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In forensic DNA applications, characterizing DNA signal to noise resolution is 

needed to establish effective and reasonable analytical thresholds (AT). Studies have 

shown the significance of understanding the behavior of baseline noise such that it can be 

effectively modeled or can be used to compute an analytical threshold that minimizes Type 

I and II detection error. Previous studies on noise have described electropherogram noise 

as well-described by normal, log-normal and Gamma distributions, but there still exist 

differences of opinion on which distribution class to use.  

PROVEDIt single source and mixture samples amplified using the Powerplex® 

Fusion 6C kit were used for noise characterization. First, we determine whether a normal 

or log-normal distribution class best fits the noise data. We also ascertain whether noise 

distributions are significantly different between colors and between loci.  
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Our findings demonstrate that the log-normal distribution fits the noise data better 

than the commonly employed normal-class. In addition, noise peak heights were dependent 

on both dye and locus. Lastly, noise peaks showed an increase in peak height with increase 

in injection time, suggesting there may be two sources of noise: that originating from 

instrumentation and that from amplification. 
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1. Introduction 

Since it was first described in 1985, forensic DNA analysis has been one of forensic 

science’s most powerful tools, namely for its ability to identify victims, exonerate 

individuals, provide investigative leads, or connect a perpetrator to the scene[1]. It has been 

described as the gold standard in forensic science [2, 3]. Human identification using DNA 

was first described by Alec Jeffreys in [4] where Variable Number of Tandem Repeats 

(VNTRs), also known as mini satellites, allowed for near-perfect individualization. Since 

the publication of Jeffreys [4], the domain has migrated from using VNTRs to short tandem 

repeat (STR) genetic markers since they are conducive to PCR amplification due to their 

relatively short lengths. Not only are STRs viable forensic markers due to their ability to 

be effectively amplified, their relatively small molecular weight (i.e., base-pair size) is 

preferable since biological evidence often contains DNA that is degraded or inhibited [5], 

rendering DNA fragment lengths that are only tens of base pairs. Since forensically 

relevant STR units typically range from three to five [6, 7], the target range is small, making 

for relatively efficient PCR, thereby improving the sensitivity of the DNA pipeline. 

Evaluation of short tandem repeat (STR) regions using PCR, capillary electrophoresis 

and laser-induced fluorescence is the prevailing method by which laboratories identify 

individuals. In many instances, however, samples submitted to the DNA Units contain low-

copy numbers of DNA from an unknown number of unknown contributors. The result is 

data containing low signal-to-noise, high allele dropout rates and substantial levels of 

signal from interfering contributors; thus, obtaining a metric that effectively summarizes 

the likelihood a suspect or donor is a contributor to an evidentiary sample can become an 

arduous task. 
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Subsequently, laboratories apply filters and thresholds to the designated peaks. 

Typically, laboratories implement filters to remove likely artifact peaks such as pull-up and 

-A, while analytical thresholds (AT) are constant values applied across the sample, color 

or locus to effectively delineate allele signal from noise. The process of setting an analytical 

threshold requires a scientific and analytical approach where the lab must strike a balance 

between optimizing the number of true peaks detected while minimizing the rate of false 

detection [8]. 

Laboratory decisions such as PCR cycle number and injection parameters significantly 

influence the information content in the electropherogram as they significantly influence 

rates of allele dropout. Here, allele dropout is defined as the probability that allele, a, did 

not survive the pre-PCR steps and is, therefore, not present in the PCR tube for 

amplification. Notably, there are no standards that govern the signal processing choices or 

filtering protocols; rather laboratories must set up their own operational parameters, 

suggesting large-scale datasets are required.  

With today’s technology, the forensic laboratory can reach a limit of detection 

(LoD) of 1-copy. Notably, an LoD of 1-copy does not imply that all STRs from a single 

individual will be detected with confidence; indeed, previous work describes the forensic 

DNA system as one where any number of extracted DNA fragments [5, 9, 10] of allele, a, 

may be transferred to the amplification tube. Thus, if the DNA count is initially of low-

copy number, then the step of fractionating the extract volume into one that is amplified 

and one that is stored can lead to zero copies of allele a surviving the PCR steps. This 

results in ‘total allele drop-out’ wherein no modification to PCR cycle, load volume or 

injection time can improve this signal loss. Contrast that with estimations of allele non-

detection rates, which is another Type II error produced during DNA processing. In this 
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instance, the amplifiable DNA fragment consisting of STR a is present in the tube, is 

amplified, but not detected. Unlike the other category of drop-out, the source of this non-

detection is the result of low signal-to-noise which can be corrected by increasing 

laboratory parameters such as PCR cycle number, injection times, injection voltage, and 

so on. 

Issues associated with the interpretation of complex STR signal are well 

documented and have been highlighted in reports written by the National Academy of 

Science [2] and, more recently, the President’s Council of Advisors on Science and 

Technology. [3].  

The complexity of forensic samples has compelled the forensic community to 

implement algorithmic solutions for interpretation. Probabilistic genotyping systems, 

generally, output the likelihood ratio (LR), which has become the prevailing means of 

communicating the strength of DNA evidence and is the ratio of the probabilities of the 

evidence given two mutually exclusive hypotheses. 

𝐿𝑅 =
𝑃𝑟(𝐸|𝐻𝑝)

𝑃𝑟(𝐸|𝐻𝑑)
 

(1) 

Where LR is the likelihood ratio, Pr is the probability, E is the Evidence, Hp is the 

prosecution’s hypothesis and Hd is the defense hypothesis. In equation 1, the likelihood 

ratio (LR) is calculated using the probability of the evidence, E given the prosecution’s 

hypothesis that the person of interest (POI) is a contributor divided by the defense’s 

hypothesis that some random person (i.e., someone else other than the POI) contributed to 

the evidence. A likelihood ratio greater than one favors the prosecution’s hypothesis while 

a LR less than one favors the defense’s hypothesis. 
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Despite significant advances over the last two decades, production of a fully 

objective and automated DNA interpretation pipeline has yet to be developed. Previous 

studies have shown that the LR can be sensitive to assumptions regarding the number of 

contributors and the probability of dropout and drop-in [11, 12]. Factors such as PCR 

settings and differences between allele frequency databases also impact the LR computed 

using a continuous method [13, 14], while other work has demonstrated LR outcomes differ 

between semi-continuous and continuous systems. Despite these studies, comparisons 

between continuous probabilistic systems are uncommon in the literature, though some 

examples using small in-house datasets do exist. For example, Morimoto et al. [15] 

compared the continuous system Kongoh to another continuous system, EuroForMix, and 

demonstrated that for most high-template simple mixtures, the LR outcomes were similar; 

however differences in LRs from each model were obtained for more complex mixtures, 

wherein the authors attributed the variation in outputs as “differences in the computational 

principle of estimating peak height variances”. Other reports of inter-software comparisons 

in the scientific literature recommend the use of multiple software to test one item of 

evidence [16], though the work used limited datasets and did not replicate the runs. 

Notably, the authors of [17] disagree with this recommendation to use multiple 

probabilistic systems in [16], demonstrating that consensus regarding this issue has not 

been reached.  

Work by the authors of [18] using CEESIt, a computational framework that 

evaluates LR and LR-distribution for continuous models, has demonstrated that seemingly 

minor modifications to a single probabilistic framework can lead to distinct LR evaluations 

for some mixtures, while McNevin et al. provide commentary on the study described in 

[19] and suggest additional studies that evaluate the LRs garnered from distinct, 
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independent laboratories on the same mixture are still needed to address the remaining 

concerns on mixture interpretation outlined by PCAST [20]. To ensure full independence 

from the developer and facile publication-to-publication comparisons, a searchable, freely 

accessible dataset of forensically relevant signal is a necessity.  

The work by Swaminathan et al. [18] demonstrate that it is necessary to rigorously 

test any new or updated versions of a probabilistic genotyping system to confirm that 

modifications to any model improve inference, while the work or commentary in [15, 16, 

19, 20], among others, demonstrates that expanded inter-software comparisons are 

justified. We note, however, that burdens associated with the developmental validation 

demonstrating that new or updated algorithms are better or, at least, concordant with 

previous results are not the responsibility of the operations laboratories, though they should 

be able to effectively compare the results reported in the scientific literature. As it is 

common for developers to test new technologies on in-house data containing, potentially, 

vastly different information contents, it is challenging for independent parties to compare 

results across publications. If developers, however, gained access to a common database 

of samples, publication-to-publication comparisons of the impact of these signal-

processing choices on downstream interpretation could result. Further, providing easily 

accessible forensic DNA data to the broader scientific community affords the added boon 

of engaging scientists outside of the forensic realm to apply their own expertise to solve 

these grand challenges in a cost-effective manner. As such, ongoing efforts to develop 

sizable mixture interpretation databases that can be utilized either by independent parties 

or the developers themselves are necessary to alleviate unnecessary burdens on forensic 

laboratories when differences between underlying algorithms exist. Continued growth in 
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the numbers and complexity of algorithmic solutions is expected, making curation of a 

public, large-scale, forensically relevant DNA database a necessity. 

1.1 Databases in Forensic Science 

Forensic DNA interpretation practice has undergone rapid transformation over the past 

few decades due to innovations in statistical computing and more fundamentally, the 

availability of data through databases such as CODIS [21] and PROVEDIt [22]. Databases 

and data are the cornerstone of scientific and forensic inquiry as they allow for the storage 

and dissemination of valuable forensically relevant information.  

The enactment of the DNA Identification Act in 1994 revolutionized forensic DNA 

with the establishment of the Combined DNA Index System (CODIS); a platform that 

electronically shares DNA STR profiles of convicted offenders with crime laboratories 

who are able to generate a forensic DNA profile from a no-suspect case.  

Another type of commonly encountered forensically relevant database consists of 

the allele frequencies of the forensic STRs found within various populations, which are 

referred to as the ‘populations databases’. Though many publications describing allele 

frequencies across multifarious populations have been produced [23-25], the National 

Institute of Standards and Technology (NIST) maintains a population database [26] for the 

most common US populations for public use. 

The third type of forensically relevant database of interest to the domain of forensic 

DNA analysis is that of the research databases consisting of tens of thousands of DNA 

mixtures. Unlike the other two database types, these databases consist of complex DNA 

signal garnered from many contributors, with unknown quantities of DNA in any mixture 

ratio; thus, the signal is not high-fidelity and can, therefore, be used to test the multifarious 

software systems and procedures claiming to effectively compute the weight-of-evidence 
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against a person of interest. The largest database of this type is named PROVEDIt for 

Project Research Openness for Validation with Experimental Data [22], which is available 

on http://www.lftdi.com.  

The database was generated over a 4 year period with its first publication in 2018 

[22], and at the time contained over 25,000 short tandem repeat (STR) profiles of varying 

DNA mass and quality. The dataset includes 1- to 5- person DNA samples, amplified with 

targets ranging from 1 to 0.007 ng. In the case of multi-contributor samples, the contributor 

ratios ranged from equal parts of each contributor to mixtures containing up to 99 parts of 

one and 1 part of the other(s). Additionally, these profiles were generated using a variety 

of laboratory conditions from samples containing pristine; damaged (i.e., UV-Vis); 

enzymatically/sonically degraded; and inhibited DNA.  

Since it was first described, PROVEDIt data has been used across myriad studies. 

The PROVEDIt database has already made a demonstrable impact on the forensic DNA 

community and was utilized by multiple parties to develop machine learning algorithms 

[27], develop in silico laboratories [10, 28], test validation software [29, 30], test number 

of contributor software [25], test model variants on inference [18], and test impacts of 

model parameterizations using different data sets [31]. Notably, it has been cited as a 

pertinent resource by the NIST authors of [32] and by the ISFG authors of [33], 

demonstrating its value. As an example, Kelly et al. [31] used some 20-single source 

PROVEDIt profiles amplified with the GlobalFiler kit, injected at 15s for 29 PCR cycles 

with DNA mass ranging between 0.08 to 0.5ng to parameterize the models of STRmix, a 

probabilistic genotyping system that interprets DNA evidence. The study also sought to 

ascertain whether the calibration parameters garnered from the PROVEDIt dataset could 

be adopted for casework in a laboratory setting that employs the same technology with the 

http://www.lftdi.com/
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view to demonstrate the robustness of probabilistic genotyping (PG). To do this, they used 

71 PROVEDIt mixture samples (2 and 3-contributor mixture samples) amplified with the 

GlobalFiler multiplex kit and compared these 74 mixture samples that were generated 

under the same protocol by four laboratories participating in the study (i.e., amplified using 

GlobalFiler kit, for 29 PCR cycles using 3500 Genetic Analyzer).  

In another study [34], PROVEDIt mixture samples amplified using the GlobalFiler 

multiplex kit were supplied to 174 participants from 42 laboratories to test different 

versions of the STRmix probabilistic software and test the consistency of subjectively 

assigning the number of contributors (NOC) to unknown. Specifically, a 4-person and 3-

person PROVEDIt whole blood mixture (RD14-0003-44_45_46_47-1;1;4;1-M3a-

0.105GF-Q0.8) and (RD14-0003-30_31_32-1;4;4-M2a-0.75GF-Q0.6) were used. Of the 

174 participants, 162 of those assigned NOC=4, with 11 submissions assigning NOC=3 

for the 4-person mixture. Similarly, 151 participants assigned NOC=3 with the remainder 

assigning NOC=4 for the 3-person mixture showing relatively high levels of 

reproducibility among participants but also demonstrating that consistent NOC 

assignments by subjective evaluation may be difficult to justify when the samples are 

complex.  

In another study [35], 815 PROVEDIt profiles were used to complete a large-scale 

validation of NOCIt --a software that computes the posterior probability of the NOC given 

the evidence. As the true number of contributors increases, NOCIt outperformed traditional 

counting methods that rely on binary decisions regarding presence or absence. Notably, by 

using the more complex PROVEDIt samples (i.e., NOC=3 to 5), the demonstrated that a 

range of 𝑛 may be required for forensic electropherograms with many peaks at each locus.  
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In another study conducted by Hannig et al. [36], the authors used 2-person and 3-

person PROVEDIt data to compare two probabilistic systems that compute the likelihood 

ratio (LR). They wanted to calibrate their models and investigate the degree to which these 

models deviated from the likelihood ratio associated with the known ground truth. Their 

calibration curves revealed that one of the system’s calibrations had a negative slope, 

suggesting that it was overstating the LR in support of the prosecution’s hypothesis at 

higher LRs, while the other overstated the LR by only a maximum factor of 10 across LRs. 

In yet a different study [37], the authors used 815 samples consisting of 100 single 

source samples and 666, 2-person mixture samples described in the supplementary material 

of [35] to ascertain the efficacy of a method for assigning NOC using a decision tree and 

compared its performance to three other methods i.e., NOCIt [35], a machine learning 

approach described in Benschop et al. [38] and a counting method. In brief, like similar 

databases containing pertinent information [39-41], the forensic domain is reliant on 

databases containing large numbers of samples. In particular, the PROVEDIt dataset meets 

this need by making available a large set of data of varying quality and complexities 

meeting the gap authored in the recent PCAST report [3]. In what follows, we describe a 

recent extension to the PROVEDIt database in the form of a search tool written in Visual 

Basic for Applications (VBA) that allows a database user to find raw data for a particular 

set of samples fitting within a set of pre-defined parameters.  

1.2 Noise 

In the second part of the work, we use samples found in the PROVEDIt database to 

validate work that has previously suggested that noise, and its corresponding analytical 

threshold, is best described and determined using a skewed distribution such as the log-

normal class.  
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The implementation of an AT that is based on statistically sound characterization of the 

noise is imperative for effective operations. Early forensic DNA work on the subject [8, 

42] borrows from the analytical chemistry literature [43] and suggests the AT be 

determined using the mean and standard deviation of run blanks, or negatives or signal in 

non-allele positions using the following equation: 

𝐴𝑇 = µ + 𝑘𝜎 (2) 

where AT is the analytical threshold,  is the mean, k is the numerical factor associated 

with the desired level of coverage and  is the standard deviation. Various k values have 

been proposed, and a common choice is k=3; however, as described in [44] a k-factor of 3 

suggests that,  

𝑃(𝑆 ≥ 𝐴𝑇|𝑇𝑐=0 = 0) ≤ 10−2.801 (3) 

or the probability that signal, S, will exceed the AT will be less than 0.0016 or 1.6 in 1000 

peaks given no DNA is present at PCR cycle, c=0. If each DNA electropherogram 

contained 100 noise peaks, then approximately 1 in every 7 electropherograms would be 

expected to render a noise peak exceeding threshold, impacting hundreds of cases per year. 

Thus, though k=3 likely works well for data where there is a single peak-to-sample 

relationship (e.g., atomic absorption or UV-VIS at a single wavelength), it is unlikely to 

provide tractable results for operational labs relying on manual interpretation strategies or 

probabilistic systems requiring the application of ATs. Other k-factors may be deemed 

more appropriate [43] such as k=4, k=5, and so on, each increasing the level of coverage 

against the false-detection of noise peaks. This is not surprising as an analytical threshold 

set using equation 1 linearly depends on the k value selected. For example, Table 1 shows 

exceedance probability for a range of k values.  
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Table 1:Analytical threshold (AT) for various k-factors for a Gaussian and log-normal 

noise model. Also shown is log base 10 of the probability that a single noise measurement 

exceeds that threshold and the log base 10 of the probability that at least one of 100 

independent noise measurements exceeds the threshold, therein representing the 

probability that an electropherogram will exhibit noise exceeding threshold. 

k AT ATln log(Pmeas) log (Pprofile) 

3 µ+3σ exp(ν+3τ) -2.8697 -0.8697 

4 µ+4σ exp(ν+4τ) -4.4993 -2.4993 

5 µ+5σ exp(ν+5τ) -6.5426 -4.5426 

6 µ+6σ exp(ν+6τ) -9.0059 -7.0059 

7 µ+7σ exp(ν+7τ) -11.8928 -9.8928 

8 µ+8σ exp(ν+8τ) -15.1764 -13.1764 

 

The aforementioned treatment notably focuses on mitigating risk associated with 

false noise detection without considering the Type II error (i.e., allele drop-out). Thus, 

using similar concepts, the authors of [29] take the aforementioned logic a step further and 

describe a strategy that assigns the AT such that the sum across γ and ∝ is minimized, 

which represent Type I and Type II errors, respectively.  Summing the probability that any 

noise peak or signal will be in exceedance of that AT when there is no DNA molecule 

present, and the probability that the signal will be less than AT when one amplifiable DNA 

copy is present arguably gives the best analytical threshold as it takes into consideration 

both Type I and II errors. Whatever statistical method is ultimately used to choose the AT, 

the need for the forensic domain to ensure these methods apply well to multitudes of 

chemistries and forensically relevant methods is of importance.  

An electropherogram is classified as high fidelity if each allele’s signal surpasses 

baseline noise levels. In the forensic context high-fidelity data, therefore, does not 

necessarily imply that full genetic information is available in the signal since allele non-

detection or drop-out can also be driven by ineffective sensitivity levels and the propensity 
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of target molecules to remain in the extract tube during fractionation of the extract into the 

PCR tube [45]. 

As with all signal interpretation schemes reliant on thresholds to arbitrate whether 

a peak is or is not composed of signal -- e.g., fluorescence -- there is a trade-off between 

increasing the confidence of acquiring high-fidelity electropherograms and decreasing the 

probability with which noise will erroneously be detected. There are myriad laboratory 

decisions that influence the Type I and II signal detection error rate including PCR cycle 

number, load volumes, injection time, and high pass signal thresholds, also known as 

analytical thresholds (AT). Though the forensic DNA sphere has witnessed a surge in the 

development of probabilistic systems, there is no consensus regarding a standard 

continuous model, or whether applying the same standard model is recommended for all 

cases within the criminal justice system. Since the choice of model influences the 

probability calculation, it is possible that changes to the underlying model will result in 

differences in the LR. In previous work, it was demonstrated that typical forensic pipelines 

elicit allele peak intensities that comfortably exceed baseline noise levels [10, 29] for the 

commonly employed GlobalFiler™ pipeline. Since effective implementation of any 

threshold must necessarily work well in the long-run across multifarious assays and 

conditions, this work seeks to confirm that the method used to characterize noise as 

described in [29, 44] is applicable to a chemistry based on modified PCR cycling 

conditions, amplification reagents and at half-reaction volume.   
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2 Methodology 

2.1 PROVEDIt 

In the first part of this work, we developed the PROVEDIt DataSearch Sheet using 

Visual Basic for Applications (VBA). This script will be integrated into the PROVEDIt 

database [22] on www.lftdi.com to allow users to easily explore the myriad 

electropherograms generated using DNA mixtures, of varying DNA qualities and 

quantities. Access to the data is made publicly available in two formats: 1) CSVs containing 

the data exported from the peak detection software GeneMapper IDX v1.4 with and 

without artifacts removed; and 2) the raw data files (.hid or .fsa) catalogued over a series 

of 31 folders and organized by number of contributors (NOC) that constitute the mixture, 

the capillary electrophoresis platform, the injection time, the name of the assay, the PCR 

cycle conditions. Because the raw files are organized in such a way, we developed the 

classification scheme and search functionality to be able to locate samples on the 

PROVEDIt database which may be of value to a particular study, test or validation. The 

PROVEDIt samples were tagged and indexed with the following information highlighted 

in bold:  

Project code  Whole Blood Mixtures/DNA extracts/SUDA 

True NOC  1-5 Person mixtures 

DNA mass  0.0078-1 ng 

Kit GlobalfilerTM, Identifiler™ Plus, Powerplex® HS 16, 

Powerplex® Fusion 6C 

Quality Index  0-499 

Injection time  5, 10, 15, 20, 24 and 25 s 

Instrument  3130/3500 

 

Although the PROVEDIt database is sequestered into a series of .zip folders, a user 

may use one or more of these tags on the search tool to filter for particular sample 

combinations. For example, downloading only mixed-inhibited or mixed-degraded 

file:///C:/Users/lftdi/Rutgers%20University/LFTDI%20Grgicak%20-%20Documents/RD14-0003%20No.%20of%20Comp%20Contribs/Qhawe%20Bhembe/Academic%20Deliverables/www.lftdi.com
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samples is not possible; rather the search tool requires the user to download all mixtures 

run on a particular platform and use the file path contained in this tool to locate samples of 

interest rather than having to sift through the run folders manually. In a similar vein, if the 

research application is one that requires tests on low- or high- template samples, even 

though these sample types are distributed amongst the run folders, this tool enables the user 

to trace and filter these specific sample types.  

 

Fig. 1 A schematic representation outlining the steps needed to locate the sample file folder 

on the PROVEDIt database. 4 modules are contained within the script: Introduction, Read 

Me, Lists and Data module. The search function contained within the Data module 

provides an interactive platform where the user may filter information based on some or 

all of the tags used to index the samples. 

In Fig. 1 is a schematic of the steps associated with locating a set of relevant raw files 

within the database. The introduction module serves as the starting point and provides a 

brief overview. The List module contains an overview of some of the pertinent information 

(associated with the sample name) the user may select to filter samples of interest. The 

Data module contains a summary of all the STR profiles found in the PROVEDIt database. 

It also contains the Search function. Upon clicking the ‘search’ button, the user may 
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complete a search by filtering through the data and making selections within a drop-down 

list. Clicking Continue generates an output workbook containing samples that match the 

search criteria. 

2.2 Noise 

2.2.1 Description of the Data  

A subset of the PROVEDIt database was used to study background noise. For single 

source samples, varying DNA masses were targeted and amplified with the Powerplex® 

Fusion 6C (Promega) assay [6] for 29 cycles and injected into the Applied Biosystems® 

3500 Genetic Analyzer following the manufacturer’s recommended protocol [6]. Injection 

times of 5, 15 and 25 s were used as were the following target masses: 0.0078, 0.0156, 

0.031, 0.125 and 0.25 ng. Mixture samples (i.e., 2-5 contributors) were amplified in a 

similar manner; but with different target masses ranging from 0.015, 0.03, 0.06, and 0.125 

ng. The total target masses for mixtures, therefore, varied depending upon the contributor 

ratio and number of contributors, but typically ranged from 0.06 to 0.75 ng. Mixture 

samples were generated from 21 genotype combinations. Table 2 summarizes the samples 

used for this noise study. The Powerplex® Fusion 6C kit amplifies 27 STR loci across 6-

color channels with high signal to noise.  
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Table 2: Summary of the Powerplex® Fusion 6C samples used for the noise study. The 

samples are composed of single source samples and mixture samples (i.e., 2-5 

contributors). 

    Sample Size per injection 
 Target mass PROVEDIt ID Ratio 5 s 15 s 25 s 

1P 0.0078-0.25   329 337 334 

2P 0.03-0.75 40_41 1;1 24 22 20 
  42_43 1;4    

  44_45 1;9    

3P 0.045-0.75 30_31_32 1;1;1 22 21 24 
  46_47_48 1;4;1    

  49_50_29 1;4;4    

4P 0.06-0.75 32_33_34_35 1;1;1;1 35 41 36 
  33_34_35_36 1;1;2;1    

  36_37_38_39 1;1;4;1    

  37_38_39_40 1;1;9;1    

  40_41_42_43 1;2;2;1    

  44_45_46_47 1;4;4;1    

  48_49_50_29 1;4;4;4    

  50_29_30_31 1;9;9;1    

5P 0.075-0.75 30_31_32_33_34 1;1;1;1;1 39 35 37 
  31_32_33_34_35 1;1;2;1;1    

  33_34_35_36_37 1;1;2;4;1    

  35_36_37_38_39 1;1;2;9;1    

  36_37_38_39_40 1;1;4;1;1    

  43_44_45_46_47 1;4;4;4;1    

  48_49_50_29_30 1;9;9;9;1    

 

2.2.1.1 Data Analysis 

Microsoft excel CSV files for each of the profiles were downloaded for all 3 

injection conditions. The data had previously been filtered with the removal of pull-up, dye 

blob, spikes and minus A as described in [22]. All peaks originating from pull up or minus 

a – i.e., incomplete adenylation -- were filtered. For peaks to be classified as pull up, the 

peak in question had to be in the same position (±0.3 bases) as the allelic peak in another 
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color channel and have a peak height of 5% or less of the allelic peak. Further, if a peak 

fell between two adjacent allelic peaks in different dyes and had a ‘plateau-like’ shape, 

then the peak in question was classified as complex pull up. A peak was determined to be 

minus A if it was one base shorter ( ±0.3 bases) than the allelic peak [46]. Ground truth 

information about the samples was known; that is, genotypes of the individuals who 

contributed to the samples was provided with the data, which made the signal positions of 

noise and stutter positions within the electropherogram known. Allelic signal, off-ladder 

and signal originating from stutter positions (i.e., N-1 and N+1) were removed. 

Amelogenin and the STRs found on the Y- chromosome, DYS391, DYS570 and DYS576 

were excluded from further analysis. Once the noise data were prepared, a series of 

statistical evaluations were conducted.  

 Fig. 2 is a visualization of four representative STR loci of a single-source sample. 

More specifically, it depicts the peak heights associated with the sample when amplified 

using 0.25 ng of DNA, where the y-axis represents peak height in relative fluorescent units 

(rfu) and the x-axis depicts the base pair size of the amplified STR fragment. In this 

representation, off-ladder (OL) peaks are not depicted. As shown in this figure, 

electropherograms typically render the following two main features: 

1. The peak height of allele peaks are significantly greater than that of stutter or noise. 

2. Stutter peaks are significantly larger than noise. 
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Fig. 2 An example of an electropherogram depiction showing allelic peaks and stutter 

peaks (both forward and reverse) in blue and noise peaks in red for 4 loci within the blue 

color channel. Noise peaks appear randomly within the loci. For example, D3S1358 and 

D2S411 contain no noise peaks while D1S1656 and D10S1248 exhibited 2 and 3 noise 

peaks, respectively. 

If EPG data is taken to be a composition of noise; allele and stutter; and the 

positions of allele and stutter are known, then it follows that filtering the signal categorized 

as allele and stutter from the total signal will result in data that can only originate from 

noise. It is these data we explore below.  

2.2.2 Color channel effects on noise  

Noise peak height measurements were grouped by color to explore if noise is 

independent of color. If not, it would suggest that any lower-bound signal threshold – i.e., 

AT --used in forensic DNA analysis should be determined on a per color basis rather than 

on a profile basis. To accomplish this, however, we must first determine which statistical 

test to use, which requires an examination as to whether noise follows a normal 

distribution. 
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Noise peak heights for 334 single source profiles injected for 25 s were grouped by 

color and graphed using JMPPRO v15.0 to generate 5 histograms corresponding to noise 

measured across the different dyes. Each was qualitatively investigated for normality by 

subjective evaluation of normal quantile plot, which would indicate that the data is 

normally distributed if the points follow a diagonal line.  

In cases where the data are not normally distributed, hypothesis tests based on non-

parametric statistics are employed. To statistically test the hypothesis that the data are 

normal, we apply the Anderson-Darling test with a decision threshold of 0.05. To test if 

the median noise values are significantly different between colors, we apply the Kruskal 

Wallis test with a p-value threshold of 0.05.  

2.2.3 Noise by locus  

Next, we delve further and investigate whether noise peak measurements are 

independent of locus. As before, the noise data were sorted on a per-locus basis and 

boxplots for noise measurements per locus across the different color channels were plotted 

to visually inspect the data. We further zoom in per locus to investigate a distribution class 

that better describes noise. Normal quantile plots were used to visually analyze for 

normality. Fitted normal and log-normal distributions were also graphed on JMPPRO 

v15.0 to investigate noise class distribution on a per locus basis. 

 For statistical testing, we evaluated the null hypothesis that the data followed a normal 

distribution. The Anderson-Darling test was used to test for the goodness of fit for both the 

normal and log-normal distributions and the Akaike Information Criterion (AIC) was used 

to select the distribution class that best described the data. The assumption of the Akaike 

Information Criterion is that a class distribution with the smallest AIC value is a better 

model. To test the null hypothesis that noise is independent of locus, we used the Kruskal 
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Wallis test and permutation test in JMP®PRO v15.0. The permutation test randomizes the 

data points between the loci and the test gives a p-statistic which can be used to accept or 

reject the null hypothesis. 

3 Results 

3.1 PROVEDIt 

The PROVEDIt database consists of many samples that contain signal garnered from 

samples from many contributors of low- and high- template and of varying quantity. In its 

current state, the data is sequestered in multiple .zip files and the development of this 

searchable tool makes it possible to locate the run folder containing samples of interest. 

This tool makes use of pertinent information associated with the sample name and applies 

the tags i.e., project code, TrueNOC, DNA mass, Kit, Quality Index, Injection time and 

Instrument to filter samples.  
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Fig. 3 shows an example worksheet of search results generated by the PROVEDIt search 

tool. Column L (run folder) shows the file path of the .zip folder containing the samples of 

interest once downloaded from the PROVEDIt website. Highlighted in green (row 2) is an 

example of a sample that is split according to the different columns of the worksheet and 

we further zoom in on the sample to show the information contained in each column. The 

sample name is listed in column A, with the number of contributors listed in column E. 

In Fig. 3, a sample worksheet generated by the PROVEDIt searchable tool is shown, 

and contains a summary of the 2-Person mixture PROVEDIt amplified with the 

Powerplex® Fusion 6C kit, injected at 25s. Below the sample worksheet is an example 

using sample file (A02_RD14-0003-40_41-1;4-M3S30-0.075F6C-Q4.0_01.25sec.hid); 

describing the pertinent information contained in each column associated with the naming 

convention of the samples. Here, the metadata associated with each sample file is broken 

down into 14 columns. As many as 7 of the 14 are used in filtering samples within the 

interface of the PROVEDIt tool. The organization of the output sheet is similar to the parent 

tool with the addition of two extra columns containing the run folder name (column L) and 

Hyperlink to that folder (column M). Once the run compressed .zip folder containing the 



22 
 

  

samples of interest is downloaded, the user can use the file path (column L) provided in 

the sheet to navigate through the subfolders.  

3.2 Noise  

A substantive body of analytical chemistry literature [47-49] and forensic DNA 

analysis [8, 44, 50] discuss the ways in which noise could be used to determine the high-

pass signal threshold demarcating the line between confidently labelling a peak as 

containing allele or stutter signal. However, the forensic EPG can be described as a vector 

of triples containing information on allele, base-pair size and height. The number of 

possible allele positions is innumerable; however, barring any mutations, the complete set 

of alleles that can describe a sample can be defined by the number of common STRs found 

in the population-at-large. The common forensically relevant STR alleles are well studied 

[26, 51]. In the case of Powerplex® Fusion 6C, the list of common STR alleles for the 27 

STR loci are available in the manufacturer’s ‘bin file’ [6]. Of the noise locations studied in 

this work, we focus on the non-zero noise peaks.  

3.2.1 Color channel effects on noise 

Numerous studies have evaluated the impact of the color channel or fluorophore 

wavelength on the intensity of the noise. For example, the authors of [44] evaluated 

baseline noise for 643 single source STR profiles from 60 donors amplified with the 

Identifiler™ Plus assay and 303 single source STR profiles from 48 donors amplified with 

the Powerplex® 16 HS kit. Samples from both kits had a target masses ranging from 

0.0078-0.25 ng. The Identifiler™ Plus kit samples were injected for 10 s for 29 cycles 

while the Powerplex® 16 HS samples were injected for 32 cycles. For this study, the 

authors performed the G-test of independence to investigate whether a noise description by 

dye was sufficient and their findings were a confirmation to the existing literature that noise 
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is dependent on fluorophore channel. The authors then sought to investigate whether a per 

locus noise description was justified, and once again performed the G-test of independence 

to evaluate the null hypothesis that noise is independent of locus. This hypothesis testing 

revealed that noise is dependent on locus. According to the investigated noise class 

distribution for this study, the log-normal distribution provided a better description of noise 

over the Gaussian distribution. 

 Similarly, Krane et al. in [42] evaluated noise for 50 STR runs from a negative and 

positive controls and a reagent blank run on a 310 Genetic Analyzer using the Profiler® 

Plus assay. Results from this study suggested that noise from the negative and positive 

controls followed a normal Gaussian distribution, though the conclusion was made by 

subjective evaluation of a histogram rather than a full statistical analysis of the data. In 

contrast,  [8] showed that a log-normal distribution was a better fit for the negative samples. 

In every study, regardless of kit or instrument, the intensity of noise was found to be 

dependent upon the color channel for which the STR is detected. In this work, we continue 

the work in [44] and also evaluate the noise independence on color for the PowerPlex® 

Fusion 6C kit, a next-generation STR assay recently introduced to operations. In Fig. 4, a) 

is a boxplot of the noise peaks quantized by the 337 samples amplified at 0.0078, 0.0156, 

0.31, 0.125, and 0.25 ng and injected for 25 s. In this figure, we notice the following 

features: Firstly, the medians of the noise peaks between the colors are relatively 

unchanged, ranging from 7-13.  
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Fig. 4 a) Boxplots for the single source samples injected for 25 s showing noise peak 

heights across color channels: [■] blue dye, [■] green dye, [■] yellow dye, [■] red dye and 

[■] purple dye. The yellow dye was changed to grey for contrasts.  b-f) Histograms showing 

the noise distribution for the different color channels; [■] blue, [■] green, [■] yellow, [■] 

red and [■] purple respectively. Fitted normal (black) and fitted log-normal (red) 

distributions were plotted to identify a class distribution that better describes the data. The 

log-normal distribution visually provides a better fit.    

Despite the similarity in median, the distributions between color are different from 

one another. This is obvious, for example, when comparing the blue to yellow color 

channel, where the blue channel has a markedly larger number of noise peaks in the 

hundreds of RFUs, while the yellow channel does not. Indeed, the number of noise peaks 

greater than 100 RFU was at its maximum -- i.e., 195 rfu -- in the yellow channel and at its 

maximum -- i.e., 378 rfu -- in the blue channel. To quantitatively test the hypothesis that 

the noise within color channel are of the same distribution, we apply statistical hypothesis 

testing. Before doing so, however, we must first examine the distribution-class to estimate 

whether the data follow a normal distribution. The justification for analyzing baseline noise 

per dye is well documented in literature [44, 52] which lays the foundation for hypothesis 

testing of this study.  
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To evaluate baseline noise independence between channels, the Kruskal Wallis test 

was performed. This test statistic does not assume central tendency associated with 

normality, but instead, the data are ranked from smallest to largest. The resultant 

probability that the test-statistic is as large or larger than the one obtained with this data 

was <10-4, indicating that the null hypothesis of independence can be rejected. As 

previously expressed, a significant number of the noise peaks are larger than expected 

which brings to bear the importance of describing noise using a systems’ view, as opposed 

to an instrumental view.  

Interpretation of forensic DNA analysis occurs after a series of steps that impact 

downstream interpretation. Generally, the DNA pipelines includes extraction, 

amplification, electrophoresis, detection, analysis and interpretation. In this instance 

interpretation connotes the processes by which forensic scientists determine the likelihood 

ratio (LR), which is a ratio of probabilities, i.e., probability of observing the evidence given 

the suspect contributed over the probability that they did not contribute questioned 

material. This can be accomplished in a binary way-classifying the evidence as being 

explained or not explained by a set of genotype combination, or in a continuous fashion by 

assigning the probability of the evidence given a certain genotype combination. Whether 

the interpretation utilizes a set of heuristics or uses a continuous approach, the 

misclassification of noise as a potential allele requiring evaluation necessarily increases the 

number of genotype combinations requiring consideration. 

Fig 5 is an illustrative example of the potential negative impact of a false noise 

detection on a simple case assuming manual or binary interpretation is performed. As 

previously stated, the weight of evidence in the context of DNA interpretation is given 

within the likelihood ratio framework. The way in which the likelihood ratio (LR) is 
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computed involves making an assumption on the number of contributors (NOC). Several 

methods have been devised for assigning the NOC and they include the Maximum Allele 

Count (MAC), which counts the number of peaks crossing AT, divides by two and rounds 

up. In this method the NOC is estimated by equating the minimum number of people that 

might explain the evidence to the actual number. It is under this NOC assumption that the 

LR is calculated. 

 

Fig. 5a. Depiction of an electropherogram of the Th01 locus with the AT set at 100 rfu 

while b) has an AT set at 50 rfu. The figure shows the false detection of noise in b where 

the AT is set nearer to the baseline. 

In Fig. 5a, only 2 peaks (7 and 9) would be considered for interpretation as the 

allele 6 falls below AT=100 rfu; meaning NOC=1. As depicted in Fig. 5b, setting the AT 

closer to baseline – i.e., 50 rfu – results in an NOC=2 as the noise peak (allele 6) was falsely 

classified as containing allelic signal, illustrating the effects of signal misinterpretation on 

inference. 

Though effects of information content on forensic inference has not been 

systematically studied on a large scale, a National Institute of Standards and Technology 
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(NIST) 2013 mixture study [32] demonstrated there is a great deal of variation in 

interpretation outcomes across the United States. In one scenario, 100 laboratories 

participated in mixture analysis of a complex mixture containing ≥ 3 contributors. 

Interestingly, when the mixture was compared against suspects A, B, and C, 6 laboratories 

excluded suspect C, 3 included A & B while suspect C was neither included or excluded, 

21 stated A, B, nor C could be included/excluded, and 70 laboratories included all suspects 

and provided statistics that communicated the weight of evidence, wherein the match 

statistic for suspect C ranged from 1 in 9 to 1 in 344,000. The authors of the study suggested 

that if laboratories use the same AT, then one would expect to see similar results [32], 

however, implementing the same AT across laboratories is unlikely to lead to consistency 

since signal intensity differences between laboratory pipelines exist and are dependent 

upon factors including PCR cycle number, injection time, and the capillary electrophoresis 

platform itself [53].   

Peak height is dye dependent as observed in [44]. It is interesting to note that some 

dyes have noise peak heights in the hundreds. This may in part be explained by the 

definition of noise we provided for this study as we only defined stutter as signal residing 

in the N-1 and N+1 positions. This notion is supported by the findings of [44], where they 

discovered that the removal of noise peaks in the N-2 position reduced the largest noise 

peaks. Given that our DNA mass ranged from 0.0078-1 ng, it is not surprising to observe 

these larger noise peak heights. Visual inspection of the histograms in Fig 4 shows a higher 

probability of noise peaks fall below 40 rfu. This finding mimics an earlier probabilistic 

study of noise [44] where most of their noise peaks were also under 40 rfu.  

In Fig 4 b-f we show a visual comparison of the distribution of baseline noise 

measurement using histograms for the different dyes. The fitted normal and log normal 
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distributions are compared. Qualitative analysis shows that the log normal distribution 

provides a better fit to the data than the normal distribution. An Anderson Darling goodness 

of fit test was conducted and the Akaike information criterion (AICc) was used to select 

the best class distribution. The model with the lowest AICc was presumed to be a better 

fit.  

Table 3 The Akaike information criterion (AICc) of the Anderson-Darling test. The log-

normal distribution has the minimum AICc, which provides a better description for the 

noise distribution than the normal assumption across all color channels. 

Dye Distribution AICc BIC 

Anderson-

Darling 

Statistic 

p-value 

B Log-normal 20009 20021 69 <0.0001 

 Normal 25250 25262 428 <0.0001 

G Log-normal 20736 20748 67 <0.0001 

 Normal 25020 25032 386 <0.0001 

Y Log-normal 15255 15267 68 <0.0001 

 Normal 19546 19557 368 <0.0001 

R Log-normal 24385 24397 72 <0.0001 

 Normal 29776 29788 471 <0.0001 

P Log-normal 10071 10082 36 <0.0001 

 Normal 12797 12808 237 <0.0001 

 

In summary, the lognormal distribution of baseline noise is a better class of distribution, 

which is consistent with the findings of the G-test of independence where the authors of 

[44] asserted that baseline noise from the Identifiler® Plus and Powerplex® kits followed 

a log-normal distribution. Interestingly the log-normal class is distinct from the Gaussian 

assertions of [8] and assumptions of [54], though explained by the subjective assessment 

that formed the basis of the former’s conclusion and unique implementation of the noise 

model in the latter.   
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3.2.2 Noise distribution per locus 

Once we established that noise peak heights are dependent on channel, we 

investigate whether noise ought to be characterized on a per locus basis. To accomplish 

this, we studied the distribution of noise on a per locus basis within the same dye. Visual 

inspection of the boxplots for all loci in Fig 6 highlights the differences in noise peak height 

measurements. Take for example the blue channel which has six loci. The distribution of 

noise from one locus is visually different to another. The D10S1248 has a maximum noise 

peak height of 378 rfu while D2S441 has its maximum at 46 rfu. This trend is similar 

throughout all color channels. 

 

Fig. 6: Boxplots of noise peaks, separated by locus, of single source samples injected for 

25 s. The blue channel had the highest non-zero noise peaks with maximum height at 378 

rfu. The colors indicate the fluorescent dye color at that locus: [■] blue, [■] green, [■] 

yellow, [■] red dye and [■] purple. The yellow dye was changed to grey for contrast. 

Histograms and Normal quantile plots were used to evaluate which distribution 

class best describes the noise data within each locus. Fig. 7a and 7b show histograms for 

the D1S1656 and D31S1358 loci, respectively as representative loci. A fitted normal (in 
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black) and log-normal (red) distributions is also shown. In both plots it seems unlikely that 

a normal distribution will be a better descriptor of the noise at each locus than the log-

normal class. The Anderson-Darling test was used to evaluate this quantitatively by testing 

the null hypothesis that the data are normally or log-normally distributed. Based on the 

AICc, a log-normal distribution is a better fit for noise data even on a per locus level. To 

evaluate the null hypothesis that baseline noise measurements are independent of locus, a 

permutation test in JMP®15 was performed. This randomization test of independence gave 

a p-value of 10-4, which led to the rejection of the null hypothesis that noise is 

interchangeable between loci within a color channel.  

 

Fig. 7 a Histogram for the noise distribution at the D1S656 locus (within the blue dye). A 

fitted normal (black) and a fitted log-normal (red) distribution were plotted to identify 

which best explains the data. b A normal quantile plot for the D1S656 locus. The noise 

data points (in blue) do not fall along the diagonal line (black), suggesting the data is not 

normal. c shows a histogram of noise contained in the D3S1358 locus. The fitted normal 

(black) and log-normal (red) distributions are also shown. d depicts a normal quantile plot 

for D3S1358 locus. e shows a simulated distribution from the blue dye permutation test 

and the corresponding p-value demonstrating noise is not interchangeable between loci, 

where the test statistic is the F-value, and is shown on the y-axis. 
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In Fig 7, e is shown a simulated distribution from the permutation test, using the F-

value as the test statistic. The small p-value lends to a rejection of the null hypothesis, 

suggesting baseline noise measurements are locus dependent; that is, they are characteristic 

to that locus and cannot be interchanged between loci despite being detected using the same 

dye channel for detection. These findings corroborate the findings in [44] as they also found 

that noise is also locus-dependent for the IdentifilerTM Plus and Powerplex® kits, 

explaining the decision of [54] to model noise on a per-locus basis. 

Bregu et. al [8] reported an interesting finding regarding the behavior of noise as 

the injection time increased. In the study, they reported that there were no significant 

differences observed with increasing the injection time. For the current study, we explore 

this notion for the PowerPlex® Fusion 6C kit. In Fig. 8 a, injection protocols for single 

source samples across all dyes were compared. Contrary to the study cited above, visual 

inspection of the boxplots shows an increase in noise peak height with increase in injection 

time. Quantitatively, we used the Kruskal Wallis test to evaluate the null hypothesis that 

there was no significant difference with an increase in injection time. The reported p-value 

(p<10-4) compels us to reject the null hypothesis and assume that the alternative hypothesis 

is true.  
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Fig. 8 a shows boxplot for noise peaks across the different dyes for the 3 injection protocols 

(5, 15 and25s). b shows boxplots for all mixture samples injected for 5, 15 and 25 s across 

the different dyes. c shows boxplots for noise peak height measurements for single source 

and mixture samples compared side by side for all 3 injection times. Single source samples 

have higher noise peaks compared to mixture samples. 

In Fig. 8 b), we performed a similar analysis with mixture samples injected at 5, 15 and 25 

s as with the single source samples. We observed a similar trend where an increase in 

injection time resulted in increases in peak heights. In Fig. 8 c) we provide a side-by-side 

comparison of single source samples and mixture samples with respective noise peak 

heights across the different injection times. The boxplots show an interesting feature where 

single source samples have higher noise peaks compared to mixture samples. Once again, 

we statistically evaluated this using the Kruskal Wallis test, and a p-value less than 10-4 

was obtained, suggesting that there was a significant difference in noise peak height 

between 1-person samples and mixture samples. 
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4 Conclusion 

In the current study, we evaluated the noise distribution for the Powerplex® Fusion 6C 

kit on a per color channel basis and we observed that noise peaks were different between 

dyes. In our analysis, the log-normal distribution was a better fit to describe the data. We 

also demonstrated that noise peak heights were not independent of locus. Noise studies are 

important in forensics as there is a strong need to optimize our test methods to garner some 

consistency in our interpretation. The authors of [18] showed the discrepancy in changing 

the parameters of four models they were testing. In that study, a model where noise had 

been described as normal has a LR falling below 10-7 while a log-normal distribution of 

noise gave a LR>1. This further reiterates the point that understanding the behavior of noise 

is important to make sound interpretation protocols whether the method uses analytical 

thresholds or probabilistic genotyping systems. 

Overall, we have confirmed the work by previous studies [44, 50] that a log-normal 

distribution is a better model in characterizing baseline noise. We further observe a noise 

dependence on a locus basis, therein justifying locus-dependence inference procedures.  
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