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ABSTRACT OF THE DISSERTATION

Scaling data sharing among vehicles to tackle long tail traffic

situations

By Hongyu Li

Dissertation Director:

Marco Gruteser

Developing robust driver assistance and automated driving technologies requires an un-

derstanding of not just common highway and city traffic situations but also the long tail

of unusual or rare traffic events (e.g., objects on the roadway and pedestrian crossing high-

way, etc.). Due to the rareness, variety, and complexity of the long tail traffic conditions,

it is widely recognized that ensuring dependability under these situations remains a key

challenge for automated vehicles. Specifically, the challenges of tackling the long tail traffic

situations are threefold. (i) Due to the rareness of the long tail traffic events, understanding

these events will require accumulating data collection in the order of billions of miles. Since

most existing efforts to collect driving data build on a small fleet of highly instrumented

vehicles that are continuously operated with test drivers, it is challenging to acquire the

road data in such a large scale. (ii) Among the large amount of data needed, it is hard to

automatically identify the unusual situations which are challenging to address and could

lead to potential accidents. Although there exists a large body of work on abnormal driv-

ing event detection, they focus on detecting specific, known situations but cannot detect

previously unknown unusual road events that are missing in the current set of test cases

for automated vehicles. (iii) The complexity of diverse traffic situations makes a single

vehicle hard to sense its surrounding comprehensively. Although vehicle-to-vehicle (V2V)

communications provide a channel for point cloud data sharing, it is challenging to align
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point clouds from two vehicles with state-of-the-art techniques due to localization errors,

visual obstructions, and viewpoint differences.

To address such challenges, this thesis focuses on scaling data sharing among vehicles,

which enables low-cost road data acquisition, unusual driving events identification and accu-

rate vehicle to vehicle point cloud alignment. In particular, the proposed solution includes:

(1) A light-weight sensing and driving data logging system that can derive internal driver

inputs (i.e., steering wheel angles, driving speed and acceleration) and external perceptions

of road environments (i.e., road conditions and front-view video) using a smartphone and

an IMU mounted in a vehicle, which enables road data acquisition and sharing in hetero-

geneous driving scenarios crossing different vehicle models and drivers. (2) An automatic

unusual driving events identification system, which can detect unusual situations through a

two-pronged approach involving inertial monitoring of driver reactions and an autoencoder-

based technique for detecting unusual video scenes. (3) A two-phase point cloud registration

mechanism to fuse point clouds from two different vehicles, which focuses on key objects in

the scene where the point clouds are most similar and infer the transformation from those.

The systems are evaluated based on both experimental and simulation data, which shows

accurate road data acquisition and unusual event identification, and tremendous point cloud

fusion performance improvement when combining with state-of-art baselines.
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Chapter 1

Introduction

1.1 Motivation

Advanced driver assistance systems and, in particular, automated driving offer an unprece-

dented opportunity to transform the safety, efficiency, comfort, and economics of road travel.

This has led many organizations in the computing and transportation domains to focus on

self-driving technology research. Although a number of prototypes illustrate impressive

performance, it remains widely recognized that ensuring dependability under varied traffic

conditions remains a key challenge. Self-driving vehicles have to operate safely even under

the long tail of unusual or rare traffic events that are challenging to address and could lead

to potential accidents. While each such event may be rare, in aggregate they represent a

significant risk that technology must address to develop truly dependable automated driving

and traffic safety technologies. The average human driver achieves on the order of almost

100 million vehicle miles traveled per fatality. Demonstrating driving performance at an

above-average, advanced human driver level will therefore require successfully avoiding fa-

talities with unusual events that might be encountered within a billion miles of driving.

This motivates the need for scaling the road dataset to billions of miles of driving so that

they contain a representative set of such unusual and rare events.

Among the billions of miles of driving data that need to be collected, it is challenging to

automatically identify the unusual events and corner cases among them. Manual inspection

of collected data to flag unusual driving events is one possible solution but will require plenty

of extra effort, amplify privacy concerns, and increase storage and networking overhead for

collecting all data. In addition, simply detecting discrepancies between human drivers’

input and self-driving system’s choice is not reliable, due to the many degrees of freedom

in navigating a road. Although there exists a large body of work on abnormal driving
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event detection which can capture specific known situations, determine previously unknown

unusual event patterns that are missing in the current set of test cases for automated vehicles

remains a challenge.

Although the aggregated unusual events can improve the robustness of single-agent

automated driving system, vehicles still have to contend with (i)physical occlusions, in which

objects are blocked by others and are only partially observable or unobservable; (ii) sensing

limitations, including field of view, resolving power, or lighting conditions that may limit the

sensing range and quality. Fusing information among vehicles has the potential to overcome

such limitations by sharing observations across a V2V network and merging them across

different vehicles, since such physical occlusions and sensing limitations from one perspective

can often be easily addressed when viewing the scene from a different perspective. Although

there has been extensive research on point cloud alignment/registration, the state-of-the-

art methods cannot be directly applied to align the pairwise point clouds from vehicles,

as they require a large overlapping ratio between point cloud pairs. Due to occlusions

from surrounding objects or vehicles perceiving the scene from different directions, the

observations from different vehicles usually have little overlap ratio and fail to be aligned

by the state-of-the-art point cloud registration algorithms.

1.2 Thesis Contribution

The long tail traffic situations could be defined as the rarely happened, complex scenarios,

which are challenging to handle for human and autonomous drivers. This dissertation tries

to tackle a subset of such events, which can be classified into 2 categories based on the

root cause of their difficulty. One category is challenging due to its rareness, which is hard

to capture and may lead to insufficient training samples. The other category’s difficulty

comes from the complexity of the scene, which will make some objects to be partial or

completely invisible. The research presented in this thesis aims to tackle such long tail

events by answering the following questions: Can we sense and identify long tail traffic

situations accurately by developing low-cost inertial and vision sensing system and fusing

point clouds with surrounding vehicles?
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Specifically, this thesis answers the above questions by addressing the following three

sub-questions:

(1) Due to rareness of long tail traffic situations, it is hard for existing testing fleets

to discover and collect various unusual events since they only include limited number of

vehicles. Scaling the data collection to take advantage of daily driving vehicles will help to

accumulate the long tail traffic situations, so that the data collected from different drivers

and vehicles can be shared to build more robust driving assistance systems. However, it

is challenging to record the information accurately based on different vehicles types and

manufactures with a minimal set of devices. In order to address this challenge, this thesis

firstly tries to answer how to develop low-cost and scalable system to collect driver inputs

and road environments based on mobile devices?

(2) Although the proposed data collection system can accelerate the traffic events gath-

ering, it remains challenging to automatically identify the long tail events from a large

number of collected trips. In addition, the uploading and storage of the information may

require tremendous bandwidth and cause drivers’ privacy concern. This raises the question

of whether it is possible to identify the small fraction of useful data that represents corner

cases and challenging situations through pre-processing of the inertial and visual informa-

tion inside the vehicle, which would allow uploading only these critical events. Therefore,

this thesis secondly addressed the question that how can we automatically identify the long

tail traffic situations through inertial and vision sensing based on on-board devices?

(3) Scaling the collection and identification of unusual driving events can help to under-

stand and analyze the scenarios when such events happened. However, it remains challeng-

ing for single vehicle to perform comprehensive perception under these complex scenarios.

For example, some traffic participants cannot be detected by a vehicle, because they are

partially or fully blocked by other surrounding objects. To compromise the limitation of

single viewpoint perception, fusing information between vehicles can combine the sensing

information from different perspective. Specifically, point clouds which are generated by

stereo cameras and LiDARs can be fused from different vehicles to generate a more compre-

hensive perception of surrounding scene. However, due to the complexity of traffic scenes,

state of art of point cloud fusion algorithms can not align point clouds accurately under
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complex intersection scenarios. Therefore, this thesis thirdly tries to answer can we improve

point cloud registration accuracy between vehicles by determining the overlapping observa-

tion area?

1.2.1 Contribution Summary

To address the above questions, the key systems and contributions of this thesis are:

• Proposed a low-cost yet reliable solution, BigRoad, that can derive internal driver

inputs (i.e., steering wheel angles, driving speed and acceleration) and external per-

ceptions of road environments (i.e., road conditions and front-view video) using a

smartphone and an IMU mounted in a vehicle.

• Designed a scalable solution to detects unusual events through inertial sensing of

sudden human driver reactions and rare visual events through a trained autoencoder

deep neural network.

• Proposed a two-phase point cloud registration mechanism to fuse point clouds which

focuses on key objects in the scene where the point clouds are most similar and infer

the transformation from those.

1.2.2 Low-cost reliable driver inputs and road environment data collec-

tion

To our knowledge, we are the first to analyze whether driving data useful for self-driving

research can be collect with a minimal set of inertial and video add-on devices, in contrast

to the existing work with significant instrumentation for scaling data acquisition. Steer-

ing wheel angle estimation algorithms are developed by leveraging low-cost sensing devices

(i.e., inertial measurement units (IMUs) and smartphones). The key novelty of this ap-

proach is that it extracts steering wheel rotation by eliminating vehicle movement from the

steering-wheel-mounted sensor measurements. Besides, vehicle speed sensing algorithms is

introduced to combine GPS with speed delay shifting, and an acceleration based comple-

mentary filter. We further devise an acceleration-based road condition estimator to enhance

road condition awareness under poor lighting conditions and to illustrate further uses of the



5

sensed data. Collecting and analyzing 40 hours of driving data to determine the accuracy of

the estimation techniques and to demonstrate that the fine-grained driving data provided by

the proposed framework achieves comparable performance in an automated vehicle steering

algorithm.

1.2.3 Scalable automatic unusual driving event identification system

We introduce, to our knowledge, the first scalable unusual events identification and collec-

tion approach for self driving research and development, which can be deployed to human

driven vehicles, instead of highly-instrumented vehicles. Beyond that, the unusual events

identification system we proposed can detect a variety of corner cases including both chal-

lenging situations for human drivers and unusual video for self driving models. Besides, the

design of efficient unusual imagery detectors for low cost in-vehicle devices can limit the

necessary video uploads, conserve bandwidth and reduce privacy concerns. We analyzed

more than 120 hours of driving data to evaluate the accuracy of unusual events identifica-

tion and demonstrate the potential of these detected events to improve the performance of

self-driving algorithms.

1.2.4 Two-phase point cloud registration mechanism for connected vehi-

cle point cloud fusion

We propose the first system which can accurately align point cloud pairs under complex

traffic conditions, such as scenes with various occlusions and large view angle difference1

(e.g., 90°, 180°). Specifically, we propose a technique to identify co-visible objects by com-

bining multiple similarity metrics obtained in 3D object detection results to distinguish

co-visible objects from single-visible objects. The fusion accuracy is improved when point

cloud registration is focused on the co-visible object with the overlapping area among the

views. We evaluate our system based on both synthetic scenes and real-world experimental

data across highway and intersection scenarios and show that it can improve point cloud

registration algorithms with a significant margin.
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Chapter 2

Background

This thesis discusses scaling road data to tackle long tail traffic situations. To better un-

derstand the high costs of long tail traffic events collection, we firstly survey the existing

autonomous vehicle prototypes. Since our data collection and unusual events identification

system are designed to mostly benefit end to end automated steering system, we introduce

the high level design of automated steering system. Besides, the existing V2V communi-

cation will also be discussed since it enables various data sharing between vehicles. More

detailed related work sections are also provided in the remaining chapters.

2.1 Autonomous Vehicle Prototypes

With the recent development of automated driving, more and more autonomous vehicle

prototypes are operating on road. These automated testing fleets usually instrumented

various sensors, including camera, LiDAR, radar, ultrasonic sensor, etc.

Camera is one of the most critical components for the visual perception of automated

testing fleets, which can generate the video stream at 10–30 fps to capture important objects

such as traffic light, traffic sign, obstacles, etc., in real time. In addition to camera, LiDAR

is another important sensor which measures the distance between vehicle and obstacles by

actively illuminating the obstacles with laser beams. Typically, a LiDAR system scans the

surrounding environment periodically and generates multiple measurement points. This

“cloud” of points can be further processed to compute a 3D map of the surrounding envi-

ronment. Alternatively, a stereo camera can be used to interpret the 3D environment. It

is composed of two or more individual cameras. Knowing the relative spatial locations of

all individual cameras, a depth map can be computed by comparing the difference between

multiple images from different cameras. Therefore, the distance of an object in the scene
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Figure 2.1: Waymo 5th generation hardware stack. [1]

can be estimated. Besides camera and LIDAR, radar and ultrasonic sensors are also widely

used to detect obstacles. Their detection areas can be short-range and wide-angle, mid-

range and wide-angle, and long-range and narrow-angle. For applications such as crashing

detection and blind spot detection, a short detection range of 20–30 m is commonly used.

For other applications such as cruise control, a long detection range of 200m is required.

Ultrasonic sensors are similar to radars, but they use high-frequency sound waves, instead

of radio waves, to detect objects. Both radars and ultrasonic sensors do not capture the de-

tailed information of an obstacle (e.g., color, texture, etc.) and cannot classify the obstacle

into different categories (e.g., vehicle, pedestrian, etc.).

One of the largest testing fleets on road is Waymo, which refers to its hardware suite for

autonomous driving as Waymo Driver [1]. As shown in figure 2.1, it includes a 360 degree

LiDAR on the roof and another 4 perimeter LiDARs (one in the front, one in the back,

and one each left and right over the front tires). The last two LiDARs are supplemented

by a radar. Also on the roof there are two radars facing forward and sideways, as well as

on the rear left and right). Thus the radars also provide a 360 degree view. The system is

supplemented by 29 cameras, 16 of which are located on the roof structure under LiDAR

and several more facing forward in the roof box, some of which can see more than 500 meters
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in high resolution. Perimeter cameras mounted around the car cover blind spots and can

also see in the near infrared range. The 16 cameras under LiDAR are also all equipped

with windscreen wipers that can wipe off raindrops and dirt with windscreen wiper water.

It is estimated that the current sensor stack, as used by most off-the-shelf self-propelled

technology developers, costs between $150,000 and $250,000 US dollars [3]. The high costs

of the instrumented testing fleets brings challenges to further scale the data collection.

2.2 End to End Automated Steering System

End to end automated steering system is proposed by Nvidia [2] which is a convolutional

neural network (CNN) to map raw pixels from a single front-facing camera directly to

steering commands. This end-to-end approach proved powerful lane keeping capability in

real world experiments. With minimum training data from humans the system learns to

drive in traffic on local roads with or without lane markings and on highways. It also

operates in areas with unclear visual guidance such as in parking lots and on unpaved

roads.

Specifically, the system collects inputs from three cameras mounted behind the wind-

shield of the vehicle. Time-stamped video from the cameras is captured simultaneously

with the steering angle applied by the human driver. The collected single images sampled

from the video, paired with the corresponding steering command are used to train the deep

neural network. In order to enable the network to recover from mistakes and not drifting off

the road, augmented data with additional images that show the car in different shifts from

the center of the lane are also used for training. Figure 2.2 shows the high level view of

the end to end automated steering training. Images for two specific off-center shifts can be

obtained from the left and the right camera. Additional shifts between the cameras and all

rotations are simulated by viewpoint transformation of the image from the nearest camera.

Then, images are fed into a CNN which then computes a proposed steering command. The

proposed command is compared to the desired command for that image and the weights of

the CNN are adjusted to bring the CNN output closer to the desired output. The weight

adjustment is accomplished using back propagation.
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Figure 2.2: High level view of end to end automated steering training. [2]

The system automatically learns internal representations of the necessary processing

steps such as detecting useful road features with only the human steering angle as the

training signal. Compared to explicit decomposition of the problem, such as lane marking

detection, path planning, and control, the end-to-end system optimizes all processing steps

simultaneously. The system arguably leads to better performance and smaller systems for

autonomous driving tasks. Better performance will result because the internal components

self-optimize to maximize overall system performance, instead of optimizing human-selected

intermediate criteria, e.g., lane detection.

2.3 V2V Communication

V2V communication technology enables the sharing of sensing information between vehicles,

which can be leveraged for collaborative perception to improve the vehicle autonomy under

complex traffic situations. With the shared sensing information from neighboring vehicles,

a vehicle can extend its perception range to reveal hidden objects which were visually

blocked or beyond the sensing range [4]. With different information availability, vehicles

are able to share abstract information and raw sensor information by utilizing different V2V

communication technology.

Dedicated short-range communications (DSRC) is a state-of-the-art wireless technology
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that enables V2V, vehicle-to-infrastructure (V2I), or even vehicle-to-everything (V2X) com-

munication systems [5]. DSRC’s primary use cases are driving safety-related applications.

In these applications, each vehicle periodically exchanges its status information (e.g., driving

speed, GPS location, heading, etc.) with other road users (e.g., pedestrians, bicyclists, even

smart traffic lights). With shared information, road users can achieve better situational

awareness and thus improve driving safety [6–8]. However, although DSRC enables basic

message exchange among road users with a range of up to 1000m (in near-ideal conditions),

the maximum data rates of DSRC are normally as low as 2-6 Mbps.

Although DSRC enables basic message exchange between road users with a range of up

to 1000 m (in near-ideal conditions), its data rates are normally as low as 2 - 6 Mbps, which

are not sufficient for sharing large volumes of sensor data. Thanks to the large bandwidth

channels in mmWave bands, mmWave is a promising candidate to realize the high data

rates [9]. MmWave refers to the spectrum between 30 to 300 GHz. In these frequencies,

channels can exploit a larger bandwidth. By combining the large bandwidth with advanced

modulation techniques, mmWave significantly increases the data rates. As stated in the

IEEE 802.11ad standard [10], mmWave can achieve up to 7 Gbps data rates with 2.16 GHz

of bandwidth in the unlicensed 60 GHz band. Compared with DSRC, mmWave can be

used to share the raw sensor data (e.g., a LIDAR sensor can generate 10 − 100 Mb data

per second and a camera generates 100 − 700 Mb raw data per second). Therefore, V2V

communication enables vehicles to share different volume of information depending on the

application requirements.
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Chapter 3

Big Road: Scaling Road Data Acquisition for Dependable

Self-Driving

3.1 Introduction

Advanced driver assistance systems and, in particular, automated driving offer an unprece-

dented opportunity to transform the safety, efficiency, comfort, and economics of road travel.

This has led many organizations in the computing and transportation domains to focusing

on self-driving technology research. While this has resulted in a number of prototypes with

impressive performance, it remains widely recognized that ensuring dependability under

varied traffic conditions remains a key challenge [11–13].

Self-driving vehicles have to operate safely even under unusual or rare traffic events that

are challenging to address and could lead to potential accidents. Developing such technology

therefore requires an understanding of not just common highway and city traffic situations

but also a plethora of widely different unusual events (e.g., objects on the roadway, pedes-

trian crossing highway, deer standing next to the road, etc.). While each such event may be

rare, in aggregate they represent a significant risk that technology must address to develop

truly dependable automated driving and traffic safety technologies. The average human

driver achieves on the order of almost 100 million vehicle miles traveled per fatality [14].

Demonstrating driving performance at an above-average, advanced human driver level will

therefore require successfully avoiding fatalities with unusual events that might be encoun-

tered within a billion miles of driving. This motivates the need for scaling road dataset to

billions of miles of driving so that they contain a representative set of such unusual and

rare events.

Most existing efforts to collect driving data build on a small fleet of tens of highly

instrumented vehicles that are continuously operated with test drivers [15–17]. In terms
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of miles recorded, it is challenging to accumulate a sufficiently large dataset with this

approach. From the tidbits of published information, we know, for example, that Google’s

fleet has completed about 2 million testing miles [15]—impressive but still far off from a

billion miles. On the other hand, since many existing efforts to develop automated driving

technology are proprietary, the data obtained is usually closely guarded. It is not easy for

individuals outside vehicle industry to collect driving inputs such as steering wheel angle and

pedal operations. The OpenPilot [18] project reverse engineers the OBD-II data from two

vehicle models of Hondas and Acuras, and uses the collected data to train the CNN based

Adaptive Cruise Control (ACC) and Lane Keeping Assist System (LKAS). However, this

solution can only be deployed in specific vehicle models, which makes it harder to recruit

very large numbers of vehicles. Government-sponsored naturalistic driving studies have

produced similar datasets, such as the UMTRI Naturalistic Driving Data [19] or the 100-

vehicle VTTI Naturalistic Driving Study [20] that reached 2 million miles. These studies are

more focused on human driving behaviors and still far below the target scope for supporting

robust self-driving.

To address this challenge, this chapter asks whether data useful for self-driving can be

gathered with only minimal instrumentation of vehicles. Such a minimal vehicle instru-

mentation approach would enable scaling by capturing events from tens of thousands of

vehicles rather than only attempting to collect data with a few highly instrumented ve-

hicles or certain vehicle models, as is common practice. A key challenge in creating such

minimal instrumentation is the heterogeneity of vehicle designs and the proprietary nature

of in-vehicle systems. To be useful for driver assistance and automated driving applications,

the dataset must capture the surrounding traffic situation of the vehicle and how the vehicle

was driven through this traffic scenario (i.e., it’s precise trajectory and the necessary driver

input). The latter is especially important for approaches relying on machine learning, which

is increasingly used in such systems [2]. Here, the driver input data provides important pos-

itive and negative training examples that allow the system to learn how to react to traffic

situations. It is also useful for system validation, since it allows automated comparisons of

the response of automated driving algorithms with those of a human driver. Any significant

deviations can then be more closely examined.
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Figure 3.1: Illustration of BigRoad containing a smartphone and an IMU sensor: scaling
road data acquisition.

The primary technical challenge is to obtain accurate vehicle movements without exten-

sive instrumentation of the vehicle. While vehicles contain internal sensors to track steering

and pedal inputs, the specific sensors vary among models and car makers use different pro-

prietary data formats, if the information is exposed through the OBD-II port at all [21].

This heterogeneity renders scaling to many different vehicles difficult. Global Positioning

System tracking of vehicles does not always capture fine-grained steering and speed changes,

particularly in urban canyons. Gathering information about the surrounding traffic situ-

ation is more straightforward—in most situations, a front-facing camera can provide rich

information. It is worthwhile complementing this information, however, in darkness and

other situations where visual information may be insufficient.

BigRoad, as shown in Figure 3.1, aims to minimize instrumentation of vehicles by relying

on low-cost inertial sensors that can be affixed to the vehicle. An inertial sensor in a dash-

cam or windshield mounted smartphone enhances speed estimation, particularly in low-

speed scenarios, therefore providing an indirect measurement of acceleration and braking

inputs. A second steering wheel sensor gathers angle information, which allows a much more

precise measurement of vehicle turning. To achieve this BigRoad incorporates algorithms
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that isolate steering and vehicle movements from other forces acting on the vehicle. It also

compensates for unknown orientations of the devices. Note that, even though smartwatch

or other wrist-wear devices can also be used to infer driver inputs with less instrumentation,

the inconsistency mapping between the device position and driver’s steering wheel angle will

bring additional error. Our initial work shows such method will has much lower accuracy

compared with our proposed setup.

To understand whether such data can be useful for self-driving research, we study the

performance of a key self-driving component, a self-steering algorithm. When trained with

our data, this deep neural network-based algorithm takes road video as input and outputs

the desired steering angle.

The contributions of this work can be summarized as follows:

• To our knowledge, this study is the first to analyze whether driving data useful for

self-driving research can be collect with a minimal set of inertial and video add-on

devices, in contrast to the existing work with significant instrumentation for scaling

data acquisition.

• Developing steering wheel angle estimation algorithms by leveraging low-cost sensing

devices (i.e., inertial measurement units (IMUs) and smartphones). The key novelty

of this approach is that it extracts steering wheel rotation by eliminating vehicle

movement from the steering-wheel-mounted sensor measurements.

• Designing robust vehicle speed sensing algorithms that combine GPS with speed delay

shifting, and an acceleration based complementary filter.

• Devising an acceleration-based road condition estimator to enhance road condition

awareness under poor lighting conditions and to illustrate further uses of the sensed

data.

• Collecting and analyzing 40 hours of driving data to determine the accuracy of the

estimation techniques and to demonstrate that the fine-grained driving data provided

by the proposed framework achieves comparable performance in an automated vehicle

steering algorithm.
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Figure 3.2: BigRoad system overview.

3.2 System Design

The main goal of BigRoad is to provide a light-weight automated data logging system

dedicated to crowdsourcing fine-grained driving data, which can facilitate extensive research

in self-driving vehicles and driving safety monitoring. By installing very few off-the-shelf

sensing devices (i.e., a smartphone and an IMU) in a vehicle, the system can track vehicles’

dynamics, drivers’ driving behaviors, and road environments in real time. In addition

to logging raw sensing data (i.e., GPS locations, motion sensor readings, and vehicles’

front-view video), BigRoad devises novel approaches to derive various fine-grained driving

data (i.e., steering wheel angles, vehicle speeds, and vehicle accelerations) by fusing the

measurements from various sensors.

The major advantage of BigRoad is that it provides a minimum-effort solution for self-

driving companies and researchers, who want to collect large datasets of ready-to-use driving

data in real world without concerns of different vehicle types and driving behaviors. Tra-

ditional data logging systems only provide coarse-grained sensing data without recording

the ground truth. Our system leverages various sensing technology in smartphones and

IMUs to provide fine-grained measurements and experimental ground truth in the context

of real driving. The information generated by BigRoad is two-fold: 1) The estimated steer-

ing wheel angles (directly from drivers), vehicle speeds and accelerations (indirectly from

drivers) are considered to be Internal Driver Input to reconstruct vehicles’ motions and

driving behaviors in a fine-grained manner. 2) The estimated road conditions and videos

captured by the cameras of smartphones are considered to be External Perception that can
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capture driving environments and provide experimental ground truth.

BigRoad is realized with five main sub-tasks: Device Calibration, Steering Wheel Angle

Reconstruction, Vehicle Speed and Acceleration Estimation, Road Condition Estimation,

and Time-stamped Video Capture. Figure 3.2 shows the system overview of BigRoad. To

participate, the user needs to install a smartphone on the dashboard and an IMU on the

center of the steering wheel as illustrated in Figure 3.1. The system takes measurements

of inertial sensors (i.e., acceleration and rotation rate in both the IMU and smartphone)

as inputs to Device Calibration, which derives the rotation matrices that can calibrate the

sensing measurements from both devices to the vehicle’s coordinate system, disregarding

vehicle models, steering wheel positions and IMU placements. The components of Internal

Driver Input including Steering Wheel Angle Estimation and Driving Speed and Acceleration

Estimation fuse GPS location and calibrated sensing measurements from inertial sensors to

derive steering wheel angles, vehicle speeds, and accelerations. The components of External

Perception including Road Condition Estimation and Time-stamped Video Capture utilize

video camera and inertial sensors to capture critical information in the driving environment

(i.e., traffics, road conditions, etc.). Road conditions in inclement weather can severely

affect traffic demands, roadway capacity and increase risks of having traffic crashes [22].

The insight of our steering wheel angle estimation is that after applying the Device

Calibration, which is discussed in Section 3.5, the rotation angles of the IMU aligned to the

steering wheel plane could be used to estimate steering wheel angles. However, accurately

estimating the steering wheel angles involves several challenges. First, steering motions from

human usually happen in a sudden and change all the time, which makes them extremely

hard to be captured by the IMU’s inertial sensors. Second, the measurements from the

inertial sensors of the IMU are contaminated by motions of the vehicle, such as turning and

braking. Third, although the IMU’s position on the steering wheel is stable, it is unknown

and could be different from time to time. To harness these challenges, We obtain the

rotation of the steering wheel based on IMU’s sensor readings and uses the smartphone’s

acceleration to remove the error caused by vehicle motion during driving.

Besides, BigRoad fuses GPS and acceleration from smartphone to predict accurate ve-

hicle driving speed. Since road conditions in inclement weather can severely affect traffic
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demands, roadway capacity and increase risks of having traffic crashes [22], we propose to

use real-time normalized traction force derived from inertial sensor readings during brakes

activities to identify binary road conditions (i.e., dry or wet). Moreover, the Time-stamped

Video Capture utilizes cameras of smartphones to provide the front-view video of the vehicle

together with millisecond-granularity time stamps, which serves as the ready-to-use train-

ing datasets for various applications such as self-driving system training, road condition

warning, and dangerous event detection and recommendation.

3.3 Internal Driver Input

3.3.1 Steering Wheel Angle Estimation

As one of the most important driver inputs, steering wheel operations play a critical role in

self-driving systems. While we expect a much comprehensive system trained with a huge

amount data in the future, collecting such a big dataset of steering wheel operations is urgent

yet not easy. Different from other driver inputs, such as vehicle speed that is commonly

available via a standard OBD-II interface, steering wheel operations (i.e., rotation angles)

are usually hidden and only accessible to vehicle manufacturers. In order to obtain drivers’

steering inputs regardless of vehicle models, we propose two sensor-based approaches to

estimate steering wheel angles: 1) steering-wheel IMU based estimation and 2) phone based

estimation. The difference between these two approaches is that the former requires an

IMU attached to the steering wheel, while the latter only needs one smartphone at any

in-vehicle position.

In particular, the steering-wheel IMU based estimation includes three steps: 1) the

system fuses steering wheel angles estimated based on different inertial sensors in the IMU

by using a complementary filter; 2) it removes the angle errors caused by vehicle motions

from the sensor measurements; 3) the system calculates the angle biases from the coordinate

alignment, and further calibrates the estimated steering wheel angle by removing the biases.

Next, we first introduce the three steps for the steering wheel associated estimation, then

we discuss the phone based estimation.
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IMU Sensor Fusion

After coordinate alignment in the Device Calibration, measurements from the inertial sen-

sors in the IMU are aligned to the steering wheel’s two-dimensional plane. Intuitively, we

could estimate the steering wheel angle by accumulating the angular velocities from the

IMU’s gyroscope. While the gyroscope measure rotation changes precisely, the integration

process suffers from accumulative errors and results in large drifts over time. We also find

that it is possible to estimate steering wheel angles based on the angular changes derived

from the gravity projected onto the different axis from the IMU’s accelerometer, but the

accelerometer has lots of vibration noises, which cause large dynamic errors. 1

To address these limitations in both approaches, we devise a complementary filter [23]

to fuse the steering wheel angles estimated based on the measurements from the IMU’s

accelerometer and gyroscope. The design of the complementary filter is shown as the

following equation by applying both high-pass and low-pass filters:

θt|t−1 = cc ∗ (θt−1 + ∆θt|t−1gyro ) + (1− cc) ∗ θa, (1)

where θt|t−1 is the estimated steering wheel angle at time t based on the angle estimated at

time t−1 denoted as θt−1, ∆θ
t|t−1
gyro is the difference of estimated steering wheel angle derived

by accumulating the IMU’s gyroscope measurements around the axis of rotation over time

t and t− 1, θa is the steering wheel angle derived from the accelerometer’s measurements,

and cc is the variable that determines the time scale of the high and low-pass filters, which

is set to 0.9 empirically.

Steering Wheel Angle Estimation based on Accelerations. We first consider

the scenario when the vehicle is static, e.g., the vehicle is parked, in which gravity is the

only force applied to the steering wheel. We examine the IMU’s accelerations on the two

dimensional steering wheel plane as illustrated in Figure 3.3(a). In the plane, we define

two sub-coordinate systems: 1) Xs and Zs denote the x and z-axis of the steering wheel

coordinate system, and 2) Xr and Zr denote the same in rotated steering wheel coordinate

system. We assume Zs points to the the same direction with the gravity projection(gsteer)

1We have also considered exploiting magnetometer and rotation vector based approaches, but they are
significantly affected by the surrounding magnetic field, which is usually unstable in urban environments.
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(a) Steering wheel and rotated steering wheel
coordinate system.

(b) Steering wheel and vehicle coordinate sys-
tem.

Figure 3.3: Several coordinate systems and angle estimation.

on this plane and y-axis of both sub-coordinate are perpendicular to this surface as shown in

Figure 3.3(b). Note that the steering wheel coordinate system is fixed but the rotated steering

wheel coordinate system changes with the rotation of the steering wheel and IMU. Therefore,

the problem becomes how to determine the angle between two coordinate systems.

Intuitively, when there is only gravity acceleration in the static scenario, the steering

wheel angle θa can be estimated by first calculating the arc-tangent over the projection of

the gravity acceleration on Xr and Zr as shown in θstatic = atan2(aXr , aZr),

where aXr and aZr can be derived from the IMU’s acceleration readings aligned from its

own coordinate system to the rotated steering wheel coordinate system, which is discussed

in in the Device Calibration section.

atan2(x, y) is the arc-tangent function that can calculate the angle in all four quadrants.

The output of atan2(x, y) ranges from 180to180. Because the steering wheel angle may

overflow this range, we find all possible angles by adding multiples of 360o the θstatic, and

use the one closest to the last estimation as the estimated steering wheel angle θa.

Vehicle Motion Removal

The above steering wheel angle estimation is obtained when the vehicle is static. To have

a better understanding of how the motions of vehicles affect θa, we revisit Figure 3.3(a)
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Figure 3.4: Compare the steering wheel angle estimation results of steering-wheel based
and phone based approach.

for driving scenarios. When the vehicle is moving, the inertial sensors in the IMU and

smartphone capture other accelerations (e.g., accelerations caused by turning, accelerating,

and braking) in addition to the gravity force. Thus the accelerations projected to the Xr

and Zr axes can be derived as:

aXr = sin(θa) ∗ aZs + cos(θa) ∗ aXs ,

aZr = cos(θa) ∗ aZs − sin(θa) ∗ aXs ,

(2)

where aXs and aZs are the accelerations aligned to the x- and z-axes of the steering wheel

coordinate system. By combining two equations, we further derive the steering wheel angle

in moving scenarios as below:
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tan(θa) =
tan(θstatic)− aXs/aZs

1 + aXs/aZs ∗ tan(θstatic)
,

= tan(θstatic + atan(aXs/aZs)),

⇒ θa = θstatic − atan(aXs/aZs),

= θstatic − θerror.

(3)

We note that the estimated steering wheel angle in Equation 3 can be considered as

the angle estimated in the static scenario (i.e., θstatic) calibrated by removing an angular

error (i.e., θerror), which is determined by the accelerations in the steering wheel coordinate

system and independent of the poses of the steering wheel and IMU.

In order to obtain aXs and aZs in Equation 3, we examine the relationship between

the steering wheel coordinate system and the vehicle coordinate system as illustrated in

Figure 3.3(b). We find that aXs is the same as the vehicle’s acceleration on the x-axis of its

own coordinate system (aXv), which can be easily obtained by aligning the measurements of

the smartphone’s accelerometer to the vehicle coordinate system in the Device Calibration.

In addition, we find that the steering wheel always has a pitch angle (φpitch) to the y-axis of

the vehicle coordinate system. Therefore, aZs is the combination of the gravity acceleration

and the vehicle’s acceleration projecting to the z-axis of the steering wheel coordinate system

as shown below:

aZs = g ∗ sin(φpitch)− aYv ∗ sin(φpitch). (4)

Finally, the complementary filter is still used to estimate the steering wheel angle by fusing

the estimated steering wheel angel based on accelerations and angular velocity derived from

IMU’s y-axis gyroscope reading after aligned to rotated steering wheel coordinate system.

Angle Bias Removal

The constant rotation of steering wheel makes error existing in the coordinate alignment

during Device Calibration, resulting in a bias in the estimated steering wheel angle. To

remove this angle bias, our system calibrates itself by examining the average estimated

steering wheel angle when the vehicle is driving straight. The intuition is that the ideally
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estimated steering wheel angle should be zero degrees when driving straight, therefore any

non-zero average estimated steering wheel angle found when driving straight is the angle

bias that we should remove.

In particular, our system keeps collecting the angular velocity on the z-axis of the vehicle

coordinate system from the gyroscope of the smartphone (gyroZv) and that on the y-axis

of the steering wheel coordinate system from the gyroscope of the IMU (gyroYs) since the

start of each trip. If the angular velocities from both sources are less than a threshold (e.g.,

0.01rad/s and 0.1rad/s for gyroZv and gyroYs , respectively), the system considers that the

vehicle is driving straight and pushes the estimated steering wheel angle into a sample pool.

The average of the samples in the pool is considered as the angle bias to be removed from

all the steering wheel angles estimated in the rest of the trip. The size of the sample pool

depends on the time needed to collect enough samples that can confidently determine the

angle bias in every trip. In our experiments, we find that our system can successfully find

and remove this angle bias within the first one minute of typical daily commute trips.

Phone Based Steering Wheel Angle Estimation

An alternative approach in BigRoad is not to fix the sensor on the steering wheel. Instead,

we can just employ the available smartphone inside the vehicle to accomplish the steering

wheel angle estimation task. This method can be adopted to any inertial sensors, but we

use the smartphone sensor here to minimize the infrastructure needs. Instead of explaining

bunches of complex mathematical equations, we simplify the model as shown in Figure 3.5,

in which we assume the turning angle of the two front tires are the same. For common

vehicles, the steering wheel angle(θsteering) is equal to the front tire’s turning angle(θtire)

multiply the vehicle’s steering ratio(k). And if the turning radius(r) and wheelbase(l) of

the testing vehicle are known, θtire can be calculated in real time:

θsteering = k ∗ θtire = k ∗ asin l
r
,

r =
v

ω
=

v

gyroZv

.
(5)

The vehicle turning radius(r) can be obtained as shown in Equation 5 based on the

physics phenomenon inherited from inertial sensor readings. Here v stands for the vehicle
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Figure 3.5: Simplified Ackerman mechanism based steering angle calculation.

speed, which we can get from the vehicle speed estimation module presented in section 3.3.2.

ω represents the angular velocity of the vehicle, which can be replaced by the gyroscope

reading on the z-axis of the vehicle’s coordinate system(gyroZv). Thus, we can calculate

the vehicle turning radius, and then get θtire leveraging only a smartphone. However, the

steering ratios(k) of most commercial vehicle are proprietary. To obtain the steering ratio

of our testing vehicle, we apply linear regression on the steering wheel angle ground truth

and estimated tire angle from part of our collected dataset, and use the ratio to evaluate

the remaining part of the dataset.

To compare these two steering wheel angle estimation approaches, the phone based ap-

proach utilize less infrastructures, but it needs more vehicle information such as steering

ratio and wheelbase. The steering-wheel IMU based approach can estimate steering wheel

angle of any vehicle model without extra information by exploiting the additional IMU sen-

sor on the steering wheel. Figure 3.4 demonstrates the estimation result of two approaches

and compare them with ground truth. We will show that the performance of steering-wheel

IMU sensor based approach is better than the phone based approach in section 5.7.

3.3.2 Driving Acceleration and Speed Estimation

In addition to steering wheel angles, driving accelerations and speed are also critical inputs

for self-driving research and thus part of the system’s outputs. The driving acceleration is

the smartphone’s acceleration projected to the driving direction when the smartphone is

fixed in the vehicle for video recording. Therefore the acceleration can be obtained after
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the smartphone’s measurements are aligned to the vehicle’s coordinate system. An intuitive

way to obtain the driving speed is exploiting the location service in smartphones’ operating

systems. However, such speed information has average errors of over 1 km/h, not accurate

enough for speed-sensitive applications, such as self-driving training. To improve the accu-

racy, we propose to shift the speed measurements from the system with an average delay

and apply an acceleration-based complementary filter to compensate large speed changes.

Speed Delay Shifting

The speed information provided by smartphones’ operating systems are derived by fusing

the GPS, WiFi and cellular network information. Because GPS signals have large round trip

time (RTT), such speed information always has some delays comparing to the ground truth

(i.e., speed measurements from the OBD interface), although their trends are very similar.

Figure 3.14 illustrates the time delay between OBD readings and smartphone readings and

their similarity in a single trip. Based on this observation, we determine the time delay τ

by minimizing the average absolute errors between the speed measurements from the OBD

and smartphone’s GPS through a segment of data of m samples as shown in the following

equation:

argmin
τ

m∑
i=1

1

m
|V obd
i − V gps

i+τ |, (6)

where V obd
i and V gps

i+τ are ith speed measurement from OBD and GPS, respectively. The

time delay τ will be applied to shift all speed measurements from the smartphone’s GPS.

Note that the delays are dominated by the RTT of GPS and they are reasonably similar

among different trips, therefore the system just needs to calculate the τ once in a while.

Acceleration based Complementary Filter

The speed delay shifting does be able to largely reduce the error due to asynchronous

sampling, but the speed from smartphones are still not accurate when changing frequently,

because the update rate of GPS is as low as one update per second. To capture the frequent

changes in speed, we propose to fuse the speed derived by the vehicle’s acceleration and the

speed from the smartphone’s GPS. In particular, we estimate the driving speed by using a
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Figure 3.6: Speed readings from OBD-II and smartphone.

complementary filter as shown in the following equation:

V E
t = α ∗ (V E

t−1 + ∆Vt) + (1− α) ∗ V P
t , (7)

where V E
t and V E

t−1 denote the speed of the vehicle at time t and t−1, ∆Vt is the speed change

between t to t−1 derived from the accumulated accelerations of the vehicle, V P
t is the speed

from the smartphone’s GPS, and α is a variable controlling the balance between two speed

sources. The acceleration of the vehicle is available from the smartphone’s accelerometer

measurements after the coordinate alignment in Device Calibration.Although advanced GPS

chipsets [24] have already integrated accelerometers for tracking speed, our method is still

able to improve the accuracy of speed logged by commodity smartphones, which are only

equipped with standalone GPS module.

3.4 External Perception Recording

In addition to driver inputs, the external environment should be acquired in order to provide

a perception for self-driving vehicle studies. We provide a synchronization mechanism in

the next subsection since many studies utilize camera input to have a grasp of the external

environment. Beyond the visual perception, the road conditions can be also useful. In

section 5.2, we introduce methods to estimate road conditions, namely wet and dry.
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3.4.1 Time-stamped Video Capture

The most intuitive external perception provided by BigRoad is the real-time front-view video

feed from Smartphones’ rear cameras that capture everything happening on the road in front

of the vehicle. The desire of such directly visual information is tremendous, as it has been

exploited in many vehicle applications, including self-driving, traffic crowdsourcing, etc.

Most of these applications need to synchronize the video frames to sensor data at millisecond

granularity for training or evaluation. However, the video recorded by most mobile systems

in the market only provides the time information at second-level granularity, which cannot

support such fine-grained synchronization. To address the low-granularity issue, BigRoad

devises a video capture module that records video frames with a list of time stamps for

each frame using the smartphone’s systemcurrenttime at millisecond granularity. The

fine-grained time information provided by BigRoad can facilitate many vehicle application.

For instance, the steering wheel angle output can be interpolated to match the time stamp

of each frame, and used to train autonomous steering system.

3.4.2 Road Condition Estimation

Next, we introduce how BigRoad provides the estimation of road conditions (i.e., dry or

wet) based on sensors integrated in smartphones.

Intuition

In advanced driving assistance and automated driving systems, the awareness of road con-

ditions is one of the critical parameters for adjusting speed and turning angles to ensure

the safety of passengers. Most existing studies identify factors that affect the road’s fric-

tion coefficient by using vehicle-mounted specialized sensors (e.g., optical fibers [25], stereo

camera [26], 24-GHz automotive radar [27] and voice recorder [28,29]), which require either

extra cost and installation effort or visibility/lightening environments. Our approach is thus

challenging as we do not use any additional sensors (e.g., camera, automotive radar) to di-

rectly sense the road’s condition. In contrast, we analyze the statistics of braking events

captured by phones’ inertial sensors through crowdsourcing and estimate road conditions,
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which is low-cost and easy to deploy.

In particular, we develop a proof-of-concept estimation framework to determine binary

road conditions (i.e., dry or wet) by examining inertial sensors measurements in vehicles’

brake activities from BigRoad. The intuition is two-fold: First, different road conditions

have different maximum friction coefficients, which are usually defined as the following

equation [30]:

µmax = max(|Fx
Fz
|), (8)

where Fx is the longitudinal traction force and Fz is the normal force acting on the tire.

By defining the normalized traction force (NTF) of the vehicle as ρ = Fx
Fz

, the µmax can be

represented by the max(ρ), which can be obtained by a smartphone’s inertial sensors when

the vehicle is experiencing a hard brake. Because dry roads always have much larger µmax

than wet roads have, the max(ρ) of a vehicle in dry road conditions should be larger than

those in wet road conditions.

Second, in order to avoid skids on wet roads, most drivers would brake earlier and more

gently [31] than they do on dry roads, resulting in relatively smaller ρ in normal braking

activities. Since drivers usually perform multiple braking activities in each trip due to

the stop signs, traffic lights, traffics, and etc, it is possible to crowdsource NTFs in braking

activities from a large number of vehicles and drivers to accurately estimate road conditions.

We note that video camera in BigRoad is another sensor that we can use to estimate road

conditions by using image processing techniques, but it highly depends on the visibility and

lightening environments. Therefore, we focus on using the inertial sensors based approach

in this chapter.

Per-brake NTF Derivation

In order to derive the NTF ρ during each brake, we first detect and segment the braking

events using the acceleration readings collected by the smartphone in BigRoad. Specifically,

we examine the standard deviation of accelerations on three axes to determine the vehicle’s

stop period using a threshold-based approach. We then extract six-second measurements

before the starting point of the stop period as the segment data in a braking event.
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Figure 3.7: Example of longitudinal acceleration and normalized traction force during a
brake.

Next, we calculate the NTF in each brake event using the longitudinal acceleration,

which can be obtained by the Device Calibration (Section 3.5). To simply the problem, we

consider a bicycle-type vehicle model [30], where the difference between left and right tires

is ignored. If we ignore the effects caused by winds and road gradient, the longitudinal force

during a brake can be obtained by:

Fx = m|ax| − |Fr|, (9)

where m is the total mass of the vehicle, ax is the longitudinal acceleration and Fr is rolling

resistance force which is usually between 0.015mg and 0.02mg.

In addition, the normal forces on the front and rear tires can be calculated as:

Fzf =
mgLr −maxh

L
;Fzr =

mgLf +maxh

L
, (10)

where Lf and Lr are the distances from the center of gravity to the front and real axles

respectively. h is the distance from the center of gravity to the road surface and L is

the wheel base (i.e., L = Lf + Lr). Note that we can use either Fzf or Frf to calculate

the vehicle’s NTF ρ depending on the form of the vehicle’s drivetrain (i.e., front-wheel

drive or rear-wheel drive). Finally, the NTF can be derived using the vehicle’s longitudinal

acceleration during each brake and a few of the vehicle’s basic information. Figure 3.7 shows

an example of the longitudinal acceleration and its corresponding NTF during a brake.
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Figure 3.8: QQ-plot and probability density functions of maximum per-brake NTFs.

Crowd-sourcing-based Road Condition Estimation

The instant NTF derived from each brake can be exploited to estimate road-conditions

by being compared to different road-condition models. Such models are nothing but the

distributions of NTFs abstracted from a large number of NTFs crowd-sourced from vehi-

cles driving in different road conditions. The crowdsourced data used for building general

models should cover different braking types, driving behaviors, etc., so that the models

can be resilient to these different situations. Additionally, we empirically observe that the

maximum NTF in each brake (e.g., the peak value of the NTF in Figure 3.7) fits normal dis-

tributions. The Quantile-Quantile plot in Figure 3.8(a) compares over 700 maximum NTFs

from 40 daily trips of 5 drivers with normal distribution and verifies this observation. We

thus use the least-squares based approach to fit the maximum NTFs collected from brakes

in sunny days (i.e., dry condition) and rainy days (i.e., wet condition) to two road-condition

models, which are two probability density function following normal distributions, namely

pdfd and pdfw. Figure 3.8(b) shows an example of pdfd and pdfw generated by a training

dataset (i.e., 350 brakes in sunny days and 100 brakes in rainy days) collected by BigRoad

from 5 users at different locations. The figure also verifies that drivers brake more gently

in rainy days as we expected.

It is important to note that determining the road condition based on the NTF infor-

mation of only a single braking action is difficult, because the two distributions shown in
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Figure 3.8(b) are largely overlapping with each other. BigRoad takes the advantage of

crowdsourcing technique and collects a large number of braking events with different brak-

ing types and driving behaviors from various on-road vehicles in a specific driving area.

The system eventually can respectively calculate the joint probability of all these brakes

performed on dry or wet roads, and determine the road conditions accordingly.

Specifically, we can estimate the road condition by comparing the instant maximum

NTF with the abstracted road condition models as shown in the following equations:Road is dry, if
∏N
i=1 pdfd(ρ̂i) >

∏N
i=1 pdfw(ρ̂i)

Road is wet, if
∏N
i=1 pdfd(ρ̂i) <

∏N
i=1 pdfw(ρ̂i),

(11)

where ρ̂i is the maximum NTF of the ith collected brake, N is the total number of brakes

being used.

3.5 Device Calibration

In order to ensure BigRoad work with most vehicle models, the system should be able to

calibrate itself to different steering wheel positions, sensor placements, and vehicle mod-

els. The main challenge is that both the smartphone and IMU have their own coordinate

systems, and the sensor measurements from both devices need to be aligned to the same

coordinate system (e.g., the vehicle coordinate system) before they are useful.

We develop two modules to automatically align measurements from smartphone and

IMU to the vehicle coordinate system(Xp, Yp, Zp) and rotated steering wheel coordinate sys-

tem(Xr, Yr, Zr) when driving, namely Smartphone Calibration and IMU Calibration. The

relationship between the two coordinate systems is shown in Figure 3.9.

Smartphone Calibration. We implement the coordinate alignment algorithm to align

sensor measurements from the smartphone to the vehicle coordinate system based on an

existing work [32]. Specifically, it utilizes the smartphone’s accelerometer and gyroscope

measurements when the vehicle brakes while driving straight to derive the corresponding

rotation matrix.

IMU Calibration. The coordinate alignment for IMU is challenging, because the
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Figure 3.9: Vehicle coordinate system and rotated steering wheel coordinate system.

IMU’s orientation is subject to the rotation of the steering wheel, IMU’s position, and vehi-

cle models. The IMU Configuration adopts two steps to align the sensor measurements from

the IMU to the steering wheel coordinate system: First, the system aligns the sensor mea-

surements to the vehicle coordinate system when vehicle is driving straight using the same

approach introduced in the Smartphone Configuration. Since we perform this alignment

while driving straight, aligned IMU’s coordinate system will depart the vehicle coordinate

system when steering wheel turns, but its x-axis is always identical to the rotated steer-

ing wheel coordinate system. Second, the system calculates the steering wheel pitch angle

(φpitch) and further rotate other two axis to the rotated steering wheel coordinate system.

As shown in Figure 3.9, φpitch is the angle between Yv’s negative direction and Yr’s

positive direction, which is usually adjustable by the driver. And this angle also exists

between negative direction y-axis of the aligned IMU and Yr’s positive direction. Thus,

φpitch can be derived from the angular velocity projection on aligned IMU’s coordinate

system’s y- and z-axis, as shown in equation12:

φpitch = atan(
−gyroYi
gyroZi

), (12)

where gyroYi and gyroZi are the gyroscope reading’s on IMU’s y- and z- axes after aligned to

vehicle coordinate system. The system automatically picks twenty samples from a steering

motion and calculate φpitch based on Equation 12. Then, IMU measurements can be rotated

to the rotated steering wheel coordinate system by rotating around x-axis for (180− φpitch)

degree. Besides, BigRoad also includes a data synchronization module to remove the delay
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of IMU data caused by Bluetooth transmission. This module uses the same brake segment

used in smartphone coordinate alignment and runs cross correlation on smartphone and

IMU acceleration trace to find the delay.

3.6 Performance Evaluation

In this section, we evaluate our system with respect to (i) the accuracy of internal driver

input information it provides, (ii) the accuracy of external perception monitoring, and (iii)

the usefulness of our collected data, namely whether our collected data could allow training

of self-driving system components.

3.6.1 Experiment Setup

We conduct driving experiments with BigRoad to evaluate its performance. Our experi-

ments include six vehicle models and 7 drivers driving on various types of roads for their

daily commute in two states. In total, we collect 143 trips in a 3-month period. During

these trips we used different experiment configurations to allow studying different questions

as follows:

Internal Driver Inputs Accuracy. We collect 84 trips from three vehicles (i.e., 2015

Honda Civic, 2016 Chevrolet Impala, 2016 Chevrolet Equinox) and five drivers to evaluate

the accuracy of the collected driver inputs. We used these vehicles because we were able to

gain access to ground truth steering wheel angle data reported by an internal sensor (for

two of the vehicles a carmaker provided us with a specialized device and for one vehicle

we were able to reverse engineer the data format of messages captured with a standard

OBD-II/CAN interface). We also recorded driving speed from the internal vehicle bus,

which is openly available as part of the OBD-II standard. We were able to sample the data

from the Chevrolet Impala and Equinox at 100Hz and 10Hz, respectively. While there is no

commercial OBD reader can directly read steering wheel angles from the Honda Civic, we

reverse engineer the bus data of the Honda Civic to record the steering wheel angle from the

OBD interface with 100Hz. However, limited by the reverse engineering, we can only record

the ground truth at 1.43Hz if monitoring speed and steering wheel angle simultaneously.
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Figure 3.10: CDF of steering wheel angle absolute error.

External Perception Accuracy. We evaluate the performance of road condition

estimation based on 59 trips from four vehicles and five drivers. The ground truth of the

road condition and weather for each trip is manually labeled by the drivers.

Data Usefulness. We utilize 5 trips from three different drivers driving the 2015

Honda Civic on highways to show the usability of BigRoad’s video output. The dataset

includes about 1.5hours video with 30fps and steering wheel angle ground truth from the

OBD interface at 100Hz.

3.6.2 Accuracy of Driver Input

Steering Wheel Angle Estimation. We first evaluate the performance of our steering-

wheel IMU based and phone based approaches. In particular, we calculate the absolute

errors2 of the estimated steering wheel angle from both approaches by respectively compar-

ing them with the ground truth from the OBD readers. Figure 3.10 shows the CDFs of the

steering wheel angle estimation errors of our two approaches. The rationale behind com-

paring the performance of the two methods is to quantify the accuracy-complexity trade-off

(how does accuracy degrade when using only phone sensors?) and to understand whether

the accuracy with phone sensors is still sufficient for self-driving data collection. We observe

that the overall errors of the steering-wheel IMU based approach are much smaller than

2The errors used in the rest of the paper are all absolute error, unless stated otherwise.
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Figure 3.11: Error distribution with respect to speed and steering angle.

those of the phone based approach. In particular, the mean error of the steering-wheel IMU

based approach is 0.96ith the median of 0.69nd 90-percentile of 1.99 while the mean error of

the phone based approach is 7.53ith the median of 2.19nd the 90-percentile of 15.05 Given

the 1.5ccuracy of the commercial steering angle sensor [33], our steering-wheel IMU based

approach could archive better or equivalent performance.

We further study the impact of the driving speed and steering wheel angle to the esti-

mation accuracy. Figure 3.11(a) presents the error distribution of the steering-wheel IMU

based and phone based approaches with respect to 13 bins of driving speed between 0 to

60km/h. From the figure, we can tell that the steering-wheel IMU based approach has

constantly low errors with all driving speed, but the phone based approach has larger errors

in lower speed range (i.e., between 5-30km/h). This is because the phone based approach

cannot get accurate vehicle turning radius when the driving speed and angular velocity in

the turn are low. Figure 3.11(b) presents the error distribution of the two approaches with

respect to 13 bins of steering wheel angle ranging from −180to180. We find that estimation

error of phone based approach increases dramatically when vehicle is turning, while the

steering-wheel IMU based approach works well for most steering wheel angles.

Driving Speed Estimation. Next, we evaluate the performance of the driving speed

estimation of BigRoad by respectively comparing the errors between the estimated driving

speed and the driving speed directly obtained from the Android with the ground truth in

Figure 3.12(a). From the figure we can observe that BigRoad can achieve much lower error
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Figure 3.12: CDF of speed estimation absolute error.

than directly using the speed from Android. In particular, the driving speeds from the

Android location service have an average error of 1.17km/h, while that of BigRoad is only

0.65km/h. The 90-percentile error of the estimated speeds from Android and BigRoad are

2.11km/h and 1.37km/h, respectively, which indicate that the delay shifting and comple-

mentary filtering techniques in BigRoad can effectively remove the large errors introduced

by GPS.

To further explore the limitation of our speed estimation method, we plot the mean errors

of estimated speed from Android and BigRoad with respect to the y-axis acceleration of

the vehicle in Figure 3.12(b). We find that the speed estimation errors of both approaches

generally increase with the accelerations of the vehicle although BigRoad can achieve lower

errors. This is because both approaches mainly rely on the location updates from GPS,

which have a low refresh rate and cannot capture speed changes between two samples.

3.6.3 Accuracy of External Perception

As the main part of external perception, we mainly evaluate the performance of road condi-

tion estimation in this work. As discussed in Section 3.6.1, we distribute BigRoad systems

to 5 users to collect driving data in their daily commutes. In total, we collected 737 brakes

from 43 driving trips in sunny days and 193 brakes from 16 driving trips on rainy days. We

use 50% braking data for training the road condition models (i.e., pdfd and pdfw) and use

the rest of data for the testing purpose.
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Specifically, we can identify the road condition by using the NTF statistics from N

collected brakes according to equation 11. Figure 3.13 shows the road condition discrim-

ination accuracy with the different number of N . We observe that BigRoad can achieve

high accuracy to determine road’s condition (i.e., dry or wet) by only using the normal

braking events from crowdsourced driving data. And the system only needs a small number

of brakes (e.g., 15) from the vehicles to achieve over 95% discrimination accuracy.
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3.6.4 Usability of BigRoad Output

We demonstrate the usability of BigRoad’s outputs by comparing the results of our auto-

matic steering application when using two different pairs of driving data (i.e., the front-view

video together with either the estimated steering wheel angles from BigRoad or the ground

truth from the OBD). We use about 1.1 hour real-road driving data to train the deep neu-

ral network in the application, and use the rest of data for testing. The comparison of the

results are shown in Figure 3.6.4. As we can see that the mean errors of the application

are 1.62nd 1.7or using the steering wheel angles provided by the OBD and BigRoad, re-

spectively. This indicates our steering angle prediction application can effectively predict

steering angle by using the data from BigRoad. Moreover, we plot the CDF of the sample-

to-sample difference between the prediction results from the two scenarios. We observe that

the mean difference between using these two inputs are as low as 1.07 which verifies that

the estimated steering wheel angle from BigRoad is comparable effective to the steering

wheel angle recorded by the OBD in self-driving training. Furthermore, we find that the

state-of-the-art end to end autonomous vehicle training [2] does not directly use the driver’s

steering angle obtained from steering sensors as a training label because the driver’s input

may not be perfect. They apply a computer vision based calibration to slightly correct the

driver’s steering angles. We note that such calibration could also be applied to BigRoad

outputs before using them to train the auto steering network, which could result in an even

more similar performance as that of the network trained by steering sensor readings.
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Chapter 4

Automatic Unusual Driving Event Identification for

Dependable Self-Driving

4.1 Introduction

While automated driving technology has made great strides, ensuring dependability over a

broad set of unusual traffic situations and corner cases remains a key challenge [11–13]. Cur-

rent automated driving products largely require human supervision (NHTSA level 2) [34],

with only few systems that allow taking eyes off the road under very limited conditions (level

3) [35]. Self-driving without supervision in select geographic areas environments (level 4)

appears to be emerging but it is still under active development and testing (e.g., [15]).

Validating such technology requires understanding the unusual events and corner cases

(e.g., objects on the roadway, pedestrian crossing highway, deer standing next to the road,

etc.) that one could encounter in billions of miles of driving. Such a large number of miles is

needed since the goal is to achieve safety levels far above average human drivers and human

drivers in the United States achieve almost 100 million vehicle miles traveled in between

fatalities [14]. This motivates collecting a catalog of unusual driving events that represent

challenging situations expected in billions miles of driving to accelerate the development of

truly dependable level 4 and level 5 systems.

Most existing efforts collect driving data with a small fleet of tens to hundreds of highly

instrumented vehicles that are continuously operated with test drivers, but it is challenging

to cover billions of miles with such a small fleet. Road testing is therefore augmented with

stress testing with corner cases on proving grounds and in simulation. This helps, but it

remains uncertain whether a comprehensive set of corner cases was tested. Such a compre-

hensive set of unusual events and corner cases can be more easily obtained by scaling data

collection to large numbers of minimally instrumented (camera-equipped) human driven
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vehicles, as previously advocated by BigRoad [36]. This, however, would still require iden-

tifying the unusual events in such a vast dataset to create test cases for proving grounds or

simulators.

Manual inspection of collected data to flag unusual driving events is one possible solution,

but will require plenty of extra effort, amplify privacy concerns, and increase storage and

networking overhead for collecting all data. When vehicles are primarily human-driven, we

cannot simply watch for human interventions as in current self-driving prototypes to identify

corner cases that the system cannot handle well. Due to the many degrees of freedom

in navigating a road simply detecting discrepancies between human drivers steering and

speed input and self-driving system’s choice is not reliable. Although there exists a large

body of work on abnormal driving event detection [37–50], this work focus on detecting

specific, known situations but cannot detect previously unknown unusual road events that

are missing in the current set of test cases for automated vehicles. Therefore, automatically

identifying unusual driving events remains a challenge.

To address this challenge, we propose an automatic unusual driving events identification

system, which can detect unusual situations through in-vehicle algorithms and can easily

be scaled for wide deployment. It identifies unusual situations through a two-pronged ap-

proach involving inertial monitoring of driver reactions and an autoencoder-based technique

for detecting unusual video scenes. It detects sudden driver reactions (e.g.hard braking and

swerving), since situations that challenge human drivers are also likely to be interesting test

cases for automated vehicles. Since sudden driver reactions usually involve accelerations

and angular speed, a three stage inertial sensing approach is proposed to detect unusual

braking and swerving events. The rationale for the second video-based detection algorithm

is that not all corner cases which may confuse self driving system will elicit a response

from a human driver. Since previously unseen corner cases are more likely to differ from

the training samples, we propose autoencoder-based approaches to identify these unfamiliar

views, including a detector that can run on the vehicle side on low cost devices with 71.43%

accuracy and a detector partially running in the cloud with 80.3% accuracy. The perfor-

mance is evaluated based on 120 hours road driving data collected by about 10 drivers.

To further illustrate the efficiency of our proposed system, the vehicle end unfamiliar view
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detector is implemented on an android phone and can process video frames at 17Hz, which

is sufficient for flagging unusual scenes. Moreover, the unusual driving events detected by

our approaches have been useful for re-training and improving the performance of the self

driving model. This performance improvement on more complex road situations demon-

strates the potential to accelerate the development of robust self driving systems with this

unusual event detection framework. The contributions of this work can be summarized as

follows:

• Introducing, to our knowledge, the first scalable unusual events identification and

collection approach for self driving research and development, which employs human

driven vehicles, instead of highly-instrumented vehicles.

• Developing an unusual events identification system to detect a variety of corner cases

including both challenging situations for human drivers and unusual video for self

driving models.

• Designing efficient unusual imagery detectors for low cost in-vehicle devices to limit

the necessary video uploads, to conserve bandwidth and reduce privacy concerns.

• Analyzing more than 120 hours of driving data to evaluate the accuracy of unusual

events identification and demonstrate the potential of these detected events to improve

the performance of self-driving algorithms.

4.2 Unusual Events and Design Objectives

This chapter focuses on unusual events and corner cases that can confound automated

driving systems. For example, these include traffic scenarios that blind sensors, scenarios

where distinct lighting condition is introduced, emerging objects that are difficult to identify,

and unexpected movements by traffic participants. The ultimate goal is to understand the

long tail of such traffic scenarios, meaning those that one would expect to encounter only

after millions of miles of driving but that still need to be handled by the system to achieve

a level of robustness that far exceeds human drivers. Specifically, this chapter targets a

subcategory of unusual events which can be inferred from sudden human driver reactions
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and unfamiliar views and are likely to affect the performance of self driving systems.

4.2.1 Current Approaches

Current approaches to collect data and test self driving systems on unusual events can be

categorized as follows. Public road testing has been conducted by multiple companies

through a small fleet of highly instrumented vehicles across different areas. Waymo has

tested their vehicle on roads for 5 million miles [51] and Uber for 2 million miles [52].

Closed course testing is able to stage challenging driving cases (such as people jumping

out of canvas bags or porta potties on the side of the road, skateboarders lying on their

boards, thrown stacks of paper in front of sensors, etc. [51]) at the test facilities, like the

Castle of Waymo and the Mcity of University of Michigan. Such testing allows recreate

difficult situations more frequently than they occur during public road driving and can

capture data with the sensor suite of an autonomous vehicle. Simulation testing allows

simulated testing of corner cases, and further extended testing on the variations of such

corner cases by tuning many different moving angles and different speeds of vehicles for

example.

The robustness challenge: The accumulated public road miles still fall far short of

the number of miles needed to demonstrate a lower fatality rate than above-average human

drivers. Besides, the recent fatal accident during public road testing illustrates the challenge

with correctly handling a broad set of road situations [53]. Current testing regimes seek to

amplify this testing of ’known’ corner cases through a combination of proving ground testing

and simulations. While certainly useful, it remains unclear whether this extrapolation from

known corner cases can lead to the desired level of robustness or whether new categories of

unknown corner cases exist that will still need to be discovered in the next billions of miles

of driving. The approach that this chapter proposes is meant to complement these current

techniques and addresses precisely this question.
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4.2.2 Scaling Data Collection with BigRoad

As previously argued [36], current testing efforts could be accelerated through large-scale

road-data collection involving hundreds of thousands of minimally instrumented, human-

driven vehicles. While such vehicles may not generate sensor data that is directly usable in

automated vehicles, it allows identification of new corner cases that can then be recreated

on proving grounds and in simulation, as outlined above. Although [36] accurately records

internal driver inputs (i.e., steering wheel angles, driving speed and acceleration) and exter-

nal perceptions of road environments (i.e., road conditions and front-view video), it remains

challenging to upload and store rich video data from such a large number of videos. In ad-

dition, drivers may have privacy concerns when video data is collected on their complete

trips. This raises the question of whether it is possible to identify the small fraction of

useful data that represents corner cases and challenging situations through preprocessing

of the data inside the vehicle, which would allow uploading only these critical events.

Figure 4.1: System overview of unusual events identification.

4.2.3 Design Goals

Based on the drawback of current approaches and the scaling requirement discussion above,

we identify the following key design goals for a scalable automated unusual driving event

collection system.

• Sense from human driven vehicles. Rapid scaling to hundreds of thousands of

vehicles requires making use of human-driven vehicles to cover a wider range of driving

areas and cumulatively gather the rare happen unusual situations. The driving event
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identification system can therefore not rely on a full self-driving sensor suite but should

expect minimal infrastructure and data source such as dashcams.

• Minimize data uploads. As the scale of data collection increases to hundreds of

thousands of vehicles, tremendous wireless bandwidth usage would be required for

uploading all video data into the cloud. Full uploads also increase privacy concerns.

Thus, the system should be able to identify relevant events while most of the rich

video data remains in the vehicle.

• Build on off-the-shelf devices and stay within their computational limits.

Large scale data collection based on human driven vehicles will benefit from affordable

off-the-shelf devices, which provide limited the computational power. Therefore, both

time and space efficiency of the system should be optimized to guarantee a real time

processing or near real-time computation with limited resources.

The design of our system will try to benefit automated driving systems as follows. For

automatic driving components that only take front view videos and inertial readings as

input, our system may be able to provide data that can be directly used as training or

testing inputs. For systems which require other sensor inputs, such as radar or lidar, this

data may not be available from human-driven vehicles but the detected unusual events can

still help uncover traffic situations of interest and previously unknown corner cases. This

information can then be used to define test cases and stage them on testing sites to collect

the necessary data for other sensors to fully test the system. Besides, since our goal is

to enable unusual driving events collection at very large scale, it is likely to help identify

unusual driving events and develop test scenarios that will lead to more reliable automated

driving systems.

4.3 System Overview

The system enables scalability through aggressive in-vehicle filtering of sensor data, which

reduces the volume of data that needs to be transferred over a network, ameliorates potential

privacy concerns, and saves backend (human) analysis resources. The filtering removes all

data that are not classified as unusual road situations. It detects unusual events using a
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two-pronged strategy that monitors (i) how a human driver, if present, reacts in terms of

steering and braking and (ii) how different the camera inputs are from previously observed

inputs.

In vehicles, the system assumes an on-board device with the sensing and computational

capabilities of a high-end smartphone. Specifically, it requires a camera, accelerometer

and gyroscope sensors, and processing capabilities to execute neural networks, and network

connectivity to allow collection of data about unusual events and corner cases. Collected

data can be stored and further analyzed in the backend infrastructure, as shown in figure 4.1.

The rationale for the first filtering approach, Sudden Reaction Detection, is that

situations that surprise a human driver are more likely to also challenge an automated

driving system than more standard driving situations. Since deployment on conventional

human-driven vehicles would allow reaching the necessary scale much more quickly, the

system can make use of detailed measurements of the human driver’s sudden steering and

braking reactions to road events.

However, one can also expect situation that does not elicit a reaction from an attentive

human driver, but could confuse automated driving algorithms. This motivates the two-

pronged approach where the system automatically seeks to identify unusual road imagery.

This could be achieved through a set of classifiers that watch out for specific situations

of interest such as a deer crossing or a stroller on the roadway. This would necessarily

require an enumeration of expected unusual situations and not necessarily identify the

unknown unusual road situations that are the motivation for this work. For this reason,

the second filter, Unfamiliar View Detection, evaluates how different the image appears

from previously observed road video. In order to efficiently compute this on an in-vehicle

unit, the system employs an autoencoder for similarity detection. If computation is also

available on cloud end, a fined-grained detection could be performed.

Note that these ideas could also extend to a more complete set of self-driving sensor

inputs that include radar or lidar but that this design deliberately omits them to illustrate

how such a system could be deployed on large numbers of vehicles without significant

instrumentation cost.
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(a) Braking Event (b) Swerving Event

Figure 4.2: The accelerometer and gyroscope reading on sample braking and swerving event.

4.4 Sudden Reaction Detection

Human drivers’ reactions like hard braking or high speed swerving usually involve large

accelerations and angular speed. Such features can be captured by the accelerometer and

gyroscope of an Inertial Measurement Unit (IMU) available in many phones, cameras, and

cars. The detector is triggered when the feature score exceeds a threshold, which can be cho-

sen as a percentile of the feature value. Therefore, to identify such sudden reaction events,

we propose a three-stage inertial sensing detection technique leveraging the IMU potentially

available within vehicles. The three-stage detection mechanism includes Candidate Period

Detection, Feature Extraction and Feature Fusion.

4.4.1 Candidate Period Detection

When unusual situations happen, human drivers may react with hard braking or swerving

to avoid accidents. This motivates the first stage of our detection mechanism to identify

candidate periods in terms of braking and swerving events, which show relatively high

amplitudes on the accelerometer and the gyroscope.

Since the pose of the IMU within the vehicle is usually unknown, the system uses

coordinate alignment algorithms to project the IMU’s reading from its own coordinates

system to the vehicle’s coordinates system. As the vehicle will only sense gravity while

stationary and will have a dominating acceleration component in the driving direction when

accelerating, the vehicle’s coordinate system can be determined from measurements during
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these situations [32]. Besides, we utilize a low pass filter to remove the noise from the raw

IMU’s reading caused by vehicle vibrations and bad road conditions.

Braking Event Detection. Generally speaking, when a driver brakes, a large accel-

eration can be observed in the opposite direction of the driving direction. Figure 4.2(a)

shows the acceleration trace of a braking event, in which a negative spike can be observed

due to braking. In order to more accurately capture the bumps that are actually caused by

braking events, a peak detection method is applied first to find all the negative peaks of the

accelerometer readings on the driving direction, whose value is defined as δp to quantify the

amplitude of braking event as shown in figure 4.2(a). A threshold is used to remove noisy

peaks such as the ones caused by road bump vibrations. Then the system searches forward

and backward to find the starting point ts and ending point te of this bump.

Swerving Events Detection. During swerving events, a driver usually first turns the

steering wheel to one direction quickly and then turns back to the other direction. This

action will result in two consecutive bumps in opposite directions of the gyroscope readings,

as shown in Figure 4.2(b). Therefore, we capture such characteristics by thresholding peaks

on gyroscope reading for peak detection, and then identifying swerving based on a short

time interval between peaks in opposite directions. Similar to the brake detection, δp, ts,

te is defined as the amplitude of the higher peak, starting point, and ending point of a

swerving event, respectively.

4.4.2 Feature Extraction

To identify the patterns of interest out of the candidate period set, we carefully select three

feature extraction methods based on preliminary experiments and analysis. Based on the

detected candidate periods, we first describe a Strawman solution using the amplitude

of sensor readings as a feature to detect unusual events:

Amplitudes. Due to the large accelerations or gyroscope readings during unusual

situations, using amplitudes of such reading as features seems to be an intuitive solution.

Specifically, the sudden braking events and swerving events could be detected based on a

threshold δp value.

However, this solution does not work well in practice because the majority of braking



47

events with large acceleration and swerving events with large angular velocity are normal

events like braking when facing red traffic lights and swerving-like readings when changing

lanes.

We therefore seek to emphasize more sudden events and propose Derivative-based as

well as Duration-based features to further characterize detected events.

Derivatives. Since unusual events do not always come with high-amplitude readings,

estimating the urgency or suddeness of a braking or swerving event is also helpful to deter-

mine unusual events. To this end, we calculate the derivative of acceleration to represent

the urgency of a braking event. Similarly, calculating the derivatives of gyroscope reading

during swerving events is used to identify urgent swerving events.

Duration. As a sudden braking or swerving event often happens in a short moment,

we can also use the event duration to detect the urgency of unusual events. As shown in

Figure 4.2, the duration of braking or swerving events are represented by Tb or Ts corre-

spondingly, which is equal to the interval between ts and te.

4.4.3 Feature Fusion

To effectively take advantage of all three features, we propose a feature fusion mechanism

to combine the three extracted features (amplitude-based, duration-based and derivative-

based) in order to increase the accuracy of identifying unusual events. This is motivated

by preliminary results that showed that there is little overlap among the detected unusual

events with any one of these features. We design an accuracy driven weight assignment

method to assign weights to different features based on their detection accuracy. The

principle underlying this method is illustrated in Equation 1.

ffusion =
∑
i

wifi wi =
nfi∑
i nfi

(1)

The fused feature value (ffusion) of a candidate period is equal to the sum of each

feature value (fi) multiplied by its weight (wi). The value of each feature is normalized

to adjust values measured on different scales to a notionally common scale. Specifically,

We calculate the mean value and standard deviation of each feature, and use them to shift
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and scale each feature value. The weight of each feature (wi) is calculated based on the

detection accuracy. Specifically, for each feature, we extract the top 5% potential unusual

events and calculate the detected unusual events for each feature (nfi). We divide nfi by the

sum of detected unusual events for all features to calculate the corresponding weight (wi).

To design a general method that works for most real world scenarios, our fusion weights

are generated from a large dataset which contains different scenarios including highways,

local roads, night view roads, etc. With this method, the system assigns a higher weight

for features with better detection accuracy, while assigning a lower weight to the one with

worse detection accuracy.

4.5 Unfamiliar View Detection

Although sudden reaction detection is able to identify events that surprise human drivers,

one can still expect situations that do not elicit an attentive driver’s reaction but confuse

automated driving algorithms. This motivates identifying unusual road imagery by evalu-

ating how different the image appears from previously observed self driving training images.

Very different, distinct views may not have been sufficiently represented in training or test

cases and lead to an increased risk of erroneous self-driving decisions. This can be intu-

itively implemented by calculating the Euclidean distances between new image samples and

all samples used to train the automated driving system, but would require tremendous com-

putational resources. To enable system scalability with limited in-vehicle computation, we

propose two autoencoder-based unfamiliar view detectors, (i) a lightweight in-vehicle de-

tector based on autoencoder’s reconstruction error, and (ii) a joint in-vehicle and cloud

detector based on the autoencoder’s embedded vectors. Although autoencoders were ap-

plied to anomaly detection before [54,55], to our knowledge, we propose the first design for

driving video data with a novel architecture and loss function of the auto-encoder. This

design of the autoencoder shows better performance than a naive auto-encoder application.

We develop this technique in the context of automated steering, since this is a key

function of automated driving that usually heavily relies on camera data—data which can

also be easily recorded from human driven vehicles [36]. Our unfamiliar view detectors will

specifically identify corner cases for an end-to-end self steering systems. We expect though
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Figure 4.3: System overview of autoencoder based unusual event detection.

that the design of the detectors can also be extended to other self driving components that

use camera data as input or where a comparable sensor readings can be collected from

human-driven vehicles.

4.5.1 Autoencoder and Self-steering Background

Since our proposed unfamiliar view detectors are designed based on autoencoder for end to

end steering systems, we will briefly introduce background on these two systems.

Autoencoder

An autoencoder is a neural network that is trained to encode the input in a set of low

dimensional representations, which can be used to reconstruct an output that is nearly

identical to its input. The groundtruth or labels of an autoencoder are just the input

features themselves, therefore an autoencoder is also considered an unsupervised deep neural

network. Internally, it has a hidden layer h that has a lower number of dimensions than

the number of input dimensions, so that this hidden layer can be trained to describe an

embedded vector used to represent the input. The network usually consists of two main

parts, an encoder function h = φ(x) and a decoder that produce a reconstruction r = ψ(h).
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An autoencoder is designed to simply learn the set ψ(φ(x)) = x, but normally will not

copy perfectly because the model size is usually restricted to allow them to copy only

approximately, and to copy only input that resembles the training data. Because the model

prioritizes the aspects of the input which should be copied, it often learns useful properties

of the data.

L(x, x′) = ‖x− x′‖2 = ‖x− ψ(φ(x))‖2 (2)

Autoencoders are usually trained to minimize reconstruction errors, the loss (L(x, x′)),

which is defined in equation 2. The reconstruction error is a metric to quantify the distance

between the input and reconstructed input, and therefore can be considered as a difference

indicator between the test samples and the training samples. Since autoencoders are trained

to minimize the reconstruction errors when reconstructing training samples, a test sample

which is similar to training set tends to have lower reconstruction error, while a sample

which is different from training samples will have higher reconstruction error.

End to end self steering system

An end to end self steering system maps raw pixels from a single front-facing camera di-

rectly to steering commands using a convolutional neural network. It is firstly proved to be

powerful by Nvidia’s demo [56] in lane keeping self driving tasks. Its neural network archi-

tecture [2] consists of 9 layers, including a normalization layer, 5 convolutional layers and 3

fully connected layers. The first layer of the network performs image normalization and the

normalizer is hard-coded which is not adjusted in the learning process. Such normalization

in the network will allow the normalization scheme to be altered with the network archi-

tecture and to be accelerated via GPU processing. The convolutional layers were designed

based on different size of kernels and strides. Following five convolutional layers with three

fully connected layers will lead to an output control value, which is the inverse turning

radius. Based on this network architecture, a variety of end to end steering architectures

are proposed. [57] [58] [59] utilize similar architecture with different layers and kernels to

fit different input image dimensions. Other [60] [61] bring in recurrent neural networks
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(RNN), and try to improve the performance by considering the sequential information from

continuous frames. However, the majority of architectures share the common feature that

starting with some convolutional layers as a feature extractor, and then use fully connected

layers or RNNs to infer steering angles.

4.5.2 Design

To compare input images with previously observed training views, we propose a deep neural

network architecture, which consists of a convolutional feature extractor to filter steering

sensitive properties and a familiar view autoencoder to further learn the representation of

well-trained samples in lower dimensionality. As shown in figure 4.3, both vehicle end and

vehicle-cloud end unfamiliar view detectors are built based on this network architecture, but

utilize different layer’s output to achieve desired balance between accuracy and efficiency.

In-vehicle detector leverages the outputs from the decoder of familiar view autoencoder

to estimate the distance between an input sample and the whole training set by evaluating

the reconstruction error. Since reconstruction error is calculated based on the learned

distribution of the whole training set, in-vehicle detector will have relatively lower accuracy

but much less computation cost as it only need perform one time pass of the neural network.

While joint in-vehicle and cloud detector takes the outputs from the encoder of familiar

view autoencoder to check the distance between the input sample and its nearest neighbours

by encoding training samples into the same space. Such nearest neighbours comparison

requires iterating pairwise distance evaluations on all the known samples, thus takes much

more time especially with large amount training samples but can produce relatively higher

accuracy.

As convolutional feature extractor and familiar view autoencoder are common modules

of both detectors, we will introduce them in the first two subsections, and then discuss

vehicle end and vehicle-cloud end unfamiliar view detectors’ workflow respectively.

Convolutional Feature Extractor

Since front facing views include redundancy information that ends to end self steering

system may not concern, we propose to apply a convolutional feature extractor to filter
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steering sensitive properties of the inputs before feeding inputs to the autoencoder. As

the convolutional layers in deep neural networks usually serve as the feature extractor, we

implement an end to end driving network firstly and then utilize the convolutional layers

as our convolutional feature extractor. As shown in figure 4.3, to obtain the convolutional

feature extractor, we implement an end to end self steering deep neural network including

5 convolutional layers and 3 fully connected layers. Among the five convolutional layers,

shallow layers which are close to input layers tend to keep more visual features, while

depth layers will retain more abstract features for steering prediction. To further reduce

the dimensionality and obtain abstract properties that may affect the final prediction, we

choose to use all of the five convolutional layers as feature extractor. The end to end

neural network is similar to Nvidia’s architecture [2], whose strided convolutions are used

in the first three convolutional layers with a 2×2 stride and a 5×5 kernel, and a non-strided

convolution is performed with a 3×3 kernel size in the last two convolutional layers. But

to get better performance on our dataset, we tuned our network to use inputs are from

RGB space, take training labels with the steering angle in terms of radian, and trained only

based on the center camera images. Based on our implementation, the input images will

be cropped and resized to 66×200×3, and the output from convolutional feature extractor

will be 64×18.

As introduced above, the convolutional feature extractor is obtained from the trained

end to end driving neural network on the training set. Given a front-facing camera image X,

it will be firstly processed by convolutional layers c, and then fed to fully connected layers

f for steering angle prediction. Thus, if θ is the ground truth steering angle for current

frame, the end to end steering prediction error is defined as equation 3, in which the overall

end to end steering prediction process is f(c(X)) and predicted steering angle is θ̂.

θerror = θ − θ̂ = θ − f(c(X)) (3)

Familiar View Autoencoder

Convolutional feature extractor filters out steering sensitive properties, but the extracted

feature vectors of training samples should not be treated equivalently. It is because the
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unusual road views that may lead to erroneous steering predictions, are usually unseen

samples which are quite different from training samples or seen samples but with relatively

large training error. Thus, if a sample is close to well-trained samples, which have lower

steering prediction error θerror among the training set, it will more likely to be handled

well by the model and identified as a usual familiar view. Besides, extracted feature vectors

are still in the order of thousand dimensions, so that a fewer dimensions encoding will be

helpful for larger scale system employment and data collection. To address such challenges,

we design and implement a familiar view autoencoder, which learns the representation of

well-trained samples in lower dimensionality based on extracted feature vectors.

The familiar view autoencoder is designed to have four fully connected layers as shown in

figure 4.3. The first two layers are trained as an encoder to map input from 1152 dimensions

to 256 dimensions, while the last two layers are trained as decoder to restore the 1152

dimension vectors based on embedded 256 dimension vectors. Each fully connected layer

includes a ReLU activation function to prevent overfitting. Note that, the hyperparameters

of the autoencoder’s architecture are set empirically to achieve a better performance on

unusual views detection based on current data set scale.

Sample Weighted Loss Function. To distinguish the training samples with lower

steering prediction errors from the ones with larger errors, we propose a sample weighted

loss function to train the autoencoder. The sample weighted loss function is designed to

assign more weights on well-trained samples, so that the autoencoder will focus more on the

representation of such samples which have lower steering prediction error while learning.

This motivates the encoding process of familiar view autoencoder to take more properties

of well-trained samples into account. Therefore, we define the weight w for each training

sample in equation 4.

w =
1

logscalar1(‖θerror‖ ∗ scalar2 + bias)
(4)

The θerror is the steering prediction error as defined in equation 3. scalar1 and scalar2

are the two scalars used to control the range and density of weights w. Both scalar1

and scalar2 are monotonically increasing with weight’s value if other parameters are fixed.
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scalar1 which is the base of the log function, decides the scale of the difference between

small θerror samples and large θerror samples. The bias is the value we set to keep the value

in the valid domain of log function, which is usually the same value of scalar1. Therefore,

the domain of w is (0,1], and the weight w value is monotonically decreasing with θerror to

guarantee larger θerror will have less weight while smaller θerror will have larger weight.

L(x, x′) = w ∗ ‖c(x)− ψ(φ(c(x)))‖2 + L2 (5)

Based on the weights definition, the loss function of familiar view autoencoder is de-

fined in equation 5. Compared with traditional autoencoder loss function as introduced

in equation 2, different weights are applied on different samples according to a sample’s

θerror during end to end steering prediction training. This will put penalties on the sam-

ples, which are not trained well on end to end driving systems, to make sure familiar view

autoencoder’s is trained learn more characteristics of well-trained samples. Besides, we also

add a L2 regularization term on the loss function, which is defined as the euclidean norm

of all the trainable weights in the autoencoder. This regularization term will help prevent

over fitting and force the weights to be sparse.

In-vehicle detector

To identify unusual imagery, in-vehicle detector performs unfamiliar view detection based

on the reconstruction error. As introduced above, reconstruction error is a difference indi-

cator between an input sample and training samples, so that unusual cases can be auto-

matically identified by reconstruction error thresholding. Based on trained convolutional

feature extractor and unfamiliar view autoencoder, reconstruction errors can be obtained

through ‖c(x) − ψ(φ(c(x)))‖2 by comparing the difference between an input sample and

its corresponding reconstructed sample produced by the decoder. Since the calculation

of reconstruction error is just one time pass of the neural network, in-vehicle detector is

computational efficient and able to run on lost cost embedded devices like smartphones.
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Joint in-vehicle and cloud detector

Although the in-vehicle detector can identify unfamiliar images efficiently, it is challenging

to detect unusual cases which do not actually have similar cases included in the training set

but still relatively close to the majority of training samples. Such cases might produce lower

reconstruction error but are hard to be handled by end to end driving systems. This mo-

tivates the joint in-vehicle and cloud detector to perform sample-wise distance comparison

based on nearest neighbours instead of relying on the whole sample set distance evaluation

according to reconstruction error. To enable the scalability for sample-wise comparison,

joint in-vehicle and cloud detector takes outputs from the encoder of familiar view autoen-

coder in vehicle side and then performs k-nearest neighbours (kNN) checking over the cloud.

Such scheme not only guarantees low computational cost in vehicle by running through part

of the trained neural network, but also requires low network bandwidth since only encoded

256 dimensional floating vectors need to be transferred over the cloud. Therefore, to iden-

tify unusual imagery, an input image will be processed by convolutional feature extractor

and the encoder of familiar view autoencoder to generate embedded vectors, then evaluated

based on the mean distance of k nearest neighbors in the embedded space. The embedded

vectors of the training samples will be pre-stored in the cloud to reduce the computation

overhead.

4.6 Evaluation

We evaluate our unusual event identification system with respect to (i) the accuracy of

unusual driving event detection, (ii) the efficiency of the proposed unusual event detection

system, and (iii) the usefulness of extracted unusual events.

4.6.1 Dataset Description

We use two different data sets to evaluate the performance of our unusual events detection

system. The sudden reaction detection is evaluated with a 120-hour dataset collected in

Los Angeles, CA. In this dataset, we use GoPros mounted at the bottom center under

the windshield to record the full driver’s front view videos with 1280×720 resolution at 30
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Fps. The 200Hz accelerometer and 400Hz gyroscope readings are also recorded using the

embedded inertial sensors in GoPros. The data collection is finished by ten different drivers

under different road situations, including urban road, highway roads in both daytime and

nighttime.

Since this dataset we collected does not have accurate driver’s steering angle while driv-

ing, we use a dataset from Udacity end-to-end driving challenge [62] to train and evaluate

our unfamiliar view detection method. Note that the driver’s steering angle is necessary

since it will be used twofold during the experiments. Firstly, it is used to train an end to

end driving neural network, part of which will serve as the feature extractor. Then, it will

also be used to evaluate whether the unusual views we identified will cause poor steering

angle prediction performance in automated driving systems. The dataset contains 33,808

images with a resolution of 640×480 recorded by the center front facing camera including

various driving conditions, such as different sunlight conditions, roads of different lanes, etc.

The videos are recorded in 20Fps, and steering angles are logged in 50Hz and interpolated

to be synchronized with the front view video frames.

4.6.2 Unusual Event Detection Accuracy

Our system can achieve high unusual event detection accuracy for both sudden reaction

detection and unfamiliar view detection, as shown in Table 4.1. Setting 98 percentile of

the fused feature value as the threshold, sudden reaction detection can achieve 53.16% and

63.16% accuracy for unusual braking events and swerving events respectively. Note that the

detection accuracy is low because there are plenty of general sudden maneuvers performed

by drivers, such as aggressive driving behaviors, sudden braking towards red traffic lights,

etc., which were detected by our method but not labeled as unusual events in the evaluation.

If the 98th percentile is also used for reconstruction error thresholding in unfamiliar view

detection, the accuracy of in-vehicle detector is 71.43% and vehicle-cloud end is 80.30% 1. A

sample of detected unusual events are shown in figure 4.4. Figure 4.4(a) and 4.4(b) are de-

tected by the driver’s sudden reaction based on the IMU data, and figure 4.4(c) 4.4(d) 4.4(e)

1Unusual view detection will be determined as correct if its corresponding steering prediction error is
larger than the median.
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(a) Swerving to avoid a tire segment (b) Braking due to a cut-in vehicle

(c) Special lightening condition (d) Complex roadside lightening
condition

(e) Unusual traffic and vehicle
pose

Figure 4.4: Examples of detected unusual events.

are captured by unfamiliar view detector since they are relatively unusual in the dataset.

Detailed evaluation procedures are introduced in the subsections below.

Methods Proposed Method (%) Baseline (%)

Sudden Reaction Detection
for Braking Events

53.16 29.11

Sudden Reaction Detection
for Swerving Events

63.16 31.58

Vehicle End
Unfamiliar View Detection

71.43 64.53

Vehicle-Cloud End
Unfamiliar View Detection

80.30 64.53

Table 4.1: Unusual event detection accuracy versus baseline/strawman solution accuracy
for four methods.

Sudden Reaction Detection Evaluation

To demonstrate the performance of the sudden reaction detection method, we compare

the proposed feature fusion detection method with the Strawman solution 2 as well as

the approaches which filter unusual events based on the derivative and duration feature

2The Strawman solution is used as baseline technique for comparison.
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Figure 4.5: Evaluation Results of Sudden Reaction Detection.

individually. Specifically, detected candidate periods are sorted in terms of the amplitude

of accelerations, derivative of accelerations, duration of braking events, and the fused value

of all the features respectively for braking event, according to Section 4.4.

Then, unusual braking events are identified by thresholding the four metrics values to a

percentile of threshold. Same process also applied for swerving detection based on gyroscope

reading.

We find 3987 braking events and 981 swerving events in total over the 120 hours driving

data. Thresholding the 95th percentile of braking feature values and the 90th percentile
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Figure 4.6: Evaluation Results of Sudden Reaction Detection.

of swerving feature values 3 will filter out 199 braking events and 98 swerving events re-

spectively, and the number of unusual events among them are shown in Figure 4.5(a).

The unusual events are manually labeled in terms of whether the driver was surprised to

perform sudden reactions for the unusual cases, but the usual sudden maneuvers such as

aggressive driving behaviors, sudden braking towards red trafficlights, etc., are not included.

Among 199 detected braking events, feature fusion approach extracts 71 unusual braking

events, which surpasses the amplitude (36 detected), duration (44 detected) and derivative

(61 detected) based approaches. Similarly, 27 sudden swerving events are detected out of

98 chosen swerving events with the feature fusion approach, which is better than other

approaches (13, 24 and 19 sudden swerving events detected correspondingly). Since the

length of unusual events captured by feature fusion is 0.25 hours out of 120 hours driving,

our sudden reaction detection can largely save the bandwidth by only uploading detected

unusual situations.

To further explore the relationship between sudden reaction detection accuracy and

percentile of threshold value for each method, we plot the accuracy for braking events

detection in Figure 4.5(b) and swerving events detection in Figure 4.5(c). We can observe

that as the percentile of threshold increasing, the detection accuracy all of the four methods

are getting higher. Among the four approaches, our proposed fusion method performs better

than the other three methods. Since the dataset is too large to label ground truth for every

3We chose 90 percentile as threshold for swerving events because smaller amounts of swerving events are
included in the dataset.
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event, we do not evaluate the recall of this approach in this chapter.

Besides the precision improvement, our system also achieves a high estimated recall

compared to the baseline approaches. Due to the large amount of manual effort needed to

label the large video dataset with ground truth, we limited labeling to 40% of events with

at least one high feature value (a total of 1878 labeled events) and calculate recall over this

dataset as an estimate for overall recall. Figure 4.6 shows the ROC curve of our braking

events detection and sudden swerving events detection methods correspondingly. We can

observe that the feature fusion approach achieves the highest area under the curve (AUC)

value, which indicates the performance improvement compared to baseline approaches.

Unfamiliar View Detection Evaluation

In this section, we evaluate our unfamiliar view detection method by comparing the proposed

two detectors (in-vehicle detector and joint in-vehicle and cloud detector) with a baseline

approach. In particular, we randomly sampled 80% of video frames from the Udacity

dataset [62], and use them to train all of the three models. The rest of 20% of video frames

are served as test set to evaluate the performance in terms of detection precision and recall.

Baseline Model. In order to show the advantage of our in-vehicle and joint in-vehicle

and cloud detectors, we compare our system with a baseline model which uses the raw

training images as input for the autoencoder. The baseline model also includes 4 layers:

(i) a convolutional layer taking inputs images with 60×200×3 dimensions and apply a [5, 5]

kernel, (ii) a fully connected layer further encode inputs to 256 dimensions. (iii) a fully

connected layer to decode the inputs from 256 dimensions, and then (iv) a deconvolutional

layer to reconstruct input images back to 60×200×3 dimensions also with a [5, 5] kernel.

The baseline autoencoder is trained on the same training set as used for our proposed

autoencoder. Figure 4.7 shows that the baseline autoencoder is able to reconstruct the

input images to similar lossy images, since the embedded layer is much smaller than the

original input. Thus, the reconstruction error of baseline autoecnoder can also indicate the

distance between a test sample and the training set.

Precision. To evaluate unfamiliar view detectors, we define p in equation 6 as the
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Figure 4.7: Sample input images and corresponding reconstructed images of baseline au-
toencoder.

detection accuracy, which represents the precision for binary classification task. Since un-

familiar view detection aims to identify the corner cases which are challenging for end to

end self driving system, we determine a correct unusual detection if the sample’s steering

prediction error θerror is larger than a threshold threθ.

p =
number of detected events whose θerror > threθ

number of detected events
(6)

Figure 4.8 shows the detection accuracy p with respect to (i) different thresholds value

to identify unusual events and (ii) different threθ to determine correct detections. As

illustrated in the legend, the red, blue and yellow curves in the figure represent the detection

accuracy p of three approaches respectively. x axis is defined as threshold value to identify

unusual events, which is percentile of reconstruction error for baseline detector and in-

vehicle detector, and the percentile of 20 nearest neighbour’s distance for joint in-vehicle

and cloud detector. The threθ is set to 50 percentile, 70 percentile, 90 percentile of the

steering prediction error on test set to define different correct unusual events detections. We

can observe that all the curves have larger p while the threshold value of x axis increases.

This verifies our motivation that driving views which have larger distances with previously

observed views are more likely to get poor steering predictions. When x axis value is close to

0, the curves start from 0.5, 0.3, 0.1 respectively, which is basically random guess. However,

as the distance threshold on x axis increasing to a larger value, such as 90 percentile, p boost

to a very high accuracy. This illustrates that the events which have large distances namely

very different from the training samples are more likely to confuse end to end driving system



62

20 40 60 80 100

Percentile of Threshold (thre )

0

0.2

0.4

0.6

0.8

1

p

Vehicle End Detector

Vehicle-cloud End Detector

Baseline

thre
s
 = 50%

thre
s
 = 70%

thre
s
 = 90%

Figure 4.8: The relationship between de-
tection precision and threshold value.

0 0.2 0.4 0.6 0.8 1

False Positive Rate

0

0.2

0.4

0.6

0.8

1

T
r
u

e
 P

o
s

it
iv

e
 R

a
te

Vehicle End Detector

Vehicle-cloud End Detector

Baseline

Figure 4.9: The ROC curve of baseline,
in-vehicle, joint in-vehicle and cloud de-
tectors.

Baseline detector Vehicle-end detector
0

200

400

T
im

e
 C

o
s

t 
(M

F
L

O
P

)

0

200

400

S
p

a
c

e
 R

e
q

u
ir

e
m

e
n

t 
(M

B
)

Time Cost

Space Requirement

Figure 4.10: Efficiency comparison be-
tween baseline detector and in-vehicle
detector.

Model
original

Model
random

Model
unusual

0

0.02

0.04

0.06

0.08

0.1

0.12

A
b

s
o

lu
te

 M
e
a
n

 E
rr

o
r 

(r
a
d

ia
n

)

Test
new

Test
original

Test
all

Figure 4.11: Model performance com-
parison on different training sets and
test sets.

and get poor predictions.

For the baseline autoencoder, although it can also quantify the distances between test

samples and training samples, the accuracy p is not as high as the two other approaches.

It is because that the reconstruction error of baseline autoencoder’s is estimated without

discrimination, while our familiar view autoencoder uses the feature map from the convo-

lutional feature extractor and focuses on the well-trained samples through weighted loss

function. Thus, our approach drops the redundant information and emphasizes more on
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the information end to end driving model cares about. Besides, the droppings of p at the

tails of baseline autoencoders curves also show that even though some images may visually

different from training set, they still work for steering prediction model with similar fea-

ture vectors of training samples. For the comparison between in-vehicle detector and joint

in-vehicle and cloud detector, the latter one is usually more accurate, since it performs fine-

grained sample-wise calculation as discussed in section 4.5.2. Therefore, the experiments

show that our unfamiliar view detectors can accurately detect unusual events which self

driving models fail to perform good predictions.

Area under the curve. To further explore the performance of unfamiliar view de-

tectors, we plot the Receiver Operating Characteristic (ROC) curves in figure 4.9 with 90

percentile steering prediction error to define unusual events. The area under the curve

(AUC) of baseline, in-vehicle, joint in-vehicle and cloud detectors are 0.59, 0.64, 0.75 re-

spectively. Although our proposed detectors work better than baseline detection, they still

do not achieve a high AUC score. This is because that the trained end to end driving model

could not work well on the views which are similar to previously seen training samples and

causes a lower true positive rate. Therefore, it is important to consider the balance between

a detector’s ability to capture most of unusual events and the cost of network bandwidth

for data transmission as high recall to extract more unusual events will bring more false

positive detection. Under the context of large scale employment and data collection, the

system will more likely to focus on extremely unusual cases with minimum bandwidth which

prefers a higher precision.

4.6.3 Efficiency of Unusual Events Detection

As the unusual events identification system is built towards large scale employment based

on off-the-shelf devices, we further explore the time and space efficiency of our method.

Since sudden driver reaction detection through inertial data is computational inexpensive

and does not require extra storage to perform the detection, we only focus on the efficiency

evaluation on unfamiliar view detection in this section.

The space requirement of baseline autoencoder and in-vehicle detector are evaluated

through the size of inference graph in tensorflow. To obtain the inference graph, we run
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through the freezing and optimizing scripts of tensorflow to organize the trained model

with only inference required nodes. The size of inference graphs for baseline autoencoder

and in-vehicle detector are 321MB and 6MB respectively as shown in figure 4.10. We also

evaluate the baseline autoencoder and in-vehicle detector based on the number of floating

points operations (FLOP), which can be used to roughly estimate the time cost of models.

The FLOP of both models are counted by the benchmark script provided by tensorflow.

As shown in the figure 4.10, baseline autoencoder model include 211.74 MFLOPs, which is

much higher than online in-vehicle detector’s 56.39 MFLOPs. In addition, we also run the

in-vehicle detector on a Nexus 5X Android smartphone, and each frame takes around 58ms

to process, which showing a 17Hz inference capability. Therefore, the in-vehicle detector

has higher efficiency in terms of both time cost and space requirement, and is applicable for

real-time employment on off-the-shelf smartphones. Regarding joint in-vehicle and cloud

detector, it will be more computational expensive since its complexity is proportional to

the number of training samples, and requires significant space due to the storage of training

sample vectors.

4.6.4 Usefulness of Unusual Events

In this section, we show that the unusual events extracted by our unfamiliar view detection

method can increase the performance of end to end driving system for more complex situ-

ations. Specifically, we add the detected unfamiliar events into the training set of the end

to end steering system and explore the performance on different test sets.

First, based on the dataset from Udacity as introduced in section 4.6.1, we use 80% of

the samples to train an end to end driving model Modeloriginal and the rest of 20% samples

as the test set Testoriginal. To get new training samples, we use another dataset also provided

by Udacity [63], which is collected with the same experiment setup, but mostly driving on

roads with heavier traffic. Among this dataset, first 10,000 samples are picked as a sample

pool and the next 1000 samples are used as the new test set Testnew. The new training

sets include original training samples as well as 1000 new samples, which are selected from

the sample pool by two different strategies. One strategy randomly selects new samples

from the sample pool, and the other one utilizes in-vehicle detector to pick 1000 unfamiliar
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views. We call the model trained with the first strategy Modelrandom, and the second model

Modelunusual. To evaluate the overall performance on both datasets, we combine the samples

from Testoriginal and Testnew as Testall.

All of the three different models are evaluated on three different test sets in terms of the

absolute mean error of steering prediction, and the performance is shown in Figure 4.11.

For the new test set Testnew, Modeloriginal performs worst since it had never trained on those

roads. Modelrandom shows better performance than Modeloriginal, since the new training set

contains randomly selected views with the same road condition. Modelunusual further shows

performance gain, which illustrates that the unfamiliar cases identified by our method is

more representative of the new dataset and improve the model performance on the new

route more efficiently. For the original test set Testoriginal, Modelunusual and Modelrandom’s

accuracy are slightly lower than Modeloriginal, since they are trained to handle more cases,

which create a neglectable performance compensation on Testoriginal. From the results

based on the overall test set Testall, Modelunusual still shows the best performance than the

other two, which shows the detected unusual events are able to increase model’s overall

performance and robustness on different roads and traffic conditions.

4.7 Related Work

Detecting unusual events is of great importance to driving assistant system developments,

since the analysis of such corner cases will be helpful to improve current systems [2,34,57–61,

64]. There has been extensive research on vehicle sensing and unusual events detection based

on inertial measurements. [37] utilizes the IMU of smartphones to detect and differentiate

vehicle maneuvers, but only focusing on steering related maneuvers. [38] also take inertial

reading from smartphones, and then perform aggressive driving style recognition based

on dynamic time warping. However, such algorithm could only detect known aggressive

driving patterns, while not diverse human driver reactions which are naturally performed

during emergency periods. [39] is close to our vision that identifies unusual events based on

inertial measurements, but the proposed solution heavily relies on large number of thresholds

which are defined based on the amplitude of sensor readings. Besides, there are some other

driving sensing techniques built upon IMU, but towards different goals, such as [65] for
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drunk detection, [32,66,67] for driver determination, and [68,69] for driver tracking, etc.

As visual imagery captures vehicle’s surrounding condition and moving pattern, vision

based techniques are also used to detect unusual driving situations. [40] [41] [42] leverage

the spatial and temporal information from videos to detect high level anomaly patterns by

comparing with previously observed views. While [43] and [44] specialized on concrete type

of road emergency detection such as a collision based on vehicle tracking. However, these

approaches rely on a fixed point of view, such as video feeding from surveillance camera,

thus are not suitable for on-board imagery processing. [45] and [46] are able to utilize on-

board cameras to capture unusual cases, but only cover on a subset of challenging situations

such as abnormal pedestrian movements and unclear drivable roads.

Another body of work focuses on exploring the weakness and vulnerability of current self

driving systems. [47] [48] [49] could be used to generate the synthetic cases which systems

tend to have erroneous behaviors, but such situations can not extend the coverage of real

unusual cases. [50] explored the robustness of traffic sign recognition model under physical

world attacks. However, a detection mechanism for such attacks was not covered.

4.8 Discussion

As more unusual driving events get collected by our proposed system, the previously ob-

tained training set need to be extended to cover more diverse cases. This will require the

familiar view autoencoder to be re-trained with more number of observations. Depending

on the order of increased training samples, the familiar view autoencoder may have to in-

corporate more neurons and more layers to achieve equivalent detection performance. Such

updates on the network architecture will increase the computational cost of the familiar

view autoencoder with larger trained network size and longer processing time. To mitigate

the computation requirement on the vehicle, the decoder and reconstruction error check

module of the detector could be shifted to the cloud. Since the computational cost of the

autoencoder is not proportional to the number of samples, the shifting is only necessary

when the size of the training set is very large.

The low cost design of our unusual identification approach could enable large scale
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data collection potentially through crowd sourcing, but privacy could be a concern. When

unusual events are recorded, drivers’ privacy may be compromised by the imagery and

inertial sensor readings, such as visited location which can be inferred from the front view

camera, and driving decisions for an emergency event sensed from inertial sensor. Therefore,

the vehicle end software may need additional functionality to buffer the detected unusual

events and only upload the events if the driver confirms that there is no privacy concern.

Besides, as the scale of crowd sourcing increases, the heterogeneity of mobile devices may

become another challenge. For the inertial based sudden reaction events, there may be

differences in sample frequency and sensitivity but we expect this to cause relatively low

accuracy loss. It would be more challenging for the unfamiliar view detection to run on

heterogeneous cameras with different resolutions and intrinsic parameters but this can be

addressed in future work.

4.9 Conclusion

In this chapter, we aim to automatically identify unusual driving events to allow scaling

the collection of driving data and corner cases to a much larger fleet of human-driven ve-

hicles without requiring upload or human review of all data. The proposed system is able

to capture various unusual circumstances, including hazardous event like sudden braking

and swerving events through a three-stage process involving inertial sensing and detecting

outliers of current trained self-driving systems based on autoencoder deep neural network.

The evaluation is based on more than 120 hours of real road driving data and shows that

it outperforms baseline methods on unusual event with 82% accuracy improvement over

baseline on sudden reaction detection and above 71% accuracy on unfamiliar views identifi-

cation. While the dataset size allowed validating the techniques only with less rare events,

one might expect that similar patterns hold also in the much rarer events that would even-

tually be of interest. The event identification process requires only inertial measurements

and front view driving videos, allowing collection of data from smartphones or dashcams.

The computational cost is only subject to the complexity of our pre-trained neural network.

Thus, the light-weight design and minimal infrastructure requirement of this approach will
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allow large-scale unusual driving events identification and collection. We hope that an ex-

tensive dataset of driving corner cases collected with this approach would provide a better

understanding of potential limitations of current systems and accelerate the development

of robust automated driving technology.
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Chapter 5

Bridging the Gap Between Point Cloud Registration and

Connected Vehicles

5.1 Introduction

As driving is becoming increasingly automated, vehicles rely on multiple sensors (e.g., ul-

trasound, cameras, RADAR, or LiDAR) to maintain comprehensive awareness of the sur-

rounding traffic environment. While much progress has been made, it remains challenging

to ensure the dependability over the long tail of events and traffic situations that vehicles

can encounter. In particular, vehicles must contend with: (i) physical occlusions, in which

objects are blocked by others and are only partially observable or unobservable; (ii) sensing

limitations, including field of view, resolving power, or lighting conditions that may limit

the sensing range and quality. Connected vehicles have the potential to overcome such limi-

tations by sharing observations across a wireless network and merging them across different

vehicles, since such physical occlusions and sensing limitations from one perspective can

often be easily addressed when viewing the scene from a different perspective.

In this chapter, we specifically focus on the fusion of 3D point clouds from different

vehicles, which are usually generated by stereo cameras or LiDARs, and broadly used for

on-vehicle applications such as object detection, object tracking, etc. The previous work [70]

has shown that the object detection accuracy can be improved about 10% for the detection

within 20 meters and 30% for longer distances by fusing the point clouds from other view-

points. In order to benefit from such point cloud fusion in real world, one main challenge is

to align point clouds captured by different vehicles. Since the non-negligible vehicle local-

ization error in real system will make the simply merged point clouds even more noisy, point

clouds from different vehicles should be well aligned before feeding to applications. Although
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(a) Simulation sample snapshot 1 (b) Input point cloud with localization error of
snapshot 1

(c) ICP alignment result (mean error = 0.34m)
of snapshot 1

(d) Alignment ground truth of snapshot 1

Figure 5.1: Illustration of ICP point cloud registration performance in bird’s eye view.
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(a) Simulation sample snapshot 2 (b) Input point cloud with localization error of
snapshot 2

(c) ICP alignment result (mean error = 13.21m)
of snapshot 2

(d) Alignment ground truth of snapshot 2

Figure 5.2: Illustration of ICP point cloud registration performance in bird’s eye view.
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there has been extensive research on point cloud alignment/registration, the state-of-the-

art methods cannot be directly applied to align the pairwise point clouds from vehicles, as

they require large overlapping ratio between point cloud pairs [71–74]. (Note that the scope

of this chapter is to align point cloud pairs without high definition maps, since they are

expensive to create and maintain, and only available for limited areas). Due to occlusions

from surrounding objects or vehicles perceiving the scene from different directions, the ob-

servations from different vehicles usually have little overlap ratio and fail to be aligned by

the state-of-the-art point cloud registration algorithms. Considering the most widely used

point cloud registration algorithm, Iterative Closet Point (ICP) [73], as an example, the

alignment results are shown in figure 5.1 and 5.2. When vehicles are close to each other

and driving towards the same direction as shown in figure 5.1(a) marked with red and green

rectangles, ICP can align the point clouds from these two vehicles when decimeter level

localization error is introduced, as (i) the inputs combined with localization error could

still be considered as a good initialization and (ii) there are large enough overlapping ratio.

However, as for the scene in figure 5.2(a), the overlapping ratio will become much lower since

vehicles are driving towards different direction and there are objects in between. Thus, ICP

fails to fuse the point clouds accurately as shown in figure 5.2(c). The requirement of the

overlapping ratio for the state-of-the-art point cloud registration methods largely restricts

the potential peer vehicles which can benefit from the vehicle networks based point cloud

sharing.

To overcome such limitations, we design a two-phase point cloud alignment system

that can fuse point cloud accurately even when vehicles have large viewpoint difference.

Our intuition is to detect the overlapping region between two views and only align point

clouds based on that, so that the overlap ratio of input point clouds could be largely

increased. Specifically, the system first identifies and matches co-visible objects, that is

objects visible from both perspectives, using hyper-graph matching based on the extracted

location and label information. It then estimates the co-visible region for each of them

and cropped out the larger overlap region. The selected co-visible area acts as an anchor

points and its point cloud will be used to estimate the transformation. The estimated

transformation will then be applied to the entire point cloud from the same viewpoint. We
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evaluate the accuracy of point cloud registration and co-visible matching based on both

real-world KITTI [75,76] dataset and synthetic CARLA [48] dataset. Our contribution can

be summarized as followed:

• We propose the first system which can accurately align point cloud pairs under com-

plex traffic conditions, such as scenes with various occlusions and large view angle

difference1 (e.g., 90 180.

• We introduce a technique to identify co-visible objects by combining multiple simi-

larity metrics obtained in 3D object detection results to distinguish co-visible objects

from single-visible objects.

• We show that fusion accuracy is improved when point cloud registration is focused on

the co-visible object with the overlapping area among the views.

• We evaluate our system based on both synthetic scenes and real-world experimental

data across highway and intersection scenarios and show that it can improve point

cloud registration algorithms with a significant margin.

Note that this chapter is not proposing new point cloud registration algorithms, but enable

existing ones to be applicable in complex traffic scenes, which further activates the potential

of vehicle network based data sharing.

5.2 Related Work

As our work lies at the intersection of point cloud registration and vehicle information

fusion, the related work in these two areas is summarized in this section.

The term “point cloud” refers to a set of data points in 3D space which are usually used

to represent objects or scenes. Since point clouds are generally produced by depth-capable

sensors such as LiDAR [77] or RGBD cameras [78] with a partial view of a scene, two or more

partially overlapping point clouds are often combined to represent the full 3D geometry of

the sensing region. This process of finding a translation and rotation transformation of

1defined as the bearing difference between two vehicles.
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one point cloud so that the overlapping portion matches that of another point cloud is

called point cloud registration or alignment. Note that, the terminology point cloud

registration or alignment in this chapter refers to the specific algorithms to match the

point clouds, and point cloud fusion refers the complete pipeline of combing point clouds

from a system perspective, including prepossessing, sharing, and registration or alignment.

5.2.1 Point Cloud Registration

Pairwise point cloud registration

Generally, there are two popular paradigms for point cloud registration: correspondence-

based methods and correspondence-free methods, depending on whether correspondences

between point clouds are extracted explicitly.

Correspondence-based methods first detect and match 3D keypoints across point clouds

and then infer the transformation from these putative correspondences. Since it is too inac-

curate to match points based on position alone, the matching process is based on features

the describe the shape surrounding a point. Traditional hand-crafted features commonly

summarize pairwise or higher-order relationships in histograms such as Fast Point Feature

Histograms [79], Viewpoint Feature Histograms [80], or Clustered Viewpoint Feature His-

tograms [81]. With the development of deep learning, a number of neural network based

feature descriptors have been proposed, such as PointNet [82], 3DMatch [83], PPFNet [84],

3DSmoothNet [71], Multi-view Descriptor [72], FCGF [85] etc. Although the robustness of

the learned 3D descriptors is improved compared to the hand-crafted features, their regis-

tration pipelines still rely on the same process of matching geometric features across point

clouds. All these methods require significant overlap between two point clouds to accurately

combine them. For example, the evaluation of these methods, such as [71, 72, 84], require

the input point cloud pair to overlap by at least 30%, which is not necessarily the case when

vehicles approach an intersection from different directions as in Fig. 5.1 and 5.2.

Iterative Closest Point (ICP) [73] and its variants, e.g., point-to-plane ICP [86] and

point-to-line ICP [87], are the most commonly used correspondence-free methods. These
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algorithms perform optimization by iteratively refining a point correspondence and the as-

sociated rotation from an assumed starting correspondence, but they are not robust against

outliers and converge to a global optimum only when starting with a reasonable initial

alignment. To overcome this, correspondence-based methods can be used before ICP to

provide the coarse alignment. To remove the need for initial alignment, recent work either

integrates such two stage registrations into an end-to-end learning algorithm [74, 88, 89] or

proposes non-training global registration pipelines [90–92]. Moreover, NDT [93] represents

point clouds by a combination of normal distributions to apply standard numerical opti-

mization, and TEASER [94] reformulate the registration problem using a truncated least

squares to yield a fast computation and provides readily checkable conditions to verify if the

returned solution is optimal. Although the applicability of pairwise registration methods

are extended, they still cannot work for vehicle point cloud registration directly due to the

high outlier ratio caused by distinct vehicle views and occlusions.

Scene-based Optimization

The aforementioned methods can register point clouds in a pairwise manner, but the am-

biguous cases that arise in pairwise matching can be mitigated by incorporating cues from

multiple views. Projects such as [95–97] posed the task of finding a global alignment as

picking the best candidates from a set of putative pairwise registrations, such that they

satisfy the loop constraints. However, such approaches are less desirable for vehicle point

cloud generation since they require the presence of a larger numbers of neighbouring ve-

hicles that share their point cloud in order to perform single registration. Similar to our

setting, the most relevant work to ours is arguably [98], which matches and aligns point

clouds in different LiDAR scans. It can recover the correct alignment over larger vehicle

displacements, when vehicles are traveling in the same direction, but not the intersection

scenario we consider. Finally, although [99, 100] aim to register vehicle point clouds at the

object level, these methods assume a complete point cloud of the surroundings from a high-

resolution 3D map as inputs. Given the substantial overhead of maintaining such maps, we

aim for a map-free solution.

Baselines. In order to illustrate our contribution, 3 baseline algorithms are chosen
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as the benchmark for point cloud performance comparison, including (1) the most widely

used correspondence-free registration algorithm ICP [73] (2) deep learning based feature

descriptor FCGF [85] which is one of the most recent progress on correspondence based

registration algorithm, and (3) the closest work to ours SSM [98].

5.2.2 Vehicle-to-Vehicle Information Fusion

Other pioneering work shows the potential benefit of vehicle information fusion, but did

not consider the various vehicle viewpoint differences and localization errors at intersection

scenarios as we do. [101] proposed to fuse vehicle information for perception, but focused

on fusing compressed LiDAR features. Although [102] studies the full stack of multi-vehicle

cooperative perception and driving, the design and implementation are limited to when

vehicles are following each other. [103] proposed a system to share vehicle’s view through

extracted features using SLAM [104]. However, the focus of their proposed system is on

visualizing and reconstructing the shared camera view. Both [70] and [105] explored the

benefits of point cloud fusion, but no localization error was involved in the pipeline, which

always leads to perfect point cloud fusion.

5.3 System Overview

Based on vehicular application scenarios and foregoing review of the state-of-the-art in

point cloud registration algorithms we identify the following challenges for point cloud

fusion across vehicles:

• Aligning point clouds in complex traffic situations. Complex traffic scenes challenge

the point clouds registration between vehicles in two aspects: (i) the presence of

multiple traffic participants leads to participants experiencing different occlusions in

their observations. This significantly decreases the amount of overlap between point

clouds from different vehicle; (ii) the same object can be observed by vehicles from

very different view angles, for example when approaching from different legs of an

intersection. The resultant observations can thus contain the same object observed

from different sides, which again leads to relatively distinct point clouds with little



77

Figure 5.3: System Design.

overlap.

• Limit bandwidth consumption. The system should be able to exchange any required

data over a wireless network between vehicles. While this information does not nec-

essarily have to be exchanged over very bandwidth-limited technologies such as Ded-

icated Short Range Communications (DSRC), the system should be able to exchange

the data over emerging technologies such as millimeter-wave (mmWave) communica-

tions.

• Tolerate vehicle localization errors. Vehicle localization errors will affect the trans-

formation from vehicle sensor coordinates to world coordinates, which is based on

vehicle locations. Although increasing sensor capabilities and improved localization

lead to more accurate vehicle localization, the system should still be able to handle

localization errors at least at the decimeter level.

In order to merge vehicle point clouds and meet the design objectives, we propose a

two-phase point cloud fusion system which first identifies objects that are co-visible from

each vehicle’s perspective and then refine the point clouds based on co-visible region of

these objects to align the point clouds. The system is designed based on the outputs of 3D

object detection, since it is usually available when the vehicle has depth sensing capability

and the robust 3D object detection results provide reliable hints during point cloud fusion.

As shown in figure 5.3, the input of the system based on the 3D object detection results

include the labels, centers, and point clouds of detected objects. The coordinates of inputs
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are transformed into world coordinates based on each vehicle’s own localization. The Co-

visible Object Detection module extracts multiple similarity metrics based on the detected

object labels and centers to distinguish co-visible objects from those that are visible only

from a single perspective. Even though co-visible objects can be observed from two vehicles’

viewpoints, they may not have enough overlapping visible area to yield an accurate point

cloud registration. Thus, Co-visible Region Refinement further trim the point cloud to keep

the overlapping area of the co-visible objects for transformation estimation between two

views.

The resulting aligned point clouds can be combined to create a more complete represen-

tation of the traffic scene, which better supports advanced driving assistance applications.

Note that not all pairs of vehicle point clouds can be fused in our system, only the ones

include co-visible objects and co-visible areas can be fused by Co-visible Object Detection

and Co-visible Region Refinement, respectively. If fusion is not possible, vehicles can fall

back on their individual perception. The detailed fusion requirements of each module will

be discussed in section 5.4 and section 5.5.

Note that our system design limits bandwidth consumption since it only needs abstract

information to determine whether point cloud pairs can be potentially aligned, and then

requests the raw point cloud to estimate the transformation. Specifically, the input data

volume of our fusion system to determine the eligibility of point cloud alignment is in

the order of kilobytes, which includes the label, center and visible region of each detected

objects. Such information can be shared through messages transmitted using periodic

V2V communications, e.g., Cooperative Perception Messaging transmitted via DSRC. With

varied number of objects detected in the vehicle’s view, the raw point cloud of detected

objects could be as large as in the order of a few megabytes, which could be transmitted

via large-bandwidth mmWave communications when needed.
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5.4 Co-visible Objects Detection

Co-visible objects detection module is designed to identify co-visible objects. Specifically,

we formulate the problem of detecting co-visible objects as a hyper-graph matching prob-

lem [106], which is broadly used in computer vision for key points correspondence determi-

nation. Since the single-visible objects are considered outliers in graph matching, we first

coarsely filter out the single-visible objects using a threshold-based filtering. Based on the

remaining objects in two views, different similarity metrics will be extracted for hyper-graph

matching to take advantage of the label and location information obtained from object de-

tection. As hyper-graph matching can pair objects but not distinguish single visible objects,

we design a distance consistency check based on hierarchical clustering to identify the cor-

rectly matched co-visible objects. The illustration of co-visible objects detection is shown

in figure 5.4. After outlier removal, the detected objects are plotted, where different color

represents objects detected from different view and different shape indicates different object

labels. Hyper-graph matching is able to generate the matching between objects, and the

consistency check will further extract the correct matching based on the matched pairs.

5.4.1 Preliminary

Hyper-graph matching was originally proposed to match correspondences between images

and can be solved efficiently through reweighted random walk [106]. A hyper-graph G =

(V, E ,A) consists of nodes v ∈ V, hyper-edges e ∈ E as well as the attributes a ∈ A

associated with the hyper-edges. A hyper-edge e encloses a subset of nodes with size δ(e)

from V, where δ(e) denotes the order of each hyper-edge. The goal of hyper graph matching

is to establish the mapping between nodes of two graphs GP = (VP , EP ,AP ) and GQ =

(VQ, EQ,AQ).

Suppose a set of all possible node correspondences C = VP × VQ, and k tuples cω1 =

(vPp1 , v
Q
q1), ..., cωk

= (vPpk , v
Q
qk) ∈ C among them. For kth order hyper graph matching, the

similarities of the k-tuples can be measured by comparing attributes of two kth order hyper-

edge ePp1,...,pk and eQq1,...,qk , which means the hyper-edges connecting vPp1,...,pk and vQq1,...,qk

respectively. Denoting the kth order similarity function by Ω, the kth order similarity of
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the k-tuple can be measured by Ω(aPp1,...,pk , a
Q
q1,...,qk). Therefore, the affinity tensor including

kth order similarities can be generalized in a recursive manner as follows:

H(k)
ω1,...,ωk

= Ωk(a
P
p1,...,pk

, aQq1,...,qk) + λ(k−1)
∑k

l=1
H(k−1)
ω1,...,ωkωl

H(1)
ωi

= Ω(aPpi , a
Q
qi)

(1)

where λ(k) represents the weighting factor of kth order similarity value and the su-

perscript on H denotes the dimension of a tensor. Therefore, the object function of the

hyper-graph matching can be formulated to equation 2, where X is a binary assignment

matrix, mP and nQ denote the number of nodes in GP and GQ, 1Pm and 1Qn represent all-

ones vector with size m and n respectively. By maximizing the matching score of objective

function under the one-to-one constraints, the hyper-graph matching problem can be solved

by the Hungarian method [107] to find the assignment matrix X∗.

X∗ = argmax
X

H(k)⊗X

s.t. X1nQ×1 ≤ 1mP×1, XT1mP×1 ≤ 1nQ×1

(2)

5.4.2 Matching Outlier Removal

To improve the object matching accuracy, our proposed system first removes matching out-

liers. In the hyper-graph matching task, matching outliers refer to the nodes which only

consist in one graph and can not be matched. In our vehicle view matching context, match-

ing outliers are the single-visible objects. As the increasing of overlapping region between

vehicle’s view, there will be more single-visible objects involved each view. Therefore, re-

moving such single-visible objects will reduce the number of outliers and increase object

matching accuracy. At current stage, the single-visible can be coarsely excluded based on

nearest neighbour search. As all the objects from two views are transformed into the same

world coordinates, if a object does not have any neighbours in the other view within a

threshold distance, the object can be classified as single-visible object and removed before

matching. The distance threshold can be determined based on the localization accuracy,

such as the accuracy value provided by Android Location API [108], which indicates hori-

zontal accuracy in meters as the radius of 68% confidence.
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5.4.3 Hyper-graph Matching with Multiple Similarity Measures

Inspired by the existing work [106, 109, 110], our work extends the hyper-graph matching

by combing multiple similarity measures, including attribute-based similarity measures,

geometry-based similarity measures, etc., in matching.

Each vehicle can first build a hyper-graph based on its locally detected objects, and

additionally, it can also build a hyper-graph for a remote vehicle based on the shared

information from that vehicle. In the built hyper-graphs, nodes denote detected objects by

the observing vehicle and edges represent the spatial relationship between detected objects.

The attributes of each node, such as the category the object belongs to, the size of the object,

etc., can be utilized to distinct one node from others. In our work, we focus on exploiting

the category information of objects since it is invariant under different viewpoints.

H(1)
ω1,ω2,ω3

= exp

[
− 1

σs1

3∑
k=1

| sin(θPωk
)− sin(θQωk

) |
]

(3)

H(2)
ω1,ω2,ω3

= exp

[
− 1

σs2

∑
i,j∈{1,2,3}

i 6=j

| dPωiωj
− dQωiωj

|2
]

(4)

H(3)
ω1,ω2,ω3

=
1

3

3∑
k=1

diff(lPωk
− lQωk

)σs3 (5)

In order to qualify the hyper graph similarity, we specifically extract the angle, distance

and label similarities based on hyper edges. The angle similarity [111] is defined in equation 3

based on a pair of 3rd order hyper-edges, ePa,b,c ∈ EP and eQx,y,z ∈ EQ, (a, b, c ∈ VP a 6= b 6= c

and x, y, z ∈ VQ x 6= y 6= z), where θPωk
and θQωk denote the angles in the triangle pairs

formed by the correspondence ωk in P and Q. The distance similarity [106] is quantified

based on equation 4, where dPωiωj
and dQωiωj represent the length of edges formed by the

nodes within the hyper-edge. σs1 and σs2 are scale factors, which are set empirically to 0.5

and 0.15 as in [106].

To take advantage the label information predicted by vehicle object detector, we define

the label similarity H
(3)
ω1,ω2,ω3 in equation 5, where lPωk

and lQωk are the labels of the corre-

spondence. diff function is designed to output value ranging from 0 to 1, which 1 indicates
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labels of the correspondence are completely the same, and 0 means completely different.

Depending on the representation of the shared label from vehicles, diff function can be im-

plemented in various ways. If only the final predicted label of each object is available, then

diff function can be implemented as piecewise function, where same labels outputs 1 and

different label outputs 0. If the predicted confidence vector across all categories are avail-

able, then diff function can be computed based on the cross-entropy of the two confidence

vectors. The scale factor σs3 is set to 3 empirically in our implementation. Although the

distance and label similarity can be implemented based on 2rd order and 1st order edge

respectively, we define them based on 3rd order here for easier probability combination.

Hω1,ω2,ω3 =

[
λ(1)H(1) + λ(2)H(2)

]
H(3) (6)

To merge the three similarity metrics, we combine them as defined in equation 6, where

the subscript of H(1) H(2) H(3) are omitted as they share the same subscript as defined in

equation 3,4,5. Instead of linearly adding all the metrics as generalized in [106], we propose

to use the label similarity as a conditional probability. It is because not only the correct

correspondence in label similarity can generate higher values, the incorrect correspondence

happened to have same labels will also produce higher value. Therefore, linearly combining

the label similarity will actually increase the overall similarity score for incorrect matching,

which yields lower matching accuracy. Using the label similarity as a conditional probability

can benefit the hyper-graph matching because the overall similarity score will only be higher

if the correspondence have matched labels. λ(1) and λ(2) are the weights for linear combining

the angle and edge length similarity, and we set both to 0.5 for equal weights assignment

in our implementation.

5.4.4 Hierarchical Clustering based Consistency Check

Since hyper-graph matching only assigns matched objects between views but can not dis-

tinguish co-visible objects from single-visible objects, we propose a hierarchical clustering

based consistency check to extract co-visible objects from hyper-graph matching results.

For detected objects in two observations, the distance between a pair of matched objects
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Figure 5.4: Object matching illustration

can be computed according to the euclidean distance between the centers of objects in the

world coordinate system. If the matching is correct, then the distance between the pair

of objects consists two parts: (i) the localization error and (ii) the error from inaccurate

3D object detection. As the state-of-the-art algorithms can archive 81.43% accuracy for

vehicle 3D detection based on 0.7 IoU threshold [112] but the localization error is still as

high as meter-level in the urban area, it is reasonable to infer the localization error is the

major component of the distance between matched pairs. Since the objects detected by the

same vehicle shares the same localization error, the pairwise distance between the correct

matched objects should share such same component in distance, which is the combination

of localization error of two vehicles. But the distance between incorrect matched objects

maybe largely diverse. Although the direction of matched pairs have similar characteristics,

it is not resilient to the object detection error as the distance between matched pairs. Small

errors in object center location may cause large direction error of matched co-visible object

pairs.

Based on the analysis that the pairwise distance between correct matched objects should

be relative consistent, clustering method can be applied on graph matching results to extract

the correct matched co-visible objects. Specifically, we perform the hierarchical clustering on
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the hyper graph matching outputs, and classify the objects cluster with consistent pairwise

distance as co-visible objects and the others as single-visible objects. The threshold distance

variance in hierarchical clustering to select the cluster can be determined based on the 3D

object detection performance, because it mainly comes from the 3D object detection error.

In order to increase the precision of co-visible objects detection, the number of co-visible

objects, namely the number of objects within the selected cluster, should be at least three

to produce the final output. Otherwise, the system will ignore the information and does

not perform fusion based on received data. Such design will make sure the system only fuse

the information when it has enough confidence to do so.

5.5 Co-Visible Region Refinement

Although the module of co-visible objects detection can identify single-visible objects and

match co-visible objects, it remains challenging to perform point cloud registration accu-

rately. It is because that the matched co-visible objects may not have enough common seen

area due to the large view-difference and occlusions. For example, in figure 5.5, objects

are observed by two different viewpoints and the resulting point clouds are colored by red

and green, respectively. Although the two point clouds in figure 5.5(d) refer to the same

co-visible object, no overlapping area exists between them. On the contrary, the two points

in figure 5.5(a) shows a clear overlapping area of the a co-visible object. As discussed in

section 5.2, the overlapping region between the two point clouds is essential for correct

point clouds alignment. In order to address the challenge of lack of overlapping area, the

Co-Visible Region Refinement is designed to first, among all detected co-visible objects,

quantify the overlap region of the co-visible objects from two vehicle’s views and then align

point cloud based on cropped co-visible point clouds.

5.5.1 Object Visible Region Estimation

In order to identify the overlap region of co-visible objects, the visible region of co-visible

objects needs to estimate based on each vehicle’s viewpoint. To address such challenge, we

propose to quantify the object visible region approximately from the bird’s eye view based
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on the relative location between detected object center and corresponding point cloud of the

object. As point clouds are generated by sensors with depth sensing capability, e.g. stereo

cameras and LIDARs, such depth sensing capability is compliant with the line-of-sight rule,

which can not see through objects and only sense line of sight object regions. Therefore, the

point cloud generated by these sensors must locates between the detected object’s center and

the observer vehicle. Inspired by these characteristics, we approximate the object visible

region by estimating the angle of the point cloud’s coverage region with respect to the

object’s center. By projecting the point clouds to a bird’s eye view, the coverage region of

a point cloud can be represented as θi = [θistart, θ
i
end], where θistart and θiend are the starting

and ending angle of the point cloud coverage area for object i. Both θistart and θiend are

computed according to the same axis such as west to east. Thus, the point cloud coverage

can be quantified based on the counter-clockwise circular angle difference from θistart to θiend.

The demonstration of visible region estimation are shown in figure 5.5(b)5.5(c)5.5(e)5.5(f).

The points which are closer to object center or reflected by vehicle roof will be noisy

to estimate object visible region. Thus, a prepossessing can be applied to improve the

robustness by filtering out such as points based on distance threshold or surface detection.

5.5.2 Co-visible Object Selection

Although co-visible objects can be identified based on object matching, there is no guarantee

that the observation of co-visible objects from each vehicle’s view will have overlapping

area. Given the fact that, the state-of-the-art point cloud registration methods require

the overlapping area between point clouds to estimate the transformation. The co-visible

objects which include no or little overlapping area is generally not suitable for point cloud

registration.

Based on this observation, we propose to measure the intersection area based on the

overlapping of point cloud coverage angle which can be defined as | intersect(θi, θj) |. In

general, the intersection between two point cloud coverage angle indicates the overlapping

area between two point clouds. For example, the estimated object visible region shown in

figure 5.5(e) and 5.5(f) don’t have any overlapping area since the intersection of them is

zero. However, the visible region shown in figure 5.5(b) and 5.5(c) shows the intersection
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(a) Point clouds of co-visible ob-
ject 1

(b) Visible region estimation of
object 1

(c) Visible region estimation of
object 1

(d) Point clouds of co-visible ob-
ject 2

(e) Visible region estimation of
object 2

(f) Visible region estimation of
object 2

Figure 5.5: Object Visible Region Estimation.

angle between two point clouds is around 120 degree, which can be potentially used for

point cloud registration.

Generally, larger overlapping area between point clouds will have better registration

performance. In order to improve to the point cloud registration accuracy, we propose to

examine the visible region of each pair of detected co-visible objects, and only keep the

point clouds for the pairs whose visible region is larger than a threshold. If there are more

than one of such pair is found, the system will further to crop and align the point clouds.

However, the system will reject to align the point cloud pair if the intersection visible

region of all co-visible objects is smaller the threshold and only align the point cloud based

on minimizing the distance between co-visible object centers. In our implementation, the

threshold is set to 30°as it is commonly required for state-of-art point cloud registration
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(a) ICP alignment result of sample 0 view angle
difference (mean error = 6.92m)

(b) Our alignment result of sample 0 view angle
difference(mean error = 0.03m)

Figure 5.6: Sample alignment results with 0 view angle difference in Carla simulation

algorithms.

5.5.3 Cropped Point Cloud Alignment

Based on the selected co-visible objects, point cloud registration can be applied to align two

point clouds. In order to improve the robustness of point cloud registration, we propose

to crop the point cloud based on the intersection of visible regions. Specifically, only the

points within the intersection region intersect(θi, θj) will be used for point cloud registration.

Such process will remove outliers and increase the inlier ratio for point cloud registration.

Eventually, the transformation estimated based on the selected co-visible object will be

applied to the whole point cloud captured by the sharing vehicle. General point cloud

registration algorithms can be used here for transformation estimation, such as ICP.

5.6 Experiment Setup and Implementation

In order to explore the system performance, we evaluate our system using experimental data

from the KITTI [75,76] dataset and synthetic data generated by the CARLA [48] simulator

respectively, and also implemented 3D object detection and three baseline algorithms.
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(a) ICP alignment result of sample 90 view angle
difference(mean error = 5.54m)

(b) Our alignment result of sample 90 view angle
difference(mean error = 0.02m)

Figure 5.7: Sample alignment results with 90 view angle difference in Carla simulation

(a) ICP alignment result of sample 180 view angle
difference(mean error = 4.76m

(b) Our alignment result of sample 180 view angle
difference(mean error = 0.05m)

Figure 5.8: Sample alignment results with 180 view angle difference in Carla simulation

5.6.1 KITTI based experimental data

The KITTI [75, 76] dataset includes detailed information of a single autonomous vehicle

travelling through a wide range of road scenarios. It contains a trove of sensor readings from

a variety of sensor modalities such as high resolution color and grayscale stereo cameras,

a Velodyne 3D laser scanner and a GPS/IMU inertial navigation system. For this work,
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however, the KITTI dataset is not directly applicable since we need two sets of point clouds

captured at different perspectives of the same scene.

We address this limitation by leveraging Lidar point clouds obtained at different times-

tamps of the same route from the vehicle, to imitate two cars travelling by following each

other. (There are no eligible cases found to imitate cars facing each other.) More specif-

ically, we examined KITTI’s 3D object detection dataset [75] and identified a plethora of

time-instance pairs where more than three same street object are detected at both scenes

and vehicles are traveled more than 4 meters based on GPS. We removed pairs where the

transformation between object pairs are not consistent to filter out inaccurate ground truth

labeling and moving street objects. This process ended up generating 668 pairs of different

time instances that satisfied the requirement of our fusion pipeline, which includes at least 3

pairs of co-visible objects and at least one of co-visible objects has more than 30°overlapping

region. As our system built based on the object detection results, which can only be per-

formed on the front view camera, the input point clouds in this experiment are limited to

the LIDAR points in the front view.

5.6.2 CARLA based synthetic data

As there is no labeled large view angle difference dataset available, we use CARLA [48]

to render realistic intersection scenarios, which provides open digital assets (urban layouts,

buildings, vehicles) and supports flexible specification of sensor suites. The intersection

scenario is rendered in Town 5 of CALRA 0.9.5 builtin map, includes 4 directions and each

direction with two lanes. Each lane has 5 vehicles, which are set to be the same model to

avoid rear-ended collisions, since vehicles are controlled based on throttle in CALRA 0.9.5

and different models may have different acceleration based on same throttle value. But

the outlook color of each set of 5 vehicles are different and randomly picked. In addition,

6 pedestrians are considered on 4 corners of the intersection in groups of three, which are

standing in line and trying to cross the intersection if there is not conflicting traffic. Overall,

the intersection scenario includes 40 vehicles and 24 pedestrians in total.

For each vehicle, 4 cameras are mounted on the center top of vehicles’ roofs with the

height as 2m from the ground to cover the full 360°field of view. In order to generate dense
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point clouds, we use ‘depth camera’ in CARLA to obtain the pixel depth, which is the

ground-truth pixel range perfectly aligned with the corresponding RGB image. Besides,

the position and bounding box of vehicles, and the pose transform of cameras are also

logged. In order to simulate the unstable GPS reading, we randomly sample localization

error from a Gaussian Distribution X ∼ N (0, 1) with zero mean and 1 meter standard

deviation. Among the process of vehicles and pedestrians completed cross the intersection

(positioned on the other side of intersection), we evenly take 16 snapshots with 1 second

interval. Applying the same filtering of KITTI dataset, 3228 pairs of vehicle observations

meets our fusion system requirement and are extracted for evaluation.

5.6.3 3D object detection implementation

To obtain 3D object detection results, we implemented two detectors on both datasets, re-

spectively. For the KITTI dataset, we reproduce the 3D object detection workflow proposed

in [112] to obtain the results. As there is no pre-trined 3D object detection model available

for Carla synthetic data, we implemented a 2D-driven detector inspired by [112] to intimate

the state of art 3D object detection performance based on ground-truth. Specifically, 2D

object detection is performed on RGB images, and the detected 2D bounding box will be

projected into 3D space based on depth. If a projected 2D bounding box intersects with

the ground-truth bounding box, then the corresponding ground-truth bounding box will be

used by adding a 3D noise vector which sampled from the uniform distribution within range

[-0.2m, 0.2m]. Note that the precision and recall of such 3D object detector still depends on

the 2D detection performance, where we use the pre-trained SSD-ResNet50 model provided

Tensorflow Object Detection API [113].

5.6.4 Baseline algorithms implementation

As introduce in the section 2.1, we implemented 3 baseline algorithms to serve as the

benchmark for point cloud performance comparison. Specifically, (1) ICP [73] is imple-

mented based on MATLAB pcregistericp function. (2) the deep learning feature descriptor
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KITTI CARLA
Recall Mean STD Recall Mean STD

ICP 8.53 10.22 9.26 5.79 10.56 10.47
FCGF 72.75 8.76 8.34 33.58 9.57 8.88
SSM 9.88 9.72 8.87 35.29 8.79 8.03

Ours+ICP 86.68 7.84 7.20 75.71 7.66 6.40
Ours+FCGF 84.73 9.14 8.75 65.49 10.12 9.54

Table 5.1: Point cloud registration accuracy on KITTI and CARLA dataset.

FCGF [85] 2 is extracted based on the pre-trained model on KITTI dataset and combines

with RANSAC as a state-of-art correspondence-based baseline. (3) The closest work to

ours, SSM [98] is also implemented in MATLAB. Note that, SSM [98] uses ICP to align the

point clouds after its object matching.

5.7 Evaluation Results

In this section, we evaluate the proposed method in terms of (i) the achievable accuracy

of point cloud registration; (ii) the accuracy of object matching in the co-visible objects

detection; (iii) the benefit eligibility of our method under different system settings.

5.7.1 Point cloud registration accuracy

Following the evaluation setup in [71–74], we select recall, mean error and error standard de-

viation (STD), as the primary evaluation metrics. Specifically, the recall is computed based

on the average distance between the ground-truth alignment and the estimated alignment.

If the average distance is less than a pre-defined threshold (0.2 m in our evaluation), the

estimated alignment is considered a true positive. The recall is the ratio of the number of

true positives to the number of input point cloud pairs. The mean error and the STD are

then computed for the true positive pairs.

In Table 5.1, we show the performance of three baseline point cloud registration algo-

rithms, ICP, FCGF, SSM as well as two enhanced variants by using our method (denoted

by Ours + ICP and Ours + FCGF. (The unit of recall is percentage, and it of mean error

and STD is cm.) Across all metrics, Ours + ICP outperforms all other solutions in both

2Although the following work [74] shows better performance on point cloud registration, but is trained
based on 360oV LiDAR of KITTI, which is not considered as a fair comparison.
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CARLA and KITTI dataset by a significant margin. Comparing to the vanilla ICP and

FCGF, our method can boost the alignment accuracy by 900% and 16%, respectively. Such

a large gain is due to our method can extract co-visible regions between the two input point

clouds and thus largely reduce the ambiguity in the point cloud registration. Note that,

the performance of method Ours+FCGF can be potentially further improved if the feature

extractor of FCGF is re-trained on the extracted point clouds using our method. SSM does

not work well on both datasets, as it only crops point cloud based on the object matching

but not further refine co-visible regions. As KITTI dataset involves large localization er-

rors, the object matching in SSM, which largely relies on pairwise distance between objects,

fails. Our method, on the other hand, is much more robust to the large localization errors,

as our method takes advantage of multiple similarity measures between observed objects

and these similarity measures are resilient to the localization errors. Except SSM, other

methods show a lower accuracy on CARLA compared to KITTI dataset, since the scenes in

CARLA dataset are more complex as they include more surrounding objects and vehicles

with diverse view-angles.

We also evaluate the performance of our method with respect to different view-angles

in CARLA dataset. As it is generated for a four-leg intersection and the vehicles in the

scenario are either stopped or driving in straight along the road, the view-angle difference

between any two vehicles in the scenario is 0°, 90°, or 180°. To quantify the input point

clouds overlapping region over three view-angle differences, we define the overlap ratio as

the number of overlapped voxels over all voxels when downsampling point clouds with

0.1m. Figure 5.9 shows the overlap ratio of input point clouds and the recall of point cloud

registration for 0°, 90°, and 180°view-angle difference, respectively. Compared to the raw

inputs which are the points of within all the detected object bounding boxes, the filtered

point clouds using our method yield a much higher overlap ratio for different view-angle

difference. The results indicate that the performance of the methods highly correlates with

the overlap ratio of the input point clouds. For example, the performance of ICP, FCGF,

SSM in the 90°view-angle difference case, with the raw point cloud as input yield the lowest

recall, while Ours+ICP and Ours+FCGF taking the filtered point clouds as input show the

highest accuracy. In summary, the results show that our method can increase overlap ratio
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(a) Point cloud overlap ratio across different
vehicle view angle difference

(b) Point cloud registration recall across different
vehicle view angle difference

Figure 5.9: Point cloud registration performance across different vehicle view angle differ-
ence.

in the input point clouds and thus improves point cloud registration accuracy significantly

compared with baselines.

Additionally, we also qualitatively compare the point cloud registration results in sam-

ple test cases across different view angle difference between ICP and our methods in fig-

ure 5.6,5.7 and 5.8. Figure 5.6(a) and Figure 5.6(b) show the comparison when two vehicles

are closely following each other with the same view angle. Even though such case pairs in-

clude overlapping area, there are still large portion of single-visible objects involved, which

makes the ICP fails to align the point cloud correctly. Figure 5.7(a) and Figure 5.8(a)

demonstrate the results of ICP in 90°and 180°vehicle view angle difference respectively,

where the alignment is not performed accurately due to low overlapping. However, our two

phase point cloud registration method can can align the point clouds accurately as show in

Figure 5.7(b) and Figure 5.8(b).

5.7.2 Object matching accuracy

Since the two phase design of our system takes the output of object matching to perform

co-visible region refinement, we evaluate the co-visible objects detection individually in
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Figure 5.10: Object matching precision,
recall and accuracy.

Figure 5.11: Recall across different
synchronization time difference

terms of precision, recall and accuracy. Note that the metrics are only calculated when our

co-visible objects detection can produce a result, i.e., when there are at least three pairs of

objects are kept after consistency check. Specifically, the precision and recall are defined

as the number of correct co-visible matching over the number of all detected co-visible

objects and the ground-truth number of co-visible objects, respectively. But the correct

detection in the accuracy evaluation requires to not only match the co-visible objects, but

also identify the single-visible objects correctly. As shown in Figure 5.10, our method

can achieve 98.76% and 99.43% precision, 86.14% and 81.46% recall, 86.22% and 82.21%

accuracy for the KITTI and the CARLA dataset, respectively. The high precision of our

system guarantees that co-visible objects can be identified and matched accurately and

thus guarantees the correctness of the input to the following co-visible region refinement

and the final point cloud registration. The high recall of our system makes sure that the

most co-visible objects are extracted for next phase.

5.7.3 Benefit Eligibility

In order to push our system to real deployment, we study the system benefit eligibility in

this section, including: (1) how likely does a vehicle can find a peer to share and align point
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Field
of

View

Data sharing volume
Per Vehicle Median

Point Fusion
Benefit Ratio

RecallAbstract
Info

Point
Cloud

90 1.69KB 0.42MB 51.88% 85.16%
360 4.98KB 1.53MB 99.23% 98.81%

Table 5.2: Data sharing volume and system performance across different field of view.

cloud based on our system (2) what is network requirement and performance trade-off for

our system between different vehicle settings (3) how does the point cloud synchronization

affect the system performance.

Since our system requires to discover at least three pairs of co-visible objects to fuse

the point cloud, we explored how likely these cases will occur in our CARLA intersection

simulation. If a vehicle can fuse the data from at least one neighboring vehicle, it can

potentially benefit from our system. In order to quantify such benefits, we define Benefit

Ratio, which is the ratio of the number of vehicles which can gain benefit at current

timestamp over the number of all vehicles. The benefit ratio is calculated for each of

the 16 snapshots in our simulation. We perform the experiments based on two different

field of views(FoV), i.e., 360°FoV and 90°FoV. Figure 5.12 shows the empirical cumulative

distribution of benefit ratios. Since a larger field of view can increase the overlapping

sensing area between vehicles, the benefit ratio of 360°FoV are generally higher than that

of 90°for both co-visible object detection and co-visible region refinement. Even though

some cases include more than 3 pairs of co-visible objects, the overlapping area of the co-

visible objects are still too small to perform the co-visible region refinement. Therefore,

the co-visible region refinement of both FoVs are lower than the co-visible object detection.

The variation of the benefit ratios depends on the location distribution of the objects. The

benefit ratio of the co-visible region refinement with 90°FoV is greater than 0.7 for some

snapshots. It is because the crossing vehicles of these snapshots are close to the center

of the intersection and make themselves to be identified as co-visible objects for others.

Among the cases where vehicles can perform the co-visible region refinement, we also check

the number of neighboring vehicles whose information can be potentially fused. We observe

that the median number of the candidate neighbours for the co-visible region refinement is

2 and 14 for the 90°FoV case and the 360°FoV case, respectively.
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Figure 5.12: Cumulative distribution of benefit ratio

We explore the network requirements and system performance across different field of

views, as shown in table 5.2. The volume of data to be shared is calculated based on the size

of required information by each vehicle to perform the fusion. The recall in this subsection

is evaluated based on the same definition as in section 7.1, but with a loose threshold 1m.

Specifically, the volume of data required by the system to determine whether it is eligible to

perform the fusion is the size of abtract information including detected object center label

and point cloud visible region, and the point cloud data sharing volume is considered as the

size of whole point cloud which is arguably to enable various applications. 90°FoV vehicle

to vehicle information fusion requires to share 1.69KB for the abstract information and

0.42MB for the whole point cloud. 360°FoV needs more shared information, with 4.98KB

and 1.53MB for the two steps respectively, but also consequently increases the benefit ratio

and decreases the mean errors of point cloud registration.

Additionally, we also evaluate the system performance with different synchronization

time difference. Although the point cloud can be shared with a timestamp, the synchro-

nization between point cloud pairs may not be perfect due to hardware clock bias, sensor

sample frequency, etc. Thus, the point cloud registration recall is evaluated according to

different synchronization error by selecting input point clouds with different timestamps. As

shown in figure 5.11, the point cloud registration accuracy decreases as more synchroniza-

tion difference introduced. Given the relatively large synchronization error in 100ms and

200ms, the system can still align the point cloud with 89.66% and 68.55% recall respectively.
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5.8 Conclusion and Discussion

In order to overcome the limitations of state-of-art point cloud registration algorithms and

enable the point cloud fusion across connected vehicles, a two-phase point cloud fusion

system is proposed. The system first identifies and matches co-visible objects using hyper-

graph matching based on the extracted location and label information. It then estimates

the co-visible region for each of them and crops out the larger overlap region. The selected

co-visible area acts as an anchor point and its point cloud will be used to estimate the trans-

formation. We evaluate the accuracy of point cloud registration and co-visible matching

based on both real-world KITTI [75, 76] dataset and synthetic CARLA [48] dataset, and

shows it can achieve 86.68% and 75.71% recall with a 0.2m mean point-wise error threshold.

We believe that the system performance can be further improved if more objects are

detected and considered during object matching. Our existing implementation focuses on

detecting moving objects in the scene but static objects such as traffic lights and light poles

could increase the probability of discovering 3 co-visible objects across two vehicle views

and thereby improve the benefit ratio of surrounding vehicles.
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Chapter 6

Conclusion

In this dissertation, we presented novel techniques and system designs to scale data shar-

ing among vehicles to tackle long tail traffic situations. Compared with existing research

which mostly focus on heavy instrumented vehicles for data collection and human labeled

unusual scenes, we take advantage of the widely available inertial and camera sensing data

to construct the low cost systems, which can be easily deployed at a larger scale. Inspired

by recent progress on inertial sensing and deep neural networks, our design of the sensing

system can accurately model driver’s behaviors and detect uncommon driving views. The

minimum infrastructure and accurate sensing design of our proposed system can also en-

able any dashcam-equipped vehicle to take advantage of the billions of miles that humans

already drive, which will accelerate the long tail traffic events collection. Besides, this thesis

provides a point cloud fusion system which not only improves the point cloud registration

accuracy between two vehicles, but also illustrates the potential benefits of existing V2V

network data sharing. We believe these systems can ease the data sharing between vehicles

to collect, identify and tackle the long tail traffic situations, which potentially helps to build

more robust automated driving systems.

In summary, this thesis details the following contributions:

• We present BigRoad, a light-weight sensing and driving data logging system that

can derive internal driver inputs (i.e., steering wheel angles, driving speed and ac-

celeration) and external perceptions of road environments (i.e., road conditions and

front-view video) using very few off-the-shelf sensing devices (i.e., a smartphone and

an IMU) in a vehicle. The low-cost design of BigRoad can collect fine-grained driving

data to support developing dependable automated driving and traffic safety technolo-

gies. Evaluation based on over 140 real-driving trips shows that BigRoad can generate
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accurate and robust driving data from different vehicle models and drivers.

• We propose an automatic unusual driving events identification system to allow scaling

the collection of driving data and corner cases to a much larger fleet of human-driven

vehicles without requiring upload or human review of all data. The proposed system is

able to capture various unusual circumstances, including hazardous event like sudden

braking and swerving events through a three-stage process involving inertial sensing

and detecting outliers of current trained self-driving systems based on auto-encoder

deep neural network. The evaluation is based on more than 120 hours of real road

driving data and shows that it outperforms baseline methods on unusual event with

82% accuracy improvement over baseline on sudden reaction detection and above 71%

accuracy on unfamiliar views identification. While the dataset size allowed validating

the techniques only with less rare events, one might expect that similar patterns hold

also in the much rarer events that would eventually be of interest.

• A two-phase point cloud fusion system is proposed to overcome the limitations of state-

of-art point cloud registration algorithms and enable the point cloud fusion across

connected vehicles. The system is able to identify and match co-visible objects using

hyper-graph matching, and then estimate the co-visible region for each of them and

crops out the larger overlap region. Such two-phase design can not only improve

the overlapping ratio between the point clouds from two vehicles, but also meet the

network requirement for connected vehicles. We evaluate the accuracy of point cloud

registration and co-visible matching based on both real-world KITTI dataset and

synthetic CARLA dataset, and shows it can achieve 86.68% and 75.71% recall with a

0.2m mean point-wise error threshold.

6.0.1 Future directions

Scaling data sharing among vehicles can help to extend the coverage of the long tail traffic

situations, but it is still difficult to explore and understand the further end of the long tail.

To increase the long tail coverage and improve the system robustness, there are several

directions to build on this thesis work:
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• With the increasing computational power and sensing capability on mobile devices,

it is interesting to explore the possibility for road information acquisition with less

device requirement such as using only smartphone by taking advantage of the front

and multiple rear cameras and LiDARs.

• When driving events are recorded, drivers’ privacy may be compromised by the im-

agery and inertial sensor readings. It would be interesting to explore the system

implementation in privacy conservative manner, such as building the deep learning

framework based on Federated Learning [114] to mitigate the privacy concern by

keeping the raw measurements on devices.

• With the deployment of the system, there may be differences of sample frequency, sen-

sitivity, and resolution in various hardware sensors, such as inertial sensors, cameras

and LiDARs. Additional modules to handle such heterogeneity can also be discussed.
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