode the open genus zero Gromov-Witten invariants of the tori in some cases. We

put forth a conjecture on the general meaning of the Laurent polynomials, which can

be considered as a Symplectic Field Theory interpretation of the notion of scattering

diagram proposed by Gross-Hacking-Keel-Kontsevich.
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Chapter 1

INTRODUCTION

In this chapter, we introduce the main questions around which this thesis revolves, and

explain how they fit more broadly in the context of Symplectic Topology, Floer Theory,

and Mirror Symmetry. We then describe what was known about these questions when

this thesis began, and summarize the results obtained in the years 2017-2019. Finally,

we describe some future directions whose exploration started in 2020.

1.1. Why are symplectic computations hard?

The promise of Topology is to build a bridge between continuous and discrete phenom-

ena. Since the early days of Betti, Riemann, Poincaré, etc. the following strategy has

been the blueprint for the construction of topological invariants of an object X:

1. define what it means to deform X ;

2. construct a discrete deformation invariant ;

3. develop techniques to compute the invariant .

The reader can think of homotopy equivalence and cohomology theories as an instance of

this paradigm, with exact or spectral sequences being the main computational tool. The

specific interest of topological (as opposed to general) invariants is that deformations of

X are typically hard to classify, whereas discrete invariants are much simpler to handle.

One typically judges the strength of the invariant not by how faithfully it encodes the

deformation class of X, but rather by that relative to its computability.

Beginning with Lefschetz, Hodge, Hirzebruch, etc. a particular focus has been on com-

puting topological invariants of objects X defined by algebraic (or analytic) equations.

Say X is a smooth projective variety over C; singularities are welcome in topology, and

étale techniques are available in positive characteristic, but simpler things first. Sur-
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prisingly, the invariants of X tend to acquire extra properties and structure in this case.

Most relevant for us is the insight of Witten [83], who observed that the cohomology

ring has a refinement where the cup product ∆a∆b of two classes in a basis ∆‚ with

Poincaré dual ∆‚ is replaced by

∆a ‹ ∆b “
ÿ

c

B3Φ

BtaBtbBtc
∆c ,

which involves derivatives of a generating function

Φ “
ÿ

nPN

1

n!

ÿ

i1,...,in

¨

˝

ÿ

β

x∆i1 ¨ ¨ ¨∆inyβq
β

˛

‚ti1 ¨ ¨ ¨ tin .

The quantities x∆i1 ¨ ¨ ¨∆inyβ P Q are known today as closed genus zero Gromov-Witten

numbers, and the resulting ring as (big) quantum cohomology QHpXq. Roughly, these

are counts of rational curves (or holomorphic spheres) with homology class β P H2pXq,

passing through n points on cycles dual to ∆i1 , . . . ,∆in . Gromov [34] had previously

realized that they do not actually depend on the complex structure of X, but only on

the deformation class of a compatible symplectic structure, and thus are invariants in

the sense of Symplectic Topology.

From the enumerative point of view, where Φ is the central object of study, quantum

cohomology is a rather odd invariant that does not fit squarely in the framework of

homological algebra: what complex is it the cohomology of? This perhaps explains

why, throughout the years, the main computational techniques came from Algebraic

Geometry and heuristics in String Theory; see the monograph by Cox-Katz [19].

The topological point of view allows to resolve this difficulty, the main input being an

infinite-dimensional version of Morse theory for the loop space LX known as Hamilto-

nian Floer theory; see Salamon [72] for a survey and Piunikhin-Salamon-Schwarz [65]

for the relation to quantum cohomology. The remarkable technical difficulties involved

in establishing Hamiltonian Floer theory in full generality have constrained the develop-

ment of the subject to foundational matters until recently; see Pardon [64] for the most

recent construction of the relevant virtual fundamental classes. However, at the time

of writing Varolgunes [82] moved the first steps towards establishing purely topological

computational methods, such as a Mayer-Vietoris property and functoriality.
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Summarizing, with the benefit of the hindsight the sophisticated invariants of Symplectic

Topology can be constructed by means of Floer theory, and there is a good chance that

they will be computable by homological techniques. However, much of the intuition

along the way came from the case where X is algebraic (or analytic) and computations

from Algebraic Geometry or heuristics from String Theory.

1.2. From closed to open strings

Informally speaking, Hamiltonian Floer theory replaces gradient flow lines between crit-

ical points of a Morse function H with cylinders connecting periodic orbits of an as-

sociated vector field XH . The cylinders satisfy an analogue of the Cauchy-Riemann

equations from complex analysis, and one can think of them as the trace of a closed

string moving inside the target symplectic manifold X.

If L Ă X is a Lagrangian submanifold, there is version of this picture where closed

strings are replaced by open strings: Lagrangian Floer theory. Instead of cylinders,

one looks at strips whose boundary lines lie on L and a transverse perturbation ϕ1HpLq,

where ϕ1H is the flow of XH at time one. Recall that L is half-dimensional, so that the

set L X ϕ1HpLq consists of finitely many points, and the ends of a strip are asymptotic

to a pair of such points; see the survey by Auroux [7] and Appendix A for more details.

Formal analogy with Hamiltonian Floer theory suggests that Lagrangian Floer theory

should lead to a deformation of the cohomology ring of L. Although this is true in some

cases, the story is in general more complicated. Recall that all enumerative theories

rely on having compact moduli spaces. The appropriate compactification for the moduli

space of strips is known: it includes the expected configurations with sphere bubbles

as well as new disk bubbles. Lagrangian Floer theory leads to a natural guess for a

complex CF pLq deforming the singular cochain complex, but disk bubbling prevents

the new differential from squaring to zero. In fact, CF pLq has a much richer structure

of curved A8-algebra, and L can be thought of as an object of an A8-category called

Fukaya category FpXq; see the monograph by Fukaya-Oh-Ohta-Ono [28].

In this thesis, we work with a simplified version of the Fukaya category, where both

X and the Lagrangian L Ă X satisfy a condition called monotonicity; see Appendix B

for more details. Monotonicity of X is a geometric assumption, that can be achieved
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whenever X is Fano. Instead, monotonicity of L is a technical restriction that suffices

for our purposes but should be lifted in future work; compare Charest-Woodward [13]

for a possible approach. Moreover, we will be focused on the case in which L is a

torus. Following a proposal of Strominger-Yau-Zaslow [80], it is widely believed that

Lagrangian tori should determine much of the information contained in the Fukaya

category FpXq; see Abouzaid [2] for a result in this direction when X is fibered by

Lagrangian tori bounding no holomorphic disks.

Recall that the cohomology ring of an N -dimensional torus L can be described as the

exterior algebra of H1pLq. One can deform this to a different Clifford algebra, by

replacing the trivial quadratic form with one encoding symplectic information. As in

the closed-string case, consider the generating function

WL “
ÿ

β

cβpLqxBβ ,

where cβpLq P Q roughly counts holomorphic disks with homology class β P H2pX,Lq

and boundary homology class Bβ P H1pLq; under our assumptions the numbers cβpLq

are nonzero integers for finitely many β. After choosing a basis γ‚ P H1pLq, one can

think of the formal variables x‚ as holonomies of a rank one local system ξ on L, so that

its holonomy around Bβ corresponds in the sum above to the weight

xBβ “ xk11 ¨ ¨ ¨xkNN , Bβ “ k1γ1 ` . . .` kNγN .

Since local systems are classified by their holonomy, the moduli space of such ξ is a

complex torus HompH1pLq,Cˆq “ pCˆqN , and WL is a regular function on this torus.

If ξ is a critical point of WL, then its Hessian at ξ defines a quadratic form on H1pL;Cq

encoding enumerative information about the Lagrangian embedding L Ă X.

Lagrangian Floer theory twisted by the local system ξ gives now a honest complex

CF pLξq, and its cohomology HF pLξq is the Clifford algebra just described. For any

λ P C, one then constructs a Fukaya category FλpXq containing objects Lξ such that

WLpξq “ λ. This is a categorification of a subring QHλpXq Ă QHpXq of quantum
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cohomology; see Sanda [73] and Appendix B. The formal sum

FpXq “
à

λ

FλpXq

is referred to as the spectral decomposition of the Fukaya category.

1.3. Main questions and state of the art

There are very few topological techniques to compute open-string invariants. Once

again, the first insights are coming from Algebraic Geometry and String Theory. We

assume from now on that X is a smooth complex projective variety of Fano type, and

that D is a fixed effective anti-canonical divisor.

As described in Auroux [6], there should be a construction of a complex variety X_,

referred to as a Landau-Ginzburg model, with a regular function W P OpX_q called

potential. Roughly speaking, X_ should arise as moduli space of Lagrangian tori L Ă

XzD equipped with rank one local systems ξ. The potential W should describe, in

suitable complex torus charts TL Ă X_, the obstruction to the Floer differential squaring

to zero in CF pLq; in other wordsW|TL “ WL holds. This description is expected to have

a purely topological translation when X is a general compact symplectic manifold, with

D replaced by a symplectic divisor in the sense of McLean-Therani-Zinger [57], and X_

by a rigid analytic space over the Novikov field. Recent work of Yuan [84] constructs

candidates Landau-Ginzburg model and potential when XzD is generically fibered by

Lagrangian tori bounding no holomorphic disks with negative Maslov index.

Following Kontsevich [49], once a candidate Landau-Ginzburg model pX_,W q for pX,Dq

is known one says that Homological Mirror Symmetry holds if

DFλpXq » DSpW´1pλqq @λ P C .

This is the statement that two triangulated categories are equivalent: one is the derived

category of FλpXq; the other is the derived category of singularities of the fiber W´1pλq

introduced by Orlov [62], which measures to what extent coherent sheaves fail to have

finite resolutions by locally free sheaves. See Appendix B for more details on these

categories.
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Dyckerhoff [23] showed that, whenever W has critical locus of dimension zero, the cat-

egory of singularities is generated by skyscraper sheaves at the critical points. On the

symplectic side no such general statement is known, but it is natural to ask the following.

Question 1.3.1. (General) Think of a smooth complex projective Fano variety X as a

compact manifold with symplectic structure ω such that rωs “ c1pXq. Is FpXq generated

by objects supported on Lagrangian tori? If yes, how to construct a set of generators in

practice?

For X “ PN and D union of coordinate hyperplanes, Cho [14] showed that a fiber of the

moment map supports N`1 nonzero objects that generate all the summands of DFpXq,

corresponding to the critical points of the potential W P OpX_q with X_ “ pC˚qN and

W “ x1 ` . . .` xN ` x´1
1 ¨ ¨ ¨x´1

N .

This was later generalized to arbitrary smooth projective Fano toric varieties XpΣq by

Fukaya-Oh-Ohta-Ono [29], with D “ DΣ torus invariant anti-canonical divisor, Landau-

Ginzburg model X_ “ pC˚qN and potential W determined by the primitive lattice

vectors generating the rays of Σ.

The goal of this thesis is to investigate the question of generation by Lagrangian tori

when X is not toric, focusing on complex Grassmannians X “ Grkpnq of k-planes in

Cn. We believe that this is the next easiest case after toric for the following reasons.

1. Based on ideas from representation theory, Rietsch [69] constructed candidate

Landau-Ginzburg models pX_,W q for general homogeneous varieties X “ G{P ,

and showed that the coordinate ring of the critical locus of W matches the quan-

tum cohomology ring QHpG{P q. This is an indication that Homological Mirror

Symmetry, which is a categorification of this statement, could hold and serve as a

guide in the calculation of FpG{P q.

2. The Landau-Ginzburg model X_ is an open projected Richardson variety in the

sense of Knutson-Lam-Speyer [48]. These are smooth affine varieties, and Leclerc

[51] showed that their coordinate rings admit a cluster structure in many cases.

The notion of cluster algebra was introduced by Fomin-Zelevinsky [26], and roughly

says that X_ has an atlas of complex torus charts related by special birational
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transition functions. It is natural to speculate that these charts are mirror to

Lagrangian tori L Ă G{P , and that W locally agrees with their disk potential

WL. Since W and the cluster charts can be computed in practice, this gives

precise predictions on the open Gromov-Witten numbers of Lagrangian tori in

G{P by restricting W to the cluster charts.

3. Starting from type A, the variety X “ G{P “ SLn{P parametrizes partial flags

in Cn. If P is the subgroup of matrices with a k ˆ k block then X “ Grkpnq,

and much of what discussed so far can be recasted in elementary terms using

the classical Plücker coordinates; see Marsh-Rietsch [53] for the description of the

Landau-Ginzburg model, and Scott [74] for its cluster structure. We point out that

in this case the Landau-Ginzburg model is also known as open positroid stratum,

and its properties have been the focus of several works in representation theory,

combinatorics and topology [52, 66, 47, 76].

Therefore we are lead to the following, more specific.

Question 1.3.2. (Specific) Is FpGrkpnqq generated by objects supported on Lagrangian

tori? If yes, how to construct a set of generators in practice?

As of November 2017 (the beginning of this thesis) no one had investigated the question

beyond the toric cases Gr1pnq “ Pn´1. The Grassmannian Gr2p4q can be presented as

a quadric hypersurface in P5, and the work of Sheridan [77] on the Fukaya category of

Fano hypersurfaces applies, but it focuses on Lagrangian spheres as opposed to tori.

The results that back then were closest to the spirit of the question are listed below in

chronological order.

1. Guillemin-Sternberg [40] constructed an integrable system on Grkpnq and more

general partial flag manifolds, called Gelfand-Zetlin system, by thinking of the

Grassmannian as coadjoint orbit of Upnq; their construction is recalled in Section

3.2. In particular, the generic fiber of this integrable system is a Lagrangian torus,

and the the image of its Hamiltonians is a lattice polytope ∆GZ Ă Rkpn´kq.

2. Nishinou-Nohara-Ueda [58] observed that the polytope ∆GZ is the moment poly-

tope of a (typically) singular toric variety, and that the Lagrangian torus fibers

of the Gelfand-Zetlin system are deformations of toric moment fibers in a suitable
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sense; they used this to establish a bijection between rigid holomorphic disks on

Gelfand-Zetlin fibers and codimension one faces of the polytope ∆GZ .

3. Nohara-Ueda [59, 60] used symplectic reduction techniques to construct a Catalan

number Cn´2 of integrable systems on Gr2pnq, each labeled by a triangulation Γ of

the n-gon; the generic fibers of these systems are Lagrangian tori LΓ Ă Gr2pnq, and

the images of their Hamiltonians are lattice polytopes ∆Γ (one of them matches

∆GZ for each n). Explicit formulas for the disk potentialsWLΓ
were given as sums

over edges of the triangulation Γ, and disk potentials of tori whose triangulations

are related by a flip were shown to be related by a cluster mutation in the sense

of Fomin-Zelevinsky [26].

4. Rietsch-Willams [70] investigated a special collection of cluster charts TG Ă X_

in the Landau-Ginzburg model for X “ Grkpnq proposed by Marsh-Rietsch [53],

parametrized by combinatorial objects G known as plabic graphs. They gave

combinatorial formulas for the restriction of the potential W|TG to each chart in

terms of matchings on the graph G, and observed that a procedure called positive

tropicalization produces, when applied to W|TG , a rational polytope ∆GpDFZq

which is an Okounkov body for a natural anti-canonical divisor DFZ Ă Grkpnq.

For each k and n there is a special Okounkov body ∆GpDFZq the matches the

Gelfand-Zetlin polytope ∆GZ .

1.4. Results

The first step in the computation of the Fukaya category of Grassmannians is the de-

scription of its spectral decomposition. It is known (Theorem B.3.2) that the summand

FλpGrkpnqq can be nonzero only if λ is an eigenvalue of the operator c1‹ acting on

QHpGrkpnqq. We describe this spectrum below; see Figure 1.1 for some examples.

Proposition 1.4.1. (3.1.4) The eigenvalues of c1‹ acting on QHpGrkpnqq (evaluated at

q “ 1) are given by npζ1 ` . . . ` ζkq, with tζ1, . . . ζku varying among the size k sets of

roots of xn “ p´1qk`1.

In principle, one could use known combinatorial formulas for the quantum product of

Schubert classes in QHpGrkpnqq to compute this spectrum in specific cases. Instead,

we deduce the result in a uniform way for all Grassmannians, relying on the existence
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of a basis of quantum cohomology that simultaneously diagonalizes all operators of

multiplication by a Schubert class; see Section 3.1 for more details. The existence of

such basis seems to have been observed by physicists in the early days of quantum

cohomology; we learned of it from a paper of Rietsch [67]. The cited paper does not

spell out a proof of its remarkable property; we derive it in Lemma 3.1.3.

(a) Gr1p8q (b) Gr2p5q (c) Gr3p7q

(d) Gr4p10q (e) Gr6p12q (f) Gr5p14q

Figure 1.1: Eigenvalues of c1‹ acting on QHpGrkpnqq.

In Section 3.2 we focus on the monotone Lagrangian torus fiber of the Gelfand-Zetlin

integrable system LGZ Ă Grkpnq introduced by Guillemin-Sternberg [40]. From the

work of Nishinou-Nohara-Ueda [58], it is known that its disk potential WLGZ
has one

monomial for each codimension one face of ∆GZ . We work out a more explicit formula.

Proposition 1.4.2. (3.2.6) If LGZ Ă Grkpnq is the Gelfand-Zetlin torus, its disk po-

tential is

WLGZ
“

k´1
ÿ

i“1

n´k
ÿ

j“1

xi,j
xi`1,j

`

k
ÿ

i“1

n´k´1
ÿ

j“1

xi,j`1

xi,j
`

1

x1,n´k
` xk,1 .

The proof of this formula relies on a description of the face poset of ∆GZ found by

An-Cho-Kim [5] in terms of certain planar diagrams. Thinking of Grkpnq as a Upnq

coadjoint orbit in the space of n ˆ n Hermitian matrices H, the Hamiltonians of the

Gelfand-Zetlin system are eigenvalues of H and its minors, and their image is a convex

polytope ∆GZ cut out by interlacing inequalities among the eigenvalues of nested minors.

The planar diagrams mentioned above roughly encode which of these inequalities are
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equalities in each face of the polytope.

The main goal of Chapter 3 is to investigate what nonzero objects of the Fukaya category

are supported on the Lagrangian torus LGZ . Recall that objects are of the form pLGZqξ

for some rank one local system ξ on the torus. It is known that HF ppLGZqξq ‰ 0 if

and only if the holonomies of ξ around a fixed basis of H1pLq give a critical point of the

disk potential WLGZ
(Theorem B.3.3). Nishinou-Nohara-Ueda [58] proved that WLGZ

must have some critical point, but this is not sufficient to describe all critical points and

study their critical values, which determine in which summand of the Fukaya category

the object pLGZqξ lives. This is the first place where we take advantage of the Landau-

Ginzburg model described by Marsh-Rietsch [53]; see Section 2.3.3 for the definition.

The key observation is that, up to an automorphism of a complex torus, one has

WLGZ
“ W|TCR

,

for a specific chart TCR Ă Uk,n in the cluster structure of Uk,n.

There are two obstacles to overcome to prove this equality. First, it is crucial to guess

what the correct complex torus chart TLGZ
Ă Uk,n corresponding to LGZ Ă Grkpnq

is, and the answer is the so called rectangular chart TLGZ
“ TCR , which corresponds

to the initial seed of the cluster structure of Uk,n; see Section 3.3. In general there

are many charts, and choosing a different one can lead to obstructions to the equality

above; we return to this point in Chapter 4 of the thesis. The second obstacle is that

the equality is not true on the nose, but only after an automorphisms of the complex

torus chart; we work out this change of coordinates in Section 3.4. This step relies on

the previous explicit formula for WLGZ
and the fact that W|TCR

has been computed by

Marsh-Rietsch [53]. The unpleasant change of coordinates suggests that the Gelfand-

Zetlin system, which is responsible for the choice of basis of H1pLGZq used to write down

WLGZ
, is perhaps a bad choice from the point of view of mirror symmetry. In Chapter 4

of the thesis, the newly constructed Lagrangian tori will have instead canonical bases of

cycles coming from the data of a toric degeneration of Grkpnq, thus giving a geometric

solution to the problem of fixing coordinates.

Once the equality WLGZ
“ W|TCR

is established, asking what nonzero objects of the
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Fukaya category are supported on LGZ becomes equivalent to understanding which of

the critical points of the global potential W P OpUk,nq fall in the rectangular cluster

chart TCR Ă Uk,n. The critical points of W are well understood, see e.g. Karp [42],

and the condition of being contained in TCR can be rephrased in terms of vanishing of

certain Schur polynomials at the roots of unity. This leads to the following theorems;

compare Figure 1.2.

Theorem 1.4.3. (3.4.4) The Gelfand-Zetlin torus LGZ supports n objects that split-

generate the summands FλpGrkpnqq with maximum |λ|.

Theorem 1.4.4. (3.4.6) The dihedral group Dn acts on the set of nonzero objects

pLGZqξ supported on the Gelfand-Zetlin torus and

pLGZqξ in FλpGrkpnqq ùñ g ¨ pLGZqξ in Fg¨λpGrkpnqq for all g P Dn ,

where the standard generators of Dn act on C via r ¨ λ “ e2πi{nλ and s ¨ λ “ λ.

(a) Gr2p5q (b) Gr2p6q (c) Gr2p9q

(d) Gr2p10q (e) Gr3p7q (f) Gr3p9q

Figure 1.2: Summands of FpGrkpnqq containing objects supported on LGZ .

While writing up these results, we realized that for n “ p prime the objects supported

on LGZ seemed to always cover all the summands in the spectral decomposition of the

Fukaya category, or equivalently that all the critical points ofW seemed to be contained

in the chart TCR Ă Uk,n in this case. Translating this observation into a statement about

Schur polynomials at the roots of unity, it is indeed possible to prove it using Stanley’s

hook-content formula (Theorem 2.1.9).
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Theorem 1.4.5. (3.4.7) When n “ p is prime, the Fukaya category of Grkppq is split-

generated by objects supported on LGZ , and for every λ P C there is an equivalence of

triangulated categories

DFλpGrkppqq » DSpW´1pλqq .

The equivalence of triangulated categories above is the first instance in which Homolog-

ical Mirror Symmetry is verified for an infinite class of Grassmannians (beyond projec-

tive spaces). Together with the observation, described above, that objects supported on

LGZ cover all summands of the spectral decomposition, the proof relies on a version of

Abouzaid’s generation criterion [1] established by Sheridan [77] for the monotone Fukaya

category (Theorems B.3.4, B.3.5). The application of the criterion is particularly simple

in this case, thanks to a lucky coincidence: when n “ p prime all the eigenvalues of c1‹

acting on QHpGrkppqq have multiplicity one; this is proved in Proposition 3.1.4.

(a) Q0, mutation at v “ (b) Q1, mutation at v “ (c) Q2, mutation at v “

(d) Q3, mutation at v “ (e) Q4, mutation at v “ (f) Q5 “ Q0

Figure 1.3: A Plücker sequence of type p2, 5q and length five. The labeling variables xd
on the nodes are replaced by d for notational convenience.

Starting from Chapter 4, we begin to take the cluster structure of the Landau-Ginzburg

model Uk,n seriously, and consider its implications for the Fukaya category of Grkpnq.

The rectangular chart TCR is the first step of an iterative mutation procedure, that

produces many other charts Ts by quiver mutation in the sense of representation theory.

At each step of a sequence s of mutations, the initial Laurent polynomial Ws0 “ W|TCR

evolves to become a new rational function Ws, obtained by composing Ws0 with a
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sequence of birational maps of complex tori determined by the quivers; this procedure

is described in detail in Section 4.1 and is best explained here by an example.

Example 1.4.6. Let k “ 2 and n “ 5. Figure 1.3 represents a sequence of mutations

s : pQ0,W0q Ñ pQ1,W1q Ñ pQ2,W2q Ñ pQ3,W3q Ñ pQ4,W4q Ñ pQ5,W5q

of length five, where the final step and the initial one coincide. At each step pQi,Wiq,

the graph Qi is a quiver whose nodes are labeled by Plücker coordinates xd for some

collection of Young diagrams d Ď 2ˆ 3, and Wi is a Laurent polynomial of the variables

xd. A mutation pQi,Wiq Ñ pQi`1,Wi`1q in the sequence consists in performing a quiver

mutation at a mutable node v of Qi as described in Section 4.1. This procedure changes

the label lpvq of the node v in Qi to a new label l1pvq of the same node in Qi`1. The

two labels are related by the following exchange relation: lpvqlpv1q is a sum of two

terms, obtained by taking the product of labels lpwq from incoming/outgoing nodes w

adjacent to v respectively. The rational function Wi`1 is obtained from Wi by using

the previous relation to replace the label lpvq with lpv1q, and becomes Laurent modulo

Plücker relations, i.e. when interpreted as element of the function field FracpA2,5q “

CpU2,5q. The Laurent polynomials are:

W0 “ x `
x

x
`
x xH

x x
`
x xH

x x
`
x

x
`
x

x
`
x

x
`
x xH

x x
`
x x

x x
;

W1 “
xHx

x
`
x x

x
`
x xH

x x
`
x x

x x
`
x

x
`
x

x
`
x xH

x x
`
x

x
`
x

x
;

W2 “
xHx x

x x
`
xH

x
`
x x

x
`
x x

x x
`
x

x
`
x

x
`
xHx

x
`
x x

x x
`
x

x
;

W3 “
xH

x
`
x x

x
`
x

x
`
x xH

x
`
x

x
`

x x

x x
`
x

x
`
x x

x x
`
x x

x x
;

W4 “
x

x
`
x

x
`
x x

x x
`

x

x
` x `

xHx

x x
`
xHx

x x
`
x

x
`
x x

x x
.

By computing a few instances of Ws in more examples, one quickly notices the following
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two general phenomena, which are not a direct consequence of the construction:

1. modulo Plücker relations, each Ws is a Laurent polynomial ;

2. the coefficients of each Laurent polynomial Ws are natural numbers .

Property (1) is related to the Laurent phenomenon of cluster algebras in the sense of

Fomin-Zelevinsky [26]. Think each xd as a Plücker coordinate on the dual Grassman-

nian Gr_
k pnq “ Grn´kpnq Ă Ppnkq´1 in its Plücker embedding; the definition of Plücker

coordinate is recalled in Definition 2.2.1. Each Plücker sequence s singles out an open

algebraic torus chart Ts Ă Uk,n, and the global regular functions Ak,n “ OpUk,nq form

a cluster algebra; see Scott [74]. In fact, Marsh-Rietsch [53] prove that each Ws is the

restriction Ws “ W|Ts of the Landau-Ginzburg potential W P Ak,n to the corresponding

cluster chart Ts, and in particular it is a regular function on that chart. Property (2)

is related to positivity of cluster algebras, which has been proved by Gross-Hacking-

Keel-Kontsevich [35]. Their proof consists in interpreting the coefficients as generating

functions of tropical curves called broken lines. Broken lines are expected to correspond

to the holomorphic disks of Symplectic Topology. The key observation for us is that, for

certain sequences s, each step of this process produces a Lagrangian torus Ls Ă Grkpnq

with a basis of cycles γd P H1pLsq labeled by a collection of Young diagrams d in the

k ˆ pn´ kq grid.

This is how the construction goes. It is known from the work of Rietsch-Williams [70]

that each step of s produces a degeneration Grkpnq ⇝ XpΣsq of the Grassmannian to

a toric variety with polyhedral fan Σs. The limit toric variety is typically singular, and

the fan Σs is made up of cones over the faces of the Newton polytope NewtpWsq of

the Laurent polynomial Ws; see Definition 4.2.1 for the precise meaning of the word

degeneration. From this degeneration data one gets an open set Us Ă Grkpnq (in the

analytic topology) carrying a regular Lagrangian torus fibration, obtained by deforming

the one given by the moment map on the maximal torus orbit of XpΣsq. The Lagrangian

torus Ls Ă Us Ă Grkpnq is a particular torus in this fibration. This construction and

the extension of this fibration to a completely integrable system away from Us has

been investigated in great generality by Harada-Kaveh [41], and essentially is available

whenever the degeneration comes from the Okounkov body of an ample divisor on a

projective variety; see Section 1.5 for more on this.
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A result of Nishinou-Nohara-Ueda [58] gives a general sufficient condition for the the

Laurent polynomials Ws to be the disk potentials of the corresponding Lagrangian tori

Ls Ă Grkpnq, which also implies monotonicity of Ls. The condition involves the existence

of a small toric resolution for the singular toric variety XpΣsq; see Definition 4.2.9. Due

to the combinatorial nature of toric varieties, for any given sequence s one can check

this condition in finitely many steps. In Section 4.3 we use this to describe a sample

application in the smallest example not accessible by previous techniques.

Theorem 1.4.7. (see Theorem 4.3.15) The Grassmannian Gr3p6q contains 6 monotone

Lagrangian tori that are not displaceable nor equivalent under Hamiltonian isotopy.

We call these tori exotic, because only one monotone torus was previously known: the

Gelfand-Zetlin torus. The new examples are of the form Ls for some sequence of muta-

tions s, and are distinguished by a combination of two invariants: the number of critical

points of their disk potential WLs and the f -vector of its Newton polytope. This strat-

egy applies without modification to arbitrary Grassmannians, as long as one can check

that XpΣsq has a small resolution. Even when this is not true (we could not find exam-

ples), the positivity of the coefficients of Ws suggests an enumerative interpretation in

terms of counts of holomorphic disks with boundary on Ls; see Section 1.5 for a possible

interpretation of the symplectic meaning of these Laurent polynomials.

For k “ 1 one has projective spaces Gr1pnq “ Pn´1, and there is only one Plücker

sequence s of lenght 0; in this case Ws is the disk potential of the moment map fiber

known to generate the Fukaya category. For k “ 2 the construction recovers a different

one studied by Nohara-Ueda [60] mentioned in Section 1.3 and corresponding to tri-

angulations of the n-gon; the relation is explained in Lemma 4.3.3, which also implies

that all toric degenerations have small resolutions when k “ 2 and the tori Ls Ă Gr2pnq

are all monotone. Definition 4.2.5 introduces some natural local systems supported on

the Lagrangian tori Ls Ă Grkpnq, that are controlled by the values of k-variables Schur

polynomials at certain roots of unity. When k “ 2, we show that the corresponding

objects generate the Fukaya category FpGr2pnqq in examples where objects supported

on the Gelfand-Zetlin torus alone fail to do so.
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1 2 3 4 5 6 7 8 9

Figure 1.4: The dyadic triangulation of an 9-gon.

Theorem 1.4.8. (4.3.7) If n “ 2t ` 1 for some t P N`, the derived Fukaya category

DFpGrp2, 2t ` 1qq is split-generated by objects supported on a single Plücker torus.

The Lagrangian torus in the statement is associated to a special triangulation of the

n-gon, that we call dyadic; see Figure 1.4 for an example. In fact, Section 4.3 contains

a criterion to prove generation of FpGr2pnqq by objects supported on any number of

tori Ls Ă Gr2pnq, whenever n is odd. The criterion is based on a construction of

triangulations of the n-gon whose sides lengths avoid the prime numbers appearing in

the factorization of n; see Figure 1.5 for an example.

Theorem 1.4.9. (4.3.10) Let n ą 2 be odd, and consider its prime factorization n “

pe11 ¨ ¨ ¨ pell . If for all 1 ď i ď l there exists a triangulation Γi of rns that is pi-avoiding,

then DFpGrp2, nqq is split generated by objects supported on l Plücker tori.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

(a) 3-avoiding triangulation

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

(b) 5-avoiding triangulation

Figure 1.5: Two triangulations of a 15-gon.

These results seem to suggest that objects supported on the tori Ls could generate

FpGrkpnqq in general, although generation over C has a subtle relation with the location

of the critical points of W P Ak,n relative to the torus charts Ts Ă Uk,n. For example,

split-generation over C fails for Gr2p4q, where W has two critical points in a complex
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codimension 2 locus of Uk,n which is not covered by cluster charts. We plan to investigate

in a separate work how the situation changes when working over the Novikov field ΛC

instead and considering bulk-deformations of the Fukaya category in the sense of Fukaya-

Oh-Ohta-Ono [28], which categorifies big as opposed to small quantum cohomology.

(a) Walk on U2,5 (b) Walk on U2,6

(c) Walk on U2,7 (d) Walk on U2,8

(e) Walk on U3,6 (f) Walk on U3,7

Figure 1.6: Random walk on the cluster graph
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The iterative description of the Laurent polynomials Ws makes them particularly suit-

able for computations. Starting from the disk potential of the Gelfand-Zetlin torus, at

each step of the mutation process one has finitely many ways to choose how to pro-

ceed, encoded by the choice of mutable node of the quiver Qs. One can perform this

choice uniformly at random at each step, thus obtaining a random walk on the cluster

graph, whose nodes are the complex torus charts Ts Ă Uk,n and whose edges are muta-

tions. Figure 1.6 represent (typically partial) explorations of the cluster graph for small

Grassmannians.

In Chapter 5, we implement this random walk in the programming language Python.

The code also relies on some modules from the open-source project SageMath. At each

step of the random walk, the algorithm allows to perform the following tasks:

• compute the Laurent polynomial Ws “ W|Ts ;

• compute the Newton polytope NewtpWsq and its f -vector, its Ehrhart polynomial,

whether it is reflexive or not ;

• compute the fan of the toric variety XpΣsq obtained as limit of the degeneration

Grkpnq⇝ XpΣsq ;

• count the critical points of W contained in the cluster chart Ts, and compute their

critical values .

1.5. Future directions

This thesis ends with a puzzling question. The construction of the Lagrangian tori

Ls Ă Grkpnq works with no assumptions, and one can easily attach to them Laurent

polynomials Ws with remarkably positive integer coefficients, explicitly computable us-

ing the random walk of Chapter 5. Recall that the Laurent polynomial Ws computes

the Gromov-Witten disk potential WLs of Ls Ă Grkpnq whenever XpΣsq has a small

toric resolution. This naturally rises the following.

Question 1.5.1. If XpΣsq does not have a small toric resolution, does Ws encode any

symplectic information about the Lagrangian embedding Ls Ă Grkpnq?

One tempting guess is that Ws encodes counts of holomorphic disks in the singular

variety XpΣsq. For example, Cho-Poddar [18] developed a notion of holomorphic disk
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in a toric orbifold. However, typically Σs is not simplicial, so that XpΣsq is not an

orbifold in a canonical way. Moreover, even for simplicial Σs it is not clear how orbifold

disks on a moment fiber of XpΣsq are supposed to relate to holomorphic disks in X with

boundary on Ls.

We propose a different point of view. The toric divisor endows any toric variety XpΣsq

with a natural logarithmic structure in the sense of Kato [43, 44], which makes it log-

smooth. This weaker smoothness condition is known to be the right generality in which

closed Gromov-Witten invariants can be defined by algebraic means; for the foundations

of logarithmic Gromov-Witten theory see Gross-Siebert [39] and Abramovich-Chen [15,

3]. Logarithmic structures are a key ingredient in the Gross-Siebert program [36, 37, 38].

There should be a notion of logarithmic disk with boundary on a Lagrangian moment

fiber of a Fano projective toric variety XpΣsq with arbitrary singularities.

The Fano condition should allow to write down a natural Liouville domain W pΣsq Ă

XpΣsq which is disjoint from the toric divisor, and in which the moment fiber of interest

becomes exact. Crucially, the dynamics of the Reeb vector field on the contact boundary

BW pΣsq reflects the combinatorial data of Σs, or equivalently the intersection data of the

components of the toric divisor at infinity in XpΣsq. Lattice points in the cones of Σs

should parametrize pseudo Morse-Bott families or Reeb orbits in BW pΣsq in the sense of

McLean [56] whose dimension depends on the dimension of the cone and whose Conley-

Zehnder index depends on the point. In this setting, a natural notion of logarithmic

disk is that of holomorphic half-cylinder with boundary on the Lagrangian torus and

asymptotic to a Reeb orbit in one of these families. One technical difficulty is that the

toric divisor is not normal crossing for arbitrary Σs, so one has to adapt the techniques

available in the literature to this case, which is both more general due to the singularities

and less general due to the torus symmetry.

Using the data of the degeneration Grkpnq ⇝ XpΣsq, one can think W pΣsq Ă Us Ă

Grkpnq as a Liouville subdomain of the original manifold, and Ls Ă W pΣq Ă Grkpnq as a

Lagrangian torus that becomes exact in this Liouville domain, so that every holomorphic

disk in Grkpnq with boundary on Ls must cross the contact hypersurface BW pΣsq Ă

Grkpnq. After applying neck-stretching in the sense of Symplectic Field Theory, any

rigid holomorphic disk in the ambient will have a trace in the Liouville domain which is
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a rigid logarithmic disk.

Conjecture 1.5.2. The Laurent polynomial Ws is the generating function of rigid log-

arithmic disks in W pΣsq with boundary on Ls, obtained by neck-stretching of ambient

rigid holomorphic disks along the contact hypersurface BW pΣsq. The data of the fan Σs

determines a symplectic cohomology class BSs P SHpW pΣsqq such that

Ws “ COLspBSsq .

In the conjecture above, the map COLs : SHpW pΣsqq Ñ HFW pΣsqpLsq is the closed-open

map from symplectic cohomology of the Liouville domain W pΣsq to Lagrangian Floer

cohomology of the exact Lagrangian torus Ls Ă W pΣsq (compare Tonkonog [81]).

There should also be an open-string analogue of the result of Abramovich-Wise [4], who

showed that closed logarithmic Gromov-Witten invariants do not change under loga-

rithmic modifications, a class of birational transformations of the target that includes

mutations coming from cluster algebras. In our setting, we expect that if Grkpnq ⇝

XpΣsq, XpΣs1q are two toric degenerations associated to cluster charts Ts, Ts1 Ă Uk,n

related by a single mutation ϕs,s1 : Ts 99K Ts1 then the birational relation

Ws “ ϕ˚
s,s1Ws1

should be the special case of a more general phenomenon. Thinking W pΣsq as a La-

grangian torus fibration over a smoothing of the Okounkov body ∆spDFZq, the bira-

tional map ϕs,s1 is known to induce a piece-wise linear homeomorphism Troppϕs,s’q :

∆spDFZq Ñ ∆s1pDFZq by tropicalization. We expect this to induce a map between

SHpW pΣsqq and SHpW pΣs1qq which intertwines the classes BSs and BSs1 . This map

should be highly structured: perhaps already defined at the chain level, and a map of

L8-algebras.

In our view, this approach has the potential not only to clarify the meaning of the Lau-

rent polynomials Ws, but also suggest a path to develop a purely symplectic framework

for wall-crossing formulas of disk potentials of Lagrangian tori in Fano manifolds. As

explained by Kaveh-Manon [46], if D is an anti-canonical divisor in a Fano manifold X,

one has a natural class of Okounkov bodies ∆cpDq parametrized by certain cones c in
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the tropicalization TroppXq of X; see for example Kaveh-Khovanskii [45] for the general

theory of Okounkov bodies. Two cones c, c1 Ă TroppXq are adjacent if they share a codi-

mension one wall. The piece-wise linear map tropicalizing cluster mutations in the dis-

cussion above has an analogue in this generality, i.e. a piece-wise linear homeomorphism

mapping the Okounkov body ∆cpDq to ∆c1pDq; see Escobar-Harada [25]. It is known

that each Okounkov body ∆cpDq produces a toric degeneration X ⇝ XpΣn∆cpDqq to

the toric variety whose fan is the normal fan of ∆cpDq (see [46] and references therein).

From the work of Harada-Kaveh [41], one then gets Lagrangian tori Ls Ă X correspond-

ing to each Okounkov body, and one can draw inspiration from Conjecture 1.5.2 to prove

that Σs determines a symplectic cohomology class BSs P SHpW pΣsqq and this time use

the equation

Ws “ COLspBSsq

as a definition rather than proving it as a theorem (since a global Landau-Ginzburg

potential W P OpX_q such that W|Ts “ Ws is not known in this generality).
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Chapter 2

PREPARATION

In this chapter, we introduce some notations and conventions used in the rest of the

thesis. After reviewing Young diagrams and Schur polynomials, we recall some classical

facts about complex Grassmannians and describe a Landau-Ginzburg model proposed

by Marsh-Rietsch [53].

2.1. Young diagrams and their relatives

Throughout this document, k and n are integers with 1 ď k ă n, and N “ kpn´ kq.

Definition 2.1.1. The symbol d “ pd1, . . . , dkq denotes a Young diagram in the k ˆ

pn ´ kq grid, obtained by placing di consecutive boxes in the i-th row for all 1 ď i ď k,

starting from the left in each row and with d1 ě d2 ě ¨ ¨ ¨ ě dk.

Example 2.1.2. If k “ 2 and n “ 5, the diagrams d Ď 2 ˆ 3 are:

H , , , , , , , , , .

Sometimes it is useful to think of d as a subset of t1, . . . , nu “ rns, in which case d|

denotes the size k set of the vertical steps, and d´ the size n ´ k set of horizontal

steps. The steps of a diagram are counted from the top-right corner of the grid to the

bottom-left, following the part of the border of d in the interior of the grid.

Example 2.1.3. Let k “ 3 and n “ 8. Then d “ p3, 2, 0q denotes a Young diagram.

The vertical steps are d| “ t3, 5, 8u, and the horizontal steps are d´ “ t1, 2, 4, 6, 7u.

These sets are computed by placing d in the 3 ˆ 5 grid as follows:

12

3
4

567

8
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The transpose dT of Young diagram d is a diagram in the pn´ kq ˆ k grid, obtained by

transposing d. The Poincaré dual PDpdq is a diagram in the k ˆ pn ´ kq grid obtained

by taking the complement of d and rotating by π to place it in the top left corner.

Example 2.1.4. Let k “ 3 and n “ 7. An example of Young diagram and its Poincaré

dual in the 3 ˆ 4 grid is given by

d “ and PDpdq “ .

Definition 2.1.5. To each d in k ˆ pn ´ kq associate a symmetric polynomial in k

variables, called Schur polynomial of d, and defined as

Sdpz1, . . . , zkq “
ÿ

Td

zt11 ¨ ¨ ¨ ztkk .

The sum is over semi-standard Young tableau on the diagram d, obtained by filling d

with labels t1, . . . , ku in such a way that rows are weakly increasing and columns are

strictly increasing. The exponent ti of zi records the number of occurrences of the label

i.

Example 2.1.6. The following is an example with k “ 2:

d “ ; Td “
1 1 1

2
,

1 1 2

2
,

1 2 2

2
.

The corresponding Schur polynomial is S pz1, z2q “ z31z2 ` z21z
2
2 ` z1z

3
2 .

Definition 2.1.7. If u is a box of the Young diagram d at entry ps, tq of the kˆ pn´kq,

define its content as cpuq “ t ´ s and its hook length hpuq as the number of boxes of d

below and to the right of u (with u itself counted once).

Example 2.1.8. For k “ 4 and n “ 8, consider the Young diagram d “ p4, 4, 3, 1q in

the 4 ˆ 4 grid. A box u P d has coordinates u “ ps, tq, with 1 ď s ď 4 counting the

row of the grid (from the top) and 1 ď t ď 4 counting the column (from the left). In

the following pictures, each box u P d is filled with the corresponding values of cpuq and

hpuq respectively:
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cpuq “
0 1 2 3

´1 0 1 2

´2 ´1 0

´3

, hpuq “
7 5 4 2

6 4 3 1

4 2 1

1

.

Fixing d, one has an explicit formula for the number of semi-standard tableaux Td on

the diagram d, known as hook-content formula.

Theorem 2.1.9. (Stanley [79, Theorem 15.3])

#tTdu “
ź

uPd

k ` cpuq

hpuq
.

Remark 2.1.10. The hook-content formula above can be obtained from [79, Theorem

15.3] by setting x “ 1 in the generating function Hmpλqpxq of column-strict plane

partitions of shape λ and largest part ď m. In our notation λ is the Young diagram d

in the kˆ pn´kq grid and m “ k. In Stanley’s terminology, what we call semi-standard

Young tableau corresponds to a column-strict plane partition with shape λ and parts

(or labels) in S “ t1, . . . , ku. The correspondence is given by converting each label l in

the Young tableau to the label k`1´ l of the corresponding plane partition, so that the

result has strictly decreasing columns and weakly decreasing rows. Also observe that

Stanley’s definiton of Schur function eλpz1, . . . , zkq in terms of plane partitions with

shape λ agrees with our Sλpz1, . . . , zkq defined in terms of tableaux on λ because

Sλpz1, . . . , zkq “ eλpzk, . . . , z1q “ eλpz1, . . . , zkq ,

where the last equality holds because Schur polynomials are symmetric.

The following algebraic equation depending on k and n will often appear in this docu-

ment:

ζn “ p´1qk`1 , ζ P C .

If I is any of the
`

n
k

˘

sets of k distinct roots of the equation, denote Ic the set of n ´ k

roots not in I, and observe that I_ “ eπiIc is a set of n´k distinct roots of the equation

ζn “ p´1qn´k`1 obtained by replacing k with n´ k in the one above. Denote I0 the set

of k roots closest to 1. Since the Schur polynomials Sd are symmetric functions, it makes
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sense to evaluate them at sets I in any order, so denote SdpIq P C the corresponding

number. If I “ tζ1, . . . , ζku denote |VanpIq| “
ś

iăj |ζi ´ ζj |.

We collect here some useful facts about Schur polynomials evaluated at roots of unity.

Proposition 2.1.11. (Rietsch [67, Proposition 4.3, Lemma 4.4, Proposition 11.1])

1. SPDpdqpIq “ SdpIqSkˆpn´kqpIq ;

2.
ř

d SdpI1qSdpI2q “ nk

VanpI1q
δI1,I2 ;

3. SdpIq “ SdT pI_q ;

4. |SdpIq| ď |SdpI0q| .

2.2. Classical facts about Grassmannians

A full rank k ˆ n matrix M determines an k-dimensional linear subspace of Cn by

taking its row-span. Denote rM s the equivalence class of M modulo row operations.

This defines a point in the complex Grassmannian rM s P Grkpnq. Similarly, a full rank

n ˆ pn ´ kq matrix M_ defines a point of the dual Grassmannian rM_s P Gr_
k pnq “

Grn´kpnq.

Definition 2.2.1. If d is a Young diagram in the k ˆ pn ´ kq grid, the determinant of

M at columns d| is denoted xdpMq and called Plücker coordinate corresponding to d.

Analogously, xdpM_q is the determinant of M_ at rows d´.

After choosing an order on the set of Young diagrams, the Plücker coordinates define

projective embeddings of Grkpnq and Gr_
k pnq in Ppnkq´1. Denote Ik,n Ă Crxd : d Ď

k ˆ pn ´ kqs the homogeneous ideal of Gr_
k pnq, and think of each xd as an element of

the algebra Ak,n “ Crxd : d Ď k ˆ pn ´ kqs{Ik,n of regular functions of the affine cone

over Gr_
k pnq.

Grassmannians have a stratification indexed by Young diagrams Grkpnq “
Ů

dΩd, where

Ωd is the set of rM s P Grkpnq whose reduced echelon form, computed by Gaussian

elimination, has the k ˆ k identity matrix at columns d|.

Definition 2.2.2. These sets Ωd are Zariski locally closed and, since Ωd – CN´|d|, they

are called Schubert cells. Zariski closure produces a collection of (generally singular)

algebraic cycles Xd “ Ωd whose Poincaré dual classes σd P H2|d|pGrkpnqq, called Schubert
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classes, form a basis of cohomology.

2.3. A gift from representation theory

Definition 2.3.1. For 1 ď i ď n denote di the Young diagram whose vertical steps d
|

i

are cyclic shifts by i (modulo n) of t1, . . . , ku. These diagrams are called frozen.

Example 2.3.2. The frozen diagrams for k “ 2 and n “ 5 are:

d1 “ , d2 “ , d3 “ H , d4 “ , d5 “ ;

their vertical steps are d
|

1 “ t2, 3u, d
|

2 “ t3, 4u, d
|

3 “ t4, 5u, d
|

4 “ t1, 5u, d
|

5 “ t1, 2u.

The divisor

DFZ “ t rM s P Grkpnq : xd1pMq ¨ ¨ ¨xdnpMq “ 0 u

is called frozen, and it is anti-canonical; see e.g. [48, Lemma 5.4]. Denote D_
FZ Ă

Gr_
k pnq the analogous divisor in the dual Grassmannian. The Zariski open set Uk,n “

GrkpnqzDFZ is called the (maximal) open positroid variety, and U_
k,n Ă Gr_

k pnq is the

corresponding variety in the dual Grassmannian.

Following Marsh-Rietsch [53], we define a Landau-Ginzburg model as follows.

Definition 2.3.3. The Landau-Ginzburg model of Grkpnq is defined to be the pair

pU_
k,n,W q, with W regular function given by

W “
xd1
xd1

` . . .`
xdn
xdn

.

Here xdi denotes the Plücker coordinate of the Young diagram di obtained by aug-

menting di by one box, or removing a rim-hook if the new box exceeds the k ˆ pn ´ kq

grid.

Example 2.3.4. The Landau-Ginzburg model for Gr2p5q is given by pU_
2,5,W q with

U_
2,5 “ Gr3p5q z t x x xHx x “ 0 u ,

with

W “
x

x
`
x

x
`

x

xH

`
x

x
`
x

x
.
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The following result says that this Landau-Ginzburg model is a correct mirror for Grkpnq

in the sense of closed-string mirror symmetry.

Theorem 2.3.5. (Rietsch [69, Theorem 4.1]) There is an isomorphism of C-algebras

QHpGrkpnqq – JacpW q ,

where QH denotes the small quantum cohomology ring evaluated at q “ 1, and the

Jacobian ring of W on the right is given by JacpW q “ CrU_
k,ns{pBxdW,@dq.
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Chapter 3

GENERATION BY THE GELFAND-ZETLIN

TORUS

In this chapter, we show that the monotone Lagrangian torus fiber of an integrable

system on the complex Grassmannian Grpk, nq introduced by Guillemin-Sternberg [40]

supports generators for all maximum modulus summands in the spectral decomposition

of the Fukaya category over C. We introduce an action of the dihedral group Dn on

the Landau-Ginzburg mirror proposed by Marsh-Rietsch [53] that makes it equivariant

and use it to show that, given a lower modulus, the torus supports nonzero objects in

none or many summands of the Fukaya category with that modulus. The alternative

is controlled by the vanishing of rectangular Schur polynomials at the n-th roots of

unity, and for n “ p prime this suffices to give a complete set of generators and prove

Homological Mirror Symmetry for Grpk, pq.

3.1. Quantum spectrum of Grassmannians

In this section, we describe the spectrum of the operator c1‹ acting on the quantum

cohomology QHpGrkpnqq of Grassmannians (evaluated at q “ 1). This is the first step

in the study of the Fukaya category FpGrkpnqq, as the eigenvalues of this operator label

the summands of the category; see Appendix B. Explicit formulas for quantum products

of Schubert classes were first computed by Bertram [9]. In particular, the product by

c1 “ nσ is determined by the quantum Pieri rule:

σ ‹ σd “ σ ¨ σd ` qσ
d̂

.

The first term in this formula is the cup product, while the second is a quantum correc-

tion. The classical part σ ¨ σd is a sum of Schubert classes obtained by adding one box
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to d in all possible ways. The quantum part σ
d̂
is a single Schubert class, with diagram

d̂ obtained by erasing the full first row and the full first column from d, or 0 otherwise

(i.e. if d has less than n´ k boxes in first row or less than k boxes in first column).

Example 3.1.1. Let k “ 2 and n “ 5. Some sample classical/quantum contributions

are:

σ ¨ σ “ σ ` σ , σ ˆ “ σ , σˆ “ 0 .

The eigenvalues with maximummodulus in the spectrum of c1‹ have been studied before.

In fact, for general Fano manifolds they are expected to satisfy the following conjecture.

Conjecture 3.1.2. (Galkin-Golyshev-Iritani [31, Conjecture 3.1.2]) If X is a smooth

projective Fano variety, denote

T “ maxt |λ| : λ eigenvalue of c1‹ u

and r its Fano index. Then:

1. T is an eigenvalue of c1‹ ;

2. if λ is an eigenvalue of c1‹ with |λ| “ T , then u “ Tζ for some r-th root of unity

ζ P C ;

3. the multiplicity of T is 1 .

The conjecture above is known to hold for Grassmannians and more general homoge-

neous varieties G{P ; see Galkin-Golyshev-Iritani [31] and Cheong-Li [16]. Since we are

interested in the full spectrum of c1‹, it is in principle possible to use the quantum Pieri

rule to compute it in specific cases. However, in Proposition 3.1.4 we use a different

approach, relying on the existence of a particular basis for QHpGrkpnqq: the Schur basis.

The author learned of this basis from the work of Rietsch [67]. The Schur basis σI is

indexed by sets I as in 2.1 and given by

σI “
ÿ

d

SdpIqσd .

The elements of the Schur basis are eigenvectors for c1‹, and in fact for any operator

σd‹. For the reader’s convenience, we give a proof below.

Lemma 3.1.3. (Rietsch [67]) For any d Ď k ˆ pn ´ kq and any set I of distinct roots



30

of xn “ p´1qk`1, the following identity holds:

σd ‹ σI “ SdpIqσI .

Proof. By definition of Schur basis

σd ‹ σI “
ÿ

ν

SνpIqσd ‹ σν ,

where ν Ď k ˆ pn ´ kq runs among all Young diagrams. The product of two Schubert

classes in QHpGrkpnqq is given by

σd ‹ σν “
ÿ

µ

˜

ÿ

hPN
xσd, σν , σPDpµqyhq

h

¸

σµ ,

where PDpµq denotes the Poincaré dual Young diagram of µ, and xσd, σν , σPDpµqyh is

the Gromov-Witten invariant counting genus 0 curves of degree h through the Schubert

cycles Xd, Xν , XPDpµq Ď Grkpnq. This number is 0 unless |d| ` |ν| ` |PDpµq| “ kpn ´

kq ` hn, so that calling

hpµq “
|d| ` |ν| ` |PDpµq| ´ kpn´ kq

n

we get

σd ‹ σν “
ÿ

µ

xσd, σν , σPDpµqyhpµqq
hpµqσµ .

The Gromov-Witten invariant above has an explicit expression, known as Bertram-Vafa-

Intriligator formula:

xσd, σν , σPDpµqyhpµq “
1

nk

ÿ

J

SdpJqSνpJqSPDpµqpJq

Skˆpn´kqpJq
|VanpJq|2 ;

see [67, Theorem 10.3] (also [9], [78]). In the formula, the sum runs over J size k sets of

roots of xn “ p´1qk`1, and if J “ tζ1, . . . , ζku

|VanpJq| “
ź

iăj

|ζi ´ ζj | .

Rearranging the sums in the product σd ‹ σI , and using the fact (Proposition 2.1.11)
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that
SPDpµqpJq

Skˆpn´kqpJq
“ SµpJq ,

we find that

σd ‹ σI “
1

nk

ÿ

µ

qhpµqσµ

˜

ÿ

J

SdpJqSµpJq|VanpJq|2

˜

ÿ

ν

SνpJqSνpIq

¸¸

.

Now by Proposition 2.1.11

ÿ

ν

SνpJqSνpIq “
nk

|VanpJq|2
δJ,I ,

so we arrive at

σd ‹ σI “ SdpIq

˜

ÿ

µ

qhpµqSµpIqσµ

¸

.

Evaluating at q “ 1 gives the desired formula.

We are now ready to prove the following.

Proposition 3.1.4. The following properties hold:

1. The eigenvalues of c1‹ acting on QHpGrkpnqq (evaluated at q “ 1) are given by

npζ1 ` . . . ` ζkq, with tζ1, . . . ζku varying among the size k sets of roots of xn “

p´1qk`1.

2. Let Op2q act on the complex plane by linear isometries of the Euclidean metric.

The subgroup that maps the set of eigenvalues of c1‹ to itself is isomorphic to the

dihedral group Dn.

3. If n “ p prime, then all eigenvalues of c1‹ have multiplicity one.

Proof. 1) Follows from c1 “ nσ and the fact that a single box Young diagram supports

exactly k tableaux, obtained by labelling it with any of the labels in t1, . . . , ku, so that

S px1, . . . , xkq “ x1 ` . . .` xk .

2) If I “ tζ1, . . . , ζku, rotation of 2π{n and conjugation give

e2πi{nnS pIq “ npe2πi{nζ1 ` . . .` e2πi{nζkq “ nS pe2πi{nIq
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nS pIq “ npζ1 ` . . .` ζkq “ nS pIq

and these two transformations generate a copy of Dn in the subgroup of Op2q that

preserves the eigenvalues. There are no other transformations with this property be-

cause the subgroup is finite, and the only finite subgroups of Op2q are cyclic or dihedral;

therefore it must be contained in a dihedral group, possibly larger than Dn. On the

other hand, it cannot be larger than Dn because there are n eigenvalues with maxi-

mum modulus: this follows from the fact that n is the Fano index of Grkpnq, and the

Grassmannians have property O introduced by Galkin-Golyshev-Iritani [31] (see also

[16, Proposition 3.3 and Corollary 4.11]), so that any element in our subgroup must be

in particular a symmetry of the n-gon formed by the eigenvalues of maximum modulus.

3) For p “ 2 we must have k “ 1, and the statement is true. If p ą 2 prime, ob-

serve that the statement for Grkppq is equivalent to the one for Grp´kppq because the

two Grassmannians are isomorphic. We can use this to assume without loss of generality

that k is odd, since when it is even we can replace k with p ´ k. Let now tξ1, . . . , ξku

and tζ1, . . . , ζku be two size k sets of p-th roots of

xp “ p´1qk`1 “ 1

and call z “ e2πi{p. Rewrite

ξ1 ` . . .` ξk “ zi1 ` . . .` zik , ζ1 ` . . .` ζk “ zj1 ` . . .` zjk

with 0 ď i1 ă . . . ă ik ă p and 0 ď j1 ă . . . ă jk ă p. Denote xzy the subgroup of Cˆ

generated by z. The map ϕp1q “ z extends to a morphism of group rings

ϕ : ZrZ{pZs Ñ Zrxzys .

Think now of the sums above as elements of a group ring

zi1 ` . . .` zik “ ϕ

¨

˝

ÿ

uPZ{pZ
aut

u

˛

‚“ ϕpaq , zj1 ` . . .` zjk “ ϕ

¨

˝

ÿ

uPZ{pZ
but

u

˛

‚“ ϕpbq
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where a, b P ZrZ{pZs have coefficients

au “

$

’

’

&

’

’

%

1 if u P ti1, . . . , iku

0 otherwise

, bu “

$

’

’

&

’

’

%

1 if u P tj1, . . . , jku

0 otherwise

.

Now the two eigenvalues of c1‹ corresponding to ti1, . . . , iku and tj1, . . . , jku are equal

whenever ϕpaq “ ϕpbq, or equivalently ϕpa ´ bq “ 0. The kernel of the morphism ϕ is

known (de Bruijn [21, Theorem 1]; see also Lam-Leung [50, Theorem 2.2]) and it is

kerϕ “ tlp1 ` t` . . .` tp´1q : l P Zu .

Therefore there exists l P Z such that

ÿ

uPZ{pZ
pau ´ buqtu “ l ` lt` . . .` ltp´1

so that au ´ bu “ l for every u P Z{pZ. Observe that for every u we have au ´ bu P

t´1, 0, 1u, and moreover we can’t have l “ ˘1 because both a and b have exactly k of

their coefficients (au and bu respectively) different from 0. We conclude that l “ 0, so

that a “ b and therefore ti1, . . . , iku “ tj1, . . . , jku.

3.2. Disk potential of a Gelfand-Zetlin fiber

From the point of view of symplectic topology, Grkpnq fits naturally in the class of

coadjoint orbits. We denote upnq_ the dual Lie algebra of the unitary group Upnq and

recall that the Lie bracket induces a symplectic structure on coadjoint orbits given by

ωϕpX,Y q “ ϕprX,Y sq ϕ P upnq_ X,Y P upnq ,

and the action of Upnq is Hamiltonian with respect to this structure. It is convenient

to identify upnq_ with the real vector space Hn of Hermitian matrices of size n, where

the action of Upnq is given by conjugation. Each H P Hn has real eigenvalues, labeled

α1 ě . . . ě αn . By the spectral theorem, the tuple α “ pα1, . . . , αnq is a complete

invariant for the orbits of the Upnq action, so that we can denote them Oα Ă Hn. We
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are interested in the case where

α1 “ . . . “ αk ą αk`1 “ . . . “ αn

because in this case Oα – Grkpnq. Therefore, in this section we think Grkpnq Ă Hn as

Hermitian matrices with k equal big eigenvalues and n´ k equal small eigenvalues.

For each H P Grkpnq and 1 ď s ď n ´ 1 one can consider the size s minor Hs of H

consisting of the first s rows and columns, so that Hs P Hs and in analogy with what

was done above one can label its eigenvalues

Φ1,s ě Φ2,s´1 ě . . . ě Φs´1,2 ě Φs,1 .

As a consequence of the min-max characterization of the eigenvalues, for each s ě 2 the

eigenvalues of Hs interlace with those of Hs´1:

Φ1,s Φ2,s´1 . . . Φs´1,2 Φs,1

ě
ě

ě
ě

Φ1,s´1 . . . Φs´1,1

.

This implies, together with the assumption that α1 “ . . . “ αk and αk`1 “ . . . “ αn,

the inequalities of Figure 3.1.

+

+-

Φ1, n-k Φk, n-k

Φ k, 1
Φ 1, 1

Φ  1, n-(k-1)

Φk+1, 1

...

...

... ...

α 1

α n

=

=

Figure 3.1: Inequalities for the Gelfand-Zetlin polytope ∆α and ladder diagram Γα.

Therefore we are left with kpn´kq non-constant functions on Grkpnq, and ordering them
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by lexicographic order on the subscripts they become the entries of a map

Φ : Grkpnq Ñ Rkpn´kq .

The image ∆α of this map is a convex polytope cut out by the inequalities of Figure

3.1. In fact, the following holds.

Theorem 3.2.1. (Guillemin-Sternberg [40, Section 5]) The map Φ is a completely in-

tegrable system on Grkpnq: on the open dense subset Φ´1p∆αzB∆αq Ă Grkpnq its entries

are smooth functions, they pairwise Poisson commute, and their differentials are linearly

independent.

It follows from general properties of completely integrable systems that the fibers of

Φ over the interior of ∆α must be Lagrangian tori (see for example Duistermaat [22,

Theorem 1.1]). Moreover, the following result allows to locate the unique monotone

fiber among these tori (see Appendix A for a discussion of monotonicity).

Theorem 3.2.2. (Cho-Kim [19, Section 5 and Theorem 5.2]) If α1 “ ¨ ¨ ¨ “ αk “ n´ k

and αk`1 “ ¨ ¨ ¨ “ αn “ ´k, the symplectic structure ω on Oα – Grkpnq satisfies rωs “ c1

and the interior of ∆α contains a unique lattice point u such that Φ´1puq is monotone.

The coordinates of this lattice point are ui,j “ j ´ i.

More generally, Cho-Kim [19] classify all the monotone Lagrangian fibers of the Gelfand-

Zetlin system for arbitrary partial flag manifolds.

Definition 3.2.3. Denote the monotone torus fiber of Φ by LGZ Ă Grkpnq, and call it

the Gelfand-Zetlin torus.

Being a regular Lagrangian fibration over the interior of ∆α, the integrable system Φ

induces a basis γi,j P H1pLGZ ;Zq. Denote

WLGZ
P Crx˘1

i,j s 1 ď i ď k, 1 ď j ď n´ k

the Gromov-Witten disk potential written in the coordinates induced by this basis, as

explained in Appendix B. Our goal now is to compute this Laurent polynomial explicitly.

The two key ingredients of this calculation are a correspondence between Maslov 2 J-

holomorphic disks and codimension 1 faces of ∆α due to Nishinou-Nohara-Ueda [58],
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and a combinatorial description of boundary faces of ∆α due to An-Cho-Kim [5].

Theorem 3.2.4. (Nishinou-Nohara-Ueda [58, Theorem 10.1]) The Maslov 2 disk po-

tential WLGZ
has one monomial with coefficient one for each codimension 1 face of ∆α,

with exponents the coordinates of the corresponding inward primitive normal vector.

The idea of the theorem above is to consider a toric degeneration of Grkpnq to a (gener-

ally singular) toric variety Xp∆αq whose polytope is ∆α, and to construct a small toric

resolution of singularities for it. Small here means that the exceptional locus has codi-

mension at least two. Such degenerations have been found by Gonciuela-Lakshmibai

[33]. One then uses the degeneration to construct a cobordism between the moduli

space of Maslov 2 disks bounding LGZ Ă Grkpnq and the moduli space of Maslov 2

disks bounding a toric Lagrangian fiber of the resolution of Xp∆αq. Smallness of the

resolution guarantees that disks intersecting the singular locus in the central fiber of

the degeneration don’t contribute to the potential, because they correspond to disks of

Maslov index at least 4 in the resolution. One then concludes by using the calculation

of Cho [14] of the disk potential of toric Lagrangian fibers.

In the proof of Proposition 3.2.6 we also make use of the following result.

Theorem 3.2.5. (An-Cho-Kim [5, Theorem 1.11]) There is a bijection between faces

∆f Ă ∆α and face graphs Γf Ă Γα in the ladder diagram, such that the dimension of

∆f matches the number of loops in Γf .

The ladder diagram Γα is a kˆ pn´kq grid with two extra edges; the bottom left corner

is labelled by ´ and there are two nodes labelled by `, see Figure 3.1. A positive path

is a sequence of edges in Γα that connects the ´ node with one of the two ` nodes and

only goes up or right. A face graph Γf Ă Γα is any union of positive paths that covers

both ` nodes. A loop of Γf is a minimal unoriented cycle of Γf thought as a graph.

Figure 3.2 gives a complete list of face graphs with five loops for k “ 2 and n “ 5,

and the bijection mentioned in the theorem above is obtained by setting to “ those

inequalities defining the polytope ∆α that do not cross an edge when we put Γf on top

of the grid of inequalities as done in Figure 3.1.

We use the above mentioned toric degeneration result of Nishinou-Nohara-Ueda [58] to

work out an explicit formula in terms of k and n for the disk potential of the Gelfand-
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Zetlin torus. This formula will be used in the proof of Theorem 3.4.4.

Proposition 3.2.6. If LGZ Ă Grkpnq is the Gelfand-Zetlin torus:

1. There are pk´ 1qpn´ kq ` kpn´ k´ 1q ` 2 Maslov 2 J-holomorphic disks through

a generic point of the torus.

2. The disk potential is given by

WLGZ
“

k´1
ÿ

i“1

n´k
ÿ

j“1

xi,j
xi`1,j

`

k
ÿ

i“1

n´k´1
ÿ

j“1

xi,j`1

xi,j
`

1

x1,n´k
` xk,1 .

Proof. 1) Combining Theorems 3.2.4 and 3.2.5 we know that through a generic point of

LGZ there must be exactly one Maslov 2 J-holomorphic disk for each codimension one

face ∆f Ă ∆α, and these in turn correspond to face graphs Γf Ă Γα with kpn ´ kq ´ 1

loops, where kpn´kq “ dim∆α. The ambient ladder diagram Γα is a grid with kpn´kq

cells, therefore ∆f falls in one of the following three types (see Figure 3.2):

• Type - the full Γα minus an interior vertical edge ;

• Type - the full Γα minus an interior horizontal edge ;

• Type - one of two exceptional cases consisting of the full Γα minus a loop at a

corner .

(a) Type (b) Type (c) Type

Figure 3.2: Face diagrams Γf Ă Γα of codimension 1 faces for the Gelfand-Zetlin poly-
tope of ∆α of the Grassmannian Gr2p5q.

There are pk´1qpn´kq ways to remove an interior vertical edge from the kˆpn´kq grid

Γα: they correspond to the ways of placing a horizontal brick in it, where we think

at the central vertical edge as the one to be removed from Γα to obtain Γf . Similarly,

there are kpn´k´1q ways to remove an interior horizontal edge from the kˆpn´kq grid



38

Γα: they correspond to the ways of placing a vertical brick in it, where we think at

the central horizontal edge as the one to be removed from Γα to obtain Γf . Finally, the

two exceptional cases are best described by Figure 3.2. Note that one cannot get any

face graph Γf by removing boundary edges at the top right and bottom left corners of

Γα without violating the condition on Γf of being union of positive paths and covering

both the ` nodes.

2) We write down inequalities for the codimension one faces ∆f Ă ∆α corresponding

to the face graphs Γf above, and work out the coordinates of the corresponding inward

primitive normal vectors nf P Zkpn´kq Ă Rkpn´kq; these coordinates will be the expo-

nents of the Laurent monomials of WLGZ
, where the variables xi,j correspond to the

coordinates Φi,j of the Gelfand-Zetlin integrable system as explained at the beginning

of this section.

By putting different types of face graphs Γf on top of the grid of inequalities of ∆α as

in Figure 3.1, one finds:

• Type Φi,j “ Φi`1,j for 1 ď i ď k ´ 1 and 1 ď j ď n´ k ;

• Type Φi,j “ Φi,j`1 for 1 ď i ď k and 1 ď j ď n´ k ´ 1 ;

• Type Φ1,n´k “ α1 and Φk,1 “ αn .

Any of the codimension 1 faces ∆f Ă ∆α above is obtained by setting one ě to “ in

the facet presentation of the Gelfand-Zetlin polytope:

∆α “ t Φ P Rkpn´kq : nf ¨ Φ ě ´cf @∆f Ă ∆α such that codim∆f “ 1 u .

Here ¨ denotes the inner product with the unique vector nf P Zkpn´kq Ă Rkpn´kq that

generates the semigroup of integral vectors satisfying the inequality. In our case the

inward primitive normal vectors are:

• Type for 1 ď i ď k ´ 1 and 1 ď j ď n´ k

nf “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

1 in entry Φi,j

´1 in entry Φi`1,j

0 in other entries

;
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• Type for 1 ď i ď k and 1 ď j ď n´ k ´ 1

nf “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

´1 in entry Φi,j

1 in entry Φi,j`1

0 in other entries

;

• Type for Φ1,n´k “ α1 and Φk,1 “ αn respectively

nf “

$

’

’

&

’

’

%

´1 in entry Φ1,n´k

0 in other entries

and nf “

$

’

’

&

’

’

%

1 in entry Φk,1

0 in other entries

.

We conclude that WLGZ
is a sum of monomials whose exponents are given by the coor-

dinates of the inward primitive normal vectors, giving the formula of the statement.

3.3. Guessing the mirror chart

According to mirror symmetry heuristic, a Landau-Ginzburg model X_ for a symplectic

manifold X should be thought of as moduli space of Lagrangians L Ă X, with the

potential W : X_ Ñ C matching, in a suitable local chart corresponding to L, the

Gromov-Witten disk potential WL. Specialize this heuristic to X “ Grkpnq and X_ “

Uk,n, where W is defined as in Section 2.3. Recall from Section 3.2 that we have an

explicit formula for the Gromov-Witten disk potential WL of the Gelfand-Zetlin torus

L “ LGZ . In this Section, we give a guess for what the corresponding chart TGZ Ă Uk,n

is, and characterize the critical points ofW that belong to this chart. Section 3.4 verifies

that the guess is correct, i.e. it satisfies the heuristic explained above.

According to Scott [74], Uk,n contains open subschemes that are algebraic tori of the

form

TC “ t rM_s P Uk,n : xdpM_q ‰ 0@d P C u

labeled by certain collections of Young diagrams C in a k ˆ pn ´ kq grid such that

td1, . . . , dnu Ď C. Each collection C is such that the Plücker coordinates xd with d P C

form a transcendence basis of the function field of the affine cone over Gr_
k pnq, and
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these can be thought of as coordinates for the torus chart TC – pCˆqkpn´kq after setting

xH “ 1. Restricting the potential W to each torus chart, we get Laurent polynomials

WC “ W|TC P Crx˘1
d : d P C s .

If C and C1 are different collections of Plücker coordinates, the corresponding Laurent

polynomials WC and WC1 involve different sets of variables xd: for WC the variables are

Plücker coordinates parametrized by Young diagrams d P C, while for WC1 by diagrams

d P C1.

Definition 3.3.1. The complex torus chart TCR Ă Uk,n corresponding to the collection

CR of rectangular Young diagrams in the kˆ pn´kq grid is called the rectangular chart.

This chart has the property that it always exists in Gr_
k pnq, no matter what k and

n are; instead an arbitrary collection of kpn ´ kq Young diagrams in a k ˆ pn ´ kq

grid does not in general give a transcendence basis for the function field of the affine

cone over Gr_
k pnq; see Chapter 4 for a more accurate description of this phenomenon.

One more consideration about the rectangular torus chart TCR is that when k “ 1,

i.e. for Grp1, nq “ Pn´1, Gr_p1, nq “ pC‹qn´1 is a single torus, and there is only one

possible way to choose 1 ¨ pn ´ 1q “ n ´ 1 nonempty Young diagrams in a 1 ˆ pn ´ 1q

grid, and they are forced to be all rectangles. All this suggests that the rectangular

torus chart TCR should be the analogue of the chart of the Landau-Ginzburg mirror

corresponding to local systems on the Lagrangian Clifford torus in the projective space.

Since the Gelfand-Zetlin torus LGZ Ă Grkpnq generalizes the Clifford torus to arbitrary

Grassmannians, it is natural to guess that its mirror chart should be TGZ “ TCR . The

restriction of the potentialW to the rectangular chart TCR has been computed explicitly

by Marsh-Rietsch. We record their formula here for later use in Theorem 3.4.4.

Theorem 3.3.2. (Marsh-Rietsch [53, Section 6.3]; see also Rietsch-Williams [70, Propo-

sition 9.5]) If W : Uk,n Ñ C is the Landau-Ginzburg potential, using the notation xiˆj

for xdiˆj
its restriction to the rectangular chart TCR is given by

W ↾TCR “ x1ˆ1`

k
ÿ

i“2

n´k
ÿ

j“1

xiˆjxpi´2qˆpj´1q

xpi´1qˆpj´1qxpi´1qˆj
`
xpk´1qˆpn´k´1q

xkˆpn´kq

`

k
ÿ

i“1

n´k
ÿ

j“2

xiˆjxpi´1qˆpj´2q

xpi´1qˆpj´1qxiˆpj´1q

.

The critical locus ofW has been studied by Rietsch, and it consists of
`

n
k

˘

non-degenerate
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critical points. These points have the following explicit description.

Theorem 3.3.3. (Marsh-Rietsch [53, Proposition 9.3], Rietsch [67, Theorem 3.4 and

Lemma 3.7]; see also Karp [42, Theorem 1.1 and Corollary 3.12]) The critical points of

W : Uk,n Ñ C are given by

rM_
I_s “

»

—

—

—

—

—

—

—

—

—

—

–

1 1 1 . . . 1

ζ1 ζ2 ζ3 . . . ζn´k

ζ21 ζ22 ζ23 . . . ζ2n´k

...
...

...
...

ζn´1
1 ζn´1

2 ζn´1
3 . . . ζn´1

n´k

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

where I_ “ tζ1, . . . , ζn´ku is a set of n´ k distinct roots of xn “ p´1qn´k`1.

We conclude this section with a criterion to decide when a critical point of W belongs

to the rectangular chart TCR , formulated in terms of zeros of Schur polynomials at roots

of unity.

Proposition 3.3.4. Let I_ be a size n´k subset of roots of xn “ p´1qn´k`1 and denote

rM_
I_s P Uk,n the corresponding critical point of W ; then the following properties hold:

1.

rM_
I_s P TCR ðñ SdT pI_q ‰ 0 @d rectangular

.

2. The dihedral group Dn acts on the sets I_ via rI_ “ e2πi{nI_ and sI_ “ I_ and

SdT pI_q ‰ 0 ðñ SdT pgI_q ‰ 0 @g P Dn .

Proof. 1) From the definition of rectangular chart TCR

rM_
I_s P TCR ðñ xdpM_

I_q ‰ 0 @d rectangular Young diagram ,
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and from the description of the critical points of W (Theorem 3.3.3)

rM_
I_s “

»

—

—

—

—

—

—

—

—

—

—

–

1 1 1 . . . 1

ζ1 ζ2 ζ3 . . . ζn´k

ζ21 ζ22 ζ23 . . . ζ2n´k

...
...

...
...

ζn´1
1 ζn´1

2 ζn´1
3 . . . ζn´1

n´k

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

where I_ “ tζ1, . . . , ζn´ku is a set of n ´ k distinct roots of xn “ p´1qn´k`1. The

horizontal steps of the empty diagram d “ H are d´ “ H´ “ t1, . . . , n´ ku, so that by

the Vandermonde formula and the definition of xd as determinant of minor at rows d´

xHpM_
I_q “

ź

1ďiăjďn´k

pζj ´ ζiq ‰ 0 .

Therefore

rM_
I_s P TCR ðñ

xdpM_
I_q

xHpM_
I_q

‰ 0 @d rectangular Young diagram .

The claim follows from the fact that

xdpM_
I_q

xHpM_
I_q

“ SdT pI_q .

This holds because when we write the diagram dT in partition form dT “ pdT1 , . . . , d
T
n´kq,

i.e. as a tuple where dTi is the number of boxes at row i, one of the many equivalent
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ways of defining the Schur polynomial of dT is

SdT px1, . . . , xn´kq “

det

¨

˚

˚

˚

˚

˚

˚

˚

˝

x
dTn´k

1 . . . x
dTn´k

n´k

x
dTn´k´1`1

1 . . . x
dTn´k´1`1

n´k

...
...

x
dT1 `n´k´1
1 . . . x

dT1 `n´k´1
n´k

˛

‹

‹

‹

‹

‹

‹

‹

‚

det

¨

˚

˚

˚

˚

˚

˚

˚

˝

1 . . . 1

x1 . . . xn´k

...
...

xn´k´1
1 . . . xn´k´1

n´k

˛

‹

‹

‹

‹

‹

‹

‹

‚

.

Once evaluated at I_, the denominator is xHpM_
I_q and the numerator equals xdpM_

I_q

because the horizontal steps of d and the number of boxes in each row of dT are related

by

d´ “ tdTn´k ` 1, . . . , dT1 ` n´ ku .

2) Observe that for every d

SdT prI_q “ pe2πi{nq|dT |SdpI_q , SdT psI_q “ SdT pI_q

because SdT is a homogeneous polynomial of degree the number of boxes |dT | of dT .

3.4. Matching things up and the n “ p prime case

The key diagram to have in mind for this section is the following:

Dn⟳pCˆqkpn´kq U⟲Dn
k,n

C⟲Dn

WLGZ

θR

W
(3.1)

Recall that W is the potential of the Landau-Ginzburg model described in Section 2.3:

W “
xd1
xd1

` . . .`
xdn
xdn

.
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WLGZ
is the disk potential of the Gelfand-Zetlin torus, thought of as an algebraic func-

tion on the space of local systems pCˆqkpn´kq and computed in Section 3.2:

WLGZ
“

k´1
ÿ

i“1

n´k
ÿ

j“1

xi,j
xi`1,j

`

k
ÿ

i“1

n´k´1
ÿ

j“1

xi,j`1

xi,j
`

1

x1,n´k
` xk,1 .

The target of both maps is C, and it carries an action of the dihedral group Dn by

2π{n counter-clockwise rotation and conjugation, which encodes the symmetries of the

eigenvalues of c1‹ on QHpGrkpnqq observed in Figure 1.1.

We introduce an open embedding identifying the local systems of the Gelfand-Zetlin

torus with the rectangular chart TCR Ă Uk,n. The embedding θR : pCˆqkpn´kq Ñ Uk,n is

defined by the equations

xi,j “
xpk`1´iqˆj

xpk´iqˆpj´1q

1 ď i ď k 1 ď j ď n´ k ,

with xiˆj “ xdiˆj
denoting the Plücker coordinate corresponding to the iˆj rectangular

Young diagram.

The formula above is phrased to be efficient for the purposes of Theorem 3.4.4. One

can use the equations to write the coordinates xiˆj in terms of the coordinates xi,j on

the space of local systems, proceeding by lexicographic order on i, j. Since the kpn´ kq

functions xiˆj give a transcendence basis for the function field CpUk,nq, the other entries

xd of this map for d non-rectangular Young diagram are determined by the Plücker

relations. The image of this embedding is the rectangular chart TCR of Section 3.3. A

new ingredient in the diagram above is the action of the dihedral group Dn on Uk,n (the

action on the space of local systems pCˆqkpn´kq will be defined as pull-back along θR,

see proof of Theorem 3.4.6).

Definition 3.4.1. Indexing the standard basis vd of Cpnkq with Young diagrams d Ď kˆ

pn´kq, call dihedral projective representation the group morphism Dn Ñ PGLp
`

n
n´k

˘

,Cq

given on the generators r, s of Dn by

r ¨ vd “ pe2πi{nq|d|vd , s ¨ vd “ vPDpdq

where |d| denotes the number of boxes in d and PDpdq is the Poincaré dual Young
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diagram of d.

Observe that rn “ s2 “ 1 in the definition above because e2πi{n is an n-th root of unity

and PDpPDpdqq “ d. Moreover, the relation rs “ sr´1 holds in PGLp
`

n
n´k

˘

,Cq because

rs ¨ vd “ pe2πi{nq|PDpdq|vPDpdq , sr´1 ¨ vd “ pe2πi{nq´|d|vPDpdq

and |PDpdq| “ kpn ´ kq ´ |d|, so that rs “ e2πikpn´kq{nsr´1 with the scaling factor

independent of d. The dihedral projective representation induces an algebraic action of

Dn on Ppnkq´1, and the following holds.

Lemma 3.4.2. The dual Grassmannian Gr_
k pnq Ă Ppnkq´1 is invariant under the action

of Dn induced by the dihedral projective representation.

Proof. Write the full rank nˆ pn´ kq matrix M_ as a list of rows

M_ “ pm1, . . . ,mnq mi P Cn´k 1 ď i ď n .

If d Ď k ˆ pn ´ kq, and d´ “ ti1, . . . , in´ku are its horizontal steps, the corresponding

dual Plücker coordinate of rM_s P Gr_
k pnq is

xdpM_q “ detpmi1 , . . . ,min´k
q .

If ζ “ e2πi{n, one can define a Dn-action on Gr_
k pnq via

r ¨ rM_s “ rζm1, ζ
2m2, . . . , ζ

nmns and s ¨ rM_s “ rmn,mn´1, . . . ,m1s ,

and observe that

xdpr ¨ rM_sq “ ζi1`¨¨¨`in´kxdprM_sq , xdps ¨ rM_sq “ xPDpdqprM_sq .

We claim that these agree with the homogeneous coordinates of rM_s under the pro-

jective action Dn coming from the dihedral projective representation. For the s action

there is nothing to check. Regarding r, the claim follows from the existence of a constant

Ck,n independent of d such that |d| “ Ck,n ` i1 ` . . . ` in´k. To see that this constant

exists, write the Young diagram as a partition d “ pd1, . . . dkq, with di number of boxes
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in the i-th row of d. If d| “ tj1, . . . jku are the vertical steps of d, one has

d1 “ n´k´pj1´1q , d2 “ d1´pj2´j1´1q , . . . , dk “ dk´1´pjk´jk´1´1q .

It follows that

|d| “ d1 ` ¨ ¨ ¨ ` dk “ kpn´ kq `
kpk ` 1q

2
´ pj1 ` ¨ ¨ ¨ ` jkq ;

moreover rns “ d´ \ d| implies

i1 ` ¨ ¨ ¨ ` in´k “
npn` 1q

2
´ pj1 ` ¨ ¨ ¨ ` jkq ,

from which one finds

Ck,n “ kpn´ kq `
kpk ` 1q

2
´
npn` 1q

2
.

Recall that

Uk,n “ Gr_
k pnq zD_

FZ ,

where D_
FZ is the divisor cut out by xd1 ¨ ¨ ¨xdn “ 0. Since the collection of diagrams

d1, . . . , dn is closed under Poincaré duality, the divisor D_
FZ is Dn-invariant and one gets

an action of Dn on Uk,n.

Definition 3.4.3. Call Young action the algebraic Dn-action on Uk,n induced by the

dihedral projective representation of Definition 3.4.1.

For notational convenience, we introduce a Dn-action on the sets I of k distinct roots

of xn “ p´1qk`1 that extends the one on C element-wise

r ¨ I “ e2πi{nI , s ¨ I “ I .

In the theorems below, I will parametrize objects of the Fukaya category FpGrkpnqq

supported on the Gelfand-Zetlin torus LGZ Ă Grkpnq, whereas I_ will parametrize

critical points of the Landau-Ginzburg potential W : Uk,n Ñ C. See Appendix B for
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the setup of the monotone Fukaya category. Let LGZ Ă Grkpnq be the Gelfand-Zetlin

torus, and γij P H1pLGZ ;Zq for 1 ď i ď k, 1 ď j ď n ´ k is the basis of cycles induced

by the integrable system. For each set I of k distinct roots of xn “ p´1qk`1, define a

local system on the torus whose holonomy is given by

holIpγijq “
Spk`1´iqˆjpIq

Spk´iqˆpj´1qpIq
.

The definition above makes sense only when the denominator is nonzero, in which case

pLGZqI denotes the corresponding object of the Fukaya category. When the denominator

is zero the object is not defined.

Theorem 3.4.4. The objects

pLGZqI0 , pLGZqrI0 , pLGZqr2I0 , . . . , pLGZqrn´1I0

are defined and split-generate the n summands FλpGrkpnqq of the monotone Fukaya

category with maximum |λ|.

Proof. As a first step we prove that diagram (3.1) commutes, or in other words θ˚
RW “

WLGZ
. The image of θR is the rectangular torus chart TCR Ă Gr_

k pnq and by Theorem

3.3.2

W ↾TCR “ x1ˆ1`

k
ÿ

i“2

n´k
ÿ

j“1

xiˆjxpi´2qˆpj´1q

xpi´1qˆpj´1qxpi´1qˆj
`
xpk´1qˆpn´k´1q

xkˆpn´kq

`

k
ÿ

i“1

n´k
ÿ

j“2

xiˆjxpi´1qˆpj´2q

xpi´1qˆpj´1qxiˆpj´1q

.

From the definition of θR

xi,j “
xpk`1´iqˆj

xpk´iqˆpj´1q

1 ď i ď k 1 ď j ď n´ k

so that

θ˚
RW “ xk,1 `

k
ÿ

i“2

n´k
ÿ

j“1

xk`1´i,j

xk`2´i,j
`

1

x1,n´k
`

k
ÿ

i“1

n´k
ÿ

j“2

xk`1´i,j

xk`1´i,j´1
.

The last expression matches the Maslov 2 disk potentialWLGZ
computed in Proposition

3.2.6 (re-index the first sum with l “ k ` 1 ´ i, and the second sum with l “ k ` 1 ´ i

and h “ j ´ 1).

Because of Theorem B.3.3, critical points holI P pCˆqkpn´kq of WLGZ
correspond to
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holonomies of local systems on the Gelfand-Zetlin torus such that

HFppLGZqI , pLGZqIq ‰ 0 ,

and by commutativity of diagram (3.1) these are the same as critical points of W :

Gr_
k pnq Ñ C that are contained in the rectangular chart TCR . By Theorem 3.3.3 and

Proposition 2.1.11, critical points of W are of the form rM_
I_s P Gr_

k pnq for I set of k

distinct roots of xn “ p´1qk`1, and by Proposition 3.3.4 rM_
I_s P TCR if and only if the

following nonvanishing condition on Schur polynomials holds:

SdT pI_q “ SdpIq ‰ 0 @d rectangular .

This allows us to define for any rM_
I_s P TCR a local system on the Gelfand-Zetlin torus

with

holIpγijq “
Spk`1´iqˆjpIq

Spk´iqˆpj´1qpIq
.

Observe that arguing as in Proposition 3.3.4

xpk`1´iqˆjprM_
I_sq

xpk´iqˆpj´1qprM_
I_sq

“
Sppk`1´iqˆjqT pI_q

Sppk´iqˆpj´1qqT pI_q
“

Spk`1´iqˆjpIq

Spk´iqˆpj´1qpIq
.

We conclude that θRpholIq “ rM_
I_s, meaning that HFppLGZqI , pLGZqIq ‰ 0.

To decide in which summand FλpGrkpnqq of the Fukaya category the object pLGZqI

lives, we compute

λ “ WLGZ
pholIq “ W prM_

I_sq “

ˆ

x1
x1

` . . .`
xn
xn

˙

prM_
I_sq .

Dividing numerator and denominator by xH, one finds for every 1 ď t ď n

xt
xt

prM_
I_sq “

Sp ‹dtqT pI_q

SpdtqT pI_q
“
S ‹dtpIq

SdtpIq
,

where dt is the t-th frozen Young diagram.

Calling σdt P QHpGrkpnqq the Schubert class of the Young diagram dt, Lemma 3.1.3
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says that the action of σt‹ on the Schur basis σI is given by

σdt ‹ σI “ SdtpIqσI .

Since dt “ ‹ dt is a single Schubert class due to the special rectangular shape of dt, we

have

σdt
‹ σI “ S pIqSdtpIqσI

and therefore Sdt
pIq “ S pIqSdtpIq. We conclude that λ “ nS pIq.

Choosing now I “ I0 set of k roots closest to 1, the set I_
0 contains the n ´ k roots

of xn “ p´1qn´k`1 closest to 1, and the corresponding critical point rM_
I_
0

s lies in the

totally positive part of the Grassmannian; see [42, Theorem 1.1]. This means that all

the Plücker coordinates of rM_
I_
0

s are real, non-vanishing, and have the same sign. In

particular, rM_
I_
0

s is in the rectangular chart TCR and this gives a nonzero object

pLGZqI0 in FλpGrkpnqq , λ “ W prM_
I_
0

sq “ nS pI0q P R` .

Moreover, using the inequalities of Schur polynomials at roots of unity of 2.1.11

|S pIq| ď S pI0q @I

and this says that pLGZqI0 lives in a summand of the Fukaya category labelled by an

eigenvalue of c1‹ with maximum modulus. It is known [16, Proposition 3.3 and Corollary

4.11] that there are n eigenvalues of c1‹ with maximum modulus, all of multiplicity one,

and they are given by rotations of multiples of 2π{n of nS pI0q P R`. One can get

nonzero objects in each of them by considering

pLGZqI0 , pLGZqrI0 , pLGZqr2I0 , . . . , pLGZqrn´1I0

and observing that for all 0 ď s ă n the critical point rM_
prsI0q_s of W still belongs to

the rectangular chart TCR , thanks to Proposition 3.3.4 (see also proof of Theorem 3.4.6),

with

W prM_
prsI0q_sq “ nS prsI0q “ rsnS pI0q ,
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where in the last step we used that the Schur polynomial of is linear. The fact that

these summands are indexed by eigenvalues of multiplicity one guarantees that a single

nonzero object generates, thanks to Theorem B.3.4.

Remark 3.4.5. In fact, the theorem above shows that whenever a critical point rM_
I_s of

the Landau-Ginzburg potential belongs to the rectangular torus chart TCR Ă Gr_
k pnq the

object pLGZqI is defined and nonzero in the summand of the Fukaya category FλpGrkpnqq

with

λ “ W prM_
I_sq “ nS pIq

even when |λ| has not maximum modulus. The difference in this case is that the sum-

mand QHλpGrkpnqq of quantum cohomology is not necessarily one-dimensional, therefore

one cannot conclude that this object generates DFλpGrkpnqq.

As Figure 1.2 illustrates, the question of what summands with lower |λ| contain nonzero

objects supported on the Gelfand-Zetlin torus is related to the arithmetic of k and n. On

the other hand, we show in Theorem 3.4.6 that the equivariance of the Landau-Ginzburg

model with respect to the action of Dn introduced at the beginning of this section forces

a certain dichotomy, for which summands FλpGrkpnqq in each level |λ| contain either

none or a full Dn-orbit of nonzero objects.

Theorem 3.4.6. If pLGZqI is an object of FλpGrkpnqq, then it is nonzero and the objects

pLGZqgI in FgλpGrkpnqq for all g P Dn

are defined and nonzero as well.

Proof. If rM_
I_s P Gr_

k pnq is a critical point of the Landau-Ginzburg potential W , the

Young action of Dn on Gr_
k pnq sends it to another critical point

grM_
I_s “ rM_

pgIq_s @g P Dn .

We verify this equality on generators r, s of Dn. Calling N “
`

n
n´k

˘

´ 1, the Plücker

coordinates of rM_
I_s P Gr_

k pnq Ă PN are

rxd0pM_
I_q : xd1pM_

I_q : ¨ ¨ ¨ : xdN pM_
I_qs .
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The Young diagrams d0, . . . , dN are labelled according to lexicographic order on their

sets of horizontal steps. The action of r gives

r ¨ rM_
I_s “ rpe2πi{nq|d0|xd0pM_

I_q : pe2πi{nq|d1|xd1pM_
I_q : ¨ ¨ ¨ : pe2πi{nq|dN |xdN pM_

I_qs

Now observe that d0 “ H is the empty diagram, whose horizontal steps are t1, . . . n´ku.

Therefore the number of boxes of d0 is |d0| “ 0, and thanks to Proposition 3.3.4 we know

that xd0pM_
I_q ‰ 0. Scaling the homogeneous coordinates by this factor we have

r ¨ rM_
I_s “ r1 : pe2πi{nq|d1|Sd1pIq : ¨ ¨ ¨ : pe2πi{nq|dN |SdN pIqs .

The Schur polynomial Sdi is homogeneous of degree |di|, therefore

pe2πi{nq|d1|SdipIq “ Sdipe
2πi{nIq “ SdiprIq @0 ď i ď N .

Scaling back the homogeneous coordinates by a factor xd0pM_
prIq_q we get

r ¨ rM_
I_s “ rxd0pM_

prIq_q : xd1pM_
prIq_q : ¨ ¨ ¨ : xdN pM_

prIq_qs “ rM_
prIq_s .

The verification for the action of the generator s is analogous:

s ¨ rM_
I_s “ rxPDpd0qpM

_
I_q : xPDpd1qpM

_
I_q : ¨ ¨ ¨ : xPDpdN qpM

_
I_qs .

Scaling the homogeneous coordinates by xd0pM_
I_q we have

s ¨ rM_
I_s “ rSPDpd0qpIq : SPDpd1qpIq : ¨ ¨ ¨ : SPDpdN qpIqs .

From Proposition 2.1.11 it follows that

SPDpdiqpIq “ SdipIqcI @0 ď i ď N ,

where cI “ SdN pIq P Cˆ is a constant that depends on I, but not on di. Therefore we

have

s¨rM_
I_s “ rSd0pIq : Sd1pIq : ¨ ¨ ¨ : SdN pIqs “ rSd0psIq : Sd1psIq : ¨ ¨ ¨ : SdN psIqs “ rM_

psIq_s
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where the last equality is obtained by scaling the homogeneous coordinates by xd0pM_
psIq_q.

This concludes the proof that the critical locus of W is Dn-invariant.

We also observe that W is Dn-equivariant when restricted to the singular locus. Indeed,

we saw in Theorem 3.4.4 that W prM_
I sq “ nS pIq and therefore

r ¨W prM_
I_sq “ e2πi{nnS pIq “ nS prIq “ W prM_

prIq_sq “ W pr ¨ rM_
I_sq

s ¨W prM_
I_sq “ nS pIq “ nS psIq “ W prM_

psIq_sq “ W ps ¨ rM_
I_sq .

Also notice that W : Uk,n Ñ C can’t be globally Dn-equivariant, because W ps ¨ ´q is

an algebraic function while s ¨ W p´q is not. On the other hand W is globally Z{nZ-

equivariant, where Z{nZ is the subgroup of Dn generated by r. Indeed, by definition we

have

W “
x1
x1

` . . .`
xn
xn

and recall that xt “ xdt Plücker coordinate of the t-th boundary rectangular Young

diagram, with xt “ xdt
. The fact that |dt | ” |dt|`1 pmodnq for every 1 ď t ď n implies

that

r ¨ xt
r ¨ xt

“
pe2πi{nq| ‹dt|xn
pe2πi{nq|dt|xn

“ e2πi{n
xn
xn

which means that W is globally Z{nZ-equivariant.

Observe now that the rectangular torus chart TCR Ă Gr_
k pnq is Z{nZ-invariant because

xdpM_q ‰ 0 ðñ r ¨ xdpM_q “ pe2πi{nq|d|xdpM_q ‰ 0 .

On the other hand TCR is not Dn-invariant, because the Poincaré dual of a general

rectangular Young diagram is not necessarily rectangular (as opposed to the case of a

frozen Young diagram, see Section 2.1).

Thanks to the fact that the action of s on the critical points matches the action by

conjugation, we have

rM_
I_s P TCR ðñ rM_

I_s P V , V “
č

gPDn

g ¨ TCR
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and V is an open Dn-invariant subscheme of TCR . Defining U “ θ´1
R pV q Ă pCˆqkpn´kq,

this is an open subscheme of the space of rank one C-linear local systems on the Gelfand-

Zetlin torus LGZ Ă Grkpnq. Since θR is an open embedding, we can use it to pull-back

the Dn action on U , so that diagram (3.1) becomes fully Z{nZ-equivariant, and Dn

equivariant whenever restricted to critical points and values.

In Theorem 3.4.7 we show that there are indeed classes of Grassmannians for which the

considerations of Theorem 3.4.4 and 3.4.6 suffice to identify a complete set of generators

for the Fukaya category, and prove homological mirror symmetry.

Theorem 3.4.7. When n “ p is prime the objects pLGZqI split-generate the Fukaya

category of Grkppq, and for every λ P C there is an equivalence of triangulated categories

DFλpGrkppqq » DSpW´1pλqq .

Proof. By Proposition 3.1.4 and the assumption n “ p prime, we have that

dimQHλpGrkppqq “ 1 @λ eigenvalue of c1 ‹ .

Thanks to Theorem B.3.4, any nonzero object supported on the Gelfand-Zetlin torus

will generate the summand of the Fukaya category in which it lives, therefore it suffices

to show that the torus supports objects in all summands to have a complete set of

generators.

When n “ 2 we have Grp1, 2q “ P1, and the objects of the statement are the two local

system on the Clifford torus giving objects with nontrivial Floer cohomology investigated

by Cho [14]. We will show that when n “ p ą 2 is prime all critical points rM_
I_s of

W : Uk,p Ñ C are contained in the rectangular chart TCR . By Theorem 3.4.4 and Remark

3.4.5 this will imply that for every I “ tζ1, . . . , ζku size k set of roots of xp “ p´1qk`1

the object pLGZqI is nonzero in the summand FλpGrkppqq of the Fukaya category, where

λ “ pS pIq “ ppζ1 ` . . .` ζkq.

By Proposition 3.3.4 and Proposition 2.1.11 rM_
I_s P TCR if and only if

SiˆjpIq ‰ 0 @iˆ j rectangular diagram in k ˆ pp´ kq grid .
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If by contradiction SiˆjpIq “ 0 for some I and diagram iˆ j, then by definition of Schur

polynomial this means that

SiˆjpIq “
ÿ

Tiˆj

ζt11 ¨ ¨ ¨ ζtkk “ 0 ,

where the sum runs over all semi-standard Young tableaux Tiˆj of the diagram i ˆ j.

Let us assume first that k is odd, so that roots of xp “ p´1qk`1 “ 1 are p-th roots of

unity. Then each term in SiˆjpIq above is itself a p-th root of unity, and we have a

vanishing sum of a number of p-th roots of unity equal to Siˆjp1, . . . , 1q, i.e. the number

of semi-standard Young tableaux of iˆ j. A result of Lam-Leung on vanishing sums of

roots of unity [50, Theorem 5.2] implies that Siˆjp1, . . . , 1q must be a multiple of p. On

the other hand by Stanley’s hook-content formula (Theorem 2.1.9)

Siˆjp1, . . . , 1q “
ź

uPiˆj

k ` cpuq

hpuq
.

Therefore we must have

ź

uPiˆj

k ` cpuq

hpuq
” 0 pmod pq .

By assumption p is prime and 1 ď hpuq ď p ´ 1, therefore there exists u P i ˆ j such

that

cpuq ” ´k pmod pq .

Being u P i ˆ j, it has to be at entry ps, tq of the grid with 1 ď s ď i and 1 ď t ď j.

Also notice that being the rectangle i ˆ j in a k ˆ pp ´ kq grid we have 1 ď i ď k and

1 ď j ď p´ k. We conclude that

´k ă 1 ´ k ď 1 ´ i ď cpuq “ t´ s ď j ´ 1 ď p´ k ´ 1 ă p´ k

in contradiction with cpuq ” ´k modulo p. This concludes the proof in the case of k

odd. When k is even I consists of roots of xp “ p´1qk`1 “ ´1 and the argument above

doesn’t apply; on the other hand by Proposition 2.1.11

SiˆjpIq ‰ 0 ðñ Sjˆipe
πipIcq ‰ 0
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where Ic denotes the roots of xp “ p´1qk`1 “ ´1 that are not in I, giving p ´ k

distinct roots of xp “ p´1qp´k`1 “ 1 once rescaled by eπip. This reduces the problem

to the previous case and thus proves that the collection of pLGZqI gives generators for

all summands of the Fukaya category.

To prove homological mirror symmetry we argue as follows. Denoted d “ kpp´ kq, the

assumption of n “ p prime guarantees that for every critical value λ P C there is exactly

one critical point rM_
I_
λ

s P Uk,p of W with critical value λ, and rM_
I_
λ

s P TCR by the

argument given earlier. Therefore rM_
I_
λ

s “ θRpholIλq for a unique holIλ P pCˆqd critical

point of WT d with critical value λ. We denote mλ Ă Crx˘
1 , . . . , x

˘
d s the maximal ideal

corresponding to the point holIλ , and T
d
Iλ

the generator of DFλpGrkppqq.

The critical point holIλ is nondegenerate. This condition holds because a degenerate

critical point ofWT d would correspond to a non-reduced point in the critical locus scheme

Z Ă Gr_
k ppq of W (see for example [63, Lemma 3.5]), but closed mirror symmetry for

Grassmannians (Theorem 2.3.5) says that

Z “ SpecpJacpW qq – SpecpQHpGrkppqqq ,

and this scheme is reduced because QHpGrkppqq is semi-simple, being

QHpGrkppqq “
à

λ

QHλpGrkppqq

an algebra decomposition with one-dimensional summands. From Theorem B.3.5 of the

Setup section we conclude that DFλpGrkppqq » DpCldq, where Cld denotes the Clifford

algebra of the quadratic form of rank d on Cd. Now combining the locality property

of the derived category of singularities established by Orlov [62, Proposition 1.14] and

the fact proved above that all the critical points of W are in the rectangular chart

TCR Ă Gr_pk, pq, we have for any λ P C

DSpW´1pλqq » DSpW´1pλq X TCRq

where the intersection on the right is an affine scheme given by

W´1pλq X TCR “ SpecpCrx˘
d : d rectangulars{pW ↾TCR ´λqq .
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Matrix factorizations are just another model for the category of singularity in the affine

case, so that to conclude the proof of homological mirror symmetry it suffices to establish

an equivalence

DpCldq » DMpCrxd : d rectangulars,W ↾TCR ´λq .

Dyckerhoff (Theorem 4.11 [23]) shows that the localization ring morphism Crx˘
1 , . . . , x

˘
d s Ñ

Crx˘
1 , . . . , x

˘
d smλ

induces an equivalence

DMpCrx˘
1 , . . . , x

˘
d s,WT d ´ λq » DMpCrx˘

1 , . . . , x
˘
d smλ

,WT d ´ λq

and explicitly describes a generator [23, Corollary 2.7] ofDMpCrx˘
1 , . . . , x

˘
d smλ

,WT d´λq

whose endomorphism algebra is again the Clifford algebra Cld above, so that

DMpCrx˘
1 , . . . , x

˘
d smλ

,WT d ´ λq » DpCldq

and this concludes the proof (see also Sheridan [77, Section 6.1] for a discussion of

intrinsic formality of Clifford algebras over C).
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Chapter 4

EXAMPLES OF EXOTIC TORI

In this chapter, we describe an iterative construction of Lagrangian tori in the complex

Grassmannian Grpk, nq, based on the cluster algebra structure of the coordinate ring of a

mirror Landau-Ginzburg model proposed by Marsh-Rietsch [53]. Each torus comes with

a Laurent polynomial, and local systems controlled by the k-variables Schur polynomials

at the n-th roots of unity. We use this data to give examples of monotone Lagrangian tori

that are neither displaceable nor Hamiltonian isotopic to each other, and that support

nonzero objects in different summands of the spectral decomposition of the Fukaya

category over C.

4.1. Initial seed and mutation procedure

Definition 4.1.1. A quiver with potential of type pk, nq is a pair pQ,W q, where:

1. Q is an oriented connected graph, with no self-edges or oriented 2 loops, and whose

nodes are labeled by Plücker coordinates xd P Ak,n ;

2. W is a Laurent polynomial in the labels of the nodes of Q .

As part of the data, the nodes of Q are partitioned in two groups, called frozen and

mutable.

The iterative construction we describe in this section begins with a specific quiver with

potential.

Definition 4.1.2. The initial seed of type pk, nq is the quiver with potential pQ0,W0q,

where:

1. Q0 is the oriented labeled graph in Figure 4.1 ;



58

2. W0 is the Laurent polynomial

x1ˆ1`

k
ÿ

i“2

n´k
ÿ

j“1

xiˆjxpi´2qˆpj´1q

xpi´1qˆpj´1qxpi´1qˆj
`
xpk´1qˆpn´k´1q

xkˆpn´kq

`

k
ÿ

i“1

n´k
ÿ

j“2

xiˆjxpi´1qˆpj´2q

xpi´1qˆpj´1qxiˆpj´1q

.

A node of Q0 is frozen if its label is xiˆj with i ˆ j “ H, i “ k or j “ n ´ k; the

remaining nodes are mutable.

k

n-k

Figure 4.1: Initial quiver Q0: labels xd are indicated by d, frozen nodes in bold type.

Observe that the labels on the nodes of Q0 are precisely the kpn ´ kq ` 1 variables xd

where d is a rectangular Young diagram, and n of the nodes are frozen.

Given a quiver with potential pQ,W q as in Definition 4.1.1, and fixed a mutable node v

of Q, one can form a new labeled quiver Q1 as follows:

1. start with Q1 “ Q, and for all length 2 paths a Ñ v Ñ b with at least one mutable

node among a and b, add to Q1 a new edge a Ñ b ;

2. modify Q1 by reversing all the edges incident to v ;

3. remove all oriented 2-cycles formed in Q1, by deleting their arrows .

Calling lpwq the label of a node w in Q, define new labels l1pwq in Q1 by declaring

l1pwq “ lpwq if w ‰ v, and

l1pvq “

ś

wÑv lpwq `
ś

vÑw lpwq

lpvq
.

Since Q and Q1 have the same nodes, the nodes of Q1 inherit the property of being frozen
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or mutable from Q.

Definition 4.1.3. The mutation of pQ,W q along v is the pair pQ1,W 1q with Q1 con-

structed as above, and W 1 obtained from W by substitution lpvq “ p
ś

wÑv l
1pwq `

ś

vÑw l
1pwqql1pvq´1.

A priori, mutations of quivers with potentials as in Definition 4.1.1 are not necessarily

quivers with potentials, since l1pvq and W 1 are only rational functions of the Plücker

coordinates xd. The following guarantees that certain iterated mutations of the initial

seed of Definition 4.1.2 remain quivers with potentials.

Proposition 4.1.4. (Scott [74, Theorem 3] and Marsh-Rietsch [53, Section 6.3]) Given

a finite sequence of mutations that starts at pQ,W q and ends at pQ1,W 1q:

1. if pQ,W q “ pQ0,W0q is the initial seed of Definition 4.1.2, then W 1 is a Laurent

polynomial in the labels of Q1 ;

2. if in addition each mutation of the sequence is based at some node with two in-

coming and two outgoing edges, then the labels of Q1 are Plücker coordinates xd

.

Proof. For the reader’s convenience, we explain how the statements follow from the cited

results. It suffices to prove them when the sequence of mutations consists of a single

mutation, as the general case follows by applying repeatedly the same argument.

1. Marsh-Rietsch [53, Section 6.3] (see also Rietsch-Williams [70, Proposition 9.5])

showed that the potential W0 of the initial seed is the restriction W0 “ W|T0 of a

regular function W P Ak,n to an algebraic torus T0 Ă Gr_
k pnq defined by

T0 “ trM s P Gr_
k pnq : lpMq ‰ 0 @l label of Q0u .

By Scott [74, Theorem 3] Ak,n is a cluster algebra, and the rational functions

labeling the nodes of Q1 are cluster variables. Just as with the labels of Q0, one

can use the labels of Q1 to define an algebraic torus T 1 Ă Gr_
k pnq via

T 1 “ trM s P Gr_
k pnq : l1pMq ‰ 0 @l1 label of Q1u ;

this torus is called toric chart in [74, Section 6]. By Definition 4.1.3,W 1 is obtained
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from W0 by substitution lpvq “ p
ś

wÑv l
1pwq `

ś

vÑw l
1pwqql1pvq´1. This means

that W 1 is the pull-back of W0 along the birational map from T 1 to T0 defined by

the substitution formula. It is part of the statement that Ak,n is a cluster algebra

that the substitution formula gives a relation

lpvql1pvq ´
ź

wÑv

l1pwq ´
ź

vÑw

l1pwq P Ik,n ,

so that W 1 “ W|T 1 is a restriction of W as well. In particular, W 1 is a regular

function on the algebraic torus T 1, and hence a Laurent polynomial.

2. If the mutation from pQ,W q to pQ1,W 1q is based at some node v with two incoming

and two outgoing edges, denote tv`
1 , v

`
2 u and tv´

1 , v
´
2 u the corresponding nodes

of Q adjacent to v. The substitution formula of Definition 4.1.3 simplifies to

lpvq “ pl1pv`
1 qlpv`

2 q ` l1pv´
1 qlpv´

2 qql1pvq´1. By definition of mutation l1pv`
i q “ lpv`

i q

and l1pv´
i q “ lpv´

i q for i “ 1, 2. Moreover, by assumption the l labels are Plücker

coordinates, meaning that lpv`
i q “ xd`

i
and lpv´

i q “ xd´
i
for i “ 1, 2 and lpvq “ xd

for some Young diagrams d, d`
1 , d

`
2 , d

´
1 , d

´
2 Ď k ˆ pn ´ kq. Scott [74, proof of

Theorem 3] proves that this implies l1pvq “ xd1 for some Young diagram d1 Ď

kˆpn´kq too, using combinatorial objects called wiring arrangements. The same

phenomenon is discussed in Rietsch-Williams [70, Lemma 5.6] in the combinatorial

framework of plabic graphs; see also the proof of Proposition 4.2.2 for a comparison

between plabic graphs and quivers.

Definition 4.1.5. A length l Plücker sequence of mutations of type pk, nq, denoted s,

is a finite sequence of pairs pQi,Wiq with 0 ď i ď l such that:

1. pQ0,W0q is the initial seed of type pk, nq of Definition 4.1.2 ;

2. pQi`1,Wi`1q is obtained from pQi,Wiq by mutation along a mutable node with two

incoming and outgoing edges, as in Definition 4.1.3 .

If we want to suppress the length l, we denote pQl,Wlq “ pQs,Wsq and call it the final

quiver with potential of s.
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4.2. Lagrangian tori from Plücker seeds

In this section, Σ denotes a complete fan in Rkpn´kq, and XpΣq its associated proper

toric variety; see for example Fulton [30] for background material on toric geometry. The

reader familiar with symplectic manifolds and Hamiltonian torus actions can think of Σ

as the normal fan Σ “ Σn∆ of a moment polytope ∆, with the important caveat that

XpΣq is typically singular, and not even an orbifold; in this case ∆ should be thought

as the closure of the open convex region obtained from the moment map of the maximal

torus orbit.

We will assume that the primitive generators of the rays of Σ in the lattice Zkpn´kq Ă

Rkpn´kq are the vertices of a convex polytope P , and alternatively think of Σ as its face

fan Σ “ ΣfP . This condition is equivalent to XpΣq being Fano, and P is sometimes

called a Fano polytope. The reader should not confuse the polytopes ∆ and P : the

second is always a lattice polytope, whereas the first may not be. The two polytopes

are related by polar duality ∆ “ P ˝.

Definition 4.2.1. If X Ă PM is a smooth subvariety of complex dimension N , an

embedded toric degeneration X ⇝ XpΣq is a closed subscheme X Ă PM ˆ C such that

the map p : X Ñ C obtained by restriction of the projection satisfies the following

properties:

• p´1pCˆq – X ˆ Cˆ as schemes over Cˆ ;

• p´1p0q Ă PM is an orbit closure for some linear torus action pCˆqN ↷ PM ;

• p´1p0q is a toric variety with fan Σ .

Proposition 4.2.2. (Rietsch-Williams [70, Theorem 1.1]) Every Plücker sequence s of

mutations of type pk, nq has an associated embedded toric degeneration Grkpnq⇝ XpΣsq,

where Σs “ ΣfPs is the face fan of the Newton polytope Ps of the final potential Ws.

Proof. For the reader’s convenience, we provide details on how to specialize the result of

Rietsch-Williams [70, Theorem 1.1] to recover this statement. Each step pQi,Wiq of the

Plücker sequence s corresponds to a reduced plabic graph Gi of type πk,n [70, Section 3],

which is a combinatorial object encoding the quiver Qi and the Laurent polynomial Wi

simultaneously. Nodes in Qi correspond to faces in Gi, and each arrow of Qi is dual to
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an edge of Gi, with black/white nodes of the plabic graph respectively to the right/left

of the arrow. The frozen nodes of Qi correspond to boundary faces of Gi, and the

mutable nodes to interior faces. Mutations at some mutable node with two incoming and

outgoing arrows in Qi correspond to a square move on the plabic graph Gi. The Plücker

variables on nodes of Qi are labeled by the Young diagrams appearing on the faces of

Gi, which are induced by trips as in [70, Definition 3.5]. The Laurent polynomialWi is a

generating function counting matchings on the plabic graph Gi [70, Theorem 18.2]; see

also Marsh-Scott [54] for a proof. The initial seed pQ0,W0q corresponds to a particular

plabic graph G0 “ Greck,n, called the rectangle plabic graph in [70, Section 4]. Consider

the divisor Di Ă Grkpnq cut out by the equation xdi “ 0, with di Ď k ˆ pn ´ kq one of

the n frozen Young diagrams, and call D “ r1D1 ` ¨ ¨ ¨ ` rnDn a general effective divisor

with the same support. One can associate to the pair pD,Gsq a convex polytope ∆GspDq

known as Okounkov body [70, Section 1.2]. From now on set r1 “ . . . “ rn “ 1, and call

DFZ “ D1 ` ¨ ¨ ¨ ` Dn the corresponding divisor. There exists a scaling factor rs P Q`

such that rs∆GspDFZq is a normal lattice polytope [20, Definition 2.2.9]; normality is

referred to as integer decomposition property in [70, Definition 17.7], and from [70,

Proposition 19.4] one sees that the scaling factor mentioned there is related to ours by

rs “
rGs
n . From [70, Section 17] one gets a degeneration of Grkpnq to the toric variety

associated with the polytope rs∆GspDFZq, and this is an embedded toric degeneration

in the sense of Definition 4.2.1 with fan Σs “ Σnrs∆GspDFZq “ Σn∆GspDFZq, where we

used that the normal fan of a polytope doesn’t change under scaling. In [70, Theorem

1.1] and [70, Definition 10.14], an interpretation of ∆Gspr1D1 ` ¨ ¨ ¨ ` rnDnq is given in

terms of the tropicalization of Ws. Setting r1 “ . . . “ rn “ 1, one finds in particular

that for DFZ “ D1 ` ¨ ¨ ¨ `Dn in fact

∆GspDFZq “ tv P Rkpn´kq : xv, uy ě ´1 for every vertex u P Psu ;

here Ps denotes the Newton polytope of the Laurent polynomial Ws, i.e. the convex

hull of its exponents. This is precisely the definition of polar dual polytope, so denote

∆GspDFZq “ P ˝
s . Since the normal fan of a polytope equals the face fan of its polar

dual and polar duality is an involution, we find that Σs “ Σn∆GspDFZq “ ΣfPs as in

the statement.
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Proposition 4.2.3. (Harada-Kaveh [41, Theorem B]) Every Plücker sequence s of mu-

tations of type pk, nq has an associated Lagrangian torus Ls Ă Grkpnq, and it comes with

a canonical basis of H1pLs;Zq.

Proof. For the reader’s convenience, we provide details on how to specialize the result

of Harada-Kaveh [41, Theorem B] to recover this statement. Recall from Proposition

4.2.2 that s determines a degeneration of Grkpnq to the toric variety associated with the

polytope rs∆GspDFZq, known as Okounkov body; for a detailed description of the value

semigroup underlying this Okounkov body and of why it satisfies the assumptions of

[41, Theorem B], see [70, Section 17.3]. From [41, Theorem B] one deduces the existence

of an open set Us Ă Grkpnq and a smooth submersion µs : Us Ñ Rkpn´kq whose image

is the interior of the polytope, and whose fibers are Lagrangian tori. Since µs is a

regular Lagrangian fibration, the standard basis of Rkpn´kq lifts to a basis of H1pLs;Zq,

by dualizing with the symplectic structure a lift to some point of the fiber.

Definition 4.2.4. The Lagrangians Ls Ă Grkpnq of Proposition 4.2.3 are called Plücker

tori, and the elements γd P H1pLs;Zq of the canonical basis are called canonical cycles.

We index the canonical cycles by Young diagrams d Ď k ˆ pn´ kq such that d ‰ H and

d appears in a label xd of the final quiver Qs.

Definition 4.2.5. For each Plücker torus Ls Ă Grkpnq and set I, denote ξI the rank

one local system whose holonomy holξI : H1pLs;Zq Ñ Cˆ around the canonical cycles of

Definition 4.2.4 is given by the formula

holξI pγdq “ SdpIq P Cˆ ;

if SdpIq “ 0 for some d appearing in a label xd of the final quiver of s, then ξI is not

defined.

If s is a Plücker sequence of type pk, nq, after setting xH “ 1 the Laurent polynomial

Ws can be thought of as a regular function on the algebraic torus H1pLs;Zq b Cˆ –

pCˆqkpn´kq. Setting xH “ 1 corresponds to thinking Ak,n “ OpUk,nq as algebra of

regular functions on Uk,n “ Gr_
k pnqzD_

FZ rather than on its affine cone.
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Definition 4.2.6. For any Pücker sequence s of type pk, nq, define H1pLs;ZqbCˆ “ Ts

to be the cluster chart corresponding to Ls.

The canonical cycles γd P H1pLs;Zq of Definition 4.2.4 give an isomorphism of schemes

Ts – pCˆqkpn´kq, where one thinks the latter torus as having coordinates xd labeled by

Young diagrams d Ď k ˆ pn ´ kq such that d ‰ H and d appears in some label of the

quiver Qs. Alternatively, one can think Ts Ă Gr_
k pnq as the open subscheme

trM s P Gr_
k pnq : xdpMq ‰ 0 @d label of Qsu ;

this identification is described by Scott [74, Theorem 4].

Conjecture 4.2.7. If s and s1 are two Plücker sequences of type pk, nq, and ϕ is a Hamil-

tonian isotopy of Grkpnq such that ϕpLsq “ Ls1, then the induced map ϕ˚ : H1pLs;Zq Ñ

H1pLs1 ;Zq is such that

Ws „ Ws1 ˝ pϕ˚ b idCˆq ,

where „ denotes equality up to automorphisms of Ts.

Under some assumptions on the singularities of the toric varieties XpΣsq appearing as

limits of the degenerations Grkpnq ⇝ XpΣsq, the conjecture above can be verified. We

describe below how, and give some sample applications in Section 4.3.

Definition 4.2.8. If XpΣq is a projective toric variety, a toric resolution consists of a

smooth projective toric variety XpΣ̃q with a toric morphism r : XpΣ̃q Ñ XpΣq which is

a birational equivalence.

Any toric variety XpΣq has a toric resolution; see for example [20, Chapter 11]. Toric

resolutions can be constructed by taking refinements Σ̃ of the fan Σ, which have natural

associated morphisms r. The refined fan Σ̃ has in general more rays than Σ, and these

correspond to torus invariant divisors in the exceptional locus r´1pSingXpΣqq.

Definition 4.2.9. A toric resolution r : XpΣ̃q Ñ XpΣq is small if Σ̃ and Σ have the

same rays. Being small is equivalent to codimCpr´1pSingXpΣqqq ě 2; see for example

[20, Proposition 11.1.10].

Proposition 4.2.10. If s is a Plücker sequence of type pk, nq, and the toric variety

XpΣsq admits a small resolution, then Ls Ă Grkpnq is monotone and has Maslov 2 disk

potential Ws with respect to the basis of canonical cycles for H1pLs;Zq.
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Proof. Recall from Proposition 4.2.3 that there is a smooth submersion µs : Us Ñ

Rkpn´kq with Lagrangian torus fibers, defined on some open set Us Ă Grkpnq. If Ps is

the Newton polytope of the Laurent polynomialWs, the image of this map is the interior

of the polytope described in Proposition 4.2.2:

rs∆GspDFZq “ tv P Rkpn´kq : xv, uy ě ´rs for every vertex u P Psu .

Call v a point in the interior, and Lspvq “ µ´1
s pvq the corresponding Lagrangian torus

fiber. The assumption that XpΣsq has a small toric resolution allows to invoke a theorem

of Nishinou-Nohara-Ueda [58, Theorem 10.1], and conclude that the Maslov 2 disk po-

tential of Lspvq Ă Grkpnq has one monomial for each facet xv, uy “ ´rs of rs∆GspDFZq,

with exponent u P H1pLspvq;Zq. The symplectic area of a Maslov 2 disk with bound-

ary u is 2πpxv, uy ` rsq; see Cho-Oh [17, Theorem 8.1] for a proof. The choice v “ 0

guarantees that all the areas are equal, and thus Ls “ Lsp0q is monotone.

4.3. Analysis of critical points and f-vectors

In this section, we prove that the Plücker tori constructed in Section 4.2 are in general

not Hamiltonian isotopic, and can support objects in different summands of the Fukaya

category. These results are by no means optimal; they are meant to illustrate new

phenomena, and we give some indications on how one can prove analogous statements

using the same techniques.

We begin by focusing on Grassmannians of planes Gr2pnq. In this case, the Plücker

coordinates appearing as labels of a quiver Qs have a simple combinatorial description.

Definition 4.3.1. Let n ą 2, and consider n points on S1, labeled counter-clockwise

from 1 to n. A triangulation Γ of rns is a collection of subsets ti, ju Ă rns with i ‰ j,

such that connecting i and j with an arc in D2 for all ti, ju P Γ one gets a triangulation

of the n-gon with vertices at rns.

Lemma 4.3.2. (Fomin-Zelevinsky [27, Proposition 12.5]) A collection of Young dia-

grams d Ď 2 ˆ pn ´ 2q labels the nodes of Qs for some Plücker sequence s of type p2, nq

if and only if the set Γ “ td| Ă rnsu is a triangulation of rns.

Lemma 4.3.3. (Nohara-Ueda [59, Theorem 1.5] and [60, Theorem 1.1]) If k “ 2 then
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Conjecture 4.2.7 holds, and the Lagrangian tori Ls Ă Gr2pnq are monotone for all s and

have disk potential WLs “ Ws.

Proof. In view of Proposition 4.2.10, it suffices to prove that for any Plücker sequence

s of type p2, nq the toric variety XpΣsq has a small toric resolution. From Lemma 4.3.2,

the labels of Qs define a triangulation Γs of rns. Nohara-Ueda [60, Theorem 1.1] describe

an open embedding ιΓs : pCˆq2pn´2q Ñ Gr_
k pnq such that ι˚Γs

W “ WΓs , where W P Ak,n

is the Landau-Ginzburg potential defined by Marsh-Rietsch [53] and WΓs is a Laurent

polynomial associated to the triangulation Γs. It was shown earlier by Nohara-Ueda

[59, Proposition 7.4] that the polar dual of the Newton polytope of WΓs is a lattice

polytope ∆Γs “ Newt˝pWΓsq (as opposed to just a rational polytope) and that the

associated toric variety Xp∆Γsq has a small toric resolution [59, Theorem 1.5]. Since

polar duality exchanges normal and face fans XpΣn∆Γsq “ XpΣf NewtpWΓsqq. The

image of the embedding ιΓs is the cluster chart Ts and Ws “ W|Ts , so WΓs and Ws are

Laurent polynomials related by an automorphism of the torus, therefore their Newton

polytopes NewtpWΓsq and Ps are equivalent under the action of GLp2pn ´ 2q,Zq. We

conclude that XpΣf NewtpWΓsqq – XpΣfPsq “ XpΣsq and therefore XpΣsq has a small

toric resolution too.

As described by Sheridan [77], the Fukaya category of a monotone symplectic manifold

like the Grassmannian has a spectral decomposition

FpGrkpnqq “
à

λ

FλpGrkpnqq .

The summands are A8-categories indexed by the eigenvalues λ of the operator c1‹ of

multiplication by the first Chern class acting on the small quantum cohomology. The

objects of the λ-summand are monotone Lagrangians with rank one local systems Lξ as

described in Appendix B. The following proposition holds for general Grassmannians.

Proposition 4.3.4. For any 1 ď k ă n and any Plücker sequence s of type pk, nq:

1. if FλpGrkpnqq ‰ 0 then λ “ npζ1 ` . . . ` ζkq for some tζ1, . . . , ζku “ I Ă t ζ P C :

ζn “ p´1qk`1 u with |I| “ k ;

2. if XpΣsq has a small toric resolution, then pLsqξI is a nonzero object of FλpGrkpnqq



67

if and only if SdpIq ‰ 0 for all Young diagrams d appearing as labels on the nodes

of Qs, and moreover λ “ npζ1 ` ¨ ¨ ¨ ` ζkq .

Proof. 1. By [12, Proposition 1.3], λ P C is an eigenvalue of the operator c1‹ of

multiplication by the first Chern class acting on the small quantum cohomology if

and only if λ “ npζ1`. . .`ζkq for some tζ1, . . . , ζku “ I Ă t ζ P C : ζn “ p´1qk`1 u

with |I| “ k. By Auroux [8, Proposition 6.8], any monotone Lagrangian L with

a rank one local system ξ having Floer cohomology HF pLξ, Lξq ‰ 0 must have

m0pLξq which is an eigenvalue of c1‹.

2. By a Auroux [8, Proposition 6.9] and Sheridan [77, Proposition 4.2], a monotone

Lagrangian torus L with a fixed basis of H1pL;Zq and a rank one local system ξ

has Floer cohomology HF pLξ, Lξq ‰ 0 if and only if the holonomies of ξ along

the fixed cycles give coordinates for a critical point holξ P H1pL;Zq b Cˆ of the

Maslov 2 disk potential WL. By Proposition 4.2.10 and the assumption of small

resolution, we can apply this to the monotone torus L “ Ls and the local system

ξ “ ξI , and recalling that H1pL;Zq b Cˆ “ Ts is the cluster chart of Gr_
k pnq

corresponding to s, we have that LξI is a nonzero object of FλpGrkpnqq if and only

if holξI P Ts and it is a critical point of Ws. In fact Ws “ W|Ts , where W is the

global Landau-Ginzburg potential on Gr_
k pnq defined by Marsh-Rietsch [53]. The

critical points of W can be explicitly described as

rMI_s “

»

—

—

—

—

—

—

—

—

—

—

–

1 1 1 . . . 1

ζ1 ζ2 ζ3 . . . ζn´k

ζ21 ζ22 ζ23 . . . ζ2n´k

...
...

...
...

ζn´1
1 ζn´1

2 ζn´1
3 . . . ζn´1

n´k

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

where I_ “ tζ1, . . . , ζn´ku is a set of n ´ k distinct roots of ζn “ p´1qn´k`1;

see [53, Proposition 9.3], [67, Theorem 3.4 and Lemma 3.7] and [42, Theorem 1.1

and Corollary 3.12]. Denote pI_qc the set of roots of ζn “ p´1qn´k`1 that are

not in I_, and observe that I “ eπipI_qc is a set of k distinct roots of ζn “

p´1qk`1. The condition rMI_s P Ts is equivalent to xdpMI_q ‰ 0 for all Young

diagrams d appearing as labels of Qs, by definition of cluster chart. In fact, calling
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dT Ď pn ´ kq ˆ k the transpose Young diagram to d, the condition xdpMI_q ‰ 0

is equivalent to SdT pI_q ‰ 0: the argument in part (1) of [12, Proposition 2.3]

applies, once one replaces the rectangular Young diagrams (which label the initial

quiver Q0 of the Plücker sequence s) with the ones labeling Qs. To conclude and

get the desired statement, observe that SdT pI_q “ SdpIq; see Rietsch [67, Lemma

4.4].

Lemma 4.3.5. If n is odd, the eigenvalues of c1‹ acting on QHpGr2pnqq are pairwise

distinct.

Proof. It was explained in part (2) of Proposition 4.3.4 that the eigenvalues of c1‹ acting

on QHpGrkpnqq correspond to critical values of the Landau-Ginzburg potential W on

Gr_
k pnq defined by Marsh-Rietsch [53], and that the corresponding critical points can

be explicitly described. In particular, there are
`

n
k

˘

critical points, and thus at most the

same number of critical values. Therefore the statement is equivalent to proving that

there are precisely
`

n
2

˘

distinct eigenvalues. From part (1) of Proposition 4.3.4, each

eigenvalue is of the form λ “ npζ1 ` ζ2q, with ζ1 and ζ2 distinct roots of ζn “ ´1. Write

ζ1 “ e
πi
n
a and ζ1 “ e

πi
n
b with 0 ă a ă b ă 2n odd integers. The norm of one such

eigenvalue is

|λ| “ n
?
2

´

1 ` 2 cos
´π

n
pb´ aq

¯¯1{2
.

The function cospxq is decreasing for 0 ď x ď π and cosp2π ´ xq “ cospxq; in our

case 0 ď π
npb ´ aq ď π whenever 0 ď b ´ a ď n. Since n is odd by assumption, by

varying a and b among all odd integers with 0 ă a ă b ă 2n one finds l “ pn ´ 1q{2

eigenvalues with 0 ă |λ1| ă ¨ ¨ ¨ ă |λl|, corresponding to b ´ a attaining all the even

integer values in the interval r2, n ´ 1s. Moreover, fixed any 1 ď t ď l, the n complex

numbers λt, pe
2π
n
iqλt, . . . , pe

2π
n
iqn´1λt are eigenvalues of c1‹ too, and they have the same

norm as λt; see also [12, Proposition 1.12] for more on the symmetries of the spectrum

of c1‹. Overall, we found npn´ 1q{2 “
`

n
2

˘

distinct eigenvalues.

Lemma 4.3.6. Let d Ď 2 ˆ pn´ 2q be a Young diagram, and denote by d| “ ts, tu with

1 ď s ă t ď n its vertical steps. Writing an arbitrary set I Ă tζ P C : ζn “ ´1u with
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|I| “ 2 as Ia,b “ te
π
n
ia, e

π
n
ibu with 0 ă a ă b ă 2n odd integers, then

SdpIa,bq “ 0 ðñ n ‌
b´ a

2
pt´ sq .

Proof. Consider the full rank 2 ˆ n matrix

rMIa,bs “

»

—

–

1 e
π
n
ia pe

π
n
iaq2 . . . pe

π
n
iaqn´1

1 e
π
n
ib pe

π
n
ibq2 . . . pe

π
n
ibqn´1

fi

ffi

fl

One has SdpIa,bq “ 0 if and only if xdpMIa,bq “ 0, where xd denotes the Plücker coordi-

nate corresponding to d; see for example [12, Proposition 2.3]. One can compute

xdpMIa,bq “ e
π
n
iaps´1qe

π
n
ibpt´1q ´ e

π
n
iapt´1qe

π
n
ibps´1q ,

from which xdpMIa,bq “ 0 if and only if e
π
n
ipas`bt´at´bsq “ 1. The last condition is

verified precisely when 2n ‌ pb ´ aqpt ´ sq, and since b ´ a is the difference of two odd

integers this can be rewritten as in the statement.

Theorem 4.3.7. If n “ 2t`1 for some t P N`, the derived Fukaya category DFpGr2p2t`

1qq is split-generated by objects supported on a single Plücker torus.

Proof. Up to replacing 2 with n ´ 2, we can think of the critical points rMIa,bs of the

Landau-Ginzburg potential W on Gr_p2, nq defined by Marsh-Rietsch [53] as being

parametrized by sets Ia,b “ te
π
n
ia, e

π
n
ibu with 0 ă a ă b ă 2n odd integers; compare

with part (2) of Proposition 4.3.4. We claim that there exists a Plücker sequence s

of type p2, nq such that the corresponding cluster chart Ts Ă Gr_p2, nq contains all

critical points rMIa,bs. If this is true, then these will be also critical points of the

Laurent polynomial Ws “ W|Ts , which is the Maslov 2 disk potential of the monotone

Lagrangian torus Ls Ă Gr2pnq by Proposition 4.2.10 and Lemma 4.3.3. By Sheridan

[77, Corollary 2.19], if the generalized eigenspace QHλpXq of the operator c1‹ is one-

dimensional, any monotone Lagrangian brane Lξ with HF pLξ, Lξq ‰ 0 split-generates

DFλpXq. Since n “ 2t ` 1 is odd, by Lemma 4.3.5 we can apply this to X “ Gr2pnq,

L “ Ls and any ξ “ ξIa,b for all 0 ă a ă b ă 2n odd integers, thus concluding that the

objects pLsqIa,b split-generate every summand of DFpGr2p2t ` 1qq. The construction of



70

the Plücker sequence s mentioned in the claim above proceeds as follows. Consider the

following incremental construction of a set Γ (an example with t “ 3 is given in Figure

1.4):

1. start with a segment partitioned in n ´ 1 “ 2t intervals, which are added to Γ as

new edges t1, 2u, t2, 3u, . . . , t2t, 2t ` 1u ;

2. partition the segment into pn´ 1q{2 “ 2t´1 pairs of consecutive intervals, and add

a new arc connecting the left end of the left interval to the right end of the right

interval in each pair, thus adding new edges t1, 3u, t3, 5u, . . . ,t2t´1, 2t`1u to Γ ;

3. partition the segment in pn ´ 1q{22 “ 2t´2 tuples of 22 consecutive intervals,

and add a new arc connecting the left end of the leftmost interval to the right

end of the rightmost interval in each tuple, thus adding new edges t1, 5u, t5, 9u,

. . . ,t2t`1 ´ 22, 2t`1u to Γ ;

4. proceed as above until the initial segment is partitioned in two tuples of 2t´1

consecutive intervals, and add the edge t1, nu “ t1, 2t`1u to Γ, so that it becomes

a triangulation of rns in the sense of Definition 4.3.1 .

Let pQ0,W0q be the initial seed of Definition 4.1.2, and call Γ0 the triangulation of rns

corresponding to Young diagrams labeling the nodes of Q0 as in Lemma 4.3.2. The

triangulation Γ0 is connected to Γ constructed above by a sequence of flips, which

correspond to mutations of the quiver Q0 at nodes with to incoming and two outgoing

arrows. From Proposition 4.1.4, this gives a Plücker sequence of mutations of type p2, nq

in the sense of Definition 4.1.5, which ends at pQs,Wsq and such that the labels of Qs

correspond to the triangulation Γs “ Γ, again by Lemma 4.3.2. It remains to show that

rMIa,bs P Ts for all odd integers a and b such that 0 ă a ă b ă 2n. Suppose not, then

there exist some a, b and some Young diagram d Ď 2 ˆ pn´ 2q such that xdpMIa,bq “ 0.

By Lemma 4.3.6, this implies that n ‌ b´a
2 pt´ sq, where d| “ ts, tu are the vertical steps

of d. By construction, for any d| P Γs, if d
| “ ts, tu then t´ s is a power of 2, and since

n “ 2t ` 1 is odd by assumption we must have n ‌ b´a
2 . This is impossible, because

b´a
2 ă n.

Example 4.3.8. DFpGr2p9qq is generated by a single Plücker torus. Note that instead

the Gelfand-Zetlin torus mentioned in Section 3.2 does not support enough nonzero
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objects to generate.

The arguments above can be generalized to prove that certain collections of Plücker tori

split generate DFpGr2pnqq.

Definition 4.3.9. Let p be a prime number. A triangulation Γ of rns as in Definition

4.3.1 is called p-avoiding if for all ts, tu P Γ one has p ∤ pt´ sq.

Theorem 4.3.10. Let n ą 2 be odd, and consider its prime factorization n “ pe11 ¨ ¨ ¨ pell .

Assume that for all 1 ď i ď l there exists a triangulation Γi of rns that is pi-avoiding,

then DFpGr2pnqq is split generated by objects supported on l Plücker tori.

Proof. Recall that up to replacing 2 with n ´ 2, we can think of the critical points

rMIa,bs of the Landau-Ginzburg potential W on Gr_p2, nq defined by Marsh-Rietsch

[53] as being parametrized by sets Ia,b “ te
π
n
ia, e

π
n
ibu with 0 ă a ă b ă 2n odd integers;

compare with part (2) of Proposition 4.3.4. Denote C the set of all critical points of W ,

and for 1 ď i ď l define

Cpi “ trMIa,bs P C : peii ∤
b´ a

2
u .

Observe that C “ Cp1 Y ¨ ¨ ¨ Y Cpl . Indeed, if peii ‌ pb ´ aq{2 for all 1 ď i ď l then

pe11 ¨ ¨ ¨ pell “ n ‌ pb ´ aq{2, against the fact that pb ´ aq{2 ă n. By assumption, for each

1 ď i ď l there exist a triangulation Γi of rns that is pi-avoiding, and arguing as in

Theorem 4.3.7 one finds a Plücker sequence si of type p2, nq that starts with the initial

seed pQ0,W0q and ends with pQsi ,Wsiq, and such that the labels of Qsi correspond to

the triangulation Γsi “ Γi as in Lemma 4.3.2. Each of the l Plücker tori Lsi Ă Gr2pnq

has an associated cluster chart Tsi Ă Gr_p2, nq, and we claim that Cpi Ă Tsi . Suppose

not, then there exists some rMIa,bs P Cpi such that rMIa,bs R Tsi . This means that

peii ∤ b´a2 and there exists some Young diagram d Ď 2 ˆ pn´ 2q such that xdpMIa,bq “ 0,

and denoting d| “ ts, tu its vertical steps ts, tu P Γsi . By Lemma 4.3.6, this implies

that n ‌ b´a
2 pt ´ sq, and so in particular peii ‌ b´a

2 pt ´ sq. Since Γsi is pi-avoiding,

this means that peii ‌ b´a
2 , against the fact that rMIa,bs P Cpi . As in Theorem 4.3.7, the

assumption n odd and Lemma 4.3.5 guarantee, by Sheridan [77, Corollary 2.19], that any

nonzero object of the Fukaya category supported on one of the l monotone Plücker tori

Ls1 , . . . , Lsl Ă Gr2pnq split-generates the summand DFλpGr2pnqq of the derived Fukaya
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category containing it. The objects supported on Lsi are obtained by endowing it with

local systems ξIa,b as in Definition 4.2.5 corresponding to critical points rMIa,bs P Tsi ;

these are such that HF ppLsiqξIa,b
, pLsiqξIa,b

q ‰ 0 because the Maslov 2 disk potential of

Lsi is Wsi “ W|Tsi
.

Example 4.3.11. DFpGr2p15qq is generated by two Plücker tori, whose corresponding

triangulations are shown in Figure 1.5. To get the two triangulations, one starts by

constructing a partial triangulation of the 15-gon with dyadic arcs as in Theorem 4.3.7

(solid arcs in Figure 1.5). The partial triangulation is p-avoiding for every prime p ą 2

by construction. Since 15 “ 3 ¨ 5, by Theorem 4.3.10 one needs to find completions

of the partial triangulation to full triangulations that are 3-avoiding and 5-avoiding

respectively. In Figure 1.5, the remaining arcs ti, ju with 3 ‌ pj´ iq are coarsely dashed,

while the one with 5 ‌ pj ´ iq is finely dashed; triangulation (A) is obtained by adding

two shaded arcs and is 3-avoiding, while triangulation (B) is obtained by adding two

different shaded arcs and is 5-avoiding.

We focus now on how to distinguish exotic tori in general Grassmannians.

Definition 4.3.12. If Ls Ă Grkpnq is a Plücker Lagrangian of type pk, nq, define its

f -vector to be

fpLsq “ pf1, . . . , fkpn´kqq P Nkpn´kq ,

where fi is the number of pi ´ 1q-dimensional faces in the Newton polytope Ps of the

potential Ws.

Definition 4.3.13. If Ls Ă Grkpnq is a Plücker Lagrangian of type pk, nq, define its

weight wtpLsq P N to be the number of sets

I Ă tζ P C : ζn “ p´1qk`1u

such that |I| “ k and SdpIq ‰ 0 for all Young diagrams d appearing as labels of the

quiver Qs.

Lemma 4.3.14. Assume s, s1 are Plücker sequences of type pk, nq satisfying Conjecture

4.2.7. If fpLsq ‰ fpLs1q or wtpLsq ‰ wtpLs1q, then the Lagrangian tori Ls, Ls1 Ă Grkpnq

are not Hamiltonian isotopic.

Proof. Suppose that there exists a Hamiltonian isotopy ϕ such that ϕpLsq “ Ls1 . Then
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by assumption the induced map ϕ˚ : H1pLs;Zq Ñ H1pLs1 ;Zq is such that

Ws „ Ws1 ˝ pϕ˚ b idCˆq ,

where „ denotes equality up to automorphisms of Ts. This means that the Newton

polytopes Ps and Ps1 of the Laurent polynomials Ws and Ws1 are related by a transfor-

mation of GLpkpn ´ kq,Zq, and hence have the same f -vector, because the number of

faces of any given dimension of a polytope is a unimodular invariant; this proves that

fpLsq “ fpLs1q. Moreover, the Laurent polynomials Ws and Ws1 can be thought of as

regular functions on a torus pCˆqkpn´kq, which agree up to an automorphism. Since the

number of critical points of a function is invariant under automorphisms of its domain,

it follows from part (2) of Proposition 4.3.4 that wtpLsq “ wtpLs1q.

Theorem 4.3.15. The Grassmannian Gr3p6q contains at least 6 monotone Lagrangian

tori that are not displaceable nor equivalent under Hamiltonian isotopy.

Proof. The table below contains informations about the steps of a Plücker sequence s

of type p3, 6q. In each row, the reader can find the Young diagrams d Ď 3ˆ 3 appearing

as labels of Qs at a given step, identified by their sets of vertical sets ti, j, ku Ă r6s.

Each potential Ws has an associated Newton polytope Ps, whose f -vector is fpLsq as

in Definition 4.3.12. Following Definition 4.3.13, the weight wpLsq is computed by

counting how many of the
`

6
3

˘

sets I of roots of ζ6 “ 1 with |I| “ 3 have the property

that SdpIq ‰ 0 for all Young diagrams d Ď 3 ˆ 3 that appear as labels on the nodes of

the quiver Qs. Calling Σs “ ΣfPs the face fan of the Newton polytope, by Proposition

4.2.10 the Lagrangian torus Ls Ă Grkpnq is monotone and has Maslov 2 disk potentialWs

whenever the toric variety XpΣsq has a small toric resolution in the sense of Definition

4.2.9. This condition can be checked algorithmically at each step, since every fan has

finitely many simplicial refinements with the same rays, and every smooth refinement is

in particular simplicial. For the 34 steps in the table, the code [11] finds small resolutions

in 32 cases; the remaining 2 cases are marked gray in the table (we did not actually

check all possible simplicial refinements in these cases, so small toric resolutions for

them may still exist). From Lemma 4.3.14, we conclude that Gr3p6q contains at least

6 monotone Lagrangian tori that are pairwise not Hamiltonian isotopic. Regarding
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nondisplaceability, it suffices to show that the 32 tori Ls Ă Gr3p6q have Floer cohomology

HF pLξ, Lξq ‰ 0 for some local system ξ. By Auroux [8, Proposition 6.9] and Sheridan

[77, Proposition 4.2], the Floer cohomology of a monotone Lagrangian torus brane Lξ

is nonzero if and only if the holonomy holξ of its local system ξ is a critical point

of the disk potential Maslov 2 disk potential Ws. Therefore, it suffices to show that

each of the 32 Laurent polynomials Ws has at least one critical point. Thinking Ws

as restriction Ws “ W|Ts of the Landau-Ginzburg potential W on Gr_p3, 6q defined by

Marsh-Rietsch [53] to the cluster chart Ts Ă Gr_p3, 6q, it suffices to show that each of

the charts contains at least one critical point of W . In fact, something stronger is true:

there is a critical point of W that is contained in Ts for all s. As proved by Rietsch [68]

(see also Karp [42]), for any 1 ď k ă n there is a (unique) critical point of W in the

totally positive part Gr_
k pnqą0 Ă Gr_

k pnq, i.e. the locus where all Plücker coordinates

are real and positive. Following the notation of part (2) in Proposition 4.3.4, this point

is rMI0s P Gr_
k pnq with I0 the set of k roots of ζn “ p´1qk`1 closest to 1. Applying

this to pk, nq “ p3, 6q, and recalling that rMI0s P Ts if and only if xdpMI0q for all Young

diagrams d Ď 3 ˆ 3 appearing as labels on the nodes of Qs, we conclude that the total

positivity of rMI0s implies that it belongs to every cluster chart Ts, and this proves that

all Ls are nondisplaceable.
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k “ 3, n “ 6

Ls Labels of Qs fpLsq wtpLsq

1 123, 124, 125, 126, 156, 234, 245, 256, 345, 456 (14, 83, 276, 571, 766, 670, 372, 122, 20) 18
2 123, 124, 125, 126, 145, 156, 234, 245, 345, 456 (14, 83, 276, 571, 766, 670, 372, 122, 20) 18
3 123, 125, 126, 135, 145, 156, 234, 235, 345, 456 (15, 91, 302, 615, 807, 690, 376, 122, 20) 6
4 123, 126, 134, 136, 146, 156, 234, 345, 346, 456 (14, 83, 276, 571, 766, 670, 372, 122, 20) 18
5 123, 126, 156, 234, 235, 236, 245, 256, 345, 456 (15, 91, 302, 615, 807, 690, 376, 122, 20) 6
6 123, 125, 126, 156, 234, 235, 245, 256, 345, 456 (14, 83, 276, 571, 766, 670, 372, 122, 20) 18
7 123, 124, 125, 126, 134, 145, 156, 234, 345, 456 (15, 91, 302, 615, 807, 690, 376, 122, 20) 18
8 123, 125, 126, 134, 135, 145, 156, 234, 345, 456 (16, 98, 322, 645, 832, 701, 378, 122, 20) 6
9 123, 124, 126, 146, 156, 234, 245, 246, 345, 456 (16, 98, 322, 645, 832, 701, 378, 122, 20) 6
10 123, 126, 156, 234, 236, 246, 256, 345, 346, 456 (15, 91, 302, 615, 807, 690, 376, 122, 20) 6
11 123, 124, 126, 146, 156, 234, 246, 345, 346, 456 (15, 91, 302, 615, 807, 690, 376, 122, 20) 6
12 123, 124, 126, 145, 146, 156, 234, 245, 345, 456 (15, 91, 302, 615, 807, 690, 376, 122, 20) 18
13 123, 126, 146, 156, 234, 236, 246, 345, 346, 456 (16, 98, 322, 645, 832, 701, 378, 122, 20) 6
14 123, 126, 156, 234, 236, 256, 345, 346, 356, 456 (14, 83, 276, 571, 766, 670, 372, 122, 20) 18
15 123, 126, 146, 156, 234, 236, 245, 246, 345, 456 (18, 111, 358, 700, 882, 728, 386, 123, 20) 6
16 123, 126, 156, 234, 235, 236, 256, 345, 356, 456 (14, 83, 276, 571, 766, 670, 372, 122, 20) 18
17 123, 124, 126, 134, 145, 146, 156, 234, 345, 456 (14, 83, 276, 571, 766, 670, 372, 122, 20) 18
18 123, 126, 134, 135, 136, 156, 234, 345, 356, 456 (16, 98, 322, 645, 832, 701, 378, 122, 20) 6
19 123, 126, 134, 136, 145, 146, 156, 234, 345, 456 (14, 83, 276, 571, 766, 670, 372, 122, 20) 18
20 123, 126, 135, 136, 145, 156, 234, 235, 345, 456 (15, 93, 317, 661, 882, 760, 413, 132, 21) 6
21 123, 126, 136, 146, 156, 234, 236, 345, 346, 456 (15, 91, 302, 615, 807, 690, 376, 122, 20) 18
22 123, 125, 126, 134, 135, 156, 234, 345, 356, 456 (18, 111, 358, 700, 882, 728, 386, 123, 20) 6
23 123, 126, 136, 156, 234, 235, 236, 345, 356, 456 (14, 83, 276, 571, 766, 670, 372, 122, 20) 18
24 123, 126, 134, 135, 136, 145, 156, 234, 345, 456 (15, 91, 302, 615, 807, 690, 376, 122, 20) 6
25 123, 124, 126, 156, 234, 245, 246, 256, 345, 456 (15, 91, 302, 615, 807, 690, 376, 122, 20) 6
26 123, 126, 134, 136, 156, 234, 345, 346, 356, 456 (15, 91, 302, 615, 807, 690, 376, 122, 20) 18
27 123, 126, 135, 136, 156, 234, 235, 345, 356, 456 (15, 91, 302, 615, 807, 690, 376, 122, 20) 6
28 123, 124, 126, 134, 146, 156, 234, 345, 346, 456 (14, 83, 276, 571, 766, 670, 372, 122, 20) 18
29 123, 126, 156, 234, 236, 245, 246, 256, 345, 456 (16, 98, 322, 645, 832, 701, 378, 122, 20) 18
30 123, 126, 136, 156, 234, 236, 345, 346, 356, 456 (14, 83, 276, 571, 766, 670, 372, 122, 20) 18
31 123, 125, 126, 145, 156, 234, 235, 245, 345, 456 (14, 83, 276, 571, 766, 670, 372, 122, 20) 18
32 123, 125, 126, 135, 156, 234, 235, 345, 356, 456 (16, 98, 322, 645, 832, 701, 378, 122, 20) 6
33 123, 125, 126, 156, 234, 235, 256, 345, 356, 456 (15, 91, 302, 615, 807, 690, 376, 122, 20) 18
34 123, 124, 126, 156, 234, 246, 256, 345, 346, 456 (15, 93, 317, 661, 882, 760, 413, 132, 21) 6
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Chapter 5

RANDOM WALK ON THE CLUSTER GRAPH

This chapter contains the source code of ClusterExplorer. This is a random walk on a

graph, whose nodes are seeds of the cluster algebra Ak,n whose cluster variables are

Plücker coordinates, and whose edges are cluster mutations in the sense of Fomin-

Zelevinsky [26]. The walk starts from a canonical initial seed and chooses mutation

instructions uniformly at random at each step.

ClusterExplorer can be run in BraneCounting mode or NewtonPolytope mode. In

BraneCounting mode, the walk computes critical points and critical values of the restric-

tion of W P Ak,n to the cluster chart corresponding to each step. In NewtonPolytope

mode, the walk computes the restriction of W as Laurent polynomial in the cluster

variables, its Newton polytope, and several discrete invariants of this polytope and its

face fan.

5.1. Main modules

Listing 5.1: BraneCounting.py

import copy

import itertools

import math

import sage.all

import sage.rings

import critpoints

import plucker

import schurpol

import spectrum

import walk

import youngd

# Take in input k and n

print(’Input k: ’)

k = input()
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print(’Input n: ’)

n = input()

# Ask if user wants pictures of critical values of W and subsets

# of critical values corresponding to different cluster charts

print(’Pictures? ’)

show_spectrum = input()

# Compute N = {n choose n-k}, total number of critical points of mirror

# Landau -Ginzburg superpotential on Gr(n-k, n)

N = math.factorial(n) / ( math.factorial(k)*math.factorial(n-k) )

print(’Total number of critical points: {}’.format(N))

# Construct the homogeneous coordinate ring of the ambient

# projective space for the Plucker embedding , and inject its generators

# in the variables namespace

proj_ring = sage.rings.all.PolynomialRing(sage.all.QQ , ’x’, N)

proj_ring.inject_variables(verbose=False)

# Define the Plucker coordinates corresponding to the generators

# of the homogeneous coordinate ring of the ambient projective space

p = plucker.variables(n-k, n, proj_ring)

# Construct the Plucker relations describing the homogeneous

# coordinate ring of Gr(n-k,n) in the Plucker embedding

relations = plucker.rel_list(n-k, n, p)

# Run a random walk that constructs the list of plabic cluster charts

# of the Grassmannian Gr(n-k,n)

cluster_list = walk.random_walk(n-k, n, p, relations)

# Initialize roots of unity

roots = critpoints.basic_roots(n-k, n, critpoints.cyclotomic(n-k, n))

# Construct the list e of eigenvalues of multiplication by c_1 in

# the quantum cohomology QH(Gr(k,n)), or equivalently of critical

# values of Marsh -Rietsch Landau -Ginzburg superpotential W

e = []

for S in itertools.combinations(range(1,n+1), n-k):

sum_S = 0

for t in S:

sum_S = sum_S + roots[t-1]

e.append(complex(n*sum_S))

lagrangian_weights = []

i = 0

for C in cluster_list:

# Initialize the list c_values of critical values of critical points

# of W contained in the cluster chart corresponding to the cluster C

c_values = []

crit_counter = 0

for S in itertools.combinations(range(1,n+1), n-k):
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roots_S = []

sum_S = 0

for t in S:

roots_S.append(roots[t-1])

sum_S = sum_S + roots[t-1]

is_in_chart = True

for d in C:

d = youngd.vstep_to_part(n-k, n, d)

if (schurpol.schur_sage(n-k, n, [d])[tuple(d)])(roots_S) == 0:

is_in_chart = False

break

if is_in_chart == True:

crit_counter = crit_counter + 1

c_values.append(complex(n*sum_S))

print(’Cluster chart #{} = {}’.format(i, cluster_list[i]))

print(’The chart contains {} critical points ’.format(crit_counter))

if crit_counter not in lagrangian_weights:

lagrangian_weights.append(crit_counter)

if show_spectrum == 1:

spectrum.spectrum_combined_picture(c_values , e, "BranesGr ({} ,{})

Cluster {}".format(k,n,i), k, n)

i = i + 1

print(’There are {} Lagrangian weights: {}’.format(len(lagrangian_weights

), lagrangian_weights))

Listing 5.2: NewtonPolytopes.py

import copy

import itertools

import math

import random

import sage.all

import sage.graphs.all

import sage.graphs.digraph

import sage.combinat.sf.classical

import sage.geometry.lattice_polytope

import sage.geometry.fan

import sage.interfaces.latte

import sage.rings

import sage.structure.factory

import newton

import plucker

import potentials

import walk

# Take in input k and n

print(’Input k: ’)

k = input()

print(’Input n: ’)

n = input()

print(’Type 0 for exhaustive mode or 1 for random mode: ’)

newton_mode = input ()

if newton_mode == 1:

print(’Type size of the sample as % of the total: ’)

newton_percentage = input ()

print(’Compute f-vectors?’)

show_fvector = input()

print(’Check reflexivity?’)

show_reflexive = input ()

print(’Check terminality?’)
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show_terminal = input()

print(’Check existence of small resolution?’)

show_small = input()

print(’Compute volume?’)

show_volume = input ()

# Compute N = {n choose n-k}, total number of critical points of mirror

# Landau -Ginzburg superpotential on Gr(n-k, n)

N = math.factorial(n) / ( math.factorial(k)*math.factorial(n-k) )

print(’Total number of critical points: {}’.format(N))

# Construct the homogeneous coordinate ring of the ambient

# projective space for the Plucker embedding , and inject its generators

# in the variables namespace

proj_ring = sage.rings.all.PolynomialRing(sage.all.QQ , ’x’, N)

proj_ring.inject_variables(verbose=False)

# Define the Plucker coordinates corresponding to the generators

# of the homogeneous coordinate ring of the ambient projective space

p = plucker.variables(n-k, n, proj_ring)

# Construct the Plucker relations describing the homogeneous coordinate

# ring of Gr(n-k,n) in the Plucker embedding

relations = plucker.rel_list(n-k, n, p)

# Compute the local Landau -Ginzburg potentials of the mirror to Gr(k,n)

print(’About to start random walk’)

W = walk.random_walk(n-k, n, p, relations , loc_potentials=True)

print(’Random walk is over’)

# Compute Newton polytopes and visualize the desired combinatorial

# informations for all clusters or MAX_NEWTON random clusters

# depending on whether user specified exhaustive or random mode.

if newton_mode == 0:

for C in W.keys():

print(’Cluster: {}’.format(C))

P = newton.newton_polytope(n-k, n, potentials.force_laurent(W[tuple

(C)], sage.all.LaurentPolynomialRing(sage.all.QQ , ’x’, N)), C)

if show_fvector == 1:

print(’f-vector = {}’.format(P.f_vector ()))

if show_reflexive == 1:

print(’reflexive = {}’.format(P.is_reflexive ()))

if show_terminal == 1:

print(’terminal = {}’.format(newton.is_terminal(P)))

if show_small == 1:

print(’small resolution: {}’.format(newton.is_small(P)))

if show_volume == 1:

print(’volume: {}’.format(P.volume ()))

else:

sample_size = int( math.ceil( float(newton_percentage)/float (100) *

len(W) ) )

for C in random.sample(list(W.keys()), sample_size):

print(’Cluster: {}’.format(C))

P = newton.newton_polytope(n-k, n, potentials.force_laurent(W[tuple

(C)], sage.all.LaurentPolynomialRing(sage.all.QQ , ’x’, N)), C)

if show_fvector == 1:

print(’f-vector = {}’.format(P.f_vector ()))
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if show_reflexive == 1:

print(’reflexive = {}’.format(P.is_reflexive ()))

if show_terminal == 1:

print(’terminal = {}’.format(newton.is_terminal(P)))

if show_small == 1:

print(’small resolution: {}’.format(newton.is_small(P)))

if show_volume == 1:

print(’volume: {}’.format(P.volume ()))

5.2. Auxiliary modules

Listing 5.3: critpoints.py

import sage.rings.number_field.number_field

# Given k and n, return a SageMath cyclotomic field containing all

# coordinates of critical points of the LG superpotential mirror to

# Gr(k,n), following Karp. These are polynomials in the roots of

# x^n = (-1)^{k+1}, so for k odd we work with the cyclotomic field

# generated by a primitive n-th root of unity whereas when k even we

# work with one generated by a primitive (2n)-th root of unity. Doing

# calculations in this ambient field is faster than letting SageMath

# guess tower of extensions on the fly.

def cyclotomic(k, n):

if k % 2 == 1:

KK = sage.rings.number_field.number_field.CyclotomicField(n)

else:

KK = sage.rings.number_field.number_field.CyclotomicField (2*n)

return KK

# Given k, n and the smallest cyclotomic field KK containing the roots

# of x^n = (-1)^{k+1}, return a list containing the roots as SageMath

# symbolic objects.

def basic_roots(k, n, KK):

l = []

if (k % 2) == 1:

r = (-1)*(k-1)/2

while r <= (2*n-k-1)/2:

l.append(KK.gen()**r)

r = r + 1

else:

r_double = (-1)*(k-1)

while r_double <= 2*n-k-1:

l.append(KK.gen()** r_double)

r_double = r_double + 2

return l

Listing 5.4: newton.py

import itertools

import math

import sage.all

# Given k, n and a Laurent polynomial f in the Plucker variables

# of a plabic cluster C of type (k,n), return the Newton polytope of f.
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def newton_polytope(k, n, f, C):

N = math.factorial(n) / ( math.factorial(k)*math.factorial(n-k) )

# Compute exponent vectors of Laurent polynomial f, and then

# remove for each the entries not corresponding to Plucker

# coordinates not labelled by Young diagrams in C and the one

# corresponding to the empty diagram

exponents = f.exponents ()

mask = [0,]*N

i = 0

for S in itertools.combinations(range(1,n+1), k):

if tuple(sorted(tuple(S))) in C:

mask[i] = 1

i = i + 1

mask[N-1] = 0

for i in range(len(exponents)):

exponents[i] = list(itertools.compress(exponents[i], mask))

P = sage.all.Polyhedron(exponents)

return P

# Given a Newton polytope P, test if it’s a terminal lattice polytope

# or not , i.e. if the vertices are the only lattice points besides the

# origin.

def is_terminal(P):

if P.integral_points_count () == P.n_vertices ()+1:

return True

else:

return False

# Given a Newton polytope P, test if the naive simplicial refinement

# on smae rays of the face fan is automatically smooth.

def is_small(P):

fan_P = sage.all.FaceFan(P)

fan_P = fan_P.make_simplicial ()

if fan_P.is_smooth ():

return True

else:

return False

# Given a list of ray generators , return True if the corresponding cone

# has a small simplicial resolution and False otherwise

def small_res_cone(rays_list):

main_cone = sage.all.Cone(rays_list)

d = len(rays_list)

main_cone_dim = main_cone.dim()

# Construct a list of all possible sets of rays of simplicial cones

# contained in main_cone with no new rays

T_list = []

for T in itertools.combinations(range(d), main_cone_dim):
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T_list.append(T)

# For each possible collection of sets above , verify if it gives

# rise to a small resolution of main_cone

for triang_size in range(1,len(T_list)+1):

for triang in itertools.combinations(T_list , triang_size):

rays_used = [0,]*d

cones_triang = []

discard_triang = False

for T in triang:

rays_T = []

for i in range(len(rays_list)):

if i in T:

rays_T.append(rays_list[i])

rays_used[i] = 1

cone_T = Cone(rays_T)

if cone_T.is_smooth ():

cones_triang.append(Cone(rays_T))

else:

discard_triang = True

break

if discard_triang == False:

# Check covering condition

covering_check = True

for flag in rays_used:

if flag == 0:

covering_check = False

break

if covering_check:

# Check intersection condition

intersection_check = True

try:

F = sage.all.Fan(cones_triang)

except ValueError:

intersection_check = False

# Check if the resulting simplicial refinement of main_cone

# is actually smooth

if covering_check and intersection_check:

return True

return False

Listing 5.5: plucker.py

import copy

import itertools

import sage.rings

import sage.all

# Given k, n and the homogeneous coordinate ring of the ambient

# projective space , return a dictionary of Plucker coordinates for

# the Grassmannian Gr(k,n): the keys are increasing sequences of

# length k in {1, ..., n}, interpreted as vertical steps of a Young

# diagram in the k x (n-k) grid; ordering them by lex , the i-th has

# value a SageMath symbolic variable named ’xi’

def variables(k, n, proj_ring):
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p = {}

i = 0

gen_list = proj_ring.gens()

for S in itertools.combinations(range(1,n+1), k):

p[tuple(sorted(tuple(S)))] = gen_list[i]

i = i + 1

return p

# Return +/- 1 according to the sign of permutation that sorts the input

# list in increasing order , without modifying it

def signsort(l):

inversions = 0

for i in range(len(l)):

j = i + 1

while (i < j) and (j < len(l)):

if l[i] > l[j]:

inversions = inversions + 1

j = j + 1

if (inversions % 2) == 0:

return 1

else:

return -1

# Give k, n and the list of Plucker variables correspoding to Young

# diagrams in the k x (n-k) grid , generate a list whose elements are

# SageMath symbolic expressions encoding the Plucker relations for

# the Grassmannian Gr(k,n) according to Fulton.

#

# [TODO] Make this faster. This is currently O(2^k * n^{2k}), whereas the

# number of Plucker relations is O(1/(k!)^2 * n^{2k}).

def rel_list(k, n, p):

relations = []

for d1 in itertools.combinations(range(1,n+1), k):

for d2 in itertools.combinations(range(1,n+1), k):

for u in range(1,k+1):

# Recall that itertools.combination returns tuples

# ordered in increasing order

plucker_lhs = p[d1]*p[d2]

plucker_rhs = 0

for l in itertools.combinations(range(1,k+1), u):

monomial = 0

l = sorted(list(l))

temp1 = []

for i in l:

temp1.append(d1[i-1])

temp2 = list(d2[k-u:])

d1_swapped = list(copy.copy(d1))

d2_swapped = list(copy.copy(d2))

for i in l:

d1_swapped[i-1] = temp2.pop(0)

for i in range(k-u,k):

d2_swapped[i] = temp1.pop(0)

sign1 = 0

if len(d1_swapped) == len(set(d1_swapped)):
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sign1 = signsort(d1_swapped)

sign2 = 0

if len(d2_swapped) == len(set(d2_swapped)):

sign2 = signsort(d2_swapped)

if sign1*sign2 != 0:

plucker_rhs = plucker_rhs + sign1*sign2*p[tuple(sorted(

d1_swapped))]*p[tuple(sorted(d2_swapped))]

if plucker_lhs != plucker_rhs:

relations.append(plucker_lhs - plucker_rhs)

return relations

Listing 5.6: potentials.py

import sage.all

from sage.symbolic.expression_conversions import laurent_polynomial

import youngd

# Make sure that SageMath understands a rational function f with monomial

# denominator as a Laurent polynomial in the ring R_laurent , and not just

# as element of the function field

def force_laurent(f, R_laurent):

num = f.numerator ()

den = f.denominator ()

den_inverse_laurent = 1

for t in den.variables ():

t = sage.all.var(t)

den_inverse_laurent = den_inverse_laurent * laurent_polynomial (1/t,

ring=R_laurent)

return num * den_inverse_laurent

# Given k, n and the Plucker variables p, return the initial Laurent

# polynomial associated to the rectangular plabic cluster of Gr(k,n),

# according to Marsh -Rietsch

def rectangular_potential(k, n, p):

term1 = p[tuple(youngd.vstep_of_rect (1, 1, k, n))] * p[tuple(youngd.

vstep_of_rect (0, 0, k, n))]**-1

term2 = 0

for i in range(2,k+1):

for j in range(1,n-k+1):

term2 = term2 + p[tuple(youngd.vstep_of_rect(i, j, k, n))] * p[

tuple(youngd.vstep_of_rect(i-2, j-1, k, n))] * p[tuple(youngd.

vstep_of_rect(i-1, j-1, k, n))]**-1 * p[tuple(youngd.vstep_of_rect(i

-1, j, k, n))] **-1

term3 = p[tuple(youngd.vstep_of_rect(k-1, n-k-1, k, n))] * p[tuple(

youngd.vstep_of_rect(k, n-k, k, n))]**-1

term4 = 0

for i in range(1,k+1):

for j in range(2,n-k+1):

term4 = term4 + p[tuple(youngd.vstep_of_rect(i, j, k, n))] * p[

tuple(youngd.vstep_of_rect(i-1, j-2, k, n))] * p[tuple(youngd.

vstep_of_rect(i-1, j-1, k, n))]**-1 * p[tuple(youngd.vstep_of_rect(i,
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j-1, k, n))]**-1

W = term1 + term2 + term3 + term4

return W

Listing 5.7: quivers.py

import sage.all

import sage.graphs.digraph

import youngd

# Given k and n, return the initial quiver associated to rectangular

# plabic cluster , following Rietsch -Williams.

def rectangular_quiver(k, n):

# Store the indices (i,j) of a size k(n-k) square grid as keys in a

# dictionary pos , where values are their positions in the total order

# that arranges the columns to be decreasing chains when read from top

# to bottom , and decreasing along rows when read from left to right.

pos = {}

counter = 0

for j in reversed(range(1,n-k+1)):

for i in reversed(range(1,k+1)):

pos[(i,j)] = counter

counter = counter + 1

# Construct the size k(n-k)+1 exchange matrix B of the

# rectangular quiver

B = []

for j in reversed(range(1,n-k+1)):

for i in reversed(range(1,k+1)):

row = [0]*(k*(n-k)+1)

if 1 < i < k and 1 < j < n-k :

row[pos[(i-1,j-1)]] = 1

row[pos[(i,j+1)]] = 1

row[pos[(i+1,j)]] = 1

row[pos[(i,j-1)]] = -1

row[pos[(i-1,j)]] = -1

row[pos[(i+1,j+1)]] = -1

elif 1 < i < k and j == n-k :

row[pos[(i-1,j-1)]] = 1

row[pos[(i,j-1)]] = -1

elif i == k and 1 < j < n-k :

row[pos[(i-1,j-1)]] = 1

row[pos[(i-1,j)]] = -1

elif 1 < i < k and j == 1 :

row[pos[(i,j+1)]] = 1

row[pos[(i+1,j)]] = 1

row[pos[(i-1,j)]] = -1

row[pos[(i+1,j+1)]] = -1

elif i == 1 and 1 < j < n-k :

row[pos[(i,j+1)]] = 1

row[pos[(i+1,j)]] = 1

row[pos[(i,j-1)]] = -1

row[pos[(i+1,j+1)]] = -1

elif i == 1 and j == n-k :

row[pos[(i,j-1)]] = -1

elif i == k and j == n-k :

row[pos[(i-1,j-1)]] = 1
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elif i == k and j == 1:

row[pos[(i-1,j)]] = -1

elif i == 1 and j == 1:

row[pos[(i+1,j)]] = 1

row[pos[(i,j+1)]] = 1

row[pos[(i+1,j+1)]] = -1

row[k*(n-k)] = -1

B.append(row)

row = [0]*(k*(n-k)+1)

row[pos [(1 ,1)]] = 1

B.append(row)

# Construct a directed graph from B

for i in range(len(B)):

for j in range(len(B[i])):

if B[i][j] < 0:

B[i][j] = 0

Q = sage.graphs.digraph.DiGraph(sage.all.matrix(B), multiedges=True)

return Q

# Given k and n, return the list d_label of labels of vertices

# corresponding to rectangular diagrams in the rectangular quiver of

# type (k,n).

def rectangular_labels(k, n):

d_label = []

for i in range(n-k):

for j in range(k):

d_label.append(tuple(youngd.vstep_of_rect(k-j, n-k-i, k, n)))

d_label.append(tuple(youngd.vstep_of_rect (0, 0, k, n)))

return d_label

# Given a quiver Q with list of frozen nodes f, mutate Q

# along the node v. We assume v has two incoming and two outgoing

# edges and is not frozen , so that it corresponds to a 3-term

# Plucker relation according to Rietsch -Williams.

def mutate(Q, f, v):

v_in = Q.neighbors_in(v)

v_out = Q.neighbors_out(v)

# Add edges of type a -> v -> b with a in v_in , b in v_out

# and at least one among v_in and v_out not frozen , and

# make sure to erase newly created oriented 2-loops

for a in v_in:

for b in v_out:

if (a in f) and (b in f):

continue

else:

if Q.has_edge(b, a):

Q.delete_edge(b, a)

else:

Q.add_edge(a, b)

# Flip orientation of edges touching v
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Q.add_edge(v, v_in [0])

Q.delete_edge(v_in[0], v)

Q.add_edge(v, v_in [1])

Q.delete_edge(v_in[1], v)

Q.add_edge(v_out[0], v)

Q.delete_edge(v, v_out [0])

Q.add_edge(v_out[1], v)

Q.delete_edge(v, v_out [1])

return Q

Listing 5.8: schurpol.py

import sage.combinat.sf.sf

# Given a list of Young diagrams in k x (n-k) grid , return a dictionary

# where they are keys with value the corresponding Schur polynomial in

# k variables , as SageMath symmetric functions.

def schur_sage(k, n, diagrams):

d = {}

# initialize k variables of Schur polynomials

z = []

for i in range(1,k+1):

z.append(’z{}’.format(i))

s = sage.combinat.sf.sf.SymmetricFunctions(sage.all.QQ).schur()

for y in diagrams:

d[tuple(y)] = s(y).expand(k, alphabet=z)

return d

Listing 5.9: spectrum.py

import matplotlib.pyplot as plt

import sympy.functions.elementary.complexes as cpx

# Given two lists branes and e of complex numbers and a string name ,

# save image of the corresponding points on complex plane in

# "[name]SpectrumGr(k,n).png", where e are red dots and branes are

# blue crosses

def spectrum_combined_picture(branes , e, name , k, n):

e_real_parts = []

e_imaginary_parts = []

branes_real_parts = []

branes_imaginary_parts = []

for z in e:

z = complex(z)

e_real_parts.append(cpx.re(z))

e_imaginary_parts.append(cpx.im(z))

for z in branes:

z = complex(z)

branes_real_parts.append(cpx.re(z))

branes_imaginary_parts.append(cpx.im(z))
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plt.clf()

plt.xlim(-3*n, 3*n)

plt.ylim(-3*n, 3*n)

plt.gca().set_aspect(’equal’, adjustable=’box’)

plt.plot(e_real_parts , e_imaginary_parts , ’ro’, markersize =2)

plt.plot(branes_real_parts , branes_imaginary_parts , ’bx’, markersize

=5)

plt.savefig(’{}. png’.format(name))

Listing 5.10: walk.py

import copy

import random

import potentials

import quivers

import youngd

# Given k, n and the lists of Plucker variables and relations , run

# a random walk starting from the rectangular plabic cluster of

# Gr(k,n) and return the list of visited clusters. The walk stops

# when all edges of the mutation graph are visited , or when the number

# of steps reaches the constant MAX_STEP.

# If the optional switch loc_potential is True , return instead a

# dictionary W, whose keys are the visited clusters and whose values

# are the corresponding local Landau -Ginzburg potentials.

def random_walk(k, n, p, relations , loc_potentials=False):

MAX_STEP = 10000

# Create the initial rectangular plabic cluster of type (k,n),

# made up of all rectangular Young diagrams in the k x (n-k) grid

C = quivers.rectangular_labels(k, n)

C.sort()

# Initialize the list of visited clusters cluster_list

cluster_list = []

cluster_list.append(C)

# Initialize Q to the quiver of the rectangular plabic chart

Q = quivers.rectangular_quiver(k, n)

# Construct a list frozen containing indices of nodes

# in quiver Q labelled by boundary rectangular Young diagrams ,

# corresponding to frozen variables in the cluster algebra

# generated by the quiver

frozen = range(1, k)

for i in range(n-k+1):

frozen.append(k*i)

# Initialize a list d_label of size k(n-k)+1, whose value at entry i

# is the Young diagram labelling that vertex in the current cluster

d_label = quivers.rectangular_labels(k, n)

# Initialize a dictionary mutation_statistics , whose keys are indices

# of visited clusters in cluster_list , and whose values are

# dictionaries of size k(n-k)+1. The keys of such dictionaries are
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# Young diagrams , and the values are -1 if the corresponding node in

# the quiver of the cluster is frozen or corresponds to a forbidden

# mutation (i.e. not a 3-term Plucker relation), and otherwise a

# non -negative integer counting how many times that node has been

# mutated. The reason why we index mutation statistics by Young

# diagram labels instead of indices of nodes is that a sequence

# of mutations can form a loop from a given cluster to itself ,

# but the corresponding labellings of the nodes can be permuted

# along the loop.

mutation_statistics = {}

h = cluster_list.index(C)

mutation_statistics[h] = {}

for d in d_label:

if youngd.is_frozen(k, n, youngd.vstep_to_part(k, n, list(d))) ==

True:

mutation_statistics[h][d] = -1

continue

in_deg = Q.in_degree(d_label.index(d))

out_deg = Q.out_degree(d_label.index(d))

if in_deg != 2 or out_deg != 2:

mutation_statistics[h][d] = -1

continue

mutation_statistics[h][d] = 0

# Initialize a list of mutable nodes in the current quiver

current_mutable = []

for d in d_label:

if mutation_statistics[h][d] >= 0:

current_mutable.append(d_label.index(d))

# If switch loc_potentials is active , initialize a dictionary W

# whose keys are plabic clusters and values are corresponding local

# Landau -Ginzburg potentials

if loc_potentials == True:

W = {}

W[tuple(C)] = potentials.rectangular_potential(k, n, p)

# Main iteration of random walk

step = 0

while step < MAX_STEP:

h = cluster_list.index(C)

# Choose uniformly at random one of the mutable nodes

# v of the quiver Q

v = random.sample(current_mutable , 1)[0]

# Compute instructions for mutation of Q along v

v_in = Q.neighbors_in(v)

v_out = Q.neighbors_out(v)

vin1 = d_label[v_in [0]]

vin2 = d_label[v_in [1]]

vout1 = d_label[v_out [0]]

vout2 = d_label[v_out [1]]

# Apply mutation and update cluster list , quiver ,
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# mutation_statistics and label list consistently; caveat:

# make sure that diagrams in mutated cluster are again

# sorted according to lex

d_old = d_label[v]

plucker_rhs = p[vin1]*p[vin2] + p[vout1 ]*p[vout2]

for r in relations:

if (r - plucker_rhs).is_monomial ():

p_new = (r - plucker_rhs) * p[d_old ]**-1

break

if (plucker_rhs - r).is_monomial ():

p_new = (plucker_rhs - r) * p[d_old ]**-1

break

for key , value in p.items():

if value == p_new:

d_new = key

break

D = list(C)

D.remove(d_old)

D.append(d_new)

D.sort()

mutation_statistics[h][ d_old] = mutation_statistics[h][ d_old] + 1

# If switch loc_potentials is active , update the local potential

if loc_potentials == True:

W[tuple(D)] = W[tuple(C)].subs( {p[d_old] : plucker_rhs * p_new

**-1} )

Q = quivers.mutate(Q, frozen , v)

d_label[v] = d_new

# Add D to cluster_list of visited clusters if not already seen ,

# and create the corrisponding entry of mutation_statistic;

# if already seen simply update mutation_statistic

if D in cluster_list:

h = cluster_list.index(D)

mutation_statistics[h][ d_new] = mutation_statistics[h][ d_new] +

1

else:

cluster_list.append(D)

h = cluster_list.index(D)

mutation_statistics[h] = {}

for d in d_label:

if youngd.is_frozen(k, n, youngd.vstep_to_part(k, n, list(d))

) == True:

mutation_statistics[h][d] = -1

continue

in_deg = Q.in_degree(d_label.index(d))

out_deg = Q.out_degree(d_label.index(d))

if in_deg != 2 or out_deg != 2:

mutation_statistics[h][d] = -1

continue

mutation_statistics[h][d] = 0

mutation_statistics[h][ d_new] = mutation_statistics[h][ d_new] +

1

# Update previously current cluster to newly visited cluster

# and increase counter of steps
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C = copy.copy(D)

step = step + 1

# Update the list of mutable nodes

h = cluster_list.index(D)

current_mutable = []

for d in d_label:

if mutation_statistics[h][d] >= 0:

current_mutable.append(d_label.index(d))

# Store image of most recent quiver

#Q_plot = Q.plot()

#Q_plot.save(’Quiver {}.png ’.format(step))

print(’Found a total of {} clusters ’.format(len(cluster_list)))

print(’[Mutation statistics]’)

for i in range(len(mutation_statistics)):

print(’Cluster {}: {}’.format(i, mutation_statistics[i]. values ()))

if loc_potentials == False:

return cluster_list

else:

return W

Listing 5.11: youngd.py

# Given k and n, generate all Young diagrams in k x (n-k) grid centered

# at top left corner , encoded in a list of k-tuples (d_1 , ..., d_k)

# where d_i is the number of boxes in row i

def list_all(k, n):

l = []

diagrams = []

if (k == 1):

for a in range(n):

l.append ([a])

return l

for a in range(n-k+1):

l = list_all(k-1, a+k-1)

for i in range(len(l)):

l[i] = [a] + l[i]

diagrams = diagrams + l

return diagrams

# Given a Young diagram in a k x (n-k) grid in terms of the list of its

# k vertical steps , return its partition form (d_1 , ..., d_k)

def vstep_to_part(k, n, ver_steps):

d = []

d.append(n-k-ver_steps [0]+1)

for i in range(1, k):

d.append(d[i-1] - (ver_steps[i]-ver_steps[i-1]) + 1)

return d
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# Given a in [0, k] and b in [0, n-k], return the vertical steps of the

# a x b rectangular Young diagram in the k x (n-k) grid

def vstep_of_rect(a, b, k, n):

v_steps = []

if a == 0 or b == 0:

for i in range(n-k+1, n+1):

v_steps.append(i)

return v_steps

for i in range(n-k-b+1, n-k-b+a+1):

v_steps.append(i)

for i in range(n-k+a+1, n+1):

v_steps.append(i)

return v_steps

# Given a Young diagram d in the k x (n-k) grid represented as partition ,

# determine if it’s a boundary rectangular diagram or not

def is_frozen(k, n, d):

# Check if d is the empty diagram

if d[0] == 0:

return True

# Check if d is a rectangle

for i in range(len(d)):

if d[i] != d[0] and d[i] > 0:

return False

# Check if d is a full width rectangle

if d[0] == n-k:

return True

# Check if d is a full height rectangle

if d[k-1] > 0:

return True

return False
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Chapter A

LAGRANGIAN FLOER THEORY

This appendix is a brief introduction to a generalization of the Cauchy-Riemann equa-

tion from complex analysis: the Floer equation. This is a partial differential equation

for a smooth function u : S Ñ M , where S is a Riemann surface with complex struc-

ture j and M is a compact manifold with symplectic structure ω and almost-complex

structure J such that gJ “ ωp¨, J ¨q is a Riemannian metric. After some brief reference

to Hamiltonian Floer theory, which is the case BS “ H, we focus on Lagrangian Floer

theory, where the boundary BS ‰ H is mapped to a Lagrangian in M . To simplify the

exposition, we do not discuss automorphisms of the domain S.

A.1. From cylinders to strips

Assume that π1pMq “ 0 and ω|π2pMq Ă R is a discrete subgroup; this simplifies the

following heuristic derivation of the Floer equation for cylinders, but is not necessary to

write the equation itself or to study its properties.

Fix a smooth function H : M ˆ R{Z Ñ R, and denote Ht “ Hp¨, tq : M Ñ R; this is

called a time-dependent Hamiltonian. The non-degeneracy of ω allows to turn Ht into

a vector field XHt on M , characterized by the equation ωpXHt , ¨q “ dHt. Consider the

set

PpHq “ t x : R{Z Ñ M : 9xptq “ XHtpxptqq u

of one-periodic Hamiltonian orbits. These orbits correspond to the fixed points of the

symplectomorphism ΨH
1 :M Ñ M , where ΨH

t :M Ñ M is defined by 9ΨH
t “ XHt ˝ ΨH

t

and ΨH
0 “ idM . Call x P PpHq nondegenerate if detpidTxp0qM ´dxp0qΨ

H
1 q ‰ 0. For

autonomous Hamiltonians, i.e. when Ht is constant in t, critical points give constant

Hamiltonian orbits and non-degeneracy implies the Morse condition.
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Consider the loop space LM “ C8pR{Z,Mq, and think of it as an infinite-dimensional

manifold. Define a function AH : LM Ñ R{Z, called H-perturbed symplectic action, as

follows. Since π1pMq “ 0, one can choose a cap for x, i.e. a smooth map v : D2 Ñ M

that restricts to x over the boundary; the corresponding action is

AHpxq “ ´

ż

D2

v˚ω ´

ż 1

0
Htpxptqqdt .

This quantity is well-defined if and only if any other cap v1 has the same symplectic area

as v modulo Z. Gluing the two caps to a smooth map v#v1 : S2 Ñ M , its symplectic

area is zero modulo Z up to rescaling of ω, thanks to the assumption that ω|π2pMq Ă R

is a discrete subgroup.

If x P LM , a tangent vector ξ P TxLM is a function ξ : R{Z Ñ TM such that ξptq P

TxptqM for all t. The differential of the action is

pdxAHqξ “

ż 1

0
ωp 9xptq ´XHtpxptqq, ξptqqdt ,

and x is a critical point if and only if x P PpHq. An almost-complex structure J

compatible with ω defines a Riemannian metric on TLM via

xξ1, ξ2yJ “

ż 1

0
gJpξ1ptq, ξ2ptqqdt ,

and the corresponding gradient vector field of the action is

p∇AHqxptq “ Jxptq 9xptq ´ p∇Htqpxptqq .

A flow line of ´∇AH is the data of a smooth function R Ñ LM satisfying an ordinary

differential equation. One can also think of it as a function of two variables u : RˆR{Z Ñ

M satisfying the partial differential equation

Bsups, tq “ ´p∇AHqups,tqptq “ ´Jups,tqBtups, tq ` p∇Htqpups, tqq .

Using the fact that JXHt “ ∇Ht, one can write this equation as

JBsu “ Btu´XHt ;
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this is the Floer equation. One can think of it as an inhomogeneous perturbation of

the Cauchy-Riemann equations: the special case H ” 0 recovers the condition that the

cylinder u : R ˆ R{Z Ñ M is J-holomorphic. Solutions of the Floer equation have an

associated energy

Epuq “
1

2

ż 1

0

ż 8

´8

`

|Bsu|2J ` |Btu´XH |2J

˘

dsdt “

ż

RˆR{Z
ωpBsu, Btu´XHq ,

that matches the symplectic area for H ” 0. A solution has Epuq ă 8 if and only if it

connects two Hamiltonian orbits, in the sense that ups, ¨q Ñ x˘ P PpHq as s Ñ ˘8; in

this case

Epuq “

ż

RˆR{Z
u˚ω `

ż 1

0
pHtpx

`ptqq ´Htpx
´ptqqqdt .

Let now L Ă M be an orientable Lagrangian submanifold, and H :M ˆ r0, 1s Ñ R such

that the intersection ΨH
1 pLq X L is transverse. Consider the set

PLpHq “ t x : r0, 1s Ñ M : 9xptq “ XHtpxptqq and xp0q, xp1q P L u

of length-one Hamiltonian chords with boundary on L; since xp1q “ ΨH
1 pxp0qq each

chord can be interpreted as an intersection point in ΨH
1 pLq X L.

It is possible to adapt the heuristic derivation of the Floer equation to the Lagrangian

setting, replacing the loop space of M with the path space of L. Instead of doing that,

let’s simply replace the cylinder R ˆ R{Z with the strip R ˆ r0, 1s, and look at those

u : R ˆ r0, 1s Ñ M such that

JBsu “ Btu´XH and up¨, 0q, up¨, 1q P L .

Again, a solution has energy Epuq ă 8 if and only if it connects two Hamiltonian

chords, in the sense that ups, ¨q Ñ x˘ P PLpHq as s Ñ ˘8. Finally, observe that the

Floer equation is equivalent to saying that pdu´XHq ˝ j “ Jpdu´XHq, where j is the

complex structure of the strip; this formulation more readily generalizes from strips to

other domains.
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A.2. From strips to disks

By the Riemann mapping theorem, the interior of a strip is biholomorphic to the open

unit disk. Any such biholomorphism extends to an homeomorphism of the strip with

the closed unit disk minus two boundary points p and q; the location of the points is

however arbitrary. Once a biholomorphism is fixed, the direction of the strip (from ´8

to `8) naturally distinguishes the two points as incoming and outgoing. From now on,

consider p ingoing and q outgoing.

In this section, we describe a version of the Floer equation for disks with d ě 1 incoming

points p1, . . . , pd and one outgoing point q. Denote D̂ the closed unit disk, Σ Ă BD̂

the set of d ` 1 boundary points, and D “ D̂zΣ. For each arc C Ă BD, choose a

Lagrangian submanifold LC Ă M . We are interested in smooth maps u : D Ñ M such

that upCq Ă LC for all C.

Figure A.1: Examples of strip-like ends.

For each boundary point ζ P Σ, pick a proper holomorphic embedding ϵζ : R˘ ˆ r0, 1s Ñ

D such that ϵ´1
ζ pBDq “ R˘ ˆ t0, 1u and ϵζps, ¨q Ñ ζ as s Ñ ˘8; the sign ˘ is ´ if ζ is

incoming and ` if it is outgoing. The functions pϵζqζPΣ are called strip-like ends, and

are assumed to have disjoint images from now on.

Recall from the cylinder and strip cases that, in order to write the Floer equation, one

needs the data pH,Jq of a Hamiltonian and an almost-complex structure. In those

examples, both were chosen to be invariant under s-translations but allowed to be t-

dependent. Since the new domain D has no translational symmetry, in this context one

makes a different choice:
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• H P Ω1pD,C8pM,Rqq is a one-form on D with values in Hamiltonians, such that

Hpξq|LC
“ 0 for all C Ă BD and ξ P TC ;

• J P C8pD,J pM,ωqq is a family of almost-complex structures compatible with ω,

parametrized by the points of D .

We still require that, in each strip-like end ϵζ of D, the choices above have translational

symmetry, recovering the typical properties of Floer data for strips:

• ϵ˚
ζH “ pHζqtdt for some time-dependent Hamiltonian Hζ :M ˆ r0, 1s Ñ R ;

• Jpϵζps, tqq “ pJζqt for some time-dependent almost-complex structure Jζ compat-

ible with ω .

Finally, assume that the Hamiltonians Hζ make the intersections Ψ
Hζ

1 pLζ,0qXLζ,1 trans-

verse for all ζ P Σ. Here Lζ,‚ denotes the Lagrangian LC for C Ă BD corresponding

to R˘ ˆ t‚u under the map ϵζ . This last property allows to interpret the image of

u : D Ñ M as a pd ` 1q-gon whose vertices connect intersection points between the

Lagrangians LC Ă M , after Hamiltonian perturbation. The Floer equation for D is

then

pdu´XHq ˝ j “ Jpdu´XHq and upCq Ă LC @C Ă BD .

As in the case of cylinders and strips, each solution has an energy

Epuq “
1

2

ż 1

0
|du´XH |2J

and this quantity is finite if and only if there exist Hamiltonian chords xζ from Lζ,0 to

Lζ,1 such that upϵζps, ¨qq Ñ xζ as s Ñ ˘8, where the sign ˘ is ´ for incoming points

and ` for the outgoing point.

A.3. Energy, breaking and bubbling

Denote MpH,Jqpx1, . . . , xd, yq the set of solutions to the Floer equation with data pH,Jq

and asymptotic to fixed Hamiltonian chords. If one endows it with the C8 topology,

this is typically not compact. However, when H ” 0 any J-holomorphic map is a

minimal surface in M with respect to the Riemannian metric gJ , and it has been known

since the work of Sacks-Uhlenbeck [71] that bounds on the energy lead to a candidate
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compactification. In Lagrangian Floer theory, the symplectic area and the energy for

arbitrary Floer data pH,Jq are related as follows.

Lemma A.3.1. (Seidel [75, Section (8g)], Biran-Cornea [10, Lemma 3.3.3]) For all

pH,Jq and x1, . . . , xd, y there exists a constant C ą 0 such that

Epuq ď

ż

D
u˚ω ` C @u P MpH,Jqpx1, . . . , xd, yq .

Since ω is closed, the symplectic area of u depends only on its homotopy class rus P

π2pM,Lq, where L “
Ť

C LC . Defining for each β P π2pM,Lq

MpH,Jqpx1, . . . , xd, y;βq “ t u P MpH,Jqpx1, . . . , xd, yq : rus “ β u ,

solutions in this set have bounded energy by Lemma A.3.1. This allows to construct the

so-called Gromov compactification MpH,Jqpx1, . . . , xd, y;βq, that we informally describe

below.

Consider a sequence uν P MpH,Jqpx1, . . . , xd, y;βq. In the Gromov compactification,

this sequence will have a subsequence that converges in a suitable sense to a tree of

solutions to the Floer equation; the limit configurations can be obtained as follows.

Consider an arbitrary collection of non-intersecting interior arcs γ1, . . . , γc Ă D, each

connecting a pair of non-consecutive C Ă BD. Removing these arcs, each component

of Dzpγ1 Y ¨ ¨ ¨ Y γcq is again homeomorphic to a pointed-boundary disk. Construct a

tree with one interior node for each of these components, and one leaf for each of the

boundary points of the original unit disk. The tree has c interior edges, each dual to one

of the interior arcs γ1, . . . γc; it also has d ` 1 natural boundary edges connecting it to

the leaves. Since D has only one outgoing boundary point, orienting the corresponding

edge towards it induces an orientation on the rest of the tree. Since the tree is embedded

in D by construction, the incoming leaves inherit an order from the orientation of BD:

fix it to be clock-wise and starting after the outgoing leaf.
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Figure A.2: An example of Gromov convergence.

The data of the arcs and the tree are equivalent, and there are at least two more ways to

encode it, that we mention for their relevance in the A8 relations of Appendix B. One

is a way to parenthesize the word x1 ¨ ¨ ¨xd with c pairs of parentheses. The other is as

a codimension c face of the associahedron Kd, which is a convex polytope of dimension

d´ 2 with a rich combinatorics.

Going back to compactness, one can think that, up to subsequences, the sequence uν

degenerates along some collection of arcs γ1, . . . , γc Ă D, and that the corresponding

tree parametrizes a collection of solutions to the Floer equation that connect together

along new Hamiltonian chords as prescribed by the tree. If supν |duν |L8pDq ă 8 this

completes the description of the limit. However, knowing that supν Epuνq ă 8 does

not imply that supν |duν |L8pDq ă 8, and one has in fact more possible limits in that

case. Suppose that supν |duν |L8pDq “ 8, and choose for each ν a point zν P D such

that |dzνuν | “ |duν |L8pDq. Up to subsequences, this sequence of points converges in the

closed unit disk, i.e. zν Ñ z8 P D̂ as ν Ñ 8. There are three cases:

• if z8 P intpDq, then uν degenerates along a small circle around z8 which is disjoint

from γ1, . . . , γc Ă D, and the limit acquires a J-holomorphic sphere bubble ;

• if z8 P C Ă BD, then uν degenerates along a small arc around z8 with endpoints

on C, which is disjoint from γ1, . . . , γc Ă D, and the limit acquires a J-holomorphic

disk bubble with boundary on LC ;
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• if z8 “ ζ P D̂zD, then uν degenerates along a small arc around z8 with endpoints

on Cζ,0 and Cζ,1 which is disjoint from γ1, . . . , γc Ă D, and the limit acquires a

strip component, connected to the rest along a new Hamiltonian chord .

The points zν P D where |duν |L8pDq is achieved are not in general unique, and varying

this choice can lead to different limits zν Ñ z8 as ν Ñ 8. This means that the typical

limit in the Gromov compactification MpH,Jqpx1, . . . , xd, y;βq will have bubbles and

break off strips at multiple points of D̂. The energies of all limit components sum up to

a bounded quantity, and hence there are finitely many thanks to the following result.

Proposition A.3.2. (McDuff-Salamon [55, Proposition 4.1.4]) For all J and L Ă M ,

there exists a constant ℏ ą 0 such that Epuq ě ℏ for all J-holomorphic u : S2 Ñ M and

J-holomorphic u : D2 Ñ M such that upBD2q Ă L.

A.4. Virtual dimension and Maslov index

The Gromov compactification MpH,Jqpx1, . . . , xd, y;βq shares some properties with man-

ifolds, due to the fact that (limits of) solutions to the Floer equation near a given

u P MpH,Jqpx1, . . . , xd, y;βq can be presented as zero set of a section of a Banach bun-

dle, whose differential is a Fredholm operator Du of Banach spaces.

We do not describe the Banach setup here; see Seidel [75, Sections (8h), (8i)]. Simply

recall that Fredholm operators have finite-dimensional kernel and cokernel, and therefore

a well defined index

indpDuq “ dimpkerpDuqq ´ dimpcokerpDuqq P Z .

When Du is surjective, then kerpDuq can be thought of as an analogue of the tangent

space at u P MpH,Jqpx1, . . . , xd, y;βq, and the index indpDuq computes its dimension.

The index ofDu is a topological quantity, depending only on rus “ β. Instead, the surjec-

tivity of Du can vary with u in general, and it is best to think of MpH,Jqpx1, . . . , xd, y;βq

as having an analogue of the tangent bundle kerpDuq´cokerpDuq which is a virtual bun-

dle in the sense of K-theory, and of indpDuq “ indpβq as computing a virtual dimension.

Sometimes one can show that a generic choice of Floer data pH,Jq makes Du surjective

for all u; in such cases one says that transversality is achieved, and the Gromov com-



101

pactification is regularized. This implies that MpH,Jqpx1, . . . , xd, y;βq is: empty when

indpβq ă 0, a finite collection of points when indpβq “ 0, a finite collection of arcs

and circles when indpβq “ 1. It is harder to say what the result of regularization is

when indpβq ą 1, but the indpβq “ 0, 1 cases suffice for the construction of the Fukaya

category in Appendix B.

Going back to the general discussion of the (unregularized) Gromov compactification,

for each β P π2pM,Lq the virtual dimension of MpH,Jqpx1, . . . , xd, y;βq can be computed

more explicitly as

indpβq “ d´ 2 ` µpβq ,

where µpβq P Z is an integer called Maslov index and defined as follows. Since D is

contractible, for any u P MpH,Jqpx1, . . . , xd, y;βq the symplectic vector bundle u˚TM

admits a trivialization, under which pu|Cq˚TLC gives a path λC in the Grassmannian

LGrpnq of Lagrangian subspaces of the standard symplectic vector space R2n. By going

around BD̂ counter-clockwise, to each ζ P D̂zD corresponds a transverse intersection

Ψ
Hζ

1 pLζ,0q X Lζ,1, and one can join the Lagrangian tangent spaces at upζq by the con-

ventional path pe´iπ{2tRqn with t P r0, 1s. This path is a natural choice, since for n “ 1

it is the shortest counter-clockwise path connecting the transverse Lagrangians R and

iR in R2 “ C. Concatenating the paths λC for every C Ă BD and the conventional

paths, one gets a closed loop with homotopy class ru
|BD̂

s P π1pLGrpnqq “ Z, and this is

the Maslov index.

As u P MpH,Jqpx1, . . . , xd, y;βq varies, it can degenerate as described in Section A.3. In

terms of its homotopy class, this corresponds to a decomposition of β in classes of disks

and spheres. The Maslov index is additive, and gives a multiple of the Chern class on

sphere components:

µpβq “
ÿ

µpβdiskq `
ÿ

2c1pβsphereq .

Since µpβq is fixed throughout the degeneration, this formula can be profitably used to

classify the possible limit configurations in the Gromov compactification.
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A.5. Obstruction and monotonicity

Define the Novikov field to be

Λ “

#

ÿ

iPN
aiT

αi : ai P C , αi P R , @R P R #ti P N : ai ‰ 0 and αi ă Ru ă 8

+

,

The homological invariants arising in Floer theory are typically defined over the Novikov

field (or even the Novikov ring, that we do not describe). Most important to us is the

Floer module CFpL0, L1q of two Lagrangians L0, L1 Ă M with Floer data pH,Jq over

a disk with one input and one output. This is a vector space over Λ with basis the

Hamiltonian chords x from L0 to L1, and it comes with a linear map defined on chords

by

m1pxq “
ÿ

y

¨

˝

ÿ

β

#MpH,Jqpx, y;βqTωpβq

˛

‚y.

Crucially, it can happen that pm1q2 ‰ 0; this phenomenon is called obstruction, and has

the following topological explanation. Applying m1 once more to m1pxq one gets

m1pm1pxqq “
ÿ

z

¨

˝

ÿ

β,β1

˜

ÿ

y

#MpH,Jqpx, y;βq#MpH,Jqpy, z;β
1q

¸

Tωpβq`ωpβ1q

˛

‚z .

Following a classical argument from Morse theory, one can try to prove that pm1q2 “ 0

by proving that for all β, β1 with indpβq “ indpβ1q “ 0 (i.e. µpβq “ µpβ1q “ 1) the

following identity holds:

ÿ

y

#MpH,Jqpx, y;βq#MpH,Jqpy, z;β
1q “ 0 .

The class B “ β ` β1 has µpBq “ µpβq ` µpβ1q “ 2, and hence the Gromov compacti-

fication MpH,Jqpx, z;Bq has virtual dimension indpBq “ 1. If the data pH,Jq achieves

transversality, the equation above can be proven by arguing that the boundary of this

one-manifold is

BMpH,Jqpx, z;Bq “ MpH,Jqpx, y;βq ˆ MpH,Jqpy, z;β
1q .
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This strategy works when one can rule out disk and sphere bubbling, but generally fails

due to the fact that the limit of a sequence uν P MpH,Jqpx, z;Bq that converges to a

point in

BMpH,Jqpx, z;Bq “ MpH,Jqpx, z;BqzMpH,Jqpx, z;Bq

can be more complicated than the concatenation of two strips.

Fukaya-Oh-Ohta-Ono [28] developed a general theory that describes when the map m1

can be deformed to one that squares to zero. We describe below a simplified setting,

that relies on imposing extra assumptions; this suffices for the purposes of this thesis.

A symplectic manifold pM,ωq is monotone if rωs “ c1 in H2pM ;Rq; in this case a

Lagrangian L Ă M is monotone if µ “ 2ω on the image of the Hurewicz morphism

π2pM,Lq Ñ H2pM,Lq. More generally, one has the following relation between symplec-

tic area and Maslov index for solutions to the Floer equation.

Lemma A.5.1. (Biran-Cornea [10, Lemma 3.3.4]) Assume LC Ă M is monotone for

all C Ă BD. Then for all u, u1 P
Ť

βMpH,Jqpx1, . . . , xd, y;βq one has

ż

D
u˚ω ´

ż

D
pu1q˚ω “

1

2
pµpuq ´ µpu1qq .

Monotonicity has two pleasant consequences. One is that the counts of solutions to

the Floer equations tend to have finitely many T -terms in the Novikov ring Λě0. More

precisely, fixed k P Z the set

t β P π2pM,Lq : MpH,Jqpx1, . . . , xd, y;βq ‰ H and indpβq “ k u

is finite, because any sequence in the set has finite range. Indeed, given a sequence

of classes βν P π2pM,Lq such that indpβνq “ k and a sequence of solutions to the

Floer equation uν P MpH,Jqpx1, . . . , xd, y;βνq, from the index assumption the Maslov

index µpβνq “ 2 ´ d ` k is fixed. By Lemma A.5.1 all solutions uν have the same

symplectic area, and by Lemma A.3.1 they also have bounded energy. This means that

a subsequence of uν converges to some u8 P MpH,Jqpx1, . . . , xd, y;β8q. The limit class

β8 is a finite sum of sphere and disk classes, and each βν must be a finite sum of such

classes with total area ωpβ8q. This implies that the sequence βν has finite range.
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The second consequence of monotonicity is that one can be more precise about the

particular nature of the obstruction phenomenon for CFpL0, L1q.

Theorem A.5.2. (Oh [61]) If L0, L1 Ă M are monotone and oriented, then the equation

m1pm1pxqq “ pm0pL0q ´m0pL1qqx

holds in the Floer module CFpL0, L1q.

If L Ă M is an oriented monotone Lagrangian, the quantitym0pLq P Z is called curvature

and is defined as follows. Denote MJpLq the set of J-holomorphic maps u : D̂ Ñ M

such that upBD̂q Ă L and µpuq “ 2. By monotonicity, fixing the Maslov index also

fixes the area of the disks in MJpLq, and hence their energy (there is no Hamiltonian

perturbation here). Constructing the Gromov compactification MJpLq as in Section

A.3, one notices that strip-breaking is impossible due to the absence of Hamiltonian

perturbations, and the other degenerations are excluded by monotonicity. This implies

that MJpLq “ MJpLq, and one can show that a generic J achieves regularity and makes

MJpLq a compact manifold of dimension n “ dimpLq. The number m0pLq “ degpevq is

the degree of the evaluation map ev : MJpLq Ñ L that sends u to up1q.

When m0pL0q “ m0pL1q one has pm1q2 “ 0 in CFpL0, L1q, and the cohomology is called

Floer cohomology HFpL0, L1q. More generally, one can endow a monotone Lagrangian

L Ă M with a rank one Λ-linear local system ξ and define a generalized curvature

m0pLξq P Λ as follows. Denote holξ : π1pLq Ñ Λˆ the holonomy of the local system,

and MJpL;βq Ă MJpLq the set of disks u with rus “ β P π2pM,Lq. Weighting by the

holonomy along the boundary of each disk one gets

m0pLξq “
ÿ

β

degpev|MJ pL;βqq holξpBβq P Λ ;

note that this sum is finite by monotonicity. If ξ0, ξ1 are local systems on L0, L1 such

that m0ppL0qξ0q “ m0ppL1qξ1q, then again pm1q2 “ 0 and one gets a twisted Floer

cohomolgy HFppL0qξ0 , pL1qξ1q.

When L – TN is a torus, the fact that Λˆ is abelian group allows us to think

holξ P HompH1pTN ;Zq,Λˆq – H1pTN ; Λˆq – pΛˆqN .
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The first isomorphism is natural, while the second depends on the choice of a basis

γ1, . . . , γN of 1-cycles. For explicit calculations, it is convenient to specify such a basis

and call x1, . . . , xN the relative coordinates, so that holξ ÞÑ m0pLξq gives an algebraic

function

WTN P OppΛˆqN q “ Λrx˘1
1 , . . . , x˘1

N s

called disk potential of the torus TN . Disk potentials in different bases are related by

an integral linear change of variable, and the GLpN,Zq-orbit of WTN is an Hamiltonian

isotopy invariant of TN .
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Chapter B

FUKAYA AND SINGULARITY CATEGORIES

This appendix gives a brief description of the formal properties of general A8 categories,

and then focuses on one particular version of the Fukaya category in the monotone set-

ting. Under Homological Mirror Symmetry, the Fukaya category is expected to match

the category of singularities of a Landau-Ginzburg model, that we describe in the affine

case in terms of matrix factorizations. To simplify the exposition, we assume the exis-

tence of strict units and do not discuss idempotent completions.

B.1. A8 categories

Let Λ be the Novikov field defined in Appendix A.5. A Z{2Z-graded A8 category C over

Λ has a set of objects Ob C, and sets of morphisms CpX0, X1q which are Z{2Z-graded

vector spaces over Λ. For every integer d ě 1 there are compositions of order d, which

are linear maps respecting the Z{2Z-grading

md : CpXd´1, Xdq b ¨ ¨ ¨ b CpX0, X1q Ñ CpX0, Xdqrds .

These maps encode the fact that m2 is only weakly associative, and they are required

to satisfy the relations

@n ě 1 :
ÿ

r`s`t“n

p´1qrs`tmr`1`tpidbr bms b idbtq “ 0 ,

where the sum is over r, t ě 0 and s ě 1. Taking X0 “ ¨ ¨ ¨ “ Xd “ X the relations say

that CpX,Xq is an A8 algebra over Λ. When md “ 0 for all compositions with d ě 0,

then C is a differential graded category.

We make the simplifying assumption that C has strict units. This means that for each

X P Ob C there exists 1X P CpX,Xq such that:
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• m1p1Xq “ 0 ;

• m2p1X1 , aq “ p´1q|a|m2pa, 1X0q “ a for all homogeneous a P CpX0, X1q ;

• mdpa1, . . . , adq “ 0 whenever d ě 3 and ai “ 1Xi for some 1 ď i ď d .

Lemma B.1.1. For each X P Ob C, the equation pm1q2 “ 0 holds in CpX,Xq. The

cohomology HpX,Xq inherits a structure of associative algebra over Λ with unit r1Xs.

Proof. The A8 relation with n “ 1 says precisely that pm1q2 “ 0. The associative

algebra structure on HpX,Xq is given on homogeneous elements by

ra2sra1s “ p´1q|a1|rm2pa2, a1qs .

Observe that this makes sense because the A8 relation with n “ 2 says

´m2pidbm1q `m1pm2q ´m2pm1 b idq “ 0 ,

so that evaluating on a2 b a1 one has

m1pm2pa2, a1qq “ m2pa2 bm1pa1qq `m2pm1pa2q b a1q .

This implies that m1pm2pa2, a1qq “ 0 whenever m1pa2q “ m1pa1q “ 0. Associativity

consists in checking that

p´1q|a1|`|m2pa2,a1q|rm2pa3,m
2pa2, a1qqs “ p´1q|a2|`|a1|rm2pm2pa3, a2q, a1qs .

This can be done by considering the A8 relation with n “ 3 :

m3pidb2 bm1q`m2pidbm2q`m3pidbm1bidq`m1pm3q´m2pm2bidq`m3pm1bidb2q “ 0 .

Evaluating on a3ba2ba1 and observing that order 3 multiplications are killed whenever

m1pa1q “ m1pa2q “ m1pa3q “ 0 one gets

´m2pa3 bm2pa2, a1qq `m2pm2pa3, a2q b a1q “ m1pm3pa3, a2, a1qq ,

thus proving the desired relation in cohomology.



108

Sometimes it is useful to consider the cohomological category HpCq, whose objects are

the same as C, but whose morphisms spaces are given by cohomology groups HpX0, X1q.

Unlike C, this is an ordinary category.

Any A8 category C can be thought of as a refinement of an algebra HH‚pCq defined as

follows. The Hochschild complex of C is the Z-graded complex given in degree d ě 0 by

CCdpCq “
ź

X0,...,Xd

Hom
Z{2Z
Λ pC pXd´1, Xdq b ¨ ¨ ¨ b CpX0, X1q, CpX0, Xdqrdsq ,

where Hom
Z{2Z
Λ denotes Λ-linear maps that respect the Z{2Z-grading. The construction

of the differential proceeds as follows. First define the Gerstenhaber product of cochains

ϕ ˝ ψ “
ź

ně1

ÿ

r`s`t“n

p´1qrs`tϕr`1`tpidbr bϕs b idbtq

and the associated Z-graded Lie bracket

rϕ, ψs “ ϕ ˝ ψ ´ p´1qp|ϕ|`1qp|ψ|`1qψ ˝ ϕ .

These definitions are designed so that the structure maps of C define a cochain m‚ P

CC‚pCq, and the A8 relations have an elegant reformulation as m‚ ˝ m‚ “ 0 in this

context. Using the Lie bracket, one can define the map rm‚, ¨s and verify that it is a

differential on CC‚pCq.

The cohomology of the complex above is the Hochschild cohomology HH‚pCq. There is

another useful product on CC‚pCq, the Yoneda product, which is defined (up to signs)

by

ϕY ψ “
ÿ

r,s,tě0

p´1q?m‚pidbr bϕb idbs bψ b idbtq

At the cohomological level, this makes HH‚pCq an associative algebra, that can be

thought of as a decategorification of C. For any object X P C, its cohomology HpX,Xq

is a module over HH‚pCq, and in this sense one can think of C as a refinement of the

category of modules over the Hochschild cohomology.
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B.2. Triangulated closure and generators

Each abelian category has an associated derived category with a canonical triangulated

structure. In this section we explain a similar construction in the world of A8 categories.

The first problem is that there are no direct sums in C. This can be solved by considering

the additive enlargement Σ C. This is an A8 category whose objects are formal finite

sums X “ ‘Xirkis with Xi P Ob C and ki P Z{2Z, and whose morphisms are given by

Σ C

˜

à

i

Xirkis,
à

j

Yjrljs

¸

“
à

i,j

CpXi, Yjqrlj ´ kis ,

which can be thought of as matrices with morphisms of C as entries. The A8 composition

maps are induced by the ones of C via

mdpad, . . . , a1qij “
ÿ

mdpa
id´1j
d , . . . , aii11 q .

The second problem, which remains in the additive enlargement, is that there are no

mapping cones. In the abelian case cones are available by embedding in the category of

complexes. In the A8 world, cones are available in a further enlargement of Σ C, the A8

category of twisted complexes Tw C defined below. Objects are given by pairs pX, δXq

with X P ObΣ C and δX P Σ CpX,Xq called twisting cochain, which is required to be a

strictly lower-triangular morphism satisfying the Maurer-Cartan equation:

8
ÿ

d“1

mdpδX , . . . , δXq “ 0 .

This equation makes sense thanks to the following.

Lemma B.2.1. If δX “ pδijXq with 1 ď i, j ď n is strictly lower-triangular, then

mdpδX , . . . , δXq “ 0 for d ą n ´ 1, so that the Maurer-Cartan equation has finitely

many terms.

Proof. Being strictly lower-triangular means that δijX “ 0 for i ď j. Now observe that

«

8
ÿ

d“1

mdpδX , . . . , δXq

ffij

“

rm1pδXqsij ` rm2pδX , δXqsij ` rm3pδX , δX , δXqsij ` . . . “
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m1pδijXq `
ÿ

i1

m2pδiijX , δii1X q `
ÿ

i1,i2

m3pδi2jX , δi1i2X , δii1X q ` . . . .

Note that the term
ÿ

i1,...,id´1

mdpδ
id´1j
X , . . . , δiiiX q

can possibly be nonzero only when all the inputs are nonzero, so this term is zero unless

possibly when i ą i1 ą ¨ ¨ ¨ ą id´1 ą j due to the fact that δX is strictly lower-triangular.

But since 1 ď i, j ď n this means that the term is zero for d ą n´ 1.

The morphism spaces in Tw C are the same as in Σ C. Instead, the composition maps

are modified by inserting twisting cochains in all possible ways:

md “
ÿ

i0,...,id

p´1q?md`i0`...`idpδbid
Xd

b idbδ
bid´1

Xd´1
b ¨ ¨ ¨ b δbi1

X1
b idbδbi0

X0
q .

This is a finite sum because, as above, the terms inmdpad, . . . , a1q must vanish for indices

non contained in the cube i0 ď N0, . . . , id ď Nd where Nk is the number of summands

in the object Xk such that δXk
P Σ CpXk, Xkq.

We now describe the construction of cones in Tw C. Given c P Tw CpX0, X1q such that

m1pcq “ 0, define Conepcq “ pC, δCq as the twisted complex given by C “ X0r1s ‘ X1

with twisting cochain given by the matrix

δC “

»

—

–

δX0 0

c δX1

fi

ffi

fl

.

We are finally ready to defined the derived category of C as DC “ HpTw Cq. This

category has a natural triangulated structure constructed in the following way: sums

and shifts are induced by the ones in Tw C, and the distinguished triangles are those

isomorphic to triangles induced by cones in Tw C. Given a set G of objects in C, one can

consider the smallest full triangulated subcategory xGy Ă DC whose objects contain G.

If xGy “ DC, the objects of G are called generators of C. In practice, this means that

every object of Tw C is obtained, up to quasi-isomorphism, by taking sums and cones

starting from objects of G.
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B.3. The monotone Fukaya category

Let pM,ωq be a compact monotone symplectic manifold. For each λ P Λ, define the

monotone Fukaya category FλpMq of Lagrangian branes with curvature λ as follows.

This is a Z{2Z-graded A8-category, where the objects Lξ are oriented monotone La-

grangian submanifolds L Ă X equipped with a rank one Λ-linear local system ξ whose

holonomy holξ : π1pLq Ñ Λˆ satisfies

m0pLξq “
ÿ

β

#MJpL;βq holξpBβq “ λ .

In this equation, the first equality is the definition of curvature given in Appendix A.5.

Given two objects L0
ξ0
, L1

ξ1
of FλpXq, their set of morphisms CFpL0

ξ0
, L1

ξ1
q is the Floer

module of Appendix A.5, whose definition depends on a choice of Floer data pH,Jq as in

Appendix A.2. Thinking of Hamiltonian chords x P CFpL0
ξ0
, L1

ξ1
q as intersection points

xp1q P ΨH
1 pL0q X L1, the Z{2Z-grading

CFpL0
ξ0 , L

1
ξ1q “ CF0pL0

ξ0 , L
1
ξ1q ‘ CF1pL0

ξ0 , L
1
ξ1q

is given by the two-fold covering LGr2pTxp1qMq Ñ LGrpTxp1qMq of the oriented La-

grangian Grassmannian of Txp1qM over the unoriented one: the orientations on the

Lagrangians determine two points in the fibers over Txp1qΨ
H
1 pL0q and Txp1qL

1, with

|x| “ 0 if the conventional path (as in Appendix A.4) from Txp1qΨ
H
1 pL0q to Txp1qL

1 in

LGrpTxp1qMq lifts to a path connecting the orientations, and |x| “ 1 otherwise.

For any d ě 1, the A8 composition maps

md : CFpLl´1
ξl´1

, Ldξlq b ¨ ¨ ¨ b CFpL0
ξ0 , L

1
ξ1q Ñ CFpL0

ξ0 , L
d
ξd

q

are defined on Hamiltonian chords by

mdpxd b ¨ ¨ ¨ b x1q “
ÿ

y

¨

˝

ÿ

β

#MpH,Jqpx1, . . . , xd, y;βq holξpBβqTωpβq

˛

‚y .

Here holξpBβq P Λˆ is obtained as compound holonomy of the local systems ξ0, . . . , ξd
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along Bβ. This construction depends on the choice of Floer data pH,Jq, but different

choices produce equivalent A8-categories and FλpXq denotes any of them. If L0
ξ0

and

L1
ξ1

are two objects in FλpMq, the condition m0pL0
ξ0

q “ m0pL1
ξ1

q “ λ guarantees that

pm1q2 “ 0 holds in their Floer module as discussed in Appendix A.5.

Thanks to monotonicity, setting the Novikov variable T “ 1 makes the Fukaya category

linear over C. Denote QHpMq the quantum cohomology of pM,ωq over C. The operator

of quantum multiplication by the first Chern class c1‹ induces a decomposition

QHpXq “
à

λPC
QHλpMq

in generalized eigenspaces, labelled by the eigenvalues. Each summand QHλpMq can be

thought of as a decategorification of FλpMq in the following sense.

Theorem B.3.1. (Sanda [72, Theorem 1.1]) If the A8 category FλpXq is homologically

smooth, then there is an isomorphism of C-algebras

HH‚pFλpMqq – QHλpMq .

It is expected that homological smoothness always holds for the Fukaya category FλpMq;

see Ganatra [32, Section 3.3] for more on this.

We list below some facts that are used throughout the thesis. First, the only λ P C for

which FλpMq can be nontrivial are those appearing in the decomposition of quantum

cohomology mentioned above.

Theorem B.3.2. (Auroux [6, Proposition 6.8]) If HFpLξ, Lξq ‰ 0, then m0pLξq is an

eigenvalue of the operator c1‹ acting on QHpMq.

The case where L – TN is a Lagrangian torus is of particular interest in this thesis.

Recall from Appendix A.5 that a monotone Lagrangian torus has an associated disk

potential

WL P Crz˘
1 , . . . , z

˘
N s,

that can be thought of as a generating function of J-holomorphic disks with Maslov

index 2 with boundary on L. One can use the disk potential to completely characterize

the nonzero objects of the Fukaya category supported on L.
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Theorem B.3.3. (Auroux [6, Proposition 6.9], Sheridan [77, Proposition 4.2]) If L Ă

M is a monotone Lagrangian torus, then holξ is a critical point of WL if and only if

HFpLξ, Lξq ‰ 0.

Finally, the following generation criterion is an adaptation of the one introduced by

Abouzaid [1] to the monotone setup.

Theorem B.3.4. (Sheridan [77, Corollary 2.19]) If QHλpXq is one-dimensional, any

object Lξ of FλpXq with HFpLξ, Lξq ‰ 0 split-generates DFλpXq.

When one can establish generation by tori, the following gives an efficient description

of the Fukaya category as a category of modules over Clifford algebras.

Theorem B.3.5. (Sheridan [77, Proposition 4.2-4.3 and Corollary 6.5]) If TN is a

monotone Lagrangian torus, then for every nondegenerate critical point holξ of WTN

HFpTNξ , T
N
ξ q – ClN

as C-algebras, where ClN denotes the Clifford algebra of the quadratic form of rank N on

CN . Moreover if TNξ generates FλpXq there is an equivalence of triangulated categories

DFλpXq » DpClN q

with the derived category of finitely generated modules over ClN .

B.4. The category of singularities

Let U be an affine algebraic variety over C, whose complex dimension is dimpUq “ N .

Write U “ SpecpRq with R algebra over C of Krull dimension N , and fix an algebraic

functionW P R. Smoothness of U guarantees that the sheaf of algebraic one-forms Ω1
R{C

is locally free of rank N , and the equation dW “ 0 defines a closed subscheme Z Ă U

called critical locus.

The Jacobian ring of W is the ring of algebraic functions on the critical locus Z “

SpecpJacpW qq. The fiber W´1pλq over a closed point λ P C is also a closed subscheme,

with W´1pλq “ SpecpR{pW ´λqq. The critical locus Z decomposes as a union of closed
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subschemes Zλ “ Z XW´1pλq, and this induces a decomposition

JacpWq “
à

λPC
JacλpW q ,

where Zλ “ SpecpJacλpW qq and JacλpW q “ JacpW q bR R{pW ´ λq.

Orlov [62] introduced a triangulated category, the derived category of singularities

DSpW´1pλqq, which measures to what extent coherent sheaves on the fiber W´1pλq

fail to have finite resolutions by locally free sheaves. When the critical locus is zero-

dimensional, Dyckerhoff [23] showed that it is generated by skyscraper sheaves at the

singular points. In the context of this thesis, this category typically appears as mirror

to the derived Fukaya category DFλpMq, in the sense that there is an equivalence of

triangulated categories

DFλpMq » DSpW´1pλqq .

When this holds for all λ P C, we say that pU,W q is a Landau-Ginzburg model for the

monotone symplectic manifold M in the sense of Homological Mirror Symmetry.

The derived category of singularities of W´1pλq is equivalent to the cohomological cat-

egory of a differential graded category, called the category of matrix factorizations of

W ´ λ:

DSpW´1pλqq » DMpR,W ´ λq .

Here, the objects are R-modules X “ X0 ‘ X1 with finitely generated projective sum-

mands of degree 0 and 1, and equipped with an R-linear map dX : X Ñ X of odd degree

satisfying the equation pdXq2 “ pW ´λq idX . Morphisms between two matrix factoriza-

tions X and Y in MpR,W ´ λq are given by the cycles of a Z{2Z-graded complex over

C with

hompX,Y q “ hom0pX,Y q ‘ hom1pX,Y q and dpfq “ dY ˝ f ´ p´1q|f |f ˝ dX ,

where f : X Ñ Y denotes an R-linear map of degree |f |. The name matrix factorization

comes from the fact that, if X “ X0 ‘ X1 with finitely generated free summands, one
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can pick bases and represent dX as a matrix

dX “

¨

˚

˝

0 d01X

d10X 0

˛

‹

‚

and the condition pdXq2 “ pW ´ λq idX implies that X0 and X1 have the same rank,

with

d10X ˝ d01X “ pW ´ λq idX0 , d01X ˝ d10X “ pW ´ λq idX1 .

Matrix factorizations encode the fact that any coherent sheaf onW´1pλq admits a locally

free resolution that eventually becomes two-periodic, as proved by Eisenbud [24].
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