
EFFICIENT AND HIGH-PERFORMANCE DATA
ORCHESTRATION FOR LARGE SCALE CLOUD

WORKLOADS

by

SHOUWEI CHEN

A dissertation submitted to the

School of Graduate Studies

Rutgers, The State University of New Jersey

In partial fulfillment of the requirements

For the degree of

Doctor of Philosophy

Graduate Program in Electrical and Computing Engineering

Written under the direction of

Ivan Rodero

and approved by

New Brunswick, New Jersey

May, 2021

ABSTRACT OF THE DISSERTATION

Efficient and High-Performance Data Orchestration for

Large Scale Cloud Workloads

By Shouwei Chen

Dissertation Director:

Ivan Rodero

The computing frameworks running in the cloud environment at an extreme scale

provide efficient and high-performance computing services to various domains. These

cloud computing frameworks build scalable, reliable, and highly accessible data pipelines

for many academia, science, and industry services. Data analytics generates a large

amount of intermediate data at the back of cloud computing frameworks while pro-

cessing large amounts of data from different data sources. However, enormous data

addresses the challenges to these frameworks to deal with data high performance and

efficiency. The data orchestration based on memory and high-performance storage

devices has become a key concern to optimize these cloud computing frameworks’ per-

formance.

The increasing data scale and complexity of the cloud environment pose challenges

to run applications fast and efficiently. The existing computing clusters can fetch the

data from different cloud infrastructure, including common storage, high-performance

storage devices, and high-speed fabric interconnection. However, it is still challenging

to provide the corresponding data orchestration for the existing computing frameworks.

First, computing frameworks access the underlying persistent data storage layer based

ii

on the different storage devices and memory. Furthermore, the revolution of storage

devices addresses new challenges for existing computing frameworks to utilize advanced

storage devices efficiently. Second, most of the existing computing frameworks use an

intermediate data layer for intermediate storage. However, providing an efficient and

high-performant storage layer for large-scale computing frameworks, such as intermedi-

ate data storage and shuffle data storage, is still challenging. The imbalance and small

data storage introduce new challenges, including new hardware devices and appropriate

data orchestration designs. Consequently, the revolution of hardware devices requires

a new paradigm for data orchestration for cloud computing frameworks.

This thesis addresses the above challenges and proposes novel mechanisms and solu-

tions for building efficient and high-performance data orchestration for big data frame-

works, and makes the following contributions: (1) Studies representative workloads for

big data processing frameworks using different storage technologies and design choices

and explores the I/O bottleneck of in-memory big data frameworks on high-performance

computing clusters with non-volatile memory. (2) Designs and explores architectural

foundations to run in-memory big data framework in the hybrid cloud environment

with fast fabric interconnection between geo-distributed data centers. (3) Proposes an

abstraction for disaggregated memory pool based on persistent memory and Remote

Direct Memory Access (RDMA) to optimize the computing resource efficiency and per-

formance of intermediate storage of big data frameworks. (4) Provides a novel in-transit

shuffle mechanism for big data frameworks, which is lightweight and compatible with

modern in-memory big data frameworks.

The proposed mechanisms and solutions have been implemented, deployed, and

evaluated in high-performance clusters and real computing environments, including

academic clusters at Rutgers and production systems at scale in the information tech-

nology industry.

iii

Acknowledgements

First and foremost, I would like to thank my advisor, Dr. Ivan Rodero, for his guidance

and support through my Ph.D study and research. I am truly grateful for his advice,

encouragement, patience and cheerfulness.

I would like to thank to Dr. Manish Parashar, Dr. Ivan Marsic, and Dr. Wensheng

Wang for serving as my Ph.D committee members and spending their precious time in

reading and review my thesis.

My special thanks to my parents Gang Chen and Shuihua Shou, and other family

members, for their encouragement, support and enormous love.

iv

Dedication

To Haoyuan.

v

Table of Contents

Abstract . ii

Acknowledgements . iv

Dedication . v

List of Tables . x

List of Figures . xii

1. Introduction . 1

1.1. Motivation and Background . 1

1.2. Research Challenges . 3

1.3. Overview of Thesis Research . 5

1.4. Contributions . 6

1.5. Dissertation Overview . 7

2. Background and Related Work . 10

2.1. Big Data Computing Frameworks . 11

2.1.1. MapReduce Workloads . 12

2.1.2. Energy Efficiency . 13

2.2. In-memory Processing Frameworks . 14

2.3. Geo-distributed Data Centers . 17

2.4. Resource Management for In-memory Big Data Analytics 18

2.5. Shuffling in Data Analytics . 20

2.5.1. Shuffling Optimizations . 21

2.5.2. I/O Challenges . 22

vi

3. Exploring the Potential of In-memory Big Data Frameworks 24

3.1. Understanding In-Memory Big Data Frameworks 24

3.1.1. Spark Persistence . 24

3.1.2. Spark Persistence Memory Management 25

3.1.3. Spark Data Locality and Delay Scheduler 26

3.1.4. Alluxio . 26

3.2. Evaluation Methodology . 27

3.2.1. Testbed and System Configuration 28

3.2.2. Workloads and Data Set . 28

3.3. Experimental Results . 29

3.3.1. Spark RDD Persistence . 29

3.3.2. Comparative Study of HDFS and Alluxio 33

3.3.3. Spark RDD Persistence vs. Alluxio 35

3.4. Simulation-Based Evaluation . 37

3.5. Discussion . 40

4. Elastic Computing in Geo-distributed Data Centers 42

4.1. Resource Utilization of Computing Clusters 43

4.2. Harvesting Spare Computing Resources in Geo-distributed Data Centers 44

4.3. Spark-based Services on Cloud Resources 46

4.4. Modeling the Computing Cost Across Data Centers 47

4.5. Experimental Methodology . 51

4.5.1. Data Warehouse Applications Characterization 51

4.5.2. Testbed . 54

4.5.3. Workloads . 54

4.6. Experimental Results . 55

4.7. Discussion . 58

5. Resource Management for In-memory Big Data Analytics 59

5.1. Analysis of the Efficiency of Data Center Computing Resources 59

vii

5.2. Spark Memory Management and Shuffle Service 61

5.2.1. Spark Memory Management Optimization 61

5.2.2. Spark Shuffle Management . 63

5.2.3. Spark Memory Requirements . 63

5.3. Characterizing Remote PMEM . 64

5.3.1. Experimental Setup . 65

5.3.2. Remote PMEM Performance . 65

5.3.3. PMEM Viability for Remote Memory Implementation 66

5.4. System Implementation and Deployment 67

5.4.1. Distributed Memory Objects (DMO) 67

5.4.2. Integrating DMO with Spark . 69

5.5. Experimental Evaluation . 71

5.5.1. Workloads and Experimental Setup 71

5.5.2. Experimental Results . 73

5.6. Discussion . 79

6. In-Transit Shuffling for Large-Scale Data Analytics 81

6.1. Comet Overview . 82

6.2. N-to-N communication in Spark . 83

6.2.1. Design Requirements . 85

6.2.2. Data Pipeline with Data Consistency Mechanism 86

6.2.3. Data Flow Controller with Back Pressure Mechanism 89

6.2.4. Destination Based Aggregation Mechanism 90

6.3. Evaluation Methodology . 91

6.3.1. Testbed . 91

6.3.2. Workloads . 92

6.4. Experimental Evaluation . 94

6.4.1. Comet’s Stability with Large-Scale Data Analytics 94

6.4.2. Comet’s Performance . 95

viii

6.5. Discussion . 99

7. Conclusion and Future Work . 100

A. Understanding Behavior Trends of Big Data Frameworks 103

A.1. Tradeoffs in Big Data Systems . 103

A.2. Evaluation Methodology . 106

A.3. Experimental Results . 107

A.3.1. Characterizing Behavior Patterns of Big Data Frameworks . . . 107

A.3.2. Exploring the Potential of Software-Defined Infrastructure 115

A.4. Discussion . 118

References . 120

ix

List of Tables

3.1. Shuffle r/w size of WordCount (WC) . 31

3.2. Off node data fetching of WordCount-groupByKey 32

4.1. Network bandwidth (Gbps)/straight-line distance (KM) between the four

geo-distributed data centers . 45

4.2. Characterization and configuration of warehouse applications 55

4.3. Execution time of core service of data warehouse 58

5.1. Major DMO client side APIs . 68

5.2. Input size and characteristic of Workloads 72

5.3. Shuffling size and Persistence RDD size of Workloads 72

6.1. Spark Configuration for Large-Scale Evaluation 92

6.2. Spark Configuration for Mid-scale Evaluation 92

6.3. External shuffle cluster configuration . 92

6.4. Large-Scale Workloads. 1) Recommendation Data Analysis #1, 2) Prod-

uct Violation Detection, 3) Product Tracking System, 4) Recommenda-

tion Data Analysis #2, and 5) Business Flow Tracking 93

6.5. Medium-Scale Workloads. 1) TeraSort(50GB), 2) TeraSort(1TB), 3)

Purchases and Sales Analysis #1, 4) Purchases and Sales Analysis #2,

and 5) Core Data Warehouse Application 93

6.6. Shuffle write and read labels of the workloads 98

A.1. Hadoop and Spark Workloads . 107

A.2. Hadoop and Spark Datasets . 107

A.3. CPU utilization and power consumption of Grep, K-Means, and Word-

Count execution using Hadoop and Spark 108

x

A.4. Resource utilization of PageRank execution with Spark using HDD, SSD

and NVRAM . 113

A.5. Resource utilization of Connected Components execution with Spark us-

ing HDD, SSD and NVRAM . 114

xi

List of Figures

3.1. Normalized execution time of different benchmarks using Spark RDD

persistence and different storage technologies 30

3.2. Normalized AVG LineCounter task execution time using Spark RDD

persistence and different storage choices 31

3.3. CPU utilization using Spark RDD persistence with different storage tech-

nologies and 200 GB data sets . 33

3.4. Execution time of different benchmarks using Alluxio and HDFS (hard

disk-based) . 34

3.5. CPU Utilization of LineCounter using HDFS and Alluxio with 200GB

data sets . 35

3.6. Execution time of different benchmarks using on Spark RDD Persistence

and Alluxio . 36

3.7. Task execution time of different executors using Spark Persistence in

memory and Alluxio, 200 GB data sets 37

3.8. Simulation results using RDDs in remote (i.e., off-node) resources 40

4.1. Vcores and memory utilization of three different computing clusters in

geo-distributed data centers . 43

4.2. Geographic locations of the four data centers and the network connection

between the data centers . 45

4.3. Architecture of geo-distributed data centers, which is a common archi-

tecture in cloud environments . 46

4.4. Spark data flow . 47

4.5. Dependency relationship between the services of the data warehouse use

case . 52

xii

4.6. Input, output and shuffle size of core warehouse applications (20 out of

143) . 53

4.7. Normalized execution time of Spark with local HDFS and remote HDFS 56

5.1. Memory overhead of a production computing cluster with 3,700 servers 60

5.2. Computing resources utilization of a production cluster with 3,700 servers

from 8:30 AM to 12:30 PM . 62

5.3. Input data size at different stages of a production Spark application . . 64

5.4. Remote RDMA read/write throughput for PMEM and DRAM using

25GbE network . 66

5.5. Extended memory design with remote PMEM 67

5.6. The structure of DMO-based shuffle manager 70

5.7. Total memory - Execution time of TeraSort, price protection system and

data warehouse application . 74

5.8. Total memory - Execution time of TeraSort, price protection system and

data warehouse application . 76

5.9. Total memory - GC time of TeraSort, price protection system and data

warehouse application . 77

5.10. Executor memory - GC time of TeraSort, price protection system and

data warehouse application . 78

5.11. Average network throughput of PMEM-based server with TeraSort . . . 79

6.1. Sort Based Shuffle, which sort the data partition based on the key before

send out to next tasks . 84

6.2. Comet’s overall architecture . 86

6.3. Shuffle data indexing of Comet . 87

6.4. Comet’s consistency checker architecture 88

6.5. Stateless design of Comet, which is fully compatible to Spark recover

mechanism. 89

6.6. Data flow controller with back pressure mechanism 90

6.7. Destination based aggregation mechanism 91

xiii

6.8. Number of failures of large-scale data analytics. 1) Recommendation

Data Analysis #1, 2) Product Violation Detection, 3) Product Tracking

System, 4) Recommendation Data Analysis #2, and 5) Business Flow

Tracking . 95

6.9. Execution time of large-scale workloads. 1) Recommendation Data Anal-

ysis #1, 2) Product Violation Detection, 3) Product Tracking System,

4) Recommendation Data Analysis #2, and 5) Business Flow Tracking . 96

6.10. Execution time of medium-scale workloads. 1) TeraSort(50GB), 2) Tera-

Sort(1TB), 3) Purchases and Sales Analysis #1, 4) Purchases and Sales

Analysis #2, and 5) Core Data Warehouse Application 96

6.11. Execution time of main stages Comet versus vanilla Spark. 97

A.1. Classification of the most extended (Apache-based) distributed process-

ing back-ends for big data analytics . 104

A.2. Possible (top) and observed (bottom) run time and power consumption

behavior of a data analytics workload run with Hadoop and Spark. The

real execution of the bottom is obtained using Grep (see Section A.2 for

more details) . 105

A.3. Normalized energy consumption (top) and normalized execution time

(bottom) of Grep, K-Means and WordCount using Hadoop and Spark . 108

A.4. Resource utilization and power consumption of Grep using Hadoop . . . 109

A.5. Resource utilization and power consumption of Grep using Spark 110

A.6. Energy Consumption of Grep, Kmeans, WordCount and Terasort using

HDD, SSD and NVRAM with Hadoop and Spark 110

A.7. Execution Time of Grep, Kmeans, WordCount and Terasort using HDD,

SSD and NVRAM with Hadoop and Spark 111

A.8. Resource utilization and power consumption of TeraSort with Hadoop

using NVRAM . 112

A.9. Resource utilization and power consumption of TeraSort with Spark us-

ing NVRAM . 113

xiv

A.10.Normalized energy consumption (top) and execution time (bottom) of

Grep, WordCount, K-Means, TeraSort, PageRank and Connected Com-

ponents using HDD, SSD and NVRAM with Hadoop and Spark 114

A.11.Execution time (top) and energy (bottom) vs. total storage cost 118

A.12.Execution time (top) and energy (bottom) overheads of non-SDI scenar-

ios with respect to SDI . 119

xv

1

Chapter 1

Introduction

1.1 Motivation and Background

With the growth of the scale and complexity of modern services, cloud computing

platforms have become a choice of preference to deploy services because of cost-efficient,

reliable, and high-available services. Cloud computing frameworks provide scalable and

extensible platforms to support data analytics. For example, Hadoop [1], and Spark [2]

are widely used for data warehouse analytics, machine learning analytics. Hive [3] and

Spark SQL [4] provide the structure data processing in a data warehouse; Presto [5] and

Impala [6] are the in-memory database engine for running interactive data analytics;

Storm [7], Flink [8], and Spark streaming enable high throughput streaming processing

in the cloud environment. These cloud computing frameworks provide reliable and

high-performance cloud services for petascale data warehouses.

With the growth of the scale of data and complexity of data analytics, the computing

frameworks deal with a large volume of raw data while dealing with the same or even

larger intermediate data at run time. Therefore, cloud computing frameworks need a

scalable, reliable persistent storage layer, like HDFS (Hadoop Distributed File System),

Amazon Simple Storage Service (S3), and a fast, scalable intermediate storage layer

between storage and computing layer.

The traditional distributed persistent file systems and object storage systems, like

HDFS [9] and S3, are designed to store a large number of files/objects with a large

volume of data. Thus, the design of the system is based on affordable hardware, like

spinning disks. Moreover, because of master-worker architecture, most of the existing

distributed persistent storage systems have limited bandwidth for metadata processing,

including but not limit to list status, make directories, and open files. Therefore,

2

the traditional distributed system can not offer the expected performance to various

cloud data analytics, which has high-performance requirements. At the same time, the

advanced storage devices and fast fabric interconnection, like solid-state disks, non-

volatile memory, persistent memory, and Remote Direct Memory Access (RDMA),

provide more opportunities to build high-performance persistent data orchestration for

cloud computing frameworks.

The large volume of data exchange between computing frameworks and the storage

layer can be divided into two key categories, (1) caching data, the shared data across

different stages in the same applications, and (2) shuffling data, the data exchange

themselves across the computing cluster between stages within the same application.

Efficient and high-performance data orchestration of the storage layer in cloud com-

puting frameworks running in large-scale clusters faces various challenges and requires

new approaches.

These large amounts of cloud data analytics are based on the distributed storage

systems designed based on spinning disks and low bandwidth fabric interconnection.

For example, HDFS is one of the most widely used persistent data layers in the cloud.

Such a distributed storage system provides cost-efficient and reliable persistent data

storage for cloud data analytics. However, HDFS has high I/O overhead even on

advanced storage devices as metadata operation is expensive due to metadata operations

overheads and the high latency across the network. Thus, these distributed storage

systems cannot fully utilize the performance of advanced storage devices, which are

becoming an affordable and available solution at the current time. Consequently, it is

necessary to fill the performance gap of these distributed storage systems with advanced

storage devices.

Furthermore, cloud computing’s architecture trends indicate that hybrid clouds are

becoming one of the most significant use cases in cloud computing. For example, a

computing cluster can fetch data from different data centers, regions, and even coun-

tries. These trends introduce the challenges of dealing with remote data efficiently. A

logical solution is building a caching layer between the persistent data layer and the

computing clusters. For example, Alluxio [10] builds a caching layer for hybrid cloud

3

and multi-cloud environments, which optimize the performance for frequently accessed

(or “hot”) data. However, it is still necessary to efficiently run cloud applications in

hybrid cloud models, regardless of solutions for improving hot data access.

Finally, the increasing complexity of data analytics makes the execution plan of

computing frameworks very challenging. Complex data analytics makes computing

frameworks have a higher overhead on accessing the intermediate data layer than the

persistent data layer. It makes the optimization of intermediate data access more and

more critical. For example, Spark implements a DAG (Directed Acyclic Graph) engine

to allow the cloud analytics to reuse the same job’s intermediate data. Thus, the tasks

in the same job can reuse the previous data without repeated computation. However,

there are still open challenges, such as shuffling in the Map-reduce model. Shuffling

is an n-to-n communication operation in Map-Reduced-based computing frameworks,

which profoundly slow down cloud applications processing. The stability of shuffling is

highly affected by the scale of data, a critical concern to large-scale cloud data analytics.

This dissertation explores efficient and high-performance data orchestration with

novel approaches and new hardware technologies to overcome the above concerns.

1.2 Research Challenges

The complexity of cloud architectures and data analytics poses challenges for building

efficient and high-performance data orchestration. The key challenges addressed in this

thesis are as follows:

Local Data access performance: Computing frameworks try to co-locate com-

puting units with data, which can reduce data movement across the network. Without

the network transmission between different nodes, the I/O performance for the compute

units highly depends on the local data access rate, which relies on the I/O performance

of the storage devices. For example, Spark stores intermediate data in disk or memory

to improve iterative data analytics performance. However, the limited memory space

makes it infeasible to store all intermediate data in memory. High-performance storage

devices, like NVMe, are becoming reliable and cost-effective candidates to optimize the

4

performance for the persistent data layer and the intermediate data layer. However,

there are still challenges for existing computing frameworks to utilize high-performance

storage devices’ performance fully. Thus, we must understand and provide solutions

to the primary cause of the performance gap between computing frameworks, storage

systems, and storage devices.

Data access across geo-distributed data centers: Existing data orchestration

techniques in hybrid cloud environments include caching mechanism to eliminate the

performance degradation due to the low bandwidth between geo-distributed data cen-

ters. However, existing caching techniques between geo-distributed data centers have

significant limitations. While caching policies provide significant performance gain for

hot data accesses, they do not fit for cold data accesses. An alternative solution is to

build a fast fabric interconnection model between geo-distributed data centers. Further-

more, it is necessary to investigate methods for fully utilizing the computing resources

between two geo-distributed data centers with such as fast fabric interconnection.

Utilization of computing and storage resources: The performance of cloud ap-

plications highly depends on the performance of the cloud infrastructure, including the

computing and storage resources associated with them. For example, the performance

of in-memory computing, such as Spark and Presto, highly depends on the volume of

memory. Spark has to spill the data into disks without enough intermediate data stor-

age capacity. The limitation of memory and storage resources can significantly impact

the performance of in-memory computing frameworks. As a result, it is essential to

provide enough and appropriate computing resources and storage resources to support

the in-memory computing frameworks running at the expected state.

Intermediate data storage: The primary I/O cost in cloud data analytics is

accessing intermediate data, including reusing data blocks and shuffling data. For ex-

ample, Spark uses a DAG engine to reuse data blocks in the same job. This mechanism

can reduce the computing burden of re-computing data repeatedly. Compared to reused

data blocks, shuffling, which is an n-to-n communication in Map-Reduce frameworks,

introduces unreliability and a performance bottleneck in large-scale cloud data analyt-

ics. Thus, it is necessary to optimize the reliability and accessing rate for shuffling.

5

1.3 Overview of Thesis Research

This thesis addresses the research challenges related to data analytics in cloud en-

vironments to provide efficient and high-performant data orchestration for big data

computing frameworks. It first presents a high-level data orchestration model of cloud

computing frameworks focusing on the different hardware technologies. Specifically, it

describes how different storage technologies and computing resources impact perfor-

mance using various data formats. It assesses the performance gap between DRAM,

spinning disks, and non-volatile memory. Furthermore, it explores critical performance

bottlenecks of high-performance storage devices in existing cloud-based data comput-

ing frameworks. This thesis proposes an approach to optimize cloud computing frame-

works’ performance with high-performance storage devices and enhanced serialization

and de-serialization mechanisms.

This thesis also explores mechanisms for delivering elastic computing clusters across

geo-distributed data centers to deal with scattered large volumes of data efficiently. It

investigates a scalable and efficient hybrid cloud architecture for cloud-based big data

computing frameworks to achieve resource efficiency across geo-distributed data cen-

ters. By offloading the computing burden from the local data center, it fully utilizes

the spare computing resources across geo-distributed data centers. Also, it explores the

potential of elastic computing clusters across geo-distributed data centers with fast fab-

ric interconnection. It aims to provide ways for enabling data analytics on high latency

and high bandwidth hybrid cloud-based environments, which access remote persistent

data layer and local intermediate data layer, to deliver comparable performance to

environments with local storage and computing resources. This thesis envisions an ar-

chitecture that can be deployed in real-world cloud data analytics and hybrid cloud

environments satisfying performance requirements at scale and facilitating harvesting

sparse computing resources across geo-distributed data centers.

Furthermore, this thesis proposes a method based on a disaggregated persistent

memory pool for delivering efficient and high-performant data orchestration for Map-

Reduced oriented cloud computing frameworks. The co-design of the disaggregated

6

memory pool and data analytics computing frameworks avoids single node failures due

to data skew and re-arrange memory utilization across different computing nodes. This

enhancement is achieved by replacing local shuffling and data persistence with the

proposed disaggregated persistence memory pool. The proposed method explores the

potential of edge storage technology (i.e., non-volatile memory), allowing computing

clusters to increase the memory capacity at a low cost and optimizing uneven com-

puting resource utilization. This solution is deployed and evaluated using a real-world

cloud environment tested with data analytics at scale. Moreover, RDMA technology is

explored to improve the performance of the targeted cloud computing frameworks.

Finally, this thesis studies stateless shuffling to improve cloud computing frame-

works’ stability in large-scale cloud environments at low cost. This novel shuffling ap-

proach separates the storage and computing units, making computing frameworks com-

patible with current major cloud environments. It also provides a cost-efficient method

to optimizing shuffling for Map-Reduce-based computing frameworks with HDFS, which

does not require storage systems to provide a high-throughput namespace. Specifically,

it proposes in-transit shuffling, which moves the shuffle data into a specific shuffle clus-

ter instead of the local computing nodes. The stateless shuffling is compatible with

most shuffle mechanisms and avoids holding the shuffle service’s namespace data. This

solution provides higher reliability than local shuffling in large-scale cloud environments.

1.4 Contributions

This thesis’s primary research contributions are around efficient data orchestration to

optimize cloud computing frameworks at scale. These contributions significantly en-

hance cloud computing frameworks’ efficiency and performance, which impact a broad

range of data analytics in multiple fields. The specific contributions are summarized as

follows:

• Studies representative workloads for big data processing frameworks to formulate

a performance model for cloud computing frameworks and data orchestration.

This formulation is based on different storage technologies and design choices for

7

computing clusters. It provides a fundamental understanding of different stor-

age devices’ performance gaps, including DRAM, spinning disk, and non-volatile

memory. It also explores the I/O bottleneck of in-memory big data frameworks

on high-performance computing clusters with non-volatile memory.

• Designs and explores a hybrid cloud architecture to enable elastic computing

clusters across geo-distributed data centers with fast fabric interconnection. The

overarching approach consists of harvesting spare computing resources across geo-

distributed data centers for running cloud data analytics with limited performance

loss. Different potential architectures to run cloud-based data analytics are ex-

plored. The proposed architectural foundations improve the overall computing

resource utilization across geo-distributed data centers without significant perfor-

mance loss.

• Proposes an abstraction for disaggregated memory architecture for cloud comput-

ing frameworks to optimize the performance and computing resource management

in large-scale deployments. This innovative approach increases the total cluster

memory capacity by building a shared data pool for intermediate data storage

with persistent memory and Remote Direct Memory Access (RDMA). This disag-

gregated memory architecture increases overall memory capacity with affordable

costs and improves cloud data analytics’s end-to-end performance.

• Formulates and provides a novel in-transit shuffle mechanism that can increase

cloud computing frameworks’ reliability in large-scale deployments. This mecha-

nism improves the computing cluster’s reliability by solving single-point failures

and proposes a stateless shuffle service without maintaining a separate namespace.

It is lightweight and compatible with modern in-memory big data frameworks.

1.5 Dissertation Overview

The rest of this document is organized as follows:

Chapter 2 provides the necessary background and presents an overview of related

8

techniques in achieving efficient and high-performant data orchestration for big data

computing frameworks.

Chapter 3 analyzes Spark persistence technology’s performance using different stor-

age technologies and compares native Spark persistence with the Alluxio distributed

in-memory file system. It shows that NVMe with columnar compression is an appro-

priate candidate for complementing memory in Spark clusters. It also indicates that

Alluxio has better performance than Spark persistence technology for large datasets

and that Alluxio has better load balancing than Spark persistence. Experimental re-

sults suggest that software-defined infrastructure can be a viable solution for provi-

sioning bare-metal disaggregated data center resources. They also provide significant

data points to illuminate in-memory systems’ requirements to scale next-generation

software-defined infrastructure implementations efficiently.

Chapter 4 characterizes the computing resource utilization of different geo-distributed

computing clusters and introduces the use of fast fabric interconnections across geo-

distributed data centers. Then, it explores the potential deployment with these data

centers and evaluates the system’s performance based on Spark, HDFS, and Kubernetes

in a production enterprise environment. The findings motivate exploring the potential

of using fast fabric interconnections to harvest spare computing resources across geo-

distributed data centers. Experimentation based on simulation of a data warehouse

core service shows that an elastic computing cluster across geo-distributed data centers

can speed up large data warehouse enterprise services.

Chapter 5 presents the design and implementation of a disaggregated memory sys-

tem with persistent memory for Map-reduce-based cloud computing frameworks. The

proposed system optimizes the data center’s memory efficiency with external extended

persistent memory and a disaggregated memory pool. Leveraging shuffle and persis-

tence optimization demonstrates that the system can significantly reduce the execu-

tion time for shuffle-intensive applications. The experimental evaluation of the shuffle

and persistence mechanisms using an in-memory distributed file system shows that

9

the proposed approach can also increase the overall memory capacity with low over-

head. Further, the results show persistent memory viability for implementing bare-

metal software-defined infrastructures in production enterprise environments.

Chapter 6 presents Comet, an in-transit shuffle service that improves the stability

and performance of large-scale data analytics. Comet enhances the stability of Spark by

offloading CPU and the I/O burden to the external shuffle cluster. Comet also enhances

the fault tolerance of shuffle data storing with a distributed file system instead of a local

disk, which does not have single-point failures. Furthermore, with better stability and

destination-based aggregation mechanisms, Comet can achieve significant performance

improvement compared to vanilla Spark.

Chapter 7 presents the conclusions of the thesis and proposes possible directions for

future work.

Finally, Appendix A complements the thesis’s main contributions by providing an

understanding of big data processing systems behavior and the tradeoffs associated

with the use of different architectural designs and processing frameworks. It further

motivates the thesis research focused on in-memory processing systems with deeper

memory hierarchies.

10

Chapter 2

Background and Related Work

Big data computing frameworks running in the cloud environment at scale provide

opportunities to a wide range of domains. However, delivering high-performant and

effective services requires efficient computing resource management and data orches-

tration of cloud computing frameworks. Unlike small-scale data analytics, the data

analytics at extreme scale easily suffer the single point failure from data skew and over-

loading of computing resource. As a result, it is essential to efficiently manage data

and computing resources and working with high stable data orchestration mechanisms,

which motivate this thesis research.

Typical data warehouse services in e-commerce provide core data joining and ag-

gregation services to various businesses. As they offer core data and services to many

customers with explicitly defined SLAs, delivering quality of service requirements is

critical. For example, data warehouse services in the e-commerce industry are typically

composed of data analytics sets dealing with TBs to PBs of data, running with thou-

sands of computing nodes. In these data analytics, since most of the data consumer

services are dependent on the processed data from the data warehouse service, data

analytics require fast processing while with a large scale of data. The main research

challenge for these data analytics is building a stable and high-performance persistent

data orchestration to process a large amount of data efficiently.

Business intelligent data analytics usually deal with complex data from different

data sources with complex computing logic. At runtime, the late stage of data ana-

lytics could reuse a large amount of intermediate data generated by early stages. For

example, large e-commerce companies suffer frequent price denial-of-service (DDoS)

attacks, such as coordinated product price crawling. Therefore, to efficiently support

11

such data analytics, better management of intermediate data inside data analytics is re-

quired. This chapter provides the foundations of big data frameworks to support these

issues and explores state of the art on key issues to enable existing big data computing

frameworks to deliver performant, stable, and efficient data orchestration for large-scale

cloud-based workloads.

2.1 Big Data Computing Frameworks

The proliferation of digital data provides new opportunities in all areas of science,

engineering, and industry. About 2.5 quintillion bytes of data [11] is generated every

day through the Internet. However, the increasing volume and rate of data [12],

along with the associated costs in terms of latency and energy, quickly overpower and

limit data analytics applications’ ability to leverage this data in an effective and timely

manner. The co-design process enables scientists to reason about the rich design spaces

available in software and hardware, which is fundamental for constructing the next

generations of cyber-infrastructure. While system architecture trends include larger

core counts, deeper memory hierarchies (e.g., larger amounts of non-volatile memory),

and constrained power budgets, application formulations for data analytics are trending

toward in-memory processing solutions. Nevertheless, as current solutions for data

analysis pipelines require complex solutions involving different specialized platforms and

configurations depending on application requirements, it is not clear how to effectively

realize and optimize them in these ongoing architectures. Further, ongoing processor

architectures, non-volatile technologies such as Intel Optane NVMe, and the advances

in integrated silicon photonics promise systems capable for delivering off-node non-

volatile memory latency and bandwidth comparable to PCIe-based in-node access [13],

which is essential for realizing actual software-defined infrastructures.

Current data analysis workflows may require different types of analytics, where

some are more appropriate for batch-oriented processing (e.g., Hadoop), micro-batch

processing (e.g., Spark), or near real-time processing (e.g., Storm, Flink, Heron). How-

ever, there is an increasing interest from both scientific and industry communities to

move to in-memory approaches for a broader range of analytics. Existing work [14] has

12

shown that the performance of storage devices used in Hadoop deployments impacts the

execution time of data and compute-intensive applications, and that the execution of

specific graph-based workloads is more energy efficient with Spark (i.e., Spark GraphX)

than with Hadoop (i.e., Hadoop Giraph) [15].

We studied behaviors and tradeoffs for two of the main distributed processing sys-

tems for big data analytics: Apache Hadoop and Spark, which are currently the most

widely used open-source parallel processing frameworks for big data analytics. A com-

prehensive study of representative workloads for Hadoop and Spark using different

storage technologies and design choices and an exploration of the potential of software-

defined infrastructure for big data processing frameworks, with a concentration on the

non-volatile deep memory hierarchy, are provided in Appendix A. This study motivated

us further to focus on in-memory processing frameworks as addressed in the following

sections.

2.1.1 MapReduce Workloads

A large body of literature in this area is focused on MapReduce’s workloads and runtime

instead of hardware/software co-design issues. A comprehensive study of a MapReduce

workload analyzed a ten-month workload trace from the Yahoo! M45 supercomputing

cluster [16]. However, most of existing studies focus on benchmarks instead of real

production workloads [17, 18, 19]. Other work has focused on specific issues, such as

job and task run times [16, 17, 18, 19, 20], Map vs. Reduce tasks [16, 18], CPU and

memory demand [21], I/O and data locality [18, 22], and cluster utilization, failures,

and energy consumption [16, 22]. Models for MapReduce workloads have also been

developed [16, 17, 18, 23, 24]; however, their primary focus is on job completion times.

Furthermore, different MapReduce simulators have been developed [18, 24, 25, 26, 27]

that mainly focus on simulating the execution of synthetic workloads.

Other recent research efforts, such as the Aloja project [28], aim to explore upcoming

hardware architectures for big data processing and reduce the Total Cost of Ownership

(TCO) of running Hadoop clusters. Aloja’s approach is to create a comprehensive

open public Hadoop benchmarking repository based on empirical executions. It allows

13

for comparisons between not only software configuration parameters, but also current

hardware (e.g., SSDs, Infiniband networks).

2.1.2 Energy Efficiency

Existing literature has studied the optimization of energy efficiency at the cluster level

for Hadoop MapReduce [29] by dividing the cluster into two zones: a “hot” zone

with frequently used data on higher performance processors and a “cold” zone for

low-frequency access data with a large amount of disks. Goiri et al. [30] introduced

GreenHadoop, which is powered via solar array and uses the electrical grid as backup.

Lang et al. [31] came up with the All-In-Strategy (AIS), which toggles nodes on or off

based on the amount of Hadoop jobs in the queue. Amur et al. [32] presented the power-

proportional distributed file system (Rabbit) that divides the nodes of a cluster into

primary nodes (for primary replicas) and secondary nodes (for other replicas), which

also provides a higher level of fault tolerance. Chen et al. [33] implemented Berke-

ley Energy Efficient MapReduce (BEEMR), an energy-efficient MapReduce workload

manager motivated by the empirical analysis of real-life MapReduce with Interactive

Analysis (MIA) traces at Facebook. BEEMR classifies jobs into either an interactive

zone, a full-power-ready state and batch zone, and a low-power state in order to opti-

mize energy efficiency.

Dynamic Voltage and Frequency Scaling (DVFS) has been used to improve energy

efficiency. Tiwai et al. [34] addressed CPU frequency tuning based on application type to

decrease energy consumption. Wirtz et al. [35] compared three different CPU frequency

policies for Hadoop: 1) a fixed frequency for all cores during execution, 2) a maximum

CPU frequency for map and reduce functions and a minimum CPU frequency otherwise,

and 3) an adjustment to the CPU frequency while satisfying performance requirements.

Li et al. [36] proposed temperature-aware power allocation (TAPA) to reduce energy

consumption and Shadi et al. [37] recently explored DVFS usage in Hadoop clusters.

Current research also addresses hardware and data optimization to improve energy

efficiency. Chen et al. [38] studied the energy consumption for Hadoop applications

14

in three dimensions: the number of nodes, the number of HDFS replicas and differ-

ent HDFS block sizes, and data compression methods that may improve energy effi-

ciency [22]. Yigitbas et al. [39] proposed an Intel Atom processor-based Hadoop cluster

for better energy efficiency than an Intel Sandy Bridge processor-based Hadoop cluster

with I/O-bound MapReduce workloads. Luo et al. [40] evaluated CPU frequency, mem-

ory mode, and different storage parameters for compute intensive, storage intensive, and

I/O intensive applications.

The literature summarized above can be complemented with research on MapReduce

schedulers [21, 41, 42, 43] and existing work on MapReduce frameworks for many-core

systems (e.g., the Intel Xeon Phi platform) focusing on SIMD support and performance

issues [44]. Although the thesis focus on performance and stability, considering this issue

is an important aspect for future work as described in Chapter 7.

2.2 In-memory Processing Frameworks

The rapid growth of the sheer quantity of digital data generated every day through

the internet has motivated the science, engineering, and industry communities to de-

velop big data processing frameworks. As discussed earlier, Apache’s Hadoop is one

of the most popular big data frameworks and is based on the MapReduce model for

distributed processing of large scale datasets using an affordable infrastructure. How-

ever, the increasing volume and rate of data [12], along with the associated costs in

terms of latency, quickly limit the ability of data analytics applications to leverage this

data in an effective and timely manner. For example, new requirements in different

areas of science and engineering for supporting quick response analytics (e.g., machine

learning algorithms) of data being produced or collected at high rates (e.g., real-time

streaming data) are pushing application formulations for big data toward in-memory

processing solutions. Apache Spark has become increasingly popular due to its in-

memory and directed acyclic graph (DAG) execution engine. Further, Spark provides

the abstraction of resilient distributed datasets (RDD), which is essential to deliver-

ing high-performance capabilities while remaining compatible with existing Hadoop

15

ecosystems, e.g., the Hadoop distributed file system (HDFS) and a number of high-

level APIs in Scala, Java, and Python. Another example is Alluxio (formerly known

as Tachyon [10]), which delivers a distributed file system for reliable in-memory data

sharing. However, the increasing amount of memory and power required to run com-

plex data-centric applications and workflows using in-memory processing systems are

pushing the community to explore novel system architectures (e.g., deeper memory hi-

erarchies) and new application formulations. Furthermore, DRAM memory represents

a large portion of the investment for building datacenter IT infrastructure, especially

when they target in-memory processing systems.

Understanding the limitations of current in-memory processing frameworks and the

ability to trade off response time, power consumption, and infrastructure cost is an

important concern; however, exploring system design choices for enabling next gener-

ation infrastructure to effectively support these platforms and, in turn, co-designing

new software frameworks is paramount. Ongoing processor architectures, non-volatile

technologies such as Intel Optane NVMe, and advances in integrated silicon photonics

promise systems capable of delivering off-node non-volatile memory latency and band-

width comparable to PCIe-based in-node access [13], which is essential for the imple-

mentation of software-defined infrastructures. Software-defined infrastructure is based

on the concept of resource desegregation. Previous work has explored requirements for

building disaggregated datacenters [45, 46, 47, 48], taking into consideration flash [49]

and DRAM memory [50, 51] resources as well as RDMA technologies [52]. Although

network fabric latency and bandwidth has been a major blocker for the adoption of

software-defined infrastructures, recent technological advances such as NVMe over fab-

rics [53], Intel Omni-Path, and Mellanox Quantum 200G HDR exemplify a step forward

toward this vision. Rack scale design (RSD) architecture is one of the realizations of

software-defined infrastructure. Intel RSD uses a high-performance PCIe to reduce data

transmission time within the same rack. However, the data transmission time across

different racks is still challenging. Next-generation SDI is expected to deliver lower

latency and higher bandwidth interconnects for desegregated resources (e.g., compute,

memory, and storage) within datacenters. In Appendix A we explore the potential of

16

software-defined infrastructure for HDFS targeting different storage technologies (e.g.,

NVMe); however, exploring the potential of next generation software-defined infras-

tructure for in-memory frameworks has become a critical concern, which is addressed

in chapter 3.

Existing studies in the literature have aimed at improving the performance of

MapReduce and in-memory computing frameworks, such as Spark, using different net-

work technologies and optimization strategies. Sur et al. [54] evaluated the impact

of high-speed interconnects for datacenters such as Infiniband and 10Gb Ethernet for

supporting Hadoop distributed file systems (HDFS). This work also revealed that In-

finiband and 10Gb Ethernet is more suitable for systems based on solid-state drives

than spinning hard disks. Islam et al. [55] addressed the design of HDFS using remote

direct memory access (RDMA) over Infiniband. They evaluated the performance of

Gigabit Ethernet and IP-over-Infiniband on the QDR platform, showing that Infini-

Band has much better performance than Gigabit Ethernet. Lu et al. [56, 57] proposed

a high-performance RDMA approach based on accelerating the shuffle stage for Spark

and evaluated the performance of RDMA with InfiniBand for different workloads in

Spark. Kamburugamuve et al. [58] accelerated Apache Heron using InfiniBand and

Intel Omni-path, which can increase the speed of network throughput for real-time

big data frameworks. Gupta et al. [59] used Intel Omni-Path to accelerate big data

frameworks such as Spark and Hadoop.

There are also proposals in the existing literature of optimizations for Spark using

GPU and FPGA. Manzi et al. [60] explored the potential of GPU to accelerate different

workloads (WordCount, K-Means and Sort) for the Spark framework. Li et al. [61]

developed HereroSpark, which can utilize the GPU to increase the speed of machine

learning algorithms for Spark. Rathore et al. [62] designed a GPU-based Spark system

for processing real-time large-size city traffic video data. Gupta et al. [59] proposed a

design using Xeon and FPGA to increase the speed of Spark and Hadoop.

Current research has also addressed algorithm optimization to improve the perfor-

mance of Spark. Davidson et al. [63] used RDD compression to increase the speed of

Spark, which increased the CPU utilization while reducing the I/O pressure. Chaimov

17

et al. [64] developed a file pooling layer to improve metadata performance in Spark.

The utilization of various storage technologies to improve the performance of big data

frameworks has been previously evaluated. Kambatla et al. [65] and Moon et al. [66]

explored the potential of using SSD in HDFS for accelerating Hadoop deployments.

Moon et al. also studied how to accelerate Hadoop using multiple disks.

2.3 Geo-distributed Data Centers

To process large volumes of data, big data applications require a large number of com-

puting resources. However, expanding the size of the data center computing clusters

within the same geo-location is challenging for large-scale organizations due to several

reasons, including space and power supply limitations. For example, the experiments

described in chapter 4 are conducted on a computing cluster in Beijing, with about 3,700

servers to support warehouse applications, which has reached the data center’s limits.

However, these warehouse applications support the data supply for all departments

and, as a result, the demand to reduce their execution time is increasing. Further-

more, the cost of expanding the computing capabilities by purchasing more servers can

substantially increase the total cost of ownership of enterprise data centers [67, 68],

as considerable infrastructure investments might be needed to support additional re-

sources. To reduce the total cost of ownership of enterprise data centers, we harvest

spare computing resources from existing computing clusters.

Current research efforts [69, 70, 71, 72, 73] mostly focus on low-bandwidth cloud

environments. The data transmission time for a task across data centers can determine

the execution time of applications. In most of these cases, data distribution and caching

are reasonable solutions; however, with existing fast fabric interconnections, we inte-

grate computing clusters as an elastic computing resource pool across geo-distributed

data centers. Existing work has proposed mechanisms for harvesting spare computing

resources within the same data center [74, 75]. As opposed to existing work, and based

on the observation from the analysis above, this thesis aims at efficiently utilizing com-

puting resources across geo-distributed data centers. Existing work has also explored

18

the potential and methods for utilizing geo-distributed data centers with limited net-

work bandwidth [69, 71, 72, 73]. However, these methods cannot meet the performance

requirement for large enterprise data-centric services, which can consist of hundreds or

even thousands of applications.

Chapter 4 explores the potential of the elastic computing cluster abstraction across

data centers, explores scheduling strategies for data warehouse applications, and pro-

vides meaningful evaluations of the proposed approach in real-world, large-scale com-

puting cluster deployments.

2.4 Resource Management for In-memory Big Data Analytics

The increasing generation of data at high rates is creating new requirements for large-

scale enterprise applications from different business areas. For example, faster big data

analytics are critical for supporting speedier business intelligence and for leveraging

the recent advances in machine learning. This trend is pushing big data analysis sys-

tems toward high-performance in-memory processing solutions. However, in-memory

big data processing systems impose a significant memory burden on the data center

enterprise, especially in terms of capital and operation costs.

To deliver high performance, the computing infrastructure must provide sufficient

DRAM memory to hold large amounts of intermediate data. In addition, it is common

to see a data skew in production applications as the data size increases. A common

practice in production environments is to over-allocate the memory assigned to the data

workers. This lowers overall memory utilization and increases the data center’s memory

requirements. At the same time, real large-scale production data centers are facing

several challenges, such as uneven resource utilization levels between CPU and memory

and the expensive cost of DRAM memory. As a result, these factors are limiting how

data centers can deliver high-performance in-memory big data applications efficiently.

Both academia and industry have devoted significant efforts to design and imple-

ment data center architectures to optimize the use of novel hardware technologies.

19

However, advances in processor, memory, storage, and network technology show dif-

ferent growth and demand trends. Therefore, data center architectures that are built

based on the vision of server-centric resources face significant challenges with adopting

the latest hardware innovations quickly [76, 77]. Conversely, disaggregated data center

designs allow different resources to be scaled independently, enabling the faster adop-

tion of novel hardware developments at a lower cost. In turn, enterprise applications

can effectively obtain full value from an advanced disaggregated infrastructure and its

associated investments. This is especially beneficial for supporting in-memory big data

frameworks. However, to address the challenges associated with upgrading data center

infrastructures at affordable cost, co-designing applications with innovative memory

system architectures is essential. To address these challenges, chapter 5 provides an in-

memory big data processing system using disaggregated memory resource. The system

is based on a state-of-the-art in-memory big data framework and a novel in-memory

distributed file system.

Existing research has considered disaggregated resources with advanced infrastruc-

ture to increase the performance and compute resource efficiency for big data frame-

works. Existing research [57, 56, 64, 78] has explored the potential of RDMA for Spark.

Gao et at.[47] address the network requirements of disaggregated data centers, and

compare the performance loss of different network latency and bandwidth. Rao et

al. [79] compare Spark SQL’s performance with different memory bandwidth. The in-

dustry has already proposed disaggregated data center architectures with PCIe and fast

fabric interconnects such as the Intel Rack Scale Design (RSD) for rack-scale disaggre-

gation [80], HP’s “The Machine” concept [81], and Facebook’s proposed disaggregated

data center [82].

Existing related research efforts have also explored the potential of remote page

caching [83, 84, 85, 86]; however, unlike existing approaches, we increase the memory

capacity of the data processing cluster with large-volume DIMM-based persistent mem-

ory (PMEM) [87] and the abstraction provided by the proposed in-memory distributed

file system co-designed with PMEM. With our approach described in chapter 5, we

implement a disaggregated memory pool without modifying the kernel. Furthermore,

20

instead of remote page caching, our implementation can transparently employ disaggre-

gated memory resources in a data processing cluster using Spark [88] and the proposed

in-memory distributed file system.

2.5 Shuffling in Data Analytics

A large amount of data is stored in the companies’ data warehouse, which is from

different businesses and also used for different purposes. Besides, the rapidly increasing

data not only add a heavy burden to the storage systems but also addresses a series

of challenges to data analytics frameworks, e.g., Spark [88], Presto [89], Flink [8] and

Map-Reduce [90],

In order to process large amounts of data efficiently, modern services use data anal-

ysis frameworks to process large amounts of data across hundreds, even thousands of

nodes concurrently. These frameworks are not only involved in ETL services but also

play an essential role in Business Intelligence services, e.g., data pre-processing, machine

learning. Further, since the cloud ecosystem has become more and more important in

building modern services, it is essential to make data analytics frameworks compati-

ble with the cloud ecosystem. To achieve better parallelism, the modern data analytic

frameworks divide a large task into small tasks [91, 92, 93, 94, 95]. With this mechanism,

the data analytic can process a large amount of data efficiently. However, the n-to-n

communicating operation can be the primary performance and stability bottleneck in

these frameworks. For example, the shuffling operation can be the main drawback in

Spark because of the high cost of network transmission, data skew, and stability issues.

The existing optimization for data-intensive analytics mostly focuses on data source

optimization [96, 10, 97]. However, these works either assume the cost of data source

can be the dominating cost of the whole job, which is not always true in the production

environment. For example, one of major I/O cost in the core data warehouse appli-

cations of a large e-commerce enterprise is shuffling, like data sorting and joining. In

these scenarios, the cost of the data source is not the dominating cost of jobs. The cost

of n-to-n communication intermediate data can be the main cost of these jobs.

21

As we observed in production services [98], shuffling is one of the most expensive

operations in current data analytics, which is a common scenario across different frame-

works. For example, the modern distributed computing frameworks suffer performance

degradation because of the substantial cost of shuffling [99, 100]. Recent research on

shuffling has considered how to optimize the performance of shuffling through I/O per-

formance optimization.

2.5.1 Shuffling Optimizations

Existing work [98, 101, 102, 103] proposes performance optimizations of Spark shuffling

with wither data aggregation, or high-performance memory pool. Other performance

improvements of big data analytics framework are based on improving the access effi-

ciency of shuffle data and spill data. Themis [104] reduces the number of I/O access for

shuffling to spinning disks to improve the performance of shuffling. TritonSort [105] im-

plements the efficient and high preferment distributed sorting system based on Themis.

However, since Themis is specifically designed for sorting problems, it can not cover

general shuffle cases in data analytics frameworks.

Sailfish [103] proposes the concept I-file to aggregate the shuffle data, which decrease

the number of I/O requests, to optimize the performance of shuffling for Map-Reduce.

However, Sailfish uses customized HDFS, which has an extra cost on modifying the

under-layer distributed file system. COSCO [106] build efficient shuffle service with

warm storage [107], which manages and aggregates shuffle data with independent shuffle

scheduler. Riffle [101] leverages the mapper side aggregation shuffle service for Spark.

However, as we notice in the production environment, the overuse of I/O causes the

instability of the computing node, which decreases the stability of the whole cluster.

Furthermore, Riffle ensures fault tolerance with keeping the original copy of shuffle

data, which is not space-efficient. In some worse cases, like severe data skew, it can

occupy a large amount of space and I/O bandwidth of local disk. Spark presents the

sort based shuffle service [63] instead of the original hashed based shuffle service, which

aggregates the shuffle data inside the same JVM. With sort based shuffle service, Spark

enhances the stability and performance of large-scale data analytics.

22

The optimizations proposed in existing literature involve expensive software cost or

hardware upgrading, which is expensive for production environments.

2.5.2 I/O Challenges

Generally, we can divide the I/O cost of Spark into data source cost and interme-

diate data cost. Most of the time, data analytics access the data layer while read-

ing/write intermediate data from the internal data structure. Dremel [96] has explored

the high-performance nested format for data analytics frameworks. Different nested

high-performance data formats, which are related to Dremel, are widely used in the

companies’ data warehouse with different frameworks, e.g., [108, 88, 89]. Besides, exist-

ing works reduce the gap between cloud storage systems and data analysis frameworks.

For example, Alluxio [10] builds the unified data engine to connect storage systems

with data analytics frameworks with a caching mechanism. These works solve most

of the existing challenges related to data source, storage system, and data analytics

frameworks. These solutions (e.g., Hive, Spark, and Presto) can be leveraged to build

a stable and efficient service in a production environment; however, there are critical

performance and unstability issues that are related to intermediate data.

Compared to the research related to the data source, there are still lots of remaining

challenges to building an efficient intermediate data layer in a large-scale cloud environ-

ment. The modern data analytics frameworks use memory to store intermediate data

for better performance. For example, one of the most significant innovations of Spark

is storing intermediate data in memory. With this mechanism, Spark can have much

better performance than Map Reduce in iterative jobs with the DAG engine. However,

the hungry framework asks for more and more memory to meet the requirement of fast

computation, but we can not always provide enough memory to this data analytics.

The data analytics sometimes suffer performance degrading and failure because of the

lack of memory.

Furthermore, the frequent disk spilling results in soft failures, like time out and

failure of requests. The I/O overhead for shuffle spilling significantly decrease the per-

formance of in-memory data analytics. For example, Spark uses a sort based shuffle

23

service. Data analytics suffers O(nlogn) of usage to local disk, which is affordable

with memory access but not affordable with spinning disk access. Thus, the data an-

alytics frameworks have significant performance degradation or failure with inefficient

memory [109]. Different from the data sources, it is expensive to build high-reliable

middleware for intermediate data in a large-scale environment. For example, Crail [102]

uses NVMe and RDMA to build high-performance intermediate storage for the current

Spark shuffle service. DMO [98] build hyper-converged infrastructure with persistent

memory [110] and RDMA, to optimize the shuffling and RDD caching performance of

Spark. What is more, Riffle [101] built an external aggregation scheduler to optimize

the performance of Spark shuffling. To do so, Riffle aggregates the shuffle data at the

mapper side, which increases the overloading of disk I/O at the mapper side. Sail-

fish [103] proposes a new Map-Reduce framework with aggregating intermediate data.

However, the Sailfish require the specific file system, which supports multi-writer and

multi-reader. Some of the most popular cloud distributed file systems, e.g., HDFS [9]

and S3 [111], do not support the multi-writer. As opposed to existing work, it is nec-

essary to build a cloud-native shuffle service, which is affordable to current hardware

infrastructure and software infrastructure, like hard disk drive and HDFS, with succinct

architecture.

Chapter 6 focuses on the design and implementation of this in-transit shuffle service,

which is stable and cost-efficient in the cloud environment.

24

Chapter 3

Exploring the Potential of In-memory Big Data

Frameworks

This chapter focuses on understanding the behaviors and limitations of current in-

memory frameworks, thus leading to insights regarding design choices toward next-

generation software-defined in-memory frameworks. Our empirical experimental evalu-

ation focuses on persistence methods for in-memory processing frameworks, i.e., Spark

and the use of Alluxio. It revolves around an empirical evaluation of Spark persistence

methods using different storage technologies and Alluxio, which answers questions re-

lated to behaviors and limitations of current in-memory processing systems, provides

meaningful data points to better understand requirements and design choices for next-

generation software-defined infrastructure and explores the use of disaggregated off-rack

memory and NVMe via simulation due to the limitations of current network fabric in-

terconnects.

3.1 Understanding In-Memory Big Data Frameworks

3.1.1 Spark Persistence

Spark RDD persistence (or caching) is one of Spark’s key capabilities, allowing it to

deliver low latency and high performance. It allows users to store intermediate RDD

into memory, disk, or a combination of memory and disk and reuse them in other actions

on that dataset. Spark persistence technology can dramatically increase the speed of

Spark applications (often by more than 10x [112]) with proper configuration and using

programming best practices, especially in iterative applications.

Spark uses several approaches to RDD persistence. Memory can be used to store

25

RDDs as de-serialized Java objects when they have enough memory space to store

intermediate RDD datasets. Because RDD datasets are stored as de-serialized Java

objects in memory, the required memory space has to be estimated based on an “ex-

pansion Index” and the size of the original dataset. Using memory with de-serialized

Java objects is the fastest Spark persistence mechanism when sufficient memory space

is available. Spark provides three different approaches to persist RDDs when insuffi-

cient memory space is available. The most straightforward way is to use block storage

(e.g., disk) as an addition to memory. Spark can also store a whole RDD into block

storage; however, in most cases, this approach is slow. RDDs can also be stored as

serialized Java objects, which is less CPU-efficient compared to using de-serialized Java

objects. Furthermore, Spark can also use off-heap memory (i.e., memory that is outside

of executors) as storage space for persistent RDD.

3.1.2 Spark Persistence Memory Management

Spark memory management is based on Java Virtual Machine (JVM) memory man-

agement. Spark divides the memory into execution and storage, based on the different

memory usages. The memory used for computation in shuffles, joins, sorts, and aggre-

gations is considered execution memory and the memory used for caching (Spark RDD

persistence with memory) and internal data transfers within clusters is considered stor-

age memory. Former versions of Spark (version <1.6) implemented persistence using

static memory management, which used differentiated memory spaces for execution and

storage memory. With this approach, storage memory cannot use execution memory

even when the execution memory is not utilized. To resolve this drawback, Spark intro-

duced the current unified memory management, which merges execution and storage

memory.

Important aspects of unified memory management in Spark include the following:

1. Spark reserves 300 MB of memory for the system as default.

2. Unified memory represents the execution and storage memory, which can be cus-

tomized (spark.memory.fraction, default 0.6).

26

3. The rest of the heap memory includes user data structures, internal metadata in

Spark, and safeguarding against out-of-memory errors (default 0.4).

In comparison with static memory management, unified memory management allows

storage memory to use more memory when demand for execution memory is not high.

More importantly, execution memory can evict storage memory if there is not enough

memory in the unified space, while storage memory has minimum space protection.

3.1.3 Spark Data Locality and Delay Scheduler

Data locality plays an important role in Spark. It specifically organizes the data into

three main levels based on locality:

1. Data can be fetched from the same JVM as the running executor.

2. Data can be fetched from the same node (data from other executors in the same

node, e.g., HDFS and Alluxio data in the same node).

3. Data can be fetched from the same rack of the cluster.

The first option is clearly the fastest, the second a bit slower, and the last one is the

slowest because datasets must be sent over the network. Spark checks whether there

are any available datasets in the same JVM as the running executer. If Spark cannot

find datasets in the same JVM as the running executor, then it checks for data within

the same node; otherwise, it checks for data in the same rack.

3.1.4 Alluxio

Alluxio (formerly known as Tachyon) is a distributed in-memory storage system; it has

an API similar to HDFS but aims at accelerating big data frameworks by using mem-

ory technology as the main substrate for implementing the distributed file system. In

this thesis, we use Alluxio to accelerate Spark executions and implement persistency

models that have the potential for supporting data coupling between multiple Spark

applications. However, there are some important differences between Alluxio and Spark

27

persistence models. On the one hand, predictability (e.g., estimating execution time)

is more complex in Spark as its persistence mechanisms, such as unified memory man-

agement, evict storage memory when possible. On the other hand, Spark cannot easily

share intermediate data (i.e., RDDs) with other applications and platforms. In this

contribution, we evaluate and compare the performance of Alluxio and Spark persis-

tence models to understand software design issues that should be considered in future

implementations targeting next-generation software-defined infrastructure.

3.2 Evaluation Methodology

This section describes three aspects of the experimental evaluation methodology. First,

we evaluate Spark RDD persistence using different methods and storage technologies:

• Memory (MEMORY ONLY).

• Memory with serialized Java objects (MEMORY ONLY SER).

• Disk only (DISK ONLY), using NVMe and hard disk.

Please note that storing RDD datasets with serialized Java objects requires trading

off CPU utilization and I/O speed. We explore the need for using serialized Java

objects when using NVMe technology. Second, we compare the traditional disk-based

distributed file system that uses HDFS with an in-memory virtual distributed storage

system (Alluxio). Alluxio is not intended to replace persistent distributed storage

systems; rather, it provides a faster intermediate storage layer that interfaces with

other file systems (e.g., HDFS, Amazon S3) and big data frameworks (e.g., Spark)

to speed up data access. However, we compare these two approaches to understand

the potential tradeoffs between cost and performance. Third, we study Spark RDD

persistence with Alluxio. We use MEMORY ONLY and MEMORY ONLY SER as

storage levels for Spark, and Alluxio uses memory as its only storage device. Finally,

based on the results obtained from the empirical evaluation, we explore via simulation

different scenarios using remote memory and NVMe for Spark data persistence.

28

3.2.1 Testbed and System Configuration

The empirical executions were conducted on the NSF-funded research instrument com-

putational and data platform for energy-efficiency research (CAPER). CAPER is an

eight-node cluster based on a SuperMicro SYS-4027GR-TRT system with a flexible con-

figuration. The servers have two Intel Xeon Ivy Bridge E5-2650v2 (16 cores/node) and

the configuration used in this work includes 128GB DRAM, 1TB Flash-based NVRAM

(Fusion-io IoDrive-2), 2TB SSD, 4TB hard disks (as a RAID with multiple spindles,

as recommended by best practices), and both 1GbE and 10GbE and Inbiniband FDR

network connectivity. This platform mirrors key characteristics of datacenter infras-

tructure, which will allow us to extrapolate our models to larger systems and make

projections.

We configured the big data framework and distributed storage file system as base-

lines using commonly used and balanced configurations without specific optimization.

The characteristics of the system configuration are described as follows. Spark version

2.0 was deployed using YARN. One server was configured as Master and six servers were

configured as Slaves. Hadoop version 2.7 (with HDFS) was deployed using YARN. One

server was configured as the Name Node and six servers were configured as Data Nodes.

Alluxio version 1.5 was deployed on seven servers, with one server configured as Master

and six nodes configured as Workers. The system was configured with 24 executors,

using 4 cores each. The JVM memory was set to 20GB and 16GB for Spark Driver and

Executor, respectively.

3.2.2 Workloads and Data Set

The evaluation is focused on three types of benchmarks:

1. LineCounter (I/O intensive application).

2. WordCount-reduceByKey (I/O and network intensive application).

3. WordCount-groupByKey (network intensive application).

All of these three workloads are based on real data from Wikipedia in text format.

29

Furthermore, LineCounter is the most I/O intensive and WordCount-groupByKey is

the most network intensive of these benchmarks. The executions are conducted using

data sets of different sizes for different benchmarks, from 10GB to 250GB (50GB-

250GB for LineCounter, 10GB-250GB for WordCount reduceByKey and 10GB-40GB

for WordCount groupByKey).

3.3 Experimental Results

3.3.1 Spark RDD Persistence

This section explores the impact on Spark RDD persistence performance of using dif-

ferent storage technologies. Although Spark RDD persistence can be configured using

different storage levels, including memory, Spark clusters cannot always provide suffi-

cient memory capacity for co-locating the application and persisted datasets. When

insufficient memory is available in the system, Spark uses additional storage levels such

as the hard disk to store RDDs as serialized Java objects, i.e., it extends the data

memory space with storage devices. Because the serialization of Java objects requires

significant CPU resources, there is a tradeoff between memory space and application

execution performance.

There is an ”expansion Index” for de-serialized Java objects, which means that

the required storage space for RDDs is bigger for de-serialized Java objects than for

serialized Java objects. For the particular case of LineCounter, the expansion index

is 2.09. We assigned 480GB of memory to Spark executors, thus providing Spark

with 288GB of available unified memory. As a result, the experiments discussed in

this section using Spark persistence on disk persists up to 250GB of data; however,

only 100GB of data are persisted in experiments using Spark RDD persistence with

de-serialized Java objects in memory.

According to the results shown in Figure 3.1a, the execution time of LineCounter

using RDD persistence with de-serialized Java objects is the shortest among the tested

methods because Spark does not de-serialize the RDD datasets during the execution.

The average task execution time for each task is about 20 ms; however, Figure 3.2

30

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

50 100 150 200 250

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

Dataset Size (GB)

Memory w Deserialized Java Objects
Memory w Serialized Java Objects

Disk w HDD
Disk w NVMe

(a) LineCounter

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

10 20 30 40 50 100 150 200

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

Dataset Size (GB)

Memory w Deserialized Java Objects
Memory w Serialized Java Objects

Disk w HDD
Disk w NVMe

(b) WordCount-reduceByKey

 0

 0.5

 1

 1.5

 2

10 20 30 40

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

Dataset Size (GB)

Memory w Deserialized Java Objects
Memory w Serialized Java Objects

Disk w HDD
Disk w NVMe

(c) WordCount-groupByKey

Figure 3.1: Normalized execution time of different benchmarks using Spark RDD per-
sistence and different storage technologies

presents the normalized average task execution time.

Figures 3.1b and 3.1c show the execution time of WordCount-reduceByKey and

WordCount-groupByKey. Both of them have same result with same input data, but

WordCount-groupByKey has much more shuffle data than WordCount-reduceByKey,

which is shown in Table 3.1.

Figure 3.1b shows that WordCount-reduceByKey with persisted deserialized Java

Objects provides the best performance. However, as the data size increases, the cluster

can not offer enough storage memory. This causes performance degradation with 50

GB and larger data sets. Furthermore, the experimental evaluation shows that NVMe

provides high performance, which can match the performance of memory with serialized

31

 0

 1

 2

 3

 4

 5

50 100 150 200 250

N
or

m
al

iz
ed

 A
ve

ra
ge

 T
as

k
Ti

m
e

Dataset Size (GB)

Memory w Deserialized Java Objects
Memory w Serialized Java Objects

Disk w HDD
Disk w NVMe

Figure 3.2: Normalized AVG LineCounter task execution time using Spark RDD per-
sistence and different storage choices

Java Objects.

Data Size WC-reduceByKey (GB) WC-groupByKey (GB)
10 GB 0.76 2.4
20 GB 1.53 4.6
30 GB 2.3 6.7
40 GB 3.1 8.7

Table 3.1: Shuffle r/w size of WordCount (WC)

Compared to WordCount-reduceByKey, WordCount-groupByKey shows quite low

performance. This is not only because of the shuffle size. GroupByKey is a quite

expensive task because it sends data to the assigned executors, which consumes most

of the memory and network resources. Once the data set increases to 30GB, Spark

evicts part of the data from memory. Thus, Spark needs to calculate the required data

block again. As a result, it is easy for GroupByKey to trigger the delay scheduler. Table

3.2 shows the number of off-node blocks that are needed to be fetched for WordCount-

groupByKey.

While the execution of LineCounter using Spark RDD persistence with serialized

Java objects in memory is slower than with de-serialized Java objects, its execution

with serialized Java objects on NVMe has performance similar to that using memory for

persisting the serialized Java objects. Although these results might be counterintuitive,

the de-serialization of Spark RDD uses most of the CPU resources in Spark tasks. In

32

other words, the I/O throughput is not the bottleneck for persisting RDD datasets with

serialized Java objects on NVMe (or memory).

Data Size Memory Memory w Ser HDD NVMe
10 GB 0 0 0 0
20 GB 0 0.4 0.4 3
30 GB 21.2 1.4 3 3
40 GB 31 4.6 1.2 4.2

Table 3.2: Off node data fetching of WordCount-groupByKey

The execution of workloads using Spark RDD persistence with serialized Java ob-

jects on hard disk drives is the slowest method, as expected. However, this is not

necessarily only because hard disk drives are slower than memory and NVMe. As

shown in Figure 3.2, the processing time for each task increases significantly as the

dataset size increases from 50GB to 250GB (specifically from under 1 second to about

10 seconds). There are two main reasons for this workload slowdown: (1) as datasets

become bigger and bigger, the operating system cannot offer sufficient memory buffer

to accelerate the data fetching, and (2) as tasks require longer and longer processing

time, it eventually exceeds the threshold of the delay scheduler, which means that it

will fetch data from a remote node instead of a local one.

We choose LineCounter here to analyze different persistence technologies. Fig-

ures 3.3a and 3.3c show that the CPU utilization of the cluster is almost 100% at

the beginning and middle stages of the workload execution. This is because Spark

consumes most of the CPU resources in de-serializing the RDD datasets. Thus, the

bottleneck of Spark persistence is not the I/O throughput with NVMe and memory

(with serialized Java objects). This indicates that NVMe is a good candidate to replace

traditional storage when the amount of memory capacity is constrained. Furthermore,

Spark has almost the same performance with memory and NVMe combined with com-

pression (columnar compression in Spark) while NVMe has a lower cost than memory.

Figure 3.3b shows that the workload CPU utilization ranges from 20% to 60% using

Spark RDD persistence with a hard disk drive. This indicates that the I/O throughput

is the bottleneck when using the hard disk, while the bottleneck is the processor when

33

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35

C
PU

 U
til

iz
at

io
n

(%
)

Time (s)

CPU utilization
CPU wait

(a) Memory (Java serialized objects)

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 100 200 300 400 500 600 700

C
PU

 U
til

iz
at

io
n

(%
)

Time (s)

CPU utilization
CPU wait

(b) Hard disk

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35 40

C
PU

 U
til

iz
at

io
n

(%
)

Time (s)

CPU utilization
CPU wait

(c) NVMe

Figure 3.3: CPU utilization using Spark RDD persistence with different storage tech-
nologies and 200 GB data sets

using NVMe or memory. We conclude that Spark RDD persistence using NVMe with

compression as an intermediate data buffer can achieve almost the same performance as

using memory and, therefore, using remote non-volatile memory has a large potential

for supporting in-memory processing data persistency using NVMe over fabrics and/or

current generation software-defined infrastructure.

3.3.2 Comparative Study of HDFS and Alluxio

Compared to HDFS, the most important difference when using Alluxio is in the memory

utilization approach. As shown in Figures 3.4a, 3.4b and 3.4c, Alluxio is much faster

than HDFS for all dataset sizes. Because HDFS is based on a hard disk and Alluxio is

34

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

50 100 150 200 250

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

Dataset Size (GB)

Alluxio
HDFS with HDD

(a) LineCounter

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

10 20 30 40 50 100 150 200 250

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

Dataset Size (GB)

Alluxio
HDFS with HDD

(b) WordCount-reduceByKey

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

10 20 30 40

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

Dataset Size (GB)

Alluxio
HDFS with HDD

(c) WordCount-groupByKey

Figure 3.4: Execution time of different benchmarks using Alluxio and HDFS (hard
disk-based)

based on an in-memory storage layer, these two distributed file systems have different

bottlenecks. We also choose LineCounter to show the detail insights. Figures 3.5a

and 3.5b show that the I/O throughput is the bottleneck for HDFS while the CPU

performance (deserialization speed) is the bottleneck for Alluxio. However, although

Alluxio is much faster than HDFS, it is not expected to replace HDFS in the short

term because memory is still a very expensive resource in datacenters. Alluxio seems

a very promising solution not only as an intermediate layer between HDFS and Spark

but also as a means to provide mechanisms for data coupling in data-centric workflows

as discussed below. Furthermore, Spark can pre-fetch required data into Alluxio, which

can improve the overall performance of Spark applications. This is especially relevant

35

 0

 5

 10

 15

 20

 25

 0 50 100 150 200 250 300 350 400 450 500
C

PU
 U

til
iz

at
io

n
(%

)
Time (s)

CPU utilization
CPU wait

(a) HDFS

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30

C
PU

 U
til

iz
at

io
n

(%
)

Time (s)

CPU utilization
CPU wait

(b) Alluxio

Figure 3.5: CPU Utilization of LineCounter using HDFS and Alluxio with 200GB data
sets

if we expect low-latency access to remote non-volatile memory, which is a current trend

in architecture.

3.3.3 Spark RDD Persistence vs. Alluxio

In this section, we evaluate the performance of Alluxio with two different Spark persis-

tence technologies. Because Alluxio stores the serialized dataset in its own system, we

store Spark RDDs as serialized Java objects in Alluxio using memory and NVMe. As

shown in Figures 3.6a, 3.6b and 3.6c, Spark persistence technology shows better per-

formance than Alluxio using both memory and NVMe with small datasets. However,

Alluxio shows better performance with large datasets compared to Spark persistence.

This is because Alluxio has better load balancing and high-throughput optimization

than Spark persistence technology. As a result, in order to improve the execution of

Spark applications, Spark persistence is more appropriate for small datasets and Alluxio

36

 0

 10

 20

 30

 40

 50

50 100 150 200 250

Ex
ec

ut
io

n
Ti

m
e

(s
)

Dataset Size (GB)

Memory w Serialized Java Objects
Disk w NVMe

Alluxio

(a) LineCounter

 0

 50

 100

 150

 200

 250

 300

 350

10 20 30 40 50 100 150 200 250

Ex
ec

ut
io

n
Ti

m
e

(s
)

Dataset Size (GB)

Memory w Serialized Java Objects
Disk w NVMe

Alluxio

(b) WordCount-reduceByKey

 0

 50

 100

 150

 200

 250

 300

 350

10 20 30 40

Ex
ec

ut
io

n
Ti

m
e

(s
)

Dataset Size (GB)

Memory w Serialized Java Objects
Disk w NVMe

Alluxio

(c) WordCount-groupByKey

Figure 3.6: Execution time of different benchmarks using on Spark RDD Persistence
and Alluxio

is more appropriate for large datasets.

We also choose LineCounter here as an example to give detailed insights. As shown

in Figure 3.7, the tasks’ execution time (i.e., execution time of the different executors)

using Spark persistence and Alluxio are almost the same. However, Alluxio is more

stable than Spark persistence. Because Spark application execution time is dominated

by the longest executor, Alluxio provides better overall performance than Spark per-

sistence. This indicates that new models for data persistency might be needed for

optimizing in-memory processing systems using next-generation software-defined in-

frastructure.

37

 0

 20

 40

 60

 80

 100

 120

 0 5 10 15 20 25 30

Ta
sk

s
Ti

m
e

(s
)

Task Time from Small to Large

Spark Persistence
Alluxio

Figure 3.7: Task execution time of different executors using Spark Persistence in mem-
ory and Alluxio, 200 GB data sets

3.4 Simulation-Based Evaluation

In order to set a baseline configuration for our software-defined infrastructure model, we

divide the Spark model into two parts: (1) a model for estimating Spark’s application

execution time, and (2) a model for estimating the datacenter interconnect transmission

time. Our model also considers key aspects of current software-defined infrastructure

such as Intel Rack Scale Design (RSD).

Specifically, in this architecture the storage node is connected to compute nodes

using high-performance PCIe, which requires a new data locality strategy in Spark.

Based on this architecture, we define data locality using two approaches, rack and off-

rack. We assume that our Spark cluster is based on the computing nodes that are on

the same rack. Because of the resource pool design of RSD, we assume that Spark can

access remote memory and disk while there are insufficient resources in the local Spark

cluster.

We build the Spark execution time model based on the experimental evaluation re-

sults discussed above, which provides a baseline performance characterization of current

software-defined infrastructure1. Our model is built upon the performance prediction

model by Wang et al. [113]. The execution time of a Spark stage is described as follows:

1For reproducibility, the experiments to build the model are provided in GitHub at
https://github.com/HelloHorizon/SBAC-PAD-18

38

TimeStage = Timestart +
P

max
c=1

Kc∑
i=1

TimeTask + Timecleanup

where P is the total number of processor cores available in the cluster. In Spark,

the executors fetch tasks from a task pool once an existing task is completed, and thus

different processor cores deal with different numbers of tasks in one stage. Kc is the

number of finished tasks for a given core c.

Based on the assumptions described above, a Spark cluster can fetch persisted

RDD datasets from a remote storage device through a fast (i.e., low-latency and high-

throughput) datacenter interconnect, which means that data can be fetched from remote

memory or remote NVMe (e.g., via RDMA). In order to build the Spark execution time

model targeting next-generation software-defined infrastructure, we must consider sev-

eral parameters in our design choices, including network bandwidth, network latency,

and the size of the RDD dataset.

Different models have been proposed in the existing literature to estimate the cost of

data transmission over networks. For example, Thakur et al. [114] proposed the α+nβ

model to estimate the cost of one message sent between two nodes. In this model, α is

the latency of each message, β is the cost of transferring one byte, and n is the number

of bytes in the message. Thus, we can drive our model for estimating data transfer cost

as follows:

Timenetwork = α+
SBlock ×Ntasks

B

where α is the latency of each message, SBlock is the size of each block in Spark, and

B is the available bandwidth between two nodes. Because Spark runs multiple tasks at

the same time, Ntask represents the number of tasks running at the same time.

In the simulations, we assume that the Spark cluster does not have enough memory

capacity to store the intermediate Spark RDD datasets. We also assume that remote

resources in the same datacenter can provide additional memory and NVMe as storage

for Spark persistence.

39

Because different Spark clusters share the datacenter’s network bandwidth, we tar-

get the execution time of Spark applications for different network design choices in terms

of bandwidth. We assume that next-generation software-defined infrastructure will be

capable of delivering off-node bandwidth comparable to PCIe-based infrastructure but

with a baseline of 400Gbps, which vendors have advertised as being available in the

market in the near future [13]. We consider the datasets from section 3.3, i.e., 200GB

in serialized format. The input parameters for the simulations can be summarized as

follows:

• 20-100% RDD data sets stored in remote resources

• 10-100% network bandwidth available for the cluster

• 400 Gbps network bandwidth with RDMA technology

• RDD data sets persisted in NVMe (serialized format)

• RDD data sets persisted in memory (de-serialized format)

As shown in Figure 3.8a, if a Spark cluster can monopolize the datacenter’s band-

width, then the execution time becomes shorter as available bandwidth increases. Spark

applies the columnar compression to decrease I/O pressure on the storage devices. Be-

cause the network bandwidth is sufficiently provisioned in the simulated system, we sim-

ulate the Spark execution time with RDD datasets in de-serialized format. Figure 3.8a

shows that Spark with de-serialized RDD datasets performs better than Spark with se-

rialized RDD datasets when available bandwidth exceeds 280Gbps. Further, when the

larger RDD datasets are persisted on remote resources, Spark with de-serialized RDD

datasets has worse performance. In summary, Spark performance with de-serialized

RDD datasets is better than its performance with serialized RDD datasets when there

is sufficient network bandwidth available or when the dataset is small.

As shown in Figure 3.8c, Spark cannot fully utilize the network bandwidth using

the targeted software-defined infrastructure. According to our model and Figure 3.8c,

Spark with de-serialized RDDs can decrease the execution time by leveraging current

40

 0

 20

 40

 60

 80

 100

40 80 120 160 200 240 280 320 360 400

Ex
ec

ut
io

n
Ti

m
e

(s
)

Avaliable Bandwidth (Gigabit)

25% remote
50% remote
75% remote

100% remote

(a) Execution time, remote RDDs using
NVMe

 0

 20

 40

 60

 80

 100

40 80 120 160 200 240 280 320 360 400

Ex
ec

ut
io

n
Ti

m
e

(s
)

Avaliable Bandwidth (Gigabit)

Execution Time of Spark with Remote RDD(on Remote Cluster memory)

25% remote
50% remote
75% remote

100% remote

(b) Execution time, remote RDDs using
RAM

 0

 20

 40

 60

 80

 100

40 80 120 160 200 240 280 320 360 400

U
 (%

)

Avaliable Bandwidth (Gigabit)

Serialized Remote RDD
Deserialized Remote RDD

(c) Network bandwidth utilization

Figure 3.8: Simulation results using RDDs in remote (i.e., off-node) resources

high-bandwidth network fabrics; however, we conclude that the current standard im-

plementation of Spark is not expected to fully exploit future interconnects (e.g., tech-

nologies based on silicon photonics).

3.5 Discussion

In this chapter, we analyzed the performance of Spark persistence technology using dif-

ferent storage technologies and compared native Spark persistence with the Alluxio dis-

tributed in-memory file system. We observed that NVMe with columnar compression is

a good candidate for complementing memory in Spark clusters. We also concluded that

Alluxio has better performance than Spark persistence technology for large datasets and

found that Alluxio has better load balancing than Spark persistence. Results indicate

that software-defined infrastructure can be a viable solution for provisioning bare-metal

disaggregated datacenter resources and provide meaningful data points to illuminate the

41

requirements of in-memory systems to efficiently scale next-generation software-defined

infrastructure implementations (e.g., 400G MSA vs. 400/800G embedded optics vs.

PCIe 5.0).

While this work represents the foundation or a segment in the most ambitious path

towards software-defined in-memory frameworks, the insights obtained from this work

are critical for our undergoing work on a caching system for combining Spark and

Alluxio more efficiently.

42

Chapter 4

Elastic Computing in Geo-distributed Data Centers

We found the computing resource utilization of different data centers differs in the

time scale and the spatial scale. For example, the computing resource utilization of

online service clusters (e.g., a search and online shopping service) can be much lower

than off-line service clusters during particular periods, because the system has to re-

serve computing resources for periods requiring peak computing capabilities (e.g., 200%

computing resources compared to normal operations). Another difference is in the time

scale, as the busy time of online service clusters is typically daytime, while offline service

clusters can be busy at that time (e.g., running Extract, Transform, Load workloads).

As the resource utilization of offline service clusters is usually high (70% to 90%), run-

ning online services simultaneously may require significant additional resources to avoid

resource contention and/or workload performance degradation. With the consideration

of network latency and bandwidth as key factors, we explore the use of fast fabric

interconnections to overcome this problem.

This chapter focuses on a data warehouse service, which deals with a large vol-

ume of data, i.e., hundreds of GBs to tens of TBs per application at a PB-level data

warehouse. To better understand the performance of different methods with fast fabric

interconnection, we first characterize two different situations:

• Performance of data warehouse applications with a storage cluster (HDFS) within

the same data center.

• Performance of data warehouse applications with a remote storage cluster (HDFS).

Based on the findings from our empirical performance evaluation, we investigate

methods for fully utilizing the computing resources between two geo-distributed data

43

centers with fast fabric interconnection and the abstraction of an elastic computing

cluster. The results of the experimental evaluation provide support for harvesting spare

computing resources across geo-distributed data centers as this approach can accelerate

large-scale big data services, such as the evaluated data warehouse service

4.1 Resource Utilization of Computing Clusters

We first discuss the main challenges faced in this work with an analysis of the computing

resource utilization of a real production enterprise computing cluster. Then we evaluate

the two proposed types of deployment to estimate the performance and cost of network

transmission between geo-distributed data centers.

We leverage data collection with an internal monitor platform, big data Platform

Eye (BDPEYE), which is used in production services. With BDPEYE, users can col-

lect different types of metrics from different components (hardware metrics, application

metrics, cluster metrics, etc.). We select metrics from schedulers (YARN and Kuber-

netes) to show the computing resource utilization of different data centers.

0

40

80

120

160

200

12 AM
4 AM

8 AM
12 PM

4 PM
8 PM

12 PM

Nu
m

be
r o

f V
Co

re

(th
ou

sa
nd

)

Time

Allocated VCores Total VCores

Cluster #1

0.00

300.00

600.00

900.00

12 AM
4 AM

8 AM
12 PM

4 PM
8 PM

12 PM

Siz
e

of
 M

em
or

y
(T

B)

Time

Allocated Memory Total Memory

Cluster #1

0

50

100

150

200

12 AM
4 AM

8 AM
12 PM

4 PM
8 PM

12 PM

Nu
m

be
r o

f V
Co

re

(th
ou

sa
nd

)

Time

Allocated VCores Total VCores

Cluster #2

0

200

400

600

12 AM
4 AM

8 AM
12 PM

4 PM
8 PM

12 PM

Siz
e

of
 M

em
or

y
(T

B)

Time

Allocated Memory Total Memory

Cluster #2

0

20

40

60

80

12 AM
4 AM

8 AM
12 PM

4 PM
8 PM

12 PM

Nu
m

be
r o

f V
Co

re
(th

ou
sa

nd
)

Time

Allocated VCores Total VCores

Cluster #3
Number of Allocated VCores

0

50

100

150

200

12 AM
4 AM

8 AM
12 PM

4 PM
8 PM

12 PM

Siz
e

of
 M

em
or

y
(T

B)

Time

Allocated Memory Total Memory

Cluster #3
Size of Allocated Memory

Figure 4.1: Vcores and memory utilization of three different computing clusters in
geo-distributed data centers

44

BDPEYE collects monitoring information every 30 sec. As part of this work, we

collected one month (August 2018) of monitoring information from two different pro-

duction computing clusters. To show the available computing resource for Spark, we

leverage CPU and memory utilization from clusters in Figure 4.1. Based on the com-

puting resource utilization of the computing clusters, we classify the potential states

of the computing clusters into three categories: overloaded (applications waiting in the

queue), healthy (no applications waiting in the queue), and free (the cluster can offer

computing resources to other clusters).

Resource limitations in a single data center. With the limited space and

power supply in the same geo-location, it is difficult to expand the data center and

provide the abstraction of unlimited servers. Because of this reality, in many cases,

large production services cannot achieve good performance with limited computing

resources. In practice, large Spark applications usually cannot get enough executors

(consisting of CPU and memory) on time, which causes a significant performance loss in

the production environment. As we can see from the analysis above, we have to find an

efficient way to solve these performance challenges with existing computing resources.

4.2 Harvesting Spare Computing Resources in Geo-distributed Data

Centers

Harvesting spare computing resources within the same data center has been proposed in

previous work [74, 75]. As opposed to existing work, and based on the observation from

the analysis above, we efficiently utilize computing resources across geo-distributed data

centers. Existing literature [69, 71, 72, 73] has also explored the potential and methods

for utilizing geo-distributed data centers with limited network bandwidth. However,

these methods cannot meet the performance requirement for large enterprise data-

centric services, which can consist of hundreds or even thousands of applications. This

challenge is explained in detail and analyzed in section 4.5.

To illustrate the proposed method in building a disaggregated computing resource

45

Figure 4.2: Geographic locations of the four data centers and the network connection
between the data centers

pool between geo-distributed data centers, we use a case scenario described in Fig-

ure 4.2. The figure shows four data centers distributed in four different regions: Beijing

Daxing district (DC #1), Beijing Haidian district (DC #2), Beijing Tongzhou district

(DC #3), and Langfang city (DC #4). Please note that the figure is a sketch and does

not provide the exact location of the data centers.

Table 4.1: Network bandwidth (Gbps)/straight-line distance (KM) between the four
geo-distributed data centers

DC #1 DC #2 DC #3 DC #4

DC #1 - / - - / 38 - / 33 760 / 37

DC #2 - / 38 - / - - / 43 760 / 70

DC #3 - / 33 - / 43 - / - 960 / 38

DC #4 760 / 37 760 / 70 960 / 38 - / -

Table 4.1 shows the network bandwidth and straight-line distance between the four

data centers. The real network transmission distance is longer than the straight-line

distance. Considering the availability of the high bandwidth network, we formulate

two design choices of big data analytics with geo-distributed data centers. As shown

46

in the table (the capabilities delivered by the data centers with fast and high-capacity

fabric interconnections), big data analytics has the potential to benefit from additional

remote spare computing resources.

4.3 Spark-based Services on Cloud Resources

Currently, cloud computing service providers such as AWS (Amazon Web Services),

Google Cloud and Tencent Cloud provide various big data analytics services, includ-

ing data processing, ETL (extract, transform, load) workflows, and machine learning.

Cloud computing service providers usually provide elastic computing resources with

a core storage cluster. Furthermore, some of them also provide auto-scaling services

for dynamically increasing storage capabilities (i.e., avoiding data loss). For example,

AWS, Google Cloud and Tencent Cloud [115, 116, 117] provide elastic computing clus-

ters for Spark services and Google Cloud provides auto-scaling services for the storage

layer (HDFS).

Data Center

Spark Cluster

Data Center

HDFS Cluster

Spark Cluster

Data Center

HDFS Cluster

Spark Cluster

Data Center

Spark Cluster

Global
Network

Agent

Figure 4.3: Architecture of geo-distributed data centers, which is a common architecture
in cloud environments

In the use case scenario discussed in this work we have the same Spark service within

several different geo-distributed data centers, as illustrated in Figure 4.3.

47

4.4 Modeling the Computing Cost Across Data Centers

Because the elastic computing cluster is built with geo-distributed data centers, we

estimate the cost of network transmission across data centers. Based on our formulation,

we can see that it is more realistic for us to use separate computing clusters than one

computing cluster. Existing work [70, 118, 119, 120] proposed network models to

calculate the network transmission for big data analytics (e.g., MapReduce Hadoop,

Spark, Flink). We adapt the model to fit the targeted elastic cluster model to run with

big data analytics.

Executor JVM

Partition

Partition

Partition

Partition

Mapper

Mapper

Mapper

Mapper

Sort & Spill

Sort & Spill

Sort & Spill

Sort & Spill

Disk
Indexed

File

Indexed
File

Indexed
File

Indexed
File

Executor JVM

Reducer

Reducer

Reducer

Reducer

Figure 4.4: Spark data flow

To formulate the cost of network transmission, we use Spark [88] with HDFS [9] as

a driving use case. The main costs of data transmission over the network in Spark are

read data from HDFS, shuffle, and write the result back to HDFS. Figure 4.4 shows the

basic data flow for Spark. Spark can implement efficient data locality mechanisms when

Spark executors read data blocks from a local node or in a small computing cluster;

however, it is harder for Spark to read data blocks from a local node in a large-scale

environment. In contrast to the data locality of input data and output data, Spark has

good data locality within JVM (memory persistence) and a local disk (disk persistence)

for intermediate data. To simplify the formulation, we assume all input and output data

is transmitted through the network while intermediate data is not. Thus, the cost of

the (network) data transmission (N) can be abstracted as follows:

N = Ninput +Nshuffle +Noutput (4.1)

48

Spark assigns a set of operations, which process part of the data within a sin-

gle process individually. Thus, the Spark performance model can be abstracted as a

MapReduce problem. In a traditional MapReduce problem, the performance pattern

can be abstracted as a directed acyclic graph G ∈ {V, E}.

• Stage is the basic process step in Spark, which is divided by the shuffle operation.

V is a set of stages.

• E is a set of edges, which represent the execution time of the stages.

Before we formulate the cost of each edge E , we need to elaborate on the shuffling

process in Spark. We consider the sort-based shuffle in Spark, which is used in the

production environment. Spark shuffle can be classified into shuffle write and shuffle

read. Shuffle write happens in the “map” phase, while shuffle read happens in the

“reduce” phase. Different from MapReduce in Hadoop, Spark does not offer network

overlapping transmission for shuffle data. The “reducers” read shuffle data after all

“mappers” are finalized in Spark. We can formulate the performance of a single task in a

“reducer” as Ttask = Texecution+Tdisk+Tnet and in “mapper” as Ttask = Texecution+Tdisk).

• Texecution is the task computing time.

• Tdisk is task disk I/O time, which includes the disk persistence time, shuffle write

time in the “mapper” phase, and shuffle read time in the “reducer” phase. We

can formulate the disk I/O time for Spark as Tdisk = Sdisk
Bdisk . Sdisk is the shuffle

data size for a single task, and Bdisk is the disk bandwidth.

• Tnet is the task network transmission time. Furthermore, the main network com-

munication cost are shuffle and fetching input data, and writing output data. To

further formulate the network transmission time of shuffle, we use the α−β model

[114]. Although there are more models, α − β model is suitable for the problem

that we address. Thus, we can formulate the network transmission time Tnet as

Tnet = αSnetn + Snet
β . α is the latency for sending a message, β is the network

bandwidth between two nodes, Snet is the size of shuffle read, and n is the size of

each message.

49

Thus, we can formulate the execution time (Tapplication) for Spark as follows:

Tapplication =
∑n

i=0
Tstage =

∑n

i=0
max(Ttask)

=
∑n

i=0
max(Texecution + Tdisk + Tnet)

=
∑n

i=0
max(Texecution +

Sdisk

Bdisk
+ α
Snet

n
+
Snet

β
)

(4.2)

To calculate the cost of network transmission intra-data centers and across data cen-

ters, we adopt the equations (4.1) and (4.2) in the targeted geo-distributed computing

cluster model. The total network transmission (N) can be divided into intra-data cen-

ter transmissions (Nintra) and across-data centers transmissions (Nacross). Currently, we

use Kubernetes [74, 121] as the primary scheduler for Spark. In this work, we address

two types of deployment to implement the elastic computing cluster for Spark, as shown

in Figure 4.3.

We use the driving example to illustrate the cost of network data transmission

between geo-distributed data centers for a single Spark application with a single com-

puting pool and separate computing pools. Spark gets the available executors (the

basic computing unit of Spark) from all four geo-distributed data centers when using

a single computing pool. We assume Spark receives the same number of executors

from n data centers in this scenario. Conversely, Spark receives all input data from the

local data center or a single remote data center for separate computing pools. Thus,

we can calculate the cost of network data transmission across data centers for a single

computing pool as follows:

Nacross =
n-1

n
(Ninput +Noutput +

n-1

n
Nshuffle) (4.3)

We calculate the cost of network data transmission across data centers for multiple

separate (individual) computing pools as follows:

Nacross =
n-1

n
(Ninput +Noutput) (4.4)

For example, warehouse application #6 is a Spark SQL job with 2,666GB input

data, 3,714 GB shuffle data, and 16 GB output data. We assume that this warehouse

application runs on a 300-node computing cluster. The volume of network data trans-

mission across the data centers is 299
300×

3
4×3, 714+ 3

4×(2, 666+16) = 4, 789GB for single

50

computing pools, and 299
300 × 2, 666 = 2, 657GB for multiple individual computing pools.

The latency between the data centers is longer than the latency within a data center,

and the shuffle in Spark could be small all-to-all data communication. The IOPS for

shuffle is usually very large [101], which results in high overhead for Spark shuffle data

transmission. This calculation does not consider the network transmission, because of

the delay scheduler in Spark [122], and metadata transmission with the master node.

Note that when this is taken into account, the network transmission could be even

higher for a single computing cluster environment.

We adopt the performance equation (4.2) for geo-distributed data centers. Because

of the hardware performance gap between different data centers, Spark can have a sig-

nificant performance gap or imbalance for different tasks in the same stage. Further, the

data skew phenomena are typically found in large-scale enterprise computing clusters

with real production data [123]. Scheduling a heavy task in Spark in a low-performance

node could cause a significant execution imbalance between different tasks in the same

stage.

Based on the analysis above, we can characterize the features of geo-distributed

data centers as follows:

• The hardware performance in different data centers can have significant differ-

ences. For example, because a new data center may use a newer and better-

performing CPU and memory with larger network bandwidth, the performance

of Spark in the new data center (DC #4) can save in practice 30% to 50% execu-

tion time compared to the old data center (DC #3), depending on the application.

• The data source of the applications is usually in a single data center. Because the

volume of the existing data source is huge, it is very challenging to make a copy

in each data center.

• The total network bandwidth between data centers is smaller than the total

bandwidth within the data center. With fast fabric interconnection between

data centers, we can afford part of the network transmission in Spark across

geo-distributed data centers.

51

A Spark application running in several data centers at scale can suffer the long

tail problem because of hardware heterogeneity. As we can see from equation (4.2), the

execution time Texecution strongly depends on the performance of the CPU. However, the

variability in the CPU performance of servers in different data centers can be significant.

Thus, the long tail problem can lead to a large waste of computer resources. As a result,

we try to schedule the application within the same geo-location rather than across geo-

distributed data centers, when possible.

4.5 Experimental Methodology

In this section, we characterize the core services of the data warehouse application

running in the production environment. Then we use the data warehouse application

workloads to evaluate the performance of the system, locally and with a configuration

that uses remote resources.

4.5.1 Data Warehouse Applications Characterization

Data warehouse applications provide data services to various businesses, which include

user information, order information, shipping information, and storage information,

among others. In the time scale, the core service of the data warehouse processes all

historical data and provides the data for second-day services. In large-scale enterprises

such as JD.com, hundreds of PBs of data are stored in an HDFS cluster, and the

data warehouse service has to process about a PB of data every day. For large-scale

warehouse applications, tens and even hundreds of data requests are fetched from the

distributed file system, and tens of TBs of shuffle data are generated during runtime.

Thus, the computing cluster has to provide a large volume of computing resources to

allow Spark to provide a reasonable performance.

The services in the enterprise generate an incredibly large volume of data every

day. Therefore, the data is stored in a high-compression format to save storage space.

Furthermore, there are thousands of input tables, and some of the applications are

dependent, so the whole warehouse chain can be divided into seven layers. Figure

52

G50

G26

F141

F93

F94

F95

C52

C18

C17

H9

G27

B1

H5

G24

H8 G25

H3 G20 F139

G1

G18

F32

F96

F101

H13

G28

F92

G42

G29

E149

F25 E34

D1

C41

C39

B11

D143

B10

F61

E148

D26

F60

D25

D123

G41

G30

E143G43
F142

D124

C35

B8

D114

C34

C31

C30

C33

C29

A14

D115

D113

D111

D125

C36

B9

D116

D112

D119

D135

A12D137

C32

B5

D122

D121

F35 E44

D36

E230 D152

H1

E219 D153

C25

C49

G40 F128

E199

D31

E188

D130

D131

E227

D156

D132

E189

E187 D133

E200

E190

E198

E280

C15

B2

D217

D40

E195

E194

E197

E191

E279

E192

F160 E269

D215

D222

D214

D219

E283

D41

C23
D42

C20

D44

C21

E232 D154

D73

D70

C6

D74

D75

F82

E146

B6

D120

E158

E156

E161

G69

F126

G70

F168

E78

D68

F107

E151F106

F68

F108

F56

E153

F74

E152

F58

E154

F98

E157

A3

F97

F165

F167

F166

F102

E162

F121

G66

G67

G68

B13

C19

A4

A5

C1

B0

C0 A6

A0

G32

C50

C48

B12

G33

C8

C12
A1

C13

A11

A2

F140

F138

E145

E174

E175

E285

D218

A7

A8

E178

E177

F76

E97

E96

D168 C51

D147

G19

E274

E271

C78

C77

E268

F150

D216

D221

E277

E278

F41 E59

D38

F39 E58

F37

E55

D37

F42

E54

F36 E57

F40 E56

F44

E51

D34

F43

E50

F34

E53

F47

E47

D35

E139

E138

E137

E142

D2

E140

E141

E159

E273

E136

H15 G61

F77

F46 E45

D39

E186 D129

H16

F172

F2 E9

F80

E229 D163

F73

G36 F110

E228 D162

D146 C45

D174

D175

C46

C47

F45 E46

D169 C42

D148

C43

F38 E48

D33

D170

D166

D167

D165

D164

G31

F78

E110 D88

F15 E27

E114 D84

E113 D83

E112 D81

E111 D80

F153 E231

F158

H14

F65 F64

D220

B17

E40 D16 D17

F4 E33

D0

F3 E32

F9 E31

F23 E30

E41 D18

E42 D19

G63 F151

A13

H19

A10

A9

H18 G62

F109

E98

E117 D94

E95

E116 D92

E115 D93

F5 E11

G8

G35

G34

F22 E10

F26 E24

F19 E25

F20 E26

F1 E12

F16 E21

F14 E22

F13 E23

F24 E29

F17 E13

G23

F8 E16

D4

F164 E281

G49 F124

G38 F127

G47 F131

F159

G48 F123

F120

F79

G39 F129

E226

E217

E216

E218

F130

F173

F125

F12 E19

F10 E18

E52

F11 E17

D43

D14

F175 E282

F174 E284

D32

G64

F6 E14

E267

E270

F30

H10

H11

H6

H12

H7

F112

F18 E28

F162

E275

E276

F161

F170

H17

F169

E185

F163

E8

Figure 4.5: Dependency relationship between the services of the data warehouse use
case

4.5 shows the dependency relationship of the warehouse applications. This dependency

graph has 435 warehouse applications (143 core data warehouse applications), including

basic data movement and a data checker, among others. The figure shows the relation-

ship between all warehouse applications, including data processing, data movement,

data scanning, etc.

In the experimental evaluation, we selected the core services of the data warehouse

as the target workloads. The core services of the data warehouse involve a large number

of applications, and the data warehouse applications involve a large volume of data that

varies in size. Figure 4.6 shows the input, output, and shuffle(r/w) size of 20 (out of

53

0.00

0.00

0.10

1000.00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

No
rm

al
ize

d
Siz

e
lo

g1
0(

TB
)

Application Index

Input Size Output Size Shuffle(r/w) Size

Figure 4.6: Input, output and shuffle size of core warehouse applications (20 out of 143)

143) data warehouse applications from the enterprise production environment.

We observe that the core data service of the data warehouse has the following

requirements and characteristics:

• High-performance requirements. Because the data service provides data support

for other services, the service must be finished as soon as possible.

• Large volume of data with a high-compression format. With the incredible in-

creasing volume of data, high-compression formats can help distributed file sys-

tems provide sufficient storage space.

• Large number of applications with several dependent layers. The data warehouse

application has pre-requested data warehouse applications in the data pipeline.

Thus, the data warehouse application in the next layer cannot start before all

applications from the previous layer have finished.

• The input data varies in size. The input data size of the warehouse applications

can be significantly diverse, which can cause a big imbalance in the required

computing resources.

The targeted core service of the data warehouse runs on a computing cluster with

about 3,700 compute nodes and includes 143 Spark SQL applications. However, it is

hard for each data warehouse application to obtain sufficient computing resources on

time, especially applications that require a large volume of data (i.e., require more

computing resources to deliver adequate performance). In practice, although we use

1,000 executors, sometimes, the application may receive only about 400 executors from

the computing cluster.

54

The executor is the minimum computing resource unit, composed of virtual cores

and memory, in Spark. Currently, each unit has the same number of virtual cores and

memory; therefore, we can calculate the number of available executors for a particular

application as follows:

Executoravailable = Min(
Memoryavailable
Memoryexecutor

,
V Coreavailable
V Coreexecutor

)

4.5.2 Testbed

Our testbed is composed of 294 nodes in a production computing cluster. The servers

have two Intel(R) Xeon(R) CPU E5-2640 v2 @ 2.00GHz processors, and the configu-

ration used in this work includes 256 GB DRAM, and 40 GbE network connectivity

between each server. We configure the big data framework, container management sys-

tem, local distributed file system as the baseline with the same configuration as with

the remote distributed file system. Spark version 2.3 was deployed using Kubernetes

version 1.10, CentOS version 7.5 and HDFS version 2.7. We reserve one core (3.1%)

and 2 GB (0.8%) memory for Kubernetes, and three cores (9.4%) and 9 GB (3.5%)

memory for the operating system.

4.5.3 Workloads

As we discussed above, our approach proposes building an elastic computing pool with

individual computing clusters. However, in the geo-distributed environment, the loca-

tion of data storage could be different than the computing resources. We decide to

place the Spark application in different data centers without considering data location

based on two reasons: (1) it is hard for engineering to predict the available computing

resource in data centers, and (2) most of the existing data is located on the single data

center. Thus, it is important for us to find a way to use spare geo-distributed comput-

ing resource efficiently. Based on this condition, we evaluate the performance of Spark

with remote HDFS and local HDFS. Finally, we use two deployed HDFS systems on

data centers #3 and #4, individually.

To evaluate the performance gap between the local data source and remote data

55

source, we select six (typical) warehouse applications from the core service of the data

warehouse as shown in table 4.2. We use the input data from production HDFS as

standard data. Further, table 4.2 shows the input and output size of warehouse ap-

plications. Since we need to meet SLA (Service Level Agreement) requirements, we

use the most performant configuration for warehouse applications. Thus, we allocate

enough memory resource to every executor. The number of cores in each executor is

based on the best practices in production environments, which can fully use the I/O

throughput for both JVM and disk in the same executor. Furthermore, to evaluate the

different type of warehouse applications, we choose different types of applications from

the core service of data warehouse, including:

1. Compute-intensive application: CPU bound application.

2. Shuffle intensive application: Spark write and read shuffle data into local disk [124],

thus shuffle intensive application is network and disk I/O intensive application.

3. I/O intensive application: disk I/O bound application.

Table 4.2: Characterization and configuration of warehouse applications

App ID Input Size Output Size Shuffle Size #Executors Mem/Cores

#1 795 GB 2.6 GB 1.00 GB 1000 20 GB/5

#2 165 GB 309 GB 110 GB 1000 20 GB/5

#3 1843 GB 421 GB 2031 GB 1250 24 GB/5

#4 2.85 GB 2.92 GB 2.44 GB 1 20 GB/5

#5 15.1 GB 4.6 GB 7.4 GB 300 20 GB/5

#6 2666 GB 16 GB 3714 GB 1000 20 GB/5

4.6 Experimental Results

We use Spark with local HDFS as a performance baseline. Then we evaluate the

performance of Spark with remote HDFS, which has a separate storage cluster and

computing cluster. For each test, we run it five times and use the average execution

time as a reference for the performance of the warehouse applications using Spark with

local HDFS and Spark with remote HDFS.

56

96%
98%

100%
102%
104%
106%
108%
110%

#1 #2 #3 #4 #5 #6

No
rm

ila
ze

d
Ex

ec
ut

io
n

Ti
m

e

Application index

Local HDFS Remote HDFS

Figure 4.7: Normalized execution time of Spark with local HDFS and remote HDFS

Figure 4.7 shows the normalized execution time of the warehouse applications with

respect to the execution time of Spark with local HDFS. We can observe that the

execution time of Spark with the local data source and with the remote data source is

almost the same.

In a real production environment, to ensure that the data warehouse core services’

execution time is within the SLA constraints, all requests from other queues may need

to be suspended until the core service has finished. The main reason is that the comput-

ing resources in the same geo-location are not enough for such a large service. Thus,

we want to harvest the spare computing resource from other data centers. Further-

more, existing research has explored pre-data movement methods based on computing

resource prediction. However, because of the growth of and change in existing work-

loads, the pre-data movement is challenging to implement in practice. It is also hard

to transmit the required data to remote computing clusters based on the computing

resource availability before runtime. Thus, transmitting runtime data across data cen-

ters is an efficient way to reduce the computing resource utilization burden in a single

computing cluster.

Since we cannot experiment with the performance and resource utilization of the

core service of a data warehouse with four data centers, we implement a simulator

to reproduce the performance and resource utilization of this system across four geo-

distributed data centers. We simulate the execution time for the core services of the

data warehouse, and the CPU and memory utilization for four geo-distributed data

57

Algorithm 1: Task scheduler policy

1 Function Storage Device Priority ;
Input : APPpool, Appindex, Appprerequest, Appcores, Appmemory, Apptime,

Clusterindex, Clusterindex cores, Clustersindex memory

Output: Texecution

1: start time;
2: while APPpool is not empty do
3: for i = 1; i <= Appindex; i+ + do
4: if Appprerequest == true then
5: if Appcores >= Cluster1 cores&Appcores >= Cluster1 memory then
6: Assign Application into cluster 1;
7: else if FindMax(Cluster2−4) then
8: if Appcores >= Clusterindex cores&Appmemory >= Clusterindex memory then
9: Assign Application into cluster index;

10: end if
11: else
12: No cluster available;
13: end if
14: end if
15: end for
16: end while
17: end time;

return (Texecution);

centers. In this simulation, based on the existing production environments, we assume

that we have one storage cluster in data center 1, and an elastic computing cluster

across four different geo-distributed data centers. The performance of a single node

in the computing clusters of the various data centers differs. However, to simplify the

model, we assume that different computing clusters in different data centers have similar

performances.

To simulate the overall performance of the elastic computing cluster with the ware-

house applications, we use the workloads of the core warehouse applications as shown

in Figure 4.7. We profile the core utilization, memory utilization, and running time of

143 core warehouse applications in a production environment. The simulation scheduler

policy is described in Algorithm 1.

We mark the co-located computing cluster, which has the same geo-location as a

storage cluster, as the highest priority in the scheduling algorithm. It tries to assign

applications to cluster 1. Once computing cluster 1 cannot offer enough computing

resources to the application, the scheduler assigns remote computing clusters to the

58

Table 4.3: Execution time of core service of data warehouse

Scenario Computing cluster execution time (s)

#1 #1 8,408

#2 #1,#2 5,908

#3 #1,#2,#3 5,272

#4 #1,#2,#3,#4 5,272

application following a round-robin policy. The scheduler then checks the available

computing resources in each remote computing cluster before assigning one. Next, the

scheduler places the application in the computer cluster that has more available com-

puting resources in different data centers. Further, we divide the core service of the

data warehouse into seven layers based on the dependency relationship of their ser-

vices. Thus, the scheduler cannot start a data warehouse application without finishing

the prerequisite data warehouse applications first. Furthermore, we assume that each

computing cluster has 10,000 CPU cores with 53 TB of memory.

Table 4.3 shows the execution time of the data warehouse core service within a single

data center, and with harvesting spare computing resources across geo-distributed data

centers, based on the approach described above.

4.7 Discussion

In this chapter, we characterized the computing resource utilization of four different

geo-distributed computing clusters. Then we introduced the use of fast fabric intercon-

nections across the geo-distributed data centers. We explored the potential deployment

with these data centers. Then, we evaluated the performance of the system based on

Spark, HDFS, and Kubenetes in a production enterprise environment. Based on the

results, we explored the potential of using fast fabric interconnection to harvest spare

computing resources across geo-distributed data centers. We built a simulation based

on a data warehouse core service, and then we verified that we could build an elastic

computing cluster across geo-distributed data centers, which can speed up large data

warehouse enterprise services.

59

Chapter 5

Resource Management for In-memory Big Data Analytics

This chapter first characterizes the computing resource efficiency of a real production

enterprise data center. It addresses the uneven utilization of memory and CPU, and

then we address the bottleneck of the current in-memory big data framework within

an existing data center. It also characterizes the remote read and write performances

of large-volume DIMM-based persistent memory (PMEM) and DRAM, enabling us

to explore the potential of PMEM as an affordable replacement for DRAM, used in

a disaggregated memory pool. Next, it presents the design and implementation of

the proposed in-memory big data processing system using disaggregated memory with

Spark and an in-memory distributed file system called Distributed Memory Objects

(DMO).

We present the design and implementation of an external shuffle service with DMO,

leading to a savings of up to 72% in execution time with shuffle-intensive Spark ap-

plications having the same memory consumption. Furthermore, we present the design

and implementation of extended external storage for Spark data shuffling and per-

sistence with DMO and large-volume PMEM. We empirically evaluate our system’s

performance with real production workloads, which demonstrates that the system can

increase memory capacity at affordable cost and with low overhead compared to using

DRAM exclusively. Finally, we discuss the impacts of our approach on real production

data processing systems at scale.

5.1 Analysis of the Efficiency of Data Center Computing Resources

Before discussing the details of our proposed approach, in this section, we provide a

detailed utilization analysis of computing resources in a real production data center

60

with 3, 700 servers from a large e-commerce company. This characterization will enable

us to understand the bottlenecks of current production computing clusters. We first

analyze the utilization of computing resources (both CPU and memory) during one

month (August 2018), and then we analyze the performance pattern of real production

applications.

We collected profiling data through an internal cluster monitoring tool. The data

includes multiple system metrics from the data center’s computing cluster running big

data analytics using Spark.

As the focus of this work is on computing resource management, we use the allo-

cation information of the YARN scheduler collected through the monitoring tool, to

analyze the utilization of the CPU and memory, which are the most important com-

puting resources in the cluster.

In order to illustrate the computing resource utilization in a data processing cluster,

we define cluster memory overhead MEMOverhead as:

MEMoverhead = CPUutil −MEMutil

where CPU utilization CPUutil is the ratio between the number of allocated CPU cores

and the number of allocable CPU in the cluster, and memory utilization MEMutil is

the ratio between the amount of allocated memory and the amount of total allocable

memory in the cluster.

Figure 5.1 shows the memory overhead of the computing cluster during the data

collection period. The average memory utilization is mostly above that of the CPU

utilization for the data center. Therefore, the big data processing frameworks that run

on the computing cluster cannot fully utilize the available CPU cores because of limited

-10.00%
0.00%

10.00%
20.00%
30.00%
40.00%
50.00%
60.00%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

M
em

or
y

O
ve

rh
ea

d(
%

)

Day

Figure 5.1: Memory overhead of a production computing cluster with 3,700 servers

61

memory resources. In the following section, we discuss the current memory architecture

and memory management of Spark, and explain the high memory utilization of the

computing cluster.

5.2 Spark Memory Management and Shuffle Service

Spark, which is one of the most powerful big data frameworks [88], uses memory to

speed up large-scale data processing. In this section, we describe the latest memory

management and shuffle service used in Spark (version 2.3) and provide cost analysis

based on its current memory management and architecture.

5.2.1 Spark Memory Management Optimization

In Spark, data is abstracted as resilient distributed datasets (RDD) [125], which repre-

sents a collection of objects partitioned across a set of compute nodes. RDDs include

the lineage information, which can help Spark applications recompute the RDDs to

ensure data reliability upon task failures. Spark tries to keep all RDDs in memory to

ensure fast access to the data and uses the disk when memory space is insufficient.

Spark divides memory into two main regions, execution and storage memory. The

execution memory is mainly used for storing the objects required during the execution of

Spark tasks. The intermediate data of shuffle is stored in execution memory. Execution

memory will not be evicted for storage memory purposes. The storage memory is

a region of memory used for caching and for intermediate serialized data. We are

facing two key challenges regarding the optimization of the performance and computing

resource utilization in Spark:

• Tuning Challenge: Although computing resource tuning can help adjusting the

amount of memory to the Spark application, it is hard to set the optimal config-

uration for every application because (i) enterprise data centers can run tens of

thousands of applications in the computing cluster every day; and (ii) the size of

input data vary every day.

62

• Uneven utilization of computing resources: Current cluster is not typically de-

signed for running in-memory big data frameworks and, as mentioned in previous

sections, the utilization of the CPU is lower than the utilization of the memory. As

a result, there is significant under-utilized CPU resource in the computer cluster

while memory may not be sufficient to persist data in memory.

Spark has several optimization strategies, such as dynamic memory tuning at run

time, which is called “Dynamic Resource Allocation”. In this strategy, Spark applica-

tions request computing resources back to the computing cluster if they are no longer

being used, and they request computing resources again when needed [126]. However,

we found that dynamic resource allocation cannot solve this problem in a production

system for two reasons.

On the one hand, Dynamic Resource Allocation can only kill or start an executor

to release currently unused resources early but cannot address the waste of processing

resources due to an imbalance between CPU and memory utilization. Figure 5.2 shows

the memory and CPU utilization of the production computing cluster from 8:30 AM to

12:30 PM during a workday. The memory utilization of the entire cluster can remain

close to 100% for a long period, while utilization of the CPU ranges from 30% to 70%,

representing a large waste of CPU resource. On the other hand, once a resource is

freed in production environments, the scheduler may take a long time to get enough

executors for the same Spark application because of computing resource racing. The

memory utilization of the entire computing cluster reached 100%, so it cannot offer

enough executor memory to the Spark applications in the following stages on time.

100.00

200.00

300.00

400.00

500.00

600.00

700.00

8:3
0

8:5
3

9:1
5

9:3
8

10
:00

10
:23

10
:45

11
:08

11
:30

11
:53

12
:15

M
em

or
y

(T
B

)

Time
Allocated Memory Total Memory

100

20100

40100

60100

80100

100100

120100

140100

160100

8:3
0

8:5
3

9:1
5

9:3
8

10
:00

10
:23

10
:45

11
:08

11
:30

11
:53

12
:15

C
PU

 (
C

or
es

)

Time
Allocated VCores Total VCores

Figure 5.2: Computing resources utilization of a production cluster with 3,700 servers
from 8:30 AM to 12:30 PM

63

5.2.2 Spark Shuffle Management

The shuffle operation can re-distribute data to certain tasks [127], and it is involved in

a large number of Spark operations. Shuffling is one of the most expensive operations

in Spark, as it involves disk I/O, data serialization, and network I/O. We divide the

main I/O costs of Spark shuffle into two parts:

1. Data spill cost: The output data from an individual mapper is kept in the memory

until there is insufficient memory in JVM. Spark will spill data onto disks once

the execution memory is insufficient. Moreover, Spark sorts the shuffling results

based on the target partitions. Thus, with sort-based shuffling, spill data can

significantly decrease the performance of Spark.

2. Shuffle read/write cost: Spark task writes/reads shuffle data to/from disks, which

can introduce high I/O cost

5.2.3 Spark Memory Requirements

A Spark application is executed in stages. Specifically, it considers all operations before

the shuffle phase to be one stage and all operations after to be another. If an operation

does not require shuffling, it is considered one stage. Spark can suffer significant per-

formance loss if it does not have sufficient memory to be allocated to every executor.

Furthermore, in production environments, it is possible to have large variability in the

input data’s size for different tasks at the same stage. As a result, it is hard to balance

the trade-off between performance and memory usage efficiency.

Figure 5.3 shows the data distribution of one of our typical production Spark work-

loads at different stages. The input data size is organized into six layers, from 0 MB

to 1 GB. The figure shows that the input data size of every task differs, while the allo-

cated computing resources are the same in every executor. Thus, the allocated memory

for every executor will be dominated by the largest partition in its tasks, which leads

to memory under-utilization during data processing. An effective way to address this

imbalanced memory requirement issue is to have a large shared memory pool to satisfy

different executor’s memory requirement.

64

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

 Stage 0 Stage 1 Stage 2 Stage 3 Stage 4 Stage 5

0 MB - 64 MB 64 MB - 128 MB 128 MB - 256 MB
256 MB - 384 MB 384 MB - 512 MB 512 MB - 1 GB

Figure 5.3: Input data size at different stages of a production Spark application

We observed in the targeted production system that most of the executor memory

resource is used for two purposes: persistence and shuffling. Based on the observation,

we focus on optimizing the shuffle and persistence mechanisms in Spark with in-memory

distributed file system DMO and persistent memory (PMEM). DMO helps to improve

the memory utilization while PMEM helps to increase the cluster’s memory capacity

with affordable cost. In the next section, we show that the I/O throughput of PMEM

can meet the requirements of the targeted production system.

5.3 Characterizing Remote PMEM

Recent architecture developments feature DIMM-based PMEM, which utilizes novel

storage media to achieve a much higher data density than DRAM. Moreover, the per

GB cost of PMEM has also been projected to be much lower than that of DRAM. There

is no layer between memory and storage in most modern computer architectures, but

there is a large performance gap between memory and disk. PMEM has been proposed

recently both by industry and academia to fulfill such a performance gap. Therefore,

PMEM can be considered as larger but slower memory or faster persistent storage.

In this work, we empirically characterize and compare the read/write performance

of PMEM and DRAM remotely. Furthermore, we explore whether the read/write

throughput of PMEM is sufficient to be used as a remote disaggregated resource via

RDMA technology.

65

5.3.1 Experimental Setup

Since our evaluation investigates the performance of using a disaggregated memory

pool for Spark workloads, we mimick the scenario where Spark executors read from

and write to remote PMEM: we set up a two-node cluster within a 25 GbE network

(this is the current network bandwidth used across the whole data center). Among

these two nodes, one node serves as the external PMEM server, and the other emulates

the Spark compute node. We let the external PMEM server be equipped with two Intel

Xeon Gold 6252 CPUs @ 2.10 GHz with 24 physical cores, 192 GB of DDR4 memory

and 1.5 TB PMEM samples in DIMM form factor from a major vendor. The compute

node uses two Intel Xeon E5-2650 v4 @ 2.2 GHz with 12 physical cores and 256 GB

DDR4 memory. Both nodes use Mellanox ConnectX-4 Ethernet cards. The operating

system is CentOS 7.5 with default 3.10 kernel that comes with PMEM support. PMEM

in our system can be configured in different modes, allowing user applications to treat

it as either volatile memory or persistent block or character device. In this work, we

use the latter approach and configure all the PMEM as device DAX [128]. This further

allows us to build a highly customized distributed in-memory storage system on top of

the PMEM as we show in section 5.4.

5.3.2 Remote PMEM Performance

We further build an internal remote memory profiling tool that measures the throughput

of single-sided RDMA read and write operations sent to the external memory node

and compare the remote access performance between PMEM and DRAM. To better

understand the sequential read/write performance of remote PMEM, we use different

data transfer sizes, from 4 KB to 1 MB, with the number of threads ranging from 1

to 32. Figure 5.4 shows the remote read and write throughput of PMEM and DRAM,

respectively. The results indicate that both remote PMEM and DRAM access can

almost saturate the 25Gb network bandwidth at higher I/O sizes. Moreover, PMEM

can offer the same remote read/write throughput compared to DRAM as throughput

starts being bottlenecked by the network instead of the bandwidth of PMEM itself.

66

0

1000

2000

3000

1 2 4 8 16 32Th
ro

ug
hp

ut
 (M

B
/s

)

Number of Threads

4K pmem 4K DRAM 16K pmem 16K DRAM 64K pmem
64K DRAM 256K pmem 256K DRAM 1MB pmem 1MB DRAM

(a) Remote Read

0

1000

2000

3000

1 2 4 8 16 32

Th
ro

ug
hp

ut
 (M

B
/s

)

Number of Threads

(b) Remote Write

Figure 5.4: Remote RDMA read/write throughput for PMEM and DRAM using 25GbE
network

5.3.3 PMEM Viability for Remote Memory Implementation

Although existing data centers deploy servers with different types of resources (e.g.,

CPU, DRAM, GPU, HDD, SSD) that are typically used within a server, our observa-

tions discussed above indicate that the server-centric architecture cannot fully utilize

the computing resources available in the data processing clusters. For example, in cur-

rent data centers, usually only a limited number of servers feature advanced storage

devices and large volumes of memory while most servers are equipped with standard

hardware configurations. Because of this, it is not realistic to approach a high per-

formance and cost effective solution based on the traditional server-centric data center

architecture. The advances and continuous cost reduction in communication networks

(e.g., RDMA) enables computing nodes in modern data center to leverage remote re-

sources efficiently. The analysis above clearly show that PMEM is a solid candidate for

67

implementing extended remote memory solutions for enterprise data centers.

In this work, we design and implement disaggregated memory pool with DRAM and

PMEM. Figure 5.5 shows the basic architecture of our system, co-designed with Spark.

Our system stores all spill, persistence and shuffling data in the disaggregated memory

pool. To solve the problem discussed in Sections 5.1 and 5.2, we use a server featuring

large volume of PMEM as supplemental memory for the disaggregated memory pool.

Moreover, to ensure the high availability of remote PMEM, we connect the servers via

fast fabric interconnection. In the next section, we present the detailed design and

implementation of our system.

External Extended
Memory Node

DDR-4

pmem Node #1
DDR-4

Persistence,
Shuffling & Spill

Data

Persistence,
Shuffling &Spill

Data

RDMA

Spark Executor

Spark Executor

Node #N
DDR-4

Persistence,
Shuffling & Spill

Data

Spark Executor

TOR

RDMA

Figure 5.5: Extended memory design with remote PMEM

5.4 System Implementation and Deployment

We present the design and implementation of two key issues of our envisioned system:

(1) a distributed in-memory storage system named distributed memory objects (DMO);

and (2) the integration of DMO with Spark via memory-speed RDD storage and a newly

designed Spark shuffle manager.

5.4.1 Distributed Memory Objects (DMO)

DMO is designed as next-generation data infrastructure software optimized for memory-

centric computing and high bandwidth networks. It aims at providing memory-speed

68

data persistence and very fast data exchange that are highly demanded by distributed

in-memory computation frameworks such as Spark. DMO offers a large PMEM pool

by aggregating PMEM resources from its member nodes. For Spark, the pool be-

comes a disaggregated memory resource that extends the off-heap memory capacity for

every Spark executor. Current Spark utilizes off-heap memory for accelerating RDD

caching/storage and storing data used by shuffle tasks. With the help of PMEM as well

as our RDMA-based networking framework, accessing any data in the pool has been

made even faster than accessing local disks.

DMO consists of client and storage backend. The client integrates with user ap-

plications through a set of APIs that performs data and metadata operations on the

storage backend. The storage backend is a remote cluster of multiple PMEM-equipped

servers where each node executes one or more of the following DMO components: name

server and object store. Across nodes, communications within DMO are purely through

RDMA over Converged Ethernet (RoCE). In particular, we use single-sided RDMA

write/read for data transfer and use double-sided RDMA send/receive for RPC mes-

sages. We briefly describe each of the DMO components in the following paragraphs.

DMO client exposes a set of APIs for data and metadata operations. Currently,

Java, C, and C++ versions of object APIs have been implemented. Table 5.1 de-

scribes the major APIs used in this work. These APIs are sufficient for supporting the

integration of DMO with Spark.

The name server records the locations of a DMO object’s metadata and some other

Table 5.1: Major DMO client side APIs

API Description

connect Establish connections with DMO backend.
disconnect Drop an existing connection with DMO backend.
create Create an empty object in DMO.
write Write data to some offset of an existing object.
read Read some offset of an existing object.
get attr Retrieve the attributes of an existing object.
delete Delete an object from DMO.
create dir Creating an empty directory for holding objects.
remove dir Remove a directory.

69

attributes. In DMO, metadata are stored in an object store, as described below, and

records the object’s data chunks’ address information. The name server further main-

tains another map that tracks the information of directories, such as what objects are

contained inside a directory. Multiple name servers can be deployed inside a DMO

cluster to handle a large number of objects. In such a scenario, entries in name servers

are sharded and replicated using consistent hashing [129].

A DMO object consists of metadata chunks and data chunks. All these chunks

are held by the object store. Metadata chunks mainly hold each data chunk’s address

information, including node index, PMEM device index, and the starting offset of the

data chunk in the PMEM device. As all the data are stored in memory, data operations

are done through load and store using memory copy. To guarantee data persistency,

we use clflush instruction to flush CPU cache back to PMEM region [130].

Caching is still needed to achieve close-to-DRAM performance as PMEM is still

lower in performance compared to DRAM. We chose to cache an object’s metadata in

DRAM when the object is accessed for the first time.

Furthermore, when an object’s data is accessed by a remote node, a copy of the

related data chunks is cached on the remote node after the first read. Cached chunks

are evicted either upon a timeout or when the available space for caching in the node

is approaching a limit specified by the user when configuring DMO.

5.4.2 Integrating DMO with Spark

We made two major efforts to integrate DMO with Spark: (1) a modification of Spark

to allow persisting RDD into DMO; and (2) a Spark shuffle manager based on DMO.

Persisting RDD to DMO: In Spark, RDD can be cached in memory or disk

in order to avoid recomputation of lineage [125]. By default, RDD is cached using

the persist API. The caching policy specifying the media RDD will be placed on

can be passed in as an input parameter. We modified Spark to allow RDD to be

persisted directly into the external PMEM pool of DMO. This is done by adding a new

RDD persist policy, while augmenting the implementation of the persist function of

Spark’s block manager. To further enable RDD retrieval from DMO, we modified the

70

function for reading RDD data blocks in block manager. Besides enabling the use of

remote PMEM for RDD storage, our modification further replaced the TCP/IP based

Netty communication framework used for cross-node communication with our RDMA

framework used by DMO.

Shuffle with DMO: We implement a customized shuffle manager based on DMO.

Compared to default Spark shuffle manager, mappers write shuffle outputs directly to

remote PMEM of DMO instead of to local DRAM and disks; reducers read shuffle

output by pulling data directly from DMO instead of each Spark mapper node. All the

remote data operations are efficiently carried out with our RDMA-based networking

layer instead of the TCP/IP based Netty framework.

Building a pluggable shuffle manager requires us to implement the shuffle reader,

the shuffle resolver, and the shuffle writer components specified by the ShuffleManager

trait of Spark. Figure 5.6 illustrates the structure of our implementation.

RDMA PMEM

Reader Writer

DMOShuffleBlockResolverDMOShuffleWriterDMOShuflleReader

DMOShuffleManager

ShuffleReader ShuffleWriter ShuffleBlockResolver

DMOSorter

DMO System

ShuffleManager

DMOAggregator

Aggregator

DMOAppendOnlyMap

Figure 5.6: The structure of DMO-based shuffle manager

A shuffle task is performed in two consecutive stages: map and reduce. During

map stage, a mapper uses DMOShuffleWriter to produce a shuffle output. The out-

put is made of an index file and a data file, which are stored as separate objects by

71

DMO. Data file contains multiple partitions, and each partition stores the data to

be read by one reducer. Offsets marking the starting positions of the partitions in

data file are kept in index file. To allow reducer to be able to retrieve needed parti-

tions correctly, mapper registers with DMOShuffleBlockResolver, assigning the par-

titions of the mapper to corresponding reducers. In reduce stage, each reducer uses

DMOShuffleReader to retrieve all the partitions belonging to the reducer following the

guidance of DMOShuffleBlockResolver. The reducer then merges all the partitions

together.

Both DMOShuffleWriter and DMOShuffleReader utilize DMOSorter. A sorter re-

ceives partitions written by mapper or read by reducer, and insert them into an in-

memory collection for fast computation. During the insertion, it performs aggregation

and sorting if specified. However, when memory assigned to a sorter is not sufficient for

holding all the data, spilling part of the data to disk is required to avoid out-of-memory

(OOM) failure. In our implementation, DMOSorter starts spilling part of the in-memory

data by serializing and writing them to DMO. Therefore, DMO objects holding spilled

data are treated as part of the spilled collection of a DMOSorter.

An aggregator is used when shuffle is triggered by “group by” computations. De-

pending on the characteristics of input data, aggregator of default Spark shuffle manager

may also spill in-memory data to local disk when there is not enough memory. Similar

to DMOSorter, we implement our own DMOAggregator to speed up data spill by directly

writing spilled data into DMO. We also implemented some custom logic to avoid out

of memory issues when the result of aggregation consumes too much memory.

5.5 Experimental Evaluation

5.5.1 Workloads and Experimental Setup

We selected three different workloads to evaluate the performance, memory efficiency,

and scalability of our system. Table 5.2 shows the input size and characteristics of

the workloads, and Table 5.3 shows the shuffling size and persistence RDD size of the

workloads.

72

Table 5.2: Input size and characteristic of Workloads

Workload Input Size Characteristic

Terasort 600 GB I/O intensive
Warehouse application 200 GB I/O intensive
price protection application 726.9 GB I/O, CPU intensive

Table 5.3: Shuffling size and Persistence RDD size of Workloads

Workload Shuffling Size Persistence Size

Terasort 334.2 GB N/A
Data warehouse application 234.7 GB N/A
Price protection application 57.6 GB 349 GB

We select TeraSort from HiBench [131]. TeraSort is a standard shuffling intensive

benchmark well suited to evaluate the I/O performance (especially shuffling perfor-

mance) of big data frameworks, such as Spark.

Core service of data warehouse application: We selected a typical data ware-

housing scenario in an e-commerce company that provides core data joining and ag-

gregation services to various businesses, including user information, order information,

shipping information, and storage information. It consists of more than 150 Spark

SQL-based applications. Since it provides core data to a large amount of downstream

customers with explicitly defined SLAs, reducing its execution time is critical. This

workload is I/O-intensive (both disk and network), as it is based on the select, insert,

and fullouterjoin operations.

Price protection service: This is a core service of large e-commerce companies

that typically suffers frequent price DDoS attacks, such as coordinated product price

crawling. The price protection application can find abnormal information, e.g., IP ad-

dresses, using several different strategies. With these information, the price protecting

strategy can help data scientists make better decisions regarding product price to mini-

mize the loss from price DDoS. Since the price protection application reuses RDDs tens

of times, it is both I/O intensive and computing intensive.

The experimental setup includes one server featuring PMEM technology and 10

regular production enterprise servers. The regular server is equipped with two Intel(R)

Xeon(R) CPU E5-2650 v4 @ 2.20GHz with 24 cores leveraging hardware threads, and

73

256 GB of DDR-4 RAM memory. Spark version 2.3 was deployed using standalone

mode, CentOS 7.5 and HDFS version 2.7.

5.5.2 Experimental Results

We evaluate the performance of the three workloads with 60 Spark executors, each

using five cores and a different amount of memory varying from 1 GB to 20 GB. We

determine the total memory utilization from the allocated executor memory in Spark

and the storage memory in DMO, i.e.,

Memtotal = MemSpark + MemDMO

Note that the PMEM usage is also accounted into the total memory utilization.

Based on the above experimental setup, we evaluate the performance of our system

with four configurations: (1) Spark, (2) Spark with DMO Local (all DMO data chunks

written/read to/from local DRAM, no remote PMEM), (3) Spark with DMO Remote

(all DMO data chunks written/read to/from remote PMEM), and (4) Spark with DMO

Local with caching.

Overall performance: Figure 5.7 shows the execution time of Spark with different

executor memory and DMO memory using different workloads. For TeraSort, default

Spark cannot successfully finish until the executor memory is more than 10 GB (total

memory is 600 GB). This is because the tasks cannot obtain enough local memory

which leads to significant Java GC, even OOM, and executor connections are closed

because the bandwidth of local disk is too low. Consequently, as shown in Figure 5.7,

the minimum required memory for default Spark is 600 GB, while our proposed system

is 410 GB. The most expensive operation in TeraSort is shuffling, because Spark must

write/read large amounts of shuffling data on disk. With our optimization of shuffling

(i.e., external shuffling memory instead of disk), our system can reduce the execution

time by up to 40% compared to default Spark with the same memory consumption.

Figure 5.7 also shows that the performance is similar comparing using DMO with local

DRAM and with a disaggregated remote PMEM pool.

74

700
850

1000
1150
1300
1450
1600
1750

400 600 800 1000 1200 1400 1600

Ex
ec

ut
io

n
Ti

m
e

(s
)

Memory Utilization (GB)

Spark
Spark w DMO Local
Spark w DMO Remote

(a) TeraSort

1000

2000

3000

4000

5000

6000

0 200 400 600 800 1000 1200 1400 1600 1800

Ex
ec

ut
io

n
Ti

m
e

(s
)

Memory Utilization (GB)

Spark
Spark w DMO Local
Spark w DMO Remote

(b) Price protection system

400
600
800

1000
1200
1400
1600

100 300 500 700 900 1100 1300 1500 1700

Ex
ec

ut
io

n
Ti

m
e

(s
)

Memory Utilization (GB)

Spark
Spark w DMO Local
Spark w DMO Remote

(c) Data warehouse application

Figure 5.7: Total memory - Execution time of TeraSort, price protection system and
data warehouse application

The price protection system first generates the intermediate RDDs, which are re-

used tens of times in the subsequent stages. We store persistent RDDs with serial-

ized Java objects in Spark. Our system stores shuffling data, spills, and persistence

data in DMO, which is backed by a distributed DRAM and PMEM memory pool,

which can offer sufficient storage memory to Spark. Furthermore, the re-computation

strategy enables default Spark to finish all stages with insufficient storage memory

for the JVM. However, significant execution overhead was introduced because of re-

computation. With a greater executor memory capacity, the default Spark can achieve

the best performance with more than 14 GB of memory per executor, with a total of

840 GB of allocated memory. The best performance of our proposed system provides a

4.3% execution time reduction with the same memory utilization. Although we do not

75

optimize Spark’s persistence strategy, the system provides performance improvement

from garbage collection reduction. Note that compared to default Spark, the proposed

system with DMO needs larger minimum total memory to finish the workload, as the

additional memory is used to persist all intermediate RDDs with disaggregated memory

pool in these experiments.

The core service of the data warehouse application is a typical Spark SQL application

that involves a large volume of data. This workload profile is similar to the TeraSort

application. As shown in Figure 5.7, our proposed system can reduce the execution

time up to 59.5% with the same amount of memory compared with default Spark.

Computing resource efficiency: As discussed in Section 5.1, the data center

memory utilization is usually higher than the CPU utilization in the data center. Since

each regular production server used features 256 GB of DRAM already, increasing the

memory size further may not be possible.

We use one server featuring large-capacity PMEM to increase the overall memory

size and optimize the use of computing resources. Specifically, we increase by 66.5% of

the cluster’s overall memory capacity with ten regular nodes by adding one server with

192 GB of DRAM and 1.5 TB of PMEM. The performance overhead is only 10.5%, 9.1%,

and 18% for TeraSort, price protection, and data warehouse application, respectively.

In the worst scenario, all DMO reads and writes are from/to remote PMEM, compared

to all DMO reads and writes from/to local DRAM.

Additionally, the extended memory is shared across different executors in a Spark

application for persistence and shuffling because of the disaggregated design. It eases

the performance tuning in the production scenario and improves the overall memory

utilization, especially for imbalanced data partition cases.

Quality of service: To meet service-level agreements (SLAs) in enterprise data

centers, system engineers tend to assign large volumes of memory to Spark applications

even though, in some cases, Spark can finish jobs with lower memory requirements.

It usually leads to memory resource waste. For example, assuming a price protection

application is required to complete in less than 2,000 seconds, an engineer could allocate

840 GB of memory to the application using default Spark. However, the engineer would

76

still worry about running out of memory occasionally due to input data change, which

can ruin the SLA. In contrast, our proposed system’s memory requirement would be

only around 600 GB, and it would be more scalable to data change.

300
450
600
750
900

1050
1200

300 600 900 1200 1500 1800 2100 2400 2700

Ex
ec

ut
io

n
Ti

m
e

(s
)

Memory Utilization (GB)

Spark w DMO Local

Spark w DMO Local w Caching

(a) TeraSort

1000
1300
1600
1900
2200
2500
2800

400 600 800 1000 1200 1400 1600 1800 2000

Ex
ec

ut
io

n
Ti

m
e

(s
)

Memory Utilization (GB)

Spark w DMO Local

Spark w DMO Local w Caching

(b) Price protection system

500

550

600

650

700

300 500 700 900 1100 1300 1500 1700

Ex
ec

ut
io

n
Ti

m
e

(s
)

Memory Utilization (GB)

Spark w DMO Local
Spark w DMO Local w Caching

(c) Data warehouse application

Figure 5.8: Total memory - Execution time of TeraSort, price protection system and
data warehouse application

Impact of caching: Figure 5.8 shows that with caching optimization, TeraSort

can further reduce its execution time by 52% with the same amount of overall memory,

which is up to 3.5-fold performance improvement comparing to default Spark. However,

for the price protection and data warehouse applications, caching does not show obvious

benefits. This is because TeraSort does the sort operation at reduce side, which produces

heavy I/O loads. Thus, TeraSort can benefit from caching, while it is not the case for

the other two workloads.

77

0

100
200

300

400
500

600

700
800

400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600

To
ta

l G
C

Ti
m

e
(m

in
)

Memory Utilization (GB)

Spark Spark w DMO local Spark w DMO remote Memory Utilization

(a) TeraSort

0

1000

2000

3000

4000

5000

6000

7000

0 200 400 600 800 1000 1200 1400 1600 1800 2000

To
ta

l G
C

 T
im

e
(m

in
)

Memory Utilization (GB)

Spark Spark with DMO Local Spark with DMO Remote Spark with DMO Local w Caching

(b) price protection system

0

100

200

300

400

100 300 500 700 900 1100 1300 1500 1700

To
ta

l G
C

Ti
m

e
(m

in
)

Memory Utilization (GB)

Spark Spark w DMO local Spark w DMO Remote Spark w DMO Local w Caching

(c) Data warehouse application

Figure 5.9: Total memory - GC time of TeraSort, price protection system and data
warehouse application

Impact of garbage collection (GC): We observed in production environments

that the GC of a Spark application could represent a significant fraction of its execution

time. The most common approach to avoid performance degradation due to GC is to

increase the size of executor memory in Spark. Figures 5.9 and 5.10 show the total

memory utilization and GC time of default Spark and Spark with DMO. As shown

in the figures, our proposed system can save up to 42% of the total GC time for

TeraSort and price protection applications with the same amount of executor memory

because the persistence and shuffling data are offloaded to DMO. However, for the

data warehouse application with low memory utilization, the GC time in Spark with

78

DMO could be larger than the default Spark. This is because we do not implement the

BypassMergeSortShuffleWriter in DMO, which is used when the number of partitions

is no more than 200 by default which is the case for the data warehouse application.

With the same executor memory size, DMO (external extended memory) is expected

to decrease the GC time.

0
100
200
300
400
500
600
700
800

0 5 10 15 20

To
ta

l G
C

 T
im

e
(m

in
)

Executor Memory (GB)

Spark
Spark w DMO Local
Spark w DMO Remote
Spark w DMO Local w Caching

(a) TeraSort

0
1000
2000
3000
4000
5000
6000
7000

0 5 10 15 20

To
ta

l G
C

 T
im

e
(m

in
)

Executor Memory (GB)

Spark
Spark w DMO Local
Spark w DMO Remote
Spark w DMO Local w Caching

(b) Price protection system

0
50

100
150
200
250
300

0 5 10 15 20

To
ta

l G
C

 T
im

e
(m

in
)

Executor Memory (GB)

Spark
Spark w DMO Local
Spark w DMO Remote
Spark w DMO Local w Caching

(c) Data Warehouse application

Figure 5.10: Executor memory - GC time of TeraSort, price protection system and data
warehouse application

N+1 architecture: We propose a system with a disaggregated memory pool,

which can utilize the extended PMEM with N+1 architecture (N regular nodes with one

PMEM node). We evaluated the network throughput of the server featuring PMEM in

our system with the TeraSort application. We increase the number of executors and the

size of data as the number of regular nodes used for computation increases. Figure 5.11

79

shows the average incoming throughput for shuffle write phase and outgoing throughput

for shuffle read phase on the single remote PMEM server. We aim at finding a trade-

off between the bandwidth of the computing cluster and the data center’s computing

resource efficiency. As shown in Figure 5.11, as the application load increases, the

shuffle write throughput can reach the available network bandwidth in our system.

It also provides meaningful data points for identifying efficient enterprise data center

system design choices.

0

5

10

15

20

25

30

2 3 4 5 6 7 8 9

Av
er

ge
 T

hr
ou

gh
pu

t (
G

bp
s)

Number of Machines

Incomming
Outgoing

Figure 5.11: Average network throughput of PMEM-based server with TeraSort

5.6 Discussion

In this chapter, we provided a solution for persistent memory for in-memory big data

processing frameworks and presented the design and implementation of a disaggre-

gated memory system. Our proposed system optimizes the data center’s memory effi-

ciency with external extended persistent memory and a disaggregated memory pool. By

leveraging shuffle and persistence optimization, we demonstrate that our system can

effectively reduce the execution time by up to 72% for shuffle-intensive applications.

Moreover, we incorporate shuffle and persistence mechanisms into big data frameworks

using an in-memory distributed file system. The experimental evaluation results from

empirical executions show that with remote large-volume persistent memory and a dis-

aggregated memory pool, our proposed system can also increase the overall memory

capacity by 66.5% with much lower overheads. While the experimental evaluation has

been conducted using a 25 GbE commodity network, we expect our proposed system

80

to provide significantly better results using faster networks (e.g., 40/100 GbE or Intel

Omnipath technology). It shows the viability of PMEM for implementing bare-metal

software-defined infrastructures in production enterprise environments.

Based on this research and proof of concept, a large e-commerce company is looking

at deploying the solution with persistent memory in production for shuffle/persistence

intensive Spark applications with high SLA requirements. The plans include deploying

Spark on a container-based Kubernetes deployment on a private cloud environment,

mixed with other workloads to improve resource utilization. The solution fits nicely

with the enterprise’s deployment requirements as it eliminates the dependency on the

local disks, which is difficult to virtualize and manage in the targeted environment.

With Spark executor in the cloud, the solution provides truly elastic means to run

Spark applications.

81

Chapter 6

In-Transit Shuffling for Large-Scale Data Analytics

Building modern big data services in large-scale enterprises such as JD.com requires

addressing bottlenecks of existing shuffle services. First, the existing shuffle service is

not fully compatible with cloud environments, which causes the failure of large-scale

data analytics. There is a consensus I/O overloading challenge in developing a native

cloud platform with modern data analytics [132]. Although modern big data frameworks

handle part of failures with the DAG engine, there is an extra cost because of data re-

computation. In the worst case, frameworks can not finish the work because of the

continued errors. Secondly, the existing Spark shuffle service is sorted based. It adds

some unexpected high I/O burden on the system caused by data skew, large data, and

non-optimized configuration. We expect all shuffle data to fit into memory in the ideal

scenario, which has the best performance [133, 134]. However, Spark can not always

sort shuffling data in memory because of the limited memory capacity. The shuffling

data sorting with a large amount of data is common in production environments for

several reasons, including 1) a large amount of shuffle data with an inefficient number of

executors, and 2) the imbalance data distribution because of data skew. The high I/O

burden causes the failure of the current job and causes the performance degradation or

failure of co-located jobs.

An effective way to overcome these challenges is building an in-transit shuffle ser-

vice, which is partially isolated from existing data analytics frameworks. The critical

observations of the bottleneck of shuffling are related to three issues:

1. The status of computing workers become unhealthy because of the high demand

of I/O bandwidth.

2. The existing shuffle service is not native stateless to a container-based scheduler,

82

which makes the design and integration between data analytics and container-

based scheduler more complex.

3. The external shuffle service highly relies on the customized distributed file sys-

tems, which is not a general solution for data analytics frameworks.

For example, Crail [102] implements a high-performance master to satisfy the high

demand for I/O requests. Sailfish [103] customizes the distributed file system with the

multi-writer. However, the spinning hard disk is much more cost-efficient in a real

production environment, especially with large amounts of data [135, 136].

6.1 Comet Overview

This thesis addresses the critical challenge of shuffling for large-scale data analytics with

Comet, an in-transit shuffle service, which provides solutions to the stability issues of

large-scale data analytics in cloud environments. This chapter focuses on the design,

implementation, and evaluation of Comet.

Comet stores the shuffle data into the distributed file system instead of the local

disk, which has better fault tolerance than the local shuffle service. Compared to the

existing solutions, Comet does not need a redundant scheduler and expensive hardware,

which is suitable for most cloud environments with minimum cost. At the same time,

as a remote shuffle service, it decreases the local disk burden compared to the existing

solutions and is more friendly to co-located jobs. Furthermore, this in-transit shuffle

service has better accessibility, which is designed with stateless indexing. Key technical

challenges of this Comet’s contributions are described as follows:

1. Comet is an affordable shuffle service, which does not rely on customized high-

performance distributed file systems or high-performance hardware. The main

bottleneck of accessing intermediate data in the distributed file system is the

limited performance of the master. However, the most popular distributed file

systems, such as HDFS, are not designed for dealing with a larger amount of

metadata, which is a series of small files. Thus, the performance of the master

83

becomes the main bottleneck for storing intermediate data, like shuffle data. To

reduce the number of I/O requests to HDFS, Comet aggregates shuffling data

based on reducers’ destination.

2. Comet is a lightweight shuffle service. The indexing of shuffling data in Comet

relies on the file paths of HDFS, which has no extra cost of data management

and scheduler. Compared to Sailfish [103] and Riffle˜ [101], Comet is a stateless

shuffle service with lower deployment and scheduler costs.

3. Comet is a compatible shuffle service to existing data analytics frameworks. Since

existing data analytics frameworks, e.g., Spark, have recovery mechanisms for

fault tolerance capabilities, which are complex and diverse from each other. Comet

is compatible with recovering mechanisms without changing the recovering logic.

With stateless shuffle service, we can build a unified in-transit shuffle service,

which has better extensibility.

Comet was deployed in an enterprise production environment for more than half a

year, which provides validation of the approach as it supported the enterprise to build

a Petabyte level data warehouse with modern data analytics frameworks.

6.2 N-to-N communication in Spark

Spark can process large amounts of data effectively with a large number of computation

tasks based on the Map-Reduce model. Compared to Hadoop, Spark has better per-

formance on iterative data processing with data reuse. One of the main bottlenecks for

large-scale parallelism in Spark is shuffling, which is an n-to-n communication. As il-

lustrated in Figure 6.1, shuffling re-distributes data into different executors, as needed.

As we observed in real production Spark clusters, shuffling is one of the most time-

consuming operations in data analytics at scale.

Currently, Spark is widely used in large-scale enterprises such as JD.com data infras-

tructure for large-scale data analytics. While building the data warehouse with Spark,

it was noticed that the performance of Spark SQL is not as good as expected for some

84

Stage #n+1

Stage #n Mapper

Reducer

Partition Partition Partition

Shuffle Sorter

Mapper

Reducer

Partition Partition Partition

Shuffle Sorter

Mapper

Reducer

Partition Partition Partition

Shuffle Sorter
Shuffle Write

Shuffle Read

Figure 6.1: Sort Based Shuffle, which sort the data partition based on the key before
send out to next tasks

large-scale ETL jobs. While it provides excellent performance in sophisticated data an-

alytics, especially iterative data analytics, it does not provide such a performance with

one-pass ETL workloads. Furthermore, Spark is unstable in large-scale data processing,

which could be more than tens of Terabytes, with highly compressible columnar data

format like Parquet.

The main shortcomings of the Spark shuffle service to dealing with large-scale data

are around the following three aspects:

• The existing sort-based shuffle service reduces network requests’ burden while

increasing the bandwidth demand of local disk. The shuffling data of Spark is

spilled to disk when memory is insufficient for the whole data set. However, the

read and write amplification is high for sorting.

• The current Spark is not good at dealing with serious data skew jobs, which is

common in a production environment. We noticed that Spark has a critical long

time problem because of data skew. For example, many data analytics, which

have unexpected skewed data, write more than 90% of shuffling data into a single

node.

• It is hard to achieve the best performance of Spark with reasonable memory on

a local computing cluster. It is not easy to achieve the best performance in the

production environment since we can not afford a large amount of memory in

the computing cluster. An effective solution could be removing some unnecessary

computation and storage memory to external shuffle clusters.

85

Comet’s basic idea to increase Spark’s stability and higher performance is building

an in-transit shuffle service and partially split the Spark shuffle service. Comet is

friendly to the Hadoop ecosystem, which is compatible with the HDFS interface. Thus,

Comet is a stable in-transit shuffle service with an existing distributed file system, which

does not need extra effort on modifying the distributed file system.

The following sections presents the architecture overview of Comet and discusses

the co-design between the Spark and HDFS interface. We also discuss the benefits of a

stateless shuffle service compared to existing shuffle services.

6.2.1 Design Requirements

Compared to existing solutions, Comet does not need an additional scheduler to man-

age the shuffle data. To design Comet, we consider the following essential technical

requirements:

Data consistent mechanism. We do not aim at developing an additional frame-

work for the existing shuffle service. Adding an extra scheduler incurs software cost

to the whole system and increases the deployment and maintenance costs. To do so,

we separate the shuffling mechanism from Spark and design Comet to ensure data

correctness between stages.

Affordable shuffle service. Comet should not rely on customized distributed

file systems, which are not commonly used in cloud environments. We design and

implement Comet based on a co-design approach with the Hadoop ecosystem, which

has good compatibility with cloud-based distributed file system interfaces like HDFS [9],

S3 [111] and Alluxio [10]. Furthermore, Comet does not require the distributed systems

to have a multi-writer and multi-reader.

Failure handling. Since each different data analytics framework have a different

failure handling mechanism, it is unnecessary and unfeasible for Comet to handle every

failure by itself. To achieve better extensibility, we target a compatible shuffle service

instead of an independent shuffle framework. To match Spark’s failure handling, Comet

partially isolates the shuffle service from the computing cluster, but Comet is still

compatible with the existing DAG engine of Spark.

86

Data flow controller. The local shuffle service continues to write shuffle data

into the local disk without data flow control. However, since Comet writes shuffle data

into a remote shuffle cluster, it is necessary to have a data flow controller to avoid the

overload of the shuffle cluster.

Performance requirement. Although Comet’s primary goal is not for perfor-

mance optimization, we still target Comet’s performance to be comparable to the cur-

rent local shuffle service. However, it is hard to implement a shuffle service, which is

dependent on the remote shuffle cluster and current shuffle mechanism, with the same

performance as the local shuffle service. Thus, we build a destination-based aggregation

shuffle service, optimizing performance for block-based file systems for Comet.

The following sections describe Comet’s overall architecture illustrated in Figure 6.2

and discusses implementation issues such as how Comet ensures the data consistency

and stability of the computing cluster.

Spark Computing Cluster External Shuffle Cluster

Task

Task

Task

Shuffle
Instance

Shuffle
Instance

Shuffle
Instance

HDFS

Shuffle Write

Shuffle
Data
Flushing

Shuffle Read

Figure 6.2: Comet’s overall architecture

6.2.2 Data Pipeline with Data Consistency Mechanism

Comet is designed as an in-transit shuffle service, which is a highly reliable and high-

performing intermediate layer for Spark. One of the most important issues is ensuring

data consistency between two different stages in Spark. The system has to overcome two

challenges: 1) handle failures across stages with the existing Spark DAG engine, and 2)

handle failures between Comet and HDFS. We next describe how Comet is compatible

87

with Spark DAG engine and how Comet ensures the data consistency between two

Spark stages.

app_id

shuffle_id

reduce_id

Block Block

Spark Computing Cluster

Task Task Task

Shuffle Read

External Shuffle Cluster
Shuffle
Instance

Shuffle
Instance

Shuffle
Instance

Shuffle Data Flushing

Figure 6.3: Shuffle data indexing of Comet

Stateless shuffle service. As opposed to existing solutions, Comet does not use

an independent scheduler to manage the metadata for shuffle data. We implement the

stateless indexing for shuffle data, which relies on HDFS files’ pathname, as shown in

Figure 6.3. It is worth noting that this stateless shuffle indexing without the requirement

of an individual scheduler.

Since the Hadoop distributed file system is the dependency of the existing system,

Comet builds the indexing based on the HDFS file’s pathname instead of storing the

shuffle data indexing in the individual scheduler. Comet creates the path during the

shuffle write phase, which follows the rule /appid/shuffleid/reduceid, in HDFS. Then

the task can read the corresponding shuffle data based on the same rule. In this

situation, Comet does not have to have another scheduler to store shuffle data indexing.

Data consistency checker. To check the consistency of shuffle data, we keep the

metadata of shuffle data inside the Spark driver, although Comet separates the shuf-

fling mechanism from Spark. As shown in Figure 6.4, Spark driver records the unique

identification for each shuffle partition. Once the reduce tasks fetch the shuffle data,

they also check the correctness and completeness to ensure the shuffle data consistency

88

between two stages.

Spark Driver

Stage #n

Map Task

Map Task

Map Task

Stage #n+1

Reduce
Task

Reduce
Task

Reduce
Task

Partition Identification Generate Partition Identification &
Completeness Check

Figure 6.4: Comet’s consistency checker architecture

DAG engine compatible shuffle service. One of the most sophisticated mech-

anisms in data analytics frameworks is the data recovering mechanism. In Spark, the

lost data, which is damaged for some reason, is protected by the DAG engine. Once a

Spark job loses part of the data, it recomputes a series of tasks to re-generate the lost

data with the DAG engine. Since the complexity of the recovery mechanism and, con-

sidering the expansibility between in-transit shuffle service and existing data analytics

frameworks, Comet is designed to be compatible with the Spark DAG engine without

involving Spark’s DAG engine.

Although Comet is not responsible for recomputing data because of data corruption,

it is fully compatible with the Spark data recovery mechanism to ensure the fault

tolerance of storing shuffle data. The shuffled data is protected with two different

Comet mechanisms: 1) the Spark recover mechanism protects the shuffle data outside

of the shuffle cluster, and 2) the shuffle data inside the shuffle cluster is protected by

the HDFS system. In this way, Comet becomes a stateless shuffle service with good

fault tolerance. The mechanism is illustrated in Figure 6.5. In the figure, the shuffle

data, which in mapper, is protected by Spark DAG engine. The shuffle data, which is

89

successfully written into HDFS, is protected by HDFS’s three copy mechanism

Spark Computing Cluster

Task Task Task

Spark Driver

External Shuffle Cluster
Shuffle
Instance

Shuffle
Instance

Shuffle
Instance

HDFS

Compatible with Spark DAG Engine

Compatible with HDFS – Protect Data with three copies

Figure 6.5: Stateless design of Comet, which is fully compatible to Spark recover mech-
anism.

Comet requires the mapper to keep running until all shuffle data, which is generated

inside the mapper tasks, is successfully flushed into HDFS. By keeping the mapper

running, Comet does not need to keep track of the data flow inside Spark applications.

Comet also benefits from the fault tolerance mechanism of HDFS, which does not need

further effort to maintain the mapping between the data block and Spark master.

6.2.3 Data Flow Controller with Back Pressure Mechanism

As opposed to the local shuffle service, Comet uses an external shuffle cluster to build

an in-transit shuffle service. It is essential to build a data flow controller between the

Spark computing cluster and the shuffle cluster.

The external shuffle cluster is composed of sets of shuffle instances. For each shuffle

instance, there is a series of memory pools to receive shuffle data from map tasks, which

belong to the previous stage. However, Comet flushes the shuffle data into HDFS,

which may not as fast as receive speed. In some cases, it may cause the buffer overflow

because of the slow flushing. Thus, Comet has to control the shuffle data generation in

90

the mapper side. The architecture of the data flow controller is shown in Figure 6.6.

Once the associated shuffle instance is available to the mapper tasks, the tasks send

the shuffle data to the shuffle instance’s buffer pool. In other words, once the shuffle

instance runs out of the buffer pool, the shuffle instance stops sending the data from

the mapper tasks. With the data flow controller, Comet can avoid failures, which can

be caused by a buffer overflow, and control the bandwidth usage of map tasks.

Spark Computing
Cluster

Task

External Shuffle
Cluster

Task

Task

Shuffle
Instance

Shuffle
Instance

Shuffle
Instance

HDFS

Shuffle
Data

Flushing

Shuffle Write

Task Statues

Statue Check

Shuffle instance
Avablility Response

Figure 6.6: Data flow controller with back pressure mechanism

6.2.4 Destination Based Aggregation Mechanism

The existing local shuffle service is optimized for performance compared to the in-transit

shuffle service. As discussed earlier, the distributed system’s namespace performance

is the primary performance bottleneck of storing intermediate data for data analytics.

Further, since we add one more layer between Spark stages, we have extra cost compared

to the existing local shuffle service.

Aggregation based shuffle service. To reduce the number of I/O requests to

HDFS, one efficient way is aggregating data outside of HDFS instead of storing a large

number of small files into HDFS. To do so, Comet aggregates the shuffle data based

on shuffle data destinations, which is processed inside the same tasks in the next stage,

as illustrated in Figure 6.7. Since HDFS, a block-based distributed file system, is not

designed to store small files, Comet has to aggregate the small shuffle files into larger

shuffle files before flushing them into HDFS.

External shuffle data aggregation. The main reason for Comet to use external

aggregation instead of local mapper side aggregation is because of I/O overhead at the

91

Stage #n

Partition
Partition
Partition
Partition

Partition
Partition
Partition
Partition

Partition
Partition
Partition
Partition

External Shuffle
Cluster

Partition

Partition

Partition
Partition
Partition
Partition

Partition

Partition

HDFS

Stage #n+1

Task

Task

Task

Task

Figure 6.7: Destination based aggregation mechanism

mapper side. Since the I/O overuse could be one of the unstable points for large-scale

data analytics (e.g., fetch error in Spark), I/O causes both hard and soft computing

node failures. Further details are discussed in the following sections. Compared to

existing solutions, e.g., Riffle [101], Comet does not add extra I/O burden to mapper

side tasks, which decreases the I/O burden from the local disk and increases the stability

of the computing cluster.

6.3 Evaluation Methodology

6.3.1 Testbed

We evaluate Comet in a real production environment at JD.com, which is a computing

cluster with thousands of nodes. Each node is equipped with two CPUs with 24 cores

leveraging hardware threads, 256 GB DDR4 DRAM, and is connected with 10 Gbps

Ethernet links. Since Comet uses an external shuffle cluster to the server the shuffle

service to the Spark cluster, we use a separate shuffle cluster for experiments, which

has 20 nodes. Each node of the shuffle cluster features two CPUs E5-2640 with 32

cores leveraging hardware threads, 64 GB DDR3 DRAM, and are also connected with

10 Gbps Ethernet links.

We use the latest stable version Spark (i.e., version 2.4). Since the configuration

92

of production workloads are different from each other, we list the main Spark con-

figurations of stability and performance evaluation in Tables 6.1 and 6.2. Compared

to vanilla Spark, Comet has additional configurations as shown in Table 6.3. We use

HDFS version 2.7 as the underlying distributed file system for Comet.

Benchmark # of Executors Tasks/Executor Memory/Executor

1 800 3 35 GB

2 300 15 45 GB

3 600 8 32 GB

4 300 6 24 GB

5 500 5 20 GB

Table 6.1: Spark Configuration for Large-Scale Evaluation

Benchmark # of Executors Tasks/Executor Memory/Executor

1 100 4 12 GB

2 100 4 12 GB

3 600 6 24 GB

4 1000 4 16 GB

5 600 6 24 GB

Table 6.2: Spark Configuration for Mid-scale Evaluation

of Nodes 20

Threads/Node 96

Buffer/Node 12 GB

BatchSize 1 MB

Table 6.3: External shuffle cluster configuration

6.3.2 Workloads

To comprehensively evaluate Comet’s stability and performance, we use TeraSort and

representative workloads from the JD.com production environment. Since vanilla Spark

always presents some failure with large-scale data analytics, we divide the evaluation

into two parts, 1) Large-scale data analytics evaluation and 2) Medium-scale data an-

alytics evaluation. For large-scale data analytics evaluation, we use large-scale data

analytics, which is part of the production workload, to evaluate Comet’s stability bet-

ter. We also use TeraSort and three different production workloads, which have from

tens of Gigabytes to several Terabytes of shuffle data, to evaluate Comet’s performance.

93

Benchmark Input data Shuffle data Output data

1 2.3 TB 49 TB 14.6 TB

2 47.7 GB 14.3 TB 153.2 GB

3 936.2 GB 75.9 TB 35.9 GB

4 5.5 TB 9.3 TB 1.6 TB

5 68.9 GB 23.5 TB 189 MB

Table 6.4: Large-Scale Workloads. 1) Recommendation Data Analysis #1, 2) Product
Violation Detection, 3) Product Tracking System, 4) Recommendation Data Analysis
#2, and 5) Business Flow Tracking

Benchmark Input data Shuffle data Output data

1 50GB 27.4 GB 50GB

2 1TB 564.5GB 1 TB

3 227.3GB 5.5 TB 103.9 GB

4 193.3GB 1.4 TB 43.7 GB

5 92.5GB 2.1 TB 48 GB

Table 6.5: Medium-Scale Workloads. 1) TeraSort(50GB), 2) TeraSort(1TB), 3) Pur-
chases and Sales Analysis #1, 4) Purchases and Sales Analysis #2, and 5) Core Data
Warehouse Application

As shown in Tables 6.4 and 6.5, we select nine different workloads to evaluate the

stability and performance of Comet. The tables also provide data volume and shuffle

size of the workloads that are characterized as follows:

• Recommendation data analysis #1 & #2. Recommendation data analysis

is a complex data analytics used to generate the recommendation information

based on existing data. Product recommendation systems are data- and compute-

intensive workloads with a large amount of shuffle data.

• Product violation detection. Product violation detection is also a complex

data analytics used to detect the description violation of a product. The product

detection service reads a small amount of input data (47.7 GB) while generating

a large amount of shuffle data (14.3 TB), a typical data and compute-intensive

workload.

• Product tracking system. The product tracking system tracks the flowing of

products, a compute- and data-intensive data analytics.

• Business flow tracking. Business flow tracking provides the tacking service of

94

the original user. It reads a small amount of input data but generates a large

volume of shuffle data, a compute- and data-intensive data analytics.

• TeraSort. TeraSort is a standard workload to evaluate the shuffle performance of

data analytics. It sorts the input data to order data with the TeraSort algorithm.

TeraSort is a compute- and data-intensive data analytics.

• Purchases and sales analysis #1 & #2. Purchases and sales analysis provides

the insight analysis and visualization of purchases and sales. Purchases and sales

analysis service is both compute-intensive and data-intensive data analytics.

• Core data warehouse application. Core data warehouse application is a

typical ETL workload, which provides cleaned data to the downstream business.

Core data warehouse application is a data-intensive data analytics.

6.4 Experimental Evaluation

This section analyzes the stability of Comet and evaluates its performance with large-

scale and medium-scale data analytics. First, we compare the wall time of workloads

between Comet and vanilla Spark. Second, we analyze in detail the execution time of

stages within different workloads, which shows the details of the performance of shuffle

writes and shuffle reads of Comet.

6.4.1 Comet’s Stability with Large-Scale Data Analytics

We evaluate Comet’s stability with large-scale data analytics, which has tens of Ter-

abytes of shuffle data for each data analytics. As we present in Section 6.3.2, the

workloads of stability are large-scale real data analytics from the production environ-

ment. To evaluate Comet’s stability, we compare the task failures of Comet versus

vanilla Spark. The statics of failures are provided in Figure 6.8.

The results indicate that the number of failures for Comet is much smaller than for

vanilla Spark. Comet eliminates 99.9% and 92.8% for workloads #1 and #2, respec-

tively. Moreover, Comet successfully finishes workloads #3, #4, and #5 without any

95

1

10

100

1000

10000

100000

1 # 2 # 3 # 4 # 5
N

um
be

r o
f F

ai
lu

re
s Comet

Vanilla Spark

Figure 6.8: Number of failures of large-scale data analytics. 1) Recommendation Data
Analysis #1, 2) Product Violation Detection, 3) Product Tracking System, 4) Recom-
mendation Data Analysis #2, and 5) Business Flow Tracking

failures, while vanilla Spark can not complete work with more than fifteen thousand

failures.

As we observed in the production environment, the main reason for failure is because

of overuse of CPU and I/O bandwidth due to different reasons, including 1) executor

connection closed, 2) node manager (YARN) connection close, and 3) fail to connect

to node manager (YARN). The root cause of CPU and I/O bandwidth overuse [137] is

caused by data transformation for intermediate data. Since Comet controls the shuffle

data speed and offloads part of the I/O burden from the computing cluster, Spark can

deal with a larger amount of data without many failures.

6.4.2 Comet’s Performance

Figures 6.9 and˜6.10 show the performance evaluation results of large and medium-

scale analytics. The results indicate that Comet speeds up large-scale workloads from

17% to 55%, while it speeds up the medium-scale workloads from 0% to 29%. Two

factors affect the performance of data analytics 1) task retry with failures, and 2) I/O

performance of shuffling.

The main performance factor of large-scale workloads is the overhead of tasking

reruns. As we discussed in Section 6.2, Spark ensures fault tolerance with the DAG en-

gine, which recomputes the lost data with the dependency graph. As a result, although

some soft failures would not kill the job, they cause significant performance degradation

because of instability.

96

0

4000

8000

12000

16000

1 # 2 # 3 # 4 # 5
Ex

ec
ut

io
n

Ti
m

e/
s Comet

Vanilla Spark

Figure 6.9: Execution time of large-scale workloads. 1) Recommendation Data Analysis
#1, 2) Product Violation Detection, 3) Product Tracking System, 4) Recommendation
Data Analysis #2, and 5) Business Flow Tracking

0

1000

2000

3000

4000

1 # 2 # 3 # 4 # 5

Ex
ec

ut
io

n
Ti

m
e/

s Comet
Vanilla Spark

Figure 6.10: Execution time of medium-scale workloads. 1) TeraSort(50GB), 2) Tera-
Sort(1TB), 3) Purchases and Sales Analysis #1, 4) Purchases and Sales Analysis #2,
and 5) Core Data Warehouse Application

For medium-scale data analytics, Comet has comparable performance as vanilla

Spark. However, we can not conclude on shuffling performance only with overall per-

formance. Thus, we describe the shuffling performance in the next part with Spark

stages analysis, individually.

Spark stages performance analysis. Since Spark divides the stages with shuffle

operation, we classify the stages into four cases, 1) shuffle write-only, 2) shuffle read-

only, 3) shuffle write and shuffle read, and 4) no shuffling. The evaluation of Comet

focuses on the first three cases. The detail of the statistics are provided in Table 6.6.

Figure 6.11 shows the main stage performance results of different data analytics.

Since the product tracking system failed with vanilla Spark, we removed it from stage

analysis. As discussed earlier, Comet is an in-transit shuffle service, which connects

two stages in Spark with data shuffling. Thus, Spark transmits shuffle data step by

step, 1) shuffle write, and then 2) shuffle read. During the shuffle write phase, mapper

97

0

2000

4000

6000

8000

10000

0 # 1 # 2 # 3 # 4 # 5 # 6 # 7 # 8 # 9 # 10# 11# 12

Ex
ec

ut
io

n
Ti

m
e/

s

Stage Index

Comet
Vanilla Spark

(a) Recommendation Data Analysis #1

0

1000

2000

3000

4000

5000

0 # 1 # 2 # 3 # 4 # 5 # 6 # 7

Ex
ec

ut
io

n
Ti

m
e/

s

Stage Index

Comet
Vanilla Spark

(b) Product Violation Detection

0

600

1200

1800

2400

0 # 1 # 2 # 3 # 4 # 5 # 6

Ex
ec

ut
io

n
Ti

m
e/

s

Stage Index

Comet
Vanilla Spark

(c) Recommendation Data Analysis #2

0

600

1200

1800

2400

0 # 1 # 2 # 3

Ex
ec

ut
io

n
Ti

m
e/

s

Stage Index

Comet
Vanilla Spark

(d) Business Flow Tracking

0

10

20

30

40

0 # 1 # 2

Ex
ec

ut
io

n
Ti

m
e/

s

Stage Index

Comet
Vanilla Spark

(e) TeraSort - 50 GB

0

200

400

600

800

0 # 1 # 2

Ex
ec

ut
io

n
Ti

m
e/

s

Stage Index

Comet
Vanilla Spark

(f) TeraSort - 1 TB

0

200

400

600

0 # 1 # 2 # 3 # 4

Ex
ec

ut
io

n
Ti

m
e/

s

Stage Index

Comet
Vanilla Spark

(g) Purchases and Sales Analysis #1

0

700

1400

2100

2800

0 # 1 # 2

Ex
ec

ut
io

n
Ti

m
e/

s

Stage Index

Comet
Vanilla Spark

(h) Purchases and Sales Analysis #2

0

100

200

300

400

0 # 1 # 2 # 3 # 4 # 5 # 6 # 7

Ex
ec

ut
io

n
Ti

m
e/

s

Stage Index

Comet
Vanilla Spark

(i) Core Data Warehouse Application

Figure 6.11: Execution time of main stages Comet versus vanilla Spark.

98

Benchmark Shuffle Write Shuffle Read

Large # 1 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 1, 3, 4, 5, 6, 8, 9, 10, 11

Large # 2 0, 1, 2, 3, 4, 5, 6 2, 3, 4, 5, 6, 7

Large # 4 0, 1, 2, 3, 4, 5 1, 3, 6

Large # 5 0, 1, 2 1, 2, 3

Medium # 1 1 2

Medium # 2 1 2

Medium # 3 0, 1, 2, 3 1, 2, 3, 4

Medium # 4 0, 1 1, 2

Medium # 5 0, 1, 2, 4, 5 2, 3, 5, 6, 7

Table 6.6: Shuffle write and read labels of the workloads

tasks write the shuffle data into shuffle instances, which is outside of the computing

cluster. After all of the shuffle writes finish, reduce tasks read the shuffle data from

remote shuffle instances.

Performance of shuffle write and shuffle read in Comet. The results show

that Comet provides the same performance or slightly reduced lower performance for

tasks that only have shuffle write. These results are better than expected because of the

asynchronous data transmission between the computing cluster and the shuffle cluster.

Although Comet has extra network transmission compared to the local shuffle service,

the transmission latency is hidden by data skew tasks and several iterations of tasks

running with asynchronous data transmission. Thus, the pure shuffle writes time for

Comet is comparable to vanilla Spark. However, since Comet aggregates shuffle data

based on reducers’ destination, Comet has better performance than vanilla Spark in

the shuffle read phase.

Performance degradation because of failures. The primary performance

degradation of large-scale data analytics is task failures. The high overhead of Spark

task failures in the production environment is not only because of recomputing over-

heads but also because of the overheads associated with re-scheduling overheads. To

save computing resources, Spark uses a dynamic allocation mechanism, which releases

the idle executors. However, Spark takes extra time to apply computing resources

from the YARN scheduler when it retries to run the failed stages, which significantly

decreases Spark’s performance.

99

6.5 Discussion

In this chapter, we presented Comet, an in-transit shuffle service, to improve large-scale

data analytics’s stability and performance. Comet enhances the stability of Spark by

offloading CPU and the I/O burden to the external shuffle cluster. Comet also enhances

the fault tolerance of shuffle data storing with a distributed file system instead of a local

disk, which does not have single-point failures. Furthermore, with better stability and

a destination-based aggregation mechanism, Comet can achieve up to 55% of speed up

compared to vanilla Spark.

100

Chapter 7

Conclusion and Future Work

The cloud services running at extreme scales on modern cloud infrastructure are com-

posed of several cloud applications that need to access the data orchestration frequently

with a large volume of data at run time. With the increasing scale and complexity of

cloud data analytics, there is a large amount of data exchanged in different nodes,

clusters, even different data centers. Because of the cloud environment’s complexity,

the existing data orchestration becomes the performance bottleneck of cloud data an-

alytics based on cloud frameworks. In the meantime, the fast revolution of hardware

technologies and cloud architectures proposes new opportunities to build efficient and

high-performance data orchestration for cloud frameworks in large-scale cloud envi-

ronments. However, there are still challenges in designing and implementing efficient

and high-performance data orchestration for cloud frameworks under different cloud

environments.

This thesis identified and addressed the critical problems and requirements to build

efficient and high-performance data orchestration for cloud frameworks in a large-scale

cloud environment. First, this thesis addresses the critical performance gap between

modern cloud frameworks and advanced storage devices. It formulates the perfor-

mance of cloud frameworks with different bandwidth with different storage devices. It

also identifies the performance gap between existing cloud frameworks and advanced

storage devices because of the cost of serialization and de-serialization of data. Sec-

ond, this thesis explores the potential hybrid cloud architecture for cloud Frameworks

running in geo-distributed data centers with fast fabric interconnection. It verifies it is

feasible to harvest spare computing resources across geo-distributed data centers with

fast fabric interconnection. Third, this thesis presents the design and implementation

101

of a disaggregated memory system with persistent memory for in-memory cloud frame-

works. By leveraging shuffle and persistence optimization, it can effectively reduce

the execution time for shuffle-intensive data analytics, incorporating shuffle and per-

sistence mechanisms into big data frameworks using an in-memory distributed file sys-

tem. The experimental evaluation results from empirical executions show that remote

large-volume persistent memory and a disaggregated memory pool can also increase the

overall memory capacity with much lower overheads. Finally, this thesis proposes an in-

transit shuffle service to improve large-scale data analytics’s stability and performance.

It enhances Map-Reduce based cloud compute frameworks’ stability by offloading CPU

and the I/O burden to the external shuffle cluster. It also enhances the fault tolerance

of shuffle data storing with a distributed file system instead of a local disk, which does

not have single-point failures.

In the future, this thesis can be extended in several directions, including:

• Explore the energy-efficient data orchestration: The existing data orches-

tration in the cloud environment is mainly designed and implemented for perfor-

mance and cost-efficient. One of the potential future research is to explore the

data management across computing clusters for energy efficiency. This research

can be extended to develop energy-efficient data orchestration in various cloud

architectures.

• Explore the fast and extensible namespace for Cloud storage and Struc-

ture data service: One of the essential cloud service features is the almost

infinite scalability of the namespace, but it also introduces a list of challenges

to handle metastore operations efficiently. This research can be extended to de-

velop scalable and high-performance data orchestration with scalable and high-

performance name space policy.

• Explore the potential of caching policy in the hybrid cloud environ-

ment: The caching policy is one of the trends to build efficient and high-performance

data orchestration in the hybrid cloud environment. It can save a large amount

of network transmission across computing clusters and data centers at a lower

102

cost. This research can be extended to build the high-performance caching data

orchestration for cloud compute frameworks in the hybrid cloud environment.

103

Appendix A

Understanding Behavior Trends of Big Data Frameworks

This chapter complements the thesis’s main contributions by providing an understand-

ing of big data processing systems behavior and the tradeoffs associated with the use of

different architectural designs and processing frameworks for different classes of relevant

applications under different constraints. It provides the foundations to develop mod-

els that can fundamentally enable Big Data analytics on ongoing cyber-infrastructure

based on software-defined infrastructure (SDI). As opposed to other research efforts

that investigate balanced systems for a range of analytics applications [14], it aims

to understand the optimal design choices, given a multi-criteria approach and under

different constraints (e.g., power budget). This work is focused on these behaviors

and tradeoffs for two of the leading distributed processing systems for Big Data ana-

lytics: Apache Hadoop and Spark, both of which are currently the most widely used

open-source parallel processing frameworks for Big Data analytics.

A.1 Tradeoffs in Big Data Systems

In order to construct models to understand and explore the design space of big data

systems, it is required to characterize a comprehensive set of data-centric benchmark

applications in terms of performance, energy, and power behaviors on an instrumented

platform to understand their resource requirements best and identify possible perfor-

mance/power tradeoffs.

This characterization can be useful, on the one hand, to build models and develop

heuristics/meta-heuristics that will consider different criteria and constraints, including

but not limited to: performance (e.g., response time or quality of service), capital costs

(e.g., the infrastructure available, such as the number of servers, cores, or memory),

104

operational costs (e.g., energy consumption), and the power budget. Such an approach

is expected to be multi-dimensional and multi-criteria. Some example parameters are

(1) hardware choices (e.g., core count, memory size, I/O, and network bandwidth),

(2) data processing system (e.g., batch vs. micro-batch), (3) virtualization (e.g., bare-

metal vs. containers vs. VMs), (4) processing framework (e.g., Hadoop vs. Spark),

and (5) programming language (e.g., Scala vs. Python). On the other hand, it can

help develop resource provisioning and scheduling approaches for big data workloads in

systems based on ongoing software-defined infrastructure. In this scenario, the problem

becomes more challenging as it spans across different dimensions (multi-dimensional

knapsack-like problem, i.e., NP-hard).

This chapter focuses on understanding the behaviors and tradeoffs of the two pri-

mary open-source processing frameworks for Big Data analytics: Hadoop and Spark.

Data movement is one of the main bottlenecks for these data processing frameworks, as

their applications typically require heavy read and write operations during processing.

While Hadoop supports the MapReduce programming model using a storage-centric ap-

proach, Spark is based on in-memory processing (through Resilient Distributed Datasets

- RDDs) and requires much less access to storage. These two processing frameworks

are shown in Figure A.1, which provides an overall classification of some of the most

widely used open-source distributed data processing frameworks.

batch

streaming
in-memory off-memory

Apache Hadoop

Apache Spark

Spark streaming

Apache Storm

Apache Flink

Figure A.1: Classification of the most extended (Apache-based) distributed processing
back-ends for big data analytics

105

The characterization considers two fundamental parameters: (i) energy/power trade-

offs, and (ii) storage technology (i.e., memory hierarchy). While in-memory processing

systems are expected to be faster than storage-based systems for running a Big Data

processing workload, the power required to run this workload in-memory is expected

to be higher if a larger pool of resources are needed to handle in-memory data. There

are also clear issues related to power requirements for a more I/O-bounded approach

due to lower CPU and memory utilization over time.

The tradeoff between required power and energy consumption in this context re-

quires investigation. For example, in the scenario depicted in Figure A.2, the energy

cost of running a workload using Hadoop could be higher than using Spark; however,

the fastest option (i.e., Spark) might not be viable due to the power budget constraints

or availability of servers needed to handle RDDs in memory. The figure also shows

that power capping can be used as a mechanism to manage these possible tradeoffs.

Power capping has also been considered to better understand the possible tradeoffs be-

tween Hadoop and Spark. Since the memory hierarchy/storage technology is expected

to significantly impact performance and other metrics, Section A.3 investigates differ-

ent storage hierarchies (ranging from hard disk to PCIe-based non-volatile memory

devices) and power capping using RAPL. However, the use of power capping strategies

in software-defined infrastructures remains a potential direction for future work.

power

power budget

run time

Apache Spark

Apache Hadoop

Energy
Consumption (area)

Execution time of Apache Spark under power capping??
(two potential cases are shown)

 400

 500

 600

 700

 800

 900

 1000

 0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000 3200 3400 3600 3800 4000 4200

W

Time/sec

Power

Hadoop
Spark

Figure A.2: Possible (top) and observed (bottom) run time and power consumption
behavior of a data analytics workload run with Hadoop and Spark. The real execution
of the bottom is obtained using Grep (see Section A.2 for more details)

106

A.2 Evaluation Methodology

While the evaluation focused on software-defined infrastructures in systems with non-

volatile memory technology is based on simulations, the empirical executions were con-

ducted on the NSF-funded research instrument “Computational and dAta Platform for

Energy efficiency Research” (CAPER) described in section 3.2.1. In addition to server

level power measurement mechanisms, it supports RAPL (Running Average Power

Limit)-based metering to provide CPU-centric power measurements at a sampling rate

at processor level up to 20Hz. RAPL also provides power capping capabilities by setting

power limitations on the processor package or DRAM.

We configured the big data processing frameworks as a baseline using commonly

used and balanced configurations without optimizations (e.g., it doesn’t feature DC/OS

layer such as Apache Mesos). The specific characteristics of the system configuration are

described as follows. (1) Hadoop version 2.7.1 was deployed using YARN. One server

was configured as NameNode and seven servers as DataNodes for the HDFS file system.

HDFS uses 128MB blocks with 3 replicas for each block. Hadoop was configured to

run 32 containers per node, and there is at least 2GB memory for each container. The

memory of JVM heap size, Map Task and Reduce Task are set to 4GB, per task, and (2)

Spark version 1.5.1 was deployed using YARN. Like Hadoop, one server was configured

as NameNode and seven servers as DataNode for the HDFS file system. One server

as Master and seven servers as Slaves were configured. For each Spark application 7

executors were configured (i.e., one per node), using 8 cores each. The JVM memory

was set to 20GB and 64GB for Spark Driver and Executor, respectively.

A comprehensive set of representative workloads were selected, including Grep, K-

Means, and WordCount for both Hadoop and Spark. TeraSort, PageRank, and Con-

nected Components were used for Spark to understand and characterize Spark behaviors

in more detail. Tables A.1 and A.2 show the workloads that we used with their typi-

cal characteristics and utilized data sets, respectively. Grep and WordCount are data

intensive and one-pass-type workloads. K-Means is typically compute intensive and an

iterative workload. In order to further investigate the impact of storage technologies

107

Table A.1: Hadoop and Spark Workloads

Workload Description Type
Grep extracts matching strings from text files and counts

how many time they occurred
IO-bound, one pass

Word Count reads text files and counts how often words occur IO-bound, one pass
K-Means K-Means classifier CPU-bound, iterative
Terasort samples the input data and uses map/reduce to

sort the data into a total order
Network-bound

PageRank measures the importance of each vertex in a graph CPU-bound, iterative
Connected Compo-
nents

labels each connected component of the graph with
the ID of its lowest-numbered vertex

CPU-bound, iterative

Table A.2: Hadoop and Spark Datasets

Input Dataset Workload

PUMA Wikipedia Grep, Word Count

Friendster social network PageRank, Connected Components (65× 106 Nodes, 1.8× 109 Edges)

Hadoop TeraGen TeraSort

BigDataBench K-Means K-Means

in Spark, Terasort, PageRank, and Connected Components were selected. Different

metrics were collected for each of the workloads, including energy consumption, power

requirements, execution time, and resource utilization (e.g., CPU utilization, RAM

memory pressure - via LLC miss rate, and I/O throughout).

A.3 Experimental Results

A.3.1 Characterizing Behavior Patterns of Big Data Frameworks

This sub-section first explores and discusses how different Big Data processing frame-

works impact performance, power, energy, and resource utilization using Grep, K-

Means, and WordCount workloads. Hadoop and Spark workloads are both configured

to run using HDD as the storage device for the HDFS setup, which is its baseline and

standard configuration.

Figure A.3 (top) presents the energy consumption of Grep, K-Means, and Word-

Count for both Hadoop and Spark. The results show that executions with Hadoop

consume about 3.2 times, 3.1 times, and 2.2 times more energy than Spark for Grep,

K-Means, and WordCount, respectively. Figure A.3 (bottom) shows that the execution

time of Grep, K-Means, and WordCount using Hadoop is 5%, 2.4 times, and 23% longer

than using Spark, respectively, which indicates that executions with Spark consume less

108

 0

 1

 2

 3

 4

 5

Grep K-Means WordCountN
or

m
al

iz
ed

 E
ne

rg
y

C
on

su
m

pt
io

n

Energy Consumption of Grep, K-Means and WordCount

Hadoop
Spark

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4

Grep K-Means WordCount

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

Execution Time of Grep, K-Means and WordCount

Hadoop
Spark

Figure A.3: Normalized energy consumption (top) and normalized execution time (bot-
tom) of Grep, K-Means and WordCount using Hadoop and Spark

Table A.3: CPU utilization and power consumption of Grep, K-Means, and WordCount
execution using Hadoop and Spark

Workload Framework
AVG

Power (W)
Max

Power (W)
CPU Util
AVG (%)

Grep
Hadoop 667 1,031 61
Spark 222 979 22

K-Means
Hadoop 625 1,346 40
Spark 687 938 37

WordCount
Hadoop 1,015 1,261 75
Spark 573 1,221 48

energy than with Hadoop - and not only because Spark executions are shorter. The re-

sults also show that the I/O throughput with Spark is 7% and 15% higher than Hadoop

for Grep and WordCount, on average. Since Grep and WordCount are one-pass-type

workloads, Hadoop and Spark have similar sizes of shuffle data, where Hadoop spends

more time waiting for data reading and writing when compared to Spark.

As shown in Table A.3, the CPU utilization during the execution of Grep, K-Means,

and WordCount using Hadoop is longer (e.g., up to 1.8 times for Grep) than the ex-

ecution of these benchmark applications using Spark. The results indicate that both

execution time and CPU utilization with Hadoop are higher than with Spark; as a

result, Spark is more energy efficient than Hadoop. Note that these quantitative results

are with a system configuration using HDD and 1G network connectivity.

109

Figures A.4 and A.5 show that CPU utilization and power consumption using Spark

is much lower than using Hadoop; however, the I/O throughput using Spark is higher

than using Hadoop. This behavior suggests that Spark is capable of delivering higher

efficiencies when running workloads than Hadoop under the same constraints and sys-

tem configuration. The results provided in the following sections will show that Spark

provides higher resource utilization efficiencies with other storage and network con-

figurations, and therefore, higher overall efficiency, which is consistent with existing

literature.

 0

 200

 400

 600

 800

 1000

 1200

 0 200 400 600 800 1000 1200

Po
w

er
(W

)

Time/sec

Power
Power

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000 1200

C
PU

 U
til

iz
at

io
n(

%
)

Time/sec

CPU
CPU-UTILS
CPU-WAIT

 0

 100

 200

 300

 400

 500

 600

 0 200 400 600 800 1000 1200

M
B/

s

Time/sec

IO
IO-READ

IO-WRITE

 0

 10

 20

 30

 40

 50

 60

 0 200 400 600 800 1000 1200

M
is

s
R

at
e(

%
)

Time/sec

LLC
CACHE-MISS-RATE

Figure A.4: Resource utilization and power consumption of Grep using Hadoop

Understanding the Impact of Storage Technology. Figures A.6 and A.7 show

that energy consumption for executions using NVRAM is lower than when using HDD

or SSD for all application workloads with both Hadoop and Spark, as expected. The

energy consumption of Grep executions using HDD is higher compared to executions

using an SSD or NVRAM, especially for Spark (i.e., 40% and 2 times higher energy con-

sumption with Hadoop and Spark, respectively). However, the difference in execution

time across storage technology configurations is much higher than the difference in en-

ergy consumption (e.g., 1.28 times longer execution time using Hadoop and HDD with

110

 0

 200

 400

 600

 800

 1000

 1200

 0 200 400 600 800 1000 1200

Po
w

er
(W

)

Time/sec

Power
Power

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000 1200

C
PU

 U
til

iz
at

io
n(

%
)

Time/sec

CPU
CPU-UTILS
CPU-WAIT

 0

 100

 200

 300

 400

 500

 600

 0 200 400 600 800 1000 1200

M
B/

s

Time/sec

IO
IO-READ

IO-WRITE

 0

 10

 20

 30

 40

 50

 60

 0 200 400 600 800 1000 1200

M
is

s
R

at
e(

%
)

Time/sec

L3 Cache
CACHE-MISS-RATE

Figure A.5: Resource utilization and power consumption of Grep using Spark

respect to NVRAM vs. 40% increased energy consumption). Overall, the difference

between execution time and energy increase is significantly higher with Spark. Overall,

the CPU wait percentage is higher using Spark (i.e., 65.3%, 32.6%, and 6.8% for HDD,

SSD, and NVRAM). These results indicate that using NVRAM reduces CPU wait time

for both Hadoop and Spark; consequently, it provides higher energy efficiency.

 0

 2

 4

 6

 8

 10

 12

Hadoop Spark Hadoop Spark Hadoop Spark Hadoop Spark

Grep K-Means WordCount TeraSort

N
or

m
al

iz
ed

 E
ne

rg
y

C
on

su
m

pt
io

n

HDD
SSD

NVRAM

Figure A.6: Energy Consumption of Grep, Kmeans, WordCount and Terasort using
HDD, SSD and NVRAM with Hadoop and Spark

Since K-Means is iterative and not an I/O-bound workload, its executions using the

111

 0

 2

 4

 6

 8

 10

Hadoop Spark Hadoop Spark Hadoop Spark Hadoop Spark

Grep K-Means WordCount TeraSort

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

HDD
SSD

NVRAM

Figure A.7: Execution Time of Grep, Kmeans, WordCount and Terasort using HDD,
SSD and NVRAM with Hadoop and Spark

different storage choices are similar in terms of execution time and energy. However,

executions using Spark are much shorter and consume much less energy than executions

using Hadoop. Another factor in Spark is RDD caching. Specifically, the first iteration

of K-Means scans all data into RDD caching, which means the calculation of subsequent

iterations are based on the cached RDD. Since Spark reads are from RDDs, K-Means

is not constrained by I/O throughout using Spark.

Figures A.6 and A.7 show that WordCount executions with HDD are 15% longer

and consume 7% more energy than executions with NVRAM using Hadoop. However,

the execution time and energy consumption of WordCount executions with SSD and

NVRAM are similar. In the case of Spark, WordCount executions using HDD are

significantly longer (up to 1.46 times) and consume more energy than executions using

an SSD and NVRAM. As a result, the power required for executions using HDD are

approximately half of the power required in executions using an SSD and NVRAM.

Figures A.6 and A.7 show that TeraSort executions using HDD and SSD consume

significantly more energy than executions using NVRAM, especially with Spark (up to

68.3%). Spark does not support a simultaneous read and write function, therefore, if

the storage and/or network are not fast enough, the shuffling phase will consume a lot

of time. As TeraSort is an I/O-bounded workload, it has a heavy shuffle phase. Con-

sequently, Hadoop provides similar or superior performance than Spark in executions

using HDD. Figures A.8 and A.9 show TeraSort behavior patterns with Hadoop and

112

Spark using NVRAM. The figures clearly show different CPU and I/O patterns, which

result in different power consumption profiles.

 0
 200
 400
 600
 800

 1000
 1200
 1400

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

Po
w

er
(W

)

Time/sec

Power
Power

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

C
PU

 U
til

iz
at

io
n(

%
)

Time/sec

CPU
CPU-UTILS
CPU-WAIT

 0

 1500

 3000

 4500

 6000

 7500

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

M
B/

s

Time/sec

IO
IO-READ

IO-WRITE

 0
 10
 20
 30
 40
 50
 60
 70

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

M
is

s
R

at
e(

%
)

Time/sec

LLC
CACHE-MISS-RATE

Figure A.8: Resource utilization and power consumption of TeraSort with Hadoop using
NVRAM

The results discussed above show tradeoff between power budget, execution time

and energy consumption and indicate that, overall, Spark provides higher performance

and lower energy consumption. The rest of this sub-section concentrates on further

understanding the impact of the different storage choices using the following three

Spark workloads:

TeraSort is a popular sorting workload for benchmarking Big Data frameworks. Tera-

Sort executions are heavily influenced by the storage technology. As TeraSort is both

I/O- and CPU-bounded, the CPU wait percentage is lower with superior storage tech-

nologies (i.e., NVRAM).

PageRank is a graph algorithm proposed by Google to rank web pages by the number

and quality of links to a page. Five iterations of the workload were used in each

execution. In contrast to TeraSort, Table A.4 shows that the CPU wait percentage

is similar and almost null for the different storage technologies. However, the energy

113

 0
 200
 400
 600
 800

 1000
 1200
 1400

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

Po
w

er
(W

)

Time/sec

Power
Power

 0

 20

 40

 60

 80

 100

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

C
PU

 U
til

iz
at

io
n(

%
)

Time/sec

CPU
CPU-UTILS
CPU-WAIT

 0

 1500

 3000

 4500

 6000

 7500

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

M
B/

s

Time/sec

IO
IO-READ

IO-WRITE

 0
 10
 20
 30
 40
 50
 60
 70

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

M
is

s
R

at
e(

%
)

Time/sec

LLC
CACHE-MISS-RATE

Figure A.9: Resource utilization and power consumption of TeraSort with Spark using
NVRAM

Table A.4: Resource utilization of PageRank execution with Spark using HDD, SSD
and NVRAM

Storage Energy
(KJ)

Time
(s)

AVG
Power
(W)

Max
Power
(W)

CPU-
Util
(%)

CPU-
Wait
(%)

IO
(MB/s)

HDD 715 2,921 321 759 99.5 0.5 22.0
SSD 628 2,212 284 747 99.6 0.4 25.0
NVRAM 657 2,137 308 830 99.6 0.5 31.6

consumption is most efficient using NVRAM (6.8% and 4.6% lower than HDD or SSD,

respectively).

Connected Components is also an iterative graph processing workload. It computes

the connected component of each vertex and returns a graph with the vertex value

containing the lowest vertex ID in the connected component containing that vertex.

The results shown in Table A.5 indicate that Connected Components and PageRank

have very similar behavior patterns.

Understanding the Impact of the Network. This experiment focuses on how

the network bandwidth impacts performance, power, energy, and resource utilization

with Hadoop and Spark using Grep, WordCount, K-Means, TeraSort, PageRank, and

114

Table A.5: Resource utilization of Connected Components execution with Spark using
HDD, SSD and NVRAM

Storage Energy
(KJ)

Time
(s)

AVG
Power
(W)

Max
Power
(W)

CPU-
Util
(%)

CPU-
Wait
(%)

IO
(MB/s)

HDD 893 3,587 256 760 99.6 0.4 12.8
SSD 888 3,558 249 739 99.6 0.4 17.2
NVRAM 839 2,952 287 755 99.6 0.4 24.9

Connected Components (CC). The network is configured to use either 1Gb Ethernet

or 10Gb Ethernet interfaces. Figure A.10 shows that behavior patterns are workload-

dependent and that in general, the energy consumption is higher (or similar) for execu-

tions using the 10G network compared to the energy consumption of executions using

the 1G network with both Hadoop and Spark; however, the execution time using the

10G network is shorter (or similar) than executions using the 1G network.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

Had
oo

p-1
G

Had
oo

p-1
0G

Spa
rk-

1G

Spa
rk-

10
G

Had
oo

p-1
G

Had
oo

p-1
0G

Spa
rk-

1G

Spa
rk-

10
G

Had
oo

p-1
G

Had
oo

p-1
0G

Spa
rk-

1G

Spa
rk-

10
G

Spa
rk-

1G

Spa
rk-

10
G

Spa
rk-

1G

Spa
rk-

10
G

Spa
rk-

1G

Spa
rk-

10
G

Grep WordCount K-Means TeraSort PageRank CC

N
or

m
al

iz
ed

 E
ne

rg
y

C
on

su
m

pt
io

n

HDD
SSD

NVRAM

 0

 1

 2

 3

 4

 5

Had
oo

p-1
G

Had
oo

p-1
0G

Spa
rk-

1G

Spa
rk-

10
G

Had
oo

p-1
G

Had
oo

p-1
0G

Spa
rk-

1G

Spa
rk-

10
G

Had
oo

p-1
G

Had
oo

p-1
0G

Spa
rk-

1G

Spa
rk-

10
G

Spa
rk-

1G

Spa
rk-

10
G

Spa
rk-

1G

Spa
rk-

10
G

Spa
rk-

1G

Spa
rk-

10
G

Grep WordCount K-Means TeraSort PageRank CC

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

HDD
SSD

NVRAM

Figure A.10: Normalized energy consumption (top) and execution time (bottom) of
Grep, WordCount, K-Means, TeraSort, PageRank and Connected Components using
HDD, SSD and NVRAM with Hadoop and Spark

The results discussed above are consistent with the expected behaviors; however

they provide an understanding of different design choices based on different workload

115

profiles and optimization goals (e.g., performance, power, and cost), which we use for

understanding the potential of software-defined infrastructure in the context of big data

processing frameworks. For example, using a 10G network is worthwhile for Spark when

high performance is needed and neither power nor budget are constrained; however,

when performance degradation can be tolerated and power is not heavily constrained,

10G is not worth the cost when using Hadoop. This example represents a class of data-

intensive one-pass workloads that can be heavily influenced by the storage technology

used.

A.3.2 Exploring the Potential of Software-Defined Infrastructure

In this sub-section we explore the potential of software-defined infrastructure for exist-

ing big data processing frameworks through simulation using the information obtained

in the characterization presented above. We have developed a simulation framework

focused big data workload allocation to resources. These workloads are composed of

big data applications for both Hadoop (Grep, WordCount, TeraSort and K-Means) and

Spark (Grep, WordCount, TeraSort, K-Means, Connected Component and PageRank)

frameworks. As the storage technology used in the big data frameworks running these

applications significantly impact different key metrics such as execution time and en-

ergy consumption, the workload allocation algorithm focuses on storage issues in the

system design.

In order to simulate the execution of the workloads in software-define infrastructure

and traditional infrastructures (i.e., with fixed amount of accessible storage resources),

we: (1) assume that the datacenter is composed of multiple big data deployments (clus-

ters) for running big data workloads, and (2) fix the total amount of storage available

in the datacenter (i.e., total amount of HDD, SSD and NVRAM). Under these assump-

tions, we consider two scenarios:

• Non-SDI (traditional): The storage available in one cluster is fixed and can be

used only by applications running in that cluster.

• SDI: All storage available in the datacenter is available to all applications running

116

in any cluster.

In this initial approximation, we also assume that the latency and bandwidth to

off-node and in-node storage devices are similar. Our ongoing work includes the explo-

ration of the design space (e.g., interconnect capabilities required for realizing effective

software-defined infrastructure) by introducing different latency and bandwidth limita-

tions to off-node storage device access.

Our simulation study requires key data points, such as the workloads’ execution

time and energy consumption using different storage device technology. The meaning

of the parameters used in the simulation are described as follows:

• W : Randomly generated workload with 100 application instances

• SWL: Workload required storage capacity

• SHDD, SSSD, SNV RAM : Available HDD, SDD and NVRAM capacity, respectively

• THDD, TSSD, TNV RAM : Workload execution time using HDD, SSD and NVRAM,

respectively

• EHDD, ESSD, ENV RAM : Energy consumption using HDD, SSD and NVRAM,

respectively

• CHDD, CSSD, CNV RAM : Energy consumption using HDD, SSD and NVRAM de-

vices, respectively

• T/E/CSDI , T/E/Cnon−SDI : Execution Time, Energy Consumption and Cost,

using SDI and non-SDI configurations, respectively

In the simulations, the datacenter contains 10 clusters, each composed of 8 nodes,

which is the configuration used in the characterization presented above. The total size

of HDD, SSD and NVRAM for the overall datacenter are set to 37 TB, 10.8 TB and

6-48 TB, respectively. The cost (C) refers to the capital cost of different technologies

(e.g., NVRAM vs. HDD), which is part of TCO (Total Cost of Ownership). Default

values are based on standard pricing for enterprise storage at $0.4882/GB, $0.5859/GB

117

and $1.0417/GB for HDD, SSD and NVRAM, respectively. Algorithm 2 presents the

workload allocation algorithm, which by default prioritizes NVRAM as the first choice,

the second choice is SSD and last choice is HDD. We follow this approach to understand

the tradeoff between response time and energy efficiency and cost, which is a key issue

in datacenter design and deployment.

Algorithm 2: Workloads Allocation Algorithm.

1 Function Storage Device Priority ;
Input : W , SWL,

SHDD, SSSD, SNVRAM , THDD, TSSD, TNVRAM ,
EHDD, ESSD, ENVRAM , CHDD, CSSD, CNVRAM

Output: TSDI , ESDI , CSDI , Tnon−SDI , Enon−SDI , Cnon−SDI

1: start time;
2: while W is not empty do
3: for i = 1; i <= 10; i+ + do
4: if cluster i is empty then
5: if SNVRAM >= SWL then
6: push next workload into NVRAM;
7: else if SSSD >= SWL then
8: push next workload into SSD;
9: else

10: push next workload into HDD;
11: end if
12: end if
13: end for
14: end while
15: end time;

return (TSDI , ESDI , CSDI , Tnon−SDI , Enon−SDI , Cnon−SDI);

Figure A.11 shows the tradeoff between cost and execution time and energy con-

sumption using different NVRAM size (i.e., different investment choices) using non-SDI

and SDI scenarios. The results show that both execution time and energy consumption

in the SDI scenario are significantly lower than the non-SDI scenario with up to 36TB

of NVRAM. While larger NVRAM sizes provides better performance/energy (up to

24-30TB) in the SDI scenario, these improvements are at a significant cost increase.

As opposed to CPU-bound workloads, data-intensive workloads are highly impacted

by the storage technology used. In order to understand this issue in SDI and non-SDI

scenarios, we classify the simulated applications into two types: (1) Data intensive

(Grep, WordCount and TeraSort) and 2) non-Data intensive (K-Means, PageRank and

Connected Component) and generate workloads with different proportions of these

118

 18

 20

 22

 24

 26

 28

6 12 18 24 30 36 42 48
 10
 15
 20
 25
 30
 35
 40
 45
 50
 55
 60

Ti
m

e(
KS

)

C
os

t(K
$)

NVRAM size(TB)

Execution Time (SDI VS Non SDI)

SDI
non-SDI

Cost

 104

 106

 108

 110

 112

 114

 116

 118

 120

6 12 18 24 30 36 42 48
 10
 15
 20
 25
 30
 35
 40
 45
 50
 55
 60

En
er

gy
(M

J)

C
os

t(K
$)

NVRAM size(TB)

Energy Consumption (SDI VS Non SDI)

SDI
non-SDI

Cost

Figure A.11: Execution time (top) and energy (bottom) vs. total storage cost

types of applications (from 0% to 100%). Figure A.12 shows the execution time and

energy overhead of the non-SDI scenario with respect to the SDI one. In addition to the

tradeoffs shown, the results indicate that the execution time of data-intensive workloads

in the SDI scenario can get up to 87.7% shorter than in the non-SDI scenario. However,

with 36TB of NVRAM the execution time and energy are similar in both SDI and non-

SDI scenarios, which is consistent with the results shown in Figure A.11. These results

clearly show the potential of software-defined infrastructure for big data processing

frameworks.

A.4 Discussion

This chapter provided a detailed evaluation of performance, power and resource utiliza-

tion behaviors trends of Hadoop and Spark using a relevant set of Big Data benchmarks

and different technology choices. The experimental evaluation supports the argument

that NVRAM is a solid candidate for supporting in-memory analytics in ongoing ar-

chitectures with deeper memory hierarchies. The experimental evaluation also showed

119

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

0-100 25-75 50-50 75-25 100-0
 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

% %

Data intensive(%)-non-Data intensive(%)

Execution Time Overhead (SDI VS Non SDI)

3 TB
6 TB

12 TB
18 TB
24 TB
30 TB
36 TB

 0

 5

 10

 15

 20

0-100 25-75 50-50 75-25 100-0
 0

 5

 10

 15

 20

% %

Data intensive(%)-non-Data intensive(%)

Energy Consumption Overhead (SDI VS Non SDI)

3 TB
6 TB

12 TB
18 TB
24 TB
30 TB
36 TB

Figure A.12: Execution time (top) and energy (bottom) overheads of non-SDI scenarios
with respect to SDI

that the network bandwidth impacts more significantly the performance in Spark work-

loads than in Hadoop’s ones. Simulation-based experimentation showed the significant

advantages (upper bound) of software-defined infrastructures for existing Big Data pro-

cessing frameworks.

The results from this work provide meaningful data points to build multi-criteria

application-centric models for Big Data co-design and motivate further research fo-

cused on in-memory processing systems with deeper memory hierarchies and different

design options and constraints for software-defined infrastructures (e.g., 400G MSA vs.

400/800G embedded optics vs. PCIe 5.0).

120

References

[1] T. White, Hadoop: The definitive guide. ” O’Reilly Media, Inc.”, 2012.

[2] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauly, M. J. Franklin,
S. Shenker, and I. Stoica, “Resilient distributed datasets: A fault-tolerant abstrac-
tion for in-memory cluster computing,” in Presented as part of the 9th {USENIX}
Symposium on Networked Systems Design and Implementation ({NSDI} 12),
pp. 15–28, 2012.

[3] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, S. Anthony, H. Liu, P. Wyck-
off, and R. Murthy, “Hive: a warehousing solution over a map-reduce framework,”
Proceedings of the VLDB Endowment, vol. 2, no. 2, pp. 1626–1629, 2009.

[4] M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu, J. K. Bradley, X. Meng, T. Kaf-
tan, M. J. Franklin, A. Ghodsi, et al., “Spark sql: Relational data processing in
spark,” in Proceedings of the 2015 ACM SIGMOD international conference on
management of data, pp. 1383–1394, 2015.

[5] R. Sethi, M. Traverso, D. Sundstrom, D. Phillips, W. Xie, Y. Sun, N. Yegit-
basi, H. Jin, E. Hwang, N. Shingte, et al., “Presto: Sql on everything,” in 2019
IEEE 35th International Conference on Data Engineering (ICDE), pp. 1802–
1813, IEEE, 2019.

[6] M. Kornacker, A. Behm, V. Bittorf, T. Bobrovytsky, C. Ching, A. Choi, J. Er-
ickson, M. Grund, D. Hecht, M. Jacobs, et al., “Impala: A modern, open-source
sql engine for hadoop.,” in Cidr, vol. 1, p. 9, 2015.

[7] A. Toshniwal, S. Taneja, A. Shukla, K. Ramasamy, J. M. Patel, S. Kulkarni,
J. Jackson, K. Gade, M. Fu, J. Donham, et al., “Storm@ twitter,” in Proceedings
of the 2014 ACM SIGMOD international conference on Management of data,
pp. 147–156, 2014.

[8] P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S. Haridi, and K. Tzoumas,
“Apache flink: Stream and batch processing in a single engine,” Bulletin of the
IEEE Computer Society Technical Committee on Data Engineering, vol. 36, no. 4,
2015.

[9] K. Shvachko, H. Kuang, S. Radia, R. Chansler, et al., “The hadoop distributed
file system.,” in MSST, vol. 10, pp. 1–10, 2010.

[10] H. Li, A. Ghodsi, M. Zaharia, S. Shenker, and I. Stoica, “Tachyon: Reliable,
memory speed storage for cluster computing frameworks,” in Proceedings of the
ACM Symposium on Cloud Computing, pp. 1–15, ACM, 2014.

[11] “IBM:What is big data: Bring big data to the enterprise.” http://www-01.ibm.

com/software/data/bigdata/what-is-big-data.html/, 2012.

121

[12] C. Lynch, “Big data: How do your data grow?,” Nature, 2008.

[13] L. Liao, “Intel silicon photonics: from research to product,” IEEE Components,
Packaging and Manufacturing, 2017.

[14] A. K. Das, S.-J. Park, J. Hong, and W. Chang, “Evaluating different distributed-
cyber-infrastructure for data and compute intensive scientific application,” in Big
Data (Big Data), IEEE Intl. Conf. on, pp. 134–143, 2015.

[15] K. N. Khan, M. A. Hoque, T. Niemi, Z. Ou, and J. K. Nurminen, “Energy
efficiency of large scale graph processing platforms,” in Proceedings of the 2016
ACM International Joint Conference on Pervasive and Ubiquitous Computing:
Adjunct, pp. 1287–1294, ACM, 2016.

[16] S. Kavulya, J. Tan, R. Gandhi, and P. Narasimhan, “An analysis of traces from a
production mapreduce cluster,” in Cluster, Cloud and Grid Computing (CCGrid),
2010 10th IEEE/ACM International Conference on, pp. 94–103, IEEE, 2010.

[17] A. Ganapathi, Y. Chen, A. Fox, R. Katz, and D. Patterson, “Statistics-driven
workload modeling for the cloud,” in Data Engineering Workshops (ICDEW),
2010 IEEE 26th International Conference on, pp. 87–92, IEEE, 2010.

[18] G. Wang, A. R. Butt, P. Pandey, and K. Gupta, “Using realistic simulation for
performance analysis of mapreduce setups,” in Proc. of the 1st ACM workshop
on Large-Scale system and application performance, pp. 19–26, 2009.

[19] K. Kim, K. Jeon, H. Han, S.-g. Kim, H. Jung, and H. Y. Yeom, “Mrbench: A
benchmark for mapreduce framework,” in Parallel and Distributed Systems, 2008.
ICPADS’08. 14th IEEE Intl. Conf. on, pp. 11–18, 2008.

[20] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph, R. H. Katz,
S. Shenker, and I. Stoica, “Mesos: A platform for fine-grained resource sharing
in the data center.,” in NSDI, vol. 11, pp. 22–22, 2011.

[21] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S. Shenker, and I. Sto-
ica, “Dominant resource fairness: Fair allocation of multiple resource types.,”
in NSDI, vol. 11, pp. 24–24, 2011.

[22] Y. Chen, A. Ganapathi, and R. H. Katz, “To compress or not to compress-
compute vs. io tradeoffs for mapreduce energy efficiency,” in Proceedings of the
first ACM SIGCOMM workshop on Green networking, pp. 23–28, 2010.

[23] “Rumen: A tool to extract Job Characterization Data from Job Tracker Logs.”
https://www.top500.org/lists/2016/06//, 2009.

[24] K. Cardona, J. Secretan, M. Georgiopoulos, and G. Anagnostopoulos, “A grid
based system for data mining using mapreduce,” in Seventh IEEE International
Conference on Grid Computing, p. 33, Citeseer, 2007.

[25] S. Hammoud, M. Li, Y. Liu, N. K. Alham, and Z. Liu, “Mrsim: A discrete
event based mapreduce simulator,” in Fuzzy Systems and Knowledge Discovery
(FSKD), 2010 Seventh Intl. Conf. on, vol. 6, pp. 2993–2997, 2010.

122

[26] A. C. Murthy, “Mumak: Map-reduce simulator,” MAPREDUCE-728, Apache
JIRA, 2009.

[27] C. Douglas and H. Tang, “Gridmix3 emulating production workload for apache
hadoop,” 2010.

[28] “Aloja, benchmark repository and performance analysis tool,” 2014.

[29] R. T. Kaushik and M. Bhandarkar, “Greenhdfs: towards an energy-conserving,
storage-efficient, hybrid hadoop compute cluster,” in Proceedings of the USENIX
annual technical conference, p. 109, 2010.

[30] Í. Goiri, K. Le, T. D. Nguyen, J. Guitart, J. Torres, and R. Bianchini, “Green-
hadoop: leveraging green energy in data-processing frameworks,” in Proceedings
of the 7th ACM european conference on Computer Systems, pp. 57–70, ACM,
2012.

[31] W. Lang and J. M. Patel, “Energy management for mapreduce clusters,” Pro-
ceedings of the VLDB Endowment, 2010.

[32] H. Amur, J. Cipar, V. Gupta, G. R. Ganger, M. A. Kozuch, and K. Schwan,
“Robust and flexible power-proportional storage,” in Proceedings of the 1st ACM
symposium on Cloud computing, ACM, 2010.

[33] Y. Chen, S. Alspaugh, D. Borthakur, and R. Katz, “Energy efficiency for large-
scale mapreduce workloads with significant interactive analysis,” in Proc. of the
7th ACM european conference on Computer Systems, pp. 43–56, 2012.

[34] N. Tiwari, U. Bellur, S. Sarkar, and M. Indrawan, “Identification of critical pa-
rameters for mapreduce energy efficiency using statistical design of experiments,”
in Parallel and Distributed Processing Symposium Workshops, 2016 IEEE Inter-
national, pp. 1170–1179, IEEE, 2016.

[35] T. Wirtz and R. Ge, “Improving mapreduce energy efficiency for computation
intensive workloads,” in Green Computing Conference and Workshops (IGCC),
2011 International, pp. 1–8, IEEE, 2011.

[36] S. Li, T. Abdelzaher, and M. Yuan, “Tapa: Temperature aware power allocation
in data center with map-reduce,” in Green Computing Conference and Workshops
(IGCC), 2011 International, pp. 1–8, IEEE, 2011.

[37] S. Ibrahim, T.-D. Phan, A. Carpen-Amarie, H.-E. Chihoub, D. Moise, and G. An-
toniu, “Governing energy consumption in hadoop through cpu frequency scaling:
An analysis,” Future Generation Computer Systems, vol. 54, pp. 219–232, 2016.

[38] Y. Chen, L. Keys, and R. H. Katz, “Towards energy efficient mapreduce,” EECS
Department, University of California, Berkeley, Tech. Rep. UCB/EECS-2009-
109, 2009.

[39] N. Yigitbasi, K. Datta, N. Jain, and T. Willke, “Energy efficient scheduling of
mapreduce workloads on heterogeneous clusters,” in 2nd International Workshop
on Green Computing Middleware, 2011.

123

[40] L. Luo, W. Wu, D. Di, F. Zhang, Y. Yan, and Y. Mao, “A resource scheduling
algorithm of cloud computing based on energy efficient optimization methods,”
in Intl. Green Computing Conference (IGCC), pp. 1–6, 2012.

[41] A. Murthy, “The hadoop map-reduce capacity scheduler,” URL http://developer.
yahoo. com/blogs/hadoop/posts/2011/02/capacity-scheduler, 2011.

[42] J. Polo, D. Carrera, Y. Becerra, M. Steinder, and I. Whalley, “Performance-driven
task co-scheduling for mapreduce environments,” in IEEE Network Operations
and Management Symposium-NOMS 2010, pp. 373–380, 2010.

[43] T. Sandholm and K. Lai, “Dynamic proportional share scheduling in hadoop,” in
Job Scheduling Strategies for Parallel Processing, pp. 110–131, 2010.

[44] M. Lu, L. Zhang, H. P. Huynh, Z. Ong, et al., “Optimizing the mapreduce frame-
work on intel xeon phi coprocessor,” in Big Data, IEEE International Conference
on, pp. 125–130, 2013.

[45] S. Han, N. Egi, A. Panda, S. Ratnasamy, G. Shi, and S. Shenker, “Network sup-
port for resource disaggregation in next-generation datacenters,” in Proceedings
of the Twelfth ACM Workshop on Hot Topics in Networks, p. 10, ACM, 2013.

[46] J. Lee, Y. Turner, M. Lee, L. Popa, S. Banerjee, J.-M. Kang, and P. Sharma,
“Application-driven bandwidth guarantees in datacenters,” in ACM SIGCOMM
Computer Communication Review, vol. 44, pp. 467–478, ACM, 2014.

[47] P. X. Gao, A. Narayan, S. Karandikar, J. Carreira, S. Han, R. Agarwal, S. Rat-
nasamy, and S. Shenker, “Network requirements for resource disaggregation.,” in
OSDI, vol. 16, pp. 249–264, 2016.

[48] S. Legtchenko, H. Williams, K. Razavi, A. Donnelly, R. Black, A. Douglas,
N. Cheriere, D. Fryer, K. Mast, A. D. Brown, et al., “Understanding rack-scale
disaggregated storage,” in 9th USENIX Workshop on Hot Topics in Storage and
File Systems (HotStorage 17), Santa Clara, CA, 2017.

[49] A. Klimovic, C. Kozyrakis, E. Thereska, B. John, and S. Kumar, “Flash storage
disaggregation,” in Proceedings of the Eleventh European Conference on Com-
puter Systems, p. 29, ACM, 2016.

[50] K. Lim, J. Chang, T. Mudge, P. Ranganathan, S. K. Reinhardt, and T. F.
Wenisch, “Disaggregated memory for expansion and sharing in blade servers,”
in ACM SIGARCH Computer Architecture News, vol. 37, pp. 267–278, ACM,
2009.

[51] K. Lim, Y. Turner, J. R. Santos, A. AuYoung, J. Chang, P. Ranganathan, and
T. F. Wenisch, “System-level implications of disaggregated memory,” in High Per-
formance Computer Architecture (HPCA), 2012 IEEE 18th International Sym-
posium on, pp. 1–12, IEEE, 2012.

[52] J. Gu, Y. Lee, Y. Zhang, M. Chowdhury, and K. G. Shin, “Efficient memory
disaggregation with infiniswap.,” in NSDI, pp. 649–667, 2017.

124

[53] Z. Guz, H. H. Li, A. Shayesteh, and V. Balakrishnan, “Nvme-over-fabrics per-
formance characterization and the path to low-overhead flash disaggregation,”
in Proceedings of the 10th ACM International Systems and Storage Conference,
p. 16, ACM, 2017.

[54] S. Sur, H. Wang, J. Huang, X. Ouyang, and D. K. Panda, “Can high-performance
interconnects benefit hadoop distributed file system,” in Workshop on Micro
Architectural Support for Virtualization, Data Center Computing, and Clouds
(MASVDC). Held in Conjunction with MICRO, Citeseer, 2010.

[55] N. S. Islam, M. W. Rahman, J. Jose, R. Rajachandrasekar, H. Wang, H. Sub-
ramoni, C. Murthy, and D. K. Panda, “High performance rdma-based design of
hdfs over infiniband,” in Proceedings of the International Conference on High Per-
formance Computing, Networking, Storage and Analysis, p. 35, IEEE Computer
Society Press, 2012.

[56] X. Lu, M. W. U. Rahman, N. Islam, D. Shankar, and D. K. Panda, “Accelerating
spark with rdma for big data processing: Early experiences,” in High-performance
interconnects (HOTI), 2014 IEEE 22nd annual symposium on, pp. 9–16, IEEE,
2014.

[57] X. Lu, D. Shankar, S. Gugnani, and D. K. D. Panda, “High-performance design
of apache spark with rdma and its benefits on various workloads,” in Big Data
(Big Data), 2016 IEEE International Conference on, pp. 253–262, IEEE, 2016.

[58] S. Kamburugamuve, K. Ramasamy, M. Swany, and G. Fox, “Low latency stream
processing: Apache heron with infiniband & intel omni-path,” in Proceedings
of the10th International Conference on Utility and Cloud Computing, pp. 101–
110, 2017.

[59] P. Gupta, “Accelerating datacenter workloads,” in 26th International Conference
on Field Programmable Logic and Applications (FPL), 2016.

[60] D. Manzi and D. Tompkins, “Exploring gpu acceleration of apache spark,” in
Cloud Engineering (IC2E), 2016 IEEE International Conference on, pp. 222–
223, IEEE, 2016.

[61] P. Li, Y. Luo, N. Zhang, and Y. Cao, “Heterospark: A heterogeneous cpu/gpu
spark platform for machine learning algorithms,” in Networking, Architecture
and Storage (NAS), 2015 IEEE International Conference on, pp. 347–348, IEEE,
2015.

[62] M. M. Rathore, H. Son, A. Ahmad, A. Paul, and G. Jeon, “Real-time big data
stream processing using gpu with spark over hadoop ecosystem,” International
Journal of Parallel Programming, pp. 1–17, 2017.

[63] A. Davidson and A. Or, “Optimizing shuffle performance in spark,” University
of California, Berkeley-Department of Electrical Engineering and Computer Sci-
ences, Tech. Rep, 2013.

[64] N. Chaimov, A. Malony, S. Canon, C. Iancu, K. Z. Ibrahim, and J. Srinivasan,
“Scaling spark on hpc systems,” in Proceedings of the 25th ACM International

125

Symposium on High-Performance Parallel and Distributed Computing, pp. 97–
110, ACM, 2016.

[65] K. Kambatla and Y. Chen, “The truth about mapreduce performance on ssds,”
in 28th Large Installation System Administration Conference (LISA14), pp. 118–
126, 2014.

[66] S. Moon, J. Lee, and Y. S. Kee, “Introducing ssds to the hadoop mapreduce
framework,” in Cloud Computing (CLOUD), 2014 IEEE 7th International Con-
ference on, pp. 272–279, IEEE, 2014.

[67] L. A. Barroso, J. Clidaras, and U. Hölzle, “The datacenter as a computer: An
introduction to the design of warehouse-scale machines,” Synthesis lectures on
computer architecture, vol. 8, no. 3, pp. 1–154, 2013.

[68] A. Greenberg, J. Hamilton, D. A. Maltz, and P. Patel, “The cost of a cloud:
research problems in data center networks,” ACM SIGCOMM computer commu-
nication review, vol. 39, no. 1, pp. 68–73, 2008.

[69] I. Cano, M. Weimer, D. Mahajan, C. Curino, and G. M. Fumarola, “Towards
geo-distributed machine learning,” arXiv preprint arXiv:1603.09035, 2016.

[70] A. C. Zhou, Y. Gong, B. He, and J. Zhai, “Efficient process mapping in geo-
distributed cloud data centers,” in Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis, p. 16, ACM,
2017.

[71] C.-C. Hung, L. Golubchik, and M. Yu, “Scheduling jobs across geo-distributed
datacenters,” in Proceedings of the Sixth ACM Symposium on Cloud Computing,
pp. 111–124, ACM, 2015.

[72] A. Rajabi, H. R. Faragardi, and T. Nolte, “An efficient scheduling of hpc appli-
cations on geographically distributed cloud data centers,” in International Sym-
posium on Computer Networks and Distributed Systems, pp. 155–167, Springer,
2013.

[73] R. Viswanathan, G. Ananthanarayanan, and A. Akella, “Clarinet: Wan-aware
optimization for analytics queries.,” in OSDI, vol. 16, pp. 435–450, 2016.

[74] A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer, E. Tune, and J. Wilkes,
“Large-scale cluster management at google with borg,” in Tenth European Con-
ference on Computer Systems, p. 18, ACM, 2015.

[75] Y. Zhang, G. Prekas, G. M. Fumarola, M. Fontoura, Í. Goiri, and R. Bianchini,
“History-based harvesting of spare cycles and storage in large-scale datacenters,”
in Proceedings of the 12th USENIX conference on Operating Systems Design and
Implementation, no. EPFL-CONF-224446, pp. 755–770, 2016.

[76] Nvidia, “Gpu.” https://www.nvidia.com/en-us/about-nvidia/

ai-computing/. Accessed March, 2019.

126

[77] Intel, “Optane ssd.” https://www.intel.com/content/www/us/en/

architecture-and-technology/intel-optane-technology.html. Accessed
March, 2019.

[78] N. S. Islam, D. Shankar, X. Lu, M. Wasi-Ur-Rahman, and D. K. Panda, “Accel-
erating i/o performance of big data analytics on hpc clusters through rdma-based
key-value store,” in Parallel Processing (ICPP), 44th International Conference
on, pp. 280–289, IEEE, 2015.

[79] P. S. Rao and G. Porter, “Is memory disaggregation feasible?: A case study
with spark sql,” in Proc. of the 2016 Symp. on Architectures for Networking and
Communications Systems, pp. 75–80, 2016.

[80] Intel, “Intel rack scale design.” https://www.intel.com/content/www/us/

en/architecture-and-technology/rack-scale-design-overview.html. Ac-
cessed March, 2019.

[81] hp, “Hp the machine.” http://www.labs.hpe.com/research/themachine/. Ac-
cessed March, 2019.

[82] J. Taylor, “Facebook’s data center infrastructure: Opencompute, disaggregated
rack, and beyond,” in Optical Fiber Communication Conference, pp. W1D–5,
Optical Society of America, 2015.

[83] S. Dwarkadas, N. Hardavellas, L. Kontothanassis, R. Nikhil, and R. Stets,
“Cashmere-vlm: Remote memory paging for software distributed shared mem-
ory,” in International Symposium on Parallel and Distributed Processing, pp. 153–
159, 1999.

[84] M. D. Flouris and E. P. Markatos, “The network ramdisk: Using remote memory
on heterogeneous nows,” Cluster Computing, vol. 2, no. 4, pp. 281–293, 1999.

[85] S. Liang, R. Noronha, and D. K. Panda, “Swapping to remote memory over
infiniband: An approach using a high performance network block device,” in
IEEE Cluster Computing, pp. 1–10, 2005.

[86] E. P. Markatos and G. Dramitinos, “Implementation of a reliable remote memory
pager.,” in USENIX Annual Technical Conference, pp. 177–190, 1996.

[87] Intel, “Persistent memory.” https://software.intel.com/en-us/

persistent-memory. Accessed March, 2019.

[88] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica, “Spark:
Cluster computing with working sets.,” HotCloud, vol. 10, no. 10-10, p. 95, 2010.

[89] “Presto.” https://prestosql.io. Accessed: 2019-12-22.

[90] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on large clus-
ters,” Communications of the ACM, vol. 51, no. 1, pp. 107–113, 2008.

[91] G. Ananthanarayanan, M. C.-C. Hung, X. Ren, I. Stoica, A. Wierman, and M. Yu,
“{GRASS}: Trimming stragglers in approximation analytics,” in 11th {USENIX}
Symposium on Networked Systems Design and Implementation ({NSDI} 14),
pp. 289–302, 2014.

127

[92] S. Kambhampati, J. Kelley, C. Stewart, W. C. Stewart, and R. Ramnath, “Man-
aging tiny tasks for data-parallel, subsampling workloads,” in 2014 IEEE Inter-
national Conference on Cloud Engineering, pp. 225–234, IEEE, 2014.

[93] K. Ousterhout, C. Canel, S. Ratnasamy, and S. Shenker, “Monotasks: Architect-
ing for performance clarity in data analytics frameworks,” in Proceedings of the
26th Symposium on Operating Systems Principles, pp. 184–200, ACM, 2017.

[94] K. Ousterhout, A. Panda, J. Rosen, S. Venkataraman, R. Xin, S. Ratnasamy,
S. Shenker, and I. Stoica, “The case for tiny tasks in compute clusters,” in Pre-
sented as part of the 14th Workshop on Hot Topics in Operating Systems, 2013.

[95] K. Ousterhout, R. Rasti, S. Ratnasamy, S. Shenker, and B.-G. Chun, “Making
sense of performance in data analytics frameworks,” in 12th {USENIX} Sympo-
sium on Networked Systems Design and Implementation ({NSDI} 15), pp. 293–
307, 2015.

[96] S. Melnik, A. Gubarev, J. J. Long, G. Romer, S. Shivakumar, M. Tolton, and
T. Vassilakis, “Dremel: interactive analysis of web-scale datasets,” Proceedings of
the VLDB Endowment, vol. 3, no. 1-2, pp. 330–339, 2010.

[97] L. Sun, M. J. Franklin, S. Krishnan, and R. S. Xin, “Fine-grained partitioning
for aggressive data skipping,” in Proceedings of the 2014 ACM SIGMOD inter-
national conference on Management of data, pp. 1115–1126, ACM, 2014.

[98] S. Chen, W. Wang, X. Wu, Z. Fan, K. Huang, P. Zhuang, Y. Li, I. Rodero,
M. Parashar, and D. Weng, “Optimizing performance and computing resource
management of in-memory big data analytics with disaggregated persistent mem-
ory,” in 19th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing, CCGrid 2019, pp. 21–30, Institute of Electrical and Electronics En-
gineers Inc., 2019.

[99] “Tuning spark.” https://spark.apache.org/docs/latest/tuning.html. Ac-
cessed: 2019-12-22.

[100] “Presto - query optimizer: pursuit of performance.” https://www.

slideshare.net/Hadoop_Summit/presto\-query\-optimizer\-pursuit\

-of\-performance. Accessed: 2019-12-22.

[101] H. Zhang, B. Cho, E. Seyfe, A. Ching, and M. J. Freedman, “Riffle: optimized
shuffle service for large-scale data analytics,” in Proceedings of the Thirteenth
EuroSys Conference, p. 43, ACM, 2018.

[102] P. Stuedi, A. Trivedi, J. Pfefferle, R. Stoica, B. Metzler, N. Ioannou, and I. Koltsi-
das, “Crail: A high-performance i/o architecture for distributed data processing.,”
IEEE Data Eng. Bull., vol. 40, no. 1, pp. 38–49, 2017.

[103] S. Rao, R. Ramakrishnan, A. Silberstein, M. Ovsiannikov, and D. Reeves, “Sail-
fish: A framework for large scale data processing,” in Proceedings of the Third
ACM Symposium on Cloud Computing, p. 4, ACM, 2012.

128

[104] A. Rasmussen, V. T. Lam, M. Conley, G. Porter, R. Kapoor, and A. Vahdat,
“Themis: an i/o-efficient mapreduce,” in Proceedings of the Third ACM Sympo-
sium on Cloud Computing, pp. 1–14, 2012.

[105] A. Rasmussen, G. Porter, M. Conley, H. V. Madhyastha, R. N. Mysore, A. Pucher,
and A. Vahdat, “Tritonsort: A balanced large-scale sorting system.,” in NSDI,
2011.

[106] “Cosco: An efficient facebook-scale shuffle service.” https://databricks.com/

session/cosco-an-efficient-facebook-scale-shuffle-service. Accessed:
2019-12-25.

[107] S. Muralidhar, W. Lloyd, S. Roy, C. Hill, E. Lin, W. Liu, S. Pan, S. Shankar,
V. Sivakumar, L. Tang, et al., “f4: Facebook’s warm {BLOB} storage system,” in
11th {USENIX} Symposium on Operating Systems Design and Implementation
({OSDI} 14), pp. 383–398, 2014.

[108] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. J. Furman, S. Ghe-
mawat, A. Gubarev, C. Heiser, P. Hochschild, et al., “Spanner: Google’s globally
distributed database,” ACM Transactions on Computer Systems (TOCS), vol. 31,
no. 3, p. 8, 2013.

[109] S. Chen and I. Rodero, “Understanding behavior trends of big data frameworks
in ongoing software-defined cyber-infrastructure,” in Proceedings of the Fourth
IEEE/ACM International Conference on Big Data Computing, Applications and
Technologies, pp. 199–208, ACM, 2017.

[110] “Intel R© optaneTM dc persistent memory.” https://www.intel.com/content/

www/us/en/architecture-and-technology/optane-dc-persistent-memory.

html. Accessed: 2019-12-24.

[111] “Amazon s3.” https://aws.amazon.com/s3/. Accessed: 2019-12-29.

[112] Spark, “Rdd persistence.” https://spark.apache.org/docs/2.0.0/programming-
guide.html#rdd-persistence, 2017.

[113] K. Wang and M. M. H. Khan, “Performance prediction for apache spark plat-
form,” in Proceedings of HPCC-CSS-ICESS’15, pp. 166–173, IEEE, 2015.

[114] R. Thakur, R. Rabenseifner, and W. Gropp, “Optimization of collective commu-
nication operations in mpich,” The International Journal of High Performance
Computing Applications, vol. 19, no. 1, pp. 49–66, 2005.

[115] “Apache spark on amazon emr.” https://aws.amazon.com/emr/features/

spark/. Accessed: 2018-12-3.

[116] “Scaling clusters.” https://cloud.google.com/dataproc/docs/concepts/

configuring-clusters/scaling-clusters. Accessed: 2018-12-3.

[117] “Sparking on tencent cloud.” https://cloud.tencent.com/product/

sparkling. Accessed: 2018-12-3.

129

[118] T. Hoefler, E. Jeannot, and G. Mercier, “An overview of process mapping tech-
niques and algorithms in high-performance computing,” 2014.

[119] C.-H. Lee, M. Kim, and C.-I. Park, “An efficient k-way graph partitioning algo-
rithm for task allocation in parallel computing systems,” in Systems Integration,
1990. Systems Integration’90., Proceedings of the First International Conference
on, pp. 748–751, IEEE, 1990.

[120] H. Chen, W. Chen, J. Huang, B. Robert, and H. Kuhn, “Mpipp: an automatic
profile-guided parallel process placement toolset for smp clusters and multiclus-
ters,” in Proceedings of the 20th annual international conference on Supercom-
puting, pp. 353–360, ACM, 2006.

[121] B. Burns, B. Grant, D. Oppenheimer, E. Brewer, and J. Wilkes, “Borg, omega,
and kubernetes,” Queue, vol. 14, no. 1, p. 10, 2016.

[122] “Spark data locality.” https://spark.apache.org/docs/latest/tuning.

html\#data-locality. Accessed: 2018-12-3.

[123] R. S. Xin, J. Rosen, M. Zaharia, M. J. Franklin, S. Shenker, and I. Stoica, “Shark:
Sql and rich analytics at scale,” in ACM SIGMOD International Conference on
Management of data, pp. 13–24, 2013.

[124] “Shuffle operations.” https://spark.apache.org/docs/latest/

rdd-programming-guide.html\#shuffle-operations/. Accessed: 2018-
12-3.

[125] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauly, M. J. Franklin,
S. Shenker, and I. Stoica, “Resilient distributed datasets: A fault-tolerant ab-
straction for in-memory cluster computing,” in Proceedings of the 9th USENIX
Symposium on Networked Systems Design and Implementation, (San Jose, CA),
pp. 15–28, 2012.

[126] Spark, “Spark dynamic resource allocation.” https://spark.apache.org/

docs/latest/job-scheduling.html#dynamic-resource-allocation. Ac-
cessed March, 2019.

[127] Spark, “Shuffle operations.” https://spark.apache.org/docs/latest/

rdd-programming-guide.html#shuffle-operations. Accessed March, 2019.

[128] D. Williams, ““Device DAX” for persistent memory.” https://lwn.net/

Articles/687489/. Accessed March, 2019.

[129] D. Karger, E. Lehman, T. Leighton, R. Panigrahy, M. Levine, and D. Lewin,
“Consistent hashing and random trees: Distributed caching protocols for relieving
hot spots on the world wide web,” in Proceedings of the Twenty-ninth Annual
ACM Symposium on Theory of Computing, STOC ’97, pp. 654–663, 1997.

[130] A. Rudoff, “Persistent memory: The value to hpc and the challenges,” in Pro-
ceedings of the Workshop on Memory Centric Programming for HPC, (New York,
NY, USA), pp. 7–10, ACM, 2017.

130

[131] S. Huang, J. Huang, J. Dai, T. Xie, and B. Huang, “The HiBench benchmark
suite: Characterization of the mapreduce-based data analysis,” in Data Engineer-
ing Workshops (ICDEW), 2010 IEEE 26th International Conference on, pp. 41–
51, IEEE, 2010.

[132] “Apache spark on k8s best practice and performance in the
cloud download slides.” https://databricks.com/session/

apache-spark-on-k8s-best-practice-and-performance-in-the-cloud.
Accessed: 2019-12-22.

[133] T. Condie, N. Conway, P. Alvaro, J. M. Hellerstein, K. Elmeleegy, and R. Sears,
“Mapreduce online.,” in Nsdi, vol. 10, p. 20, 2010.

[134] C. Engle, A. Lupher, R. Xin, M. Zaharia, M. J. Franklin, S. Shenker, and I. Stoica,
“Shark: fast data analysis using coarse-grained distributed memory,” in Proceed-
ings of the 2012 ACM SIGMOD International Conference on Management of
Data, pp. 689–692, ACM, 2012.

[135] L. M. Grupp, J. D. Davis, and S. Swanson, “The bleak future of nand flash
memory,” in Proceedings of the 10th USENIX conference on File and Storage
Technologies, pp. 2–2, USENIX Association, 2012.

[136] V. Kasavajhala, “Solid state drive vs. hard disk drive price and performance
study,” Proc. Dell Tech. White Paper, pp. 8–9, 2011.

[137] S. Chen and I. Rodero, “Exploring the potential of next generation software-
defined in memory frameworks,” in 2018 30th International Symposium on Com-
puter Architecture and High Performance Computing (SBAC-PAD), pp. 201–208,
IEEE, 2018.

