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ABSTRACT OF THE DISSERTATION

Efficient and Robust Deep Learning

By ZHIQIANG TANG

Dissertation Director:

Dimitris N. Metaxas

Deep learning enables automatically discovering useful, multistage, task-specific fea-

tures from high-dimensional raw data. Instead of relying on domain expertise to hand-

engineer features, it uses a general-learning procedure that is readily applicable to

many domains such as image analysis and natural language processing. Deep learn-

ing has made significant advances after decades of development, in which the dataset

size, model size, and benchmark accuracy have dramatically increased. However, these

three increasing trends pose corresponding challenges regarding data efficiency, model

efficiency, and generalization robustness. To address these challenges, we research so-

lutions from three perspectives: automatic data augmentation, efficient architecture

design, and robust feature normalization. (i) Chapter 2 to Chapter 4 propose a se-

ries of automatic data augmentation methods to replace the hand-crafted rules that

define the augmentation sampling distributions, magnitude ranges, and functions. Ex-

periments show the automatic augmentation methods can apply to diverse tasks and

effectively improve their performance without using extra training data. (ii) Chapter 5

introduces the quantized coupled U-Nets architecture to boost the efficiency of stacked

U-Nets with broad applications to location-sensitive tasks. U-Net pairs are coupled
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together through shortcut connections that can facilitate feature reuse across U-Nets

and reduce redundant network weights. Quantizing weights, features, and gradients

to low-bit representations can further make coupled U-Nets more lightweight, accel-

erating both training and testing. (iii) Chapter 6 presents two feature normalization

techniques, SelfNorm and CrossNorm, to promote deep networks’ robustness. SelfNorm

utilizes attention to highlight vital feature statistics and suppress trivial ones, whereas

CrossNorm augments feature statistics by randomly exchanging statistics between fea-

ture maps in training. SelfNorm and CrossNorm can reduce deep networks’ sensitivity

and bias to feature statistics and improve the robustness to out-of-distribution data,

which usually results in unforeseen feature statistics. Overall, the proposed automatic

data augmentation, efficient U-Net design, and robust feature normalization shed light

on new perspectives for efficient and robust deep learning.
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Chapter 1

Introduction

1.1 Motivation

Deep learning [12] is a subset of machine learning algorithms that uses multiple learnable

layers to progressively extract high-level features from raw data. The main advantage

of deep learning is that it can learn feature representation hierarchically by building

complex concepts on top of simpler concepts. Deep learning has a long and rich history

dating back to the 1940s. Its development has gone through three phases: cybernetics

in the 1940s–1960s [13, 14, 15], connectionism in the 1980s–1990s [16, 17, 18, 19],

and the new name, deep learning, since 2006 [20, 21, 22]. The recent Deep Learning

textbook [23] has identified three key increasing trends in dataset sizes, model sizes,

and benchmark accuracy, which, we argue, also face three corresponding challenges.

Trend 1: Increasing dataset sizes. The availability of abundant data is an

essential factor in modern deep learning’s success. More training data generally can

reduce skills required to train deep neural networks, better exploit deep neural networks’

capacities, and alleviate the burden of generalization to new data after observing small

data [23]. Indeed, deep learning progresses rapidly, along with increasing dataset sizes.

Take object recognition for example, CIFAR [24] and Caltech [25] datasets, with tens

of thousands of samples, appeared in the first decade of the 2000s. In the early 2010s,

the ImageNet datasets [26], including millions of images, were considered large-scale in

visual recognition. Recently in later 2010s, the standard ”large” has further increased

as technology companies have collected substantially larger datasets such as Google’s

JFT-300M [27] with hundreds of millions of images. Figure 1.1 shows how the size of

datasets has increased over time.
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Challenge 1: Data efficiency. The reliance on large amounts of data, while

bringing gains, also makes deep learning suffer from apparent drawbacks. First, ob-

taining a large number of annotations is expensive and time-consuming. For example,

image segmentation [28] requires pixel-wise labeling, which can be even more difficult

for medical images [29]. Moreover, data collection is also nontrivial in many fields, such

as medical image analysis, due to the cost and privacy concerns [30]. Therefore, how to

reduce the reliance on large-scale data, i.e., improving data efficiency for deep learning,

is an important research topic.

Trend 2: Growing model sizes. The ability to train large models is another

crucial reason to make deep learning successful. Although LeNet [18], the prototype

of convolutional neural network (CNN), was successfully applied to handwritten digit

recognition in 1989, CNN had not become popular until the emergence of AlexNet

[31] in 2012. Compared to LeNet of 60K parameters, AlexNet of 60M parameters

demands much more computational resources for training. Fortunately, the general-

purpose GPUs made training AlexNet possible as a result of hardware advancement.

Since then, GPUs’ computational power has kept increasing, and CNN models have

become significantly deeper and larger, as shown in Figure 1.2. Recently, giant networks

like EfficientNet-L2 [32] and BiT-L [33] have had hundreds of millions of parameters,

whose training requires more powerful TPU clouds.
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Challenge 2: Model efficiency. Although high-end GPU and TPU clusters

enable the training of large models, deploying the models to real-world applications is

still challenging. Today, more and more applications run on mobile devices such as

smartphones, robots, and drones. These devices usually have limited computational

budgets (tens or hundreds of MFLOPs) [34] and therefore have difficulty in driving

large models requiring billions of FLOPs [10]. Also, applications may require over-

the-air updates that frequently deliver updated models from severs to clients. Large

models can increase the communication burden and slow down the updates. Therefore,

developing compact and efficient models is imperative for mobile applications.

Trend 3: Rising benchmark accuracy. Since the 1980s, researchers have con-

tinually broadened deep learning’s application scope and improved deep models’ accu-

racy. The earliest deep models [16] were designed to recognize 2-class objects in tightly

cropped small images. After decades of development, modern deep neural networks

can recognize objects from 1000 classes, and the images are high-resolution without

severe cropping. In 2012, AlexNet won the ImageNet Large-Scale Visual Recognition

Challenge (ILSVRC) by a large margin, lowering previous state-of-the-art top-5 error

from 26.2% to 15.3% [31]. This historic achievement has motivated intensive research

on deep learning. Since then, more advanced deep models have continued to refresh the
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ImageNet record, as shown in Figure 1.3. Simultaneously, deep learning has revolution-

ized other computer vision tasks, e.g., object detection [35, 36], and many other areas

such as natural language processing [37, 38, 39] and medical image analysis [40, 41, 42].

Challenge 3: Generalization robustness. The impressive successes mainly

build on the independent and identically distributed (IID) assumption, under which

training and test data come from the same distribution. However, deep models still

struggle to generalize to out-of-distribution (OOD) scenarios such as adversarial at-

tacks [43, 5], common corruptions [11], and distribution gaps caused by data collection

differences [44]. For instance, using AlexNet as the baseline, VGG [45] and ResNet

[10] have higher relative corruption errors [11] meaning larger gaps between clean and

corruption errors, albeit their higher accuracy on clean data, as shown in Figure 1.4. In

contrast, humans are robust to the small changes in the OOD query data. As OOD data

are inevitable in practice, achieving OOD robustness is an indispensable goal for deep

learning systems, especially for safety-critical applications such as self-driving cars.

1.2 Contributions

To address the above three challenges regarding data efficiency, model efficiency, and

generalization robustness, we propose automatic data augmentation methods, design

efficient network architectures, and develop robust feature normalization techniques.

Our research aims to improve the efficiency and robustness of deep learning, and we

summarize more detailed contributions as follows.

Contribution 1: Automatic data augmentation. Data augmentation by

adding modified copies of existing data is effective in improving data efficiency. How-

ever, traditional data augmentation requires expert knowledge to specify transformation

operations, boundaries, and sampling distributions. We overcome the three limitations

progressively through three coherent studies. First, we propose adversarial data aug-

mentation to learn dynamic sampling distributions. The goal is to adaptively gener-

ate hard augmented examples and thus reduce the target network’s overfitting during

training. Second, we further remove the pre-specified boundary requirement by using



5

a learnable discriminator to regularize the augmented data distribution. Finally, we

replace the domain-specific transformation operations with general differentiable net-

works: Spatial Transformation Network [46] and Variational Autoencoders [47]. The

proposed three methods are increasingly automatic and thus continually save human ef-

forts in performing data augmentation. Experiments on human pose estimation, image

classification, and medical image segmentation tasks demonstrate our automatic data

augmentation methods can effectively boost deep models’ performance without using

additional training data. Our work has been published as follows:

• Jointly Optimize Data Augmentation and Network Training: Adversarial Data

Augmentation in Human Pose Estimation, in CVPR 2018 [3]

• AdaTransform: Adaptive Data Transformation, in ICCV 2019 [48]

• OnlineAugment: Online Data Augmentation with Less Domain Knowledge, in

ECCV 2020 [49]

Contribution 2: Efficient network architecture. We focus on promoting the

efficiency of U-Net, a fully convolutional network consisting of a pair of contracting

and expansive paths. U-Net is an essential type of CNN with broad applications to

location-sensitive tasks such as image segmentation and human pose estimation. State-

of-the-art methods usually stack multiple U-Nets to iteratively refine the outputs. How-

ever, stacked U-Nets may have tens of millions of float parameters and need to process

high-resolution images, causing high memory consumption in training and low infer-

ence speed in testing. To boost the efficiency of stacked U-Nets, we seek solutions

comprehensively from three perspectives: reducing parameter number, shrinking rep-

resentation bit-width, and saving training memory. Specifically, we couple U-Net pairs

by directly connecting their corresponding blocks. The shortcut connections can facili-

tate feature reuse across U-Nets, cutting down ∼70% parameters and ∼30% inference

time. We further ternarize or binarize float parameters to reduce the model size by 16x

or 32x. The data flow, including features and gradients, is also quantized to low-bit

representations, saving ∼4x training memory. Additionally, we share memories for fea-

tures in shortcut-connected blocks and decrease ∼40% training memory. Our quantized
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CU-Net (coupled U-Nets) is evaluated extensively on human pose estimation and facial

landmark localization. Despite the significant efficiency advantages, quantized CU-Net

still obtains comparable accuracy as stacked U-Nets. Our research has produced the

following publications:

• CU-Net: Coupled U-Nets, in BMVC 2018 [50]

• Quantized Densely Connected U-Nets for Efficient Landmark Localization, in

ECCV 2018 [51]

• Towards Efficient U-Nets: A Coupled and Quantized Approach, in TPAMI 2019

[52]

Contribution 3: Robust feature normalization. We investigate how feature

normalization can make CNN more robust to OOD data, which is different from pre-

vious works employing normalization for training acceleration and stabilization. The

key bridge connecting normalization to OOD robustness is that a feature map’s mean

and variance can encode some style cues, such as image color, which is less critical than

content information like object shape in object recognition. Inspired by the relation,

we propose SelfNorm and CrossNorm to advance CNN’s OOD robustness. SelfNorm

uses attention to recalibrate a feature map’s mean and variance. It can help empha-

size essential styles and suppress trivial ones, lessening CNN’s sensitivity to appear-

ance changes in OOD data. CrossNorm performs style augmentation by exchanging

means and variances between feature maps in training, reducing the CNN’s style bias.

Although SelfNorm and CrossNorm seem to oppose each other (style reduction v.s.

style augmentation), they can collaborate to achieve better OOD robustness. Exten-

sive experiments demonstrate that SelfNorm and CrossNorm are readily applicable to

different domains (vision and language), tasks (classification and segmentation), and

settings (supervised and semi-supervised) and can significantly boost state-of-the-art

OOD robustness. The supportive publication of this work is given as follows:

• SelfNorm and CrossNorm for Out-of-Distribution Robustness, Arxiv 2021 [53]
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1.3 Dissertation Outline

We organize the remaining thesis as follows. First, three automatic data augmentation

methods are introduced in Chapters 2, 3, and 4. Then we present the efficient coupled

U-Nets in Chapter 5 and two robust normalization approaches in Chapter 6. Chapter

7 concludes the dissertation and looks into several future directions.
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Chapter 2

Jointly Optimize Data Augmentation and Network

Training: Adversarial Data Augmentation in Human Pose

Estimation

2.1 Introduction

Deep Neural Networks (DNNs) have achieved significant improvements in many com-

puter vision tasks [54, 55, 46, 56]. A key ingredient for the success of state-of-the-art

deep learning models is the availability of large amounts of training data. However, data

collection and annotation are costly, and for many tasks, only a few training examples

may be available. In addition, natural images usually follow a long-tail distribution

[57, 58]. Effective training examples that lead to more robust classifiers may still be

rare even if a large amount of data have been collected.

A common solution for this problem is to perform random data augmentation [59,

60]. Prior to being fed into the network, training images are heuristically jittered by

predefined transformations (e.g., scaling, rotating, occluding) to increase variations.

This strategy is simple, but data augmentation and network training are still treated

as isolated processes, leading to the following issues.

First, the entire training set is usually applied the same random data augmentation

strategy without considering individual differences. This may produce many ineffective

variations that are either too “hard” or too “easy” to help the network training [61, 62].

Second, random data augmentations can hardly match the dynamic training status

since they are usually sampled from static distributions. Third, Gaussian distribution

are widely used, which cannot address the long-tail issue since there would be a small

chance to sample rare but useful augmentations.
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G
Scaling Rotating Occluding
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Figure 2.1: Data preparation and network training are usually isolated. We propose
to bridge the two by generating adversarial augmentations online. The generations are
conditioned to both training images and the status of the target network.

A natural question then arises: can data augmentation and network training be

jointly optimized, so that effective augmentations can be generated online to improve

the training?

In this work, we answer the above question by proposing a new approach that

leverages adversarial learning for joint optimization of data augmentation and network

training (see Figure 2.1). Specifically, we investigate the problem of human pose es-

timation, aiming to improve network training with bounded datasets. Note that our

approach can be generalized to other vision tasks, such as face alignment [63] and

instance segmentation [64, 65].

Given an off-the-shelf pose estimation network, our goal is to obtain improved train-

ing from a bounded dataset. Specifically, we propose an augmentation network that

acts as a generator. It aims to create “hard” augmentations that intend to make the

pose network fail. The pose network, on the other hand, is modeled as a discriminator.

It evaluates the quality of the generations, and more importantly, tries to learn from the

“hard” augmentations. The main idea is to generate adversarial data augmentations

online, conditioned to both input images and the training status of the pose network.

In other words, the augmentation network explores the weaknesses of the pose network

which, at the same time, learns from adversarial augmentations for better performance.

Jointly optimizing the two networks is a non-trivial task. Our experiments indicate

that a straightforward design, such as directly generating adversarial pixels [66, 67] or
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Figure 2.2: Left: Overview of our approach. We propose an augmentation network
to help the training of the pose network. The former creates hard augmentations; the
latter learn from generations and produces reward/penalty for model update. Right:
Illustration of the augmentation network. Instead of raw images, it takes hierarchical
features of an U-net as inputs.

deformations [62, 46], would yield problematic convergence behaviors (e.g. divergence or

model collapse). Instead, the augmentation network is designed to generate adversarial

distributions, from which augmentation operations (i.e. scaling, rotating, occluding)

are sampled to create new data points. Besides, we propose a novel reward and penalty

policy to address the issue of missing supervisions during the joint training. Moreover,

instead of a raw image, the augmentation network is designed to take the byproduct,

i.e. hierarchical features, of the pose network as the input. This can further improve

the joint training efficiency using additional spatial constraints. To summarize, our key

contributions are:

• To the best of our knowledge, we are the first to investigate the joint optimization

of data augmentation and network training in human pose estimation.

• We propose an augmentation network to play a minimax game against the target

network, by generating adversarial augmentations online.

• We take advantage of the widely used U-net design and propose a reward and

penalty policy for the efficient joint training of the two networks.

• Strong performance on public benchmarks, e.g. MPII and LSP, as well as intensive

ablation studies, validate our method substantially in various aspects.
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2.2 Related Work

We provide a brief overview of previous methods that are most relevant to the proposed

adversarial data augmentation in three categories.

Adversarial learning. Generative Adversarial Networks (GANs) [66, 68, 69] are

designed as playing minimax games between generator and discriminator. Yu and Grau-

man [70] use GANs to synthesize image pairs to overcome the sparsity of supervision

when learning to compare images. A-Fast-RCNN [62] uses GANs to generate defor-

mations for object detection. Recent applications of GANs in human pose estimation

include [71] and [72]. They both treat the pose estimation network as the generator

and use a discriminator to provide additional supervision. However, in our design, the

pose estimation network is treated as a discriminator, while the augmentation network

is designed as a generator to create adversarial augmentations.

Hard example mining. It is widely used in training SVM models for object de-

tection [73, 74, 61]. The idea is to perform an alternative optimization between model

training and data selection. Hard example mining focuses on how to select hard exam-

ples from the training set for effective training. It cannot create new data that do not

exist in the training set. In contrast, we propose an augmentation network (generator)

to actively generate adversarial data augmentations. This will create new data points

that may not exist in the training set to improve the pose network (discriminator)

training.

Human pose estimation. DeepPose [60] proposed to use deep neural networks for

human pose estimation. Since then, deep learning based methods started to dominate

this area [75, 76, 77, 78, 79, 80, 81, 82, 83, 1]. For instance, Tompson et al. [84] used

multiple branches of convolutional networks to fuse the features from an image pyramid

and applied Markov Random Field for post-processing. Chen et al. [85] also tried to

combine neural networks with graphical model inference to improve pose estimation

accuracy.

Recently, cascade models have become popular for human pose estimation. They

usually connect a series of deep neural networks in cascade to improve the estimation
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in a stage-by-stage manner. For example, Convolutional Pose Machines [82] brings ob-

vious improvements by cascading multiple networks and adding intermediate supervi-

sions. Better performance is achieved with the stacked hourglass network architecture

[1], which also relies on multi-stage pose estimation. More recently, Chu et al. [86]

added some layers into the stacked hourglass network for attention modeling. Yang et

al. [87] also enhanced its performance by using pyramid residual modules. In this work,

instead of designing a new pose estimation network, we are more interested in how to

jointly optimize data augmentation and network training so we can obtain improved

training on any off-the-shelf deep neural network without looking for more data.

2.3 Adversarial Data Augmentation

Given a pre-designed pose network, e.g. the stacked hourglass pose estimator [1], our

goal is to improve its training without looking for more data. Although random data

augmentation is widely used, such augmentations that are sampled from static dis-

tributions can hardly follow the dynamic training status, which may produce many

ineffective variations that are too “easy” to help the network training [61, 62].

Instead, we propose to leverage adversarial learning to optimize the data augmenta-

tion and the network training jointly. The main idea is to learn an augmentation net-

work G(·|θG) that generates “hard” augmentations that may increase the pose network

loss. The pose network D(·|θD), on the other hand, tries to learn from the adversarial

augmentations and, at the same time, evaluates the quality of the generations. Please

refer to Figure 2.2 for an overview of our approach.

Generation path. The augmentation network is designed as a generator. It out-

puts a set of distributions of augmentation operations. Mathematically, the augmen-

tation network G outputs adversarial augmentation τa(·) that may increase D’s loss,

compared with random augmentation τr(·), by maximizing the expectation:

max
θG

E
x∼Ω

E
τr∼Γ

τa∼G(x,θD)

L[D(τa(x),y)]− L[D(τr(x),y)], (2.1)

where Ω is the training image set and Γ is the random augmentation space. L(·, ·)

is a predefined loss function and y is the image annotation. We highlight G(x, θD)
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to specify that the generation of G is conditioned to both the input image x and the

current status of the target network D.

Discrimination path. The pose network is designed as discriminator D, which

plays two roles: 1) evaluating the generation quality as indicated in Equation equa-

tion 2.1; 2) trying to learn from adversarial generations for better performance by

minimizing the expectation:

min
θD

E
x∼Ω

E
τa∼G(x,θD)

L[D(τa(x),y)], (2.2)

where adversarial augmentation τa can better reflect the weakness of D than random

augmentation τr, resulting in more effective network training.

Joint training. The joint training of G and D is a non-trivial task. Augmentation

operations are usually not differentiable [62], which stops gradients from flowing from

D to G in backpropagation. To solve this issue, we propose a reward and penalty policy

to create online ground truth of G. So G can always be updated to follow D’s training

status. The details will be explained soon in Section 2.4.3.

It is crucial that G generates distributions instead of direct operations [62] or adver-

sarial pixels [67]. Our experiments indicate that, by sampling from distributions, the

generation is more robust to outliers which may produce upside-down augmentations.

Thus, there is less chance that D would get trapped in a local optimum.

Comparison with prior methods. We want to stress that there is a sharp differ-

ence between our method and the recent adversarial human pose estimation techniques

[71, 72]. The latter usually follow a common design that connects a pose network

(generator) with an additional network (discriminator) to obtain adversarial loss. In

contrast, we propose to learn an adversarial network (generator) to improve the pose

network (discriminator), by jointly optimizing data augmentation and network training.

Our method is also different from others that perform online hard example mining

[73, 61]. Our method can create new data points that may not exist in the dataset,

whereas the latter is usually bounded by the dataset. An exception is [62] that uses

GANs to generate deformations for object detection. However, how to jointly optimize

data augmentation and network training, especially for human pose estimation, is still
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tions of mixed Gaussian, from which scal-
ing and rotating are then sampled to aug-
ment the training image.
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Figure 2.4: Adversarial Hierarchical Oc-
cluding. The occlusion mask is generated
at the lowest resolution and then scaled
up to apply on hierarchical bridge fea-
tures of the pose network.

an open question without investigation.

2.4 Adversarial Human Pose Estimation

Our task is to improve the training of a pre-designed pose network. We take the widely

used U-net design [1, 88] as an example. As illustrated in Figure 2.2 (right), the aug-

mentation network follows an encoder architecture. It takes the bridged features of the

U-net as inputs instead of raw images for efficient training. A set of distributions are

then generated to sample three typical augmentations: scaling, rotating, and hierar-

chical occluding. Furthermore, we propose a reward and penalty strategy for efficient

joint training.

2.4.1 Adversarial Scaling and Rotating (ASR)

The augmentation network generates adversarial augmentations by scaling and rotating

the training images. The pose network then learns from the adversarial augmentations

for more effective training. In our experiments, we find that a direct generation would

collapse the training because it would easily generate upside-down augmentations that

are the hardest in most cases. Instead, we divide the augmentation ranges into m

and n bins (e.g. m = 7 for scaling and n = 9 for rotating). Each bin corresponds to a

small bounded Gaussian. The augmentation network will first predict distributions over
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scaling and rotating bins. Then, the corresponding Gaussian is activated by sampling

from distributions. Please refer to Figure 2.3 for an illustration of the sampling process.

ASR pre-training. It is crucial to pre-train the augmentation network so it can

obtain the sense of augmentation distributions before the joint training. For every

training image, we can sample totally m×n augmentations, each of which is drawn from

a pair of Gaussians. The augmentations are then fed forward into the target network to

calculate the loss which represents how “difficult” the augmentation is. We accumulate

m× n losses into the corresponding scaling and rotation bins. By normalizing the sum

of bins to 1, we generate two vectors of probabilities, P s ∈ Rm and P r ∈ Rn, which

approximate the ground truth of scaling and rotation distributions, respectively.

Given the ground-truth distributions P s and P r, we propose a KL-divergence loss

to pre-train the augmentation network for scaling and rotating:

LSR =
m∑
i=1

P si log
P si
P̃ si

+
n∑
i=1

P ri log
P ri
P̃ ri

, (2.3)

where P̃ s ∈ Rm and P̃ r ∈ Rn are the predicted distributions following the above

generation procedure, and m and n are the numbers of scale and rotation bins.

Discussion. Predicting distributions instead of direct augmentations has two ad-

vantages. First, it introduces uncertainties to avoid upside-down augmentations during

the pre-training. Second, it helps to address the issue of missing ground truth during

the joint training, which will be explained in Section 2.4.3. In our design, the scaling

and rotating are directly applied on training images instead of deep features [62]. The

reason is we want to preserve the location correspondence between image pixels and

landmark coordinates. Otherwise, we might hurt the localization accuracy once the

intermediate feature maps are disturbed.

2.4.2 Adversarial Hierarchical Occluding (AHO)

In addition to scaling and rotating, the augmentation network also generates occluding

operations to make the task even “harder”. The human body has a linked structure

where joint locations are highly correlated to each other. By occluding parts of the

image, the pose network is encouraged to learn strong references among visible and
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invisible joints [89].

Different from scaling and rotating, we find that it is more effective to occlude deep

features instead of image pixels. Specifically, the augmentation network generates a

mask indicating which part of features to be occluded so that the pose network has

more estimation errors. We only generate the mask at the lowest resolution of 4 × 4.

The mask is then scaled up to 64× 64 to apply on bridge features of the U-net. Figure

2.4 explains the proposed hierarchical occluding.

AHO pre-training. Similar to scaling and rotating, the augmentation network

predicts an occluding distribution instead of an instance occluding mask. The first task

is to create the ground truth of the occluding distribution. The idea is to assign values

into a grid of w×h (e.g. w = h = 4). The value indicates the importance of the features

at the corresponding cell. To achieve this, we vote a joint to one of the w × h cells

according to its coordinates. By counting all joints from all images and normalizing the

sum of cells to 1, we generate a heat map P o ∈ Rw×h, which approximates the ground

truth of the occluding distribution.

Given the ground-truth distribution P o, we propose a KL-divergence loss to pre-

train the AHO task:

LAHO =
h∑
i=1

w∑
j=1

P oi,j log
P oi,j

P̃ oi,j
, (2.4)

where P̃ o ∈ Rw×h is the heat map predicted by the augmentation network. To generate

the occluding mask, we sample one or two cells according to P̃ o, which are labeled as

0, while the rest are labeled as 1.

Discussion. Intuitively, there are three ways to apply hierarchical occluding: (1)

a single mask scales up from the lowest to the highest resolutions, (2) a single mask

scales down from the highest to the lowest resolutions, and (3) independent masks are

generated at different resolutions. We exclusively use the first design in our approach

since it would occlude more than needed due to the large receptive field in the second

case, and the occluded information may be compensated at other resolutions in the

third case.
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Algorithm 1: Training scheme of a mini batch

Input: Mini-batch X, augmentation net G, pose net D.
Output: G, D.

1 Randomly and equally divide X into X1, X2 and X3;
2 Train D using X1;
3 Train D, G using X2 with ASR following Alg. 2;
4 Train D, G using X3 with AHO following Alg. 2;

2.4.3 Joint Training of Two Networks

Once ASR and AHO are pre-trained, we can jointly optimize the augmentation network

and the pose network. As we mentioned in Sec. 2.3, this is a non-trivial task since the

augmentation ground truth is missing. A naive approach could be repeating the pre-

training process as described in Section 2.4.1 and Section 2.4.2 online. However, it

would be extremely time-consuming since there are a large number of augmentation

combinations.

Reward and penalty. Instead, we propose a reward and penalty policy to address

this issue. The key idea is that the augmentation network prediction should be updated

according to the current target network status, while its quality should be evaluated

by comparing with a reference.

To this end, we sample a pair of augmentations for each image: 1) an adversarial

augmentation τa and 2) a random augmentation τr, as indicated in Equation equa-

tion 2.1. If the adversarial augmentation is harder than the random one, we reward the

augmentation network by increasing the probability of the sampled bin (ASR) or cell

(AHO). Otherwise, we penalize it by decreasing the probability accordingly.

Mathematically, let P̃ ∈ Rk denotes the predicted distribution of the augmentation

network. P ∈ Rk denotes the ground truth we are looking for. k is the number of bins

(ASR) or cells (AHO) and i is the sampled one.

If the adversarial augmentation τa leads to higher pose network loss (more “dif-

ficult”) comparing with the reference (a random augmentation τr), we update P by

rewarding:

Pi = P̃i + αP̃i; Pj = P̃j −
αP̃i
k − 1

, ∀j 6= i. (2.5)
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Algorithm 2: Training scheme of one image.

Input: Image x, augmentation network G, pose network D.
Output: G, D.

1 Forward D to get bridge features f ;
2 Forward G with f to get a distribution P ;
3 Sample an adversarial augmentation x̃ from P ;

4 Forward D with x̃ to compute loss L̃;
5 Random augment x to get x̂;

6 Forward D with x̂ to compute loss L̂;

7 Compare L̃ with L̂ to update G using equation 2.3 and equation 2.4;
8 Update D;

Similarly, if τa leads to lower pose network loss (less “difficult”) comparing with τr, we

update P by penalizing:

Pi = P̃i − βP̃i; Pj = P̃j −
βP̃i
k − 1

,∀j 6= i, (2.6)

where 0 < α, β ≤ 1 are hyperparameters that control the amount of reward and penalty.

The augmentation network keeps updating online, regardless of being rewarded or pe-

nalized, generating adversarial augmentations that intend to improve the pose network.

Discussion. The pose network can learn from the ordinary random augmentation

to maintain its regular performance. More importantly, it can also learn from the adver-

sarial augmentations to achieve better performance. The adversary augmentations may

become too hard for the pose network if we apply ASR and AHO simultaneously. Thus,

we alternately apply ASR and AHO on different images. Here we equally split every

mini batch into three shares: one performs the random data augmentation, one per-

forms ASR augmentation, and one performs AHO augmentation. Algorithm 1 provides

a detailed account.

2.5 Experiments

In this section, we first show the visualization of network training states to verify

the motivation of doing adversarial dynamic augmentation. Then we quantitatively

evaluate the effectiveness of different components in the method and further compare

with state-of-the-art approaches.
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2.5.1 Experimental Settings

We use stacked hourglass [1] as the pose network. The augmentation network takes the

top-down part of an hourglass and only uses one cell module in each resolution block.

To evaluate the generalization capability of the proposed adversarial augmentation, we

tested two types of modules: Residual module [10] and Dense block [90].

Network design. We test both residual and dense hourglass networks in our com-

ponent evaluation experiments. For residual hourglass, each residual module has a bot-

tleneck structure of BN-ReLU-Conv(1x1)-BN-ReLU-Conv(3x3)-BN-ReLU-Conv(1x1).

The input/output dimension of each bottleneck is 256. The two 1× 1 convolutions are

used to halve and double the feature dimensions.

For dense hourglass, each module is a bottleneck structure of BN-ReLU-Conv(1x1)-

BN-ReLU-Conv(3x3), with neck size 4, growth rate 32, and input dimension 128. The

dimension increases by 32 after each dense layer. At the end of each dense block, we use

BN-ReLU-Conv(1x1) to reduce the dimension to 128. We use the standard 8 stacked

residual hourglasses [1] as our baseline when compared with state-of-the-art methods.

Datasets. We evaluate the proposed adversarial human pose estimation on two

benchmark datasets: MPII Human Pose [91] and Leeds Sports Pose (LSP) [92]. MPII

is collected from YouTube videos with a broad range of human activities. It has 25K

images and 40K annotated persons (29K for training and 11K for testing). Following

[84], we sample 3K samples from the training set for validation. Each person has 16

labeled joints.

The LSP dataset contains images from many sports scenes. Its extended version has

11K training samples and 1K testing samples. Each person in LSP has 14 labeled joints.

Since there are usually multiple people in one image, we crop around each person and

resize the image to 256× 256. Typically, random scaling (0.75-1.25), rotating (-/+30°)

and flipping are used to augment the data.

Training. We use PyTorch for the implementation. RMSProp [93] is used to

optimize the networks. The adversarial training contains three stages. We first train

hourglass for a few epochs with a learning rate of 2.5 × 10−4. Then we freeze the
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Figure 2.5: Network training status visualization: predicted rotating distributions of
the agumentation network (Top), loss distributions of pose network trained by adver-
sarial (Middle) and random (Bottom) rotating augmentations. The augmentation
network predicts rotating distributions matching the loss distributions of pose network,
according to the first two rows. The loss distribution in the last row maintains a similar
shape all the time due to the fixed Gaussian sampling distribution.

hourglass model and use it train the AHO and ASR networks with learning rate 2.5×

10−4. Once they are pre-trained, we lower the learning rates of AHO and ASR networks

to 5×10−5 and jointly train the three networks. The learning rate of the target network

is decayed to 5 × 10−5 after the validation accuracy plateaus. In all experiments, the

Percentage of Correct Keypoints (PCK) [94] is used to measure the pose estimation

accuracy.

2.5.2 Visualization of the Training Status

In this experiment, we use a single residual hourglass. Each residual block contains 3

residual modules. We are interested in knowing how the pose network handles human

images with different data augmentations: rotating, scaling and occluding. Since our

method treats these three variations in a similar way, we take rotating as an example.

More specifically, we visualize the loss distribution of hourglass on images with different

rotations.

Random data augmentation. We train the pose network using random rotating

sampled from a zero-centered Gaussian distribution as shown in the last row of Figure

2.5. We then test the trained pose network by applying the same rotating distribution

on the testing data. We find that, at different training stages (training epochs), the

target network loss always presents an inverted Gaussian-like distribution.
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Adversarial data augmentation. In the beginning, the loss distribution of the

pose network is similar to the case of random data augmentation. Since the pose

network is pre-trained by the random data augmentation. However, the distribution

becomes flatter as the training continues, which means the pose network could better

handle the rotated images. The pose network learns from the adversarial data augmen-

tation generated by the augmentation network.

Augmentation network training status. The status can be visualized by apply-

ing the generated rotating augmentation. Comparing the first two rows in Figure 2.5,

we can find that the generated rotating distribution is similar to the loss distribution of

the pose network. This means that the augmentation network could track the training

status of the target network and generate effective data augmentations.

2.5.3 Component Evaluation

We first verify the effectiveness of ASR and AHO in both residual and dense hourglasses.

We use 3 residual bottlenecks in each block of residual hourglass. In dense hourglass,

we use 6 densely connected bottlenecks in one dense block. Note that the size of dense

hourglass model is less than half of the residual hourglass. In Table 2.1, we compare

variants of adversarial data augmentation on PCKh@0.5. Figure 2.6 shows the improve-

ment of adversarial data augmentation compared with random data augmentation, on

PCKh threshold from 0.1 to 0.5.

ASR only. Table 2.1 shows that ASR improves the accuracy of all the keypoints on

both residual and dense hourglass, with average improvements of 0.5% and 0.5% respec-

tively. This indicates that the generated adversarial scaling and rotating augmentations

are effictive in training the pose network.

AHO only. Table 2.1 shows that AHO improves accuracy on both residual and

dense hourglass, with average improvements of 0.4% and 0.4% respectively. Similarly,

the pose network can also learn improved inference from the adversarial occluding

generated by the augmentation network.

ASR and AHO. Applying both ASR and AHO can further improve the accuracy

by 0.4%, compared with applying either of them. Figure 2.6 shows that ASR and AHO
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Table 2.1: Comparison of random and adversarial data augmentation on the MPII
validation set measured by PCKh@0.5.

.
Residual hourglass (size: 38M) Dense hourglass (size: 18M)

Head Sho. Elb. Wri. Hip Knee Ank. Mean Head Sho. Elb. Wri. Hip Knee Ank. Mean
Random Aug. 97.2 94.8 87.8 83.4 87.8 81.3 76.5 87.0 97.1 94.6 87.9 83.0 87.5 81.2 76.6 86.8
+ASR 97.3 95.2 88.2 84.2 88.2 81.8 77.3 87.5 97.2 95.0 88.3 83.5 87.7 81.8 77.4 87.3
+AHO 97.3 95.0 88.2 83.6 88.0 82.2 77.6 87.4 97.1 94.8 88.2 83.6 87.6 81.7 77.5 87.2
+ASR+AHO 97.3 95.1 88.7 84.7 88.4 82.5 78.1 87.8 97.2 95.2 88.8 84.1 88.1 82.0 77.9 87.6
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Figure 2.6: Comparison of random and adversarial data augmentations on MPII val-
idation set using PCKh@0.1-0.5. Consistent improvements on a range of normalized
distances could be observed on both residual modules (left) and dense blocks (right).

can significantly improve the localization accuracy especially for joints that are usually

more difficult to localize, such as ankle, knee and wrist.

Dense hourglass vs Residual hourglass. Table 2.1 also shows that the dense

hourglass has comparable performance in terms of pose estimation accuracy, but much

more parameter efficiency than the residual design (18M vs. 38M). The dense design

facilitates the gradient flow through the direct connections among different feature

blocks, which uses fewer parameters without sacrificing the estimation accuracy.
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Figure 2.7: PCKh@0.1 (Left column), PCKh@0.3 (Middle column) and PCKh@0.5
(Right column) comparisons using different image scales (Top row), rota-
tions(Middle row), and occlusions (Bottom row) on the MPII validation set. The
adversarially trained hourglass network consistently outperforms the ordinary one when
the test images have varied scales, rotations, and occlusions.

2.5.4 Robustness Evaluation

We evaluate the robustness to different image scales, rotations, and occlusions when 8

stacked hourglasses are trained with the adversarial data augmentation. Random data

augmentation serves as the baseline and we show the PCKh comparisons under three

different thresholds (PCKh@0.1, PCKh@0.3, PCKh@0.5) on the MPII validation set.

Robustness to scale changes. According to the first row in Figure 2.7, our ad-

versarial data augmentation consistently outperforms the random augmentation when

scale scale changes from 0.7 to 1.3. Under PCKh@0.3 and PCKh@0.5, the maximum

gaps are 5.4% and 7%, both happening at the smallest scale 0.7. This indicates that

the adversarially trained hourglass has more advantages on dealing with humans with

small scales. When measuring with PCKh@0.1, the largest gap appears at the high-

est scale 1.3, while scale 0.7 has the smallest gap. This is due to the fact that the

hourlgass discriminability is inherently limited. The largest resolution in hourlgass is

64x64. Therefore, it is hard to estimate joint positions of small scale humans with high

precision.



24

Robustness to rotation changes. The second row of Figure 2.7 shows that

the adversarially trained hourglass has reliable gains when rotation changes from −60◦

to 60◦. More specifically, the maximum gaps, measured by PCKh@0.1, PCKh@0.3

and PCKh@0.5, are 2.7%, 4.9% and 4.3%, respectively. The last two gaps correspond

to both the largest rotation 60 degrees, which means that the adversarially trained

hourglass can better handle humans with large rotations. However, the first gap 2.7%

comes up when rotation is −30◦. Compared with the last two, the first is not only

smaller but also does not happen at the largest rotations. Similar to the analysis in

comparisons with respect to scale changes, this irregular phenomenon is caused by the

fact that the hourglass of resolution 64 × 64 has troubles in predicting high precision

locations. Thus, its predictions measured by PCKh@0.1 have much more uncertainties.

Robustness to occlusions. We generate the occlusion mask by occluding 1 of

16 cells at the lowest resolution of 4 × 4. The mask is then scaled up to occlude

the bridge feature maps from 4 × 4 to 64 × 64. The adversarially trained hourglass

outperforms the ordinary one in most settings. The maximum gaps, measured by

PCKh@0.1, PCKh@0.3 and PCKh@0.5, are 2.4% 3.4% and 3.8%, as shown in the third

row of Figure 2.7. We could find that the large gaps focus on the bins around the

center of feature maps, which contain the most useful features. The adversarial data

augmentation makes the hourglass learn how to infer the locations under occlusions.

The gap measured by PCKh@0.1 is relatively smaller due to that it is more difficult for

the hourglass to predict high precision locations.

2.5.5 Comparing with State-of-the-art Methods

Quantitative comparison. To compare with state-of-the-art methods, we apply

the proposed adversarial data augmentation to train the hourglasses network (totally

8 stacked) [1]. The bridge features generated by the first hourglass network in the

stack are input into the adversarial network. The same hierarchical occluding masks

are applied to every hourglass network in the stack. Table 2.2 compares PCKh@0.5

accuracy of different methods on the MPII dataset. The proposed adversarial data

augmentation can improve the baseline [1] by 0.6%, which achieves state-of-the-art
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Table 2.2: PCKh@0.5 on the MPII test set. Our adversarial data augmentation im-
proves baseline stacked HGs(8) [1].

Method Head Sho. Elb. Wri. Hip Knee Ank. Mean

Pishchulin et al.[95] 74.3 49.0 40.8 34.1 36.5 34.4 35.2 44.1
Tompson et al.[84] 95.8 90.3 80.5 74.3 77.6 69.7 62.8 79.6
Carreira et al.[75] 95.7 91.7 81.7 72.4 82.8 73.2 66.4 81.3
Tompson et al.[76] 96.1 91.9 83.9 77.8 80.9 72.3 64.8 82.0
Hu et al.[77] 95.0 91.6 83.0 76.6 81.9 74.5 69.5 82.4
Pishchulin et al.[78] 94.1 90.2 83.4 77.3 82.6 75.7 68.6 82.4
Lifshitz et al.[79] 97.8 93.3 85.7 80.4 85.3 76.6 70.2 85.0
Gkioxary et al.[80] 96.2 93.1 86.7 82.1 85.2 81.4 74.1 86.1
Rafi et al.[96] 97.2 93.9 86.4 81.3 86.8 80.6 73.4 86.3
Belagiannis et al.[97] 97.7 95.0 88.2 83.0 87.9 82.6 78.4 88.1
Insafutdinov et al.[81] 96.8 95.2 89.3 84.4 88.4 83.4 78.0 88.5
Wei et al.[82] 97.8 95.0 88.7 84.0 88.4 82.8 79.4 88.5
Bulat et al.[83] 97.9 95.1 89.9 85.3 89.4 85.7 81.7 89.7
Chu et al.[86] 98.5 96.3 91.9 88.1 90.6 88.0 85.0 91.5

Stacked HGs(8) [1] 98.2 96.3 91.2 87.1 90.1 87.4 83.6 90.9
Ours: +ASR+AHO 98.1 96.6 92.5 88.4 90.7 87.7 83.5 91.5

performance. Table 2.3 compares PCK@0.2 accuracy of different methods on the LSP

dataset. Again, our method can improve the baseline [1] by 1.5%, which significantly

outperforms state-of-the-art methods.

Qualitative Comparison. Figure 2.8 shows qualitative comparisons. We compare

the random and adversarial data augmentation. We can observer the improvement

resulted from the adversarial data augmentation. Interestingly, the pose network could

handle the left-right confusions after the adversarial training.

2.6 Summary

In this work, we have proposed the adversarial data augmentation modeled as a gen-

erative adversarial learning problem. An effective training scheme with the reward

and penalty policy is given to jointly optimize both target and data augmentation net-

works. We apply adversarial data augmentation to human pose estimation and design

adversarial scaling and rotating as well as adversarial hierarchical occluding to boost

existing pose estimators. Experiments on benchmark datasets show that adversarial
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Table 2.3: PCK@0.2 on the LSP dataset. Clear improvements are observed over the
baseline stacked HGs(8) [1].

Method Head Sho. Elb. Wri. Hip Knee Ank. Mean

Belagiannis et al.[97] 95.2 89.0 81.5 77.0 83.7 87.0 82.8 85.2
Lifshitz et al.[79] 96.8 89.0 82.7 79.1 90.9 86.0 82.5 86.7
Pishchulin et al.[78] 97.0 91.0 83.8 78.1 91.0 86.7 82.0 87.1
Insafutdinov et al.[81] 97.4 92.7 87.5 84.4 91.5 89.9 87.2 90.1
Wei et al.[82] 97.8 92.5 87.0 83.9 91.5 90.8 89.9 90.5
Bulat et al.[83] 97.2 92.1 88.1 85.2 92.2 91.4 88.7 90.7
Chu et al.[86] 98.1 93.7 89.3 86.9 93.4 94.0 92.5 92.6

Stacked HGs(8) [1] 98.2 94.0 91.2 87.2 93.5 94.5 92.6 93.0
Ours: ASR+AHO 98.6 95.3 92.8 90.0 94.8 95.3 94.5 94.5

Figure 2.8: Comparisons of the same Stacked HG network trained using random data
augmentation (top) and adversarial data augmentation (bottom). Note the improve-
ment on challenging joints (e.g. ankle, elbow, wrist), and left-right confusion.

data augmentation could improve state-of-the-art pose networks.
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Chapter 3

AdaTransform: Adaptive Data Transformation

3.1 Introduction

The remarkable success of deep learning, from a data perspective, benefits from the

ability to optimize millions of free parameters [10, 90] to capture extensive data variance.

Yet, sufficient data varieties are not always available in practice due to data scarcity

and annotation cost [98].

The technique of perturbing data without changing class labels, also known as data

augmentation, is widely used to address this issue. Generally speaking, data augmen-

tation can be either sampled from predefined distributions or generated by learnable

agents. The former, known as random augmentation [26, 55], usually relies on hand-

craft rules without optimization, yielding insufficient training. The latter, known as

auto or adversarial augmentation [99, 62, 3], also suffers from various limitations.

Auto augmentation [99] explores a huge solution space to achieve an optimal solution

on the validation set, which is extremely time-consuming. The network training has

to be repeated 15, 000 times to get the final policy. Adversarial augmentation, on the

other hand, follows a greedy design to speed up learning. However, the current designs

[62, 3] rely on comprehensive domain knowledge to specify the transformation types

and boundaries. This inevitably results in restricted transformation space. Moreover,

previous methods mainly focus on network training, neglecting the potential to apply

data transformation in testing.

This raises research questions: 1) Can we learn data transformation more efficiently?

2) Can we explore the transformation space (types and boundaries) without compre-

hensive domain knowledge? 3) Can data transformation also help improve network
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Figure 3.1: Overview of the adaptive data transformation. It consists of two tasks:
competitive training and cooperative testing, and three components: a transformer T ,
a discriminator D, and a target network N . T increases the training data variance by
competing with both D and N . It also cooperates with N in testing to reduce the data
variance.

deploying?

In this work, we answer the questions by proposing AdaTransform: adaptive data

transformation. We leverage reinforcement learning in conjunction with adversarial

training to compose meta-transformations (discrete transformation operations). This

enables us to efficiently explore a large transformation space with limited domain knowl-

edge.

Specifically, we learn data transformation in bi-direction: At the training stage,

AdaTransform performs a competitive task to increase data variance, reducing over-

fitting; at the testing stage, AdaTransform performs a cooperative task to decrease data

variance, yielding improved deploying. The two tasks are learned through optimizing

a triplet: a transformer, a discriminator, and a target network, as illustrated in Figure

3.1. To summarize, our key contributions are:

• To the best of our knowledge, we are the first to investigate adaptive data trans-

formation in order to improve both network training and testing.

• We propose to learn a competitive task (for training) and a cooperative task (for

testing) simultaneously by jointly optimizing a triplet online.

• AdaTransform can automatically and efficiently explore the data transformation

space, yielding a highly flexible and versatile solution for broad applications.

• Extensive experiments on image classification, human pose estimation, and face
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alignment prove the favorable performance of AdaTransform especially when test-

ing perturbations exist.

3.2 Related Work

We provide a brief overview of related works in the categories of data transformation,

adversarial learning, reinforcement learning, hard example mining, human pose estima-

tion, and face alignment.

Data transformation. Data transformations are commonly used to augment the

training data [10, 55]. Recently, adversarial data augmentation [62, 3] has been proposed

to train deep models. But they heavily rely on human knowledge and can only handle

limited transformations. Some works [2, 99] try to learn data augmentation policy

automatically. However, either they suffer from severe efficiency issues [2] or the policy

learning is isolated from the target network training [99]. The high computational cost

is due to the optimization of validation accuracy. The lack of joint optimization with

the target network prevents it from dynamically increasing the data variance based

on the individual images and target network state. Others [100, 101] learn to transfer

the data transformations from large datasets to augment few-shot examples. The above

methods are only to augment training data but cannot reduce the testing data variance.

The Spatial Transformer Network (STN) [46] is designed to reduce the spatial variance

of data. However, it can only handle differentiable spatial transformations, largely

restricting its applications. Besides, it is only for the variance reduction but cannot

increase the training data variance.

Adversarial learning. Generative Adversarial Networks (GANs) [66] includes two

networks: generator and discriminator which compete against each other to improve

generation performance. GANs are widely used in the image generations [66, 69] and

translations [102]. Here we use the transformer to transform input images. It competes

with the discriminator to make the transformed images still realistic but different from

the original ones.



30

Reinforcement learning. In reinforcement learning (RL), an agent takes actions

and then receives feedback from the environment, which may reward or penalize it.

The agent learns to maximize its reward by taking appropriate actions. Reinforcement

learning has been used with deep learning to play the game Go [103], search neural

network architecture [104], etc. In this work, we use it to teach the transformer to

handle data transformations.

Hard example mining. Hard example mining usually alternates between opti-

mizing models and updating training data. Once a model is optimized on the current

training set, it is used to collect more hard data for further training. This method was

used in training SVM models for object detection [73]. Recently, Shrivastava et al. [61]

adapted it into the neural network based object detector. The hard example mining

focuses on selecting hard examples from existing data, the adaptive data transformation

actively transforms the data to either increase or reduce their variance.

Human pose estimation. With recent advances in Deep Neural Networks (DNNs),

image-based human pose estimation has achieved significant progress in the past few

years [60, 84, 75]. DeepPose [60] is one of the first attempts of using DNNs for human

pose estimation. Recently, multi-stage human pose prediction methods such as Con-

volutional Pose Machine [82] and stacked hourglasses [1] have become popular. The

prediction results could be refined state-by-stage. Instead of designing a new pose esti-

mator, we improve pose estimation performance by increasing the training data variance

and reducing the testing data variance.

Face alignment. Similarly, DNNs have largely reshaped the field of face align-

ment. Traditional methods like [105] could be easily outperformed by the DNNs based

[106, 107]. In the recent Menpo Facial Landmark Localization Challenge [108], stacked

hourglasses [1] achieves state-of-the-art performance. Given an off-the-shelf face align-

ment DNN, the adaptive data transformation can be used to improve its performance.
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3.3 Problem Definition and Task Modeling

Given a target network, e.g. an image classifier [10] or a human pose estimator [84],

the adaptive data transformation, named as AdaTransform, aims to improve both

training and testing of the target network. More specifically, the agent performs two

different tasks: (1) At the training stage, it performs a competitive task to increase

data variance, improving the training of the target network. (2) At the testing stage, it

performs a cooperative task to reduce data variance, boosting its testing performance.

The two tasks are learned simultaneously by jointly optimizing a triplet: a transformer

T , a discriminator D, and a target network N . An illustration is given in Figure 3.1.

3.3.1 Transformer T

The transformer T is designed to increase the data variance in the competitive task,

while it learns to decrease the data variance in the cooperative task.

Transformation Definition. Transformation is domain-specific. It relies on both

the data type and the target problem. Data of different modalities have dissimilar trans-

formations. For example, images can utilize scale and rotation, while word replacement

and switch may happen in text data.

Further, a transformation must preserve the data property of interest in the target

problem. For instance, the shear operation can be applied in image classification since

it does not change the image class labels. However, it is not a good choice for face

recognition as it may alter the identity. The AdaTransform only needs limited domain

knowledge to specify some meta-transformations. Then T learns to compose them for

both competitive and cooperative tasks.

Competitive task. T learns to enlarge the data variance in training through

increasing the loss of target network N . At the same time, it tries to fool the discrim-

inator D by making the transformed data realistic. Thus, T must learn to satisfy the

constraints from both N and D:

max
θT

E
(x,y)∼Ω

E
τ∼T (x,0)

[L(N(τ(x)),y) + λ log(D(τ(x)))], (3.1)
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where Ω is the training data, and τ is the transformation operation sampled from

T (x, 0) in the competitive mode. L(·, ·) is a predefined target loss function. λ balances

the weight of two losses. T competes with both N and D in the competitive task. The

competitive T is trained and applied to the training data.

Cooperative task. T also learns to reduce the data variance by lowering the loss

of target network N :

min
θT

E
(x,y)∼Ω

E
τ∼T (x,1)

[L(N(τ(x)),y)]. (3.2)

where 1 indicates the cooperative mode of T . The discriminator D is not used in

the cooperative task because the transformed data of reduced variance can hardly fall

out of the real data distribution. T cooperates with N in the cooperative task. The

cooperative T is trained on the training data and generalized to the testing data.

3.3.2 Discriminator D

The discriminatorD aims to control the variance of transformed data. It learns to assign

low scores to out-of-distribution transformed data and high scores to in-distribution

data. To this end, D learns from both the original and transformed data as follows:

max
θD

E
x∼Ω

E
τ∼T (x)

[log(1−D(τ(x)))] + E
x′∼Ω

[log(D(x′))]. (3.3)

D competes with the transformer T in the competitive task. It is a critical design to

automate competitive training. Human users can be saved from the heavy burden of

specifying the transformation boundaries, especially when multi-types of transforma-

tions are available. Without D, T would probably produce out-of-distribution trans-

formations.

3.3.3 Target Network N

The goal of target network N is to generalize well on the testing data. The training data

usually have some distribution shift from the testing data. The current neural networks

are so powerful that they can easily overfit the training data. The transformer T can
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reduce the overfitting by adaptively increasing the training data variance. N learns

from both the original and the transformed training data as follows:

min
θN

E
(x,y)∼Ω

E
τ∼T (x)

[L(N(τ(x)),y) + L(N(x),y)], (3.4)

The target network N competes with the transformer T through learning from its

transformed data.

3.4 Learning Strategy

The triplet T , D, and N are jointly learned in the adaptive data transformation. The

main challenge comes from learning T since many transformation operations are not

differentiable. The gradients cannot flow to T directly from D and N . To deal with

this issue, we use reinforcement learning with meta-transformations to train T .

3.4.1 Meta-transformation

The meta-transformations define the small transformation operations [99]. Table 3.1

lists examples of meta-transformations in natural images. A large transformation can be

decomposed as a combination of multiple meta-transformations. Despite some precision

loss, it barely affects the target network training. Specifying the meta-transformations

requires much less domain knowledge than tuning the boundaries of multi-type trans-

formations and choosing their combinations [62, 3].

The meta-transformation offers flexibility and scalability to achieve complex trans-

formations. We can efficiently explore an ample transformation space by traversing the

combinations of meta-transforms. More importantly, the meta-transformations make

it possible to train T in a tractable manner via reinforcement learning.

3.4.2 Reinforcement Learning Formulation

The transformer T incrementally transforms the data using meta-transformations. An

illustration is shown in Figure 3.2. Let x and x̂ denote the original and transformed

data points. At step t, T conditioning on x̂t−1 outputs the distribution T (x̂t−1) over all
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Figure 3.2: Incremental transformation. The transformer, conditioning on the input,
outputs the distribution over the meta-transformations. A meta-transformation is sam-
pled and transforms the input. Then the transformed data become the input and
continue to be transformed.

the meta-transformations. Then the meta-transformation τt is sampled from it. The

loss of transformed data x̂t = τt(x̂t−1) is computed as:

`(x̂t) =


L(N(x̂t), y) + λ log(D(x̂t)), competitive case.

−L(N(x̂t), y), cooperative case.

(3.5)

where L denotes the loss function for the target task and λ is the weight of the dis-

criminator loss. In the competitive mode, the transformer learns to expand the data

variance by increasing the target network loss. On the other hand, it also tries to keep

high probabilities of transformed data being realistic. In the cooperative mode, the

transformer learns to reduce the data variance by increasing the negative target loss,

i.e., decreasing the target loss.

The reward rt for meta-transformation τt is the incremental loss:

rt = `(x̂t)− `(x̂t−1). (3.6)

Suppose the transformer T is applied K steps, a reward sequence {r1, r2, · · · , rK} is

produced, where reward r1 is r1 = `(x̂1)− `(x). Summing up these rewards results in

K∑
t=1

rt = `(x̂K)− `(x). (3.7)

The discriminator and target network are fixed when training the transformer. Given

an original data point x, `(x) is a constant, which can be ignored. `(x̂K) is the objective
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Algorithm 3: Mini batch training of transformer T

Input: Mini-batch B, triplet T , D, and N .
Output: Transformer T

1 Replicate B s times to get X of size M ;

2 Apply T on X to get X̂ and polices {πit} ∈ RM×K ;

3 Compute rewards {rit} ∈ RM×K of X̂ by Eq. 3.5 and 3.6;
4 Get accumulated rewards {Rit} ∈ RM×K by Eq. 3.8;
5 Normalize {Rit} to {R̄it} by Eq. 3.9 and Eq. 3.10;
6 Call the gradient ascent on the sum of {R̄it log πit};

in either Equations 3.1 or 3.2 since x̂K is the final transformed data point. Therefore,

optimizing the objectives in Equations 3.1 or 3.2 can be converted into maximizing the

sum of rewards.

We apply the policy gradients to maximize the sum of rewards. Two common

techniques are used to reduce the variance in estimating the rewards. First, we compute

the reward for transformation τt′ as the accumulated future reward
∑K

t>=t′ rt rather

than rt′ only. A discounting factor γ is used to model the delaying effects of future

rewards. Therefore, the accumulated discounted reward Rt′ is:

Rt′ =
K∑

t>=t′

γt−t
′
rt, (3.8)

where we set γ = 0.5 in the experiments.

Also, the raw value of reward Rt′ may not be meaningful. Positive values do not

necessarily mean rewards. We only push up the probability of a meta-transformation,

if its reward is higher than the expectation. Here we use the mean of reward Rt′ within

each mini-batch of h training samples as the reference. For each original data point,

we sample s different rewards Rt′ . Thus, the mean of Rt′ is:

bt′ =
1

h× s
h×s∑
i=1

Rit′ (3.9)

Note that it is important to compute the reward mean online within the mini-batches

instead of using the moving averages of all history rewards. Because the discriminator

and target network become more and more powerful in training. The history rewards

cannot reflect their current states well.

At step t′, each reward Rt′ is normalized by subtracting its mean bt′ . A positive
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Algorithm 4: Joint training scheme of T , D, and N

Input: Training data X, triplet T , D, and N .
Output: Triplet T , D, and N .

1 while not end do
2 for mini batch B in X do

3 Apply T on B with probability p to get B̂;

4 Train N with the mixed data B̂;

5 end
6 for mini batch B in X do
7 Train competitive T with D, N by Alg. 3;
8 Train cooperative T with N by Alg. 3;

9 end

10 end

normalized value means reward, whereas a negative normalized one means penalty.

According to the policy gradients formula, we compute the gradient of transformer T

at step t′:

∇θT T (x̂t′) =
h×s∑
i=1

(Rit′ − bt′)∇θT log πθT (τt′ |x̂t′), (3.10)

where πθT (τt′ |x̂t′) is the policy, i.e., the probability of taking meta-transformation τt′

given the input x̂t′ . Updating transformer T with the gradient ascent can push up or

pull down the probabilities if the corresponding meta-transformations yield rewards or

penalties at step t′.

Finally, we sum up the gradients of T from all K steps:

∇θT T (·) =

K∑
t′=1

∇θT T (x̂t′). (3.11)

Basically, the transformer T is updated each time using the accumulated gradients from

K steps and h× s samples. Algorithm 3 summarizes the training scheme of T .

3.4.3 Joint learning of T, D, and N

The transformer T is jointly optimized with the discriminator D and target network N

during training. The training procedure is described in Algorithm 4. More specifically,

we train N for several epochs and then update T and D once. N needs to learn from

both the transformed and original data. To this end, we apply T with some probability

p(0 < p < 1) on the training data of N .
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Table 3.1: Examples of meta-transformations in natural images. A meta-transformation
defines a small operation. A combination of multiple meta-transformations can approx-
imate a large transformation space.

Type Meta-values

Rotation 2.5°, −2.5°, 5°, −5°
Zoom 0.9x, 1.1x, , 0.75x, 1.25x

Shear/Swirl 0.1°, −0.1°, 0.25°, −0.25°
Hue Shift 0.1, -0.1, 0.25, -0.25

Brightness/Color 0.75, 1.25, 0.5, 1.5

Sharpness/Contrast 0.75, 1.25, 0.5, 1.5

Horizontal Flip -

T and D are updated alternately inside each iteration. Given a mini-batch of data,

D is updated on both the original (real) and transformed (fake) data of T . Then we

update T separately in the competitive and cooperative modes. T receives the feedback

from N in the cooperative case while it requires the additional feedback from D in the

competitive case. We add a zero or one map to the input of T as the condition of

competitive or cooperative modes.

3.5 Applications of AdaTransform

AdaTransform provides a versatile solution for general data analytic tasks with proper

domain knowledge. In this work, we focus on its application to visual tasks.

AdaImgTransform. For natural images, there are many available transforma-

tion types such as scale, rotation, translation, flipping, swirl, shear, contrast enhance-

ment, color enhancement, brightness enhancement, sharpness enhancement, and hue

shift. Table 3.1 lists the corresponding meta-transformations. We can adjust the

meta-transformation pool according to domain knowledge of a specific task. We apply

adaptive data transformation to learning to combine the proper meta-transformations

conditioned on the input image, target network state, and the transformer mode. They

can be used to either increase or reduce data variance.

AdaCutout/AdaErasing. Occlusions are quite common in natural images where

the object of interest is partially occluded. The cutout [109] and random erasing [110]
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Figure 3.3: Meta-movements. AdaCutout/AdaErasing first samples a random mask,
then moves it up, right, down, left.

are recently proposed to simulate the occlusions on the images. To be specific, a fixed-

size square mask (cutout) or a flexible one (erasing) are used to occlude the image

region centered at a randomly chosen position. We apply the adaptive transformation

to control cutout or erasing. More specifically, we use random cutout or erasing for

the initialization. Then the transformer learns to move the cutout mask progressively.

Each step it can be moved up, right, down, left, or stay still. Figure 3.3 illustrates the

five meta-movements.

3.6 Experiments

The experiments include three parts: ablation study, robustness test, and comparison

with state-of-the-art methods. We evaluate AdaTransform on three different tasks:

image classification, human pose estimation, and face alignment. We apply meta-

transformations given in Table 3.1 for image classification. For the other two tasks, we

remove shear and swirl due to the shifting of ground truth.

3.6.1 Experimental Settings

Transformer T and discriminator D. The transformer and discriminator use the

common networks. More specifically, the transformer has the architecture of ResNet-18

[10]. Additionally, we add the dropout layers after each 3 × 3 convolution layer and

before the fully connected layer. The discriminator is the same as the one in DCGAN
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[111].

Target network N . Different tasks have different target networks. In image clas-

sificatin, we use the 32-layer ResNet (ResNet32) [10] in the ablation study. The com-

parisons with state-of-the-art data augmentation method AutoAugment [2] are based

on more complex models: Wide-ResNet-28-10 [112], Shake-Shake [113] and ShakeDrop

[114]. For human pose estimation and face alignment, we use the two stacked

hourglasses [1] in all the experiments.

Hyperparameters. We use two transformers for adaptive cutout (AdaCuout)

and adaptive image transformation (AdaImgTransform). The AdaCutout transformer

is trained with learning rate 3e-5 and weight decay 1e-5 whereas the AdaImgTrans-

form transformer has learning rate 1e-4 and weight decay 1e-4. AdaCutout moves the

occlusion mask 2 pixels each step. We set step number K = 3 for AdaCutout and

K = 8 for the AdaImgTransform. Besides, AdaCutout is applied with probability

0.3 on each mini-batch when training the target network. On the other hand, we use

AdaImgTransform on all the training data but stop it for the last ten epochs.

Datasets. We use the benchmark datasets: CIFAR-10 and CIFAR-100 for image

classification; MPII Human Pose [91] and Leeds Sports Pose (LSP) [92] for human pose

estimation; 300-W challenge [115] for face alignment. The 300-W test set consists of

easy and challenging subsets. We use the classification accuracy/error, Percentage of

Correct Key points (PCK), and normalized mean error (NME) as the measurements of

image classification, human pose estimation, and face alignment. In particular, MPII

and LSP use PCKh@0.5 and PCK@0.2.

3.6.2 Ablation Study

Effect of transformation steps. The transformer incrementally transforms an image

for several steps. It is interesting to observe how test accuracy changes with the step

number. We train 6 models for each step number using 10% CIFAR-10 training data.

Figure 3.4 shows the mean and std of the testing accuracy. A modest increase of

step number can produce more complex transformations, increasing testing accuracy.

However, more transformation steps are difficult to learn and result in high model
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Figure 3.5: Validation of competitive and cooperative tasks. We show the testing
accuracy with respect to the fraction of training data. The joint learning of competitive
training and cooperative testing achieves the best performance (lowest). Its superior
performance is more significant when less data is used in training (right to left).

variance.

Validation of competitive and cooperative tasks. We incrementally add each

component and observe the changes in test accuracy. Figure 3.5 gives the compar-

ison of four variants. They all use eight transformation steps and the same meta-

transformation pool in Table 3.1. The competitive training and cooperative testing can

both increase test accuracy with different percentages of training data. In the case of

only 1% training data, the competitive training can improve ∼5% accuracy on both

CIFAR-10 and CIFAR-100 over the pre-trained transformer, indicating the importance

of joint training with the target network. The cooperative testing, on the other hand,

further brings ∼2% gain for the two datasets. Even with 100% training data, compet-

itive training and cooperative testing can separately get ∼1% improvements on both
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Table 3.2: Evaluation of AdaCutout and AdaErasing using 10% training data of CIFAR-
10 and CIFAR-100.

Method CIFAR-10 CIFAR-100

Cutout [109] 77.21 40.41
AdaCutout 78.02 41.02

Erasing [110] 77.25 40.53
AdaErasing 78.12 41.21

Table 3.3: Effect of different types of adaptive transformation in human pose estima-
tion. We report per-joint PCKh (%). A single kind of adaptive transformation would
improve the performance compared with randomly performed. Jointly applying all
transformations has the best performance.

Method Head Sho. Elb. Wri. Hip Knee Ank. Mean
RandomAugment. 95.7 95.0 89.1 83.4 88.2 84.0 80.2 88.1
AdaImgTexture 95.3 95.3 89.7 84.8 89.0 84.9 80.9 88.7
AdaCutout 95.5 95.2 89.7 84.6 88.5 84.7 80.9 88.6
AdaScaleRotation 95.5 95.6 89.8 85.0 89.4 84.7 80.8 88.9
AdaAll 95.8 96.0 90.1 85.4 89.8 85.7 81.3 89.3

datasets.

Evaluation of AdaCutout and AdaErasing. Apart from the above AdaImg-

Transform, we also evaluate AdaCutout and AdaErasing. The results are given in Table

3.2. Cutout and random erasing obtain similar accuracy. AdaCutout and AdaErasing

can both improve the baselines.

Effect of different types of adaptive transformation. We categorize the trans-

formations into three groups: spatial variations (scale and rotation), occlusion (Cutout

[109]), and texture changes (image color, brightness, contrast, sharpness, and hue). It

may be interesting to study their separate contributions. AdaTransform can utilize

them both independently and jointly. Table 3.3 gives the results on human pose esti-

mation. The spatial transformations bring more improvement (0.8%) than the other

two (0.5% and 0.6%), indicating its importance in human pose estimation.
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Figure 3.6: Robustness against rotations and scale perturbations. We investigate hu-
man pose estimation (left two, the higher the better) and face alignment (right
two, the lower the better). Network (N) trained using adaptive data transformation
outperform random ones with substantial margins. The performance improvements are
more significant when increasing perturbations, indicating the effectiveness in learning
more robust models.

Table 3.4: Robustness against texture (color, brightness, contrast, sharpness, and hue)
perturbations. We investigate standard (top two rows) and perturbed (bottom two
rows) testing. In particular, AdaImgTexture is more robust against texture perturba-
tions.

Method Head Sho. Elb. Wri. Hip Knee Ank. Mean
RandomAugment. 95.7 95.0 89.1 83.4 88.2 84.0 80.2 88.1
AdaImgTexture 95.3 95.3 89.7 84.8 89.0 84.9 80.9 88.7
RandomAugment. 94.4 93.9 86.9 81.5 86.7 82.0 77.0 86.3
AdaImgTexture 94.9 94.9 88.5 83.2 88.2 83.6 79.7 87.8

3.6.3 Robustness Test

In the traditional test, testing images are usually static with no perturbations. How-

ever, in practice, an image may be affected by many factors, such as scale and rotation.

A robust model should handle well not only the original image but also its variants

under reasonable perturbations. In this experiment, we test models under the condi-

tion of different scales, rotations, and texture variations of testing data. To evaluate

the robustness of AdaTransform, we compare the models trained with it and random

augmentation.

Robustness against scale and rotation perturbations. Figure 3.6 shows the

robustness comparisons in two tasks. AdaTransform can consistently improve testing

performance over a range of scales and rotations, especially at the ends. In human pose

estimation, we observe ∼3% accuracy increase for scales 0.7/1.3 and ∼5% increase for
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Table 3.5: Comparison with AutoAugment [2] in terms of image classification errors.
AdaTransform has comparable performance with all the three classifiers. However, it
is much more efficient than AutoAugment.

Model CIFAR-10 CIFAR-100

AutoAug. Ours AutoAug. Ours

Wide-ResNet [112] 2.68 2.95 17.09 17.42
Shake-Shake[113] 1.99 2.11 14.28 15.01
ShakeDrop[114] 1.48 1.72 10.67 11.21

rotations −60°/60°. For face alignment, the large error drops ∼12% and ∼2% happen

at scale 0.7 and rotations −60°/60°.

Robustness against texture perturbations. To get reasonable texture pertur-

bations, we train a transformer with only one discriminator using CIFAR-10. During

testing, we use 15 trained transformer models to perturb the testing images. Table 3.4

gives the robustness comparisons with random augmentation. AdaTransform can get

higher PCKh on both the standard test and test with texture perturbations. Moreover,

the PCKh gap 1.5% in the perturbed test is much larger than the 0.6% in the standard

test.

3.6.4 Comparison with State-of-the-art Methods

Image classification. We first compare AdaTransform (AdaImgTransform + Ada-

Cutout) with state-of-the-art AutoAugment [2]. Table 3.5 shows the comparisons on

both CIFAR-10 and CIFAR-100. AdaTransform obtains comparable performance as

the AutoAugment. However, it needs to train only three models. In contrast, the Au-

toAugment requires to train fifteen thousand models to search the final augmentation

policy. Although each model in AdaTransform may take longer to train, it is still much

more efficient.

Note that the AutoAugment cannot work if only training several models. It is a

purely reinforcement-based method, optimizing the validation error. The trained model

number represents its search space. AdaTransform, on the other hand, integrates the

adversarial training with reinforcement learning, optimizing the training loss.
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Table 3.6: Comparison with adversarial data augmentation [3] in human pose estima-
tion. We use two stacked hourglasses and report PCKh@0.5 on MPII validation set
(top) and PCK@0.2 on LSP test set (bottom).

Method Head Sho. Elb. Wri. Hip Knee Ank. Mean
AdvAug. [3] 96.5 95.5 89.8 84.5 89.4 85.0 80.7 88.9
AdaTransform 95.8 96.0 90.1 85.4 89.8 85.7 81.3 89.3
AdvAug. [3] 96.8 93.7 90.9 88.0 92.0 93.7 92.4 92.5
AdaTransform 96.9 94.1 91.0 87.8 93.0 94.5 93.3 92.9

Table 3.7: Comparison with adversarial data augmentation [3] in face alignment (NME)
on 300-W dataset.

Method Easy Subset Hard Subset Full Set
AdvAug. [3] 2.87 4.98 3.28
AdaTransform 2.82 4.96 3.24

Human pose estimation. We also compare AdaTransform with state-of-the-

art adversarial data augmentation [3] on human pose estimation. Table 3.6 gives the

comparisons based on two stacked hourglasses [1]. AdaTransform obtains %0.4 mean

improvements on both datasets. AdaTrasnform can search a larger transformation

space by composing multi-type meta-transformations. In addition, Figures 3.7 and 3.8

show some examples of cooperative zoom-out and zoom-in.

Face alignment. AdaTransform and state-of-the-art adversarial data augmenta-

tion [3] can both apply to face alignment. We use two stacked hourglasses as the target

network. The results are shown in Table 3.7. AdaTransform obtains %0.05 and %0.02

lower errors on the easy and challenging subsets, respectively.

3.7 Summary

We have proposed AdaTransform to manipulate data variance in bi-direction at the

training and testing stages. AdaTransform can be learned efficiently by jointly opti-

mizing a triplet online. Experimental results on image classification, human pose esti-

mation, and face alignment demonstrate its superior performance in network training

and testing especially when perturbations exist.
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Figure 3.7: Cooperative zoom-out in human pose estimation. False positives, marked
by red circles, are detected on the original scales (Top). Some human joints such as
head, wrist, and ankle, may be too close to the image boundary or even fall out of scope
in the original scale. Zoom-out (Bottom) can bring them into scope in this case.

Figure 3.8: Cooperative zoom-in in human pose estimation. The false positives on the
original scales (Top) are marked by red circles. Human pose estimation on a small
scale is usually sensitive to background noises such as overlapped objects or people.
Enlarging small scale can help alleviate the ambiguity caused by them (Bottom).
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Chapter 4

OnlineAugment: Online Data Augmentation with Less

Domain Knowledge

4.1 Introduction

Data augmentation is widely used in training deep neural networks. It is an essential

ingredient of many state-of-the-art deep learning systems on image classification [116,

117, 118, 119], object detection [120, 121], segmentation [122, 40, 123], as well as text

classification [124]. Current deep neural networks may have billions of parameters,

tending to overfit the limited training data. Data augmentation aims to increase both

the quantity and diversity of training data, thus alleviates overfitting and improves

generalization.

Traditionally, data augmentation relies on hand-crafted policies. Designing the po-

lices is usually inspired by domain knowledge and further verified by testing performance

[45, 10]. For example, the typical routine in training CIFAR classifiers uses random

cropping and horizontal flip to conduct data augmentation. Intuitively, these opera-

tions do not change the image labels, and they can also improve testing performance

in practice.

Recently, AutoML techniques [125, 126] are used to automate the process of dis-

covering augmentation polices. The resulted approaches, such as AutoAugment [9] and

its variants [117, 127, 8, 7] are quite successful and achieve state-of-the-art results. We

name them offline data augmentation since the policy learning and usage are isolated.

Moreover, these approaches use pre-specified image processing functions as augmenta-

tion operations. Defining the basic operations requires domain knowledge, which may

impede their applications to more tasks.
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In this work, we propose OnlineAugment, which jointly optimizes data augmentation

and target network training in an online manner. The merits of OnlineAugment are

three-fold. First, it is orthogonal to the offline methods. Their complementary nature

makes it possible to apply them together. Second, through the online learning, the

augmentation network can adapt to the target network through training from the start

to the end, saving it from the inconveniences of pre-training [128] or early stopping [99].

Third, it is easy to implement and train OnlineAugment. In contrast, learning offline

policies usually rely on distributed training, as there are many parallel optimization

processes.

Furthermore, we propose more general data augmentation operations with less do-

main knowledge. Instead of using pre-defined image processing functions, such as rota-

tion and color, we design neural networks to perform data augmentation. Specifically,

we devise three learnable models: augmentation STN (A-STN), deformation VAE (D-

VAE), and Perturbation VAE (P-VAE). It is nontrivial to craft STN [46] and VAE [47]

to conduct data augmentation. We also propose new losses to regularize them in train-

ing. Besides, OnlineAugment integrates both adversarial training and meta-learning

in updating the augmentation networks. Adversarial training is to prevent overfitting,

whereas meta-learning encourages generalization.

In summary, our key contributions are:

• We propose a new online data augmentation scheme based on meta-learned aug-

mentation networks co-trained with the target task. Our framework is comple-

mentary to the state-of-the-art offline methods such as AutoAugment. Experi-

ments on CIFAR, SVHN, and ImageNet show that on its own, OnlineAugment

achieves comparable performances to AutoAugment. More excitingly, Onlin-

eAugment can further boost state-of-the-art performances if used jointly with

AutoAgument policies.

• We propose three complementary augmentation models responsible for different

types of augmentations. They replace the image processing functions commonly

used in contemporary approaches and make our method both more adaptive and
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less dependent on domain knowledge.

• We show that the proposed OnlineAugment can generalize to tasks different from

object classification by applying OnlineAugment to a liver&tumor segmentation

task, demonstrating improved performance compared with the state-of-the-art

RandAugment on this task.

4.2 Related Work

Data augmentation has been shown to improve the generalization of machine learning

models and is especially effective in training deep neural networks. It is essential in the

situation where only limited data is available for the target task, but is also crucial for

generalization performance in case the data is abundant.

Known class-preserving transformation has been routinely used to expand labeled

datasets for training image classifiers. These include operations such as cropping, hori-

zontal and vertical flips, and rotation [129, 116, 117]. Recently, reinforcement learning

has been used to learn the optimal sequence of such transformations for a given dataset

that leads to improved generalization [99]. AutoAugment [9] falls under this category

of methods and actively explores policies and validates their effectiveness by repeatedly

training models from scratch. Due to the large search space, the searching process,

based on reinforcement learning, severely suffers from high computational demand.

Subsequent works [130, 7] in this direction have been aimed at reducing the compu-

tational complexity of the search strategies. However, they all follow the formulation

of AutoAugment that first searches policies using a sampled small dataset, and then

applies them to the final large dataset. Thus the policy learning and usage are isolated.

Adversarial AutoAugment [131] jontly optimizes the polices and target learner. How-

ever, the learned policies are still based on domain-specific image processing functions.

More general transformations, such as Gaussian noise and dropout, are also effective

in expanding the training set [132, 133, 109]. Spatial Transformer Network (STN) can

perform more adaptive transformations than image processing functions such as rota-

tion. However, it was designed for localization, not for data augmentation. In this work,
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we craft STN to conduct data augmentation. Generative models are also helpful for

data augmentation. DAGAN [101] employs a Generative Adversarial Network (GAN)

[134] to learn data augmentation for few-shot classification. In this work, we devise

two augmentation models based on Variational Auto-encoder (VAE) [47], as another

popular generative model.

Adversarial training [43, 135, 5] can serve as a general data augmentation framework.

It aims to generate adversarial perturbations on input data. The adversarial examples

are further used in training models to improve their robustness. It has been shown that

adversarial training can hurt model generalization although it can boost robustness [5,

136]. Concurrent work AdvProp [4] successfully adapts adversarial training to advance

model generalization. It uses the common adversarial attack methods, such as PGD

and I-FGSM, to generate additive noises. In contrast, our models can learn to generate

more diverse augmentations: spatial transformation, deformation, and additive noises.

We also use adversarial training together with meta-learning.

Learning data augmentation is to train the target learner better, i.e., learning to

learn better. Validation data have been used in meta-learning literatures for few-shot

learning [137, 138, 139], where very limited training data are available. Here we follow

the MAML [140] algorithm to set a meta-objective for the augmentation network. That

is, augmentations conducted on a training mini-batch is evaluated on another validation

one.

4.3 The Online Data Augmentation Formulation

In this section, we introduce our online data augmentation paradigm: updating target

model θ and augmentation model φ alternately. In this way, data augmentation and

target model are learned jointly. Benefiting from the joint learning, the augmentation

model φ can adapt to the target model θ in training.

For simplicity, let x be the annotated data, including both input and target. Note

that x can come from any supervised task such as image classification or semantic
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Figure 4.1: Augmentation illustrations (Left) and OnlineAugment scheme (Right).
We propose three models to conduct spatial transformation, deformation, and noise
perturbation. OnlineAugment can jointly optimize each plug-in augmentation network
with the target network. Updating the augmentation network incorporates adversarial
training, meta-learning, and some novel regularizations.

segmentation. Let θ and φ denote the target and augmentation models. During train-

ing, the target model θ learns from the augmented data φ(x) instead of the original x.

Note that φ will also transform the ground truth annotation if necessary. For exam-

ple, in semantic segmentation, φ applies the same spatial transformations to both an

image and its segmentation mask. Without loss of generality, we assume θ and φ are

parameterized by deep neural networks, which are mostly optimized by SGD and its

variants. Given a training mini-batch xtr sampled from training set Dtr, θ is updated

by stochastic gradient:

∇θL(xtr; θ, φ), (4.1)

where the choice of L depends on the task. In the case of object classification, L is a

cross entropy function.

The goal of data augmentation is to improve the generalization of the target model.

To this end, we draw on inspirations from adversarial training and meta-learning. Ad-

versarial training aims to increase the training loss of the target model by generating

hard augmentations. It can effectively address the overfitting issue of the target model.

Meta-learning, on the other hand, can measure the impact of augmented data on the

performance of validation data. If a validation set Dval is possible, we can sample from

it a validation mini-batch xval. Otherwise, we can simulate the meta-tasks by sam-

pling two separate mini-batches from train set Dtr as xtr and xval. Mathematically, the



51

Algorithm 5: OnlineAugment: Online Data Augmentation

Input: Initial target model θ, initial augmentation model φ, training set Dtr,
and validation set Dval

1 while not converged do
2 Sample mini-batches xtr and xval from Dtr and Dval respectively
3 Update augmentation model φ by stochastic gradient:

∇φL(xval; θ − η∇θL(xtr; θ, φ)) + λ∇φR(xtr;φ)− β∇φL(xtr; θ, φ)
4 Update target model θ by stochastic gradient: ∇θL(xtr; θ, φ)

5 end
Output: Optimized target model θ∗

stochastic gradient of augmentation model φ is computed as:

∇φL(xval; θ − η∇θL(xtr; θ, φ)) + λ∇φR(xtr;φ)− β∇φL(xtr; θ, φ), (4.2)

where L(xval; θ − η∇θL(xtr; θ, φ)), R(xtr;φ), and −L(xtr; θ, φ) are the generalization,

regularization, and adversarial losses. λ and β are the balancing weights. θ−η∇θL(xtr; θ, φ)

represents the the updated target network by augmented data φ(xtr). For simplicity,

here we use a vanilla gradient descent with learning rate η. Other more complex opti-

mizers are also applicable. For efficient training, we use the second-order approximation

[141] to compute the meta-gradient.

R(x;φ) measures the distance between the original and augmented data. Adding

this regularization term aims to constrain the augmented data within reasonable dis-

tributions. Otherwise, adversarial training may cause meaningless augmentations that

hurt training. Theoretically, the generalization term can also help regularize the aug-

mentations implicitly. In practice, we find that the explicit regularization term is critical

for practical adversarial training. Besides, adversarial training is performed by mini-

mizing the negative training loss −L(xtr; θ, φ). In this way, the augmentation model φ

learns to generate hard augmentations. The training scheme is presented in Algorithm

5 and the right figure in Fig. 4.1.

Relation to offline augmentation methods. The formulation of our online

augmentation differs from the previous offline ones [9, 130, 7] mainly in three respects.

First, OnlineAugment alternates updating the target model θ and augmentation model

φ. The offline methods usually perform a full optimization for θ in each step of updating

φ. Second, to get the optimized target model, the offline methods usually require a
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two-stage training: learning policies and applying them. However, OnlineAugment can

optimize the target model in one training process. Third, we use adversarial training

in learning the augmentation model. The offline methods only have one generalization

objective, maximizing performance on validation data.

Relation to adversarial training methods. Adversarial training [43, 135, 5]

is mainly used to improve the robustness of the target model. Some works [5, 136]

have shown that robust models usually come at the cost of degraded generalization to

clean data. The goal of OnlineAugment is generalization rather than robustness. To

pilot adversarial training for generalization, we design new regularization terms and

add meta-learning in OnlineAugment.

4.4 Data Augmentation Models

After introducing the OnlineAugment scheme, we present three different data augmen-

tation models in this section. The three models are motivated by our analysis of possible

data transformations. Specifically, we summarize them into three types: global spatial

transformation, local deformation, and intensity perturbation. Each transformation

corresponds to a model below. They either change pixel locations or values. Note

that the pixel in this work refers to an element in a generic feature map, not neces-

sarily an image. Technically, we design the augmentation models based on the spatial

transformer network (STN) [46] and variational auto-encoder (VAE) [47].

4.4.1 Global Spatial Transformation Model

There are several commonly used spatial transformation functions such as rotation,

scale, and translation, which can be unified into more general ones, such as affine trans-

formation. It is well-known that STN [46] can perform general spatial transformations.

Briefly, STN contains three parts: a localization network, a grid generator, and a sam-

pler. The last two modules are deterministic and differentiable functions, denoted as

τ . Therefore, our focus is to design a new localization network φ that outputs the

transformation matrix.
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Figure 4.2: Augmentation models: A-STN (a), D-VAE (b), and P-VAE (c). A-STN,
conditioned on Gaussian noise, generate a transformation matrix. Both the matrix and
its inverse are applied to an image for diversity. D-VAE or P-VAE takes an image as
input, generating deformation grid maps or additive noise maps. The three models are
trainable if plugged in the training scheme in Figure 4.1.

Augmentation STN (A-STN). Suppose we use affine transformation, the output

should be a 6-dimension vector, further re-shaped into a 2×3 transformation matrix.

Traditionally, the STN localization network uses images or feature maps as its input.

Here we also provide an alternative input of Gaussian noises. Our design is motivated

by the observation that the global spatial transformations are transferable in data

augmentation. That is, the same spatial transformation is applicable to different images

or feature maps in augmenting training data. Therefore, conditioning on the images or

feature maps may not be necessary for generating the augmentation transformation.

The architecture of the localization network φ depends on the choices of its input.

It can be a convolutional neural network (CNN) or a multi-layer perceptron (MLP) if

conditioned on the generic feature map or 1-D Gaussian noise. We will give its detailed

architectures in the experiment. Moreover, the MLP localization network itself is also

transferable as it is unrelated to the target task. However, we may need to craft new

CNN localization networks for different tasks. Therefore, it is preferable to implement

the localization network φ as an MLP in practice.

Double Cycle-consistency Regularization. To apply the spatial transformation

model to Algorithm 5, we need to design a proper regularization term R. Empirically,

increasing the spatial variance of training data can enhance the generalization power of

the model. However, excessive spatial transformations probably bring negative impacts.
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To constrain the spatial transformations within a reasonable scope, we propose a novel

double cycle-consistency regularization, seen in Fig. 4.2 (a). The key idea is to measure

the lost information during the spatial transformation process. Mathematically, we

compute the double cycle-consistency loss:

Rsc(x;φ) = ‖τ−1
φ (τφ(x))− x‖22 + ‖τφ(τ−1

φ (x))− x‖22, (4.3)

where τφ(x) = τ(x, φ(z)). The deterministic function τ transforms the image or feature

map x using the generated affine matrix φ(z), where z is the Gaussian noise. τ−1
φ

denotes the inverse transformation of τφ. Ideally, applying a transformation followed

by its inverse will recover the original input, and vice versa. In reality, whichever is

applied first may cause some irreversible information loss. For example, the zoom-

in transformation discards the region falling out of scope. Applying the zoom-out

transformation afterwards will produce zero or boundary padding, which is different

from the original image region. We find a single cycle-consistency loss will lead to biased

transformations. The localization network φ tends to output zoom-out transformations

whose inverse can easily recover the original input. Fortunately, imposing the double

cycle-consistency constraint can avoid the biases effectively, thereby producing more

diverse transformations.

4.4.2 Local Deformation Model

Apart from the global spatial transformation model, we propose another complementary

deformation model. The global transformation applies the same transformation matrix

to all the pixels of an image or feature map. In the local deformation, each pixel,

however, has an independent transformation.

Input and Output. It is cumbersome and also unnecessary to produce all the

transformation matrices. Recall that STN performs transformations by the grid sam-

pling. A better choice is to predict a grid map directly. For 2D transformations, the

grid map has the shape h×w×2, where h and w are the height and width of the input

feature map. Each location in the grid map indicates the 2D coordinates to sample a

pixel. A grid map is personalized to an image or feature map as each pixel has its own
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transformation. Different from a low-dimension affine matrix, a deformation grid map

may be unlikely to transfer. Therefore, our deformation model is conditioned on the

image or feature map, generating the grid map.

Deformation VAE (D-VAE). The deformation model φ, see in Fig. 4.2 (b),

builds on the Variational Autoencoders (VAE) [47], a popular generative model. A

VAE model consists of an encoder and a decoder. Similar to the original VAE, our

deformation VAE also uses images or feature maps as the encoder input. However, in

our setting, the decoder outputs the deformation grid maps instead of the reconstructed

input. We refer to the deformation grid maps as deformation deltas ∆d
φ. They are added

on the grid maps of identity mapping id to perform grid sampling τ . The transformed

input τ(x,∆d
φ + id) serves as the reconstructed input. Following the original VAE,

our deformation VAE is also trained to minimize both the reconstruction loss and the

KL-divergence between the encoded distribution and the standard normal distribution:

Rdv(x;φ) = ‖x− τ(x,∆d
φ + id)‖22 +KL(N (µφ(x),Σφ(x)),N (0, I)), (4.4)

where µφ(x) and Σφ(x) are the encoded mean and variance, parameterizing the

Gaussian distribution.

Smoothness Regularization. Smooth deformations are essential to preserving

the quality of deformed data. Otherwise, the deformed data may become noisy as each

pixel is sampled from an independent location in the original image or feature map.

This is especially important for location-sensitive tasks such as semantic segmentation.

Given an arbitrary pixel i and its neighbours j ∈ N (i), we enforce the local smoothness

constraint on the deformation deltas:

Rds(x;φ) =
∑
i

∑
j∈N (i)

‖∆d
φ(i)−∆d

φ(j)‖22. (4.5)

The smoothness regularization can make the deformations consistent for nearby pixels.

In the experiment, we use the combination λdvRdv(x;φ) + λdsRds(x;φ) to regularize our

deformation augmentation model.
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4.4.3 Intensity Perturbation Model

The above two models perform data augmentation by changing the pixel locations. Here

we propose another model to manipulate the pixel values instead. As an analogy, the

offline data augmentation methods [9, 130, 7] use some built-in image texture processing

functions such as colour and brightness. These functions are designed based on the

domain knowledge for natural images. In contrast, our intensity perturbation is more

general without domain knowledge.

Perturbation VAE (P-VAE). Specifically, the intensity perturbation model φ,

shown in Fig. 4.2 (c), conditioned on the image or feature map, generates additive noises

∆p
φ. As the deformation, we use the VAE model to learn the intensity perturbation.

The reconstructed input is the sum of the input and generated noises x+∆p
φ. Therefore,

we can compute the VAE loss as:

Rpv(x;φ) = ‖∆p
φ‖22 +KL(N (µφ(x),Σφ(x)),N (0, I)), (4.6)

where µφ(x) and Σφ(x) are the mean and variance of the encoded Gaussian dis-

tribution. Note that P-VAE produces deltas ∆p
φ in the image or feature map domain

while the deltas ∆d
φ, predicted by D-VAE, lie in the grid map domain, which results in

the different reconstruction losses in Equations 4.6 and 4.4.

Relation to Adversarial Attacks. Additive noise is a common tool in generating

adversarial examples [4, 5]. Here we explore its potential in data augmentation. Al-

though the adversarial examples serve as augmented data in adversarial training, they

mainly serve to improve the model’s robustness. Some evidence [142] has shown that

adversarial training usually sacrifices the model generalization to clean data. However,

our intensity perturbation model can improve generalization through OnlineAugment.

Recently, concurrent work AdvProp [4] has successfully adapted the PGD attack [5] to

data augmentation. In contrast, we design the perturbation VAE model to generate

additive noises.
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4.5 Experiments

In this section, we empirically evaluate the OnlineAugment scheme. More specifically,

we plug in it the three augmentation models: Augmentation STN (A-STN), Deforma-

tion VAE (D-VAE), and Perturbation VAE (P-VAE). In the ablation study, we evalua-

tion the three models both separately and jointly. We also provide detailed comparisons

of OnlineAugment with offline AutoAugment [9] and their combined results. The com-

parisons to other state-of-the-art offline methods are reported on image classification

and medical segmentation.

4.5.1 Experimental Settings

Applying OnlineAugment is simple in practice. The augmentation models A-STN, D-

VAE, and P-VAE requires neither pre-training [128] nor early stopping [99] because

they can adapt to the target network during online training. Inspired by AdvProp [4],

we use multiple batch normalization layers to merge different types of augmentations.

A-STN, D-VAE, and P-VAE are trained by Adam optimizer with the same learning

rate of 1e − 3, weight decay 1e − 4, and β1 = 0.5. Other Adam hyper-parameters are

set by default in Pytorch.

A-STN. We design the noise conditioned A-STN as a 6-layer MLP. Specifically, A-

STN takes only 1-dimensional Gaussian noises as input and outputs 6-dimensional affine

parameters. Each hidden layer generates 8-dimension features. Batch normalization,

ReLU, and dropout (0.5) are applied after each linear layer. The loss weights are set

as λsc = 0.1 and βs = 0.1.

D-VAE. D-VAE consists of an encoder and a decoder. The encoder maps an image

to the 32-dimensional latent space. It includes 5 3 × 3 convolutional layers and three

linear layers. The first convolutional layer increases the channel number from 3 to

32. After that, the feature channels double if the convolution stride is 2. There are

two convolutional layers on each resolution. The first linear layer takes the reshaped

convolutional features and outputs 512-dimensional latent features. Another two linear

layers generate the mean and variance vectors of encoded Gaussian distributions. The
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decoder is simply the reverse of the encoder with transposed convolutions. The last

layer is a 1× 1 convolution producing 2-channel grid maps. We use the weights λdv = 1,

λds = 10, and βd = 1e− 2.

P-VAE. P-VAE shares almost the same architecture as D-VAE. The only difference

is the last layer in the decoder, because P-VAE needs to generate additive noises on

the images. The latent space dimension is set to 8 for P-VAE. We also set the hyper-

parameters λpv = 1e− 3 and βp = 10.

Image Classification. We use datasets CIFAR-10, CIFAR-100, SVHN, and Im-

ageNet with their standard training/test splits. To tune hyper-parameters efficiently,

we also sample reduced datasets: R-CIFAR-10, R-CIFAR-100, and R-CIFAR-SVHN.

Each of them consists of 4000 examples. The sampling is reproducible using the public

sklearn StratifiedShuffleSplit function with random state 0. We report top-1 classifica-

tion accuracy in most tables except for Table 4.6 with top-1 errors. The target networks

are Wide-ResNet-28-10 [112] (W-ResNet), Shake-Shake network [113], and ResNet-50

[10]. We use Cutout [109] as the baselines in Tables 4.1, 4.2, 4.3, and 4.4.

Medical Image Segmentation. To test the generalization ability of our approach,

we further conduct experiments on the medical image segmentation dataset LiTS [143].

LiTS published 131 liver CT images as a training set with liver and tumor annotations.

Since these experiments are to prove the effectiveness of our augmentation algorithm,

pursuing the highest performance is not our goal, we use the 2D UNet as the segmen-

tation network to segment CT images on the axial plane slice by slice. We randomly

split the 131 CT images into 81 training cases, 25 validation cases, and 25 test cases.

We first resample all images to 2 × 2 × 2 mm, then center crop each slice to 256 in

size, and finally normalize the image window [-200, 250] to [0, 1] as the input of the

network. Only A-STN and D-VAE are presented in this task, since P-VAE has no

obvious performance improvement. Compared with classification tasks, segmentation

tasks are sensitive to location. Therefore, for A-STN and D-VAE, we not only perform

a bilinear grid sample on the images, but also perform a nearest neighbor grid sample

for the label masks using the same grid.

We also compared our proposed OnlineAugment with RandAugment [130]. We
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Table 4.1: Evaluation of the Gaussian noise input and double cycle-consistency regular-
ization in A-STN. We compare them to the image condition and single cycle-consistency.
Double cycle-consistency outperforms the single one. With the double one, the noise
and image inputs get comparable accuracy.

Dataset Model Cutout Image Input Image Input Noise Input Noise Input
+1 cycle +2 cycles +1 cycle +2 cycles

R-CIFAR-10 W-ResNet 80.95 83.24 84.76 82.62 84.94

slightly modify RandAugment to fit our setting. As the number of transformations

involved is relatively small, all transformations are used during training. Therefore,

for global spatial transformation, the search space is the magnitude of 4 transforms,

including rotate, translate-x, translate-y, and scale. For the deformation model, the

search space is the magnitude of local deformations. At each iteration, the magnitude

of each transformation is uniformly and randomly sampled between 0 and the upper

bound for both global spatial transformation and local deformation.

4.5.2 Ablation study of A-STN, D-VAE, and P-VAE

A-STN. The A-STN may be conditioned on image or Gaussian noise. We compare

these two choices in this ablation study. Also, we compare its regularization with

single or double cycle-consistency losses. Table 4.1 gives the comparisons. The double

cycle-consistency obtains higher accuracy than the single cycle one. Because it can

make A-STN produce more diverse transformations. With the double-cycle consistency

regularization, the noise and image conditions achieve comparable accuracy. We use

the noise condition A-STN in other experiments since its architecture is transferable

between tasks.

D-VAE. The smoothness regularization comes as an additional component in the

D-VAE. We evaluate its effectiveness in both CIFAR-10 classification and liver segmen-

tation tasks. Table 4.2 presents the results. Interestingly, the smoothness regularization

has little effect on classification accuracy. However, it makes a difference (%2) for the

liver segmentation because the liver segmentation is a location-sensitive task. The

smoothness regularization can remove the noises along the boundaries of segmentation
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Table 4.2: Evaluation of the smoothness regularization (SR) in D-VAE. We report the
results on both image classification and segmentation. The smoothness regularization
is more useful for the location-sensitive image segmentation task.

Dataset Model Baseline D-VAE Only D-VAE + SR

R-CIFAR-10 W-ResNet 80.95 (Cutout) 82.72 82.86
Liver Segmentation U-Net 66.0 (No Aug.) 68.51 70.49

Table 4.3: Comparisons of P-VAE to AdvProp [4] with iterative gradient methods PGD
[5], GD, and I-FGSM [6]. Adversarial training plus only the noise regularization can
make P-VAE comparable to AdvProp with GD or I-FGSM.

Dataset Model Cutout AP+PGD AP+GD AP+I-FGSM P-VAE

R-CIFAR-10 W-ResNet 80.95 83.00 83.90 83.92 84.08

masks.

P-VAE. The P-VAE generates additive noises to perform data augmentation. Ad-

vProp [142] has a similar goal, but utilizes the iterative gradient methods for the gen-

eration. For a fair comparison with AdvProp, we use only adversarial training and

the noise regularization in training P-VAE. Table 4.3 shows the comparisons. P-VAE

compares favorably to AdvProp with GD and I-FGSM. On the one hand, P-VAE learns

some noise distributions while the iterative methods rely on the gradient ascent rules.

On the other hand, P-VAE generates structured noises, while the iterative approaches

produce more complex ones.

4.5.3 OnlineAugment v.s. AutoAugment

As AutoAugment is a representative offline augmentation method, we compare it to our

OnlineAugment. Table 4.4 provides the separate and combined results of three data

augmentation models. Each model, independently, can boost the generalization of two

target networks on three datasets. Combining them can bring further improvements,

achieving comparable performance as AutoAugment. We can also observe that the

improvements for the Shake-Shake network [113] are lower than those of the Wide

ResNet [112]. One possible explanation is that the stochastic shake-shake operations
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Table 4.4: Ours v.s. AutoAugment (AA). The three models helps separately, and they
together may perform on par with AA. The stochastic shake-shake operations may
interfere with the online learning, reducing the improvements.

Dataset Model Cutout AA A-STN D-VAE P-VAE Comb.

R-CIFAR-10
Wide-ResNet-28-10 80.95 85.43 84.94 82.72 84.18 85.65
Shake-Shake (26 2x32d) 85.42 87.71 86.62 86.51 86.34 87.12

R-CIFAR-100
Wide-ResNet-28-10 41.64 47.87 46.55 45.42 47.45 48.31
Shake-Shake (26 2x32d) 44.41 48.18 46.81 46.53 46.30 47.27

R-SVHN
Wide-ResNet-28-10 90.16 93.27 92.73 91.32 91.61 93.29
Shake-Shake (26 2x32d) 94.03 94.63 94.15 94.06 94.12 94.21

Table 4.5: Ours+AutoAugment (AA). We use A-STN, D-VAE, and P-VAE on top of
the AutoAugment polices. Surprisingly, each model can further improve AutoAugment
performance. It demonstrates that OnlineAugment is orthogonal to AutoAugment.
The three models use more general augmentation operations.

Dataset Model AA +A-STN +D-VAE +P-VAE +Comb.

R-CIFAR-10
Wide-ResNet-28-10 85.43 89.39 87.40 87.63 89.40
Shake-Shake (26 2x32d) 87.71 89.25 88.43 88.52 89.50

R-CIFAR-100
Wide-ResNet-28-10 47.87 52.94 50.01 51.02 53.72
Shake-Shake (26 2x32d) 48.18 50.58 50.42 50.87 50.11

R-SVHN
Wide-ResNet-28-10 93.27 94.32 93.72 94.17 94.69
Shake-Shake (26 2x32d) 94.63 95.21 94.87 95.28 95.06

may affect the online learning of data augmentation.

4.5.4 OnlineAugment + AutoAugment.

Apart from comparing OnlineAugment with AutoAugment, it is more interesting to

investigate their orthogonality. Table 4.5 summarizes the results. We can find that On-

lineAugment can bring consistent improvements on top of AutoAugment for different

target networks and datasets. Their orthogonality comes from the differences in train-

ing schemes and augmentation models. Different from OnlineAugment, AutoAugment

learns data augmentation policies in an offline manner. Moreover, the three models

(A-STN, D-VAE, and P-VAE) generate different augmentations from the image pro-

cessing functions in AutoAugment. Note that OnlineAugment is also orthogonal to



62

Table 4.6: Comparisons with state-of-the-art methods. We compare our OnlineAug-
ment with AutoAugment (AA), PBA [7], and Fast AutoAugment (FAA) [8] on three
datasets. OnlineAugment alone obtains comparable test errors. Combining it with
AutoAugment produces the lowest errors on three datasets.

Dataset Model Baseline Cutout AA PBA FAA Ours Ours+AA

CIFAR-10 Wide-ResNet-28-10 3.9 3.1 2.6 2.6 2.7 2.4 2.0

CIFAR-100 Wide-ResNet-28-10 18.8 18.4 17.1 16.7 17.3 16.6 16.3

ImageNet ResNet-50 23.7 - 22.4 - 22.4 22.5 22.0

Table 4.7: OnlineAugment v.s. RandAugment on LiTS measured by Dice score co-
efficient. Although A-STN is comparable to RandAug STN, D-VAE alone and its
combination with A-STN obtain higher scores than the RandAug variants.

Method Liver Tumor Average

no Augmentaion 89.04 44.73 66.88

RandAug STN 93.86 50.54 72.20
RandAug Deformation 90.49 46.93 68.71
RandAug Combine 91.91 51.11 71.51

Ours A-STN 92.01 52.26 72.13
Ours D-VAE 90.18 50.81 70.49
Ours Combine 93.12 53.58 73.35

other offline methods [9, 130, 7] since they have similar policies as AutoAugment.

4.5.5 Comparisons with State-of-the-art Methods.

Image classification. Besides AutoAugment, we also compare OnlineAugment with

other state-of-the-art methods such as Fast AutoAugment (FAA) and Population-based

Augmentation (PBA). They all belong to offline data augmentation. OnlineAugment

alone gets the lowest test errors on CIFAR-10 and CIFAR-100 and comparable errors

on ImageNet. Further, OnlineAugment, together with AutoAugment, achieves new

state-of-the-art results on all the three image classification datasets.

Medical image segmentation. OnlineAugment can also easily apply to medical

image segmentation. Table 4.7 gives the comparisons with state-of-the-art RandAug-

ment. A-STN has comparable scores as RandAugment STN. However, both D-VAE and

its joint application with A-STN outperform the corresponding RandAugment parts,
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Epoch 5 Epoch 30 Epoch 60 Epoch 90 Epoch 120Origin Image

Figure 4.3: Visualization of two augmentation modules: A-STN (top) and D-VAE
(bottom). Red line is the contour of liver while green line is the contour of tumor.
Our OnlineAugment can generate diverse augmented images. Moreover, it can also
adapt to the target network. As the target network converges during training, the
magnitude of the augmentation will also decrease.

especially on the tumor segmentation. Fig. 4.3 illustrates the augmented images of

A-STN, and D-VAE along with the training process. The augmentation is relatively

large at the beginning and gradually becomes small as the training converges.

4.5.6 Running Time Comparison

For fair comparisons, we divide the running time into two parts: offline searching

time and online training time. The offline data augmentation methods must learn

augmentation policies on separate proxy tasks. Then they apply the policies for online

training. Our OnlineAugment, by contrast, performs the online training directly. Tables

4.8 and 4.9 give offline and online time comparisons, respectively. Ours is superior in

terms of zero offline time cost. For online training, ours is slower as it needs to update

both the target learner and augmentation networks in each iteration. According to

Table 4.9, the gap is smaller for small image training. In this case, A-STN is even

faster.

There are several possible ways to improve the training efficiency of OnlineAugment.

One is to reduce the frequency of updating the augmentation networks A-STN, D-VAE,

and P-VAE. Currently, we update them in each iteration of updating the target learner.

The online training time will significantly decrease if updating them less frequently.
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Table 4.8: GPU hours of offline searching time. AutoAugment (AA) [9], Population-
based Augmentation (PBA) [7], and Fast AutoAugment (Fast AA) [8] need to search
augmentation polices on separate proxy tasks. In contrast, our OnlineAugment has no
offline searching cost.

Dataset AA PBA Fast AA OnlineAugment

CIFAR-10 5000 5.0 3.5 0.0
SVHN 1000 1.0 1.5 0.0
ImageNet 15000 - 450 0.0

Table 4.9: Per iteration seconds in online training. We measure the time using different
input image resolutions and workers in Pytorch data loaders. In the experiments, we
train ResNet50 [10] with batch size 128 using 1 RTX 8000 GPU and Intel(R) Xeon(R)
Silver 4116 CPUs. Since all the offline methods share the same augmentation policy
format, they should have equivalent online training time costs. Thus, we use AutoAug-
ment (AA) [9] to represent all offline methods here. Ours have higher online time costs
due to updating augmentation networks.

32×32 Image (ResNet50, BS: 128) 224×224 Image (ResNet50, BS: 128)
Workers AA A-STN D-VAE P-VAE Comb. AA A-STN D-VAE P-VAE Comb.

0 0.17 0.14 0.17 0.17 0.27 0.84 1.21 1.37 1.32 3.29
1 0.17 0.12 0.14 0.15 0.27 0.50 0.94 1.06 1.03 2.97

Another direction is to optimize the architectures of A-STN, D-VAE, and P-VAE. We

can also reduce the training costs by using more compact models.

4.5.7 Visualization of OnlineAugment Adaptivity

OnlineAugment can adapt to the target learner in training. To demonstrate the adap-

tivity, we draw curves in Figure 4.4 to measure the augmentation strength. We can

find the augmentations are relatively small at the first few epochs. As the training

continues, the augmentations become more substantial as the target learner already

learns enough knowledge from the clean data. Finally, the training converges with re-

duced augmentations. The target learner with a small learning rate may not require

significant data augmentations. An exception is that P-VAE has a considerable image

distance at the beginning. The large noises are due to our initialization of the P-VAE

model, which we leave for future studies.
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(a) A-STN

(b) D-VAE

(c) P-VAE
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Figure 4.4: Illustration of augmentation strengths for A-STN, D-VAE, and P-VAE
along epochs. We measure the strengths using the L2 distances between the clean and
augmented data. The left and right columns show the L2 distances in the image and
logit spaces. The trend is that the augmentation strengths increase in the early stages
of training, while during the target network converges, the augmentation magnitude
gradually decreases.

4.6 Summary

In this work, we have presented OnlineAugment - a new and powerful data augmenta-

tion technique. Our method adapts online to the learner state throughout the entire

training. We have designed three new augmentation networks that are capable of

learning a wide variety of local and global geometric and photometric transformations,

requiring less domain knowledge of the target task. Our OnlineAugment integrates both

adversarial training and meta-learning for efficient training. We also design essential

regularization techniques to guide adaptive online augmentation learning. Extensive
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experiments demonstrate the utility of the approach to a wide variety of tasks, match-

ing (without requiring expensive offline augmentation policy search) the performance

of the powerful AutoAugment policy, as well as improving upon the state-of-the-art in

augmentation techniques when used jointly with AutoAugment.
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Chapter 5

Towards Efficient U-Nets: A Coupled and Quantized

Approach

5.1 Introduction

The U-Net architecture [40] is a basic category of Convolution Neural Network (CNN).

It has been widely used in location-sensitive tasks, such as semantic segmentation [64],

biomedical image segmentation [40], human pose estimation [60], and facial landmark

localization [105]. A U-Net contains several corresponding top-down and bottom-up

blocks with shortcut connections between them. The essence of U-Net is integrating

both the local visual cues and global context information to make inferences.

Recently, stacked U-Nets, e.g. hourglasses (HGs) [1] have become a standard

baseline in landmark localization tasks. Stacked U-Nets have multiple top-down and

bottom-up processing which can refine inferences stage-by-stage. Many techniques,

such as adversarial training [3], attention modeling [86], are used to further improve its

inference accuracy. However, very few works try to improve the efficiency of stacked

U-Nets.

Stacked U-Nets usually contain dozens of millions of float parameters. The massive

high-precision computations require the high-end GPU devices with abundant memory.

It is very challenging for the applications in resource-limited mobile devices. In this

work, we aim to improve the efficiency of staked U-Nets in three aspects: parameter,

memory, and bit-width.

Parameter efficiency. The shortcut connections can promote feature reuse, thereby

reducing many redundant parameters. For a single U-Net, it is straightforward to

change each block into a dense block where several convolutional layers are densely
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Figure 5.1: Illustration of a dense U-Net, stacked U-Nets, and coupled U-Nets. Coupled
U-Nets is a hybrid of dense U-Net and stacked U-Nets, integrating the merits of both
dense connectivity and multi-stage top-down and bottom-up refinement. Coupled U-
Nets can save ∼70% parameters and ∼30% inference time of stacked U-Nets. Each
block in coupled U-Nets is a bottleneck module which is different from the dense block.

connected.

While it is easy to apply dense connectivity to a single U-Net, adding shortcut

connections properly in the stacked U-Nets is nontrivial. Our solution is to couple the

stacked U-Nets, generating the coupled U-Nets (CU-Net). The key idea is to directly

connect blocks of the same semantic meanings, i.e. having the same resolution in either

top-down or bottom-up context, from any U-Net to all subsequent U-Nets. Refer to

Fig. 5.1 for an illustration. The coupling connections encourages feature reuse across

stacks, resulting in a light-weighted CU-Net.

Yet there is an issue in designing the CU-Net. The number of shortcut connec-

tions would have a quadratic growth if we couple every U-Net pair, e.g. n stacked

U-Nets would generate O(n2) connections. To balance parameter efficiency and infer-

ence accuracy, we propose the order-K coupling that couples a U-Net to its K instance

successors.

Additionally, we employ intermediate supervisions to provide additional gradients,

compensating the trimmed off shortcut connections. The order-K coupling cuts down

∼70% parameter number and ∼30% forward time without sacrificing inference accuracy

compared with stacked U-Nets [1]. Furthermore, we propose an iterative design that

can further reduce the parameter number to ∼50%. More specifically, the CU-Net

output of the first pass is used as the input of the second pass, which is equivalent to

a double-depth CU-Net.
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Memory efficiency. The shortcut connections may have a severe memory issue.

For instance, a naive implementation intends to make feature copies repeatedly for all

shortcut connections. We adapt the memory efficient implementation [144] to share

memories for features in connected blocks. This technique can reduce the training

memory by ∼40%.

Bit-width efficiency. In addition to the parameter and memory efficiency, we

also investigate model quantization to improve the bit-width efficiency. Different from

the common setup, we quantize both parameters and data flow ( intermediate features

and gradients). On the one hand, we ternarize or binarize the float parameters, which

shrinks 16× or 32× model size in testing. On the other hand, we quantize the data

flow with different bit-width setups, which saves ∼4× training memory without com-

promising the performance. To the best of our knowledge, this is the first study to

simultaneously quantize the parameters and the data flow in U-Nets.

In summary, we present a comprehensive study of efficient U-Nets [51] in three

aspects: parameter, memory, and bit-width. Coupled U-Nets (CU-Nets), order-K cou-

pling and iterative refinement are proposed to balance the parameter efficiency and

inference accuracy. Besides, a memory sharing technique is employed to significantly

cut down the training memory. Moreover, we investigate the bit-width efficiency by

quantizing the parameters as well as the data flow. Two popular tasks, human pose

estimation and facial landmark localization, are studied to validate our approach in

various aspects. The experimental results prove that our model cuts down ∼70% pa-

rameter number and ∼30% inference time. Together with the quantization, we can

shrink the model size by ∼98% and reduces ∼75% training memory with comparable

performance as state-of-the-art U-Nets designs.

5.2 Related Work

In this section, we review the recent developments on designing convolutional network

architectures, quantizing the neural networks and two landmark localization tasks: hu-

man pose estimation and facial landmark localization.
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Network Architecture. The research on network architectures has been active

since AlexNet [54] appeared. First, by using smaller filters, VGG [45] network became

several times deeper than the AlexNet and obtained much better performance. Then

the Highway Networks [145] extended its depths to more than 100 layers. The identity

mappings make it possible to train very deep ResNet [10]. The popular stacked U-

Nets [1] are designed based on residual modules. More recently, DenseNet [90] has

outperformed the ResNet in image classification tasks. Some works [146, 147] have tried

to use the dense connectivity locally within each U-Net block, following the DenseNet

[90] design. However, the proposed coupling connectivity is global at the U-Net level.

Moreover, we aim to improve the U-Net efficiency whereas they focus on accuracy. Our

method is also related to DLA [148] in the sense of feature aggregation. However, the

proposed coupling connectivity is designed for multiple stacked U-Nets whereas DLA

[148] is for single U-Net.

Network Quantization. Training deep neural networks usually consumes a large

amount of computational power, which makes it hard to deploy on mobile devices. Re-

cently, network quantization approaches [149, 150, 151, 152, 153] offer an efficient solu-

tion to reduce the network size by cutting down high precision operations and operands.

TWN [150] utilize two symmetric thresholds to ternarize the parameters to +1, 0, or

-1. XNOR-Net [153] quantize the parameters and intermediate features. It also uses a

scaling factor to approximate the real-value parameters and features. DoReFa-Net [151]

quantizes gradients to low bit-width numbers. WAGE [152] proposes an integer-based

implementation for training and inference simultaneously. These quantization methods

are mainly designed for the image classification networks. In the recent binarized con-

volutional landmark localizer (BCLL) [154] architecture, XNOR-Net [153] is utilized for

network binarization. However, BCLL only quantizes parameters for inference. Due

to its high precision demand for training, it cannot save training memory and improve

training efficiency. Therefore, we explore to quantize the proposed CU-Net in train-

ing and inference simultaneously. That is, we quantize the parameters as well as the

intermediate features and gradients.
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Human Pose Estimation. Starting from the DeepPose [60], CNN-based ap-

proaches [82, 75, 83, 78, 81, 79, 97, 155] have become the mainstream in human pose

estimation and prediction. Recently, the architecture of stacked U-Nets [1] has obvi-

ously beaten all the previous ones in terms of usability and accuracy. Therefore, all

recent state-of-the-art methods [86, 87, 71, 3] build on its architecture. Chu et. al. add

the Conditional Random Field to refine its prediction. Yang et. al. replace the residual

modules in stacked U-Nets with more sophisticated ones. Chen et. al. [71] use an

additional network to provide adversarial supervisions. Peng et. al. [3] use adversarial

data augmentation to train more robust stacked U-Nets. All these approaches focus

on boosting the inference accuracy. In contrast, we study to improve the efficiency of

stacked U-Nets in various aspects.

Facial Landmark Localization. Similarly, CNNs have largely reshaped the field

of facial landmark localization. Traditional methods could be easily outperformed by

the CNNs based [106, 107, 63, 156]. Especially, the network cascade has shown its

effectiveness in detecting the facial keypoints. Sun et. al. [157] propose to use three

levels of neural networks to predict landmark locations. Zhang et. al. [158] study

the problem via cascades of stacked auto-encoders which gradually refine the landmark

positions. In the recent Menpo Facial Landmark Localization Challenge [108], stacked

U-Nets [1] achieve state-of-the-art performance. The proposed order-K coupled U-Nets

could produce comparable localization errors but with much fewer parameters, smaller

model size, and less training memory.

5.3 Method

We first describe the dense connectivity to improve the efficiency of a single U-Net.

Then we introduce the coupling connectivity to boost the efficiency of stacked U-Nets.

The order-K coupling is presented to balance the accuracy and parameter efficiency.

We also give an iterative refinement to cut the CU-Net in one half. At last, we quantize

its the parameters, intermediate features and gradients.
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Figure 5.2: Illustration of single residual U-Net and dense U-Net. Each top-down or
bottom-up block in the residual U-Net is a residual block of several residual modules. In
contrast, each block in the dense U-Net is a dense block with several densely connected
layers. The dense connections promote the feature reuse inside each block. Therefore,
we could largely reduce the parameters of a single U-Net by replacing each residual
block with a dense block.

5.3.1 Dense Connectivity for Single U-Net

A U-Net [40] is usually symmetric with the same number of top-down and bottom-up

blocks. And a pair of top-down and bottom-up blocks with the same resolutions are

connected. In this work, we refer to each top-down or bottom-up block as a seman-

tic block. We intend to add shortcut connections to compress a single U-Net. One

straightforward way is to densely connect the convolutional layers of a semantic block,

forming a dense block. An illustration is shown in Figure 5.2.

The dense connections could increase the information flow in the U-Net. However,

the single dense U-Net follows the DenseNet design [90]. That is, the dense connections

are only within the local blocks. If we have several stacked U-Nets, how could we add

the shortcut connections? It is more meaningful to improve the efficiency of stacked

U-Nets since they are commonly used in practice.

5.3.2 Coupling Connectivity for Stacked U-Nets

Suppose multiple U-Nets are stacked together, for the `th top-down and bottom-up

blocks in the nth U-Net, we use fn` (·) and gn` (·) to denote their non-linear transforma-

tions. Their outputs are represented by xn` and yn` . fn` (·) and gn` (·) comprise operations

of Convolution (Conv), Batch Normalization (BN) [159], rectified linear units (ReLU)
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[160], and pooling. Note that the top-down and bottom-up blocks have independent

index `. To make the resolutions of xn` and yn` match, their indexes ` both increase

from the high to low resolutions.

Stacked U-Nets. We recap the popular stacked U-Nets [1] based on the residual

modules. Basically, each block is a residual module. The feature transitions at the `th

top-down and bottom-up blocks of the nth U-Net can be written as:

xn` = fn` (xn`−1),yn`−1 = gn`−1(yn` + xn` ). (5.1)

The shortcut connections only exist locally within each U-Net. It restricts the feature

reuse across U-Nets. Thus, it contains many redundant parameters.

Coupled U-Nets. To facilitate the feature reuse across stacked U-Nets, we propose

a global connectivity pattern. The same semantic blocks, i.e., blocks at the same

locations of different U-Nets, have direct connections. Hence, we refer to this coupled

U-Nets architecture as CU-Net. Figure 5.1 gives an illustration. It essentially merges

features from multiple sources and then generates new features. Mathematically, the

feature transitions at the `th top-down and bottom-up blocks of the nth U-Net can be

formulated as:

xn` = fn` ([xn`−1,X
n−1
` ]),yn`−1 = gn`−1([yn` ,x

n
` ,Y

n−1
` ]), (5.2)

where Xn−1
` = x0

` ,x
1
` , · · · ,xn−1

` are the outputs of the `th top-down blocks in all pre-

ceding U-Nets. Similarly, Yn−1
` = y0

` ,y
1
` , · · · ,yn−1

` represent the outputs from the `th

bottom-up blocks. [· · · ] denotes the feature concatenation, which could make informa-

tion flow more efficiently than the summation operation in Equation 5.1.

According to Equation 5.2, a block receives features not only from connected blocks

in the current U-Net but also the output features of the same semantic blocks from all

its preceding U-Nets. Each U-Net becomes light-weighted, benefiting from the feature

reuse across stacked U-Nets. Thus, the parameter efficiency is largely improved. Please

note that the coupling connectivity is global whereas the dense connectivity in DenseNet

[90] is local within blocks.
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Order 0

Order 1 

Order 2

Figure 5.3: Illustration of order-K coupling. For simplicity, each dot represents one
U-Net. The red lines are shortcut connections for the same semantic blocks in different
U-Nets. The initial input and the U-Net outputs pass through the blue lines. Order-0
coupling (Top) strings U-Nets together only by their inputs and outputs, i.e., stacked
U-Nets. Order-1 coupling (Middle) has shortcut connections only for adjacent U-Nets.
Similarly, order-2 coupling (Bottom) has shortcut connections for 3 nearby U-Nets.

5.3.3 Order-K Coupling

In the above formulation of CU-Net, we connect blocks with the same semantic mean-

ings across all U-Nets. The shortcut connections would have quadratic growth depth-

wise. To make CU-Net more parameter efficient, we propose to cut off some trivial

connections. For compensation, we add a supervision at the end of each U-Net. Both

the intermediate supervisions and the shortcut connections could alleviate the vanishing

gradient problem, helping train better CU-Net models. Mathematically, the features

Xn−1
` and Yn−1

` in Equation 5.2 become

Xn−1
` = xn−k` , · · · ,xn−1

` , (5.3)

Yn−1
` = yn−k` , · · · ,yn−1

` , (5.4)

where 0 ≤ k ≤ n represents how many preceding nearby U-Nets connect with the

current one. k = n or k = 0 would result in the stacked U-Nets or fully densely

connected U-Nets. A medium order could reduce the growth of CU-Net parameters from

quadratic to linear. Therefore, the order-K coupling greatly improves the parameter

efficiency of CU-Net and could make CU-Net grow several times deeper.

The proposed order-K coupling has a similar philosophy as the Variable Order

Markov (VOM) models [161]. Each U-Net can be viewed as a state in the Markov model.

The current U-Net depends on a fixed number of preceding nearby U-Nets, instead of
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preceding either only one or all U-Nets. In this way, the long-range connections are

cut off. Figure 5.3 illustrates the couplings of three different orders. The shortcut

connections exist for the U-Net semantic blocks and U-Net inputs. We differentiate

them with the red and blue colors in Figure 5.3. We define the coupling order based on

either the red or blue lines. In Figure 5.3, both the red and blue shortcut connections

follow the VOM patterns of order-0, order-1 and order-2.

We could extend the order-K coupling to more general order-K connectivity if

each U-Net is simplified as a unit. Dense connectivity [90] is a special case of order-

K connectivity on the limit of K. For small K, order-K connectivity is much more

parameter efficient. But fewer connections may affect the inference accuracy of very

deep CU-Net. To make CU-Net have both high parameter efficiency and inference

accuracy, we propose to use order-K connectivity in conjunction with intermediate

supervisions. In contrast, DenseNet [90] has only one supervision at the end. Thus, it

cannot effectively take advantage of order-K connectivity.

5.3.4 Iterative Refinement

In order to further improve the parameter efficiency of CU-Net, we consider an iterative

refinement. It uses only half of a CU-Net but may achieve comparable accuracy. In the

iterative refinement, a CU-Net has two forward passes. In the first pass, we concatenate

the inputs of the first and last U-Nets and merge them in a small dense block. More

specifically, if the input features of a U-Net have n channels, concatenating the inputs of

the first and last U-Nets results in 2n channel features. Then we forward them through

4 densely connected Conv3×3 layers. Each layer produces m channel new features.

Then we concatenate all 2n + 4m features and use one Conv1×1 layer to compress

them to n channel features, the modified input. Then the modified input is fed forward

in the CU-Net again. An illustration of the iterative refinement is shown in Figure 5.4.

The iterative refinement may cause the overfitting. We provide two techniques to

avoid this. First, independent batch normalization parameters are learned in the two

iterations. Second, we call the backpropagation separately for each forward pass. Two

different mini-batch images are used to update the two iterations. We forward the first



76

Output

Input

=
Order-K
CU-Net

𝑂#

Order-K
CU-Net

𝑂$

Order-K
CU-Net Input of the 

Last U-Net

Aggregation

Updated Input

Unfold

Initial Input

Batch Norm ReLU Conv1x1:Unit 1

Batch Norm ReLU Conv3x3:Unit 2

Concatenation

Concatenation

Input A
ggregation B

lock

Figure 5.4: Illustration of iterative refinement. The same order-K CU-Net is used twice
in the iterative refinement. In the first iteration, the input of the last U-Net is generated
on the basis of the initial input. Then they are concatenated and further aggregated in
a dense block. The updated input is forwarded through the order-K CU-Net to get the
final output. Given a long CU-Net cascade, the iterative refinement has the potential
to reduce its depth by half and still maintain comparable accuracy.

batch only for the first pass and update the network using the gradient descent. The

second batch is forwarded in two passes and the gradient descent is only applied on the

second pass.

In this iterative pipeline, the CU-Net has two groups of supervisions in the first and

second iterations. Both detection supervision (binary cross entropy loss) and regression

(mean squared error) supervision [83] are already used in landmark detection tasks.

However, there is no investigation of how they compare with each other. To this end,

we try different combinations of detection and regression supervisions for two iterations.

Our comparison could give some guidance for future research.

5.3.5 Quantization of Parameter, Feature and Gradient

Apart from shrinking the parameter number, we also investigate quantizing each pa-

rameter, intermediate feature and gradient. Quantizing the parameters could improve

the efficiency in both training and inference. For a parameter wi in a convolutional

filter W , we could binarize a parameter through the sign function:

q(wi) = sign(clip(wi,−1, 1)), (5.5)
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where clip is a saturation function that clips parameter wi to [-1, 1]. Or we ternarize

wi with a threshold-based function:

q(wi) =


+1, wi > t

0, |wi| ≤ t

−1, wi < −t

, (5.6)

where t ≈ 0.7
n

∑n
i=1 |wi| is a positive threshold. As XNOR-Net [153], we also try to use

a scaling factor α to approximate the real-value weight.

Quantizing the intermediate features and gradients, i.e., the dataflow, could boost

training efficiency by reducing training memory. We follow the WAGE [152]. The

dataflow is quantized to k-bit values by the following linear mapping function:

q(x, k) = clip(σ(k) · round(xσ(k))− 1 + σ(k), 1− σ(k)) (5.7)

where k is the pre-defined bit-width and σ(k) = 1
2k−1 is the unit distance function. In

the following experiments, we explore different combinations of bit-widths to balance

the accuracy and training memory consumption.

5.4 Implementation

In this section, we give the detailed architecture of CU-Net and the implementation

of order-K coupling through the queue data structure. Besides, a memory efficient

implementation for the shortcut connections is also described.

5.4.1 CU-Net Architecture

In the original stacked U-Nets, there is mainly one feature flow going through each U-

Net. The coupled U-Nets still have a main feature flow along the U-Nets cascade. Let

m denote the feature number in the main flow and n represent the generated feature

number at each semantic block of U-Net, i.e. red block in Figure 5.5. The generated

features are forwarded through the shortcut connections.

Before entering a red semantic block, the main feature flow and the shortcut feature

flow are merged by channel-wise concatenation. For each top-down block of the ith(i ≥
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Figure 5.5: Implementation of CU-Net. The left figure shows 2 U-Nets coupled together
through the red dot lines. Each U-Net has its own supervision. For simplicity, we only
show a pair of top-down and bottom-up semantic blocks. The right figure gives the
detailed implementation of a pair of semantic blocks in the second U-Net. Basically, m
features from the former block of current U-Net and n features from the same semantic
block of the preceding U-Net are concatenated and transformed to 4n features by a
conv1x1. A conv3x3 then generates n new features and another conv1x1 compresses
the m + n input and n generated features to m features. The bottom-up block needs
to concatenate the additional m skipped features.

0) U-Net, its inputs contain the m features in the main flow and another n×min(i,K)

features from the shortcut connections of previous K U-Nets, where min(i,K) indicates

the lesser one of the order K and i. They are concatenated channel-wise to m + n ×

min(i,K) features. For each bottom-up block of the ith(i ≥ 0) U-Net, its inputs

include additional m shortcut features from the corresponding top-down blocks. Thus,

its inputs have 2m+ n×min(i,K) features.

Then a 1×1 convolution compresses the input features to 4×n features. A following

3 × 3 convolution produces n new features. Last, the m + n × min(i,K) (top-down

block) or 2m + n × min(i,K) (bottom-up block) input features and the n generated

features are concatenated. Another 1 × 1 convolution compresses them to m output

features, flowing into the next block.

5.4.2 Order-K Coupling Implementation

Order-K coupling describes the connectivity for the whole U-Net. Inside a U-Net, each

semantic block has order-K connectivity. That is, the order-K coupling consists of the
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Figure 5.6: Illustration of memory efficient implementation. It is for the Concat-BN-
ReLU-Conv(1 × 1) in each bottleneck structure. ReLU is not shown since it is an in-
place operation with no additional memory request. The efficient implementation pre-
allocates two fixed memory space to store the concatenated and normalized features of
connected blocks. In contrast, the naive implementation always allocates new memories
for them, causing high memory consumption.

order-K connectivity. Therefore, we only need to implement the order-K connectivity.

A shortcut connection means one feature reuse. In the order-K connectivity, a

semantic block would use the features generated by the same semantic blocks in the

preceding K U-Nets. Thus, for the current U-Net, we need to store the history features

only from the preceding K U-Nets. As the U-Nets are used sequentially one-by-one, a

length-K history sliding window also moves forward.

We use the dynamic queue structure to simulate this process. More specifically, we

assign one queue for the same semantic blocks in all U-Nets. To save the memory, a

queue only stores the references to the features instead of the feature copies. If the

current U-Net index is less than K, we keep appending the feature reference to the

queue rear. Otherwise, we first remove the old reference from the queue front and then

append a new reference to the rear. The feature reference at the front is the least

recent. Therefore, it is removed with the highest priority.

5.4.3 Memory Efficient Implementation

Benefitting from order-K coupling, CU-Net is quite parameter efficient. However, a

naive implementation would prevent one from training very deep CU-Nets because the

concatenation operation produces features detached from its inputs. In other words,
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the concatenated shortcut features require new space. Thus, the shortcut connections

could increase the memory demand.

To reduce the training memory, we follow the efficient implementation [144]. More

specifically, concatenation operations of the same semantic blocks in all U-Nets share

a memory allocation, and their subsequent batch norm operations share another mem-

ory allocation. Suppose a CU-Net includes N U-Nets each of which has L top-down

blocks and L bottom-up blocks. We need to pre-allocate two memory spaces for

each of 2L semantic blocks. For the `th top-down blocks, the concatenated features

[x1
`−1,X

0
` ], · · · , [xN−1

`−1 ,X
N−2
` ] share the same memory space. Similarly, the concate-

nated features [y0
`−1,x

0
` ], [y

1
`−1,x

1
` ,Y

0
` ], · · · , [yN−1

`−1 ,x
N−1
` ,YN−2

` ] in the `th bottom-up

blocks share the same memory space.

In one shared memory allocation, later produced features would overlay the former

features. Thus, the concatenations and their subsequent batch norm operations require

to be re-computed in the backward phase. Figure 5.6 illustrates naive and efficient

implementations.

5.5 Experiments

In this section, we evaluate each component in the proposed method. First, we select

the hyper-parameters and evaluate the intermediate supervisions in the CU-Net. Then

we compare the CU-Net with the single dense U-Net to show its accuracy superiority.

After that, we evaluate the order-K coupling with the intermediate supervisions. Then

we show the order-1 CU-Net is much more parameter efficient than the stacked U-

Nets [1]. We also evaluate the iterative refinement to halve CU-Net parameters and

test the quantization of parameters, intermediate features, and gradients. Finally, we

compare the quantized order-1 CU-Net with state-of-the-art methods in both human

pose estimation and facial landmark localization. Some qualitative results are also

shown in Figure 5.11.

Network. The input resolution is normalized to 256×256. Before the CU-Net,

a Conv7 × 7 filter with stride 2 and a max pooling would produce 128 features with
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resolution 64×64. Hence, the maximum resolution of CU-Net is 64×64. Each block

in CU-Net has a bottleneck structure as shown on the right side of Figure 5.1. At

the beginning of each bottleneck, features from different connections are concatenated

and stored in shared memory. Then the concatenated features are compressed by the

Conv1 × 1 to 4m features. At last, the Conv3 × 3 further produces m new features.

The batch norm and ReLU are used before the convolutions.

Training. We implement the CU-Net using the PyTorch. The CU-Net is trained

by the optimizer RMSprop. When training human pose estimators, the initial learning

rate is 2.5 × 10−4 which is decayed to 5 × 10−5 after 100 epochs. The whole training

takes 200 epochs. The facial landmark localizers are easier to train. Also starting from

2.5×10−4, its learning rate is divided by 5, 2 and 2 at epoch 30, 60 and 90 respectively.

The above settings remain the same for quantized CU-Net. To match the pace of

dataflow, we set the same bit-width for gradients and features. We quantize dataflows

and parameters all over the CU-Net except for the first and last convolutional layers,

since localization is a fine-grained task requiring high precision heatmaps.

Human Pose Datasets. We use two benchmark human pose estimation datasets:

MPII Human Pose [91] and Leeds Sports Pose (LSP) [92]. The MPII is collected

from YouTube videos with a broad range of human activities. It has 25K images and

40K annotated persons, which are split into a training set of 29K and a test set of

11K. Following [76], 3K samples are chosen from the training set as the validation

set. Each person has 16 labeled joints. The LSP dataset contains images from many

sports scenes. Its extended version has 11K training samples and 1K testing samples.

Each person in LSP has 14 labeled joints. Since there are usually multiple people in

one image, we crop around each person and resize the image to 256x256. We also use

scaling (0.75-1.25), rotation (-/+30) and random flip to augment the data.

Facial Landmark Datasets. The experiments of the facial landmark localization

are conducted on the composite of HELEN, AFW, LFPW, and IBUG which are re-

annotated in the 300-W challenge [115]. Each face has 68 landmarks. Following [162]

and [107], we use the training images of HELEN, LFPW and all images of AFW,

3148 images total, as the training set. The testing is done on the common subset
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(testing images of HELEN and LFPW), challenge subset (all images from IBUG) and

their union. We use the provided bounding boxes from the 300-W challenge to crop

faces. The same augmentations of scaling and rotation as in human pose estimation

are applied.

Metric. We use the standard metrics in both human pose estimation and face

alignment. Specifically, Percentage of Correct Keypoints (PCK) is used to evaluate

approaches for human pose estimation. A human joint is correctly detected if the L2

distance between the detected and groundtruth points is within a certain threshold.

The MPII and LSP datasets use 50% of the head segment length and 20% of the L2

distance between the left shoulder and right hip as their thresholds. And the normalized

mean error (NME) is employed to measure localizing facial landmarks. It measures the

normalized L2 distance between the predicted and groundtruth landmarks. Following

the convention of 300-W challenge, we use the inter-ocular distance to normalize mean

error. For network quantization, we propose the balance index to balance accuracy and

efficiency.

5.5.1 Hyper-Parameter Selection

There are two important hyper-parameters in designing the CU-Net. One is the feature

number m in the main feature stream. In the experiments, m remains the same when

the feature map resolution changes. The other hyper-parameter is the generated feature

number n in a block of U-Net. We have tried 6 combinations of m and n in 2 coupled

U-Nets. Table 5.1 gives the PCKhs on the MPII validation set. Besides, we choose 4

from the 6 settings and show how their validation PCKhs change during the training

process in Figure 5.7.

In Table 5.1, the smallest m and n are 64 and 16. We set the increments 64 and

8 for m and n. We can observe how accuracy (PCKh) and parameter number change

along with the two hyper-parameters. First, when m and n grow, the accuracy increase

slows down from left to right (2.6%, 1.4%, 0.4%, 0.3% and 0.3%). Similar phenomena

could be observed in Figure 5.7. Training is more stable when m and n become larger

according to the curves in Figure 5.7. In contrast to accuracy, parameter number
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Figure 5.7: Validation PCKh curves of 2 coupled U-Nets(CU-Net-2) under different
hyper-parameters m and n. The converged curve reaches higher for larger m and n.
But the gap between adjacent curves becomes smaller. m = 128 and n = 32 is a
good trade-off of accuracy and efficiency. Besides, Larger m and n also make the curve
smoother.

Table 5.1: Comparison of different hyper-parameters m and n measured by the param-
eter number and the PCKh on the MPII validation set. We use 2 coupled U-Nets(CU-
Net-2). The PCKh increase becomes less from the left to the right while the parameter
number growly consistently. A good trade-off between the PCKh and parameter num-
ber is m=128 and n=32.

m 64 128 128 128 192 192

n 16 16 24 32 24 32

# Parameters 0.5M 1.0M 1.4M 1.9M 2.4M 2.9M

PCKh@0.5 (%) 81.6 84.2 85.6 86.0 86.3 86.6

grows consistently (0.5M, 0.4M, 0.5M, 0.5M and 0.5M), along with increasing m and n.

Through balancing the accuracy and parameter number, we choose m=128 and n=32.

We fix this setting in the following experiments.

5.5.2 Evaluation of Intermediate Supervisions

Generally, the supervision of a CU-Net is the supervision of its last U-Net. Since a

CU-Net contains several U-Nets, we consider adding supervisions for preceding U-Nets.

More specifically, we only add the supervision at the end of a U-Net. Fortunately, the

coupling connections do not prevent us from doing this. Note that if the supervision

number is smaller than the U-Net number, we distribute the supervisions as uniformly
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Table 5.2: PCKhs of the CU-Net with varied intermediate supervisions on the MPII
validation set. CU-Net-2 denotes a CU-Net with 2 U-Nets. The intermediate supervi-
sions lower the PCKh of CU-Net-2. However, it improves the PCKh of deeper networks
CU-Net-4 and CU-Net-8. Deeper CU-Net requires more intermediate supervisions to
get the highest PCKh. But full intermediate supervisions are not optimal.

.
CU-Net-2 CU-Net-4 CU-Net-8

# Supervisions 1 2 1 2 3 4 1 2 4 8
PCKh@0.5 (%) 86.0 85.8 87.6 88.1 88.0 87.8 88.6 89.3 89.5 89.0

as possible. For example, if 2 supervisions exist in 4 coupled U-Nets, they are at the

end of the second and fourth U-Nets.

Table 5.2 gives the PCKh comparison of CU-Net with different numbers of supervi-

sions. For CU-Net-2, adding supervision for the first U-Net makes the validation PCKh

drop by 0.2%. The coupling connections already strengthen the gradient propagation.

The additional supervision makes the gradients too strong, leading to a little overfitting.

However, observations are different for more coupled U-Nets. According to Table

5.2, additional supervisions could improve the PCKh of 4 coupled U-Nets (CU-Net-4).

The CU-Net-4 obtains the highest PCKh with 1 additional supervision. Similar re-

sults appear for the CU-Net-8. But 3 additional supervisions help obtain the highest

PCKh. CU-Net-4 and CU-Net-8 are much deeper than the CU-Net-2. Some interme-

diate supervisions could alleviate the vanishing gradient problem, which help CU-Net

get better convergences. The CU-Net-8 is twice deeper than the CU-Net-4, thereby

benefiting from more additional intermediate supervisions.

Both the intermediate supervisions and the coupling connections help train better

CU-Net models. However, to obtain the highest accuracy, their amounts should have

a balance. If one increases, the other needs to decrease. Since the intermediate su-

pervisions require very few extra parameters, we would like to use full intermediate

supervisions. That is, each U-Net in the CU-Net has one supervision. In this way, we

could cut off some coupling connections to further reduce some parameters.
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Figure 5.8: Validation PCKh curves of single dense U-Net and 8 coupled U-Nets (CU-
Net-8) with 1 and 4 supervisions. They have equivalent amounts of parameters. The
CU-Net-8 get higher converged PCKh than the single dense U-Net. The additional
intermediate supervisions bring more PCKh gains. But its curve fluctuates more before
the convergence.

Table 5.3: CU-Net v.s. single dense U-Net on MPII validation set measured by
PCKh(%) and parameter #. The ratio is parameter # divided by the correspond-
ing baselines(stacked 4 and 8 U-Nets). The CU-Net can get higher PCKh than the
dense U-Net given a few more parameters.

Method PCKh # Para. Baseline Ratio

Dense U-Net (8) 88.1 6.1M 25.5M 23.9%
CU-Net-8 89.5 7.9M 25.5M 31.0%

Dense U-Net (4) 87.1 2.9M 12.9M 22.5%
CU-Net-4 88.1 3.9M 12.9M 30.2%

5.5.3 CU-Net v.s. Single Dense U-Net

There are two ways of adding the shortcut connections in the U-Net. One is adding

dense connections in each block of a single U-Net, resulting in the single dense U-Net.

The other is using the coupling connections in stacked U-Nets. Table 5.3 compares the

PCKh and parameter number of CU-Net and single dense U-Net. For a fair comparison,

the single dense U-Net and the CU-Net have the same number of conv3×3 layers. We

add one layer in each dense block of the dense U-Net every time we increase one U-Net

in the CU-Net.

According to Table 5.3, the CU-Net obviously outperforms the dense U-Net by 1.4%

and 1.0% for the 4 and 8 U-Nets. We use the parameter numbers of stacked 4 and 8 U-

Nets as the baselines since the main goal is to reduce the parameters of stacked U-Nets.
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Figure 5.9: Relation of PCKh(%), # parameters and order-K coupling on MPII val-
idation set. The parameter number of CU-Net grows approximately linearly with the
order of coupling. However, the PCKh first increases and then decreases. A small order
1 or 2 would be a good balance for prediction accuracy and parameter efficiency.

Although the CU-Net has a few more parameters than the dense U-Net, the CU-Net

is cost-effective. For example, the dense U-Net (8) and CU-Net-4 both increase 1.0%

over the dense U-Net (4). However, they have 2.1× and 1.3× parameters of the dense

U-Net (4).

We also show the validation PCKh curves of the 8 U-Nets setting in Figure 5.8.

The converged PCKh curves of CU-Net and single dense U-Net have gaps. Besides,

the CU-Net PCKh curve fluctuates more when adding the intermediate supervisions.

Because additional supervisions can make the CU-Net parameters updated with larger

steps in the training.

5.5.4 Evaluation of Order-K Coupling

The order-K coupling couples a U-Net only to its K successors. Each U-Net has its

own independent supervision. In this experiment, we investigate how the PCKh and

convolution parameter number change along with the order value. Figure 5.9 gives the

results from MPII validation set. The left and right figures show results of CU-Net with

8 and 16 U-Nets. It is clear that the convolution parameter number increases as the

order becomes larger. However, the left and right PCKh curves have a similar shape

of first increasing and then decreasing. The order-1 coupling is always better than the
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Table 5.4: Order-1 CU-Net-8 v.s. order-7 CU-Net-8, measured by training and valida-
tion PCKhs(%) on MPII. Order-7 has higher training PCKh in all epochs. However,
its validation PCKh is lower at last. Thus, order-7 with full intermediate supervisions
overfits the training set a little bit.

PCKh on training set

Epoch 1 50 100 150

Order-1 CU-Net-8 20.3 83.2 87.7 91.7
Order-7 CU-Net-8 25.2 84.7 89.3 93.1

PCKh on validation set

Epoch 1 50 100 150

Order-1 CU-Net-8 29.4 82.8 85.7 87.1
Order-7 CU-Net-8 36.6 84.0 85.1 86.7

Table 5.5: Order-1 CU-Net v.s. stacked residual U-Nets on MPII validation set mea-
sured by PCKh(%), parameter number, and inference time. With the same number of
U-Nets, Order-1 CU-Net achieves comparable performance as stacked U-Nets. But it
has only ∼30% parameters. The inference time is reduced by ∼30%, benefiting from
fewer parameters.

Method PCKh # Para. Ratio Time(ms) Ratio

Stacked U-Nets (16) - 50.5M 100% 104.8 100%
CU-Net-16 89.9 15.9M 31.5% 70.8 67.6%

Stacked U-Nets (8) 89.3 25.5M 100% 48.9 100%
CU-Net-8 89.5 7.9M 31.0% 36.1 73.8%

Stacked U-Nets (4) 88.3 12.9M 100% 28.2 100%
CU-Net-4 88.2 3.9M 30.2% 18.9 67.0%

order-0 one.

However, high order may not be a good choice because we already use full interme-

diate supervisions. The balance of coupling and intermediate supervisions is broken for

the high order ones. Too dense coupling make gradients accumulate too much, causing

overfitting. Further evidence of overfitting is shown in Table 5.4. The order-7 coupling

has the higher training PCKh than order-1 in all training epochs, but its validation

PCKh is a little lower in the last training epochs. Thus, we use order-1 coupling with

full intermediate supervisions in the following experiments.

5.5.5 CU-Net v.s. Stacked Residual U-Nets

The CU-Net is proposed to improve the parameter efficiency of stacked U-Nets with the

residual modules. To validate this, we compare the order-1 CU-Net with the stacked
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residual U-Nets [1]. This experiment is done on the MPII validation set. Table 5.5

shows three pairs of comparisons with 4, 8 and 16 U-Nets. The PCKh, convolution

parameter number and inference time are reported. The inference time refers to the

time of forwarding one image under the testing mode. We compute the average inference

time on the MPII validation set. For a fair comparison, we test all the models using

the Torch toolbox and K40 GPU.

In Table 5.5, with the same number of U-Nets, order-1 CU-Net could obtain com-

parable or even better accuracy. More importantly, feature reuse across U-Nets make

each U-Net in CU-Net light-weighted: parameter number and inference time of stacked

residual U-Nets decrease by ∼70% and ∼30%, respectively. In addition, the high pa-

rameter efficiency makes it possible to train order-1 CU-Net-16 in a 12G GPU with

batch size 16.

5.5.6 Evaluation of Iterative Refinement

Iterative refinement is designed to reduce the parameters of CU-Net by one half. We

validate the design in two steps. First, we verify that adding an iteration on a CU-

Net could improve the accuracy. The experiment is done on the 300-W dataset using

order-1 CU-Net-4. Results are shown in Table 5.6. For both detection and regression

supervisions, adding an iteration could lower the localization errors, demonstrating the

effectiveness of iterative refinement. Meanwhile, the model parameters only increase

0.2M. Besides, the regression supervision outperforms the detection one no matter in the

iterative or non-iterative setting, making it a better choice for the landmark localization.

The regression and detection supervisions have different groundtruths. The re-

gression supervision draws a gaussian circle centered at a keypoint coordinate. The

detection supervision needs to strictly divide a groundtruth heatmap into two areas:

keypoint area and non-keypoint area. In practice, it is hard to specify an accurate area

for a keypoint. The Gaussian groundtruth can alleviate this concern by decreasing the

confidence scores gradually. We think the advantage of regression supervision comes

from its more reasonable groundtruth heatmaps.
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Table 5.6: NME(%) on 300-W using order-1 CU-Net-4 with iterative refinement, detec-
tion, and regression supervisions. Iterative refinement can lower errors and regression
supervision outperforms detection supervision.

Method
Easy Hard Full #

Subset Subset Set Para.

Detection only 3.63 5.60 4.01 3.9M
Regression only 2.91 5.12 3.34 3.9M

Detection Detection 3.52 5.59 3.93 4.1M
Detection Regression 2.95 5.12 3.37 4.1M
Regression Regression 2.87 4.97 3.28 4.1M

Table 5.7: Iterative order-1 CU-Net-4 v.s. non-iterative order-1 CU-Net-8 on 300-W
measured by NME(%). Iterative CU-Net-4, with few additional parameters on CU-Net-
4, achieves comparable performance as CU-Net-8. Thus, the iterative refinement has
the potential to halve parameters of CU-Net but still maintain comparable performance.

Method
Easy Hard Full #

Subset Subset Set Parameters

CU-Net-4 2.91 5.12 3.34 3.9M
Iter. CU-Net-4 2.87 4.97 3.28 4.1M
CU-Net-8 2.82 5.07 3.26 7.9M

Second, we prove an iterative CU-Net could get comparable accuracy as a double-

length CU-Net. More specifically, we compare iterative order-1 CU-Net-4 with order-1

CU-Net-8. Table 5.7 gives the comparison. We can find that the iterative CU-Net-

4 could obtain comparable NME as CU-Net-8. However, the CU-Net-8 has double

parameters of CU-Net-4, whereas the iterative CU-Net-4 has only 0.2M additional

parameters.

5.5.7 Evaluation of Parameter and Dataflow Quantization

In this experiment, we study quantizing the parameters and dataflow, i.e., intermediate

features and gradients. Through network quantization, high precision parameters and

operations can be efficiently represented by a few discrete values. We try a series of

bit-widths to find appropriate choices. We use the order-1 CU-Net-4 on the 300-W

dataset and the order-1 CU-Net-2 on the MPII validation set. The results are shown in

Tables 5.8, 5.9 and 5.10. BW and TW represent binarized weight and ternarized weight

respectively. The suffixes α and QIG denote the float scaling factor α and quantized
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Table 5.8: Performance of different combinations of bit-width values on the 300-W
dataset measured by NME(%). All quantized networks are based on order-1 CU-Net-
4. BW and TW are short for binarized and ternarized parameters, α represents float
scaling factor, QFG is short for quantized intermediate features and gradients. BitF ,
BitP , BitG represents the bit-width of features, parameters, gradients respectively.
Training memory and model size are represented by their compression ratios to those
of the original CU-Net-4. The balance index is calculated by Equation 5.8. The CU-
Net-4-BW-α gets the lowest error. Considering together accuracy, training memory
and model size, the CU-Net-4-BW-α(818) has the smallest balance index.

Method
BitI BitW BitG NME(%) NME(%) NME(%) Training Model Balance

Full set Easy set Hard set Memory Size Index

CU-Net-4 32 32 32 3.38 2.95 5.13 1.00 1.00 11.4

BW-QIG 6 1 6 5.93 5.10 9.34 0.17 0.03 0.18
BW-QIG 8 1 8 4.30 3.67 6.86 0.25 0.03 0.14
BW-α-QIG 8 1 8 4.47 3.75 7.40 0.25 0.03 0.15
BW 32 1 32 3.75 3.20 5.99 1.00 0.03 0.42
BW-α 32 1 32 3.58 3.12 5.45 1.00 0.03 0.38
TW 32 2 32 3.73 3.21 5.85 1.00 0.06 0.83
TW-QIG 6 2 6 4.27 3.70 6.59 0.17 0.06 0.19
TW-QIG 8 2 8 4.13 3.55 6.50 0.25 0.06 0.26

intermediate features and gradients.

Binary Parameters. According to Tables 5.8 and 5.9, the binarized parameters

with the scaling factor α achieves PCKh 85.5% in human pose estimation and NME

3.58% in facial landmark localization. They are very close to the original 86.1% and

3.38%, without any quantization. Even without the scaling factor α, the decrease of

PCKh and increase of NME are small. This indicates binarizing the CU-Net parameters

does not affect much its localization accuracy. However, the model size is substantially

decreased by 32×.

Ternary Parameters. Ternary representation has one more bit than the binary

one. Its stronger representation power could improve the accuracy of CU-Net. Based

on Table 5.8, ternary parameters reduces the NME of binary parameters by 0.02%.

With the quantization of features and gradients, we can observe more obvious NME

decreases 1.66% and 0.17%. Consistent changes on the PCKh can be found in Table

5.9.
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Table 5.9: Performance of different quantization configurations for order-1 CU-Net-2 on
the MPII validation dataset measured by PCKh(%), training memory, model size, and
balance index. The CU-Net-2-BW-α gets the highest accuracy. Considering together
accuracy, training memory and model size, the CU-Net-2-BW-α(818) has the smallest
balance index.

Method
BitF BitP BitG PCKh Training Model Balance

(%) Memory Size Index

CU-Net-2 32 32 32 86.1 1.00 1.00 193

BW-QFG 6 1 6 62.7 0.17 0.03 7.10
BW-QFG 8 1 8 81.5 0.25 0.03 2.57
BW 32 1 32 84.7 1.00 0.03 6.84
BW-α 32 1 32 85.5 1.00 0.03 7.97
TW 32 2 32 84.9 1.00 0.06 14.0
TW-QFG 6 2 6 74.0 0.17 0.06 6.90
TW-QFG 8 2 8 81.7 0.25 0.06 5.02

Features and Gradients Quantization. Quantizing the intermediate features

and gradients of CU-Net could substantially reduce training memory, improving train-

ing efficiency. We try 6-bit and 8-bit with either the binary or ternary parameters.

The 8-bit quantization is obviously better than the 6-bits one, especially for the binary

parameters. The 8-bit quantization with binary parameters decreases the PCKh by

4.6% and increases the NME by 0.92%. However, the training memory is significantly

reduced (75%). For mobile devices with limited computational resources, slightly per-

formance drop is tolerable provided the large efficiency enhancement.

Balancing Accuracy and Quantization. The quantization of parameters and

dataflow could significantly increase the testing and training efficiency but at the cost

of some accuracy decrease. Thus, we need a trade-off between them. To this end,

we propose the balance index (BI) in Equation 5.8 to balance the quantization and

accuracy.

BI = E2 · TM ·MS (5.8)

where TM and MS are short for training memory and model size. Instead of using their

raw values, we use their ratios to those without any quantization. E denotes the error

in the landmark localization. We set E as the NME for facial landmark localization
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Table 5.10: Detailed PCKh comparison of different quantization configurations for
order-1 CU-Net-2 on MPII validation sets. The parameter binarization or ternarization
have small influence on the accuracy of individual human joints. But the quantization
of intermediate features and gradients lowers the accuracy of challenging human joints:
elbow, wrist, ankle and knee.

Method Head Sho. Elb. Wri. Hip Knee Ank. Mean

CU-Net-2 96.1 94.5 86.7 81.1 86.9 81.0 76.3 86.1

CU-Net-2+BW-α 95.9 94.4 86.6 80.3 86.5 79.5 75.2 85.5
CU-Net-2+BW 96.3 94.2 85.2 79.1 85.8 78.2 74.3 84.7
CU-Net-2+BW-QIG(818) 95.6 92.4 82.0 74.7 82.6 74.8 68.6 81.5
CU-Net-2+BW-QIG(616) 87.7 77.4 61.8 49.8 64.2 50.8 47.2 62.7
CU-Net-2+TW 96.2 93.9 85.7 79.6 85.8 79.1 74.1 84.9
CU-Net-2+TW-QIG(828) 95.4 92.6 82.1 75.2 83.0 74.9 68.7 81.7
CU-Net-2+TW-QIG(626) 94.2 87.2 73.4 65.1 76.0 64.7 57.6 74.0

and 1-PCKh for human pose estimation. The E2 is calculated in the above formula to

emphasize the prior importance of accuracy. Smaller BI indicates better balance.

In Tables 5.8 and 5.9, BW-α-QIG(818) gets the smallest BI. Its NME increases by

only 0.92% and its PCKh decreases by only 4.6%. However, it reduces training memory

4× and model size 32×, which has the best balance for accuracy and efficiency.

Quantization Impact on Individual Human Joints. In addition to the average

PCKhs In Table 5.9, we also give the PCKhs of individual human joints under various

quantization settings in Table 5.10. The parameter binarization does not affect much

the joint accuracy. However, the quantization of intermediate features and gradients

causes obvious decreases of challenging joints like wrist, knee, and ankle. This means

that, although the parameter quantization does not lose much useful information, the

parameter update still requires high precision representations. A possible solution is to

explore better input and gradient quantization strategies.

5.5.8 Evaluation of Memory Efficient Implementation

Memory-efficient implementation makes it possible to train very deep CU-Net. Figure

5.10 shows the training memory consumption of both naive and memory-efficient im-

plementations of order-1 CU-Net. The linear growths of training memory along with

number of U-Nets is because of the fixed order coupling. But the memory growth of
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Figure 5.10: Naive implementation vs. memory-efficient implementation. The order-1
coupling, batch size 16 and a 12GB GPU are used. The naive implementation can only
support 9 U-Nets at most. In contrast, the memory-efficient implementation allows
training 16 U-Nets, which nearly doubles the depth of CU-Net.

Table 5.11: Comparison of convolution parameter number (Million), model size
(Megabyte) and inference time (millisecond) with state-of-the-art methods. CU-Net-
8 can significantly reduce parameter number ∼69%-∼86% and inference time ∼26%-
∼86%.

Method
Yang Wei Chu Newell Order-1 Order-1

et al.[87] et al.[82] et al.[86] et al.[1] CU-Net-8 CU-Net-16

# Parameters (M) 28.0 29.7 58.1 25.5 7.9 15.9
Inference Time (ms) 137.7 112.4 251.0 48.9 36.1 70.8

efficient implementation is much slower than that of the naive one. With batch size 16,

we could train the CU-Net-16 in one 12GB GPU. Under the same setting, the naive

implementation could support only CU-Net-9.

5.5.9 Comparison with State-of-the-art Methods

We compare the CU-Net with state-of-the-art approaches for both human pose estima-

tion and facial landmark localization. Both the efficiency and accuracy are compared.

Efficiency. Table 5.11 compares the CU-Net with state-of-the-art methods in terms

of efficiency. The CU-Net-8 has only ∼14%-∼31% parameter number of them. Fewer

parameters can usually accelerate the inference speed. According to Table 5.11, the

CU-Net-8 uses ∼74% time of Newell et. al [1] (stacked 8 U-Nets). Yang et. al [87] and

Chu et. al [86] use more sophisticated modules and graphical models based on Newell

et. al [1], resulting in much higher time cost. Wei et. al [82] also has high time expense
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Table 5.12: NME(%) comparison with state-of-the-art facial landmark localization
methods on 300-W dataset. The CU-Net-BW-α refers to the CU-Net with binarized pa-
rameters and scaling factor α. It obtains comparable error with state-of-the-art method
[1]. But it has ∼50× smaller model size.

Method
CFAN Deep CFSS TCDCN DDN MDM TSR HGs(4) Order-1 Order-1 CU-
[158] Reg [163] [162] [106] [164] [165] [107] [1] CU-Net-8 Net-8-BW-α

Easy subset 5.50 4.51 4.73 4.80 - 4.83 4.36 2.90 2.82 3.00
Hard subset 16.78 13.80 9.98 8.60 - 10.14 7.56 5.15 5.07 5.36
Full set 7.69 6.31 5.76 5.54 5.59 5.88 4.99 3.35 3.26 3.46

mainly due to its larger input resolution and convolution kernel size. The CU-Net-16

consumes more time than Newell et. al [1], albeit its fewer parameters. Because the

CU-Net-16 has double depth of Newell et. al [1]. However, the CU-Net-16 uses only

∼28%-∼63% time of other more complex methods.

Moreover, network quantization can also improve model efficiency. For example, the

parameter binarization can reduce the model size by ∼32×. The parameter binariza-

tion and feature quantization can bring ∼2×-∼58× speedup according to the theoretical

analysis of [153]. With the binarized parameters, the convolutions only have the addi-

tion and subtraction without the multiplication operations, resulting in ∼2× speedup.

If the features are also binarized, it can achieve ∼58× speedup with the bit-counting

operations [149]. Generally, measuring the inference time of the quantized networks re-

quires special software and hardware supports. We only provide a theoretical analysis

here due to our resource limitations.

Accuracy. Tables 5.12, 5.13 and 5.14 show accuracy comparisons on both facial

landmark localization and human pose estimation. Despite its high efficiency, the CU-

Net can still achieve obtain comparable state-of-the-art accuracy on the benchmark

300-W, MPII and LSP test sets.

5.6 Summary

We presented the efficient CU-Net design that connects blocks with the same semantic

meanings in stacked U-Nets. Order-K coupling and iterative refinement are introduced
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Table 5.13: PCKh(%) comparison on MPII test sets. The CU-Net-BW-α refers to the
CU-Net with binary parameters and scaling factor α. The order-1 CU-Net-16-BW-α
could achieve comparable accuracy. More importantly, it has ∼2% model size compared
with other state-of-the-art approaches.

Method Head Sho. Elb. Wri. Hip Knee Ank. Mean

Pishchulin et al. [95] 74.3 49.0 40.8 34.1 36.5 34.4 35.2 44.1
Tompson et al. [84] 95.8 90.3 80.5 74.3 77.6 69.7 62.8 79.6
Carreira et al. [75] 95.7 91.7 81.7 72.4 82.8 73.2 66.4 81.3
Tompson et al. [76] 96.1 91.9 83.9 77.8 80.9 72.3 64.8 82.0
Hu et al. [77] 95.0 91.6 83.0 76.6 81.9 74.5 69.5 82.4
Pishchulin et al. [78] 94.1 90.2 83.4 77.3 82.6 75.7 68.6 82.4
Lifshitz et al. [79] 97.8 93.3 85.7 80.4 85.3 76.6 70.2 85.0
Gkioxary et al. [80] 96.2 93.1 86.7 82.1 85.2 81.4 74.1 86.1
Rafi et al. [96] 97.2 93.9 86.4 81.3 86.8 80.6 73.4 86.3
Belagiannis et al. [97] 97.7 95.0 88.2 83.0 87.9 82.6 78.4 88.1
Insafutdinov et al. [81] 96.8 95.2 89.3 84.4 88.4 83.4 78.0 88.5
Wei et al. [82] 97.8 95.0 88.7 84.0 88.4 82.8 79.4 88.5
Bulat et al. [83] 97.9 95.1 89.9 85.3 89.4 85.7 81.7 89.7
Newell et al. [1] 98.2 96.3 91.2 87.1 90.1 87.4 83.6 90.9
Chu et al. [86] 98.5 96.3 91.9 88.1 90.6 88.0 85.0 91.5

Order-1 CU-Net-8 97.4 96.2 91.8 87.3 90.0 87.0 83.3 90.8
Order-1 CU-Net-16 97.4 96.4 92.1 87.7 90.2 87.7 84.3 91.2
+BW+α 97.6 96.4 91.7 87.3 90.4 87.3 83.8 91.0

to further improve the parameter efficiency. We also study the quantization of parame-

ters, intermediate features and gradients. Experiments on both human pose estimation

and facical landmark localization show that the CU-Net could achieve comparable state-

of-the-art accuracy but with only ∼30% parameters, ∼70% inference time, ∼2% model

size and ∼25% training memory.
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Table 5.14: PCK(%) comparison on LSP test set. The CU-Net-BW-α refers to the
CU-Net with binary parameters and scaling factor α. The order-1 CU-Net-16-BW-α
could obtain comparable state-of-the-art accuracy. But it has ∼50× smaller model size
than other state-of-the-art methods.

Method Head Sho. Elb. Wri. Hip Knee Ank. Mean

Belagiannis et al. [97] 95.2 89.0 81.5 77.0 83.7 87.0 82.8 85.2
Lifshitz et al. [79] 96.8 89.0 82.7 79.1 90.9 86.0 82.5 86.7
Pishchulin et al.[78] 97.0 91.0 83.8 78.1 91.0 86.7 82.0 87.1
Insafutdinov et al. [81] 97.4 92.7 87.5 84.4 91.5 89.9 87.2 90.1
Wei et al. [82] 97.8 92.5 87.0 83.9 91.5 90.8 89.9 90.5
Bulat et al. [83] 97.2 92.1 88.1 85.2 92.2 91.4 88.7 90.7
Chu et al. [86] 98.1 93.7 89.3 86.9 93.4 94.0 92.5 92.6
Newell et al. [1] 98.2 94.0 91.2 87.2 93.5 94.5 92.6 93.0
Yang et al. [87] 98.3 94.5 92.2 88.9 94.4 95.0 93.7 93.9

Order-1 CU-Net-8 97.1 94.7 91.6 89.0 93.7 94.2 93.7 93.4
Order-1 CU-Net-16 97.5 95.0 92.5 90.1 93.7 95.2 94.2 94.0
+BW+α 97.8 94.3 91.8 89.3 93.1 94.9 94.4 93.6

Figure 5.11: Qualitative results of human pose estimation and facial landmark local-
ization. The quantized CU-Net could handle a wide range of human poses, even with
occlusions. It could also detect accurate facial landmarks with various head poses and
expressions.
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Chapter 6

SelfNorm and CrossNorm for Out-of-Distribution

Robustness

6.1 Introduction

Normalization methods, e.g., Batch Normalization [159], Layer Normalization [166], and

Instance Normalization [167], play a pivotal role in training deep neural networks. These

methods generally try to make training more stable and convergence faster, assuming

that training and test data come from the same distribution. However, few studies

investigate normalization in improving OOD generalization in real-world scenarios. For

example, image corruptions [11], e.g., snow and blur, can cause test data out of the clean

training distribution. Moreover, training on synthetic data [44] to generalize to realistic

data can significantly reduce the annotation burden. This work aims to encourage the

interaction between normalization and OOD generalization. Specifically, we manipulate

feature mean and variance to make models generalize better to out-of-distribution data.

Our inspiration comes from the observation that channel-wise mean and variance of

feature maps carry some style information. For instance, exchanging the RGB means

and variances between two instances can transfer style between them, as shown in

Figure 6.1 (a). For many tasks such as CIFAR classification [24], the style encoded

by channel-wise mean and variance is usually less critical in recognizing the object

than other information such as object shape. Therefore, we propose CrossNorm which

swaps channel-wise mean and variance of feature maps. CrossNorm can augment styles

in training, making the model more robust to appearance changes.

Furthermore, given one image in different styles, we can reduce the style discrepancy

when adjusting the RGB means and variances properly, as illustrated in Figure 6.1 (b).

Intuitively, the style recalibration can reduce appearance variance, which may be useful
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(a) Switch RGB mean and variance (b) Recalibrate RGB mean and variance

Figure 6.1: CIFAR examples of exchanging (Left) and adjusting (Right) RGB mean
and variance.

in bridging distribution gaps between training and unforeseen testing data. To this end,

we propose SelfNorm to use attention [168] to adjust channel-wise mean and variance

automatically.

It is interesting to analyze the distinction and connection between CrossNorm and

SelfNorm. At first glance, they take opposite actions (style augmentation v.s. style

reduction). Even so, they use the same tool: channel-wise statistics and pursue the same

goal: OOD robustness. Additionally, CrossNorm can increase the capacity of SelfNorm

by style augmentation. SelfNorm, with the help from CrossNorm, can generalize better

to OOD data.

Concept and Intuition. The style concept here refers to a family of weak cues

associated with the semantic content of interest. For instance, the image style in object

recognition can include many appearance-related factors such as color, contrast, and

brightness. Style sometimes may help in decision-making, but the model should rely

more on more vital content cues to become robust. To reduce its bias rather than discard

it, we use CrossNorm with probability in training. The insight beneath CrossNorm is

that each instance, or feature map, has its unique style. Further, style cues are not

equally important. For example, the yellow color seems more useful than other style

cues in recognizing orange. In light of this, the intuition behind SelfNorm is that

attention may help emphasize essential styles and suppress trivial ones.

Assumption. Although we use the channel-wise mean and variance to modify

styles, we do not assume that they are sufficient to represent all style cues. Better style

representations are available with more complex statistics [169] or even style transfer

models [170, 171]. We choose the first and second-order statistics mainly because they

are simple, efficient to compute, and can connect normalization to out-of-distribution



99

generalization. In summary, the key contributions are:

• We propose SelfNorm and CrossNorm, two simple yet effective normalization

techniques to enhance out-of-distribution generalization.

• SelfNorm and CrossNorm form a unity of opposites in using feature mean and

variance for model robustness.

• They are domain agnostic and can advance state-of-the-art robustness perfor-

mance for different domains (vision or language), settings (fully or semi-supervised),

and tasks (classification and segmentation).

6.2 Related Work

Out-of-distribution generalization. Although the current deep models continue to

break records on benchmark IID datasets, they still struggle to generalize to OOD data

caused by common corruptions [11] and dataset gaps [44]. To improve the robustness

against corruption, Stylized-ImageNet [172] conducts style augmentation to reduce the

texture bias of CNNs. Compared to it, CrossNorm has two main advantages. First,

CrossNorm is efficient as it transfer styles directly in the feature space of the target

CNNs. However, Stylized-ImageNet relies on external style datasets and pre-trained

style transfer models. Second, CrossNorm can advance the performance on both clean

and corrupted data, while Stylized-ImageNet hurts clean generalization. In contrast to

the consistent styles within one dataset, the external ones can result in massive distribu-

tion shifts. Recently, AugMix [173] trains robust models by mixing multiple augmented

images based on random image primitives or image-to-image networks [174]. Adver-

sarial noises training (ANT) [175] can also improve the robustness against corruption.

CrossNorm is domain agnostic and orthogonal to AugMix and ANT, making it possible

for their joint application. Moreover, unsupervised domain adaptation is also useful for

corruption robustness in some situations [176].

Besides common corruptions, generalization with distribution gaps [44] across dif-

ferent datasets also suffers from problems. IBN [177] mixes instance and batch nor-

malization to shrink the domain distances. SelfNorm can bridge the domain gaps by
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style recalibration. Domain randomization [178] uses style augmentation for domain

generalization on segmentation datasets. It suffers from the same issues of Stylized-

ImageNet as it also uses pre-trained style transfer models and additional style datasets.

By contrast, CrossNorm is more efficient and balances better between the source and

target domains’ performance. Beyond the vision field, many natural language pro-

cessing (NLP) applications also face the out-of-distribution generalization challenges

[179]. Benefiting from the domain-agnostic property, SelfNorm and CrossNorm can

also improve model robustness in the NLP area.

Normalization and attention. Batch Normalization [159] is a milestone tech-

nique that inspires many following normalization methods such as Instance Normaliza-

tion [167], Layer Normalization [166], and Group Normalization [180]. Recently, some

works integrate attention [168] into feature normalization. Mode normalization [181]

and attentive normalization [182] use attention to weigh a mixture of batch normal-

izations. Examplar normalization [183] learns to combine multi-type normalizations

by attention. By contrast, SelfNorm uses attention with only instance normalization.

More importantly, unlike previous normalization approaches, SelfNorm and CrossNorm

aim to improve out-of-distribution generalization. In addition, SelfNorm is different

from SE [168], though they use similar attention. First, SelfNorm learns to recalibrate

channel-wise mean and variance instead of channel features in SE. Second, SE models

the interdependency between channels, while SelfNorm deals with each channel inde-

pendently. Also, a SelfNorm unit, with O(n), is more lightweight than a SE one, of

O(n2), where n denotes the channel number. The difference analysis here also applies

to the Channel Attention [184], similar to SE.

Data augmentation. Data augmentation is an important tool in training deep

models. Current popular data augmentation techniques are either label-preserving

[9, 8, 7] or label-perturbing [119, 185]. The label-preserving methods usually rely on

domain-specific image primitives, e.g., rotation and color, making them inflexible for

tasks beyond the vision domain. The label-perturbing techniques mainly work for clas-

sification and may have trouble in broader applications, e.g., segmentation. CrossNorm,

as a data augmentation method, is readily applicable to diverse domains (vision and
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Figure 6.2: SelfNorm (left) and CrossNorm (right). SelfNorm uses attention to recal-
ibrate the mean and variance of a feature map, while CrossNorm swaps the statistics
between a pair of feature maps.
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Figure 6.3: Flowchart for SelfNorm and CrossNorm. SelfNorm learns in training but
functions in testing, while CrossNorm works in training.

language) and tasks (classification and segmentation). The goal of CrossNorm is to

boost out-of-distribution generalization, which is also different from many former data

augmentation methods.

6.3 SelfNorm and CrossNorm

Background. Technically, SelfNorm and CrossNorm share the same origin: instance

normalization [167]. In 2D CNNs, each instance has C feature maps of size H ×W .

Given A ∈ RH×W , instance normalization first normalizes the feature map and then

conducts affine transformation:

γ
A− µA
σA

+ β, (6.1)

where µA and σA are the mean and standard deviation; γ and β denotes learnable

affine parameters. As shown in Figure 6.1 and also pointed out by the style transfer

practices [186, 170, 171], µA and σA can encode some style information.

SelfNorm. SelfNorm replaces β and γ with recalibrated mean µ′A = f(µA, σA)µA

and standard deviation σ′A = g(µA, σA)σA, as illustrated in Figure 6.2, where f and g
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are the attention functions. The adjusted channel becomes:

σ′A
A− µA
σA

+ µ′A. (6.2)

As f and g learn to scale µA and σA based on themselves, A kind of normalizes itself

by self-gating, hence SelfNorm. SelfNorm is inspired by the fact that attention can

help the model emphasize informative features and suppress less useful ones. In terms

of recalibrating µA and σA, SelfNorm expects to highlight the discriminative styles

and understate trivial ones. In practice, we use a fully connected (FC) network to wrap

attention functions f and g. The architecture is efficient as its input and output are both

two scalars. Since each channel has its independent statistics, SelfNorm recalibrates

each channel separately using C lightweight FC networks, hence complexity O(C).

CrossNorm. CrossNorm exchanges µA and σA of channel A with µB and σB of

channel B, i.e., changing β and γ to each other’s µ and σ, shown in Figure 6.2:

σB
A− µA
σA

+ µB σA
B− µB
σB

+ µA, (6.3)

where A and B seem to normalize each other, hence CrossNorm. CrossNorm is moti-

vated by the key observation that a target dataset, such as a classification dataset, has

rich, though subtle, styles. Specifically, each instance, or even every channel, has its

unique style. Exchanging the statistics can perform efficient style augmentation, reduc-

ing the style bias in decision-making. In mini-batch training, we turn on CrossNorm

with some probability.

Unity of Opposites. SelfNorm and CrossNorm both start from instance nor-

malization but head in opposite directions. SelfNorm recalibrates statistics to focus on

only necessary styles, reducing standardized features (zero-mean and unit-variance) and

statistics mixtures’ diversity. In contrast, CrossNorm transfers statistics between chan-

nels, enriching the combinations of standardized features and statistics. They perform

opposite operations mainly because they target different stages. SelfNorm dedicates to

style recalibration during testing, while CrossNorm functions only in training. Note

that SelfNorm is a learnable module, requiring training to work. Figure 6.3 shows the

flowchart of SelfNorm and CrossNorm. Additionally, SelfNorm helps make the model
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less sensitive to appearance changes, while CrossNorm aims to lessen the model’s style

bias. Despite these differences, they both can facilitate out-of-distribution generaliza-

tion. Further, CrossNorm can boost the performance of SelfNorm because its style

augmentation can prevent SelfNorm from overfitting to specific styles. Overall, the two

seemingly opposed methods form a unity of using normalization statistics to advance

out-of-distribution robustness.

6.3.1 CrossNorm Variants

The core idea of CrossNorm is to swap mean and variance between channel features.

For 2D CNNs, given one instance X ∈ RC×H×W , CrossNorm can exchange statistics

between its C channels:

{(A,B) ∈ (Xi,:,:,Xj,:,:) | i 6= j, 0 < i, j < C} , (6.4)

where A and B refer to the channel pair in Equation 6.3. If two instances X,Y ∈

RC×H×W given, CrossNorm can swap statistics between their corresponding channels,

i.e., A and B become:

{(A,B) ∈ (Xi,:,:,Yi,:,:) | 0 < i < C} . (6.5)

Compared with one-instance CrossNorm, the two-instance one tends to consider instance-

level style instead of channel-level.

Moreover, distinct spatial regions probably have different mean and variance statis-

tics. To promote the style diversity, we propose to crop regions for CrossNorm:

{(A,B) ∈ (crop(A), crop(B)) | rcrop ≥ t} (6.6)

where the crop function returns a square with area ratio r no less than a threshold

t(0 < t ≤ 1). The whole channel is a special case in cropping. There are three cropping

choices: content only, style only, and both. For content cropping, we crop A only when

we use its standardized feature map. In other words, no cropping applies to A when

it provides its statistics to B. Cropping both means cropping A and B no matter we

employ their standardized feature map or statistics. The cropping strategy can produce

diverse styles for both the two-instance and one-instance CrossNorms.
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6.3.2 Modular Design

SelfNorm and CrossNorm can naturally work in the feature space, making it flexible

to plug them into many network locations. Two questions come: how many units are

necessary and where to place them? To simplify the questions, we turn to the modular

design by embedding them into a network cell. For example, in ResNet [10], we put

them into a residual module. The search space significantly shrinks for the limited

positions in a residual module. We will investigate the position choices in experiments.

The modular design allows using multiple SelfNorms and CrossNorms in a network.

We will show in the ablation study that accumulated style recalibrations are helpful for

model robustness. Since excessive style augmentations are harmful [172], we randomly

turn on only some CrossNorms in a forward process. Random sampling encourages

diverse augmentations even though the same data pass multiple times.

6.4 Experiments

We evaluate SelfNorm (SN) and CrossNorm (CN) on out-of-distribution data that arise

from image corruptions and dataset differences. The evaluation uses not only supervised

and semi-supervised settings but also image classification and segmentation tasks. In

addition to the vision tasks, we also apply them to a NLP task. Due to limited space,

we leave all ablation studies in the appendix.

Image classification datasets. We use benchmark datasets: CIFAR-10 [24],

CIFAR-100, and ImageNet[26]. To evaluate the model robustness against corruption,

we use the datasets: CIFAR-10-C, CIFAR-100-C, and ImageNet-C [11]. These datasets

are the original test data poisoned by 15 everyday image corruptions from 4 general

types: noise, blur, weather, and digital. Each noise has 5 intensity levels when injected

into images.

Image segmentation datasets. We further validate our method using a domain

generalization setting, where the models are trained without any target domain data

and tested on the unseen domain. We use the synthetic dataset Grand Theft Auto V

(GTA5) [44] as the source domain and generalize to the real-world dataset Cityscapes
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[28]. GTA5 has the training, validation, and test divisions of 12,403, 6,382, and 6,181,

more than those of 2,975, 500, and 1,525 from Cityscapes. Despite the differences,

their pixel categories are compatible with each other, allowing to evaluate models’

generalization capability from one to another.

Sentiment classification datasets. Besides vision tasks, we demonstrate that

our method can also work well on NLP tasks. We use the out-of-distribution (OOD)

generalization setting in binary sentiment classification. The model is trained on IMDb

dataset [187] and is tested on SST-2 testing dataset [188]. The IMDb dataset collects

highly polarized full-length lay movie reviews with 25,000 positive and 25,000 negative

reviews. The SST-2 contains 9613 and 1821 reviews for training and testing, which is

also a binary sentiment classification dataset but instead contains pithy expert movie

reviews.

Metric. For image classification, we use test errors to measure robustness. Given

corruption type c and severity s, let Ecs denote the test error. For CIFAR datasets,

we use the average over 15 corruptions and 5 severities: 1/75
∑15

c=1

∑5
s=1Ec,s. In

contrast, for ImageNet, we normalize the corruption errors by those of AlexNet [117]:

1/15
∑15

c=1(
∑5

s=1E
c
s/

∑5
s=1E

AlexNet
c,s ). The above two metrics follow the convention

[173] and are denoted as mean corruption errors (mCE) whether they are normalized

or not. Different from classification, segmentation use the mean Intersection over Union

(mIoU) over all categories as metric. For sentiment classification, we report accuracy

as the metric.

Hyper-parameters. In the experiments, a SN unit uses one fully connected layer,

followed by Batch Norm and a sigmoid layer. We put CN ahead of SN, and plug them

into every cell in a network, e.g., each residual module in a ResNet. During training, we

turn on only some CNs with probability to avoid excessive data augmentation. Usually,

we conduct a grid search on four combinations of active numbers (1, 2) and probability

(0.25, 0.5). For CN with cropping, we sample the bounding box ratio uniformly and

set the threshold t = 0.1.
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Table 6.1: mCE (%) on CIFAR-10-C and CIFAR-100-C. SNCN obtains lower errors
than most previous methods with different backbones. Albeit some higher errors than
AugMix, it is totally domain agnostic without relying on the image primitives, e.g.,
rotation, in AugMix. As SNCN and AugMix are orthogonal, their joint usage brings
new state-of-the-art results.

CIFAR-10-C Basic Cutout Mixup CutMix AutoAug AdvTr. AugMix SN CN SNCN SNCN+AugMix
AllConvNet 30.8 32.9 24.6 31.3 29.2 28.1 15.0 24.0 26.0 17.2 11.8
DenseNet 30.7 32.1 24.6 33.5 26.6 27.6 12.7 22.0 24.7 18.5 10.4
WideResNet 26.9 26.8 22.3 27.1 23.9 26.2 11.2 20.8 21.6 16.9 9.9
ResNeXt 27.5 28.9 22.6 29.5 24.2 27.0 10.9 21.5 22.4 15.7 9.1
Mean 29.0 30.2 23.5 30.3 26.0 27.2 12.5 22.1 23.7 17.0 10.3

CIFAR-100-C Basic Cutout Mixup CutMix AutoAug AdvTr. AugMix SN CN SNCN SNCN+AugMix
AllConvNet 56.4 56.8 53.4 56.0 55.1 56.0 42.7 50.3 52.2 42.8 36.8
DenseNet 59.3 59.6 55.4 59.2 53.9 55.2 39.6 53.9 55.4 48.5 37.0
WideResNet 53.3 53.5 50.4 52.9 49.6 55.1 35.9 47.4 48.8 43.7 33.4
ResNeXt 53.4 54.6 51.4 54.1 51.3 54.4 34.9 47.6 47.0 40.8 30.8
Mean 55.6 56.1 52.6 55.5 52.5 55.2 38.3 49.8 50.9 43.5 34.7

Table 6.2: Clean error and mCE (%) of ResNet50 trained 90 epochs on ImageNet.
SNCN, using simple domain-agnostic statistics, achieves comparable performance as
AugMix. Jointly applying SNCN with AugMix and IBN can produce the lowest clean
and corruption errors.

Noise Blur Weather Digital
Aug. CleanGauss.Shot Impulse DefocusGlassMotionZoom SnowFrostFogBright ContrastElasticPixel JPEGmCE
Standard 23.9 79 80 82 82 90 84 80 86 81 75 65 79 91 77 80 80.6
Patch Uniform 24.5 67 68 70 74 83 81 77 80 74 75 62 77 84 71 71 74.3
Random AA* 23.6 70 71 72 80 86 82 81 81 77 72 61 75 88 73 72 76.1
MaxBlur pool 23.0 73 74 76 74 86 78 77 77 72 63 56 68 86 71 71 73.4
SIN 27.2 69 70 70 77 84 76 82 74 75 69 65 69 80 64 77 73.3
AugMix* 23.4 66 66 66 69 80 65 68 72 72 66 60 63 78 66 71 68.4
CN 23.4 73 75 75 78 89 79 82 79 75 66 61 69 97 69 74 75.3
SN 23.7 69 71 69 77 87 77 80 75 77 70 61 73 83 61 71 73.4
SNCN 23.3 66 67 65 77 89 76 80 72 72 67 59 47 83 62 72 70.4
SNCN+AugMix 22.3 61 62 60 70 77 62 68 62 65 63 55 43 73 55 66 62.8

6.4.1 Robustness against Unseen Corruptions for Image Classification

Supervised training on CIFAR. Following AugMix [173], we evaluate SN and CN

with four different backbones: an All Convolutional Network [189], a DenseNet-BC (k

= 12, d = 100) [190], a 40-2 Wide ResNet [112], and a ResNeXt-29 (32×4) [191]. We

also use the same hyper-parameters in the AugMix Github repository1.

According to Table 6.1, individual SN and CN can outperform most previous ap-

proaches on robustness against unseen corruptions and combining them can decrease

1https://github.com/google-research/augmix
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Figure 6.4: CN for semi-supervised CIFAR-10 classification. We apply CN on top
of FixMatch with weak augmentation (WA) (Left), or strong RandAugment (RA)
(Right). For either case, CN can substantially reduce both clean and corruption errors.
Compared with RA, CN performs domain agnostic data augmentation, easily applicable
to new domains.

the mean error by ∼12% on both CIFAR-10-C and CIFAR-100-C. One possible ex-

planation is that the corruptions mainly change image textures. SN and CN, through

style recalibration and augmentation, may help reduce the texture sensitivity and bias,

making the classifiers more robust to unseen corruptions. Also, the domain-agnostic SN

and CN are orthogonal to AugMix, which relies on domain-specific operations. Their

joint application can continue to lower the mCEs by 2.2% and 3.6% on top of AugMix.

Supervised training on ImageNet. Following the AugMix Github repository,

we train a ResNet-50 for 90 epochs with weight decay 1e-4. The learning rate starts

from 0.1, divided by 10 at epochs 30 and 60. Note that AugMix reports the results

of 180 epochs in their work. For a fair comparison, we also train it 90 epochs in our

experiments. Besides, we also add Instance-batch normalization (IBN) [177] in the final

combination with AugMix. It was initially designed for domain generalization but can

also boost model robustness against corruption.

Table 6.2 gives the results on ImageNet. We can observe that both clean and

corrupted errors decrease when applying SN and CN separately. Their joint usage

can make the clean and corruption errors drop by 10.2% and 0.6% simultaneously,

closing the gap with AugMix. Moreover, applying SN and CN on top of AugMix

can significantly lower its clean and corruption errors by 1.1% and 5.6%, respectively,

achieving state-of-the-art performance. IBN also makes some contributions here since

it is complementary to other components.
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Semi-supervised training on CIFAR. Apart from supervised training, we also

evaluate CN in semi-supervised learning. Following state-of-the-art FixMatch [192]

setting, we train a 28-2 Wide ResNet for 1024 epochs on CIFAR-10. The SGD optimizer

applies with Nesterov momentum 0.9, learning rate 0.03, and weight decay 5e-4. The

probability threshold to generate pseudo-labels is 0.95, and the weight for unlabeled

data loss is 1. We sample 250 and 4,000 labeled data with random seed 1, leaving the

rest as unlabeled data. In each experiment, we apply CrossNorm to either all data

or only unlabeled data and choose the better one. Our experiments use the Pytorch

FixMatch implementation 2, which has higher errors than the FixMatch reported. We

choose it because it has the most stars among all the Pytorch implementations on

Github.

Figure 6.4 shows the semi-supervised results. We run FixMatch with the strong

RandAugment [130] or only weak random flip and crop augmentations. With either

FixMatch version, CN can always decrease both the clean and corruption errors, demon-

strating its effectiveness in semi-supervised training. Especially with the help of CN,

training with 250 labels even has 3% lower corruption error than with 1000 labels, ac-

cording to the right sub-figure. Additionally, two points are noteworthy here. First, we

try FixMatch with only weak augmentations to simulate more general situations. For

new domains other than natural images, humans may have the limited domain knowl-

edge to design advanced augmentation operations. Fortunately, CN is domain-agnostic

and easily applicable to such situations. Moreover, previous semi-supervised methods

mainly focus on in-distribution generalization. Here we introduce out-of-distribution

robustness as another metric for more comprehensive evaluation.

6.4.2 Generalization from Synthetic to realistic data for Image Seg-

mentation

Training setup. We perform domain generalization from GTA5 (synthetic) to Cityscapes

(realistic), following the setting of IBN [177]. It uses 1/4 training data in GTA5 to

2https://github.com/kekmodel/FixMatch-pytorch
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Table 6.3: Segmentation results (mIoU) on GTAV-Cityscapes domain generalization us-
ing a FCN with ResNet50. SN and CN are comparable with IBN and domain random-
ization (DR) on the target domain. Combining SN and CN can achieve state-of-the-art
performance.

Methods Baseline IBN DR SN CN SNCN

Source 63.7 64.2 49.0 64.6 61.2 63.5
Target 21.4 29.6 32.7 29.9 32.0 36.5

match the data scale of Cityscapes. We train the FCN [64] with ResNet50 backbone

in source domain GTA5 for 80 epochs with batch size 16. The network is initialized

with ImageNet pre-trained weights. Then we test the model on both the source do-

main and target domain. The training uses random scaling, flip, rotation, and cropping

(713 × 713) for data augmentation. We use the 2-instance CN with style cropping in

this setting. Besides, we re-implement the domain randomization [178] and make the

training iterations the same as ours. It transfers the synthetic images to 15 auxiliary

domains with ImageNet image styles.

Results. Based on Table 6.3, SN and CN both can substantially increase the seg-

mentation accuracy on the target domain by 8.5% and 10.6%. SN learns to highlight

the discriminative styles that are likely to share across domains. CN performs style aug-

mentation to make the model focus more on domain-invariant features. SN and CN get

comparable generalization performance as state-of-the-art IBN [177] and domain ran-

domization [178]. However, CN significantly outperforms the domain randomization

method by 12.2% on the source accuracy. Because the domain randomization trans-

fers external styles to the source training data, causing dramatic distribution shifts.

Moreover, combining SN and CN gives the best generalization performance while still

maintaining high source accuracy.

6.4.3 Out-of-Distribution Generalization for Sentiment Classification

Setup. We also conduct out-of-distribution generalization on the binary sentiment clas-

sification task in the NLP field to validate the versatility of SelfNorm and CrossNorm.

The model is trained on the IMDb dataset and then tested on SST-2 dataset. Follow
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Table 6.4: Accuracy (Acc) on OOD generalization for sentiment classification using
GloVe embedding and ConvNets model. We train the model on IMDb source dataset
and test on SST-2 target dataset.

Methods Baseline SN CN SNCN

Source 85.67 86.30 (↑ 0.63) 85.14 (↓ 0.53) 85.92 (↑ 0.25)
Target 71.86 73.93 (↑ 2.07) 73.03 (↑ 1.17) 74.91 (↑ 3.05)

the setting of [179], we use GloVe [193] word embedding and the Convolutional Neural

Networks (ConvNets) [194] as the classification model. We use the implementation of

ConvNets in this repository3. The convolutional layers with three kernel sizes (3,4,5)

are used to extract n − gram features within the review texts. SN and CN units are

placed between the embedding layer and the convolutional layers. We use the Adam

optimizer and train the model for 20 epochs.

Results. From Table 6.4, we can find that SN improves the performance in both

the source and target domains by 2.07% and 0.63%. CN can also increase target

accuracy without much degradation in the source domain. Combining them gives a

3.05% accuracy boost. This experiment indicates that SN and CN can also work in the

NLP area, not limited to the vision tasks. Despite the lack of intuitive explanations

as for the image data, the mean and variance statistics in NLP data are also useful in

facilitating out-of-distribution generalization.

6.4.4 Visualization

Apart from the quantitative comparisons, we also provide some visualization results of

SN and CN to better understand their effects.

Visualization setup. Our visualization builds on the technique: understanding

deep image representations by inverting them [195]. The goal is to find an image whose

feature representation best matches the given one. The search is done automatically

by a SGD optimizer with learning rate 1e4, momentum 0.9, and 200 iterations. The

3https://github.com/bentrevett/pytorch-sentiment-analysis
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SN at the start of block 1 SN at the end of block 1 SN at the end of block 2 SN at the end of block 3

Figure 6.5: Visualizing 4 single SNs by comparing images before (Top) and after (Bot-
tom) them. The left two, lying in shallow locations, can adjust styles by suppressing
color and adding blur. As SN goes deeper, the recalibration effect is subtle, due to the
high-level feature abstraction.

Input

Plain network +SelfNorm Plain network +SelfNorm Plain network +SelfNorm

The end of block 1 The end of block 2 The end of block 3

Reconstructed images from intermediate CNN features

Figure 6.6: Visualizing accumulated SNs by comparing inverted images. SNs in block
1 can wash away much style information preserved in the vanilla network. Similarly,
the plain network’s final representation retains some high-frequency signals which are
suppressed by SNs.

learning rate is divided by 10 every 40 iterations. During the optimization, the net-

work is in its evaluation mode with its parameters fixed. In the experiment, we use

WideResNet-40-2 and images from CIFAR-10. In visualizing CN, we use the training

images and a model trained for 1 epoch. The SN visualization uses test images and a

well-trained model. We use different settings for them because CN is for training, while

SN works in testing.

Visualization of individual SNs. To visualize SN at a network location, we first

forward an image to obtain the target representation immediately after the SN. Then

we turn off the chosen SN and optimize the original image to make its representation

fit the target one. In this way, we can examine SN’s effect by observing changes in

image space. As shown in Figure 6.5, SN can primarily reduce the contrast and color

at the first network block. The effect becomes more subtle as SN goes deeper into

the network. One possible explanation is that the high-level representations lose many

low-level details, making it difficult to visualize their changes.
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CN at the end of block 2 CN at the start of block 3CN at the start of block 2

CN at the start of block 1CN in image space

Style images Style images

CN at the end of block 1

Style images

Figure 6.7: CN visualization at image level and different locations inside a WideResNet-
40-2. Both the content (Row) and style (Column) images are from CIFAR-10. The
style rendering changes from global to local as CN gets deeper in the network.

Visualizing multiple SNs. In addition to visualizing individual SNs, it is also

interesting to see their compound effect. To this end, we reconstruct an image from ran-

dom noises by matching its representation with a given one. The reconstructed image

can show what information is preserved by the feature representation. By comparing

two reconstructed images from a network with or without SN, we can observe the joined

recalibration effects of SNs before a selected location. From Figure 6.6, we can find SNs

in the first two network blocks can suppress much style information and preserve object

shapes. The reconstructions from block 3 do not look visually informative due to the

high-level abstraction. Even so, SNs can restrain the high-frequency signals kept in the

vanilla network.

CN visualization. In the CN visualization, we pair one content image with mul-

tiple style images for better illustration. We first forward them to get their represen-

tations at a chosen position. Then, we compute the standardized features from the

content image representation and the means and variances of the style image represen-

tation. The optimization starts from the content image and tries to fit its representation

to the target one mixing the standardized features with different means and variances.

Figure 6.7 shows diverse style changes made by CN. The style changes become more

local and subtle as CN moves deeper in the network.
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Table 6.5: 1-instance CN v.s. 2-instance CN. We report the mCEs of WideResNet-
40-2 on CIFAR-100-C. The 2-instance mode consistently obtains lower errors than the
1-instance one. Moreover, proper cropping can further help decrease the errors.

1-instance 2-instance

Crop Neither Content Style Both Neither Content Style Both

mCE 50.5 50.6 50.6 49.6 48.8 49.0 47.9 48.5

Table 6.6: Exploration of Block choices for SN and CN. We compare the mCEs (%)
when applying SN and CN to image space or different blocks in WideResNet-40-2.
Using them in all blocks gives the lowest errors on CIFAR-100-C.

Stages N/A Image Block 1 Block 2 Block 3 All

SN 53.3 52.9 48.9 52.2 51.3 47.4

CN 53.3 54.3 52.2 51.2 51.5 48.8

Table 6.7: Order study of SN and CN. They both locate at the post-addition position
in each residual cell of WideResNet-40-2, and we report the mCE on CIFAR-100-C.

Order SN→CN CN→SN

mCE(%) 46.9 46.6

Table 6.8: Comparison with SE. SN obtains much lower mCE than SE when they
are applied to WideResNet-40-2 and CIFAR-100-C. We place SN in the post-addition
location.

Basic SE SE(post-addition) SN

mCE(%) 53.3 52.3 51.0 47.4

6.4.5 Ablation Study on CIFAR

CN variants. CN can be in 1-instance or 2-instance mode with four cropping options.

According to Table 6.5, the 2-instance mode constantly gets lower errors than the 1-

instance. Furthermore, cropping can help decrease the error since it can encourage style

augmentation diversity. Note that style cropping may not always be superior. We will

give a more detailed study on cropping choices later.

Blocks choices for SN and CN. Given both SN and CN placed at the post-

addition location of a residual cell in WideResNet-40-2, we study which blocks in a

network should build on the modified cells. No residual cell is required if applying SN
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Figure 6.8: Illustration of SN and CN positions in AllConvNet block, and dense cells in
DenseNet. For blocks in AllConvNet, we name the position after convolution layer as 1,
after normalization layer as 2, and after GELU layer as 3. For dense cells in DenseNet,
we label the position before feature concatenation as Pre, and after concatenation as
Post.

SN/CN
Residual

Identity

SN/CN

Residual

Pre-residual

Residual

SN/CN

Post-residual

Residual

SN/CN

Post-addition

Residual

Original

Figure 6.9: Illustration of SN and CN positions in a residual module. We explore four
positions: identity, pre-residual, post-residual, and post-addition.

and CN to the image space. According to Table 6.6, They both perform the best on

CIFAR-100-C when plugged into all blocks.

Order of SN and CN. In this experiment, we study two orders: SN→CN and

CN→SN when plugging them into the post-addition place in all residual cells of WideResNet-

40-2. Table 6.7 shows very close mCEs, indicating their order has little influence on

the robustness performance.

SN v.s. SE. Although SN shares a similar attention mechanism with SE, SN obtains

much lower corruption error than SE, according to Table 6.8. SN recalibrates the feature

map statistics, suppressing unseen styles in the OOD data, whereas SE, modeling the

interdependence between feature channels, may not help OOD robustness.

Modular positions. Here we investigate the positions of SN and CN inside network

cells. We give a comprehensive study on different cells and measure the performance

on both CIFAR-10-C and CIFAR-100-C. Specifically, we conduct experiments using



115

Table 6.9: Evaluation of SN modular positions for AllConvNet, DenseNet, WIdeResNet
and ResNeXt. The impacts of different positions are measured by mCE on both CIFAR-
10-C (Top) and CIFAR-100-C (Bottom). Note that the four backbones have three
types of cells whose positions are illustrated in Figures 6.8 and 6.9.

SN on CIFAR-10-C

Position 1 2 3 -
AllConvNet 24.0 26.4 25.6 -

Position Pre Post - -
DenseNet 23.4 22.0 - -

Position Residual Post Pre Identity
WideResNet 22.7 21.3 20.8 22.3

Position Residual Post Pre Identity
ResNeXt 21.9 24.8 21.5 22.0

SN on CIFAR-100-C

Position 1 2 3 -
AllConvNet 50.3 51.6 51.0 -

Position Pre Post - -
DenseNet 53.9 54.7 - -

Position Residual Post Pre Identity
WideResNet 49.3 47.4 49.8 48.4

Position Residual Post Pre Identity
ResNeXt 47.6 49.0 50.9 50.4

four backbones: AllConvNet, DenseNet, WIdeResNet and ResNeXt, consisting of three

types of cells: naive convolutional cell, dense cell, and residual module, illustrated in

Figures 6.8 and 6.9. According to Tables 6.9 and 6.10, SN’s optimal positions are

different for CIFAR-10-C and CIFAR-100-C, while CN has stable best positions across

the two datasets.

Cropping Choices for CN. Cropping enables diverse statistics transfer between

feature maps. Here we study four cropping choices: neither (no cropping), style, con-

tent, and both. In Table 6.11, we can find the best cropping choice may change over

backbones and datasets.

Incremental ablation study. SN and CN are general and straightforward nor-

malization techniques to improve the OOD robustness. They are orthogonal to each

other, and other methods such as the consistency regularization [173] and AugMix

[173]. According to Table 6.12, they can lower the corruption error both separately
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Table 6.10: Evaluation of CN positions in the cells of four backbones. We measure the
position influence by mCE on CIFAR-10-C (Top) and CIFAR-100-C (Bottom). The
position choices in the naive convolution cell, dense cell, and residual module are shown
in Figures 6.8 and 6.9.

CN on CIFAR-10-C

Position 1 2 3 -
AllConvNet 26.0 26.3 26.8 -

Position Pre Post - -
DenseNet 24.7 29.2 - -

Position Residual Post Pre Identity
WideResNet 25.2 21.6 24.9 23.3

Position Residual Post Pre Identity
ResNeXt 26.7 22.4 23.8 26.9

CN on CIFAR-100-C

Position 1 2 3 -
AllConvNet 52.2 52.5 52.7 -

Position Pre Post - -
DenseNet 55.4 57.6 - -

Position Residual Post Pre Identity
WideResNet 52.1 48.8 51.7 50.3

Position Residual Post Pre Identity
ResNeXt 51.5 47.0 47.9 50.2

and jointly. On top of them, proper cropping, consistency regularization, and domain-

specific AugMix can further advance the OOD robustness.

6.4.6 Ablation Study on ImageNet

CN v.s. Stylized-ImageNet. We also compare CN to Stylized-ImageNet, which

transfers styles from external datasets to perform style augmentation. Stylized-ImageNet

finetunes a pre-trained ResNet-50 for 45 epochs with double data (stylized and orig-

inal ImageNets) in each epoch. To compare CrossNorm with Stylized-ImageNet, we

perform the finetuning for 90 epochs using only the original ImageNet. In Table 6.13,

although Stylized-ImageNet has 2% lower corruption error than CN, its clean error is

3.8% higher. Because the external styles in Stylized-ImageNet cause large distribution

shifts, impairing its clean generalization. In contrast, The more consistent yet diverse

internal styles help CN decreases both corruption and clean errors.
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Table 6.11: Study of CN cropping choices. We evaluate four cropping choices: neither,
content, style, and both when jointly using SN and CN in four backbones. The perfor-
mance is measured by mCE on both CIFAR-10-C (Top) and CIFAR-100-C (Bottom).
We put the modular positions next to the backbone names.

SNCN with cropping on CIFAR-10-C

Backbone Neither Content Style Both

AllConvNet, 1 19.0 20.3 18.8 20.3

DenseNet, Conv1 Pre 18.8 18.2 18.7 18.8

WideResNet, Post 17.9 18.0 16.8 17.5

ResNeXt, Post 17.7 18.5 18.4 18.6

SNCN with cropping on CIFAR-100-C

Backbone Neither Content Style Both

AllConvNet, 1 44.2 46.9 43.9 46.1

DenseNet, Conv1 Pre 51.4 49.4 49.1 49.0

WideResNet, Post 46.6 45.1 45.8 44.5

ResNeXt, Post 41.0 44.9 43.0 46.5

SN and CN locations. Moreover, in Table 6.14, we also investigate the SN and

CN locations in a residual module using ImageNet and ResNet50. Similar to the CIFAR

results, the post-addition position performs the best for corruption robustness.

Ablation study with IBN. Table 6.15 reports the results of applying SN or CN

with IBN. We can observe that they can cooperate to improve the corruption robustness

of ResNet50. Moreover, integrating SN, CN, IBN, and AugMix can bring the lowest

corruption error. This shows SN and CN’s advantage that they are general and simple

to boost other state-of-the-art methods.

6.5 Summary

In this work, we have presented SelfNorm and CrossNorm, two simple yet effective

normalization techniques to improve OOD robustness. They form a unity of opposites

as they confront and conform to each other in terms of approach (statistics usage) and

goal (OOD robustness). Beyond their extensive applications, they may also shed light

on developing domain agnostic methods applicable to multiple fields such as vision and

language, and broad OOD generalization circumstances such as unseen corruptions and
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Table 6.12: Incremental ablation study for SN, CN, cropping, consistency regularization
and AugMix. We report the mCEs of four backbones on both CIFAR-10-C (Top) and
CIFAR-100-C (Bottom). The modular position and cropping choice are also given in
each row.

CIFAR-10-C
Backbone Basic SN CN SN+CN SN+CN+Crop AugMix SNCN+Crop

+Crop +Consistency +AugMix

AllConvNet, 1, style 30.8 24.0 26.0 18.8 17.2 15.0 11.8
DenseNet, Conv1 Pre, both 30.7 22.0 24.7 18.8 18.5 12.7 10.4
WideResNet, Post, both 26.9 20.8 21.6 17.5 16.9 11.2 9.9
ResNeXt, Post, neither 27.5 21.5 22.4 17.7 15.7 10.9 9.1

CIFAR-100-C
Backbone Basic SN CN SN+CN SN+CN+Crop AugMix SNCN+Crop

+Crop +Consistency +AugMix

AllConvNet, 1, style 56.4 50.3 52.2 43.9 42.8 42.7 36.8
DenseNet, Conv1 Pre, both 59.3 53.9 55.4 49.0 48.5 39.6 37.0
WideResNet, Post, both 53.30 47.4 48.8 44.5 43.7 35.9 33.4
ResNeXt, Post, neither 53.4 47.6 47.0 41.0 40.8 34.9 30.8

Table 6.13: Comparison of Stylized-ImageNet and CN. Following the Stylized-ImageNet
setup, we finetune a pre-trained ResNet50 model 90 epochs on ImageNet. Compared
with SIN, CN holds a better balance between clean and corruption errors.

Basic Stylized-ImageNet CN

Clean error (%) 23.9 27.2 23.4
mCE(%) 80.6 73.3 75.3

distribution gaps across datasets. Given the simplicity of SelfNorm and CrossNorm, we

believe there is substantial room for improvement. The current channel-wise mean and

variance are not optimal to encode diverse styles. One possible direction is to explore

better style representations.
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Table 6.14: Investigation of SN (Top) and CN (Bottom) positions in a residual module
of ResNet50 trained 90 epochs on ImageNet.

SN modular positions

Position Identity
Pre- Post- Post-

Residual Residual Addition

Clean error (%) 24.0 23.0 23.2 23.7
mCE(%) 75.5 75.8 74.8 73.4

CN modular positions

Position Identity
Pre- Post- Post-

Residual Residual Addition

Clean error (%) 25.2 23.4 23.5 23.4
mCE(%) 78.2 75.8 77.5 75.3

Table 6.15: Ablation study of IBN, SN, CN, consistency regularization(CR), and Aug-
Mix(AM) on ImageNet-C with ResNet50. IBN, initially designed for domain general-
ization, can also decrease mCE. Both SN and CN can further lower the error based on
IBN. Combining them with AM gives the best robustness performance.

ResNet50 ResNet50+IBN(a) ResNet50+IBN(b)
Basic Basic +CN +CN+CR +CN+AM Basic +SN +SN+AM +SNCN+AM

Clean err(%) 23.9 23.2 23.1 22.6 22.5 24.0 23.5 22.3 22.3
mCE(%) 80.6 75.1 73.2 73.6 66.4 74.1 72.6 64.1 62.8
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

This dissertation has analyzed three trends in recent deep learning development, re-

vealed three current challenges, and tackled them from three prospects: automatic

data augmentation, efficient architecture design, and robust feature normalization.

In chapters 2-4, we present three methods to increasingly automate the data aug-

mentation process by learning sampling distributions, regularizing augmented data dis-

tributions without domain expertise, and removing the reliance on human-specified

augmentation operations. We experimentally demonstrate that they are easy to use in

diverse tasks (human pose estimation, image classification, and image segmentation)

and effective in boosting performance without using additional training data.

Chapter 5 studies the problem of designing efficient U-Net architectures. We provide

solutions to improve parameter efficiency, bit-width efficiency, and memory efficiency

through shortcut connections, representation (parameters, features, gradients) quan-

tization, and memory sharing. The proposed quantized coupled U-Nets have demon-

strated significant efficiency advantages over previous popular stacked U-Nets while

maintaining comparable accuracy in the tasks of human pose estimation and facial

landmark localization.

Finally, we provide two normalization techniques, SelfNorm and CrossNorm, for

OOD robustness in Chapter 6. SelfNorm employs attention to suppress trivial normal-

ization statistics that are difficult to generalize to OOD data, while CrossNorm enriches

the combinations of statistics and standardized features by swapping statistics between

feature maps. Experiments across diverse domains and tasks show that SelfNorm and
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CrossNorm can work well individually and together in advancing the OOD robustness

and further boosting previous state-of-the-art methods.

7.2 Future Work

Deep learning still confronts the open problems of lacking data efficiency, model effi-

ciency, and OOD robustness. Overcoming the problems will have profound importance

for both theory and practice. We discuss some possible directions to explore in future.

One limitation of the proposed automatic data augmentation approaches is that

they are developed mainly for supervised training, but it is also worthwhile to study

data augmentation strategies in unsupervised and self-supervised settings. For example,

unlabeled video data are prevalent and contain diverse naturally existing data varia-

tions. Since humans generally learn a lot from observing dynamic objects and scenes,

teaching deep models to do so is exciting and meaningful. Beyond data augmenta-

tion, incorporating active learning with deep learning is also worth investigation. The

motivation is that not all labeled data are equally important. Given a set of labeled

data, can we identify a subset that contributes more than the rest? When labeling

additional data, can the training algorithm tell what kind of data to label to maximize

gains? Answering these questions would make training deep models significantly more

data-efficient.

Moreover, the proposed efficient U-Net architecture relies on hand-crafted heuris-

tics to determine the shortcut connections and quantization bit-widths. A potential

improvement is to use the neural architecture search to learn the design/compression

policies. Changing from rule-based to learning-based policies fits the goals of both

autonomation and efficiency in deep learning. Whether manually designed or automat-

ically searched, a produced efficient architecture is generally specialized to one edge

device or platform with certain resource constraints. However, in practice, efficient de-

ployment is expected to meet various hardware constraints such as different smartphone

generations and battery levels. Therefore, avoiding repeatedly developing efficient mod-

els for each case is an important future direction.
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While the research community has the consensus to build deep models that can

generalize well to OOD scenarios, it is still unclear how to comprehensively evaluate

the OOD robustness. Existing robustness datasets, consisting of limited synthetic or

realistic distortions, are far from capturing the rich data variations that naturally occur,

leading to inadequate evaluations. One possible solution for computer vision tasks is

to test deep models on real-world videos instead of the benchmark image data. Going

one step further, we hope to decouple the model robustness from specific datasets, e.g.,

developing robust models with theoretical guarantees. In addition to pure generaliza-

tion, adaptation for robustness is an exciting direction. Humans, though known to be

good at generalization, still keep adapting their behaviors and decisions to new envi-

ronments. Similarly, we believe the deep models would harvest more robustness if they

make online adaptation to the deployment environments.
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