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Proteins carry out a staggering number of functions within the human body and the biological 

world at large, and are often the primary targets of drugs in treatment of disease. For this 

reason, an understanding of protein behavior—how a protein’s sequence and structure 

determines its stability, function, and interactions with other molecules—is critical for 

pharmaceutical development and other biotech-based industries. Recent advancements in some 

areas of protein modelling, especially the application of neural-network based machine learning 

to protein structure prediction, have been very promising, but there is still much work to do to 

fully understand how proteins fold. Other protein modelling techniques, like molecular 

dynamics simulations, are powerful but hampered by very short timescales that don’t capture 

the full spectrum of protein behavior. Additionally, many of these techniques are 

computationally intensive, require a high degree of user expertise, and do not breakdown 

protein energy contributions at the amino acid level. 

We have developed a coarse-grained protein energetics model, the Hidden Symmetry Model 

(HSyM), that is able to extract per-residue interaction energy data from sequence and structure 

data. The model is scale invariant and only requires a single structure of a protein’s native 
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conformation; consequently, its calculations can take a matter of seconds and be done on a 

basic PC. We have demonstrated potential applications of HSyM by successfully using it to 

predict mutation-induced thermostability shifts in T4 lysozyme, and to predict the binding 

affinities of engineered peptides for an antibody with limited structural information for the 

molecules involved. Preliminary work on a fully integrated microfluidic device that would use 

these model-engineered peptides to carry out diagnostic blood assays is presented to show a 

potential clinical use for the model.  We also present work to further optimize HSyM by using a 

simplified statistical mechanical “toy model” that takes into account solvent-residue 

interactions. We hope that with further refinement the Hidden Symmetry Model will have a far-

reaching impact on the fields of computational drug design, protein engineering, and biomedical 

and biotechnology research in general. 
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Chapter 1: Introduction 

Why Understanding Protein Behavior Matters 

Proteins have been called “nature’s robots” [1]. Besides providing key structural materials in 

cells and tissues, these molecular machines are responsible for carrying out the majority of 

biological processes, including signal transduction [2], intercellular communication [3], immune 

system recognition [4], regulating genetic transcription and translation [5], catalyzing 

biochemical reactions [6], and much more. Proteins are able to perform this vast diversity of 

functions due to (1) their ability to fold and assume a variety of conformations and (2) their 

ability to bind and interact with other molecules, including other proteins, nucleic acids, and 

small molecules [7-9]. Understanding and modeling the thermodynamics driving these two 

aspects of protein behavior is critical for unlocking the full potential of protein-based 

applications. For example, most drugs are targeted towards proteins involved in disease 

mechanisms and usually function by binding to proteins to inhibit their interactions with other 

molecules, mark them for recognition by other proteins or immune cells, and/or change or 

destabilize their conformation [10]. Knowledge of the target protein’s structure and 

thermodynamic organization (conformational stability and interaction energy distribution) is 

crucial for designing drugs that will bind to the correct site on the protein, bind with the desired 

affinity, and carry out their intended functions [11]. Additionally, the burgeoning field of rational 

protein engineering requires accurate modeling and prediction of how novel designed proteins 

will behave; these engineered molecules have applications in medicine/pharmaceuticals, 

agriculture [12], energy [13], food production and processing [14], and other fields. 
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The Current State of Protein Modeling 

The term “protein modeling” is broad and refers to a variety of techniques with an array of 

different specializations and functions. These techniques can often be classified as “template 

based”, which rely on known structures and sequences of proteins, or “template-free/de novo” 

methods. It should be noted that both template and template-free methods have owed much to 

the expansion of structural and genomic databases like the Protein Data Bank, as even in de 

novo methods elements of known protein structures, sequence alignments, and data on 

correlated mutations can be used to help predict secondary structure features [15] and residue 

contact maps [16], or be used in training machine learning methods [17]. 

A protein’s structure and stability are inextricably tied to its energy landscape, as proteins have 

evolved to assume a native conformation, or “ground state”, that corresponds to a free energy 

minimum. Consequently, most protein models consist of two elements: a mathematical energy 

function based on the conformation of the atoms in the system (sometimes referred to as a 

microstate), and an algorithm for sampling this function and selecting preferred conformations 

[18]. Energy functions may make use of physics-based force fields that calculate the system’s 

energy based on the sum of all atomic interactions (e.g. covalent bonds, electrostatic effects, 

Van der Waals forces) in the microstate [19]. Knowledge-based or statistical force fields instead 

make use statistical analysis of data from protein structural databases to make predictions of 

atomic packing, contacts, and conformational features and make energy scores for a given 

conformation [20]. Additionally, energy functions can be coarse-grained, which typically merge 

side chain atoms into a single entity or only analyze proteins at the residue level, and result in a 

smoothed energy landscape [21].  These models are less computationally demanding than 

atomistic energy functions but are less accurate and may lead to false energy minima. For this 

reason many protein modeling packages and protocols, like ROSETTA, use a combination of 
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coarse-grained modeling for initial rough structure prediction and all-atom reconstructions for 

refinement [22].  

Sampling algorithms range from simple gradient-based methods that always proceed with steps 

that lower free energy, to Monte Carlo methods that employ randomized substitutions and/or 

conformational changes and grade the favorability of these based on the magnitude of the 

calculated energy change (the Metropolis criterion) [18]. As with coarse-grained models, 

gradient-based sampling can lead to identifying false energy minima that do not actually 

correspond to a protein’s ground state. Monte Carlo methods tend to be more accurate but 

require substantially more computing power to perform tasks like secondary structure fragment 

assembly and sidechain rotamer sampling.  Molecular dynamics (MD) simulations constitute a 

special class of energy function sampling and are often used to further refine the results of other 

models. These programs use Newtonian forcefields (derived from the gradient of the potential 

energy function) applied to every atom or coarse-grained pseudoatom to calculate atomic 

trajectories iteratively over discrete, very small (on the order of a femtosecond) time steps [23]. 

While this technique may better recapitulate how proteins behave than other methods, it is 

very much limited by the small timescales it can accurately render, which are often much 

shorter than biologically relevant phenomena like protein folding, allosteric shifts, and other 

global protein motions. Longer duration MD runs, especially with large proteins, complexes, 

and/or explicit solvent molecules, can require the use of supercomputer clusters in order to 

handle the multitudes of calculations over the millions to trillions of timesteps necessary [21]. 

Two central applications of these models have involved elucidating the sequence-structure 

relationship of proteins: prediction of a protein’s native structure from its sequence alone, and 

the converse of designing a protein sequence based on a known or desired structure. With 

regards to the former application, recent major advancements in machine learning methods like 
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artificial neural networks have yielded very promising results, culminating in DeepMind’s 

AlphaFold scoring a record best median global distance test score of 92.4 out of 100 in the 2020 

Critical Assessment of Protein Structure Prediction competition [24]. While some challenges 

remain, including accurate structure prediction of protein complexes, the path forward in 

structure prediction seems very encouraging. It remains to be seen whether these same 

machine learning tools will also revolutionize protein design and engineering. While both 

current template-based [25, 26] and de novo methods [27, 28] have yielded some success, many 

obstacles still hinder the field, including accurately modelling flexible proteins and domains, 

balancing polar and nonpolar interactions, modelling explicit water molecules, and creating 

functional enzymes [18]. Many of these issues are also present in the related field of structure-

based computer-aided drug design (CADD), which uses techniques like molecular docking and 

MD to design small molecule drugs that bind to protein targets [29]. Table 1.1 summarizes some 

of the currently used protein model components discussed in this section. 
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Table 1.1: Summary of Components Used in Current Protein Modelling Techniques 

Model 
Component 

Example(s) Advantages Disadvantages 

Gradient-based 
sampling 

Sidechain torsion 
angle sampling in 
a RosettaDock 
algorithm [30] 

 Quickly finds local 
energy minima 

 Not suitable for 
identifying global energy 
minima 

Monte Carlo-
based sampling 

Sidechain 
rotamer sampling 
in ROSETTA3 [31]; 
protein chain 
movements in 
CABS [32] 

 Able to avoid false 
energy minima 

 Generally faster 
than MD  

 Customizable for a 
particular 
application or 
system 

 Capable of large-
scale or unphysical 
moves for broader 
sampling 

 Not suitable for 
predicting binding 
kinetics or other time-
dependent behavior 

 Not well suited for use 
with explicit solvent  

 High computational 
demand 

Template-based 
Modeling 

SWISS-MODEL 
[33]; MODELLER 
[34] 

 Applicable to 60-
70% of proteins 

 Useful for target 
protein/ligand 
binding design 

 Limited to proteins with 
structures similar to 
known structures in the 
PDB 

Molecular 
Dynamics (MD) 

Desmond [35]; 
GROMACS [36] 

 Highly accurate 
sampling of 
conformational 
space 

 Able to simulate 
explicit solvent 
molecules 

 Not well suited for 
simulating longer 
timescale phenomena 
(folding, sometimes 
binding) 

 High computational 
demand 

Physics-Based 
Forcefields 

CHARMM19; 
GROMOS 

 Well suited for all-
atom models 

 May have less accurate 
energy scoring than 
knowledge-based 
potentials 

Knowledge-
Based Statistical 
Forcefields 

CABS forcefield 
[32]; DOPE [37] 

 May be better 
suited for coarse-
grained models 
than physics based 
 

 Not transferable 
between different types 
of systems (e.g., single 
protein to intermolecular 
complex) 

Docking  DOCK; AutoDock   Able to simulate 
binding behavior 
too slow for MD 

 Increased flexibility or 
size of ligand decreases 
accuracy 

Deep 
Learning/Neural 
Networks 

AlphaFold [24]   Currently has the 
best structure 
prediction ability 

 “Black box” effect might 
hinder true 
understanding of how 
proteins fold 

 May be biased against 
novel/under-represented 
protein folds 

 Needs development for 
predicting intermolecular 
interactions 
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Per Residue Interaction Energy & The Hidden Symmetry Model 

While most protein modelling techniques utilize an energy function to calculate the total energy 

of the system (protein(s) and solvent), only a specialized few attempt to decompose a protein’s 

interaction free energy on a per-residue basis. Those that do may rely on calculations obtained 

from computationally intensive methods like MD which may not fully represent a protein’s 

behavior at a biologically relevant timescale [38], and/or they often attempt to attribute 

interaction energies to only a few, relatively short-range interactions (H-bonds, Van der Waals 

forces, etc.) [39], which may not take into account “hidden”, non-local effects [40, 41]. An 

accurate, rapid, and easy to interpret residue energy breakdown could provide invaluable 

insights into which residues or types of interactions are critical for stabilizing a protein, binding 

to a ligand or protein interface, or responsible for inducing conformational changes. We have 

developed the Hidden Symmetry Model (HSyM) as a fast, user-friendly, and computationally 

inexpensive method to extract protein residue interaction energy contributions from sequence 

and structure data [42]. Unlike all-atom and coarse-grained Monte Carlo and MD based 

methods, this coarse-grained model avoids the computationally taxing task of molecular 

ensemble generation by only analyzing a protein’s ground state, or lowest energy conformation; 

this approximation was based on the observation that protein folding—specifically, amino acid 

side chain burial and resulting solvent accessible surface area—exhibits scale-invariant behavior 

typical of phase transitions [43]. As a result, the model’s algorithm is capable of generating an 

interaction energy map of a protein in a matter of seconds, and computation using our Python-

based program (POLARIS) can be carried out on a standard PC. 

A summary of the model’s workflow is shown in Figure 1.1. In brief, the program uses sequence 

and structural (atomic coordinates) data from a user-inputted PDB file to assign every amino 

acid a unitless value, μ, directly related to that residue’s interaction energy. This value is 
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calculated based on the identity of the amino acid, its secondary structure-related symmetry 

with neighboring residues, and the identities of these local neighbors. An in-depth discussion of 

the model’s equations, parameters, and algorithm is provided in Chapter 2 of this dissertation. 

 Figure 1.1: The Hidden Symmetry Model Workflow. HSyM is able to convert sequence and 

structure data from a PDB file to energy data by calculating an interaction factor (μ, unitless but 

directly proportional to a residue’s interaction free energy contribution) for every residue in the 

protein. Myoglobin structure was obtained from PDB ID: 1MBN [44]. 

Potential Model Applications 

HSyM’s ability to rapidly provide a residue interaction energy map of a protein lends itself to a 

variety of potential applications. Figure 1.2 categorizes and identifies several of these. For 

example, the identification of patches of higher-than-average μ residues on a protein’s surface 

could mark these regions as “hot spots” that are likely candidates for drug or ligand binding sites 

and/or as active sites in enzymes. Identifying these target binding sites is a critical step in the 

design of small molecule and biologic drugs. Additionally, the model shows promise for 
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predicting thermostability changes associated with mutations, as demonstrated in Chapter 2. 

The engineering of more stable variants of proteins via targeted mutations has profound 

implications for designing biologics, vaccines, and enzyme catalysts that provide higher 

production yields and which maintain their native conformation and function at a broader range 

of temperatures and storage conditions [45]. Identifying key sites for mutation may also aid in 

the design of so-called “protein switches”, proteins that are able to assume a new stable 

conformation at specific conditions [46, 47].  

A related protein engineering application is using HSyM to tune the binding affinity in protein-

protein or protein-peptide interfaces, with the latter application being demonstrated in Chapter 

3. By identifying and mutating selected flanking residues adjoining a binding site on one 

molecule, the model posits that the interaction energies of the conserved (non-mutated) 

residues involved in the binding can be changed, thereby altering the free energy of binding and 

thus the affinity of the intermolecular interaction. Besides being useful for the design of 

biologics like monoclonal antibodies, cytokines, and vaccines, this method of protein 

engineering could potentially be utilized in designing more sensitive diagnostic immunoassays or 

tissue engineering scaffolds that target certain cellular receptors/markers.  

All in all, HSyM may be used as a potent in silico prescreening tool in protein engineering and 

drug design, allowing the user to rapidly and easily rank and eliminate candidates based on 

quantities like thermostability or binding affinity before proceeding to either more 

computationally intensive modeling (atomistic Monte Carlo methods or MD simulations) or 

experimental validation/screening (phage display, microarrays, functional assays, etc.). 
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Figure 1.2: Potential Applications of the Hidden Symmetry Model. The illustrations for the “Drug 

Targeting and Design”, “Identifying Binding and Active Sites”/”Mutation Effects”, and “Protein 

Engineering” applications were created using PDB entries 4EYL, 3FA0, 2KDM, and 2KDL, 

respectively [46, 48, 49]. This figure was created using BioRender. 

Thesis Objective and Summary 

The dearth of user-friendly, computationally simple protein models that provide a 

decomposition of residue interaction energy presents a hindrance to a more complete 

understanding of protein behavior and to protein engineering efforts. We have developed HSyM 

to address this problem, with the central objectives of (1) developing a model that accurately 

gives a per-residue interaction energy decomposition of a protein based only on ground state 

sequence and structure data and (2) demonstrating possible applications of this model for 

medicine and biotechnology. 
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Chapter 2 of this thesis describes HSyM in detail and benchmarks it by successfully predicting 

mutation-induced thermostability changes with a study of the protein T4 lysozyme. Chapter 3 

describes a peptide engineering study in which HSyM was used to design a suite of peptides and 

was successfully able to predict their relative binding affinities for an antibody, even without any 

structural data for the peptides or antibody target. This chapter discusses a possible use for this 

in designing diagnostic immunoassays for cancer autoantibodies with improved sensitivities. 

Chapter 4 is focused on further optimizing the model and addressing some of its flaws, primarily 

through introducing parameters that accurately account for residues’ interactions with water. A 

statistical mechanical analysis of a simplified two dimensional “toy model” that simulates 

protein folding/unfolding and residue-solvent interactions was used to arrive at these 

parameter values. Chapter 5 presents preliminary work on a fully-integrated microfluidic device 

that we envision could carry out automated blood/sera immunoassays using peptides designed 

with the method in Chapter 3. Finally, Chapter 6 summarizes our work to date, discusses the 

remaining limitations of the model, and explores proposed future work. 
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Abstract  

Here we present a model to estimate the contribution of each amino acid 

residue to the interaction free energy of a given protein. Protein interaction energy is 

described in terms of per-residue interaction factors, μ. Multibody interactions are 

implicitly captured in μ through the combination of amino acid terms (γ) guided by local 

conformation indices (σ). The model enables construction of an interaction factor heat 

map for a protein in a given fold, prima facie assessment of the degree of residue-

residue interaction, and facilitates a qualitative and quantitative evaluation of protein 

association properties. The model was used to compute thermal stability of T4 

bacteriophage lysozyme mutants across 7 sites. Qualitative assessment of mutational 

effects provides a straightforward rationale as to whether a particular site primarily 

perturbs native or non-native states, or both. The presented model was found to be in 

good agreement with experimental mutational data (R2 = 0.73) and suggests a means by 

which to convert structure space into energy space.  

 

Significance 

 The assessment of protein thermal stability as a function of amino acid sequence 

enables the testing of molecular models. Whereas most quantitative studies rely on all-
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atom descriptions and dynamic simulations across many time scales to assess free 

energy changes, we introduce a model that uses only coarse structural data: protein 

sequence and a list of side chain-side chain contacts. The model uses amino acid-specific 

fractional exponents to describe the protein sequence and assigns each residue to one 

of four states. Despite ignoring all molecular fine structure – including the details of 

backbone and side chain conformation and all specific interactions – we find that 

changes in folding free energy can be estimated with good accuracy and that protein 

energetics can be interpreted and visualized in terms of per-residue contributions. The 

key implication of the study is that structure space may be readily convertible into 

energy space. 

 

Introduction 

Biological processes are fundamentally realized at the atomic and molecular 

level and are mostly carried out by proteins. Molecular life science is teeming with 

protein studies and derived biotechnologies. Despite its tremendous success, 

biotechnology and its foundational molecular sciences lack a simple means to relate 

interaction energy to protein primary sequence, structure, and function.[1, 2] 

Advancement of such an understanding would significantly improve the pace and 

capabilities of the biotechnology industry.[3] Without it the community has grown to 

rely on intelligent guesswork made possible by genomics, proteomics, informatics, and 

other experimental tools for protein manipulation and structure determination.[4] The 

seminal insights of the founders of protein science[5-10] largely have given way to 
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methods of protein characterization that depend on all-atom computations.[11-16] 

These powerful tools have not led to much-desired qualitative guidelines, intuitive 

understanding, or prima facie approximations of per-residue contributions to 

interaction free energy.[17-20] It is an open question whether the difficulty in 

identifying governing principles of protein behavior is intrinsic to proteins or whether 

the difficulty is due to obfuscation by the surfeit of details generated by all-atom 

computations. 

 We began to explore the possibility of a simple model to understand protein 

energetics derived solely from protein sequence and approximate structure.[21, 22] A 

scale-invariant, non-atomistic approach could provide a straightforward understanding 

of proteins and enable prima facie analysis of sequence-dependent behavior.[23-27] 

Moreover, it could substantively impact the biotechnology industry by simplifying the 

description of intra- and inter-molecular protein interactions, facilitating protein design 

and engineering, and describing a direct connection between genomic sequence, 

protein structure, and biological function. At present, proteins are engineered to have 

enhanced binding affinity, thermostability, catalytic activity, etc., through synthetic and 

recombinant technologies as well as computational modeling.[28, 29] However, this 

process can be labor intensive and largely empirical without the guidance provided by a 

predictive understanding of interaction free energy.  

To overcome these limitations, we introduce a simple model to predict the per-

residue protein interaction energy and demonstrate its applicability to understand 

thermal stability of the well-studied T4 bacteriophage lysozyme protein (T4L, Fig 2.1A). 



18 
 

 
 

We illustrate the ideas by focusing on single point mutations of the wild-type protein, 

the use of a fractional exponent scale (Fig. 2.1B), and classification of mutations that are 

expected to primarily impact the energetics of the native state ensemble (NSE, Fig. 

2.1C). Our findings suggest that this model has the potential to: (a) understand the 

effects of mutations on protein thermal stability, (b) approximate well the interaction 

free energy changes that bear on the native state ensemble, and (c) convert protein 

structure space into energy space.  

 

 

 

 

 

 

 

 

 

Figure 2.1. Towards a reduced complexity description of proteins. (A) Lysozyme of T4 

bacteriophage (T4L, PDB ID: 3fa0). (B) Scale invariant fractional values for the 20 canonical 

amino acids and with the standard deviation (sdev) determined from the power law: r ∝ N


 

(see: Ref. 31, text, and Appendix). (C) Mutations are classified based on whether the impact of 

mutation is expected to be primarily on the native state ensemble (NSE) – Mutation class I (MC-

I) or on the non-native state ensemble (non-NSE) or both the NSE and the non-NSE – Mutation 

class II (MC-II).  
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Summary of the Model 

Our model has three key features: (1) a high precision (fractal exponent) parameter for 

each amino acid residue (γ), (2) an index of four possible states that each residue can adopt (σ), 

and (3) normalization of a unique subset of residues for each amino acid in the sequence to 

determine their interaction factor (μ). These are briefly described below (see also S2.1).  

γ-Parameter. There are over 400 scales describing attempts to parameterize various 

properties of amino acids residues in proteins, such as structural propensities, hydrophobicity, 

etc.[30] However, there is only one scale-invariant set (Fig. 2.1B) and it is based on accessible 

surface area measurements. [24, 25, 31] Using high resolution crystallographic data, peptide 

segments as small as only three amino acid residues in length were computationally separated 

from the parent protein as static objects and the accessible area of the central residue was 

measured. The procedure was repeated for larger and larger segments, each time measuring 

the accessible surface area of the central residue. Examination of thousands of segments 

revealed that each amino acid displayed scale invariance and obeyed a power law of the form αr 

= N-γ, where αr is the relative accessible surface area of the amino acid side chain and N is the 

length of the peptide segment analyzed (see also, S2.1). Although asymptotic reduction of 

amino acid sidechain accessible surface area was noted early on[32, 33] and anticipated by 

steric crowding, it was not until the report of the γ scale[31] that this behavior was shown to be 

distinctly different for each of the 20 amino acids. The exponents are fractional and range from 

approximately 1/16 (for lysine) to 1/4 (for cysteine) (Fig 2.1B). The possible implications of this 

previously hidden dilation symmetry led us to formulate a model, which we term the Hidden 

Symmetry Model (HSyM), based on the information likely to be contained in these exponents 

and based on notions of how the effects captured by these terms might be propagated along 

the protein sequence (for the details of these conjectures, see Appendix). 
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Figure 2.2. -index classification of local protein conformation. Amino acid sidechains are 

coarsened as blobs (circles). The degree of separation between a residue (blue-filled black circle) 

and the closest-linked nearest neighbor (CLNN, blue-filled orange circle) defines . Simplified 

schematic of each closest-linked nearest neighbor index is shown for  = 1, 2, 3, and 4 (two 

views). 

 

σ-Parameter. Although protein conformation is conventionally defined by the backbone 

and side chain torsion angles,[34-36] we anticipated advantages of an alternative 

conformational classification, which we term σ-index. The σ-index is a structural classification 

based on the closest-linked nearest neighbors (CLNN) of each amino acid residue. Briefly, CLNN 

are those residues with sidechains near each other and separated by less than 4 residues in the 

sequence (see S2.1 for a detailed description of CLNNs and sigma assignment). The CLNN 

designation can be σ = 1, 2, 3, or 4 (Fig. 2). This index describes canonical secondary motifs in 

recognizable terms, but also describes loops, turns, and coil structures. For example, a residue 

(i) that is part of a canonical beta strand would be assigned σ = 2, since i+2 and/or i-2 would be 

CLNN. Had that region of the protein been folded as an extended 310 helix the residue (i) would 

be assigned σ = 3, since i+3 and/or i-3 would be the CLNN. The CLNN approach thereby delimits 
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local conformation according to relative amino acid side chain arrangement. This coarse 

treatment of conformation considers many variations of the local backbone and side chain 

dihedral angles as equivalent and accommodates small dynamical fluctuations.[37, 38]  

μ-Parameter. Effective per-residue contributions to interaction energy (μ) are 

determined as a function of γ and σ terms (Eq. 1). Normalization of intrinsic contribution (γ) of 

the determining set (𝜃𝑑
𝑖 ) gives μi. The set, 𝜃𝑑

𝑖 , consists of residue i, the CLNN (i + σ), along with a 

subset of residues nearby in the sequence that would constitute an extended regular σ motif – a 

surface composed of contiguous amino acid residue sidechains centered on residue i. A physical 

interpretation of this is as a hydrated surface centered on the residue of interest, for example, 

the sort of extended motif that would be revealed upon partial unfolding.[19, 39, 40] Each 

residue of this surface is considered critical and is therefore included in determining the 

interaction factor. Specifically, i ± nσ ∈𝜃𝑑
𝑖  where n = 1, 2, 3, …, and nσ ≤ 10. The details of 

interaction factor determination and the related free energy calculations are given in Appendix. 

Briefly, the free energy of interacting residues i and j is related to the product of the interaction 

factors, μ, Eq. 2, where G is free energy,  relates medium effects, i,j is an interaction efficiency 

term, and  is a scaling factor with units of energy. Single state analysis requires an estimate of 

entropic contributions (see Appendix). For the purposes of this study we set = i,j = 1 and we 

estimate  in this study through fitting the T4L thermal data (see below). The implicit multi-body 

interactions subsumed in the interaction factors (μ) aim to reflect solvation and other non-local 

effects that are hidden or obscured by multi-scale correlations. The scaling problem confounds 

protein free energy calculations, especially per-residue free energy contributions,[17, 41, 42] 

but as shown below, this approach appears to describe interaction free energy successfully.  

                       𝜇𝑖
𝜎 = (2𝜉𝜎 + 1)−1  ∑ 𝛾𝑖+𝜎𝑛

 𝜉𝜎
𝑛=−𝜉𝜎

 ,  𝜉𝜎 = ⌊
𝜉

𝜎
⌋     Eq. 1  
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∆𝐺~ − 𝜀𝜆 ∑ 𝜏𝑖,𝑗

𝑛

𝑖,𝑗 (𝑖≠𝑗)

𝜇𝑖𝜇𝑗                               Eq. 2 

Results and Discussion 

Native vs Non-native Ensemble Perturbations. The energy gap between the native and 

non-native ensembles determines the thermal stability of a protein fold.[43, 44] A decrease in 

thermal stability of a mutant protein reflects destabilization of the native state, stabilization of 

non-native states, or both; the converse holds as well. Experimental measures of thermal 

stability (∆∆Gexp) do not reveal which state or states are perturbed by mutation. Theoretical 

appraisal of thermal stability does not require knowledge of which states are perturbed 

provided the energetics of a suitably representative set of the very large number of 

conformational microstates are computed accurately across appropriate timescales.[45-47] This 

is difficult to achieve with certainty. The determination of mutational effects based on analysis 

of the native state alone is particularly challenging, since knowledge of whether the mutation 

primarily influences the native state is required.  

Our model enables speculation of whether a mutation primarily influences native state 

stability and by how much (∆∆Gcalc) based on evaluation of the native state alone. First, we 

categorize the impact of mutation on thermal stability as belonging to one of two classes (Fig 

2.1C). Mutation Class I (MC-I) are those mutants that are expected to primarily change the 

interaction factors of buried residues. Such changes are expected to correlate with protein 

stability, since these changes bear directly on stabilizing the native state. This presumes that the 

non-native state involves different residue-residue contacts and/or different backbone 

conformations.[48, 49] MC-I mutations are expected to minimally perturb the non-native state 

energetics. Mutation Class II (MC- II) are those mutants that change the interaction factors of 

surface residues or both surface and buried residues and therefore are expected to perturb 
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either the non-native states or both native and non-native states.  This analysis suggests that the 

determination of whether a mutation is Class I can be assessed qualitatively and quantitatively 

by examining the ground state structure alone.  

The set of residues whose μ factor would change upon mutation of site i determines the 

effect of the mutation on thermal stability. We term this group of residues the member set of 

site i (𝜃𝑚
𝑖 ). It is important to note that 𝜃𝑚

𝑖  and 𝜃𝑑
𝑖  are not necessarily identical. The member set 

is composed of those residues whose μ values are impacted by mutation at site i, whereas the 

determining set is composed of those residues that are normalized to give the μ value of site i. 

Analysis of 𝜃𝑚
𝑖  can be used to assess whether mutation of residue i will be of Class I, as 

illustrated below.  

μ-Profile of T4 Lysozyme. T4L is one of the most extensively studied proteins.[50-53] 

The  availability of high-resolution structures for the wild-type protein and many of its mutant 

forms, combined with the corresponding thermal data, make this protein an ideal candidate for 

comparative analysis.[54] We focused on these structures since of the single point mutations of 

this protein do not significantly alter the native structure. Each possible μi factor for the wild-

type sequence was calculated  
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Figure 2.3. Computed μ-values of T4L. Per-residue values calculated according to Eq. 1 (blue 

lines in plot provided for clarity only). Color gradient (right) used to generate heat maps in 

Figure 2.4, where red corresponds to the highest values (hot) and blue to the lowest (cold). 

Most of the hottest thirty-one residues make contiguous contacts and twenty-one aggregate in 

three clusters. Two of the largest are indicated (dotted lines). The first cluster (green) includes 

six of the hottest residues in the N-terminal domain. The second (black) includes eleven residues 

and is located in the C-terminal domain. The values and specific residue color used to determine 

the per-residue contributions and for visualization are given in Table S2.4. 

 

(Table S2.1). We used the high resolution structure of this protein (PDB ID: 3FA0[55]) to assign a 

σ-index to each residue and the residue-residue contacts (see S2.1 for details). Additionally, all 

mutants were assumed to retain these assignments. Figure 2.3 is a plot of the computed per-

residue μ-factors for the native fold, along with the conventional α-helical and β-sheet motif 

assignments (top) and a color gradient (far right) to categorize and visualize relative μ values of 

the protein. These range from red (high/hot), to salmon, white, cyan, and then blue (low/cold). 

The protein structure heat-map, shown in Figure 2.4A and 2.4B, provides a simple way to 



25 
 

 
 

simultaneously visualize the approximate relative magnitude of interaction factors and the 

protein structure. For example, the protein exterior is dominated by cold residues. The interior, 

however, is dominated by hot residues, whose interactions significantly contribute to stability 

(G ~ μiμj). Figure S2.1 shows the heat maps of several other classic globular proteins, which also 

follow this trend. This model suggests that proteins may be organized such that the interaction 

factors are optimized. The canonical hydrophobic amino acid residues,[56] i.e. residues with 

non-polar side chains, tend to be hot, whereas those with polar side chains, especially those 

with ionic functionality, tend to be cold. Approximately 25% of the residues in each of these 

classes, however, do not hold to these trends. Thus, the nature of the side-chain without regard 

for backbone conformation (σ-index) and sequence context is not a reliable predictor of μ 

factors. For example, in T4 lysozyme, some of the archetypal nonpolar residues are cold, such as 

L121, and some of the charged residues are hot, such as the catalytically relevant E11 (Figs. 

2.4E, F). 

 

Figure 2.4. Heat maps of T4 lysozyme. (A) The protein interior is predominantly hot (red and 

salmon interstitial lines) and the exterior predominantly cold (blue and cyan surface lines). 

Residues M102 (left) and L33 (right) are shown in space filling mode for reference (both residues 
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are hot, hydrogen atoms are shown light grey for clarity). As indicated in Figure 2.3, red/salmon 

correspond to high μ-factors, whereas white indicates midrange values and cyan/blue indicate 

low range values. (B) The patch of hot surface residues corresponds to the substrate binding 

region (box). (C) The C-terminal core region (box) is dominated by hot residues; M102 is in 

contact with many hot core residues. (D) The N-terminal core region (box), though smaller, is 

also dominated by hot residues; L33 is in contact with many hot core residues. (E) 

Approximately 25% of the canonical hydrophilic residues are hot, including the key catalytic 

residue E11. (F) Approximately 25% of the canonical hydrophobic residues are cool, including 

L121, which is buried and makes many contacts with hot residues of the C-terminal core. 

Mutations that increase the μ-factor for L121 (e.g., S117V, as explained later in the text) would 

be expected to significantly increase the stability of the C-terminal core and increase the protein 

stability. 

 

Hot Residue Cluster Analysis. The 31 residues of T4L with the highest μ factors, i.e., the 

‘hottest’ residues, are indicated in the top shaded region of Figure 2.3. The two largest hot 

clusters constitute the C- and N-terminal domain cores (Fig. 2.4C and D, respectively).  The N-

terminal domain, which is known to be the less stable of the two, has a smaller core, and has 

significantly fewer hot residues in the core than the C-terminal domain. An uninterrupted vein 

of hot residues connects the two domains. All of the 31 hottest residues (Table S2.2), except for 

I9 and D159, make extensive contacts with other hot residues, and 21 of the 31 hottest residues 

co-localize in three clusters. Although the clustering leads to the protein interior being 

dominated by hot residues and the exterior being dominated by cold residues, there are some 

cool residues that are buried and some hot residues that are on the protein surface. For 

example, the most noticeable hot spot on the protein surface is the swath of contiguous hot 
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residues that constitute the substrate binding region (Figure 2.4B).[57, 58] 

Heat-map Analysis. Many multi-mutant variants of T4L have been reported. In this 

study, we focused on thirteen positions of wild-type enzyme that have been the subject of single 

point mutations (see Supporting Information Section S2.1). Virtually all of these mutants have 

been characterized both in terms of thermal stability and structure.[54] We examined these 

mutants in detail. Table S2.3 gives the 𝜃𝑑
𝑖  and 𝜃𝑚

𝑖  sets for each residue of this protein (see also 

Table S2.4). Based on the location of each residue of the θm sets, seven of the sites (positions 3, 

11, 115, 117, 119, 132, 133) were assessed as MC-I mutations and therefore expected to 

contribute primarily to conformational ground state stabilization. For example, residue S117 

rests near the center of an α-helix (σ = 4). As shown in Figure 2.5A, site 117 is  

 Figure 2.5. Mutation impacts the contribution to interaction free energy of multiple residues. 

(A) Mutation of S117 (spheres) changes the μ-factors calculated for θ
m

–related residues (sticks). 

Since serine has a low intrinsic value (γ, Fig. 2.1B), mutation to most other residues will increase 

these -factors. This set includes hot and cold residues that make many contacts with the hot 

residues of the C-terminal core and will therefore significantly stabilize the protein upon 

mutation of S in most cases.  (B) Mutation of M102 (spheres) in most cases will decrease the -

factors of the θ
m
–related residues (sticks). This set of residues, which are hot core residues, will 

therefore cool down and significantly destabilize the protein.  
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a member of the determining set of sites 107(1), 109(4), 113(4), 117(4), 121(4), 124(1), and 

125(1) (i.e., 𝜃𝑚
117, the number in parentheses indicates the σ-index of the residue listed). 

Consequently, mutation at 117 will impact the interaction factors of each member of this set in 

this fold. Many of the residues of 𝜃𝑚
117, specifically 107, 117, and 121, are part of the hot C-

terminal core cluster residues or contact these core residues. Therefore, mutation at 117 should 

bear primarily on ground state stability. The S117V mutant is the most stabilizing single point 

mutant known for T4L (ignoring covalent crosslinks). Interestingly, the thermal stability of this 

mutant has been difficult to rationalize.[53, 54] Within the framework of this model, the scale 

invariant terms (γ) increase from serine to alanine to valine (Fig. 2.1B). Indeed, the interaction 

factors for the entire 𝜃𝑚
117 set will increase for S117A and for S117V. The thermal stability is 

expected to increase because the majority of residues are buried and interact with (hot) core 

residues. The S117V mutant would be expected to increase in stability to an even greater extent 

over S117A. Similarly, residue M102 is buried, and 𝜃𝑚
102 includes some of the hottest C-terminal 

core residues in one of the largest clusters of hot residues in this protein (92(1), 93(1), 94(4), 

95(1), 98(4), 102(4), 106(4), 107(1), 110(4) ∈ 𝜃𝑚
102, Fig. 2.5B). Hence, mutation at this site is 

expected to bear primarily on ground state stability, as well. However, relative to methionine 

most mutations at position 102 would be expected to compromise stability (Fig. 2.1B). In this 

way, we used this model first to qualitatively assess the impact of the 13 point mutation sites, as 

MC-I or MC-II, and then to quantitatively assess the expected change in folding free energy for 

the 28 mutants distributed across these seven MC-I sites, as described below.  
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Figure 2.6. Comparison of computed and experimental ∆∆G of T4L mutants. Differences in 

thermal stability of well-characterized single point mutants were compared to experimentally 

determined values (Ref. 52). The calculation is remarkably accurate, since the only input is 

sequence and a list of side chain-side chain nearest neighbors.  R2 = 0.73 (line); y-intercept = 

0.44, average uncertainty in the sums and products of  < 0.01 kcal/mol; average uncertainty 

attributable to estimated sidechain and backbone entropy < 0.7 kcal/mol (Ref. 58); average 

unassigned error (AUE) = 0.81 kcal/mol (white band); fit with Eq. 3, 1, 12.5 kcal/mol. 

 

Quantitative Assessment of Mutant Thermal Stability. The change in folding free 

energy was calculated and compared to experimental data for the MC-I point mutants of T4L 

(Figure 2.6, see also Table S2.5). Briefly, free energy contributions are approximated by 

summing the products of interaction factors of residue (i) and its nearest neighbors (j) for the 

entire member set (θm) of each mutation site (i.e., μiμj) for both the wild-type and mutant 

proteins as well as changes in the backbone and sidechain entropy at the site of mutation (see 
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Appendix, Eq. 3, and S1 for details). It is noteworthy that the μfactors alone provide a 

reasonable, though less accurate, prediction of ∆∆Gcalc (see Figure S2.2). Although changes in 

local structure or among contacts between residues, etc., could also be assessed, for simplicity 

we approximate the structure of the mutants as perturbations of the wild-type protein with the 

same residue-residue contacts. The similarity of the crystal structures supports this 

approximation. Figure 2.7 illustrates the key aspects of the analysis with S117V. The S117V 

mutation significantly modulates the entire 𝜃𝑚
117 (Fig. 2.5C). For example, L121 is one of the 

residues impacted by this mutation. The six nearest neighbors of the L121 side chain are V87, 

L91, L118, W126, A129, and F153. All but A129 are calculated to have high μ-factors, i.e., to be 

hot residues (Fig. 2.7A). In the wild-type protein L121 is cold, but the S117V mutant converts 

L121 to a hot residue and thereby increases the estimated stability of the protein. Taken 

together, the S117V mutant is estimated to significantly increase protein stability – in 

agreement with experiment.  

A contact schematic of nearest neighbors for L121 is illustrated in Fig. 2.7A (see inset). 

The central residue corresponds to i and the peripheral residues correspond to its nearest 

neighbors j (c.f. Eq. 2). Table S2.6 shows the entire i,j array for the 13 mutation sites. We use the 

backbone and side chain confinement penalties described by Baxa, et al.,[59] to estimate these 

entropy contributions to free energy (Eq. 3, see S2.1 for details). These data, the computed 𝜇 

factors, and the scaling factor λ (λ = 12.5 kcal/mol, Eq. 3) gave ∆∆Gcalc, which is in good 

agreement with experimental results (R2 = 0.73, AUE = 0.81 kcal/mol, Fig. 2.6). 
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Figure 2.7. Contacts (i,j pairs) for members of the 
m
 set of residue 117. (A) Interaction energy 

of each residue is determined by summing the interaction factor products of each residue (i) 

with its nearest neighbors (j, set to a maximum of 6). (B) The impact of a single point mutation 

requires evaluating all the contacts for each residue of θ
m
. Mutation of site 117 is illustrated, 

members (i residues) are listed in the top row and neighbors (j residues) are listed in the 

corresponding columns. Columns with less than 6 neighbors indicate solvent exposed residues.  

 

Important correlations that govern the free energy are hidden, i.e. there are 

contributions that are non-negligible, non-local, and not easily identifiable by current models 

and rationales.[60, 61]  Local interaction-based rationales, although possibly sound in terms of 

enthalpy, have been broadly recognized as untenable decompositions of free energy. And yet, 

perhaps because no alternative is at hand, this fundamental of thermodynamics is occasionally 

disregarded, and attempts to justify free energy-governed processes in terms of local atomic 

interactions are advanced. For example, in drug discovery, small molecule-protein binding free 

energy is sometimes rationalized in terms of individual interactions between the small molecule 
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and the protein.[62] Recent studies based on sound theories use all-atom simulations to 

estimate free energy.[15, 16, 47, 63] These computed free energies are not decomposed into 

individual interactions, even in cases where free energy is binned on a per-residue basis[20,[64, 

65] are determined by thermodynamic cycles that swap solvent arrays,[14, 66-68] or dissected 

in terms of many-body correlated changes.[60, 61] These approaches aim to sample over 

multiple timescales in an effort to solve the scaling problem of protein energetics. Similarly, the 

model presented here does not attempt to decompose free energy into isolated individual 

interactions.  

The structure of the model is reminiscent of earlier ideas on phase transition behavior of 

polymer-, protein-, and Ising-based statistical frameworks.[23, 69-76] The interaction factor, μ, 

defined in Eq. 1, is a function of the average per-residue effects (γ) and local protein 

conformation (σ). The propagation length ( = 10), corresponds to the standard hydropathic 

sliding window average, reflects sharp cut-offs of phase transition-like critical effects, and is 

consistent with extended Zimm-Bragg models. Importantly, the γ parameter includes critical 

factors such as solvation and excluded volume properties, among others. Although highly 

simplified, these ideas are in line with the energetic and dynamical properties of proteins being 

tuned to the energetic and dynamical properties of water, the long-range effects of solvation 

and liquid-vapor coexistence models, and protein-solvent fluctuations.[77-79] Taken together, 

this model offers a framework to approximate protein interaction free energy in terms of per-

residue contributions.  

In addition to considering conformation in terms compatible with dynamic solvated 

surfaces (σ-index), the model uses multiple fractal terms defined for each amino acid. These are 

high-precision terms that uniquely capture properties related to accessible surface area of each 

amino acid residue in proteins. Proteins have been described in terms of fractal dimensionality 
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and much recent effort has been devoted to using protein fractal dimension to describe protein 

physics.[24-26, 80-82] Additionally, proteins have been described in terms of hybrid numerical-

dynamical models to assess per-residue contributions to free energy.[20,[64, 65] This study 

provides the first example of per-residue fractal dimension being used to describe protein 

energetics.  

The generality of these findings requires further study. For example, although the other 

parameters of the model are not specific to T4L, additional studies are required to determine 

whether magnitude of the scaling parameter () is specific to this protein. Nevertheless, the 

per-residue approximation of interaction free energy presented here appears promising, 

compares favorably to molecular simulations using state-of-the-art potentials and machine 

learning estimations, is easily visualized, and has the potential to be of considerable utility. 

Comparison to a recent study, where a state-of-the-art all-atom physical potentials simulation 

method (CHARMM36H) was used, points out the advantages of the presented model. A very 

good fit for the barnase mutant set was obtained through extended dynamics simulation 

(correlations of 0.67+),[83] and although computationally and setup intensive, it is indeed 

comprehensive. However, it does not enable straight forward per-residue interpretation, in 

contrast to the presented coarse-grained model.  

Conclusion 

Protein interaction free energy is the lynchpin to the understanding of many biological 

processes and to biotechnology applications, including protein and peptide engineering,[48, 49, 

84] design and development of biologics as well as small molecule drugs,[85] among many 

others. Despite the temptation of describing protein stability and energetics in terms of 

molecular interactions such as ionic interactions and hydrogen bonding, these interactions are 
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often too numerous, varied, weak, and delicately balanced to allow meaningful prediction of 

per-residue contributions to interaction free energy. The model presented here outlines an 

approach to describe protein interaction energies based on sequence and per-residue contacts. 

This approach provides a straight forward basis to describe the individual and correlated effects 

of per-residue contributions to interaction free energy. As an example, T4 lysozyme was 

analyzed using the presented approach. Residues modeled to contribute significantly to 

interaction free energy of T4 lysozyme are depicted as hot in heat map renderings of the 

protein, with the interior of the protein dominated by hot residues and the exterior dominated 

by cool residues. The most notable exception to cool surface residues is the large hot patch on 

the surface that corresponds to the substrate binding surface of this enzyme.[57, 58] We used 

the model to classify mutations as primarily impacting ground state conformations (MC-I) or 

ground and/or excited state conformations (MC-II). In addition to these qualitative insights, 

differences in thermal properties, ∆∆G, of T4L single point MC-I mutants were calculated based 

on the observed ground state structure, without recourse to dynamic simulations. Conveniently, 

the model requires insignificant computing power. The calculation of the μ values and 

generation of the heat maps require a few seconds of computing time on a dual processor 

(laptop). The agreement of this simple model with experiment is encouraging.  

Although further studies on the scope and limitations studies of the model are 

warranted, the simplicity, directness, qualitative insights, and accuracy of the approach suggests 

potentially broad utility as well as complementarity to all-atom and bioinformatics-based 

protein modeling.[83, 86, 87] The most exciting implications of this work are that the high 

complexity of protein structure can be reduced to a simple network of readily visualized and 

interpreted interaction factors and that it may be possible to convert structure space – so 

abundant in the wake of the structural genomics revolution – into energy space.  
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Appendix 

The two conjectures of the model flow from the two lines of inquiry. Firstly, What 

information is contained in, and what information is excluded from, power law exponents 

derived from accessible surface areas? Conjecture #1: The exponents contain the fixed 

contributions to compaction for each amino acid residue, including the combined effect of 

solvation, steric/excluded volume, dispersion and van der Waals interactions, as well as 

stereoelectronic, polar, and Coulombic effects. The exponents do not contain contributions that 

vary from protein structure to protein structure, including temperature, medium effects, or 

sequence. Moreover, secondary, tertiary, and quaternary structural details, destabilizing charge-

charge interactions, and other fine structural details have been removed as well. Idiosyncratic 

fluctuations have been averaged out of these exponents. Protein backbone and side chain 

entropy penalty factors would be expected to be largely absent as well, because these do not 

correlate strongly with side chain accessible surface area. Still, much information intrinsic to the 

amino acid residues in a protein context should be included in these exponents. A model that 

aimed to use these per-residue exponents as reduced complexity descriptors of protein 

interaction free energy would have to include the effects that are omitted and would have to 

build in the effects of sequence and conformation. Secondly, How are these intrinsic per-residue 

effects propagated in proteins? Conjecture #2: The effective contribution of an individual 

residue can be described by normalization of its intrinsic contributions with certain residues 

nearby in the protein sequence as a function of the amino acid residue’s assigned conformation 

(σ-index, see S2.1). A physical interpretation of this is as a hydrated surface centered on the 

residue of interest and corresponding to an extended motif revealed upon partial unfolding.[19, 

39, 40] Normalization in this way simultaneously includes multibody interaction, local structure, 



36 
 

 
 

and local sequence effects and is described in more detail below. The model equation 

parameters are listed in S2.1.  

 

Proteins are considered at a level of coarseness that removes all molecular fine structure such 

that they are approximated as flexible chains with identical blobs uniformly spaced along the 

chain. The chain represents the protein backbone, blobs represent the side chains of residues, 

identical spacing is a consequence of proteins being composed of α-amino acid building blocks, 

and proximity of blobs is indicative of the impact of compaction. A set of simple rules 

determines the σ-index of each blob. Proximity of blobs renders them nearest neighbors. As 

shown in Figure 2.2, CLNNs are within four residues along the chain (i.e., σ-index of 1, 2, 3, or 4) 

and have sidechains that are in contact. This guarantees that the σ-index refers to residues that 

are both clustered together and nearby in terms of sequence. Viewed linearly, a blob is assigned 

a σ-index based on the translational relationship, the number of steps within the interval 

determines the index. This is applicable to all residues in a protein, including extended strands, 

helical motifs, various turns and loops. The CLNN definition captures regular secondary structure 

designations, i.e., extended σ = 2 intervals correspond to beta strands, repeated σ = 3 intervals 

to the 310-helix motif, and repeated σ = 4 intervals to the canonical alpha-helix. The σ-index 

captures the essence of conformation and subsumes the many varied combinations of backbone 

and side chain angles of contacting residues.  

 

 Equation 1 expresses the ideas presented above in compact form. Accordingly, for each 

residue i with index σ, the γ-values of 𝜃𝑑
𝑖  are summed, normalized, and then assigned as 

interaction factor 𝜇𝑖
𝜎. The 𝜇 term thus captures the effective sequence, conformation, and 

fluctuation dependence of each amino acid residue in a given fold of a given protein. As shown 
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below, the interaction free energy of adjacent residues, i and j, is relatable to the product of 

adjacent interaction factors (𝜇𝑖
𝜎𝜇𝑗

𝜎). See also, S2.1. 

Equation 2 indicates that the free energy is relatable to the sum of the products of 

interaction factors of residues i with nearest neighbors j. The sign indicates the favorability of 

low energy, ε is a medium parameter, λ is a scaling factor (fit as 12.5 kcal/mol, see Fig. 2.6), τi,j is 

an efficiency parameter of the i,j-interaction (e.g., polar/non-polar compatibility). See also, S2.1. 

 Equation 3, given below, describes how the change in free energy upon mutation (∆∆G) 

was computed. λ is a scaling parameter; both ε and τi,j are set to 1; T is the melting temperature 

in Kelvin of the wild type protein; ∆Tm is the change in melting temperature of the mutant. Since 

only the native state is analyzed, 𝑆𝑖
𝑏𝑏 and 𝑆𝑖

𝑠𝑐 are protein backbone (bb) and side chain (sc) 

estimates of entropy change from non-native to native state. Eq. 3 captures the net favorable 

interactions between residues i and j (as 𝜇𝑖𝜇𝑗) and penalties of folding for wild type and mutant 

(as 𝑆𝑖
𝑏𝑏 and 𝑆𝑖

𝑠𝑐). We use backbone and side chain entropy values determined from evaluation 

of native and non-native state ensembles to approximate these confinement penalties.[59] For 

simplicity we set the number of neighbors (j) to a maximum of 6. Surface residues with less than 

6 neighbors are assigned phantom solvent neighbors. Although formally based on pairwise 

nearest neighbor interactions, Eq. 3 includes implicit multibody effects captured in 𝜇𝑖
𝜎  (Eq. 1). 

Even for mutants that adopt the same fold as the wild type protein, there may be significant 

differences in many 𝜇 terms, and in this way multibody effects dominate the interaction free 

energy. See also, S2.1. 

 

 

 ∆∆𝐺 = [−𝜆𝜀 ∑ τ𝑖,𝑗
𝑛
𝑖,𝑗 (𝑖≠𝑗) μ𝑖μ𝑗 − (𝑇 + ∆𝑇𝑚) ∑ (∆𝑆𝑖

𝑏𝑏 + ∆𝑆𝑖
𝑠𝑐)𝑛

𝑖 ]
𝑀𝑢𝑡𝑎𝑛𝑡

−

                                                     [−𝜆𝜀 ∑ τ𝑖,𝑗
𝑛
𝑖,𝑗 (𝑖≠𝑗) μ𝑖μ𝑗 − 𝑇 ∑ (∆𝑆𝑖

𝑏𝑏 + ∆𝑆𝑖
𝑠𝑐)𝑛

𝑖 ]
𝑊𝑖𝑙𝑑 𝑇𝑦𝑝𝑒

  

 Eq. 3 
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S2.1. Parameters for Equations 1-3. 

 

Each parameter for each equation is described below. 

 

Equation 1. For each residue i with index σ, the γ-values of 𝜃𝑑
𝑖  are summed, normalized, and 

then assigned as interaction factor 𝜇𝑖
𝜎. The 𝜇 term thus captures the effective sequence, 

conformation, and fluctuation dependence of each amino acid residue in a given fold of a given 

protein. In Eq. 2, the interaction energy of adjacent residues, i and j, is relatable to the product 

of adjacent interaction factors (𝜇𝑖
𝜎𝜇𝑗

𝜎). 

 

                       𝜇𝑖
𝜎 = (2𝜉𝜎 + 1)−1  ∑ 𝛾𝑖+𝜎𝑛

 𝜉𝜎
𝑛=−𝜉𝜎

 ,  𝜉𝜎 = ⌊
𝜉

𝜎
⌋     Eq. 1  

 
γ-Accessible Surface Area Fractional Exponent Calculations. The accessible solvent area 

calculations were reported by Moret.[31] They found that the relative accessible surface area 

for each amino acid type as a function of peptide segment length obeyed a power law with a 

fractional exponent. The exponent value was specific to the amino acid: 1/16 < γ < 1/4. The 

power law behavior was estimated to emerge for segments longer than ~8 residues.  

 
σ-Index and Closest-Linked Nearest Neighbors (CLNNs). A detailed procedure of σ-index 

assignment, which is determined from CLNNs, is given here. The protein pdb file coordinates 

were used to determine candidate CLNNs as follows and in this order: 1. Phantom methyl 

groups were added to glycine residues (with alanyl residue stereochemistry) for the purpose of 

sigma assignment only. 2. For each non-H side-chain atom of each residue, i, the shortest 

distances between residues in the interval i+/-4 were determined. 3. Residue pairs (i, i+/-n 

where n = 1, 2, 3 or 4) within 6.5 Å were designated candidate clNNs = n. The distance, 6.5 Å, 
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was selected because this cut-off, coupled with the following steps, the distance that reliably 

recapitulated the canonical α-helix and β-strand secondary motifs. 

 
The candidate CLNNs were used to determine CLNNs as follows and in this order: Step 1. 

Smaller span in same direction wins – If a residue were to have more than one type of 

candidate clNN designation in the same direction (n vs n′ in the C-terminal direction or n vs n′ in 

the N-terminal direction, where n < n′) the larger candidate CLNNs designation (n′) would be 

eliminated (e.g. if there were contacts between residues i, i+2 and i, i+4 then the i, i+4 would be 

ignored and the candidate CLNNs would be 2; similarly, if there were contacts between i, i+4 but 

there were also contacts between residues i+2 and i+3 then the i, i+4 contact would be ignored 

and the candidate CLNNs for residue i+2 and i+3 would be 1 and no value would be assigned to 

residue i or i+4 based on this rule). [Exception: if both 3 and 4 candidate CLNN designations were 

evident then both would be retained and the candidate CLNN temporarily would be 3/4.] Step 2. 

Larger span in opposite direction wins – If a residue were to have more than one type of 

candidate clNN designation in opposite directions (n vs n′) the smaller candidate CLNN 

designation would be eliminated (e.g., if there were contacts between residues i, i-2 and i, i+4 

then the i-2 contact would be ignored and the candidate clNN would be 4). [Exception: if both 3 

and 4 candidate CLNN designations were evident then both would be retained and the candidate 

clNN would be 3/4.] Step 3. clNN designations must be reciprocal – If a residue were to have a 

candidate CLNN of n but residue i+n did not have the reciprocal candidate CLNN of n then the 

candidate CLNN would be removed (e.g., if residue 34 were to have a contact with residue 38 

but because of one of the preceding rules residue 38 were to ignore the contact to residue 34 

then the candidate CLNN = 4 for residue 34 would be removed). Step 4. Unassigned and in an 

interval – If a residue had no candidate clNN designation but were to fall between residues that 

follow the reciprocal rule (Step #3, above) then that residue would be assigned the same 
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candidate CLNN designation as the reciprocal residues (e.g., if residue i and i+4 were to satisfy 

the above rules such that their candidate CLNN = 4 and residues i+2 and i+3 were not in contact 

with any residues then the candidate CLNN for residues i+2 and i+3 would be 4 also). Step 5. 

Unassigned and outside an interval – If a residue had no candidate CLNN designations after 

applying the above rules the candidate CLNN designation would be 1. Step 6. Blocks of 3/4 

become 4 – After applying the above rules, all candidate CLNN designations of 3/4 would be 

reassigned as 4. Step 7.  

 
σ-Index assignment. The above steps convert possible candidate CLNN designations to single 

candidate CLNN designations of 1, 2, 3, or 4 for each residue of the protein. These were 

designated the CLNN and used as the sigma assignments. The assignments match well the β-

strand/β-sheet and α-helix motifs assigned by other methods, and assign turns, loops, etc. as σ = 

1, 2, 3, or 4 as well. Block Check:  As a final check of the σ-index assignment, each σ-index 

assignment was verified as being part of a clNN block of at least n+1 members with the first 

residue in the block having an i+n contact and the last residue of the block having an i-n contact. 

[Exception: residues assigned n = 1 may be in blocks of only 1 member.] For example, a block of σ 

= 4 would be composed of at least 5 consecutive residues of σ = 4. In this way a string of σ = n 

may be isolated and short (n+1 residues only), long and uninterrupted (n+x, where x>>1), long 

but composed of multiple blocks, etc.  



 Parameter. A key concept explored in this model is that the interaction factor of residue i 

depends on a subset of the nearby residues termed the determining, or hidden symmetry, set 

(𝜃𝑑
𝑖 ). This set serves as a proxy for the hidden correlations that impact residue i, whatever the 

fine-structural details might be. A simple relationship defines this set for residue i of index σ. 

Specifically, i + nσi ∈ 𝜃𝑑
𝑖 , where n = -𝜉σ, ... -2, -1, 0, 1, 2, ... 𝜉σ, and 𝜉σ = ⌊𝜉/𝜎𝑖⌋ (Eq. 1). We term 𝜉 
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the propagation length. The propagation length corresponds to a type of sliding window. 𝜃𝑑
𝑖  is a 

comb filter of fixed band width. The width (𝜉 = 10), which will be discussed in greater detail 

elsewhere, matches the standard sliding window width of the Kyte-Doolittle hydropathic 

analysis. The normalization length aims to capture the critical role that residues proximal in 

sequence play in phase transition-like behavior.[24, 25, 77, 78] For example, the 𝜃𝑑
117 of T4 

lysozyme (for which σ = 4, 𝜉σ = 2, and n = -2, -1, 0, 1, 2) contains five residues (𝜃𝑑
117 = 109, 113, 

117, 121, 125). Mutation of any of these five residues will impact the interaction factor of 

residue 117, and hence the computed interaction energies attributable to residue 117. Not all 

elements of 𝜃𝑑
𝑖  will necessarily have the same σ-index in the observed protein structure as that 

assigned to i. This is attributable to the periodic relationship of the set, i.e., the translational 

symmetry of the blobs defined by σ as an extended, if hypothetical, motif. Returning to the 

example above, residue 117 adopts σ = 4. The elements of 𝜃𝑑
117 are independent of whether all 

the residues in this set, i.e., 109, 113, 121, and 125, adopt σ = 4 in the native fold. This can be 

considered as the model describing certain folding fluctuations as making important 

contributions. 

 

 
Equation 2 indicates that the free energy is relatable to the sum of the products of interaction 

factors of residues i with nearest neighbors j (𝜇𝑖
𝜎𝜇𝑗

𝜎). The sign indicates the favorability of low 

energy, ε is a medium parameter, λ is a scaling factor with units of energy, τi,j is an efficiency 

parameter of the i,j-interaction (e.g., polar/non-polar compatibility). For this study, ε = τ = 1. The 

value for λ (fit using Eq. 3) was estimated as 12.5 kcal/mol. This is the only parameter that was 

specifically fit to this protein; further studies will be required to determine the generality of this 

value for other proteins. 
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∆𝐺~ − 𝜀𝜆 ∑ 𝜏𝑖,𝑗

𝑛

𝑖,𝑗 (𝑖≠𝑗)

𝜇𝑖𝜇𝑗                               Eq. 2 

 
Nearest Neighbors. A sidechain-sidechain contact matrix was generated for each residue (i) 

using a 5.5 Å cut off. For residues with more than 6 neighbors (j), the closest 6 were selected. 

Surface residues with less than 6 neighbors are assigned phantom solvent as neighbors. See also 

Table S2.6. 

 
Per-residue Interaction Free Energy: Total vs. Partial. Eq. 1 gives the interaction factor μ, from 

which the per-residue contribution to interaction free energy may be estimated (via Eq. 2 or, for 

single point mutants, by Eq. 3). For example, given two residues in contact where 𝜇𝑖
 = 𝜇𝑗

  = 

0.170 (ε = τ = 1; λ = 12.5 kcal/mol) the estimated interaction energy would be -0.36 kcal/mol, 

with -0.18 kcal/mol attributable to each residue. For 𝜇𝑖
 = 𝜇𝑗

  = 0.150, the per-residue 

contribution would be -0.14 kcal/mol; and for 𝜇𝑖
 = 𝜇𝑗

  = 0.130, the per-residue contribution 

would be -0.11 kcal/mol. For a change in interaction free energy for 𝜇𝑖
  = 0.130 going to 𝜇𝑖

  = 

0.150 (e.g., because of mutation at another site, where the central residue (i) has six neighbors 

𝜇𝑖
  = 0.150), the approximate total interaction free energy change attributable to residue i would 

be: -0.11 kcal/mol (from: (-0.84 kcal/mol - (-0.73 kcal/mol)) = -0.11 kcal/mol).   

 

 
Equation 3 describes how the change in free energy upon mutation (∆∆G) was computed. As 

indicated above, λ is a scaling parameter with units of energy; both ε and τi,j are set to 1; T is the 

melting temperature in Kelvin of the wild type protein; ∆Tm is the change in melting 

temperature of the mutant. Since only the native state is analyzed, 𝑆𝑖
𝑏𝑏 and 𝑆𝑖

𝑠𝑐 are protein 

backbone (bb) and side chain (sc) estimates of entropy change from non-native to native state. 

Eq. 3 aims to capture the favorable interaction free energy between residues i and j as 𝜇𝑖𝜇𝑗  and 



45 
 

 
 

the penalties of folding for wild type and mutant as 𝑆𝑖
𝑏𝑏 and 𝑆𝑖

𝑠𝑐. Although formally based on 

pairwise nearest neighbor interactions, Eq. 3 includes implicit multibody effects captured in 𝜇𝑖
𝜎  

(Eq. 1), and in this way multibody effects dominate the interaction free energy. 

 

∆∆𝐺 = [−𝜆𝜀 ∑ τ𝑖,𝑗
𝑛
𝑖,𝑗 (𝑖≠𝑗) μ𝑖μ𝑗 − (𝑇 + ∆𝑇𝑚) ∑ (∆𝑆𝑖

𝑏𝑏 + ∆𝑆𝑖
𝑠𝑐)𝑛

𝑖 ]
𝑀𝑢𝑡𝑎𝑛𝑡

−

                                                     [−𝜆𝜀 ∑ τ𝑖,𝑗
𝑛
𝑖,𝑗 (𝑖≠𝑗) μ𝑖μ𝑗 − 𝑇 ∑ (∆𝑆𝑖

𝑏𝑏 + ∆𝑆𝑖
𝑠𝑐)𝑛

𝑖 ]
𝑊𝑖𝑙𝑑 𝑇𝑦𝑝𝑒

  

 Eq. 3 

 

Backbone and Sidechain Entropy Estimates. 𝑆𝑖
𝑏𝑏 and 𝑆𝑖

𝑠𝑐 are protein backbone (bb) and side 

chain (sc) estimates. Backbone and side chain entropy values were approximated using 

published estimates of native and non-native state ensemble confinement penalties.[59] 

Specifically, the 𝑆𝑖
𝑏𝑏 values used were based on σ-index by analogy to regular secondary motifs 

(cal/mol·K): for helix (σ = 4 and 3), 𝑆𝑖
𝑏𝑏 = 1.6 cal/mol·K; for strand (σ = 2), 𝑆𝑖

𝑏𝑏 = 1.1 cal/mol·K; for 

coil (σ = 1), 𝑆𝑖
𝑏𝑏 = 1.2 cal/mol·K; except for glycine (G: 𝑆𝑖

𝑏𝑏 = 1.3 cal/mol·K) and proline (P: 𝑆𝑖
𝑏𝑏 = 

0.4 cal/mol·K) and the residue, X, that precedes proline (X: 𝑆𝑖
𝑏𝑏 = 0.8 cal/mol·K. The 𝑆𝑖

𝑠𝑐 values 

used were based on the amino acid identity (cal/mol·K): A = 0; C = 0.14; D = 0.28; E = 0.42; F = 

0.28; G = 0; H = 0.28; I = 0.28; K = 0.56; L = 0.28; M = 0.42; N = 0.28; P = 0.14; Q = 0.42; R = 0.56; 

S = 0.14; T = 0.14; V = 0.14; W = 0.28; Y = 0.28. 
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Figure S2.1. Heat maps of T4L, myoglobin, ubiquitin, barnase, staphylococcal nuclease, 

ribonuclease A (2 renderings: residue side chains shown as lines in bottom image). Hydrogen 

atoms, ligands, and in some images foreground residues are omitted for clarity.  

A. Heat map of T4 Lysozyme, PDB ID: 3FA0 
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Figure S2.1 B. Heat map of myoglobin, PDB ID: 1MBN 
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Figure S2.1 C. Heat map of ubiquitin, PDB ID: 1D3Z 
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Figure S2.1. D. Heat map of barnase, PDB ID: 1BNI 
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Figure S2.1. E. Heat maps of staphylococcal nuclease, PDB ID: 2SNS 
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Figure S2.1. F. Heat maps of ribonuclease A, PDB ID: 1FSE  
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Figure S2.2. Comparison of ΔΔG values calculated with 𝜇𝑖

 , 𝜇𝑗
  contributions only (ΔΔGCalc|μiμj) with 

experimental values (ΔΔGExp). ΔΔGCalc|μiμj was calculated using Eq. 3 without the entropy and 

temperature containing terms using (c.f. Eq. 2). Linear regression yielded a best fit line (dashed) 

with the equation y= 1.18x + 0.67 and R2=0.65. The average unassigned error (white band) is 

0.97 kcal/mol. 
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Table S2.1. Calculated μ-factors for T4 Lysozyme sequence. The last four columns give the μ-

factor value for a given σ assignment. 

 

  
 

1 M 99 150 155 138 150

2 N 113 150 146 140 95

3 I 222 154 161 171 205

4 F 218 148 136 151 160

5 E 94 152 165 153 91

6 M 221 146 128 125 204

7 L 197 151 172 178 145

8 R 78 155 138 130 113

9 I 222 150 161 167 207

10 D 87 147 133 144 134

11 E 94 147 159 156 109

12 G 156 146 129 122 196

13 L 197 148 164 174 133

14 R 78 148 139 140 116

15 L 197 149 164 143 196

16 K 69 150 132 122 134

17 I 222 151 176 200 121

18 Y 222 149 126 123 197

19 K 69 155 178 148 128

20 D 87 152 133 138 142

21 T 135 155 172 200 187

22 E 94 160 143 137 137

23 G 156 162 181 159 157

24 Y 222 159 141 146 193

25 Y 222 159 169 200 128

26 T 135 154 143 148 155

27 I 222 157 162 134 179

28 G 156 151 146 152 136

29 I 222 150 160 179 138

30 G 156 152 136 124 176

31 H 152 155 168 159 142

32 L 197 156 142 158 148

33 L 197 155 162 184 179

34 T 135 152 143 137 138

35 K 69 146 157 142 140

36 S 100 145 141 133 160

37 P 121 143 144 158 135

38 S 100 135 135 149 133

39 L 197 136 138 115 139

40 N 113 136 141 116 135

41 A 157 136 132 145 133

42 A 157 132 133 162 139

43 K 69 128 129 116 124

44 S 100 130 138 92 121

45 E 94 129 121 128 146

46 L 197 133 140 184 121

47 D 87 140 137 124 134

48 K 69 145 151 103 165

49 A 157 146 138 152 136

50 I 222 140 148 209 139

51 G 156 139 128 112 147

52 R 78 136 146 94 132

53 N 113 136 128 138 130

Res #       AA          γ *     = 1    = 2      = 4      = 3 
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Table S2.1. Calculated μ-factors for T4 Lysozyme sequence. Continued.  

 

  

54 C 246 137 141 196 147

55 N 113 136 128 130 135

56 G 156 141 149 93 125

57 V 238 142 139 133 162

58 I 222 143 142 196 138

59 T 135 145 141 156 129

60 K 69 141 143 102 167

61 D 87 142 148 122 128

62 E 94 139 131 169 131

63 A 157 143 148 172 157

64 E 94 145 138 104 140

65 K 69 144 160 131 137

66 L 197 143 123 151 156

67 F 218 143 163 197 135

68 N 113 142 129 88 137

69 Q 105 141 160 115 154

70 D 87 138 116 151 131

71 V 238 140 158 210 129

72 D 87 143 124 90 160

73 A 157 142 156 120 141

74 A 157 144 133 164 126

75 V 238 143 148 192 166

76 R 78 145 136 111 138

77 G 156 147 163 120 133

78 I 222 148 138 149 171

79 L 197 146 152 196 138

80 R 78 146 137 132 129

81 N 113 151 160 116 171

82 A 157 144 137 151 154

83 K 69 147 153 188 108

84 L 197 151 151 132 181

85 K 69 148 145 116 165

86 P 121 140 143 168 97

87 V 238 148 146 156 158

88 Y 222 148 151 132 189

89 D 87 147 150 134 97

90 S 100 148 151 155 154

91 L 197 150 142 156 193

92 D 87 155 164 161 102

93 A 157 159 154 134 170

94 V 238 166 169 167 205

95 R 78 161 157 190 123

96 R 78 169 171 165 157

97 C 246 170 165 142 226

98 A 157 163 169 187 128

99 L 197 159 155 173 136

100 I 222 163 163 140 214

101 N 113 169 169 151 138

102 M 221 167 168 199 156

103 V 238 171 165 181 208

104 F 218 173 180 154 148

105 Q 105 169 163 151 164

106 M 221 170 169 195 193

107 G 156 171 165 193 153

108 E 94 169 179 161 168

109 T 135 165 150 122 186

110 G 156 166 185 203 141

111 V 238 165 150 169 171

112 A 157 165 175 161 183

113 G 156 159 149 139 140

Res #       AA          γ *     = 1    = 2      = 4      = 3 
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Table S2.1. Calculated μ-factors for T4 Lysozyme sequence. Continued.  

 

 
 
 

 

 

114 F 218 151 161 179 154

115 T 135 144 135 142 159

116 N 113 148 157 131 120

117 S 100 141 133 133 164

118 L 197 138 145 170 140

119 R 78 141 133 129 111

120 M 221 142 151 131 173

121 L 197 146 143 138 143

122 Q 105 140 147 170 123

123 Q 105 142 139 129 155

124 K 69 142 147 122 148

125 R 78 135 131 146 123

126 W 174 134 136 158 134

127 D 87 132 126 115 143

128 E 94 135 142 119 118

129 A 157 137 137 141 145

130 A 157 138 134 153 147

131 V 238 133 139 144 123

132 N 113 130 126 98 128

133 L 197 131 132 123 138

134 A 157 131 127 159 126

135 K 69 131 130 147 129

136 S 100 135 135 107 139

137 R 78 130 129 123 137

138 W 174 130 126 156 114

139 Y 222 137 143 144 138

140 N 113 140 138 103 157

141 Q 105 139 141 139 124

142 T 135 134 136 169 135

143 P 121 139 139 123 143

144 N 113 133 133 108 139

145 R 78 132 133 143 118

146 A 157 136 133 153 140

147 K 69 138 139 136 151

148 R 78 142 140 119 123

149 V 238 138 140 155 153

150 I 222 135 138 153 139

151 T 135 140 140 109 114

152 T 135 137 131 128 169

153 F 218 137 144 178 129

154 R 78 138 131 134 110

155 T 135 140 146 107 177

156 G 156 143 133 132 132

157 T 135 142 155 203 117

158 W 174 147 130 128 181

159 D 87 152 167 119 144

160 A 157 146 137 149 126

161 Y 222 139 155 192 167

162 K 38 140 123 97 125

* Gamma values for residues at the N- and C- termini are 

multiplied by 0.45 and 0.55 respectively to account for the 

additional ionic character at these positions.  
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List S2.1. MC-1 and MC-II T4 Lysozyme Single Point Mutation Sites 

[R96X mutations were not included in MC-I because the known extensive polar contacts that are 

compromised for many mutants (see Ref. 53) is inconsistent with the  = 1 approximation (Eq. 2 

and 3).] 

MC-I: 3, 11, 115, 117, 119, 132, 133 
MC-II: 86, 102, 105, 131, 157
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Table S2.2. Hottest (red colored) residues in T4 Lysozyme (ranked in order of highest to lowest μ 
values).  

 

 
  

Residue AA μx10^3

71 V 210

50 I 209

110 G 203

102 M 199

67 F 197

79 L 196

106 M 195

75 V 192

98 A 187

46 L 184

103 V 181

23 G 181

29 I 179

114 F 179

153 F 178

19 K 178

7 L 178

17 I 176

99 L 173

63 A 172

21 T 172

107 G 171

3 I 171

122 Q 170

118 L 170

62 E 169

111 V 169

142 T 169

86 P 168

159 D 167

9 I 167
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Table S2.3. Per-residue θd and θm sets for T4L (based on PDB ID 3FA0).  
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Table S2.3. Per-residue θd and θm sets for T4L sequence and the structure indicated observed in 
PDB ID: 3FA0. Continued 
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Table S2.3. Per-residue θd and θm sets for T4L sequence and the structure indicated observed in 
PDB ID: 3FA0. Continued 
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Table S2.4. A. Calculated µ values and color-coding gradient (show right) for T4L sequence and 

the structure indicated observed in PDB ID: 3FA0.  

 
 

 
 

Color Ranges Low High

Red 166

Salmon 151 165.9999

White 141 150.9999

Cyan 126 140.9999

Blue 125.9999
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Table S2.4. A. Calculated µ values and color-coding gradient. Continued.  

 
  
        Res                 AA          μx10^3   sigma index Res                AA          μx10^3    sigma index 
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Table S2.4. A. Calculated µ values and color-coding gradient. Continued. 

  
Residue            AA          μx10^3      sigma-index 
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Table S2.4. B. Calculated µ values and color-coding gradient. Continued. Pymol commands for 

residue color assignments from Table S2.4 (A) and used in Figures 2.4, 2.5 and 2.7. (For 

example, ‘color blue, resi 6+12+…+155’ etc.) 

 

Blue 6+12+18+30+39+40+43+44+47+48+60+61+64+68+69+72+73+76+77+81

+85+109+127+128+132+133+137+140+143+144+148+151+155 

Cyan 8+14+16+20+27+36+38+45+51+53+54+55+57+65+80+88+89+100+113+

116+117+119+120+121+123+134+135+136+141+147+152+154+158+16

1+162 

White 1+2+4+10+22+24+26+32+34+37+41+52+56+58+59+78+82+83+97+115

+124+125+129+131+139+145+156+160 

Salmon 5+11+13+15+25+28+31+33+35+42+49+66+70+74+84+87+90+91+92+93

+94+95+96+101+104+105+108+112+126+130+138+146+149+150+157 

Red 3+7+9+17+19+21+23+29+46+50+62+63+67+71+7

5+79+86+98+99+102+103+106+107+110+111+114

+118+122+142+153+159 
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Table S2.5. Calculated and experimental thermal stability data for MC-I mutants. Experimental 

data was obtained from cited reference 52. 

 

Mutant Calc ∆∆G (kcal/mol) Exp ∆∆G (kcal/mol) Exp ∆TMutant 

I3A 1.3 0.7 -1.8 

I3C (S-H) -0.09 1.2 -3.7 

I3D 2.2 3.2 -8.5 

I3E 1.8 2 -5.7 

I3F 0.15 1.1 -3 

I3G 1.8 2.1 -5.8 

I3L 0.34 -0.4 0.9 

I3M -0.07 0.9 -2.3 

I3P 3.4 2.8 -7.3 

I3S 2.0 1.7 -4.6 

I3T 1.6 2.3 -6 

I3V -0.04 0.4 -1.2 

I3W 0.94 2.8 -8 

I3Y 0.18 2.3 -5.9 

E11A -0.83 -1.1 2.6 

E11F -2.4 -1.7 4.3 

E11M -2.6 -1.6 4.1 

T115E 0.29 -0.3 0.7 

S117I -1.5 -1.7 4.2 

S117V -1.6 -2 5.1 

R119E -0.13 0.04 -0.1 

R119M -1.6 -0.1 0.3 

N132F -0.90 -1.3 3.3 

N132I -0.92 -1.2 3 

N132M -1.0 -1.5 3.6 

L133A 1.1 3.6 -10.55 

L133F -0.25 0.3 -0.8 

L133G 1.5 3.1 -11.7 
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Table S2.6. Contact arrays for MC-I mutant sites used in Figure 2.6. Each θm set residue (i) was 

limited to its six nearest side chain contacts (j). Residues with less than six contacts were 

assigned a solvent neighbor, W, with μ=110.  

 

 

 

 

 

 

 

 

 

 

 

θm (i ) 1 2 3 7 11 13

158 4 7 145 145 8

5 5 100 101 104 29

161 3 4 104 29 15

6 W 97 67 7 63

9 W 6 3 105 60

W W 71 71 30 28

Site 3

Contacts (j)

θm (i ) 1 2 3 7 11 13 15 17 19 21

158 4 7 145 145 8 13 25 25 142

5 5 100 101 104 29 63 43 23 22

161 3 4 104 29 15 58 33 W 20

6 W 97 67 7 63 60 39 W W

9 W 6 3 105 60 57 27 W W

W W 71 71 30 W W 56 W W

Contacts (j)

Site 11

θm (i ) 107 111 115 119 123 124

108 84 116 123 125 126

110 102 83 125 119 90

W 103 W W 120 91

W 106 W W W W

W 99 W W W W

W 118 W W W W

Contacts (j)

Site 115
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Table S2.6. Contact arrays for MC-I mutant sites used in Figure 6. Continued. 

 

 

 

 

 

 

 

 

θm (i ) 107 109 113 117 121 124 125

108 108 W 114 87 126 120

110 W W 132 91 90 123

W W W 133 126 91 119

W W W W 129 W 128

W W W W 153 W W

W W W W 118 W W

Site 117

Contacts (j)

θm (i ) 111 115 119 123 124 127

84 116 123 125 126 126

102 83 125 119 90 154

103 W W 120 91 W

106 W W W W W

99 W W W W W

118 W W W W W

Site 119

Contacts (j)

θm (i ) 124 128 132 134 135 136 140

126 120 117 139 131 114 141

90 125 120 150 132 138 139

91 W 116 W W 139 W

W W 135 W W W W

W W W W W W W

W W W W W W W

Site 132

Contacts (j)

θm (i ) 124 125 129 133 134 135 136 137 141

126 120 120 117 139 131 114 141 22

90 123 121 138 150 132 138 22 137

91 119 133 150 W W 139 W 142

W 128 W 153 W W W W 140

W W W 102 W W W W W

W W W 114 W W W W W

Contacts (j)

Site 133
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Introduction 

We applied the Hidden Symmetry model (HSyM) in a novel engineering strategy to enhance the 

binding of a specific peptide antigen to its specific monoclonal antibody (mAb). The p53 gene is 

the most commonly mutated in cancer. Many mutations compromise the critically important 

regulatory and tumor suppression roles that the p53 protein serves. Accumulation and 

overexpression of the mutant protein appears to lead to autoimmune targeting of p53. Clinical 

data show that detection of anti-p53 and related autoantibodies in human patients represents a 

modality of cancer detection that can precede other methods of diagnosis by approximately 2-5 

years[1, 2]. Typically these peptide segments that correspond to the antigenic portions of the 

protein are taken as is and used to analyze serum samples for the autoantibodies. The detection 

of autoantibodies directed against fragments of this and other key proteins represents a 

potentially powerful strategy for the early detection and characterization of cancer and other 

disease states [2, 3].  

We focused on the decameric segment of residues 46-55 from the p53 transactivation domain. 

This decamer is the immunodominant antigen and putative epitope of mAb Ab28. Several 

peptide constructs were designed to bind similarly or more tightly than the parent peptide. Each 

contained the full decapeptide epitope and differed only in the flanking regions. Binding 

enhancements of over 500-fold were observed by surface plasmon resonance measurements 

and confirmed in immunoassay simulations with immobilized peptide constructs and mAb in 

BSA, PBS solutions. Moreover, guided by our model, comparison of computed and experimental 
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data show excellent correlation between the predicted and observed binding (R2 > 0.75) and led 

us to reevaluate the putative epitope and to suggest that the epitope may well be the 

undecapeptide region of residues 45-55. 

Even though synthetic peptide antigens are the lynchpin to autoantibody detection strategies, 

there are many challenges to cancer detection by way of peptide-based autoantibody detection. 

Most of these challenges are traceable to the diversity of the patient population immune 

response, including the variability in immunogenicity of different regions of a given protein 

antigen and the specific antigenic regions of the protein antigen. Much progress has been made 

in characterizing the autoantibody targets, selecting representative peptide antigens, and 

combining peptide antigens into panels to be used to identify disease. Since the affinity of the 

detecting peptide epitopes for the polyclonal response poses a serious challenge, we focused on 

the problem of improving affinity of an antibody to a selected antigenic peptide.  

Model-Guided Peptide Engineering 

Our engineering strategy is based primarily on a method that we recently reported to estimate 

and rationalize per-residue interaction free energy contributions in proteins, and we sought to 

extend it to polypeptides and to engineer peptide-protein binding [4]. This coarse-grain model 

assumes small dynamical fluctuations and describes the interaction energy of each residue () 

as a simple function, . The molecular architecture of each amino acid residues is 

approximated as a blobs of a specific intrinsic interaction free energy (). Protein backbone 

conformation is coarsely approximated as one of four structural motifs and is dependent on 

whether a residue (i) makes a contact with the first, second, third, or fourth residue in the 

sequence (). The effective contribution to binding free energy is determined by averaging the 

intrinsic contributions of a specific subset of residues along the peptide backbone within a small 
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window (). The effective free energy contribution of each amino acid residue () is therefore a 

function of , , and , and the interaction free energy between residues i and j is approximated 

as the product of their interaction factors (G ~ -ij), with two residues of μ = 200 interacting 

constituting a free energy gain of approximately -0.5 kcal/mol. The free energy of binding of a 

ligand and its receptor, for example, would be approximated as the sum of these interactions, 

i.e., G ~ -ij. The elaborated equations are detailed in ref [4]. The model allows fast (< 1 sec), 

single-state calculations of proteins, protein-protein, and protein-peptide complexes with 

minimal computing capability. We benchmarked HSyM by accurately calculated the 

thermostability (ΔΔG) of 28 mutations of T4 lysozyme (R2 >  0.7) [4]. 

The design rationale is summarized in Figure 3.1. Since no structural information regarding the 

antibody or the antibody-antigen structure is available, all peptides in the epitope region were 

assigned  = 4. This assignment corresponds to that calculated for residues 46-55 in the WT p53 

transactivation domain, which adopts an approximate alpha helix conformation in this region 

(PDB ID: 2L14) [5]. It is noteworthy that within the framework of HSyM it is possible for both a 

series of loops and/or turns, as well as an extended alpha helix, to be assigned  = 4, though the 

network of intra-peptide contacts would be very different for each arrangement. Regardless of 

these details, for the purposes of this study, all peptides were assumed to bind with a peptide 

conformational assignment that matched the parent protein structure. 
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Figure 3.1: Peptide Design Methodology. (A) A 10mer linear epitope (residues 46-55) from the 

Transactivation Domain of human p53 (PDB: 2L14) was input into the model in both whole 

protein and isolated peptide forms to obtain per-residue interaction energy contribution (μ) 

values. Color codes for each residue are based on the computed μ values. Colors range from 

dark blue to white to dark red. Blue is below the average, which is white, and red is above the 

average. The darker the color the further the value for that residue is from the average. Flanking 

residues were added to the recapitulate or increase the whole protein μ profile to induce tighter 

antibody binding. (B) An example of modifying the later expanded 11mer epitope with flanking 

residues to alter its μ profile. The peptides are represented as α-helical wheels throughout this 

manuscript, due to the secondary structure of the 2L14 structure. 

The μ values calculated for the transactivation domain that corresponds to the 46-55 epitope 

compared to those calculated for the isolated 46-55 decapeptide are shown in Figure 3.2(A). 

The μ values of the segment in the WT protein are similar, though the μ values of the N-terminal 
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region are relatively high and the central isoleucine (I50) of the WT epitope has the highest 

value of this portion of the protein. The μ values for the isolated decapeptide are more 

polarized, with most residues having μ values lower than the WT epitope and with S46, I50, and 

F54 having μ values higher than the WT epitope Figure 3.2(B). The higher value residues would 

be expected to play a more important role in binding to the antibody paratope, and yet our 

calculations also indicate that the decapeptide has a lower average μ value profile compared to 

the WT epitope profile. These data suggested to us that careful design of additional flanking 

residues could increase the μ value profile of the decapeptide, even though these flanking 

regions are not part of the epitope. This highlights the contextual importance of the native 

whole protein sequence and structure in determining residue interaction energies, and 

consequently, antibody binding affinity. In contrast, adding one residue, Leu45, to the conserved 

epitope (Figure 3.2(C)) significantly increases the μ values of 2 additional residues in the 

peptide.  

Figure 3.2: Epitope Variations and μ Profiles. The epitope sequence (45-55) is represented as a 

helical wheel, with color-coding based on μ value (see Figure 3.1). The PEG linker and Click 
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Ready Region (black and brown boxes) of the peptide constructs are used for microbead 

functionalization (see Materials and Methods). (A) The μ profile for the wildtype, whole p53 

protein epitope. (B) The μ profile for the 10mer peptide construct, which lacks the L45 position. 

(C) The μ profile for the conserved 11mer epitope peptide construct. 

Within the framework of our model there is a theoretical maximum that a residue can 

contribute to binding free energy (i.e., a maximum μ value). Of course, flanking regions 

dominated by non-polar residues would render the construct prone to non-specific binding, 

aggregation, and low solubility. Our modeling indicated that the 46-55 decapeptide segment is a 

good candidate for engineered binding affinity. By adding flanking segments that would not be 

dominated by non-polar residues, our design aimed to tune the μ values of the decapeptide 

epitope to be near or slightly above that of the parent WT p53 transactivation domain, with the 

expectation that the binding affinity would be near or above the WT decapeptide. Accordingly, 

we prepared the immunodominant decapeptide and 18 various polypeptides that have up to 

four flanking residues on either or both N and C termini. The flanking sequences were either 

permutations of the WT p53 flanking residues (42-45, 56-59) or non-native residues. As shown 

below, we came to wonder whether the true epitope was the undecapeptide, residues 45-55 in 

the Transactivation domain, and prepared an additional five peptides that contained the 

undecapeptide epitope. These 24 peptide constructs are shown in Table 3.1.  

As shown in Figure 3.3, each residue of the epitope was assigned four or five contacts to the 

antibody, since helical peptide:Ab complexes tend to form four or five contacts per-residue (c.f. 

PDBIDs: 1MVU, 4HPO, 2AP2) [6, 7]. Four antibody contacts were assigned to those residues that 

were calculated to have μ values lower than the average of the set for the WT whole protein 

epitope. Five antibody contacts were assigned for those calculated μ values greater than the 
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average. It seems unlikely that all residues in a helix would make contacts with the antibody 

paratope. Although this approach could add noise to our estimated binding energies, and 

weaken the correlation of predicted and observed binding affinity, it avoids the risk of 

neglecting key residues.  

No. Sequence 
Average KD 

[M] 

Affinity 
Improvement 

Relative to 
10mer 

Experimental ΔG 
(kcal/mol) 

HSyM 
Calculated 

ΔG 
(kcal/mol)  

1 SPDDIEQWFT 3.27E-06 - -7.48 -10.08  

2 "…"-EDPG 2.10E-06 2 -7.75 -9.79  

3 "…"-PGED 3.52E-06 1 -7.44 -9.86  

4 "…"-RNLL 1.84E-06 2 -7.83 -10.28  

5 "..."-LNRL 1.41E-06 2 -7.98 -10.41  

6 "…"-LLNR 7.62E-07 4 -8.35 -10.47  

7 "…"-KNFV 1.69E-06 2 -7.87 -10.47  

8 "…"-NVFK 6.93E-07 5 -8.4 -10.6  

9 "…"-VFNK 7.40E-07 4 -8.36 -10.74  

10 VFNK-"…" 6.80E-08 48 -9.78 -11.44  

11 KFVN-"…" 7.20E-08 45 -9.74 -11.68  

12 NKVF-"…" 1.60E-08 204 -10.63 -12.06  

13 LMLD-"…" 3.53E-07 9 -8.8 -11.84  

14 LLDM-"…" 2.65E-08 124 -10.34 -12.16  

15 DLML-"…" 9.08E-09 360 -10.97 -12.2  

16 DLML-"…"-EDPG 1.39E-08 235 -10.72 -11.75  

17 KFVN-"…"-ANRA 1.01E-07 33 -9.55 -11.49  

18 ARNA-"…"-NVFK 7.01E-08 47 -9.76 -11.57  

19 RFKV-"…"-AANN 5.25E-08 62 -9.93 -11.77  

20 LSPDDIEQWFT 6.27E-09 522 -11.19 -11.65  

21 KKNN-LSPDDIEQWFT 8.69E-09 376 -11 -10.94  

22 DDLM-LSPDDIEQWFT 6.99E-09 468 -11.13 -11.95  

23 YYEY-LSPDDIEQWFT 7.68E-09 426 -11.07 -12.64  

24 
YYEY-LSPDDIEQWFT-

YYEE 1.27E-08 258 -10.77 -12.76 
 

Table 3.1: Peptide constructs and associated HSyM and experimental (SPR) antibody affinity 

values. Peptides 2-19 were based off of Peptide 1, with its sequence abbreviated (“…”) for these 

entries. The “HSyM Calculated ΔG” values are based on the expanded 11mer epitope. 
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The μj values assigned to the hypothetical paratope were based on the epitope residues (i) in 

the WT protein. The assignment was based on averaging the proximal μ values calculated in the 

protein context according to the equation: μj = (1/7)[(μi-7 + μi-4 + μi-3 + μi + μi+3 + μi+4 + μi+7)]. 

Mirroring the μ values in this way places emphasis on the WT antigen and allows an 

approximation of the interaction energy in terms of G ~ -ij, for each residue of the epitope, i, 

and paratope contact j. This rationale is consistent with the view that Ab binding is a balance of 

maximizing binding affinity and selectivity. Since we alter only the non-epitope region, the 

binding affinity, Gint, was approximated using the following equation: 

∆𝐺𝐵𝑖𝑛𝑑𝑖𝑛𝑔,𝐶𝑎𝑙𝑐 = −𝜆 ∑ 𝜇𝑖𝜇𝐴𝑏,𝑗

𝑛

𝑖,𝑗=1

 

where μi refers to the interaction factors of the peptide epitope residues, 𝜇𝐴𝑏,𝑗 is the 

hypothetical antibody μ values, n is the length of the epitope, and λ is a scaling factor, previously 

determined to be 1.25E-5 kcal/mol [4]. Entropy contributions to binding to the constant region 

of the epitope are take to be approximately constant and are ignored. These model calculated 

binding energies were fitted against energies that were derived from the experimental SPR data 

using the equation:  

∆𝐺𝐵𝑖𝑛𝑑𝑖𝑛𝑔,𝐸𝑥𝑝 = 𝑅𝑇𝑙𝑛(𝐾𝐷) 

where R is the ideal gas constant, T is the temperature (298 K), and KD is the experimentally 

determined disassociation constant. 
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Figure 3.3: Proposed Antibody-Peptide Binding Scheme Used in Affinity Calculations. The 

hypothetical antibody μ values are shown on the outside of the semicircle and were determined 

by averaging the μ values of the WT full protein epitope’s (shown in helical wheel format) helical 

neighbors. Residues were assigned antibody contacts based on the WT epitope’s μ values, with 

residues with higher-than-average μ values (in white, off-white, and salmon) assigned 5 and the 

rest assigned 4. 
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Materials and Methods 

Peptide Constructs 
Soluble peptide constructs were prepared and analyzed by SPR. These constructs were also 

immobilized on beads for limit of detection studies (Table 3.2). Soluble Peptide Constructs: 

Figure 3.4 depicts the construct design.  The initial 20 peptides contained a 10mer conserved 

epitope corresponding to residues 46-55 of wildtype human p53, the epitope specified for the 

monoclonal antibody used in all experiments (Abcam, ab28); the later 5 peptides would have an 

expanded 11mer epitope (residues 45-55). Peptide constructs contained a PEG4 spacer and a 

terminal -azido lysine and were synthesized by Genscript (Piscataway, NJ; >75% purity). With 

the exception of the simple 10-mer epitope peptide (Peptide 1) and the three 14-mers, Peptides 

10-12, which had the PEG4 and an acetylated azido-lysine on the N-terminus, all peptides were 

N-acetylated, had a C-terminus tethered with PEG4 linker terminating in the Click-ready azido-

lysine unit. Soluble peptide constructs were used as is for SPR analysis. Immobilized Peptide 

Constructs: Peptides were conjugated at 20 μM to 6.5 μm carboxylated magnetic microbeads 

(Luminex) that had been amidated with dibenzocyclooctyne (DBCO)-PEG4-amine linker. Click 

coupling of the engineered soluble peptide construct to the functionalized bead gave the 

immobilized peptide construct ready for immunoassay analysis.  
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Figure 3.4: Peptide Construct Design. All but Peptides 1, 10, 11, and 12 followed the construct 

design shown in the top box; for these exception peptides, the PEG linker and Click Ready Unit 

were located on the N-terminus instead of the C. 

 

SPR and LOD Assays 
Surface plasmon resonance (SPR) experiments were conducted with a Biacore T200 system 

(Cytiva) at a working temperature of 25°C. Monoclonal anti-p53 antibody (ab28, Abcam) specific 

to the putative conserved epitope was conjugated to a CM5 sensor chip at a 2500 RU target 

response level with amine coupling. Peptides were prepared at varying concentrations in a 

running buffer of 1.02x PBS with 2% DMSO and 0.05% Tween 20; 5 M NaCl was used as the 

regeneration buffer. Three replicate measurements were taken for each peptide. 

The Biacore’s evaluation software was used to determine each peptide’s disassociation constant 

(KD) using either kinetic 1:1 binding model fitting to determine kd and ka or steady state curve 

fitting (fitting the SPR response at equilibrium vs the peptide concentration). Multiple best fit KD 

measurements for each peptide were averaged to obtain the final affinity data. The highest 

affinity peptides required kinetic model curve fitting of their sensograms. This is likely due to 

peptide aggregation. See Supplementary Information or sensograms and fitting curves for each 

peptide. The highest concentration sensograms were removed from the analysis to improve the 



85 
 

 
 

fit (see Supplementary Information). In some cases, an imperfect fit of a 1:1 binding model was 

observed. Limit of detection (LOD) assays were performed as follows: Anti-p53 monoclonal 

antibody (ab28, Abcam) standards were prepared at concentrations ranging from 0.1 to 100 

ng/ml in a 1:3 dilution of fetal bovine sera and PBS and plated in triplicate with the peptide-

functionalized microbeads. A BioRad multiplex immunoassay kit and a biotinylated anti-mouse 

IgG detection antibody (Abcam) were used to perform the assay, and a Bio-Plex 200 system was 

used for fluorescent signal reading. The limit of detection (LOD) of each peptide was determined 

by multiplying the standard deviation of the blank’s signal by three and dividing by the slope of 

the standard curve, with 3 slope values determined and averaged.  

Clinical Sera Assays 
Ten clinical sera samples obtained from our collaborators—consisting of 5 samples from 

patients with colorectal cancer and 5 from healthy controls—were diluted 100x in PBS and 

tested via Bio-Plex assays to assess the diagnostic capability of the peptide antigens to detect 

cancer autoantibodies. Normal pooled human sera (Innovative Research, Novi, MI) was also 

diluted 100x in PBS and used as a negative control. A positive result was defined for each 

peptide as a fluorescent signal greater than the negative control’s signal plus three times its 

standard deviation. Results for these assays are found in the Supplementary Information. 

Results and Discussion 

As shown in Table 3.1, the initial set of peptides designed, peptides 1-19, range from slightly 

lower to much greater binding free energy than the putative decapeptide epitope. A 20th initially 

designed peptide, a C-terminal modified 14mer (C-flanking sequence: PEDG) proved to have 

very high nonspecific binding in the SPR measurements thus making it impossible to obtain an 

accurate affinity value. 



86 
 

 
 

Figure 3.5 (C) shows the correlation of calculated and experimental binding energy for those 

peptides with only C-terminal flanking regions is good (R2 = 0.72).  Interestingly, even though the 

design proved effective at generating peptides with much improved binding energy, there was 

no correlation between the calculated and experimental binding energy for those peptides with 

only N-terminal flanking regions (R2 = 0.02). The combined fit for the entire set was poor (R2 = 

0.24). Pleasingly, several peptides were designed to have superior binding, as observed, and 

several had over 100-fold improvement over the decapeptide alone.  

 

Figure 3.5: Comparison of Model Calculated and Experimental Peptide Affinities. (A) Linear 

regression fit for all 24 peptides, with model affinity calculations based off of the 11mer 

(residues 45-55) conserved epitope. (B) Linear regression fit for all 24 peptides, with model 

affinity calculations based off of the 10mer epitope (residues 46-55) and no residues in position 
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45 included in the calculations. (C) Linear regression fit for the 8 peptides that only had C-

terminal flanking sequences added (does not include the unmodified peptides 1 and 20). (D) 

Linear regression fit for the 10 peptides with only N-terminal flanking sequences (includes 

peptide 20). 

The lack of correlation for the tight binding peptides and the good correlation of the weaker 

binding peptides prompted us to exam the data in more detail and to design peptides 20-24. 

The binding data show no correlation with calculated peptide helicity (see Supporting 

Information for details). Alternative modes of peptide:antibody binding other than that 

depicted in Figure 3.3 were studied in detail. Partial binding modes, consistent with a helix 

setting on a protein surface, were unsuccessful at improving the correlation. Interestingly, while 

these alternatives did not improve the correlation certain combinations could compromise the 

correlation (see Supporting Information for details). Remarkably, however, there was a 

significant improvement in the correlation when the decapeptide epitope, which spans residues 

46-55, was expanded to the undecapeptide epitope, i.e., when residue 45 was included in the 

set of 46-55. The correlation for the peptides with C-terminal flanking residues remained 

unchanged, of course, though if the undecapeptide was included in the correlation the fit 

improved (R2 = 0.86). Figure 3.5 (A) shows the calculated and the experimentally determined 

binding energies for all 24 peptides, which indicates an excellent correlation between computed 

and observed binding energy (R2 = 0.76). This improvement was also noted when the expanded 

epitope (residues 45-55) was evaluated for alternative modes of peptide:antibody binding (c.f. 

Figure 3.3). Equally good correlations were observed for partial binding modes consistent with a 

helix setting on a protein surface, provided residue 45 was included in the interface. Alternative 

binding modes that lacked this residue abolished the correlation in binding (see Supporting 

Information for details). 
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Each of five additional peptides included L45, and indeed, were found to have enhanced 

affinities for the antibody. And although the unmodified undecapeptide performed best, the 

affinity differences between these five peptides are insignificant. There is an effective ceiling 

evident from the experimental data for the peptides with the highest affinities. To significantly 

increase the binding affinity of the undecapeptide our model indicates that the flanking regions 

would have to be non-polar amino acid residues. Practically, however, flanking regions 

dominated by non-polar residues would be expected to attenuate solubility, increase the 

likelihood of aggregation, and promote non-specific binding. This appears to be the case for the 

constructs with the most non-polar flanking regions (peptides 16, 22,23 24). For example, 

Peptide 24 has the highest overall μ profile and calculated affinity but has a somewhat lower 

experimental binding affinity. This is likely due to aggregation, as suggested by the non-one-to-

one SPR binding profile of higher peptide concentrations for this and similar peptides.  

The HSyM model predicted that the five additional peptides would have very high but similar 

affinities, assuming that the peptides remained aggregation-free, maintained specific binding, 

and had sufficient solubility. Surprisingly, Peptide 21 bound much more tightly than expected - 

equivalent to the other tightest binding peptides - and significantly reduced the binding energy 

correlation. Indeed, ignoring this peptide the correlation is improved (R2 = 0.85, compared to R2 

= 0.76). 

The monoclonal antibody immunoassays corroborated the SPR measurements. The peptides 

with the lowest and highest affinities determined by SPR had the highest and lowest limits of 

detection (LOD), respectively. Table 3.2 shows the LODs for select peptides. The data are 

consistent with the SPR results: the engineered peptides had well over 100-fold LOD 

improvement over the dodecapeptide. Peptides that housed a non-polar residue in position 45 

had the lowest LODs. Fully functionalized beads showed slow deterioration in function over the 
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course of several months, as evinced by steadily increasing LODs. Evidently, this bead-peptide 

construct combination slowly degrades upon storage under these conditions. 

These data suggest that the correct epitope for this antibody should be taken to be the 

undecapeptide, residues 45-55 in the p53 Transactivation domain. It should be added that the 

model indicated that the N-terminal region (residues 43-46) can make a significant contribution 

to binding free energy. This suggests that the model may be useful for identifying potentially 

important portions of epitopes used to detect autoantibodies and predict where an epitope 

sequence might be better terminated, and optimized. This sort of strategy may improve 

detection of relevant polyclonal autoantibodies. The HSyM model is based on deep learning 

information and represents a method that is complementary to modern epitope predictors that 

use machine-learning methods [8, 9]. 

Peptide Sequence Type 
Antibody LOD 

(ng/mL) Std Dev 

1 SPDDIEQWFT Native 2.52 0.8 

10 KFVN-10mer Optimized 0.30 0.18 

11 VFNK-10mer Optimized 0.31 0.21 

12 NKVF-10mer Optimized 0.04 0.02 

16 
DLM-11mer-

EDPG Native 0.06 0.02 

20 LSPDDIEQWFT Native 0.01 
6.00E-

04 

21 KKNN-11mer (De)Optimized 0.009 0.003 

22 DDLM-11mer Native 0.02 0.02 

23 YYEY-11mer Optimized 0.02 0.02 
Table 3.2: Immunoassay Limits of Detection for Selected Peptides 

These modifications, in addition to a more strenuous determination of which WT residues are 

likely to make up the conserved epitope, are expected to improve the model’s ability to design 

high affinity peptides going forward. To fully demonstrate the applicability of the model for 

improving peptide-based diagnostic assays, a case-control study focusing on the detection of 
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p53 autoantibodies in colorectal cancer sera samples is planned. The model will be used to 

expand and enhance additional p53 linear epitopes, and the modified peptide assay will be 

compared to its WT peptide and whole protein counterparts. The design of a panel of 

engineered peptides for this and other studies is outlined below: 

1. Select 4-5 known, immunodominant linear epitopes of approximately ten residues. 

2. Use the HSyM model to evaluate the WT proteins. Examine the flanking residues that 

appear in the WT sequence of each putative epitope. Flanking residues with high 

gamma values, and hence would have the potential to remotely impact binding should 

be considered for inclusion in an expanded antigen/epitope. 

3. Engineer flanking residues to balance polar and non-polar residues and to match the μ-

profile of the peptide construct to, or above, the WT values. The number and location of 

flanking residues will likely be dependent on the coarse conformation of the antigenic 

peptide.      

Conclusion 

Engineered peptides, proteins, and small molecules have many biomedical applications, 

including as vaccines [10, 11], therapeutics [12, 13], scaffolds for tissue engineering [14, 15], 

drug-delivery carrier and targeting systems [14, 16], as well as in clinical and investigatory 

immunoassays [1, 17]. Peptides offer several potential advantages over proteins, such as greater 

long-term stability, ease of synthesis, as well as potentially better intracellular access, greater 

target specificity and selectivity, and lower risk of toxicity or side effects [12, 18]. Most 

applications depend on the peptide binding to a protein target. Phage display and microarray 

libraries and other high-throughput screening methods, [19, 20] as well as in silico docking [19, 
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21, 22] and all-atom simulations [23, 24], are powerful approaches by which peptides with 

improved properties can be designed [19, 25]. 

The coarse-grained HSyM protein energetics model was able to accurately predict the relative 

binding affinities of a suite of 24 peptides based on a single linear p53 epitope for a monoclonal 

antibody with good reliability without any structural data on the peptide, antibody, or 

peptide:antibody complex (R2 > 0.75). This method is computationally inexpensive and fast and 

stands in contrast to current in silico methods for peptide engineering, which rely on 

computationally expensive all-atom molecular dynamics and docking simulations or machine 

learning methods. Furthermore, the major peptide engineering premise of this work—the 

hypothesis that adding flanking residues can affect the binding interaction energies of interior 

residues to remotely control binding affinity — has been difficult to realize with other methods. 

While some studies have added flanking sequences to peptides to increase their affinity for a 

target, these results were largely attributed to secondary interactions between the flanking 

residues and the target [26, 27] and not to the increased binding affinity of the conserved 

residues.  

Our modeling and experimental affinity data also revealed surprising information about this 

particular peptide-antibody system which may have implications for other intermolecular 

systems. Contrary to the epitope information provided by the monoclonal antibody vendor, our 

SPR data indicated that Leu45 should be included in the conserved epitope sequence. Peptides 

with Leu, Met, or Phe in this position had the highest affinities. When Leu45 was included as a 

conserved epitope residue in HSyM’s calculations, the model’s accuracy significantly increased, 

further corroborating this finding, and strongly suggest that the observed effects are not well-

attributed to non-specific binding. We also noted that evaluation of the WT p53 sequence 

indicated that Leu45 had the potential to contribute significantly to binding. While the exact 
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epitope cannot be assigned with certainty, we strongly suspect this residue is part of the epitope 

for this mAb. Along these lines, we also note that the data suggest that the binding epitope may 

consist of only five consecutive residues, perhaps representing a single helical turn. Specifically, 

when L45-D49 is assigned contacts to a putative antibody paratope an excellent fit of the 

experimental data is evident (R2 = 0.77), since these five residues appear to be most responsible 

for the antibody binding activity. Even ignoring the likelihood of L45 being part of the epitope, 

model-guided remote-controlled binding was realized, and several peptides with >100-fold 

increase in binding and LOD improvements were successfully designed, prepared, and 

characterized.   

We engineered a peptide derived from a single, immunodominant epitope of the tumor 

suppressor protein p53 and a corresponding monoclonal antibody specific to that epitope. This 

system was chosen to correspond to the observed presence of autoantibodies specific to p53 in 

the sera of patients with a wide variety of cancers [28, 29]. Twenty-four peptide variants of the 

flanking residues around the conserved epitope we prepared and evaluated. The binding 

affinities were measured using surface plasmon resonance and confirmed by limit of detection 

immunoassays. Compared to the putative decapeptide epitope, several variants had 

significantly improved binding affinities and limit of detection (enhanced by factors of >300). 

The correlation of calculated and observed binding energies was poor for peptides with 

segments that flanked the N-terminus of the putative epitope (R2 = 0.02), whereas excellent 

correlations were noted for peptides with segments that flanked the C-terminus of the putative 

region epitope (R2 = 0.72). Importantly, when we considered the epitope to span the sequence 

45-55, instead of 46-55, our calculations for all 24 peptides of the study correlated well with 

experiment (R2 > 0.75). These findings are remarkable since the study was guided by the folded 

parent protein alone – no structural data on the antibody-peptide complex structure are 
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available. Taken together, this study suggests that the HSyM model complements powerful 

computational and experimental tools and is a useful engineering tool for visualizing and 

approximating interaction energy.  
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Supplementary Information 

 

S3.1 Error Analysis 

It is important to consider the limitations and constraints placed on the model in order to 

determine ways to improve it. First and foremost, having sequence and structural data of the 

antibody paratope or especially the antibody-peptide complex would certainly improve the 

model’s accuracy, as the number and strength of the antibody-antigen contacts could be better 

estimated. Most peptide design and affinity prediction tools, such as the PepSpec algorithm and 

docking methods, require at least a target structure or homology model [19, 30]. The fact that 

the HSyM model was still able to provide relatively accurate affinity predictions even without 

this information is encouraging for future studies. Furthermore, our model subsumes enthalpic 

and entropic contributions from the solvent, even though these factors have proven critical for 

influencing the affinity of protein-ligand interactions [31]. Much like our previous work with T4 

lysozyme [4], adding entropy terms (especially those that account for solvent displacement) to 

the model’s calculations should improve its correlation with experimental data. Peptide 

solubility must also be taken into account; while it is tempting to design very “hot” peptides 

with hydrophobic, high μ value flanking sequences, this will tend to cause aggregation that will 

reduce apparent affinity. The majority (17 out of 24) of our designed peptides had poor aqueous 

solubility and had to first be dissolved in DMSO prior to SPR testing or coupling to microbeads 

for immunoassays. Self-aggregation might explain why some “hot” peptides, such as the 19mer, 

performed worse than expected.  Finally, based on a limited number of structures of the p53 

epitope, we assumed that our peptides maintained a helical structure upon binding to the 

antibody. This of course may not be the case, or more likely, the terminal regions of the 
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peptides may assume flexible conformations. Adding a term to estimate total peptide helicity or 

assigning an extended structure to the flanking residues could address these issues. 

S3.2 Clinical Cancer Sera Immunoassays 

For the sera sample immunoassays, 10 commercially derived sera samples were obtained from 

our collaborators and tested, with 5 derived from patients with colorectal cancer and 5 from 

cancer-negative subjects. These were compared to a negative control of pooled normal human 

sera. Using a positivity cutoff of the negative control’s signal plus three times its standard 

deviation, the sensitivity and specificity of each peptide was calculated and is displayed in Table 

S3.1. Of interest is the observation that only the two peptides with a native WT N-flanking 

sequence (N Native 15mer and Native 18mer) were able to give positive results for Sample B, 

but also gave false positive results for Sample G, lowering their specificity. This suggests that for 

some polyclonal autoantibodies the full epitope might include the other N-flanking residues in 

addition to Leu45. These results should be regarded as a proof-of-concept, as a full case-control 

study would require not only a larger sample size, but additional optimized peptides 

corresponding to other p53 epitopes in order to recapitulate the polyclonal autoantibody 

response. 

 

Table S3.1: Results of Cancer Clinical Sera Immunoassays for Selected Peptides  
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Figure S3.1: Alternate Peptide Surface Affinity Correlations 

For the following figures only the epitope residues enclosed in the red box (in the case of L45 

this includes any residue at that position) were used to determine the model-calculated ΔG of 

binding. The number of antibody contacts per residue and antibody μ values are assigned 

according to Figure 3.3. 

 

Figure S3.1A: 11mer: All Residues 

 

Figure S3.1B: 10mer: All Residues 
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Figure S3.1C: Right Surface Plots 

 

Figure S3.1D: Top Surface Plots 
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Figure S3.1E: Bottom Surface Plots 

 

Figure S3.1F: Left Surface Plots 
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Figure S3.2: Single Residue Peptide Affinity Correlations 

In this method only one residue in the epitope is assigned antibody contacts (see Figure 3.3) and 

used to determine the model-calculated ΔG. For the L45 residue, only the 15 peptides with an 

amino acid in that position were used to obtain the coefficient of determination, slope, and y-

intercept of the regression line comparing the model and experimental affinity values. 
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Figure S3.3: Helix Turn Method 

In the helix-turn method, only five consecutive residues (constituting a single helical turn, as in 

the residues colored red in the left Pymol image) were used to determine the model-calculated 

ΔG of binding. For the N-flanking residues, only those peptides with amino acids at all of those 

positions were used to obtain the coefficient of determination, slope, and y-intercept of the 

regression line comparing the model and experimental affinity values. 
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Table S3.2: Excluded Residue Method 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This method excludes one residue from the 11mer epitope when determining the model-

calculated model-calculated ΔG of binding, with hypothetical antibody contacts being assigned 

to all other residues as in Figure 4. The results for the L45 residue include peptides that do not 

have any residue at this position; if these peptides are excluded the R2, slope, and y-intercept of 

the linear regression line change to 0.01, 0.18, and -8.43, respectively. 

 

 

Excluded 
Residue 

R
2
 Slope Y-Intercept 

L45 0.24 1.69 8.31 

S46 0.79 1.33 3.55 

P47 0.76 1.37 4.80 

D48 0.76 1.48 5.76 

D49 0.74 1.41 5.09 

I50 0.78 1.33 3.67 

E51 0.75 1.33 4.15 

Q52 0.77 1.46 5.83 

W53 0.71 1.36 4.60 

F54 0.74 1.33 3.92 

T55 0.75 1.30 4.19 
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Figure S3.4: Peptide Helicity Affinity Correlations Using Web-Based Secondary Structure 
Predictors 

In the following figures various metrics of peptide helicity obtained from web-based 

secondary structure predictors fitted against the SPR peptide affinity data to determine 

if the peptide’s affinity for the monoclonal antibody is correlated with their helicity.  

Figure S3.4A: PEP2D 

Site: http://crdd.osdd.net/raghava/pep2d/ [32] 

Example Output: 

 

 

 

 

 
 

Secondary structure of peptide (COpt3), PDF format. 

 

Sequence   : SPDDIEQWFTLLNR 

Structure  : CCCHHHHHHHHHCC 

Helix Prob : 00247866543300 

Sheet Prob : 00000000000000 

Coil  Prob : 87420001012359 

 

The average residue helix probability for 

each peptide is calculated from the 11mer 

epitope or 10mer for peptides without the 

L45 position.  

 

The helix percentage is calculated 

based on the number of residues 

within the epitope assigned an “H” 

configuration. 

http://crdd.osdd.net/raghava/pep2d/
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Figure S3.4B: Agadir 

Site: http://agadir.crg.es/protected/academic/calculation3.jsp [33-35] 

Example Output:  

 

  

The average residue helix probability for each 

peptide is calculated from the 11mer epitope or 

10mer for peptides without the L45 position.  
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Used the outputted “percentage 

helix” value for each peptide. 

 

Input Parameters: 

 Acetylated N-terminus 

(where applicable) 

 Amidated C-terminus 

(where applicable) 

 pH = 7.0 

 Temperature = 298.15 K 

 Ionic Strength = 0.1 

http://agadir.crg.es/protected/academic/calculation3.jsp
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Figure S3.4C: PEP-FOLD 3 

Site: https://bioserv.rpbs.univ-paris-diderot.fr/services/PEP-FOLD3/ [36-38] 

Example Output:  

 

 

  

  

The residue helical probabilities of S46-Q52 (these were 

the only residues consistently displayed for all peptides) 

were extracted with a graph-reading program and 

averaged. 

https://bioserv.rpbs.univ-paris-diderot.fr/services/PEP-FOLD3/
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Figure S3.4D: PSSPred 

Site: https://zhanglab.ccmb.med.umich.edu/PSSpred/ [39] 

Example Output: 

 

 

 

  

The helix percentage was calculated based 

on the number of residues within the 

epitope assigned an “H” config 

The average residue helix probability for 

each peptide is calculated from the 11mer 

epitope or 10mer for peptides without the 

L45 position.  

https://zhanglab.ccmb.med.umich.edu/PSSpred/
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Figure S3.5: Peptide SPR Sensograms 

Steady State and Kinetic curve fitting was done using the Biacore T200 Evaluation software and 

a 1:1 binding model. For Kinetic analysis only the four lowest concentration peptide sensograms 

were used to minimize fitting inaccuracies due to suspected peptide aggregation. 

 

Peptide 1 
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Peptide 1 

 

 

 

Peptide 2  
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Cycle: 29  C Native 1  1111 nM

Cycle: 30  C Native 1  3333 nM

Cycle: 31  C Native 1  10000 nM

KD (M) Rmax (RU) offset (RU) Chi² (RU²)

1.89E-06 19.48 1.037 0.756
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Base 2/Anti-p53 (30 ug/m l)

Cycle: 17  Base 2  19.6 nM

Cycle: 18  Base 2  58.8 nM

Cycle: 19  Base 2  176.4 nM

Cycle: 20  Base 2  529.1 nM

Cycle: 21  Base 2  529.1 nM

Cycle: 22  Base 2  1587.3 nM

Cycle: 23  Base 2  4761.9 nM

KD (M) Rmax (RU) offset (RU) Chi² (RU²)

8.14E-07 17.83 2.47 0.777
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C Native  1/anti-p53 mAb

Cycle: 17  C Native 1  1111 nM

Cycle: 18  C Native 1  41 nM

Cycle: 19  C Native 1  123 nM

Cycle: 20  C Native 1  370 nM

Cycle: 21  C Native 1  1111 nM

Cycle: 22  C Native 1  3333 nM

Cycle: 23  C Native 1  10000 nM

KD (M) Rmax (RU) offset (RU) Chi² (RU²)

2.13E-06 16.89 1.69 0.495
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C Native  1/anti-p53 mAb

Cycle: 9  C Native 1  1111 nM

Cycle: 10  C Native 1  41 nM

Cycle: 11  C Native 1  123 nM

Cycle: 12  C Native 1  370 nM

Cycle: 13  C Native 1  1111 nM

Cycle: 14  C Native 1  3333 nM

Cycle: 15  C Native 1  10000 nM

KD (M) Rmax (RU) offset (RU) Chi² (RU²)

2.28E-06 19.31 0.4631 0.61
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C Native  3/anti-p53 mAb

Cycle: 9  C Native 3  1111 nM

Cycle: 10  C Native 3  41 nM

Cycle: 11  C Native 3  123 nM

Cycle: 12  C Native 3  370 nM

Cycle: 13  C Native 3  1111 nM

Cycle: 14  C Native 3  3333 nM

Cycle: 15  C Native 3  10000 nM

KD (M) Rmax (RU) offset (RU) Chi² (RU²)

4.81E-06 13.87 0.7682 0.772
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C Nat 3/Anti-p53 (30 ug/m l)

Cycle: 25  C Nat 3  35.6 nM

Cycle: 26  C Nat 3  106.9 nM

Cycle: 27  C Nat 3  320.7 nM

Cycle: 28  C Nat 3  962 nM

Cycle: 29  C Nat 3  962 nM

Cycle: 30  C Nat 3  2886 nM

Cycle: 31  C Nat 3  8658 nM

KD (M) Rmax (RU) offset (RU) Chi² (RU²)

2.03E-06 15.8 1.017 0.346
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Peptide 4  
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C Native  3/anti-p53 mAb

Cycle: 9  C Native 3  1111 nM

Cycle: 10  C Native 3  41 nM

Cycle: 11  C Native 3  123 nM

Cycle: 12  C Native 3  370 nM

Cycle: 13  C Native 3  1111 nM

Cycle: 14  C Native 3  3333 nM

Cycle: 15  C Native 3  10000 nM

KD (M) Rmax (RU) offset (RU) Chi² (RU²)

3.74E-06 12.11 0.353 0.133
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C Opt 1/anti-p53 mAb

Cycle: 33  C Opt 1  667 nM

Cycle: 34  C Opt 1  25 nM

Cycle: 35  C Opt 1  74 nM

Cycle: 36  C Opt 1  222 nM

Cycle: 37  C Opt 1  667 nM

Cycle: 38  C Opt 1  2000 nM

Cycle: 39  C Opt 1  6000 nM

KD (M) Rmax (RU) offset (RU) Chi² (RU²)

1.48E-06 19.53 0.4988 0.201
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C Opt 1/anti-p53 mAb

Cycle: 25  C Opt 1  667 nM

Cycle: 26  C Opt 1  25 nM

Cycle: 27  C Opt 1  74 nM

Cycle: 28  C Opt 1  222 nM

Cycle: 29  C Opt 1  667 nM

Cycle: 30  C Opt 1  2000 nM

Cycle: 31  C Opt 1  6000 nM

KD (M) Rmax (RU) offset (RU) Chi² (RU²)

1.94E-06 20.06 1.673 0.674
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C Opt 1/anti-p53 mAb

Cycle: 17  C Opt 1  667 nM

Cycle: 18  C Opt 1  25 nM

Cycle: 19  C Opt 1  74 nM

Cycle: 20  C Opt 1  222 nM

Cycle: 21  C Opt 1  667 nM

Cycle: 22  C Opt 1  2000 nM

Cycle: 23  C Opt 1  6000 nM

KD (M) Rmax (RU) offset (RU) Chi² (RU²)

2.08E-06 18.32 0.8112 0.266
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C Opt 2/anti-p53 mAb

Cycle: 34  C Opt 2  222 nM

Cycle: 35  C Opt 2  8 nM

Cycle: 36  C Opt 2  25 nM

Cycle: 37  C Opt 2  74 nM

Cycle: 38  C Opt 2  222 nM

Cycle: 39  C Opt 2  667 nM

Cycle: 40  C Opt 2  2000 nM

KD (M) Rmax (RU) offset (RU) Chi² (RU²)

8.26E-07 16.03 0.2076 0.0498
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C Opt 2/anti-p53 mAb

Cycle: 43  C Opt 2  667 nM

Cycle: 44  C Opt 2  25 nM

Cycle: 45  C Opt 2  74 nM

Cycle: 46  C Opt 2  222 nM

Cycle: 47  C Opt 2  667 nM

Cycle: 48  C Opt 2  2000 nM

Cycle: 49  C Opt 2  6000 nM

KD (M) Rmax (RU) offset (RU) Chi² (RU²)

1.62E-06 21.57 0.8275 0.266



113 
 

 
 

Peptide 5 

 

 

 

Peptide 6 
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C Opt 2/anti-p53 mAb

Cycle: 33  C Opt 2  667 nM

Cycle: 34  C Opt 2  25 nM

Cycle: 35  C Opt 2  74 nM

Cycle: 36  C Opt 2  222 nM

Cycle: 37  C Opt 2  667 nM

Cycle: 38  C Opt 2  2000 nM

Cycle: 39  C Opt 2  6000 nM

KD (M) Rmax (RU) offset (RU) Chi² (RU²)

1.80E-06 18.67 1.039 0.644
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C Opt 3/anti-p53 mAb

Cycle: 29  C Opt 3  222 nM

Cycle: 30  C Opt 3  8 nM

Cycle: 31  C Opt 3  25 nM

Cycle: 32  C Opt 3  74 nM

Cycle: 33  C Opt 3  222 nM

Cycle: 34  C Opt 3  667 nM

Cycle: 35  C Opt 3  2000 nM

KD (M) Rmax (RU) offset (RU) Chi² (RU²)

9.87E-07 18.24 0.5267 0.0508
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C Opt 3/anti-p53 mAb

Cycle: 25  C Opt 3  222 nM

Cycle: 27  C Opt 3  8 nM

Cycle: 28  C Opt 3  25 nM

Cycle: 29  C Opt 3  74 nM

Cycle: 30  C Opt 3  222 nM

Cycle: 31  C Opt 3  667 nM

Cycle: 32  C Opt 3  2000 nM

KD (M) Rmax (RU) offset (RU) Chi² (RU²)

4.85E-07 14.53 -1.453 0.564
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C Opt 3/Anti-p53 (30 ug/ml)

Cycle: 33  C Opt 3  11.8 nM

Cycle: 34  C Opt 3  35.5 nM

Cycle: 35  C Opt 3  106.6 nM

Cycle: 36  C Opt 3  319.8 nM

Cycle: 37  C Opt 3  319.8 nM

Cycle: 38  C Opt 3  959.5 nM

Cycle: 39  C Opt 3  2878.6 nM

KD (M) Rmax (RU) offset (RU) Chi² (RU²)

8.15E-07 19.9 0.4408 0.185
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C-N Opt 1/anti-p53 m Ab

Cycle: 43  C-N Opt 1  444 nM

Cycle: 44  C-N Opt 1  16 nM

Cycle: 45  C-N Opt 1  49 nM

Cycle: 46  C-N Opt 1  148 nM

Cycle: 47  C-N Opt 1  444 nM

Cycle: 48  C-N Opt 1  1333 nM

Cycle: 49  C-N Opt 1  4000 nM

KD (M) Rmax (RU) offset (RU) Chi² (RU²)

1.46E-06 14.17 0.4974 0.174
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C-N Opt 1/anti-p53 m Ab

Cycle: 25  C-N Opt 1  444 nM

Cycle: 26  C-N Opt 1  16 nM

Cycle: 27  C-N Opt 1  49 nM

Cycle: 28  C-N Opt 1  148 nM

Cycle: 29  C-N Opt 1  444 nM

Cycle: 30  C-N Opt 1  1333 nM

Cycle: 31  C-N Opt 1  4000 nM

KD (M) Rmax (RU) offset (RU) Chi² (RU²)

1.96E-06 14.12 0.5223 0.345
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C-N Opt 1/anti-p53 m Ab

Cycle: 51  C-N Opt 1  444 nM

Cycle: 52  C-N Opt 1  16 nM

Cycle: 53  C-N Opt 1  49 nM

Cycle: 54  C-N Opt 1  148 nM

Cycle: 55  C-N Opt 1  444 nM

Cycle: 56  C-N Opt 1  1333 nM

Cycle: 57  C-N Opt 1  4000 nM

KD (M) Rmax (RU) offset (RU) Chi² (RU²)

1.65E-06 14.98 -0.1786 0.675
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C-N Opt 2/anti-p53 m Ab

Cycle: 59  C-N Opt 2  222 nM

Cycle: 60  C-N Opt 2  8 nM

Cycle: 61  C-N Opt 2  25 nM

Cycle: 62  C-N Opt 2  74 nM

Cycle: 63  C-N Opt 2  222 nM

Cycle: 64  C-N Opt 2  667 nM

Cycle: 65  C-N Opt 2  2000 nM

KD (M) Rmax (RU) offset (RU) Chi² (RU²)

5.80E-07 16.14 0.4079 0.281
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C-N Opt 2/anti-p53 m Ab

Cycle: 101  C-N Opt 2  222 nM

Cycle: 102  C-N Opt 2  8 nM

Cycle: 103  C-N Opt 2  25 nM

Cycle: 104  C-N Opt 2  74 nM

Cycle: 105  C-N Opt 2  222 nM

Cycle: 106  C-N Opt 2  667 nM

Cycle: 107  C-N Opt 2  2000 nM

KD (M) Rmax (RU) offset (RU) Chi² (RU²)

8.41E-07 19.63 3.928 0.572
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C-N Opt 2/anti-p53 m Ab

Cycle: 77  C-N Opt 2  222 nM

Cycle: 78  C-N Opt 2  8 nM

Cycle: 79  C-N Opt 2  25 nM

Cycle: 80  C-N Opt 2  74 nM

Cycle: 81  C-N Opt 2  222 nM

Cycle: 82  C-N Opt 2  667 nM

Cycle: 83  C-N Opt 2  2000 nM

KD (M) Rmax (RU) offset (RU) Chi² (RU²)

6.58E-07 16.37 0.4861 0.122
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C-N Opt 3/anti-p53 m Ab

Cycle: 85  C-N Opt 3  222 nM

Cycle: 86  C-N Opt 3  8 nM

Cycle: 87  C-N Opt 3  25 nM

Cycle: 88  C-N Opt 3  74 nM

Cycle: 89  C-N Opt 3  222 nM

Cycle: 90  C-N Opt 3  667 nM

Cycle: 91  C-N Opt 3  2000 nM

KD (M) Rmax (RU) offset (RU) Chi² (RU²)

8.70E-07 11.9 0.1769 0.0303
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C-N Opt 3/anti-p53 m Ab

Cycle: 67  C-N Opt 3  222 nM

Cycle: 68  C-N Opt 3  8 nM

Cycle: 69  C-N Opt 3  25 nM

Cycle: 70  C-N Opt 3  74 nM

Cycle: 71  C-N Opt 3  222 nM

Cycle: 72  C-N Opt 3  667 nM

Cycle: 73  C-N Opt 3  2000 nM

KD (M) Rmax (RU) offset (RU) Chi² (RU²)

7.69E-07 9.003 0.1683 0.0675



119 
 

 
 

Peptide 9 

 

 

 

Peptide 10 

 

 

 

 

 

 

  

KD (M) Rmax (RU) offset (RU) Chi² (RU²)

5.80E-07 12.26 0.8472 0.177
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C-N Opt 3/anti-p53 m Ab (30 ug/m l)

Cycle: 9  C-N Opt 3  222 nM

Cycle: 10  C-N Opt 3  8 nM

Cycle: 11  C-N Opt 3  25 nM

Cycle: 12  C-N Opt 3  74 nM

Cycle: 13  C-N Opt 3  222 nM

Cycle: 14  C-N Opt 3  667 nM

Cycle: 15  C-N Opt 3  2000 nM

-15

-10

-5

0

5

10

15

20

-100 -50 0 50 100 150 200 250

Tim e s

RU

R
e

s
p

o
n

s
e

N Opt 1/anti-p53 m Ab

Cycle: 59  N Opt 1  444 nM

Fitted Cycle: 59  N Opt 1  444 n

Cycle: 60  N Opt 1  16 nM

Fitted Cycle: 60  N Opt 1  16 nM

Cycle: 61  N Opt 1  49 nM

Fitted Cycle: 61  N Opt 1  49 nM

Cycle: 62  N Opt 1  148 nM

Fitted Cycle: 62  N Opt 1  148 n

Cycle: 63  N Opt 1  444 nM

Fitted Cycle: 63  N Opt 1  444 n

Curve ka (1/Ms) kd (1/s) KD (M) Rmax (RU) Conc (M) tc Flow (ul/min) kt (RU/Ms) RI (RU) Chi² (RU²) U-value

 6.24E+05 0.06488 1.04E-07 11.35 8.35E+13 0.406 7

Cycle: 59  444 nM 4.44E-07 30 2.60E+14 0

Cycle: 60  16 nM 1.60E-08 30 2.60E+14 0

Cycle: 61  49 nM 4.90E-08 30 2.60E+14 0

Cycle: 62  148 nM 1.48E-07 30 2.60E+14 0

Cycle: 63  444 nM 4.44E-07 30 2.60E+14 0



120 
 

 
 

Peptide 10 

  

-10

-5

0

5

10

15

20

-100 -50 0 50 100 150 200 250

Tim e s

RU

R
e

s
p

o
n

s
e

N Opt 1_1 (P5)/Anti-p53 (30 ug/m l)

Cycle: 43  N Opt 1_1 (P5)  13.2

Fitted Cycle: 43  N Opt 1_1 (P5)

Cycle: 44  N Opt 1_1 (P5)  39.5

Fitted Cycle: 44  N Opt 1_1 (P5)

Cycle: 45  N Opt 1_1 (P5)  118.

Fitted Cycle: 45  N Opt 1_1 (P5)

Cycle: 46  N Opt 1_1 (P5)  355.

Fitted Cycle: 46  N Opt 1_1 (P5)

Cycle: 47  N Opt 1_1 (P5)  355.

Fitted Cycle: 47  N Opt 1_1 (P5)

Curve ka (1/Ms) kd (1/s) KD (M) Rmax (RU) Conc (M) tc Flow (ul/min) kt (RU/Ms) RI (RU) Chi² (RU²) U-value

 1.21E+06 0.03847 3.19E-08 13.16 9.14E+11 1.24 9

Cycle: 43  13.2 nM 1.32E-08 30 2.84E+12 0

Cycle: 44  39.5 nM 3.95E-08 30 2.84E+12 0

Cycle: 45  118.4 nM 1.18E-07 30 2.84E+12 0

Cycle: 46  355.3 nM 3.55E-07 30 2.84E+12 0

Cycle: 47  355.3 nM 3.55E-07 30 2.84E+12 0
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N Opt 1_2 (P5)/Anti-p53 (30 ug/m l)

Cycle: 51  N Opt 1_2 (P5)  13.2

Fitted Cycle: 51  N Opt 1_2 (P5)

Cycle: 52  N Opt 1_2 (P5)  39.5

Fitted Cycle: 52  N Opt 1_2 (P5)

Cycle: 53  N Opt 1_2 (P5)  118.

Fitted Cycle: 53  N Opt 1_2 (P5)

Cycle: 54  N Opt 1_2 (P5)  355.

Fitted Cycle: 54  N Opt 1_2 (P5)

Cycle: 55  N Opt 1_2 (P5)  355.

Fitted Cycle: 55  N Opt 1_2 (P5)

Curve ka (1/Ms) kd (1/s) KD (M) Rmax (RU) Conc (M) tc Flow (ul/min) kt (RU/Ms) RI (RU) Chi² (RU²) U-value

 7.81E+05 0.05322 6.81E-08 12.75 1.62E+11 0.53 7

Cycle: 51  13.2 nM 1.32E-08 30 5.02E+11 0

Cycle: 52  39.5 nM 3.95E-08 30 5.02E+11 0

Cycle: 53  118.4 nM 1.18E-07 30 5.02E+11 0

Cycle: 54  355.3 nM 3.55E-07 30 5.02E+11 0

Cycle: 55  355.3 nM 3.55E-07 30 5.02E+11 0
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Curve ka (1/Ms) kd (1/s) KD (M) Rmax (RU) Conc (M) tc Flow (ul/min) kt (RU/Ms) RI (RU) Chi² (RU²) U-value

 9.12E+05 0.05009 5.50E-08 8.855 7.90E+12 0.438 12

Cycle: 59  5.5 nM 5.50E-09 30 2.46E+13 0

Cycle: 60  16.5 nM 1.65E-08 30 2.46E+13 0

Cycle: 61  49.4 nM 4.94E-08 30 2.46E+13 0

Cycle: 62  148.1 nM 1.48E-07 30 2.46E+13 0

Cycle: 63  148.1 nM 1.48E-07 30 2.46E+13 0

Curve ka (1/Ms) kd (1/s) KD (M) Rmax (RU) Conc (M) tc Flow (ul/min) kt (RU/Ms) RI (RU) Chi² (RU²) U-value

 9.49E+05 0.06387 6.73E-08 9.312 3.26E+09 0.207 7

Cycle: 67  5.5 nM 5.50E-09 30 1.01E+10 0

Cycle: 68  16.5 nM 1.65E-08 30 1.01E+10 0

Cycle: 69  49.4 nM 4.94E-08 30 1.01E+10 0

Cycle: 70  148.1 nM 1.48E-07 30 1.01E+10 0

Cycle: 71  148.1 nM 1.48E-07 30 1.01E+10 0
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N Opt 2_1 (P1)/Anti-p53 (30 ug/m l)

Cycle: 59  N Opt 2_1 (P1)  5.5 

Fitted Cycle: 59  N Opt 2_1 (P1)

Cycle: 60  N Opt 2_1 (P1)  16.5

Fitted Cycle: 60  N Opt 2_1 (P1)

Cycle: 61  N Opt 2_1 (P1)  49.4

Fitted Cycle: 61  N Opt 2_1 (P1)

Cycle: 62  N Opt 2_1 (P1)  148.

Fitted Cycle: 62  N Opt 2_1 (P1)

Cycle: 63  N Opt 2_1 (P1)  148.

Fitted Cycle: 63  N Opt 2_1 (P1)
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N Opt 2_2 (P1)/Anti-p53 (30 ug/m l)

Cycle: 67  N Opt 2_2 (P1)  5.5 

Fitted Cycle: 67  N Opt 2_2 (P1)

Cycle: 68  N Opt 2_2 (P1)  16.5

Fitted Cycle: 68  N Opt 2_2 (P1)

Cycle: 69  N Opt 2_2 (P1)  49.4

Fitted Cycle: 69  N Opt 2_2 (P1)

Cycle: 70  N Opt 2_2 (P1)  148.

Fitted Cycle: 70  N Opt 2_2 (P1)

Cycle: 71  N Opt 2_2 (P1)  148.

Fitted Cycle: 71  N Opt 2_2 (P1)
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Curve ka (1/Ms) kd (1/s) KD (M) Rmax (RU) Conc (M) tc Flow (ul/min) kt (RU/Ms) RI (RU) Chi² (RU²) U-value

 1.02E+06 0.09514 9.36E-08 15.11 2.84E+11 0.396 7

Cycle: 101  222 nM 2.22E-07 30 8.83E+11 0

Cycle: 102  8 nM 8.00E-09 30 8.83E+11 0

Cycle: 103  25 nM 2.50E-08 30 8.83E+11 0

Cycle: 104  74 nM 7.40E-08 30 8.83E+11 0

Cycle: 105  222 nM 2.22E-07 30 8.83E+11 0
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N Opt 3/Anti-p53 (30 ug/m l)

Cycle: 77  N Opt 3  3.3 nM

Fitted Cycle: 77  N Opt 3  3.3 n

Cycle: 78  N Opt 3  9.9 nM

Fitted Cycle: 78  N Opt 3  9.9 n

Cycle: 79  N Opt 3  29.6 nM

Fitted Cycle: 79  N Opt 3  29.6 

Cycle: 80  N Opt 3  88.8 nM

Fitted Cycle: 80  N Opt 3  88.8 

Cycle: 81  N Opt 3  88.8 nM

Fitted Cycle: 81  N Opt 3  88.8 

Curve ka (1/Ms) kd (1/s) KD (M) Rmax (RU) Conc (M) tc Flow (ul/min) kt (RU/Ms) RI (RU) Chi² (RU²) U-value

 1.31E+06 0.01286 9.84E-09 15.18 2.71E+07 0.349 3

Cycle: 77  3.3 nM 3.30E-09 30 8.43E+07 0

Cycle: 78  9.9 nM 9.90E-09 30 8.43E+07 0

Cycle: 79  29.6 nM 2.96E-08 30 8.43E+07 0

Cycle: 80  88.8 nM 8.88E-08 30 8.43E+07 0

Cycle: 81  88.8 nM 8.88E-08 30 8.43E+07 0
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N Opt 2/anti-p53 m Ab

Cycle: 101  N Opt 2  222 nM

Fitted Cycle: 101  N Opt 2  222 

Cycle: 102  N Opt 2  8 nM

Fitted Cycle: 102  N Opt 2  8 nM

Cycle: 103  N Opt 2  25 nM

Fitted Cycle: 103  N Opt 2  25 n

Cycle: 104  N Opt 2  74 nM

Fitted Cycle: 104  N Opt 2  74 n

Cycle: 105  N Opt 2  222 nM

Fitted Cycle: 105  N Opt 2  222 
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N Opt 3/anti-p53 m Ab

Cycle: 17  N Opt 3  3.3 nM

Fitted Cycle: 17  N Opt 3  3.3 n

Cycle: 18  N Opt 3  9.9 nM

Fitted Cycle: 18  N Opt 3  9.9 n

Cycle: 19  N Opt 3  29.6 nM

Fitted Cycle: 19  N Opt 3  29.6 

Cycle: 20  N Opt 3  88.8 nM

Fitted Cycle: 20  N Opt 3  88.8 

Cycle: 21  N Opt 3  88.8 nM

Fitted Cycle: 21  N Opt 3  88.8 

Curve ka (1/Ms) kd (1/s) KD (M) Rmax (RU) Conc (M) tc Flow (ul/min) kt (RU/Ms) RI (RU) Chi² (RU²) U-value

 1.29E+06 0.01364 1.06E-08 28.48 3.15E+07 0.226 1

Cycle: 17  3.3 nM 3.30E-09 30 9.79E+07 0

Cycle: 18  9.9 nM 9.90E-09 30 9.79E+07 0

Cycle: 19  29.6 nM 2.96E-08 30 9.79E+07 0

Cycle: 20  88.8 nM 8.88E-08 30 9.79E+07 0

Cycle: 21  88.8 nM 8.88E-08 30 9.79E+07 0
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P3/anti-p53 m Ab

Cycle: 37  P3  8 nM

Fitted Cycle: 37  P3  8 nM

Cycle: 38  P3  25 nM

Fitted Cycle: 38  P3  25 nM

Cycle: 39  P3  74 nM

Fitted Cycle: 39  P3  74 nM

Cycle: 40  P3  222 nM

Fitted Cycle: 40  P3  222 nM

Cycle: 43  P3  222 nM

Fitted Cycle: 43  P3  222 nM

Curve ka (1/Ms) kd (1/s) KD (M) Rmax (RU) Conc (M) tc Flow (ul/min) kt (RU/Ms) RI (RU) Chi² (RU²) U-value

 5.45E+05 0.01507 2.77E-08 24.01 8.40E+19 0.513 2

Cycle: 37  8 nM 8.00E-09 30 2.61E+20 0

Cycle: 38  25 nM 2.50E-08 30 2.61E+20 0

Cycle: 39  74 nM 7.40E-08 30 2.61E+20 0

Cycle: 40  222 nM 2.22E-07 30 2.61E+20 0

Cycle: 43  222 nM 2.22E-07 30 2.61E+20 0
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N Native  1/anti-p53 m Ab

Cycle: 85  N Native 1  111 nM

Cycle: 86  N Native 1  4 nM

Cycle: 87  N Native 1  12 nM

Cycle: 88  N Native 1  37 nM

Cycle: 89  N Native 1  111 nM

Cycle: 90  N Native 1  333 nM

Cycle: 91  N Native 1  1000 nM

KD (M) Rmax (RU) offset (RU) Chi² (RU²)

4.33E-07 11.35 1.043 0.0449
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N Nat 1_1/anti-p53 mAb (30 ug/m l)

Cycle: 9  N Nat 1_1  111 nM

Cycle: 10  N Nat 1_1  4 nM

Cycle: 11  N Nat 1_1  12 nM

Cycle: 12  N Nat 1_1  37 nM

Cycle: 13  N Nat 1_1  111 nM

Cycle: 14  N Nat 1_1  333 nM

Cycle: 15  N Nat 1_1  1000 nM

KD (M) Rmax (RU) offset (RU) Chi² (RU²)

3.67E-07 14.72 0.7108 0.162
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N Nat 1_2/anti-p53 mAb (30 ug/m l)

Cycle: 17  N Nat 1_2  111 nM

Cycle: 18  N Nat 1_2  4 nM

Cycle: 19  N Nat 1_2  12 nM

Cycle: 20  N Nat 1_2  37 nM

Cycle: 21  N Nat 1_2  111 nM

Cycle: 22  N Nat 1_2  333 nM

Cycle: 23  N Nat 1_2  1000 nM

KD (M) Rmax (RU) offset (RU) Chi² (RU²)

2.59E-07 13.5 0.2277 0.185
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N Nat 2/anti-p53 m Ab

Cycle: 21  N Nat 2  222 nM

Fitted Cycle: 21  N Nat 2  222 n

Cycle: 22  N Nat 2  8 nM

Fitted Cycle: 22  N Nat 2  8 nM

Cycle: 23  N Nat 2  25 nM

Fitted Cycle: 23  N Nat 2  25 nM

Cycle: 24  N Nat 2  74 nM

Fitted Cycle: 24  N Nat 2  74 nM

Cycle: 25  N Nat 2  222 nM

Fitted Cycle: 25  N Nat 2  222 n

Curve ka (1/Ms) kd (1/s) KD (M) Rmax (RU) Conc (M) tc Flow (ul/min) kt (RU/Ms) RI (RU) Chi² (RU²) U-value

 4.96E+05 0.0174 3.51E-08 14.47 6.06E+18 0.187 2

Cycle: 21  222 nM 2.22E-07 30 1.88E+19 0

Cycle: 22  8 nM 8.00E-09 30 1.88E+19 0

Cycle: 23  25 nM 2.50E-08 30 1.88E+19 0

Cycle: 24  74 nM 7.40E-08 30 1.88E+19 0

Cycle: 25  222 nM 2.22E-07 30 1.88E+19 0
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N Nat 2/anti-p53 m Ab

Cycle: 17  N Nat 2  222 nM

Fitted Cycle: 17  N Nat 2  222 n

Cycle: 18  N Nat 2  8 nM

Fitted Cycle: 18  N Nat 2  8 nM

Cycle: 19  N Nat 2  25 nM

Fitted Cycle: 19  N Nat 2  25 nM

Cycle: 20  N Nat 2  74 nM

Fitted Cycle: 20  N Nat 2  74 nM

Cycle: 21  N Nat 2  222 nM

Fitted Cycle: 21  N Nat 2  222 n

Curve ka (1/Ms) kd (1/s) KD (M) Rmax (RU) Conc (M) tc Flow (ul/min) kt (RU/Ms) RI (RU) Chi² (RU²) U-value

 5.91E+05 0.01799 3.05E-08 13.78 1.57E+17 0.216 2

Cycle: 17  222 nM 2.22E-07 30 4.88E+17 0

Cycle: 18  8 nM 8.00E-09 30 4.88E+17 0

Cycle: 19  25 nM 2.50E-08 30 4.88E+17 0

Cycle: 20  74 nM 7.40E-08 30 4.88E+17 0

Cycle: 21  222 nM 2.22E-07 30 4.88E+17 0
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N Native  2/anti-p53 m Ab

Cycle: 93  N Native 2  111 nM

Fitted Cycle: 93  N Native 2  11

Cycle: 94  N Native 2  4 nM

Fitted Cycle: 94  N Native 2  4 

Cycle: 95  N Native 2  12 nM

Fitted Cycle: 95  N Native 2  12

Cycle: 96  N Native 2  37 nM

Fitted Cycle: 96  N Native 2  37

Cycle: 97  N Native 2  111 nM

Fitted Cycle: 97  N Native 2  11

Curve ka (1/Ms) kd (1/s) KD (M) Rmax (RU) Conc (M) tc Flow (ul/min) kt (RU/Ms) RI (RU) Chi² (RU²) U-value

 1.22E+06 0.01697 1.39E-08 10.59 2.37E+14 0.179 3

Cycle: 93  111 nM 1.11E-07 30 7.35E+14 0

Cycle: 94  4 nM 4.00E-09 30 7.35E+14 0

Cycle: 95  12 nM 1.20E-08 30 7.35E+14 0

Cycle: 96  37 nM 3.70E-08 30 7.35E+14 0

Cycle: 97  111 nM 1.11E-07 30 7.35E+14 0
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N Native  3/anti-p53 m Ab

Cycle: 101  N Native 3  111 nM

Fitted Cycle: 101  N Native 3  1

Cycle: 102  N Native 3  4 nM

Fitted Cycle: 102  N Native 3  4

Cycle: 103  N Native 3  12 nM

Fitted Cycle: 103  N Native 3  1

Cycle: 104  N Native 3  37 nM

Fitted Cycle: 104  N Native 3  3

Cycle: 105  N Native 3  111 nM

Fitted Cycle: 105  N Native 3  1

Curve ka (1/Ms) kd (1/s) KD (M) Rmax (RU) Conc (M) tc Flow (ul/min) kt (RU/Ms) RI (RU) Chi² (RU²) U-value

 7.66E+05 0.008381 1.09E-08 10.34 2.03E+19 0.179 2

Cycle: 101  111 nM 1.11E-07 30 6.31E+19 0

Cycle: 102  4 nM 4.00E-09 30 6.31E+19 0

Cycle: 103  12 nM 1.20E-08 30 6.31E+19 0

Cycle: 104  37 nM 3.70E-08 30 6.31E+19 0

Cycle: 105  111 nM 1.11E-07 30 6.31E+19 0
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N Nat 3_1/anti-p53 mAb (30 ug/m l)

Cycle: 59  N Nat 3_1  111 nM

Fitted Cycle: 59  N Nat 3_1  111

Cycle: 60  N Nat 3_1  4 nM

Fitted Cycle: 60  N Nat 3_1  4 n

Cycle: 61  N Nat 3_1  12 nM

Fitted Cycle: 61  N Nat 3_1  12 

Cycle: 62  N Nat 3_1  37 nM

Fitted Cycle: 62  N Nat 3_1  37 

Cycle: 63  N Nat 3_1  111 nM

Fitted Cycle: 63  N Nat 3_1  111

Curve ka (1/Ms) kd (1/s) KD (M) Rmax (RU) Conc (M) tc Flow (ul/min) kt (RU/Ms) RI (RU) Chi² (RU²) U-value

 1.04E+06 0.008222 7.92E-09 13.46 3.28E+14 0.345 3

Cycle: 59  111 nM 1.11E-07 30 1.02E+15 0

Cycle: 60  4 nM 4.00E-09 30 1.02E+15 0

Cycle: 61  12 nM 1.20E-08 30 1.02E+15 0

Cycle: 62  37 nM 3.70E-08 30 1.02E+15 0

Cycle: 63  111 nM 1.11E-07 30 1.02E+15 0
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N Nat 3_3/anti-p53 mAb (30 ug/m l)

Cycle: 77  N Nat 3_3  111 nM

Fitted Cycle: 77  N Nat 3_3  111

Cycle: 78  N Nat 3_3  4 nM

Fitted Cycle: 78  N Nat 3_3  4 n

Cycle: 79  N Nat 3_3  12 nM

Fitted Cycle: 79  N Nat 3_3  12 

Cycle: 80  N Nat 3_3  37 nM

Fitted Cycle: 80  N Nat 3_3  37 

Cycle: 81  N Nat 3_3  111 nM

Fitted Cycle: 81  N Nat 3_3  111

Curve ka (1/Ms) kd (1/s) KD (M) Rmax (RU) Conc (M) tc Flow (ul/min) kt (RU/Ms) RI (RU) Chi² (RU²) U-value

 1.00E+06 0.008449 8.41E-09 13.13 3.44E+19 0.309 3

Cycle: 77  111 nM 1.11E-07 30 1.07E+20 0

Cycle: 78  4 nM 4.00E-09 30 1.07E+20 0

Cycle: 79  12 nM 1.20E-08 30 1.07E+20 0

Cycle: 80  37 nM 3.70E-08 30 1.07E+20 0

Cycle: 81  111 nM 1.11E-07 30 1.07E+20 0
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Native_1/anti-p53 m Ab (30 ug/m l)

Cycle: 86  Native_1  16 nM

Fitted Cycle: 86  Native_1  16 n

Cycle: 87  Native_1  49 nM

Fitted Cycle: 87  Native_1  49 n

Cycle: 88  Native_1  148 nM

Fitted Cycle: 88  Native_1  148 

Cycle: 89  Native_1  444 nM

Fitted Cycle: 89  Native_1  444 

Curve ka (1/Ms) kd (1/s) KD (M) Rmax (RU) Conc (M) tc Flow (ul/min) kt (RU/Ms) RI (RU) Chi² (RU²) U-value

 3.20E+05 0.003024 9.46E-09 14.57 3.14E+14 0.92 4

Cycle: 86  16 nM 1.60E-08 30 9.75E+14 0

Cycle: 87  49 nM 4.90E-08 30 9.75E+14 0

Cycle: 88  148 nM 1.48E-07 30 9.75E+14 0

Cycle: 89  444 nM 4.44E-07 30 9.75E+14 0
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Native/anti-p53 m Ab

Cycle: 94  Native  16 nM

Fitted Cycle: 94  Native  16 nM

Cycle: 95  Native  49 nM

Fitted Cycle: 95  Native  49 nM

Cycle: 96  Native  148 nM

Fitted Cycle: 96  Native  148 nM

Cycle: 97  Native  444 nM

Fitted Cycle: 97  Native  444 nM

Curve ka (1/Ms) kd (1/s) KD (M) Rmax (RU) Conc (M) tc Flow (ul/min) kt (RU/Ms) RI (RU) Chi² (RU²) U-value

 1.57E+05 0.003793 2.42E-08 12.62 1.88E+16 0.503 4

Cycle: 94  16 nM 1.60E-08 30 5.84E+16 0

Cycle: 95  49 nM 4.90E-08 30 5.84E+16 0

Cycle: 96  148 nM 1.48E-07 30 5.84E+16 0

Cycle: 97  444 nM 4.44E-07 30 5.84E+16 0
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Native/anti-p53 m Ab (30 ug/m l)

Cycle: 18  Native  16 nM

Fitted Cycle: 18  Native  16 nM

Cycle: 19  Native  49 nM

Fitted Cycle: 19  Native  49 nM

Cycle: 20  Native  148 nM

Fitted Cycle: 20  Native  148 nM

Cycle: 21  Native  444 nM

Fitted Cycle: 21  Native  444 nM

Curve ka (1/Ms) kd (1/s) KD (M) Rmax (RU) Conc (M) tc Flow (ul/min) kt (RU/Ms) RI (RU) Chi² (RU²) U-value

 4.21E+05 0.0034 8.08E-09 14.28 4.33E+14 1.24 4

Cycle: 18  16 nM 1.60E-08 30 1.34E+15 0

Cycle: 19  49 nM 4.90E-08 30 1.34E+15 0

Cycle: 20  148 nM 1.48E-07 30 1.34E+15 0

Cycle: 21  444 nM 4.44E-07 30 1.34E+15 0
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Both Opt 1/anti-p53 m Ab

Cycle: 85  Both Opt 1  444 nM

Fitted Cycle: 85  Both Opt 1  44

Cycle: 86  Both Opt 1  16 nM

Fitted Cycle: 86  Both Opt 1  16

Cycle: 87  Both Opt 1  49 nM

Fitted Cycle: 87  Both Opt 1  49

Cycle: 88  Both Opt 1  148 nM

Fitted Cycle: 88  Both Opt 1  14

Cycle: 89  Both Opt 1  444 nM

Fitted Cycle: 89  Both Opt 1  44

Curve ka (1/Ms) kd (1/s) KD (M) Rmax (RU) Conc (M) tc Flow (ul/min) kt (RU/Ms) RI (RU) Chi² (RU²) U-value

 7.31E+05 0.07833 1.07E-07 23.26 1.35E+19 0.302 3

Cycle: 85  444 nM 4.44E-07 30 4.21E+19 0

Cycle: 86  16 nM 1.60E-08 30 4.21E+19 0

Cycle: 87  49 nM 4.90E-08 30 4.21E+19 0

Cycle: 88  148 nM 1.48E-07 30 4.21E+19 0

Cycle: 89  444 nM 4.44E-07 30 4.21E+19 0
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Both Opt 1/anti-p53 m Ab

Cycle: 67  Both Opt 1  444 nM

Fitted Cycle: 67  Both Opt 1  44

Cycle: 68  Both Opt 1  16 nM

Fitted Cycle: 68  Both Opt 1  16

Cycle: 69  Both Opt 1  49 nM

Fitted Cycle: 69  Both Opt 1  49

Cycle: 70  Both Opt 1  148 nM

Fitted Cycle: 70  Both Opt 1  14

Cycle: 71  Both Opt 1  444 nM

Fitted Cycle: 71  Both Opt 1  44

Curve ka (1/Ms) kd (1/s) KD (M) Rmax (RU) Conc (M) tc Flow (ul/min) kt (RU/Ms) RI (RU) Chi² (RU²) U-value

 8.38E+05 0.07853 9.38E-08 21.64 6.19E+18 0.303 3

Cycle: 67  444 nM 4.44E-07 30 1.92E+19 0

Cycle: 68  16 nM 1.60E-08 30 1.92E+19 0

Cycle: 69  49 nM 4.90E-08 30 1.92E+19 0

Cycle: 70  148 nM 1.48E-07 30 1.92E+19 0

Cycle: 71  444 nM 4.44E-07 30 1.92E+19 0
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Both Opt 1/anti-p53 m Ab

Cycle: 51  Both Opt 1  444 nM

Fitted Cycle: 51  Both Opt 1  44

Cycle: 52  Both Opt 1  16 nM

Fitted Cycle: 52  Both Opt 1  16

Cycle: 53  Both Opt 1  49 nM

Fitted Cycle: 53  Both Opt 1  49

Cycle: 54  Both Opt 1  148 nM

Fitted Cycle: 54  Both Opt 1  14

Cycle: 55  Both Opt 1  444 nM

Fitted Cycle: 55  Both Opt 1  44

Curve ka (1/Ms) kd (1/s) KD (M) Rmax (RU) Conc (M) tc Flow (ul/min) kt (RU/Ms) RI (RU) Chi² (RU²) U-value

 7.69E+05 0.07779 1.01E-07 21.43 1.16E+19 0.288 3

Cycle: 51  444 nM 4.44E-07 30 3.60E+19 0

Cycle: 52  16 nM 1.60E-08 30 3.60E+19 0

Cycle: 53  49 nM 4.90E-08 30 3.60E+19 0

Cycle: 54  148 nM 1.48E-07 30 3.60E+19 0

Cycle: 55  444 nM 4.44E-07 30 3.60E+19 0
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Both Opt 2/anti-p53 m Ab

Cycle: 43  Both Opt 2  444 nM

Fitted Cycle: 43  Both Opt 2  44

Cycle: 44  Both Opt 2  16 nM

Fitted Cycle: 44  Both Opt 2  16

Cycle: 45  Both Opt 2  49 nM

Fitted Cycle: 45  Both Opt 2  49

Cycle: 46  Both Opt 2  148 nM

Fitted Cycle: 46  Both Opt 2  14

Cycle: 47  Both Opt 2  444 nM

Fitted Cycle: 47  Both Opt 2  44

Curve ka (1/Ms) kd (1/s) KD (M) Rmax (RU) Conc (M) tc Flow (ul/min) kt (RU/Ms) RI (RU) Chi² (RU²) U-value

 6.16E+05 0.0534 8.67E-08 19.94 4.98E+19 0.282 2

Cycle: 43  444 nM 4.44E-07 30 1.55E+20 0

Cycle: 44  16 nM 1.60E-08 30 1.55E+20 0

Cycle: 45  49 nM 4.90E-08 30 1.55E+20 0

Cycle: 46  148 nM 1.48E-07 30 1.55E+20 0

Cycle: 47  444 nM 4.44E-07 30 1.55E+20 0
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Both Opt 2/anti-p53 m Ab

Cycle: 59  Both Opt 2  444 nM

Fitted Cycle: 59  Both Opt 2  44

Cycle: 60  Both Opt 2  16 nM

Fitted Cycle: 60  Both Opt 2  16

Cycle: 61  Both Opt 2  49 nM

Fitted Cycle: 61  Both Opt 2  49

Cycle: 62  Both Opt 2  148 nM

Fitted Cycle: 62  Both Opt 2  14

Cycle: 63  Both Opt 2  444 nM

Fitted Cycle: 63  Both Opt 2  44

Curve ka (1/Ms) kd (1/s) KD (M) Rmax (RU) Conc (M) tc Flow (ul/min) kt (RU/Ms) RI (RU) Chi² (RU²) U-value

 6.38E+05 0.05386 8.44E-08 22.06 6.29E+18 0.394 3

Cycle: 59  444 nM 4.44E-07 30 1.95E+19 0

Cycle: 60  16 nM 1.60E-08 30 1.95E+19 0

Cycle: 61  49 nM 4.90E-08 30 1.95E+19 0

Cycle: 62  148 nM 1.48E-07 30 1.95E+19 0

Cycle: 63  444 nM 4.44E-07 30 1.95E+19 0
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Both Opt 2/anti-p53 m Ab

Cycle: 77  Both Opt 2  444 nM

Fitted Cycle: 77  Both Opt 2  44

Cycle: 78  Both Opt 2  16 nM

Fitted Cycle: 78  Both Opt 2  16

Cycle: 79  Both Opt 2  49 nM

Fitted Cycle: 79  Both Opt 2  49

Cycle: 80  Both Opt 2  148 nM

Fitted Cycle: 80  Both Opt 2  14

Cycle: 81  Both Opt 2  444 nM

Fitted Cycle: 81  Both Opt 2  44

Curve ka (1/Ms) kd (1/s) KD (M) Rmax (RU) Conc (M) tc Flow (ul/min) kt (RU/Ms) RI (RU) Chi² (RU²) U-value

 1.40E+06 0.05462 3.91E-08 20.29 2.06E+17 1.74 7

Cycle: 77  444 nM 4.44E-07 30 6.39E+17 0

Cycle: 78  16 nM 1.60E-08 30 6.39E+17 0

Cycle: 79  49 nM 4.90E-08 30 6.39E+17 0

Cycle: 80  148 nM 1.48E-07 30 6.39E+17 0

Cycle: 81  444 nM 4.44E-07 30 6.39E+17 0
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Both Opt 3/anti-p53 m Ab

Cycle: 67  Both Opt 3  444 nM

Fitted Cycle: 67  Both Opt 3  44

Cycle: 68  Both Opt 3  16 nM

Fitted Cycle: 68  Both Opt 3  16

Cycle: 69  Both Opt 3  49 nM

Fitted Cycle: 69  Both Opt 3  49

Cycle: 70  Both Opt 3  148 nM

Fitted Cycle: 70  Both Opt 3  14

Cycle: 71  Both Opt 3  444 nM

Fitted Cycle: 71  Both Opt 3  44

Curve ka (1/Ms) kd (1/s) KD (M) Rmax (RU) Conc (M) tc Flow (ul/min) kt (RU/Ms) RI (RU) Chi² (RU²) U-value

 5.94E+05 0.0338 5.69E-08 27.27 1.92E+07 0.893 3

Cycle: 67  444 nM 4.44E-07 30 5.97E+07 0

Cycle: 68  16 nM 1.60E-08 30 5.97E+07 0

Cycle: 69  49 nM 4.90E-08 30 5.97E+07 0

Cycle: 70  148 nM 1.48E-07 30 5.97E+07 0

Cycle: 71  444 nM 4.44E-07 30 5.97E+07 0
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Both Opt 3/anti-p53 m Ab

Cycle: 51  Both Opt 3  444 nM

Fitted Cycle: 51  Both Opt 3  44

Cycle: 52  Both Opt 3  16 nM

Fitted Cycle: 52  Both Opt 3  16

Cycle: 53  Both Opt 3  49 nM

Fitted Cycle: 53  Both Opt 3  49

Cycle: 54  Both Opt 3  148 nM

Fitted Cycle: 54  Both Opt 3  14

Cycle: 55  Both Opt 3  444 nM

Fitted Cycle: 55  Both Opt 3  44

Curve ka (1/Ms) kd (1/s) KD (M) Rmax (RU) Conc (M) tc Flow (ul/min) kt (RU/Ms) RI (RU) Chi² (RU²) U-value

 7.01E+05 0.03491 4.98E-08 26.31 2.09E+07 1.05 3

Cycle: 51  444 nM 4.44E-07 30 6.50E+07 0

Cycle: 52  16 nM 1.60E-08 30 6.50E+07 0

Cycle: 53  49 nM 4.90E-08 30 6.50E+07 0

Cycle: 54  148 nM 1.48E-07 30 6.50E+07 0

Cycle: 55  444 nM 4.44E-07 30 6.50E+07 0
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Both Opt 3/anti-p53 m Ab

Cycle: 33  Both Opt 3  444 nM

Fitted Cycle: 33  Both Opt 3  44

Cycle: 34  Both Opt 3  16 nM

Fitted Cycle: 34  Both Opt 3  16

Cycle: 35  Both Opt 3  49 nM

Fitted Cycle: 35  Both Opt 3  49

Cycle: 36  Both Opt 3  148 nM

Fitted Cycle: 36  Both Opt 3  14

Cycle: 37  Both Opt 3  444 nM

Fitted Cycle: 37  Both Opt 3  44

Curve ka (1/Ms) kd (1/s) KD (M) Rmax (RU) Conc (M) tc Flow (ul/min) kt (RU/Ms) RI (RU) Chi² (RU²) U-value

 6.94E+05 0.03527 5.08E-08 26.35 1.93E+07 1.08 4

Cycle: 33  444 nM 4.44E-07 30 5.99E+07 0

Cycle: 34  16 nM 1.60E-08 30 5.99E+07 0

Cycle: 35  49 nM 4.90E-08 30 5.99E+07 0

Cycle: 36  148 nM 1.48E-07 30 5.99E+07 0

Cycle: 37  444 nM 4.44E-07 30 5.99E+07 0
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11m er_1/anti-p53 m Ab (30 ug/m l)

Cycle: 9  11mer_1  275.3 nM

Fitted Cycle: 9  11mer_1  275.3 

Cycle: 10  11mer_1  10.2 nM

Fitted Cycle: 10  11mer_1  10.2 

Cycle: 11  11mer_1  30.6 nM

Fitted Cycle: 11  11mer_1  30.6 

Cycle: 12  11mer_1  91.8 nM

Fitted Cycle: 12  11mer_1  91.8 

Cycle: 13  11mer_1  275.3 nM

Fitted Cycle: 13  11mer_1  275.3

Curve ka (1/Ms) kd (1/s) KD (M) Rmax (RU) Conc (M) tc Flow (ul/min) kt (RU/Ms) RI (RU) Chi² (RU²) U-value

 5.76E+05 0.005093 8.85E-09 22.9 9.73E+19 2.47 4

Cycle: 9  275.3 nM 2.75E-07 30 3.02E+20 0

Cycle: 10  10.2 nM 1.02E-08 30 3.02E+20 0

Cycle: 11  30.6 nM 3.06E-08 30 3.02E+20 0

Cycle: 12  91.8 nM 9.18E-08 30 3.02E+20 0

Cycle: 13  275.3 nM 2.75E-07 30 3.02E+20 0
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11m er_2/anti-p53 m Ab (30 ug/m l)

Cycle: 17  11mer_2  275.3 nM

Fitted Cycle: 17  11mer_2  275.3

Cycle: 18  11mer_2  10.2 nM

Fitted Cycle: 18  11mer_2  10.2 

Cycle: 19  11mer_2  30.6 nM

Fitted Cycle: 19  11mer_2  30.6 

Cycle: 20  11mer_2  91.8 nM

Fitted Cycle: 20  11mer_2  91.8 

Cycle: 21  11mer_2  275.3 nM

Fitted Cycle: 21  11mer_2  275.3

Curve ka (1/Ms) kd (1/s) KD (M) Rmax (RU) Conc (M) tc Flow (ul/min) kt (RU/Ms) RI (RU) Chi² (RU²) U-value

 7.23E+05 0.003798 5.25E-09 22.53 4.69E+20 2.59 4

Cycle: 17  275.3 nM 2.75E-07 30 1.46E+21 0

Cycle: 18  10.2 nM 1.02E-08 30 1.46E+21 0

Cycle: 19  30.6 nM 3.06E-08 30 1.46E+21 0

Cycle: 20  91.8 nM 9.18E-08 30 1.46E+21 0

Cycle: 21  275.3 nM 2.75E-07 30 1.46E+21 0
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11m er/anti-p53 m Ab

Cycle: 93  11mer  10.2 nM

Fitted Cycle: 93  11mer  10.2 nM

Cycle: 94  11mer  30.6 nM

Fitted Cycle: 94  11mer  30.6 nM

Cycle: 95  11mer  91.8 nM

Fitted Cycle: 95  11mer  91.8 nM

Cycle: 96  11mer  275.3 nM

Fitted Cycle: 96  11mer  275.3 n

Cycle: 97  11mer  275.3 nM

Fitted Cycle: 97  11mer  275.3 n

Curve ka (1/Ms) kd (1/s) KD (M) Rmax (RU) Conc (M) tc Flow (ul/min) kt (RU/Ms) RI (RU) Chi² (RU²) U-value

 9.23E+05 0.004335 4.70E-09 22.2 3.72E+13 2.94 5

Cycle: 93  10.2 nM 1.02E-08 30 1.16E+14 0

Cycle: 94  30.6 nM 3.06E-08 30 1.16E+14 0

Cycle: 95  91.8 nM 9.18E-08 30 1.16E+14 0

Cycle: 96  275.3 nM 2.75E-07 30 1.16E+14 0

Cycle: 97  275.3 nM 2.75E-07 30 1.16E+14 0
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15m er Cold N/anti-p53 mAb

Cycle: 77  15mer Cold N  8 nM

Fitted Cycle: 77  15mer Cold N  

Cycle: 78  15mer Cold N  24.1 n

Fitted Cycle: 78  15mer Cold N  

Cycle: 79  15mer Cold N  72.3 n

Fitted Cycle: 79  15mer Cold N  

Cycle: 80  15mer Cold N  216.8 

Fitted Cycle: 80  15mer Cold N  

Cycle: 81  15mer Cold N  216.8 

Fitted Cycle: 81  15mer Cold N  

Curve ka (1/Ms) kd (1/s) KD (M) Rmax (RU) Conc (M) tc Flow (ul/min) kt (RU/Ms) RI (RU) Chi² (RU²) U-value

 4.41E+05 0.004978 1.13E-08 25.4 2.54E+14 0.602 2

Cycle: 77  8 nM 8.00E-09 30 7.90E+14 0

Cycle: 78  24.1 nM 2.41E-08 30 7.90E+14 0

Cycle: 79  72.3 nM 7.23E-08 30 7.90E+14 0

Cycle: 80  216.8 nM 2.17E-07 30 7.90E+14 0

Cycle: 81  216.8 nM 2.17E-07 30 7.90E+14 0
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15m er Cold_1/anti-p53 m Ab (30 ug/ml)

Cycle: 59  15mer Cold_1  216.8 

Fitted Cycle: 59  15mer Cold_1  

Cycle: 60  15mer Cold_1  8 nM

Fitted Cycle: 60  15mer Cold_1  

Cycle: 61  15mer Cold_1  24.1 n

Fitted Cycle: 61  15mer Cold_1  

Cycle: 62  15mer Cold_1  72.3 n

Fitted Cycle: 62  15mer Cold_1  

Cycle: 63  15mer Cold_1  216.8 

Fitted Cycle: 63  15mer Cold_1  

Curve ka (1/Ms) kd (1/s) KD (M) Rmax (RU) Conc (M) tc Flow (ul/min) kt (RU/Ms) RI (RU) Chi² (RU²) U-value

 4.69E+05 0.004324 9.21E-09 23.5 4.98E+14 1.73 3

Cycle: 59  216.8 nM 2.17E-07 30 1.55E+15 0

Cycle: 60  8 nM 8.00E-09 30 1.55E+15 0

Cycle: 61  24.1 nM 2.41E-08 30 1.55E+15 0

Cycle: 62  72.3 nM 7.23E-08 30 1.55E+15 0

Cycle: 63  216.8 nM 2.17E-07 30 1.55E+15 0
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15m er Cold_2/anti-p53 m Ab (30 ug/ml)

Cycle: 67  15mer Cold_2  216.8 

Fitted Cycle: 67  15mer Cold_2  

Cycle: 68  15mer Cold_2  8 nM

Fitted Cycle: 68  15mer Cold_2  

Cycle: 69  15mer Cold_2  24.1 n

Fitted Cycle: 69  15mer Cold_2  

Cycle: 70  15mer Cold_2  72.3 n

Fitted Cycle: 70  15mer Cold_2  

Cycle: 71  15mer Cold_2  216.8 

Fitted Cycle: 71  15mer Cold_2  

Curve ka (1/Ms) kd (1/s) KD (M) Rmax (RU) Conc (M) tc Flow (ul/min) kt (RU/Ms) RI (RU) Chi² (RU²) U-value

 5.90E+05 0.003279 5.56E-09 22.58 5.37E+14 1.95 4

Cycle: 67  216.8 nM 2.17E-07 30 1.67E+15 0

Cycle: 68  8 nM 8.00E-09 30 1.67E+15 0

Cycle: 69  24.1 nM 2.41E-08 30 1.67E+15 0

Cycle: 70  72.3 nM 7.23E-08 30 1.67E+15 0

Cycle: 71  216.8 nM 2.17E-07 30 1.67E+15 0
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15m er Native_1/anti-p53 m Ab (30 ug/m l)

Cycle: 77  15mer Native_1  217.

Fitted Cycle: 77  15mer Native_1

Cycle: 78  15mer Native_1  8.1 

Fitted Cycle: 78  15mer Native_1

Cycle: 79  15mer Native_1  24.2

Fitted Cycle: 79  15mer Native_1

Cycle: 80  15mer Native_1  72.6

Fitted Cycle: 80  15mer Native_1

Cycle: 81  15mer Native_1  217.

Fitted Cycle: 81  15mer Native_1

Curve ka (1/Ms) kd (1/s) KD (M) Rmax (RU) Conc (M) tc Flow (ul/min) kt (RU/Ms) RI (RU) Chi² (RU²) U-value

 1.10E+06 0.008492 7.70E-09 15.81 2.68E+13 0.804 4

Cycle: 77  217.7 nM 2.18E-07 30 8.33E+13 0

Cycle: 78  8.1 nM 8.10E-09 30 8.33E+13 0

Cycle: 79  24.2 nM 2.42E-08 30 8.33E+13 0

Cycle: 80  72.6 nM 7.26E-08 30 8.33E+13 0

Cycle: 81  217.7 nM 2.18E-07 30 8.33E+13 0
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15m er Native N/anti-p53 m Ab

Cycle: 85  15mer Native N  8.1 

Fitted Cycle: 85  15mer Native N

Cycle: 86  15mer Native N  24.2

Fitted Cycle: 86  15mer Native N

Cycle: 87  15mer Native N  72.6

Fitted Cycle: 87  15mer Native N

Cycle: 88  15mer Native N  217.

Fitted Cycle: 88  15mer Native N

Cycle: 89  15mer Native N  217.

Fitted Cycle: 89  15mer Native N

Curve ka (1/Ms) kd (1/s) KD (M) Rmax (RU) Conc (M) tc Flow (ul/min) kt (RU/Ms) RI (RU) Chi² (RU²) U-value

 8.08E+05 0.005697 7.05E-09 21.23 8.73E+13 1.03 3

Cycle: 85  8.1 nM 8.10E-09 30 2.71E+14 0

Cycle: 86  24.2 nM 2.42E-08 30 2.71E+14 0

Cycle: 87  72.6 nM 7.26E-08 30 2.71E+14 0

Cycle: 88  217.7 nM 2.18E-07 30 2.71E+14 0

Cycle: 89  217.7 nM 2.18E-07 30 2.71E+14 0
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15m er Native_2/anti-p53 m Ab (30 ug/m l)

Cycle: 85  15mer Native_2  217.

Fitted Cycle: 85  15mer Native_2

Cycle: 86  15mer Native_2  8.1 

Fitted Cycle: 86  15mer Native_2

Cycle: 87  15mer Native_2  24.2

Fitted Cycle: 87  15mer Native_2

Cycle: 88  15mer Native_2  72.6

Fitted Cycle: 88  15mer Native_2

Cycle: 89  15mer Native_2  217.

Fitted Cycle: 89  15mer Native_2

Curve ka (1/Ms) kd (1/s) KD (M) Rmax (RU) Conc (M) tc Flow (ul/min) kt (RU/Ms) RI (RU) Chi² (RU²) U-value

 1.22E+06 0.007612 6.22E-09 15.25 5.43E+19 0.839 4

Cycle: 85  217.7 nM 2.18E-07 30 1.69E+20 0

Cycle: 86  8.1 nM 8.10E-09 30 1.69E+20 0

Cycle: 87  24.2 nM 2.42E-08 30 1.69E+20 0

Cycle: 88  72.6 nM 7.26E-08 30 1.69E+20 0

Cycle: 89  217.7 nM 2.18E-07 30 1.69E+20 0
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15m er Hot N_1/anti-p53 mAb

Cycle: 51  15mer Hot N_1  7.6 n

Fitted Cycle: 51  15mer Hot N_1 

Cycle: 52  15mer Hot N_1  22.7 

Fitted Cycle: 52  15mer Hot N_1 

Cycle: 53  15mer Hot N_1  68.2 

Fitted Cycle: 53  15mer Hot N_1 

Cycle: 54  15mer Hot N_1  204.7

Fitted Cycle: 54  15mer Hot N_1 

Cycle: 55  15mer Hot N_1  204.7

Fitted Cycle: 55  15mer Hot N_1 

Curve ka (1/Ms) kd (1/s) KD (M) Rmax (RU) Conc (M) tc Flow (ul/min) kt (RU/Ms) RI (RU) Chi² (RU²) U-value

 8.72E+05 0.006589 7.56E-09 28.04 3.45E+18 1.59 3

Cycle: 51  7.6 nM 7.60E-09 30 1.07E+19 0

Cycle: 52  22.7 nM 2.27E-08 30 1.07E+19 0

Cycle: 53  68.2 nM 6.82E-08 30 1.07E+19 0

Cycle: 54  204.7 nM 2.05E-07 30 1.07E+19 0

Cycle: 55  204.7 nM 2.05E-07 30 1.07E+19 0
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15m er Hot N_2/anti-p53 mAb

Cycle: 59  15mer Hot N_2  7.6 n

Fitted Cycle: 59  15mer Hot N_2 

Cycle: 60  15mer Hot N_2  22.7 

Fitted Cycle: 60  15mer Hot N_2 

Cycle: 61  15mer Hot N_2  68.2 

Fitted Cycle: 61  15mer Hot N_2 

Cycle: 62  15mer Hot N_2  204.7

Fitted Cycle: 62  15mer Hot N_2 

Cycle: 63  15mer Hot N_2  204.7

Fitted Cycle: 63  15mer Hot N_2 

Curve ka (1/Ms) kd (1/s) KD (M) Rmax (RU) Conc (M) tc Flow (ul/min) kt (RU/Ms) RI (RU) Chi² (RU²) U-value

 8.39E+05 0.006469 7.71E-09 28.3 3.55E+19 1.51 3

Cycle: 59  7.6 nM 7.60E-09 30 1.10E+20 0

Cycle: 60  22.7 nM 2.27E-08 30 1.10E+20 0

Cycle: 61  68.2 nM 6.82E-08 30 1.10E+20 0

Cycle: 62  204.7 nM 2.05E-07 30 1.10E+20 0

Cycle: 63  204.7 nM 2.05E-07 30 1.10E+20 0
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15m er Hot N_3/anti-p53 mAb

Cycle: 67  15mer Hot N_3  7.6 n

Fitted Cycle: 67  15mer Hot N_3 

Cycle: 68  15mer Hot N_3  22.7 

Fitted Cycle: 68  15mer Hot N_3 

Cycle: 69  15mer Hot N_3  68.2 

Fitted Cycle: 69  15mer Hot N_3 

Cycle: 70  15mer Hot N_3  204.7

Fitted Cycle: 70  15mer Hot N_3 

Cycle: 71  15mer Hot N_3  204.7

Fitted Cycle: 71  15mer Hot N_3 

Curve ka (1/Ms) kd (1/s) KD (M) Rmax (RU) Conc (M) tc Flow (ul/min) kt (RU/Ms) RI (RU) Chi² (RU²) U-value

 8.42E+05 0.006532 7.76E-09 28.22 6.76E+16 1.55 3

Cycle: 67  7.6 nM 7.60E-09 30 2.10E+17 0

Cycle: 68  22.7 nM 2.27E-08 30 2.10E+17 0

Cycle: 69  68.2 nM 6.82E-08 30 2.10E+17 0

Cycle: 70  204.7 nM 2.05E-07 30 2.10E+17 0

Cycle: 71  204.7 nM 2.05E-07 30 2.10E+17 0

-10

-5

0

5

10

15

20

25

30

-100 -50 0 50 100 150 200 250

Tim e s

RU

R
e

s
p

o
n

s
e

19m er_3/anti-p53 m Ab

Cycle: 43  19mer_3  6.1 nM

Fitted Cycle: 43  19mer_3  6.1 n

Cycle: 44  19mer_3  18.3 nM

Fitted Cycle: 44  19mer_3  18.3 

Cycle: 45  19mer_3  54.9 nM

Fitted Cycle: 45  19mer_3  54.9 

Cycle: 46  19mer_3  164.8 nM

Fitted Cycle: 46  19mer_3  164.8

Cycle: 47  19mer_3  164.8 nM

Fitted Cycle: 47  19mer_3  164.8

Curve ka (1/Ms) kd (1/s) KD (M) Rmax (RU) Conc (M) tc Flow (ul/min) kt (RU/Ms) RI (RU) Chi² (RU²) U-value

 6.04E+05 0.009157 1.52E-08 27.42 1.94E+07 0.165 1

Cycle: 43  6.1 nM 6.10E-09 30 6.03E+07 0

Cycle: 44  18.3 nM 1.83E-08 30 6.03E+07 0

Cycle: 45  54.9 nM 5.49E-08 30 6.03E+07 0

Cycle: 46  164.8 nM 1.65E-07 30 6.03E+07 0

Cycle: 47  164.8 nM 1.65E-07 30 6.03E+07 0
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Cycle: 25  19mer_1  6.1 nM

Fitted Cycle: 25  19mer_1  6.1 n

Cycle: 26  19mer_1  18.3 nM

Fitted Cycle: 26  19mer_1  18.3 

Cycle: 27  19mer_1  54.9 nM

Fitted Cycle: 27  19mer_1  54.9 

Cycle: 28  19mer_1  164.8 nM

Fitted Cycle: 28  19mer_1  164.8

Cycle: 29  19mer_1  164.8 nM

Fitted Cycle: 29  19mer_1  164.8

Curve ka (1/Ms) kd (1/s) KD (M) Rmax (RU) Conc (M) tc Flow (ul/min) kt (RU/Ms) RI (RU) Chi² (RU²) U-value

 6.87E+05 0.008795 1.28E-08 27.55 1.76E+07 0.281 1

Cycle: 25  6.1 nM 6.10E-09 30 5.47E+07 0

Cycle: 26  18.3 nM 1.83E-08 30 5.47E+07 0

Cycle: 27  54.9 nM 5.49E-08 30 5.47E+07 0

Cycle: 28  164.8 nM 1.65E-07 30 5.47E+07 0

Cycle: 29  164.8 nM 1.65E-07 30 5.47E+07 0
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Fitted Cycle: 33  19mer_2  6.1 n

Cycle: 34  19mer_2  18.3 nM

Fitted Cycle: 34  19mer_2  18.3 

Cycle: 35  19mer_2  54.9 nM

Fitted Cycle: 35  19mer_2  54.9 

Cycle: 36  19mer_2  164.8 nM

Fitted Cycle: 36  19mer_2  164.8

Cycle: 37  19mer_2  164.8 nM

Fitted Cycle: 37  19mer_2  164.8

Curve ka (1/Ms) kd (1/s) KD (M) Rmax (RU) Conc (M) tc Flow (ul/min) kt (RU/Ms) RI (RU) Chi² (RU²) U-value

 7.94E+05 0.008001 1.01E-08 27.12 1.49E+07 0.58 2

Cycle: 33  6.1 nM 6.10E-09 30 4.62E+07 0

Cycle: 34  18.3 nM 1.83E-08 30 4.62E+07 0

Cycle: 35  54.9 nM 5.49E-08 30 4.62E+07 0

Cycle: 36  164.8 nM 1.65E-07 30 4.62E+07 0

Cycle: 37  164.8 nM 1.65E-07 30 4.62E+07 0
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Contribution 

As the lead author of this chapter, I (Zachary Fritz) developed the toy model, performed all 

calculations, analyzed the data, made all the figures, and wrote the manuscript.  

Introduction 

A simple, fast, and user-friendly protein thermodynamic model that can accurately provide a 

per-residue decomposition of interaction free energy would fill a valuable niche in the protein 

engineering and computational drug design fields. We previously introduced the Hidden 

Symmetry Model (HSyM, see Chapter 2), which can perform this function in a matter of seconds 

using only sequence and structure information from a protein’s native conformation, 

substantially reducing computational demand compared to molecular dynamics simulations and 

Monte Carlo sampling methods. HSyM was first applied to predicting the thermostability 

changes of buried point mutations in T4 lysozyme and was able to do so with high accuracy (R2 = 

0.71) when compared with experimental data [1]. 

While the model was successful with these interior and partially buried mutations, which we 

classified as Mutation Class I (MC-I), an interesting trend was observed for those solvent 

exposed mutation sites, which we termed Mutation Class II (MC-II). HSyM’s thermostability 

predictions for the MC-II mutants gave a negative correlation (R2 =-0.22) with experimental 

data. We attributed this to the fact that the model does not currently take into account 

solvation effects for different types of residues, such as if the residue is polar, charged, or 

nonpolar. This issue manifests itself in the problem that the model will predict a stabilizing 

effect for any mutation to a higher gamma value residue (typically more hydrophobic), 

regardless of context. This assumption of course does not hold true for all mutations. For 

example, many mutations to arginine of solvent exposed hydrophobic residues in 
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acetylcholinesterase were found to be stabilizing [2], and conversely mutating the solvent 

exposed R96 site in T4 lysozyme to more hydrophobic/nonpolar residues tends to be highly 

destabilizing [3].  

To address this problem, we proposed applying a solvent interaction efficiency parameter (τ) to 

help differentiate the favorability of residues’ interactions with water molecules. This parameter 

ranges from 0 to 1 and weighs the efficiency of a residue’s interaction with water based on the 

residue’s identity (polar or nonpolar) and the magnitude of its model-calculated μ value, which 

is directly proportional to its interaction free energy. This parameter was included in the model 

when it was first introduced, but was set to a default value of 1.0 for all interactions (residue-

residue and residue-water). To aid us in determining the set of residue values for τ, we 

developed a simple 2D protein toy model that was inspired by similar models by Dill [4, 5]. This 

toy model allowed us to simulate solvent effects, protein folding and unfolding, and other 

complex behavior within a system of a limited, known number of possible protein 

conformations. We conducted a statistical mechanical analysis of this toy model to predict the 

effects of certain types of mutations on folded state stability and how changing the solvent 

interaction efficiency parameter values influences these stability changes. Going forward, we 

believe this toy model will serve as a “proving ground” for optimizing other model parameters in 

a simplified manner, rather than running hundreds of trial-and-error calculations on actual 

protein structures. 

Materials and Methods 

The Toy Model 

Our toy model represents a merging of elements from Ken Dill’s 2D heteropolymer models [4, 5] 

and HSyM itself. Protein conformations and water molecules are represented on a 2D square 



148 
 

 
 

lattice, with an amino acid residue occupying one square and unoccupied squares representing 

solvent. The polypeptide chain is represented by a numbered six residue hexomino 

configuration, with the squares constituting residues i and i+1 always sharing a side to represent 

a peptide bond. Residues are allowed to move into adjacent unoccupied squares and make 90° 

and 180° turns as long as they are still connected to their neighboring residues. All possible 

chain conformations are shown in Figure 4.1 (A), with each conformer’s associated symmetry 

and residue numbering allowing for multiple nonredundant stereoisomers and enantiomers 

(Figure 4.1 (B)), bringing the total number of conformations up to 71. 
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Figure 4.1: Toy Model Hexomino Conformations. (A) All possible hexomino conformations of the 

six-residue polypeptide chain used in the toy model. Hexominos with more than two terminal 

ends are not permitted. The hexominos are categorized by the number of residue-residue 

contacts they have: Solvated conformations have none, Partially Folded have one, and Fully 

Folded have two. The red numbers above each hexomino indicate the number stereoisomers it 

has, for a total of 71 distinct conformations. (B) An example of how a single hexomino shape can 

constitute several nonredundant conformations. 
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Residues are assigned either solvent or residue contacts based on the identity of the non-

peptide bonded squares they share a side with. In this way the terminal residues (1 and 6) are 

allowed three contacts and the interior residues (2-5) are permitted two. Unoccupied solvent 

squares are permitted to have multiple residue contacts. We classified the chain conformations 

based on the number of residue-residue contacts they have, with Fully Folded conformations 

having two, Partially Folded having one, and Solvated conformations having none. To represent 

solvent displacement upon folding and to conserve the total number of contacts (14) in the 

system, for every residue-residue contact formed an implicit solvent-solvent contact is also 

added. 

Every residue is assigned a binary identity, either Polar (P) or Nonpolar (N). Like the HSyM, each 

residue and solvent square is also given a unitless interaction factor (μ) value, representing its 

interaction free energy contribution. Unlike HSyM these values were assigned manually and not 

calculated based on the residue’s identity, the identity of its neighbors, or the chain’s secondary 

structure. Residue μ values were also assigned in a binary manner, either being “Hot” (μ = 170) 

or “Cold” (μ = 120); the cutoff value between hot and cold is an additional parameter to be 

optimized. The unoccupied solvent squares were set to a default μ value of 110, the same value 

used in Chapter 2. 

To determine the total free energy of each conformation, we calculated the sum of all the 

contacting interaction factor products in a manner similar to the energy calculations done in the 

T4 Lysozyme thermostability study (Chapter 2): 

𝐸𝐶𝑜𝑛𝑓 = −𝜆 ∑ 𝜏𝑖,𝑗  𝜇𝑖𝜇𝑗

𝑖,𝑗
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where 𝐸𝐶𝑜𝑛𝑓 is the total energy of a conformation, λ is a scaling factor with units of kcal/mol, τi,j 

is the interaction efficiency parameter for the contact, and μi and μj are interaction factor values 

for a contacting residue-residue, residue-solvent, or solvent-solvent pair. For the purposes of 

this study the τ values for all residue-residue and solvent-solvent interactions were set to a 

constant value of 1, as we are primarily interested in optimizing the interaction efficiencies for 

residue-solvent contacts. 

Statistical Mechanics Calculations 

Since the toy model has a defined number of protein conformations (71) with known energy 

values, we were able to use a fundamental equation of statistical mechanics [6] to determine 

the probability of the system existing in any given conformation: 

𝑝(𝐸𝐶𝑜𝑛𝑓) =
exp (−𝛽𝐸𝐶𝑜𝑛𝑓)

∑ exp (−𝛽𝐸𝑁)𝑁
=

exp (−𝛽𝐸𝐶𝑜𝑛𝑓)

𝑍
 

Where 𝑝(𝐸𝐶𝑜𝑛𝑓) is the probability of the system existing in the given conformation, β is the 

inverse product of the temperature T (in Kelvin) and Boltzmann’s constant (k), N is the total 

number of conformations/microstates, and the denominator Z is known as the partition 

function. From the individual conformation probabilities, the group probabilities for the Fully 

Folded, Partially Folded, and Solvated conformation classifications can be determined for a 

given temperature, and thus the Percent Unfolded character of the system at a given 

temperature can be calculated:  

% 𝑈𝑛𝑓𝑜𝑙𝑑𝑒𝑑 = 100 × (𝑝𝑆𝑜𝑙𝑣𝑎𝑡𝑒𝑑 𝐺𝑟𝑜𝑢𝑝 + 0.5 × 𝑝𝑃𝑎𝑟𝑡𝑖𝑎𝑙𝑙𝑦 𝐹𝑜𝑙𝑑𝑒𝑑 𝐺𝑟𝑜𝑢𝑝) 

Tau Parameter Optimization Workflow 

Figure 4.2 summarizes the steps taken to optimize the solvent interaction efficiency values. 

First, mutations at two different types of sites—Solvent Exposed and Partially Buried-- were 



152 
 

 
 

classified into four groups—N Hot to P Cold, N Hot to P Hot, N Hot to N Cold, and P Hot to P 

Cold—and ranked according to their predicted level of stabilization/destabilization of the Fully 

Folded state. Next, single conformation analyses were performed using a single toy model Fully 

Folded or Solvated conformation. In these analyses each of the four types of point mutations 

was performed at either of the two types of mutation sites with dozens of τ value combinations. 

Energy calculations were done using a VBA-based Excel macro. All non-mutated residues were 

assigned an N Hot identity. For water-residue interactions, the τ parameter was allowed to have 

four different values, depending on if the residue was N Hot, N Cold, P Cold, or P Hot. τ 

combinations that gave the expected mutant stability ranking were selected for further testing. 

These combinations were used in a statistical mechanics analysis in which mutations (at specific 

numbered residues) were applied to all 71 possible conformations of the toy model system at a 

range of temperatures to see how much the mutation stabilized or destabilized the folded 

ensemble. Finally, the best performing τ combination was applied to HSyM to predict point 

mutation thermostability changes in T4 lysozyme. 

Figure 4.2: Toy Model Solvent Interaction Efficiency Parameter Optimization Process 

T4 Lysozyme MC-1 and MC-2 Mutant Data 

For parameter optimization assessment, HSyM was used to predict point mutation 

thermostability shifts in T4 Lysozyme (PDB: 3FA0) with the updated solvent interaction 

efficiency terms in the same manner as was presented in Chapter 2, but this time the MC-2 
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(solvent exposed) mutations were included in addition to the original MC-1 (buried) mutations. 

The MC-2 class consists of 43 mutations found at sites 96, 105, 131, and 157, while the MC-1 

class consists of 28 mutations found at sites 3, 11, 115, 117, 119, 132, and 133. For residue-

solvent interaction efficiency assignments, the Polar (P) residues were considered to be D, E, K, 

N, Q, R, and S; all other residues were considered Nonpolar (N). Experimental thermostability 

data was obtained from a compiled review [3] and was fitted against the model’s predictions.  

Results  

Single Conformation Mutation Studies 

For the single conformation analysis, we used the “U”-shaped Fully Folded conformer shown in 

Figure 4.3 (A). Starting from the Solvent Exposed (no residue-residue contacts) residue 3 

position, we ranked the four types of mutations with respect to their predicted magnitudes of 

stabilization; two slightly different rankings were chosen due to uncertainty over whether the N 

Hot to N Cold or N Hot to P Hot mutations would be more stabilizing at this site. The wildtype 

(WT) state was established as assigning all residues an N Hot (μ =170) designation, with an 

exception for the P Hot to P Cold mutation, in which the WT state was all P Hot (μ =170) 

residues. Figure 4.3 (B) and (C) shows the two τ combinations that yielded the desired stability 

rankings, along with the degree of stabilization for each mutation type (more negative values 

are more stabilizing).  τ values greater than 0.9 or less than 0.2 were avoided, as they were 

judged to be too extreme to be realistic. 
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Figure 4.3: Single Conformation Solvent Exposed Site Analysis (A) The Fully Folded conformation 

used in this analysis, with the mutated site 3 indicated. The U-shaped black lines represent the 

peptide backbone. (B) & (C) The residue-solvent τ values for each type of residue (in the tables 

on the left) that gave the desired mutation stability rankings (in the tables on the right). 

A similar analysis was done for the residue 2 position, which was classified as a Partially Buried 

(1 residue-residue contact, 1 residue-solvent contact). Figure 4.4 shows the τ values from the 

Solvent Exposed analysis applied to the mutations at this position. In contrast to the Solvent 

Exposed site, most of the mutations were destabilizing, though this was expected as mutating to 

colder and more polar residues should weaken the residue-residue contact (with N Hot residue 

5) that this site possesses. Thus, the τ values selected from the Solvent Exposed site are still 

feasible. 
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Figure 4.4: Single Conformation Partially Buried Site Analysis (A) The Fully Folded conformation 

used in this analysis, with the mutated Site 2 indicated. (B) & (C) The same τ combinations used 

in Figure 4.3 (B) & (C) were applied to the Partially Buried site mutations, with associated 

stability rankings shown in the tables to the right. 

A comparison analysis was also done on a Solvated conformation (Figure 4.5 (A)) using the 

selected τ value combinations. Unsurprisingly, the decreases in stability for the mutations at 

residue 3 in the Solvated conformation exactly matched those of the Fully Folded conformation, 

as in both conformations the only contacts residue 3 has are two residue-solvent contacts. 

Conversely, the mutations at residue 2 tended to stabilize the Solvated conformation (Figure 4.5 

(B) & (C)). This also made intuitive sense: more polar polypeptide chains are more likely to be 

soluble in aqueous solutions, and trends from our work with HSyM suggest that colder (lower μ 

value) residues seem to favor being solvent exposed. However, it is interesting to note that the 

stability of the Solvated state mutations does not necessarily inversely correlate with the 

destabilizing effect of the mutations at this site in the Fully Folded conformation. 
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Figure 4.5: Solvated Single Conformation Analysis (A) The Solvated conformation and mutation 

site used in this analysis. Mutations at site 3 gave the same stability values as those at site 3 in 

the Fully Folded conformation (Figure 4.3), and so are not shown here. (B) & (C) The τ values 

from the Fully Folded analyses were applied to mutating site 2 in the Solvated conformation, 

with the resulting stability changes shown in the tables to the right. 

Statistical Mechanics Analysis 

The two sets of solvent interaction efficiency (τ) values chosen in the single conformation 

analysis were applied to all 71 possible toy model conformations in a statistical mechanics 

analysis. The same four types of mutations used in the single conformation analysis were 

applied to residues 2 and 3 in all conformations, with the wildtype (WT) state again being all 

residues set to a N Hot designation (except for the P Hot to P Cold mutation). Figures 4.6 and 4.7 

show the melting curves for the toy model system for both mutant sites and τ combinations. 

Increasing the N Hot or P Hot (the default residue types for the WT) τ values by an increment of 
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0.1 shifted both WT and mutant melting curves to the left by about 50K, indicating an increased 

preference for the Extended conformations and a destabilization of the Folded states. It should 

also be noted that changing the scaling factor, λ (set to 3E-5 kcal/mol for this study), will also 

shift the melting curves, as shown in Supplementary Figure S4.1. Decreasing λ will increase the 

slope of the transition region of the curve, as it will take a smaller amount of thermal energy 

(temperature increase) to overcome the smaller energy differences between the Solvated and 

Folded conformations, causing the protein to denature at lower temperatures. 

 

Figure 4.6: Melting Curves for Wildtype (WT) and Site 3 Mutants. (A)-(D) mutations used the τ 

values from Combination 1 (Figure 4.3 (B)), with average % Unfolded differences between 

mutant and WT of 3.54%, 3.32%, 0.47%, and 2.27% respectively for the region between 200 and 

500K. (E)-(H) mutations used the τ values from Combination 2 (Figure 4.3 (C)), with average % 

Unfolded differences between mutant and WT of 3.10%, 3.02%, 0.83%, and 2.13% respectively 

for the region between 200 and 500K. 
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Figure 4.7: Melting Curves for Wildtype (WT) and Site 2 Mutants. (A)-(D) mutations used the τ 

values from Combination 1 (Figure 4.3 (B)), with average % Unfolded differences between 

mutant and WT of 1.27%, 1.33%, 0.19%, and 0.88% respectively for the region between 200 and 

500K. (E)-(H) mutations used the τ values from Combination 2 (Figure 4.3 (C)), with average % 

Unfolded differences between mutant and WT of 1.10%, 1.22%, 0.31%, and 0.77% respectively 

for the region between 200 and 500K. 

Most of the mutations at Site 3 tended to slightly destabilize the system compared to WT, 

ranging from a 2-4% increase in the unfolded percentage for the portion of the melting curve 

from 200 to 500K. The exception to this was the N Hot to P Hot mutation, which was a very 

neutral mutation with the unfolded percentage difference between mutant and WT not 

exceeding 1% for the same temperature range. By contrast, all of the mutations at Site 2 were 

very neutral, with the unfolded differences between mutant and WT not exceeding 1.5%.  

The differences in destabilization between the mutants at sites 2 and 3 comes from the how 

often each site is fully solvent exposed (2 residue-solvent contacts and no solvent-solvent 
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contacts) in the ensemble of conformations. Site 3 is only fully solvent exposed in half of the 

Fully Folded conformations and 64% of the Partially Folded ones, whereas Site 2 is fully solvent 

exposed in 75% of the Fully Folded conformations and 73% of the Partially Folded ones. Since 

our τ values favor contacts between polar and/or cold residues with solvent, the mutations at 

Site 2 were better able to compensate for any destabilizing effects due to disruption of residue-

residue contacts. The effect of solvent accessibility on mutation destabilization was also 

demonstrated with two double mutations of sites 2 and 3 from N Hot to P Cold for both sets of τ 

values (Supplementary Figure S4.2). Since both sites are only completely solvent exposed in a 

quarter of the Fully Folded conformations, the mutation to a colder polar residue will prove 

unfavorable for the residue-residue contacts these sites have and greater destabilization will 

occur. A similar effect is seen when mutating the terminal residue at site 1 (Supplementary 

Figure S4.3), which is never completely solvent exposed in the Fully Folded conformations. 

T4 Lysozyme MC-1 and MC-2 Assessment 

The two selected τ combinations were implemented into the existing HSyM code and algorithm 

and used to predict thermostability changes in T4 lysozyme for both the MC-1 (mostly buried) 

and MC-2 (mostly solvent exposed) mutation classes. The μ cutoff value for what residues were 

considered “hot” was set to 135 and above, and only D, E, K, N, Q, R, and S residues were 

considered “Polar”. Figure 4.8 shows the MC-1 and MC-2 HSyM calculated thermostability 

changes fitted against experimental data for both τ value combinations as well as the original 

default setting of all τ values set to 1.0. It is apparent that neither selected τ combination 

improved the accuracy of the model with regards to the MC-2 mutations. Increasing or 

decreasing the hot μ cutoff value by increments of 5 between a range of 120-150 did not 

significantly improve the correlations (data not shown), though removing HSyM’s entropy and 
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temperature terms from the calculations did cause the MC-2 correlations to have a more 

negative correlation (from R2 = -0.09 to -0.46 for τ combination 2). 

 

Figure 4.8: Comparison of HSyM Calculated and Experimental Thermostability Data for MC-1 

and MC-2 Mutations of T4 Lysozyme. (A) The HSyM calculations were done in the same way as 

Chapter 2, with τ = 1.0 for all residue-solvent and residue-residue interactions. (The line of best 

fit and R2 values differ slightly from the original published data due to modifications made to 

HSyM’s contact and entropy assignment coding). (B)-(C) HSyM calculations were done using the 

4-fold residue-solvent τ values from τ Combinations 1 and 2. All residue-residue τ values 

remained 1.0. 

Conclusions and Discussion 

While the solvent interaction efficiency parameters chosen in this analysis did not yield 

improved predictive fits for the solvent exposed MC-2 mutations, the toy model developed 

herein did provide several valuable insights. For example, while residue 96 in T4 lysozyme is 

classified as an MC-2 site and is indeed on the surface of the protein, it also makes contacts with 
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several other (mostly warm or hot) residues, similar to the “partially buried” sites in the toy 

model that have both solvent and residue contacts. Determining the proper balance in solvent 

interaction efficiency terms for these sorts of “hybrid” residues will be a central challenge in 

improving HSyM. Several possible alternatives to a 4-value residue-solvent τ parameter based 

on residue identity (N or P) and μ value (Hot or Cold) should be tried, including a binary 

designation based on residue identity (N or P), a linear function/continuum of τ values rather 

than 4 discrete values, and a method that takes into account the number of residue contacts an 

amino acid has before assigning a τ value. Additionally, more mutations from other 

thermodynamically well-characterized proteins (barnase, staph nuclease) should be assessed, 

with a special emphasis on categorizing mutants based on if they are buried, solvent exposed, or 

a blend of the two. 

Of course, the problem of the MC-2 mutations might lie primarily in another facet of the model. 

It is highly likely, for example, that the interaction efficiency parameters for certain types of 

residue-residue contacts should not be equal to the default value of 1.0 (100% efficient); it 

makes more sense for hydrophobic residues to suffer a penalty when interacting with polar and 

charged side chains. Other potential sources of error in HSyM include limiting residues to 6 

contacts, not taking into account side chain length changes (and potential gain or loss of 

contacts) when mutating residues, or a more fundamental flaw in one of the model’s other 

parameters (γ, χ, or σ). 

In contrast with the single conformation analyses, in the statistical mechanics analysis we could 

not isolate a single residue position that was always either fully solvent exposed or partially 

buried. While this made stabilizing the Folded conformations by mutating a residue from N to P 

or Hot to Cold difficult, it is more representative of reality than a single conformation analysis. 

Proteins have many stable and semi-stable conformations, each with its own ensemble of 
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microstates with an associated free energy; indeed, the “native state” of a protein actually 

consists of an ensemble of fluctuating microconformations [7]. For this reason, it is certain that 

a given residue will not always be solvent exposed, buried, or partially buried for all protein 

conformations. The fact that such a simple toy model can simulate protein behavior so well 

makes it an attractive tool for us to test and optimize HSyM. In the near future we hope to use it 

to optimize not only the interaction efficiency parameter for both solvent-residue and residue-

residue contacts, but also the water/solvent μ value and its dependence on temperature in 

order to simulate complex behavior like cold denaturation [8]. 

Supplementary Figures 

 

Figure S4.1: The Effect of the Scaling Factor (λ) on Toy Model Melting Curves. The WT (all N Hot) 

state with Tau Combination 2 was used to generate these curves. The default λ value used in 

this study was 3E-5 kcal/mol. 



163 
 

 
 

 

Figure S4.2: Melting curves for a Double N Hot to P Cold Mutation at Sites 2 and 3. (A) The 

mutation using τ Combination 1, with an average % Unfolded difference between mutant and 

WT of 5.48% for the region between 200 and 500 K. (B) The mutation using τ Combination 2, 

with an average % Unfolded difference between mutant and WT of 4.99% for the region 

between 200 and 500 K. 
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Figure S4.3: Melting Curves for the N Hot to P Cold Mutation at Site 1. (A) The mutation using τ 

Combination 1, with an average % Unfolded difference between mutant and WT of 7.94% for 

the region between 200 and 500 K. (B) The mutation using τ Combination 2, with an average % 

Unfolded difference between mutant and WT of 7.44% for the region between 200 and 500 K. 
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Contribution 

As the lead author of this chapter, I planned and conducted the majority of the experiments, 

analyzed the data, made the figures, and wrote the manuscript. 

Introduction 

Microfluidic devices have ushered in the promise of point-of-care diagnostics that can be 

utilized immediately in the clinic or in low-resource locations. This technology, often referred to 

as biomedical microelectromechanical systems (BioMEMS) or “lab-on-a-chip”, aims to not only 

reduce the physical laboratory and cost footprints for common procedures, but also may allow 

these procedures to be performed faster and easier due to the smaller sample and reagent 

volumes required [1, 2]. Prototype BioMEMS devices have been developed by research teams to 

perform a variety of tasks, including blood counts [3], flow cytometry [4], and various 

biochemical assays [5, 6]. A subset of BioMEMS, known as centrifugal microfluidics or “lab-on-a-

disk”, further reduces the footprint of these devices by eliminating the need for fluid pumps, 

instead using centrifugal force to actuate fluid flow through the microfluidic chip [7]. 

Our objective is to develop a fully integrated, centrifugal microfluidic device that will contain all 

the components necessary to perform a diagnostic blood or sera immunoassay. An example of 

one such immunoassay would use Luminex microbeads functionalized with peptide antigens, 

designed using HSyM as described in Chapter 3, to detect cancer associated autoantibodies in 

patient blood. The use of microbeads allows us greater biomarker capture surface area, the 

possibility of multiplexed assays, and the ability to try unique sample mixing strategies [8, 9]. 

This work will be building off of the success of a device previously developed by our lab, a 

centrifugal microfluidic platform able to perform white blood cell counts [10, 11]. Our aim is to 

adapt this device by optimizing the microfluidic chip, sample mixing method, and optical 
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detection system towards a microbead-based immunoassay function. Other elements of the 

device which contributed to its success, such as its centrifugal fluid actuation and automated 

sample handling, will be retained. 

This chapter presents two microfluidic chip designs based on two different sample mixing 

strategies: magnetic microbead mixing and mixing using surface acoustic waves (SAWs). Sample 

and reagent mixing is a critical concern in microfluidic immunoassays, as the low Reynolds 

number creeping flow profile associated with these devices limits mixing to slow diffusion unless 

special strategies are employed [12].  The disadvantages and advantages of each method are 

outlined, as well as the results of preliminary mixing and fluid actuation experiments. A section 

on how the optical detection system will have to be redesigned to accommodate a microbead-

based immunoassay is also presented. Finally, the Conclusions and Discussion section 

summarizes the work done to date and discusses the ongoing and future objectives that must 

be accomplished. 

Magnetic Microbead Mixing 

Various groups have utilized the magnetic character of microbeads to overcome the obstacle of 

low Reynolds number flow in microfluidic channels and achieve efficient sample mixing [13, 14]. 

The largest inspiration we drew from was the batch-mode centrifugal magnetic mixing 

developed by Grumann et al., in which the researchers placed permanent magnets in alternating 

positions above the orbit of the spinning microfluidic disk [15]. The most efficient mixing was 

achieved when these magnets were combined with periodically switching the direction of the 

microfluidic disk’s spin, with optimum mixing occurring with a maximum spin speed of 8 Hz and 

a spin switching acceleration of 32 Hz s-1. This method of mixing was deemed most applicable to 

our device, as the immunoassay’s sample and reagent mixing steps will involve batch-mode 
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mixing within a central mixing chamber. A major advantage of this method of mixing is its ease 

of implementation, as no on-chip electric or mechanical features are required.  

Magnetic Mixing Chip Design and Manufacturing 

Prototype microfluidic chips for this method of sample mixing were made out of alternating 

layers of 1/16” polyacrylic and pressure sensitive adhesive using an Epilog Zing laser cutter. 

SolidWorks software was used to design the microchannels, microchambers, and other features. 

To maintain a microfluidic flow profile, the inlet and mixing chambers and the microchannels 

connecting them were patterned in the thin first adhesive layer, while a waste channel and 

chamber was added to the second adhesive and acrylic layers beneath this. A micropore 

membrane filter (Sterlitech)—either a transparent polyester (PETE) filter with 0.4 μm pore size 

or an opaque polycarbonate (PCTE) filter with 1.0 μm pore size—was placed underneath the 

central mixing chamber between the polyacrylic and adhesive layers to allow waste liquid to 

flow downwards while trapping the 6 μm Luminex microbeads within the chamber. An example 

device design is shown in Figure 5.1. 
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Figure 5.1 (previous page): Prototype Microfluidic Chip Design for Magnetic Mixing Method. (A) 

Typical features for each layer of the chip, with the final design having additional microchannel 

geometries (straight, serpentine, and siphon) for sequential flow control. (B) Direction of liquid 

flow through the chip. 

Flow Actuation Testing 

Immunoassays require the precise addition and removal of reagents and buffers in sequential 

steps. While many microfluidic devices make use of pneumatic, magnetic, and other types of 

valves that require active actuation [16], centrifugal systems offer the advantage of using 

passive valve designs that depend on microchannel geometry, capillary forces, and changes in 

the spin speed and centrifugal force to control fluid flow [7, 17]. Examples of these types of 

valves include capillary burst valves and siphon valves.  

 

Figure 5.2: Sequential Flow Control by Varying Microchannel Geometries. Each unit of this 

prototype chip consists of two reservoir chambers connected to a reaction chamber by two 

different types of capillary valves (straight channel or serpentine channel), with the reaction 

chamber venting to a waste chamber via a siphon valve. In the photo series demonstration, 

accelerating the rotational spin to 550 RPM allows fluid from sample reservoir 1 (red arrows) to 
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prime the straight channel, then overcome the capillary forces to enter the reaction chamber at 

600 RPM. Further acceleration (700-800 RPM) allows the fluid to begin exiting the reaction 

chamber and priming the siphon valve. Acceleration to 1100 RPM causes fluid to fully exit the 

siphon valve, while fluid from sample reservoir 2 (yellow arrows) primes the serpentine capillary 

valve. Finally, at 1200 RPM this fluid bursts through the capillary valve to enter the reaction 

chamber. These images were obtained using a strobe light synchronized with the spin speed of 

the chip. 

To demonstrate the feasibility of using passive valves for differential flow control in our device, 

we designed a prototype chip with three different types of valve geometries: a straight channel 

capillary valve, a serpentine capillary valve, and a siphon valve. A 3D-printed custom stage 

allowed us to secure the chip with screws to a spinning rotor which was controlled with a 

custom LabView program. Figure 5.2 shows how sequential fluid flow into and out of a central 

chamber was achieved by altering the spin speed of the disk. 

A simple experiment was also performed to compare the two types of membrane filters’ 

permeability to fluid flow. The same volume of dyed water was added to chambers on the same 

chip with either the 0.4 μm pore size PETE filter or the 1.0 μm pore size PCTE filter affixed to the 

bottom. The chip was spun at 1000 RPM for 30 seconds, and as Figure 5.3 shows almost all of 

the liquid passed through the 1 μm filter while only a fraction passed through the 0.4 μm filter. 

However, a transparent material like PETE might be better suited for optical detection of the 

microbead, so additional filter testing using other pore sizes and materials is needed. 



172 
 

 
 

 

Figure 5.3: Comparison of Two Micropore Membrane Filter for Liquid Flow Permittance 

Magnetic Mixing Preliminary Testing 

We employed a similar mixing strategy as Grumann et al, in which small square (6.35 x 6.35 mm) 

neodymium magnets were placed in alternating positions (bordering the inside and outside 

walls of the microfluidic chip’s mixing chamber) underneath the spinning microfluidic chip. The 

chip’s spin direction was also periodically switched, usually either every 30 or 60 seconds. When 

using high concentrations of microbeads at low to moderate (20-300 RPM) spin speeds it was 

apparent that this mixing method biased the beads towards either upper or lower walls of the 

mixing chamber, depending on the spin direction (Figure 5.4 (A)). By contrast, if magnets 

weren’t used the centrifugal force tended to send the beads to the outside wall.  

To assess the efficacy of this mixing method, the mixing chambers of two chips were loaded 

with the same amount of p53 peptide antigen-functionalized microbeads (see Chapter 3) and a 

solution of an anti-p53 monoclonal antibody at 100 ng/mL. In these experiments one chip was 

always kept stationary as a control, while the other subjected to varying magnetic mixing 

strategies (magnet placement, spin speed, spin switching interval times). At the end of this 

primary mixing/incubation step, the microbeads were removed from each chip and placed into a 
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96-well filter plate where the remaining immunoassay steps (washing, detection antibody 

incubation, and fluorophore labeling) were carried out using a standard BioRad protocol; the 

bead fluorescent signals were then read using a BioPlex 200 plate reader. In every experiment, 

there was no significant difference between the mixed and unmixed/stationary microbeads 

(Figure 5.4 (B)-(C)). Potential reasons for this and ways to possibly rectify this problem are 

explored in the Conclusions and Discussion section of this chapter. 

 

Figure 5.4: Magnetic Microbead Mixing Experiments. (A) Not using any magnets and spinning 

the chip tended to bias the microbeads towards the outer (right) wall, while employing magnets 

at low to moderate spin speeds would bias the beads in the direction opposite of the spin 

direction (upper and lower walls). (B) In this experiment a 3-layer (acrylic, adhesive 

microchamber layer, acrylic) chip was spun with 4 uL of total liquid (2 uL microbead solution, 2 

uL antibody standard) at speeds of 100 and -100 RPM for 30 minutes, with spin switching every 

1 minute. (C) In this experiment a 5 layered chip (acrylic, adhesive microchamber layer, acrylic 

microchamber layer, adhesive microchamber layer, acrylic) with a 70 μL total mixing volume (10 

μL microbeads solution + 60 μL antibody standard) was spun at 300 and -300 RPM for 30 

minutes with spin switching every 1 minute.  
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Surface Acoustic Wave (SAW) Mixing 

Surface acoustic waves (SAWs) are high frequency (10–1,000 MHz) mechanical waves 

propagated along the surface of a material rather than through the bulk of it [18]. In BioMEMS 

SAWs are typically generated using a type of electrode, interdigitated transducers (IDTs), 

patterned on a piezoelectric substrate like lithium niobate (LiNbO3) [19]. SAWs have been used 

in a variety of BioMEMS devices to achieve efficient mixing in microchannels, droplets, and 

chambers [20-22]. 

 

SAW Electrode and Prototype Device Manufacturing 

Due to the need to manufacture microscale IDTs and bond them to a LiNbO3 substrate, a 

combination of photolithography, soft lithography, and a molten metal injection method was 

used to create a prototype microchannel-based device. A summary of these manufacturing 

steps is shown in Figure 5.5. First, photolithography using negative photoresist (SU-8) was used 

to pattern the microchannels and IDT features on a silicon wafer at a height of 50 μm (Figure 5.5 

(A)). IDT features were placed near microchannel corners or junctions for maximum SAW 

propagation down the length of the channel. This wafer was used as a mold for soft lithography 

to form the device features in polydimethylsiloxane (PDMS). Molten indium was then pulled into 

the PDMS IDT channels with a vacuum and allowed to cool, forming the electrodes. This 

injection method was able to form IDT “fingers” with a minimum width of 35 μm. The PDMS 

containing the microchannels and IDTs was then bonded to a LiNbO3 substrate. 
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Figure 5.5: SAW IDT and Microchannel Manufacturing. (A) The photolithographically patterned 

mold used to cast the IDT and microchannel features into PDMS via soft lithography. (B) The 

molten metal (indium) injection process for forming the IDT electrodes. (C) A completed IDT 

SAW Mixing Preliminary Testing 

To assess the turbulent mixing ability of the SAWs generated by our IDTs, two streams of dyed 

water dyed red or green were loaded into the device with a syringe pump. Prior to SAW 

generation, the two streams exhibited a typical laminar flow profile (Figure 5.6 (A) & (D)), with 

whichever stream that had the higher flow rate assuming a wide profile in the center of the 

microchannel and the stream with lower flow rate flanking it along the channel walls. SAWs with 

a frequency of 16 MHz and amplitude of 5.0 dBm were generated by connecting the IDTs to a 

high frequency generator and amplifier. Figure 5.6 (B) & (E) shows the perturbation in the 

laminar flow after the electrodes were excited. Interestingly, this perturbation was maintained 

even after the signal generator was shut off (Figure 5.6 (C) &(F)), though the time duration of 

this perturbation was not recorded. 
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Figure 5.6: SAW Mixing Experiment. The flow profiles of the dyed red and green streams are 

shown (A) & (D) prior to electrode excitation, (B) & (E) immediately after electrode excitation, 

and (C) & (F) after the electrode was turned off. The lower images were obtained from inverting 

the flow rates of the upper images so that the red dyed liquid had the wider central flow profile. 

Optical Detection Setup and Preliminary Testing 

The previous iteration of our lab’s blood analysis device had an integrated optical detection 

system, consisting of a built-in microscope (10x objective lens, LED light source, interchangeable 

red and blue filters) and a CMOS camera [10]. While this system sufficed for detecting and 

imaging white blood cells that are stained with acridine orange, this setup would not be 

sensitive enough to detect the significantly smaller Luminex microbeads (6.5 μm vs the typical 

WBC size of 12-15 μm) that are externally labeled with minute amounts of phycoerythrin or a 

similar fluorophore.  

We assessed the detection performance of a silicon photodiode (SPD, Thorlabs, PDA36A, 13 

mm2 area) and an avalanche photodiode (APD, Thorlabs, APD130A, 1 mm diameter active area). 

The detectors were connected to an oscilloscope (Agilent, DSO1052B) for signal readout in the 

setup shown in Figure 5.7 (A). P53 peptide antigen-functionalized microbeads (see Chapter 3) 
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were incubated with anti-p53 monoclonal antibody standards at 0, 25, or 100 ng/mL using a 

standard BioRad immunoassay kit and protocol, except 100 ug/mL streptavidin-AlexaFluor 488 

was used as the labeling fluorophore instead of streptavidin-phycoerythrin. These beads were 

loaded onto polyacrylic microfluidic chip and localized into central clumps with a neodymium 

magnet. A 50x objective lens and camera was used to image the beads and position the stage 

and microfluidic chip, and a blue LED was used as an excitation light source for the AF-488. 

While the silicon photodiode could not discriminate between the three types of microbeads, the 

avalanche photodiode did detect a signal difference of 0.9-1.4 mV between the blank and 100 

ng/mL microbeads (Figure 5.7 (C)). 
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Figure 5.7: Optical Detection System Testing (A) The setup used for optical detector testing. A 

silicon photodiode (not shown) was later substituted with an avalanche photodiode for greater 

sensitivity. (B) An example of a microbead clump imaged and analyzed for fluorescent signal (C) 

Results of a simple detection experiment using the avalanche photodiode detector. 

“Background” refers to the background signal with no beads present. No detectable difference 

in fluorescent signal was detected between the background signal and clumps of beads exposed 

to the negative antibody control, but after controlling for bead number a significant difference 



179 
 

 
 

was observed between the negative and positive (100 ng/ml) antibody controls. The 

oscilloscope settings used were: Channel 1 VPD: 2.00 mV; Time Per Division: 100 ns 

Conclusions and Discussion 

While the work presented herein is still in the preliminary stages, it presents a valuable jumping-

off point for future development of the microfluidic blood diagnostic device. We have presented 

two options for sample-microbead mixing, demonstrated the feasibility of using microchannel 

geometry and spin direction switching for sequential flow control, and began to narrow down 

equipment options for optical detection.  

The magnetic mixing method chip design presented here is attractive due to its simplicity and 

rapid manufacturing time, which considerably saves on time, labor, and material costs. The 

negative results obtained from the preliminary magnetic mixing experiments do not necessarily 

invalidate it as mixing option. There are many considerations that should be explored, including 

using stronger magnets, placing the magnets closer to the chip, and positioning the magnets 

above (as in the Grumann paper) as well as below the chip. It should be noted that the study by 

Grumann et al used substantially larger microbeads than us (68 μm vs 6.5 μm), which likely 

meant their microbeads required higher centrifugal force to pull them to the outside and thus 

allowed them to use higher spin speeds []. We were also limited in our ability to rapidly switch 

the spin direction, relying on a manually controlled LabView program to do so. In the future a 

program should be developed to allow for automated, high frequency spin switching, similar to 

the frequencies used in the Grumman study. 

In contrast to the magnetic mixing method, the SAW-based mixing strategy would require more 

labor and time intensive chip manufacturing in order to pattern the IDT electrodes. However, 

the molten metal injection method used here substantially saves time compared to other metal 
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deposition techniques, though these techniques may prove necessary for manufacturing IDTs 

with digit widths smaller than 35 μm. Our preliminary mixing experiment and much BioMEMS 

literature showed support for SAW mixing in a microchannel flow setting, but further 

experiments with mixing in a batch (microchamber) setting are needed. A central mixing 

microchamber would likely require at least two IDTs for efficient mixing, so the configuration of 

these IDTs (parallel vs orthogonal) should also be examined. 

The preliminary optical detection experiments showed that while a silicon photodiode was not 

sensitive enough to detect antibody concentration changes on the functionalized microbeads, 

the avalanche photodiode could discriminate between the negative and positive control beads. 

We plan on testing a photomultiplier tube (PMT) detector in the future, which we expect to 

provide a higher sensitivity than the APD. Other considerations to improve sensitivity and 

reduce background signal include placing the microfluidic chip stage in a dark housing to reduce 

ambient light, using a photomask with micro apertures to only image a small area at a time, 

trying different bead localization methods (magnetization vs centrifugation), and determining an 

optimal bead concentration. 

We envision that once completed, this fully integrated microfluidic device will be able to 

perform rapid blood diagnostics assays, such as for early detection of cancer, in a point-of-care 

setting. This device also will bridge a gap between an HSyM application—binding affinity 

prediction and peptide engineering (Chapter 3)—and a practical clinical use via the 

incorporation of optimized peptide-functionalized microbeads. 
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Chapter 6: Dissertation Conclusions 
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Summary  

In this work we have introduced a coarse-grained protein energetics model that is able to 

quickly and easily convert sequence and structure data from a single protein ground state into a 

per-residue interaction free energy breakdown. We benchmarked the model by successfully 

applying it to two very different tasks: predicting point mutation thermostability shifts in T4 

Lysozyme (Chapter 2), and using it to design and predict the affinities of engineered peptide 

antigens for an antibody target for which we had no sequence or structural data (Chapter 3). We 

also show future promise for the model in optimizing its residue-solvent interaction efficiencies 

(and potentially other parameters) using a statistical mechanical toy model (Chapter 4), and for 

bridging the gap between its affinity prediction abilities and a real-world clinical application with 

a fully integrated microfluidic diagnostic blood analysis platform (Chapter 5). 

Model Limitations 

As Chapters 2 and 4 demonstrate, the model’s relationship with residue-solvent interactions 

must still be optimized. We believe this will be critical for accurately predicting the effects of 

mutations at solvent exposed and partially exposed sites. There is also some evidence (not 

presented in this work) that other parameters of the model—including the amino acid 

descriptors (γ), propagation length (χ), and solvent/water interaction factor (μwater)—may also 

need to be reassessed. 

Our work in Chapter 3 showed that it is likely that certain epitopes and protein-protein/protein-

peptide interfaces can reach an “affinity ceiling”, in which model-guided modifications will have 

little to no impact on affinity. It is likely that complete knowledge of an epitope sequence and 

the target antibody would help to overcome this. Indeed, while the presumed requirement that 

HSyM needs an experimental protein structure in order to perform optimally is certainly a 
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limitation, the good results obtained without such a structure in Chapter 3 somewhat provide a 

counterargument to this. 

HSyM as a coarse-grained, scale invariant model will also likely miss out on certain subtle atomic 

interactions or slight differences in energy between conformations. For this reason, we propose 

using it as many other coarse-grained models are applied, as a sort of in silico screening tool 

whose results can be further refined with all-atom methods (MD or MC) or tested with in vitro 

experimentation.  

Future Directions 

Presented here are lists of future tasks and experiments related to each topic discussed in this 

dissertation. 

Model Optimization 

 Use the toy model to optimize solvent interaction efficiency values by assessing a 

variety of options, including stepwise and linear functions and/or binary designations 

based only on residue identity. 

 Use the toy model to optimize the solvent/water interaction factor term, and determine 

if a temperature dependence of this term is applicable 

 Conduct sensitivity analyses on other model parameters (χ, γ, λ) to determine if they 

require further optimization 

Thermostability Prediction 

 Assess model’s performance on a variety of mutation types (buried, solvent exposed, 

and partially buried) in other thermodynamically well-characterized proteins (barnase, 

staph nuclease, etc.) 



186 
 

 
 

Affinity Prediction & Peptide Engineering 

 Select another known linear epitope and accompanying monoclonal antibody to 

determine if the model can make modifications outside of the native antigenic sequence 

that will improve affinity 

 Select and optimize other known linear epitopes from p53 and other tumor antigens to 

create a diagnostic cancer autoantibody panel and test these against clinical sera 

samples 

 Assess the model’s ability to predict epitopes: start by focusing on warm/hot solvent 

exposed regions of antigenic proteins, isolate these linear or conformational regions, 

and test against polyclonal Abs. 

Microfluidic Device 

 Complete magnetic and SAW mixing experiments and choose a mixing method and 

accompanying microfluidic chip design. 

 Test the detection performance of a PMT and develop an optical detection system 

protocol with considerations for bead localization, optimal bead concentration, size of 

the detection area, and positive signal threshold. 

 Develop a LabView program to automate steps of the assay protocol, including 

sample/reagent loading and spin speed control for fluid addition, removal, and mixing 

steps. 
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