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ABSTRACT OF THE DISSERTATION

System Memory Protection and Vulnerability Assessment

in Presence of Software Attacks

by Mingbo Zhang

Dissertation Director:

Saman Zonouz

Software vulnerabilities widely exist among various software from operating system

kernel to web browser, from PC to embedded device. The arms race is continuing be-

tween new vulnerability exploit techniques and new mitigations. The essential part of

protecting software from compromising relies on system memory protection in specific

ways. Addressing protection of system critical variables, heap layout, and user variables

that are referenced freely from the kernel are the state-of-art challenges. This disserta-

tion aims at protecting the above-mentioned vulnerabilities that exist in the wild and

presents systematic mitigation solutions. For each specific vulnerability, our mitigation

either leverages a new CPU features such as Intel SGX or an existing CPU feature

in a novel way to achieve adequate protection with a modest performance overhead.

Additionally, we utilize a software-only method to solve the use-after-free vulnerability

in the web browsers — a trade-off between the deterministic heap layout and memory

usage. Furthermore, we develop a new software attack that is parasitic on an extra piece

of hardware circuit to assess conventional software mitigations’ effectiveness. We eval-

uated each system with real-world vulnerabilities and their exploits that are publicly
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available. The results show that these mitigations can effectively protect the system

with an acceptable performance overhead. Our parasitic-hardware-based attack reveals

the possibility of being deployed in the field devices such critical controllers (e.g., pro-

grammable logic controllers PLCs) in cyber-physical platforms such as the power grid

infrastructures. This type of attack completely evades conventional software mitigation

techniques.
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Chapter 1

Introduction

Software vulnerabilities are still the most critical aspect of system security. The author

observes that many types of vulnerability have one characteristic in common. That

is, system memory modification is a necessary part of exploitation. The attacker may

overwrite data structures, reoccupy freed buffer, or repeatedly write the same address to

exploit the vulnerability. Therefore, the protection of system memory is also necessary

and plays an essential part in system protection. This dissertation aims to solve several

state-of-the-are vulnerabilities challenges and provides systematic mitigation solutions

for each. Moreover, it presents a new type of attack that deploys a small-size parasitical

hardware implant to control an embedded device such as a PLC, breaking existing

software detections and protections.

In Chapter 2, the author aims at mitigating heap overflow vulnerabilities. Some

vulnerabilities try to gain control of the system by first compromising system metadata.

Typically, in a heap overflow attack, the most leveraged metadata is the heap metadata,

the heap management’s allocation records. In 2015, the Linux Glibc library’s severe

weakness, so-called the Ghost vulnerability, is of this type. It takes advantage of heap

metadata to obtain complete control of the victim system. The author argues that the

issue with system metadata is as follows. System metadata is essential to be protected.

However, instead of integrated with the kernel, the metadata is left with user code.

The reasons are various. Making less privileged code in the kernel is a significant one.

Therefore, the author presents a novel heap allocator that protects heap metadata

with a secure environment in the user space, using the hardware feature Intel Software

Guard Extensions (SGX). SGX provides separated memory spaces, so-called enclaves,

to protect critical user data. With the heap metadata reorganized and protected, the
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mitigation prevents vulnerabilities from abusing metadata, hence stop attacks of such

kind.

This work also solves the challenge of exposed critical data using SGX enclaves. It

is also fatal to system security if the attack reads critical data such as a private key.

The notorious Heartbleed vulnerability, in essence, is an information leak vulnerability

that widely affects web servers that use the OpenSSL library for steam encryptions.

The RSA private key exposed in the server’s process memory leaked when the attacker

illegally read the memory cross-boundary. This work stores the private key and encrypt-

ing/decrypting routines inside an SGX enclave to only send out decrypted messages.

The author evaluates the key’s security using a Metasploit module for the Heartbleed

exploit and shows that an attacker cannot access the key despite a vulnerability.

In Chapter 3, the author aims at mitigating use-after-free (UAF) vulnerabilities.

UAF exploits have contributed to many software memory corruption attacks in recent

practices. They are especially popular in the world of web browsers. The competition

between exploit and mitigation becomes a cutthroat arms race. Despite many success-

ful UAF exploits against widely-used applications, state-of-the-art defense mechanisms

have proved to leave the systems vulnerable still. This author argues that a successful

UAF exploit is feasible because of the fine-grained determinism provided by existing

heap memory allocators. Namely, the state-of-the-art exploit uses the in-object mem-

ber fields of a particular object to refill the victim object’s function table pointer. This

work introduces a new defense strategy that leverages additional memory buffers to

make allocation outcomes locally unpredictable to adversaries. This fine-grained non-

determinism prevents exact alignment of subsequent allocations and in-object member

fields. It significantly lowers the success rate of a UAF exploit even in the presence

of heap sprays. The author also validated the defense using real recent UAF exploits

against several CVE vulnerabilities in large and popular software packages (Firefox and

Tor browsers). The defense can terminate all the exploits in the early stages and prevent

the gadget addresses successfully located for the intrusion’s follow-up return-oriented

programming steps. Its runtime performance overhead was negligible (1.2

In Chapter 4, the author aims at mitigating kernel-level time-of-check-to-time-of-use
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(TOCTOU) vulnerabilities. Kernel-level TOCTOU widely exists in operating systems,

especially Microsoft Windows. When serving a system call, the kernel inevitably gets

parameters from the userspace. Read the same user-mode variable repeatedly may lead

to data inconsistency under a race condition between the kernel and userspace. The

author notices the Windows graphical subsystem kernel module couples with user-mode

libraries, and it accesses user-mode data structures loosely, among which double fetches

on the same address are not unusual. To find the bugs with the typical memory-access

pattern, the author develops a fuzzing tool that effectively finds kernel-level TOCTOU

candidates.

Furthermore, to mitigate such vulnerabilities, this work is the first runtime mit-

igation technique on Windows. It does not require Windows kernel source code or

modifying kernel binary. The core of this mitigation is to use Supervisor Mode Ac-

cess Prevention (SMAP), a hardware feature, to detect kernel access to userspace data.

To leverage SMAP, the author makes the kernel adaptable to recover from the fatal

SMAP exceptions. Due to the Windows system’s complex nature, the author further

develops a lightweight hypervisor to contain the system-wide hardware feature SMAP

into specific processes to prevent deadlock caused by nested SMAP exceptions. The

hypervisor also improves the flexibility and performance for the mitigation. The author

evaluates this mitigation and the lightweight hypervisor with 18 benchmark programs

and real-world applications. The results show that the mitigation imposes little extra

overhead(less than 10% on average).

In Chapter 5 the author presents a new type of attack. Nowadays, critical infrastruc-

ture such as the power grid is vital to national security. Their failure or incapacity would

have a significant impact on people’s daily life on a large scale. However, they are under

emerging advanced persistent threat (APT) attacks since the infrastructures systems

are automated and computer-controlled. The programmable logic controllers (PLCs)

are the neurons that control the physical system. In most APT attacks, a stealthy

backdoor usually is the core that allows the attacker to hide in the dark without being

detected and launch remote malicious operations at a particular moment. However, to

achieve further stealthiness and bypass exited software mitigations, it needs to evolve
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from high-level software into low-level hardware.

The author presents a small-size parasitical hardware implant that attaches to the

PLC’s circuit board. It controls the PLC by modifying the digital signal or hijacking

the various buses on the boards. This attack can be deployed either during the supply

chain or stealthily installed in remote plants. The hardware implant contains a cellular

chip that provides a remote control channel, which allows the attacker to organize a

multi-point distributed attack.

The author implements and evaluates this hardware implant with widely deployed

Allen Bradley PLCs. The result shows that such a hardware backdoor does not change

the firmware or induce overhead to the system, thus no integrity violation. It can

secretly change the PLC’s output without showing any trace. Furthermore, the at-

tacker can even penetrate air-gapped networks communicating with it and conduct a

simultaneous attack with multiple controlled nodes.
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Chapter 2

Dynamic Memory Protection via Intel SGX-Supported

Heap Allocation

1 Introduction

Heap buffer overflow vulnerabilities are increasingly becoming a priority for security

researchers. Critical vulnerabilities such as CVE-2015-0235 [130], known as GHOST,

have provided attackers the ability to exploit heap buffer overflows by exploiting holes

in the current heap protection mechanisms. A popular perspective among security

experts is that the vulnerable program should take full responsibility for the buffer

overflow. However, after our investigation, we found out that the lack of full protection

of the program’s metadata also accounts for the software corruptions as the metadata,

which keeps track of heap management information, is located in memory without

being protected and/or isolated properly. Although metadata is essential for heap

operations of applications, it is not supposed to be directly accessible from the user

applications. The only legitimate parties that can access and maintain the metadata

should be heap functions. Unfortunately, this rule is frequently violated and leaves

the programs vulnerable to exploits. In response, there have been efforts to address

this issue [36][79][9][60]. Although there have been mitigation attempts, e.g., integrity

checking and encryption, the metadata is still left partially protected in memory.

Recent works have focused on bypassing these mitigation techniques that attempt

to secure the critical metadata. [178] proposed an approach to circumvent the Inter-

net Explorer (IE) browser’s mitigation provisions, such as Data Execution Prevention

(DEP[6]), Address Space Layout Randomization (ASLR[156]), as well as any checks

for Return-Oriented Programming (ROP[136][146]) gadgets. The security level of the



6

IE script engine is determined by the parameter SafetyOption[178], which is a criti-

cal variable controlling the execution privilege of the IE script engine. If an attacker

has access to arbitrary memory space of a targeted process, e.g., through an arbitrary

memory writing vulnerability, then this SafetyOption variable can be modified to allow

execution of malicious scripts with escalated privilege. In order to protect the integrity

of the SafetyOption, Microsoft published a patch for the JScript engine with an added

function ScriptEngine::GetSafetyOptions, which generates a 32 bytes hash digest bind-

ing the SafetyOption value with the execution context. Hence, if the adversary modifies

the SafetyOption directly in memory without calling the GetSafetyOptions function,

the tampering operation will be identified by the hash digest. However, this solution is

not a panacea as an adversary may still be able to modify the SafetyOption with access

to other object data and the corresponding hash digest in memory.

In addition to protection of metadata, we cannot ignore the existing need to protect

critical data that is exposed from normal vulnerabilities. For example, the Heartbleed

vulnerability [46] can be exploited to extract the private key of a web server. The

vulnerability allows an attacker to read a large portion of memory (65535 bytes). This

can lead to the exposure of critical data, such as an RSA private key. Even if the

vulnerabilities are patched, mechanisms should be in place to protect the critical data

of a user program in spite of zero-day exploits.

The aforementioned vulnerabilities emphasize the core safety issue: critical data

cannot be secured by security solutions if the memory can be arbitrarily modified. As

a consequence of arbitrary memory reading and writing vulnerabilities, the sensitive

data might eventually be tracked down. Therefore, more reliable solutions must be

implemented that cannot be corrupted by an adversary. Technology such as the SGX

(Software Guard Extension)[104][71][5] has been provided as a powerful tool for the

protection of critical metadata. SGX enables the use of enclaves, which are hardware-

separated memory spaces that protect user mode code. The memory within an enclave

is hidden from illegitimate users, including users with higher privileges. The enclave

provides a safe location to hold the critical user data and/or program metadata so as to

eliminate arbitrary memory access. The only legitimate accesses to the enclave will be



7

provided by carefully designed interfaces that hide specific operations and only return

results.

In this paper, we introduce MetaSafe, a new suite of heap APIs based upon SGX

and its enclaves that provides simple and efficient heap buffer management functionality

so as to store the metadata inside an enclave. With our tool, if a heap buffer overflow

happens, the heap metadata cannot be affected. We also integrate the concept of clean

separation of metadata from user buffers from jemalloc–which is an excellent dynamic

memory allocator in FreeBSD and NetBSD–into our design. Because the metadata is

independent of other program data, it can be relocated to any other position of the

process memory space. Therefore, the metadata is placed in an enclave to ensure its

protection. In addition to the protection of critical metadata, we present a set of user-

friendly APIs so that a user program can easily access the program’s critical data, e.g.,

a web server’s private key, that is protected by an enclave.

Our implementation of heap APIs consists of two major components: the SGX

enclave, which is responsible for maintaining heap buffer record, and a memory man-

agement interface that sits outside of the enclave and provides an interface for allocating

virtual pages from the operating system. These two components work together to co-

ordinate virtual page allocation. The enclave does not handle virtual page operations

as they involve communication with the operating system. Instead, the enclave informs

the memory management interface to allocate virtual pages from the operating system.

After, the memory management interface sends the information of where the pages

are and how long the range is back to the enclave. With this page information stored

as metadata inside the enclave, routines inside the enclave are able to fulfill the user

memory allocation request by calculating the exact user buffer location.

Contributions. MetaSafe enables protection of a program’s critical metadata by

leveraging the hardware-level memory separation through SGX enclaves. The technical

contributions of this paper are as follows: i) We provide a set of new heap manage-

ment APIs that leverage Intel SGX to protect heap metadata from being tampered

with by heap buffer overflows. The critical metadata is protected by being placed in

SGX enclaves. ii) We implement the aforementioned suite of APIs to also allow user
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programs to easily manage access to and storage of critical data in SGX enclaves. iii)

We evaluate MetaSafe by integrating the APIs into several widely used open source

projects, including ngingx, nullhttpd, 7zip, netcat and gzip. iv) We further evaluate the

MetaSafe APIs by implementing OpenSSL using the SGX enclaves. We use a Metas-

ploit module to demonstrate the effectiveness of MetaSafe against the Heartbleed

exploit.

2 Background and Case Studies

Modern operating systems are typically isolated from user applications. For example,

in x86 systems, the code and the data of the operating system own the highest privilege

ring0, while the user-level applications work with the lowest privilege ring3. The user

applications can not modify the code nor the data of the operating system without

going through specific interfaces of the operating system. The user applications can

still effectively utilize system resources without knowing the details of the underlying

implementations, e.g., the specific data structures and related data. This philosophy

of isolation and modularization guarantees the robustness of the operating system: the

crash or compromise of a user application does not affect the normal operations of the

operating system. The same philosophy can also be partially applied to user mode

programs. Because services provided by OS user mode components such as C runtime

libraries are also considered system services, they are also isolated and protected from

user programs.

Although these system services and user mode services isolate their underlying data

structures from user programs, their associated metadata is typically not isolated. The

user programs do not necessarily need access to this metadata. For example, when a user

application applies for a virtual page, the operating system only returns the address of

the allocated virtual page to the user application, while the underlying operations, such

as associating the physical memory page with the virtual address space, are constrained

within the operating system. A user program on Windows does not need to know that

the operating system maintains the virtual address space of a user application using a

red-black tree data structure. Similarly, isolation mechanisms should be used to protect
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all code and data embedded in the kernel as user processes should have access to the

kernel only through system calls.

2.1 Heap Metadata Vulnerabilities

The heap used by user applications can be considered a system service that utilizes

standard interfaces to provide services to user mode programs. For example, a user

program that calls the malloc() function to allocate a block of memory is only concerned

with the buffer address returned by the malloc() function. The user program does not

need to know how the malloc() function implements the memory allocation nor the

type of data structure being used to keep track of the allocated buffer. However, an

important difference between user applications and the kernel is that the metadata for

the heap of user applications does not receive any protection from isolation. Hence,

a buffer overflow in a user application may overwrite the heap metadata, leading to

severe security concerns for the user program. Another example of this kind is that the

metadata of the Windows exception handler (SEH)[50][154][153][102] includes a code

pointer. Once a buffer overflow occurs and overwrites the code pointer, the related

process might be maliciously modified. Even though new mitigation and protection

methods have been introduced to protect the heap and the metadata of the SEH,

attackers continuously find new vulnerabilities to bypass the protection mechanisms.

Therefore, we will introduce how SGX can be leveraged to implement isolated protection

regions enabled by the hardware to protect the aforementioned metadata.

Heap Buffer Overflow Attacks. Heap metadata is typically exploited using two

kinds of heap buffer overflow attacks.The first attack implements a buffer overflow

that over-writes just the heap metadata in order to induce arbitrary memory writ-

ing [36][160][7]. This vulnerability is prevalent especially on dlmalloc and its deriva-

tives.Because this attack was discovered over a decade ago, many protections have since

been implemented, e.g., integrity checking before linking or un-linking a list.These pro-

tections have significantly increased the difficulty of overwriting metadata alone to

achieve an exploit.

The other attack first overwrites metadata in order to make the allocator behave
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struct malloc_chunk {
    // size of previous chunk (if free)
    INTERNAL_SIZE_T  prev_size;  
    // size in bytes, including overhead
    INTERNAL_SIZE_T  size;      
    //double links -- used only if free 
    struct malloc_chunk*  fd;  
    struct malloc_chunk*  bk;
  
    // Only used for large blocks: 
    // pointer to next larger size
    // double links -- used only if free 
    struct malloc_chunk* fd_nextsize; 
    struct malloc_chunk* bk_nextsize;
};

Figure 2.1: malloc chunk structure

abnormally[130][159][9][8]. This allows the attacker to further control other areas of

memory, including critical data of the vulnerable program. A case study will now be

presented to exemplify the latter attack.

Case Study. In 2015, a notorious vulnerability “GHOST ” [130] infected a large variety

of software by exploiting nss hostname digits dots() function in the GNU

C Library (glibc). This bug existed in the nss hostname digits dots()

function and could be triggered either locally or remotely via the gethostbyname()

function. It is a heap buffer overflow attack in which the attacker injects certain ma-

licious input exceeding the length of the heap buffer. In this case, a buffer overflow

of just 4 bytes or 8 bytes can be implemented depending on the architecture of the

operating system (32bit or 64bit). These 4 or 8 bytes are sufficient for corrupting the

heap metadata, which is located immediately after the heap buffer.

Figure 2.1 presents the structure of the metadata located immediately following the

buffer that belongs to the next free chunk. The prev size and size fields are both

2 bytes long. These are the variables that are controlled by the attacker in the GHOST

vulnerability.

Figure 2.2 highlights the overflow of the data structure as well as what specific

variables will be corrupted.The attacker has comparatively limited capability as he
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size

bk_next
size free buffer  ......

overflow

malloc_chunk

Figure 2.2: With only 4 or 8 bytes overflowing , it is enough to overwrite the size field
of next free chunk, which will enlarge the next free chunk. The arrow indicates where
the metadata corruption happens

gethostbyname buffer p free buffer...

artificially enlarged free chunk

malloc_chunk

s fd ... n l     current_block ...

Figure 2.3: After attacker overwriting size field of the adjacent free chunk. When next
time calling malloc(), the program get a over large buffer which contains part of
other buffer. In GHOST’s case, that part belongs to an internal memory allocator and
could be further exploited.

can only manipulate either 4 byte or 8 byte memory blocks of the metadata. How-

ever, in some scenarios, that is powerful enough to further make a critical exploit.

It manipulates the size field of the next free chunk, making the buffer larger than it

should be.Subsequently, when the malloc() function is called again, it will allocate

an artificially enlarged buffer that includes some memory belonging to the next buffer.

As a result, the newly allocated data block might overwrite other data structures in

memory. Figure 2.3 shows the sequence of data structures after the attack has been

implemented.This vulnerability only needs to overwrite a very short range of memory.

It epitomizes the need to secure the metadata as it is become a key target for buffer

overflow attacks.

2.2 Non-Control Flow Attacks

Control flow attacks are some of the most prevalent attacks in recent decades. Control

flow attacks target code pointers so that the adversary can modify the pointers and

hijack the program flow directly. As a countermeasure, effective mitigation mechanisms

have been proposed to protect against control flow attacks, and hence raise the bar

for attackers to launch the control flow attacks. Consequently, adversaries recently
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turned their attention to non-control flow data, which is the critical non-pointer data

that indirectly determines the program flow as well as influences system/program level

settings [29]. For example, non-control flow data can be the variables that control

the system security settings, or the crucial flags that determine the control flow of a

program. These types of attacks are known as non-control flow attacks. These attacks

have been used to implement exploits for severe vulnerabilities, such as those presented

in [178] and [170]. We will focus on the former attack to exemplify the critical nature

of these vulnerabilities.

Case Study. One example of a non-control flow data attack is the recent attack that

targeted the SafetyOption of the IE browser. In 2014, researchers disclosed an attack

against the IE 11 by exploiting one arbitrary memory writing vulnerability without

modifying any code pointers [178]. Traditionally, an attacker has to leverage such a

vulnerability by overwriting certain code pointers first. Later, when this code pointer

is called, the attacker assembles Return Oriented Programming (ROP) gadgets to by-

pass all the defense mechanisms, such as Data Execution Prevention (DEP), Address

Space Layout Randomization (ASLR) and other ROP attack detection and mitigation

methods. As the countermeasures against this type of attacks have become sophisti-

cated, it has been much more difficult, if not feasible at all, for attackers to overcome all

the prevention mechanisms. Alternatively, another attack approach was discovered: a

global variable, SafetyOption, is vulnerable in the sense that it can be modified by any

user with the capability of arbitrary memory writing. Non-control flow data enables

an adversary with arbitrary memory writing capability to simply find and modify the

SafetyOption directly, without overcoming most of the prevention mechanisms, if not

all. The catch is that this attack against the SafetyOption takes advantage of privilege

settings, and therefore grants an adversary the highest privilege.

The same kind of attacks are becoming more and more pervasive[170][27], and a new

field of exploitation has been opened.The underlying root cause is that every component

of a program has the same capability of accessing the program’s whole memory space

without restriction nor verification.
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Figure 2.4: High-Level Overview of MetaSafe

3 MetaSafe Overview

Figure 2.4 provides an overview of MetaSafe’s implementation. MetaSafe’s main

goal is to protect critical data using memory isolation within SGX enclaves. The SGX

enclaves are used to store critical data that should not be accessible directly by user

programs. In particular, MetaSafe uses the enclaves to store heap buffer metadata

that does not need to be accessed by user programs. The heap buffer metadata has

been a target of recent buffer overflow exploits and should be considered critical data.

If a user program wishes to allocate a buffer in the heap, MetaSafe provides a

memory management interface that interfaces with internal critical data access (CDA)

APIs located within the enclave. These CDA API’s can access and modify the criti-

cal data within the enclave while returning only the necessary results to the memory

management interface communicating with the user programs. This restricts the user

programs from indirectly modifying the critical metadata, whether the intentions were

benevolent or malicious.

In addition to the memory management interface, MetaSafe provides user pro-

grams with a suite of APIs that allows the programmer to explicitly protect data that

is considered critical to the program. As we previously mentioned, an RSA private

key is extremely critical data whose exposure can severely compromise a web server.
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The API’s have been implemented in a convenient fashion that does not require many

changes to the original code base. This allows the programmers to interface with the

CDA APIs to protect any specified critical data of a user program.

4 Threat Model

This section presents MetaSafe’s threat model. We assume a Windows operating

system since currently only Windows supports the SGX SDK–an essential component

of our solution. A process of a user application, which runs in the Windows oper-

ating system, has a heap buffer overflow vulnerability or an arbitrary memory access

vulnerability. This user application might employ DEP, ASLR and/or other ROP mit-

igation methods to defend against exploits. However, the adversary has the capability

of arbitrary memory reading and writing in order to tamper with any data in the data

section of the process. The adversary also has the capability of calling malloc() and

free() as many times as needed to arrange the heap memory layout. Additionally,

the attacker can overflow a heap buffer in order to overwrite adjacent memory. This

attacker may also know how to pass malicious inputs so as to transgress the boundary

of a heap buffer, exploiting the heap buffer overflow vulnerability in order to hijack

the control flow for execution of arbitrary code. To protect against such a powerful

adversary, we assume SGX is available, which provides a hardware-separated memory

space for sensitive data/code.

5 Design

In this section we will provide an overview of the design of our critical data protection

mechanisms that are implemented using SGX enclaves.

5.1 Program Isolation

The Software Guard Extensions (SGX) technology was developed by Intel to provide

an isolated space for selected data and code storage and execution. In general, SGX

could provide one or more isolated enclaves inside of a process. An enclave is an isolated
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region of code and data which is protected by the processor’s hardware. Only code that

runs within the enclave can access data within the same enclave. Furthermore, other

parts of the program cannot execute the code within an enclave. Outside programs

can only execute calls (ECALL) using the enclave interface, which is predefined using

an Enclave Definition Language (EDL) file. EDL files describe enclave trusted and

untrusted functions and types used in the function prototypes. The code that runs

within the enclave can access data outside of the enclave, but it also cannot directly

execute the code outside. This also needs to be predefined (OCALL) by an EDL file.

This protection can prevent vulnerable code from running within an enclave from being

attacked and taken over the whole outside program. Now that we have presented the

general overview of SGX, we will briefly discuss individual components and similar

technologies along with their differences.

The Enclave Page Cache (EPC)[73] of SGX is a protected area of memory used to

store enclave pages. It’s part of DRAM, but cannot be accessed by other programs. It

is also protected by an encryption engine, so when one enclave page is being swapped

out to normal DRAM, it’s content is encrypted. The page is also 4KB aligned. Each

page is either free or belongs to one enclave. The security attributes of EPC pages are

stored in the Enclave Page Cache Map (EPCM). Each entry represents one EPC page

and includes information such as the validity accessibility of the page, which enclave

owns the page, the type of the page, read/write/execute permissions of the page, as

well as the linear address through which the enclave is allowed to access the page.

A few new instructions are needed to support SGX. Some are privilege instructions,

i.e., EINIT to initialize an enclave, EADD to add a page into enclave, and EEXTEND

to measure a page. The rest of the new instructions are user mode instructions, i.e.,

EENTER for calling a function inside an enclave, EEXIT to allow code running inside

enclave to exit to the normal world, as well as ERESUME to allow the code to reenter

the enclave.

SGX is a the successor of Intel’s Trusted Execution Technology (TXT)[168]. TXT

similarly provides a secure environment, but it has to be either at the boot stage of a

system or when the entire system is paused. It resets the CPU and runs into a secure
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environment while auditing every piece of code that runs subsequently. This solution

is not very convenient for user mode programs.

Another isolation solution is the ARM TrustZone[3]. This solutions provides two

separate worlds for code storage and execution: a normal world and a secure world.

Code running inside the secure world has a higher privilege and can access the phys-

ical memory space of the normal world, while the code running in the normal world

cannot access the memory of the secure world. The two worlds communicate through

a privileged mode in the ARM CPU called Monitor mode. You can run two operating

systems simultaneously in two worlds.

SGX is more flexible in the sense that you can create many enclaves in one system,

or even in one process. When the code inside one enclave is scheduled to run, other

parts of the system don’t freeze.

Processes can be easily used as a mechanism to provide isolation. Code running

within one process uses inter-process communication to access other processes’ data.

The operating system provides several mechanisms for inter-process communication,

such as shared memory, socket communication, and named (or unnamed) pipes. But

if every system mechanism needs to isolate data through multiple processes, it would

be too many processes to maintain for one single program. Each additional process

will require extra system resources, such as page tables. This obviously is not an

optimal design. We evaluated the performance for the most commonly used inter-

process communication methods for data isolation in the evaluation section.

The system/user mode architecture also provides isolation. However, x86 architec-

ture only provides one kernel mode and three user modes. Furthermore, most operating

system implementations include only one kernel and one user mode. In addition to these

limitations, bringing isolated data into kernel mode is impractical as the kernel mode

cannot provide fine-grained isolation for each process. Since the kernel mode has a

higher privilege. Any additional code and/or data would increase the possibility that

the system being compromised.
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5.2 Secure Heap Management

One decade ago, computer memory scarcity was the main concern when implementing

memory allocators. Intuitively the allocator gives the exact amount of memory for a

buffer that the user requested, and a free list is used to manage the buffers. Free lists

are essentially doubly linked lists and are a common data structure used by allocators

such as dlmalloc and the Windows memory allocators. The doubly linked list and

other information such as the size of the buffer is considered metadata. The memory is

used efficiently and the adjacent free buffers could be merged in order to satisfy larger

allocation requests and reduce fragmentation. Since buffers including metadata are next

to each other, the drawback is obvious. Once there is a buffer overflow, metadata could

be easily overwritten. An attacker could construct special allocate and free requests

with overflowed data in order to manipulate the metadata for an exploit.

Jemalloc has a different design. There are many fixed-size regions1 in jemalloc.Regions

are stored and managed by a run. One run is just a continuous piece of memory with

the same-sized regions placed adjacently in memory. There is no metadata between

the two regions (although there could be several bytes used as a red zone, those are

not considered as metadata). Because there are no link pointers there, the attacker

can only modify adjacent buffers with a buffer overflow–a different attack that is not

considered in our paper. The aforementioned attacks against dlmalloc will not succeed

in this case.

Although jemalloc protects against this particular attack, metadata still exists in

several components of jemalloc, such as the run header and the chunk header. The

attacker can still manipulate the memory allocation pattern in memory and leverage

heap buffer overflows to overwrite these components[9]. This metadata exists between

buffers or within the safe page of other buffers and is especially vulnerable to buffer

overflows. In the x86 architecture, memory protection can only be applied in a page

granularity, so you cannot simply separate the metadata by putting guard pages[106]

between them. This solution would not be practical as it would require a vast amount

1Jemalloc refers to buffers as ”regions”
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of memory overhead (4KB per page). In order to protect the metadata, it should

be separated from user buffers. Therefore, we will extend concepts of jemalloc. All

metadata is gathered together by design and separated from the user buffers, such as

the run header and the chunk header. This metadata can exist independently at any

location in memory.

Additionally, the integrity of the metadata will need to be verified. There have

been many techniques to protect metadata from buffer overflows, e.g., the Windows 8

heap allocator uses a guard page to isolate metadata from user buffers. Furthermore,

solutions have been implemented on the x86 platform that use segment registers to

isolate a range of memory [87]. However, these segment protections are not available

on x86-64 platforms, which is too important to ignore nowadays. Although there have

been other integrity checking and metadata encryption solutions to prevent malicious

tampering of the metadata, these solution still leave metadata in a place where attackers

can reach. It is impractical to verify or encrypt all the metadata every time there is a

memory allocation request. We will discuss more of these mechanisms in the Section 8.

We propose a heap implementation called sgx malloc() that leverages the en-

clave capabilities of Intel’s SGX.Our design further proposes to have the metadata

separated in memory by hardware. The metadata will be saved inside an enclave

with all operations on metadata running inside the enclave as well. Functions such as

malloc() and free() are divided into an internal portion located within the enclave

and an external memory management interface. The memory management interface is

responsible for interfacing with the user programs and requesting memory pages from

the operating system. The internal portion runs inside the enclave and is responsible

for metadata related operations such as calculating the address of each allocation or

a buffer freeing request. Since there is absolutely no metadata exposed in the user

memory space, an attacker cannot corrupt the metadata using the aforementioned vul-

nerabilities.

Several concepts from jemalloc have been adopted. We use almost the same ter-

minology, such as region, run and bin, to compose the metadata of sgx malloc().

Similarly, we have a arranged the memory into equally sized regions to form runs. Runs
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...

...

32 bytes regions

48 bytes regions

Figure 2.5: The same size region are within one run, regions are next to each other, no
metadata between them

use allocation bitmaps to record which region is used. They have several predefined

types, such as 8-byte, 16-byte and 32-byte runs. The size of a run corresponds to the

size of the regions in a run, e.g., an 8-byte run has 8-byte sized regions. Figure 2.5

depicts how regions are laid out within runs. The number of regions contained in a run

varies. The key difference between jemalloc and sgx malloc() is that our solution

stores metadata inside the enclave as opposed to inside a virtual page in memory. We

also use bins to manage multiple runs of the same size. A bin is composed of a red-black

binary tree to trace all the locations of the same size runs. This allows subsequent mem-

ory allocations to start at the lowest possible end of memory to reduce fragmentation.

Figure 2.6 provides an overview of the sgx malloc() metadata storage. Memory

requests that larger than 1KB are considered large. We also use a red-black binary tree

to manage such memory allocations.

The sgx malloc() request is initially not aware of any page information for al-

location. Therefore, the first sgx malloc() request cannot be satisfied immediately.

For example, if the user requests 20 bytes of memory to be allocated, the external mem-

ory management interface of sgx malloc() will send a request to allocate 20 bytes

while the inner portion, implemented as a separate function called i sgx malloc(),

will find that no run has been created yet by checking bin32. Therefore, a new 32-byte

run is needed. The i sgx malloc() function will return a value to notify the exter-

nal memory management interface while providing the size of memory that is needed (in

units of pages) and the type of run that is needed. The external memory management

interface then requests pages from the operating system. Once the operating system

has satisfied this request, the address of the allocated pages and the type of the run

are both sent into enclave by calling the i newrun() function. The i newrun()
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Process memory space

Enclave memory

16-byte run
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Figure 2.6: sgx malloc() metadata is stored inside one enclave, in only contains the
information that where the run is located in memory and which region in that run is
used

function creates a new run of the specified type. The sgx malloc() function will

then call i sgx malloc() to complete the previous request, which can be satisfied

given the newly created run. Through the existing run, the region address is calculated

and returned to the memory management interface to be returned to the user program.

The process for sgx free() is implemented similarly. After passing the buffer

address into the enclave, the inner portion finds the right run by going through the cor-

responding bin. After a series of validity checks, the corresponding bit in the allocation

bitmap of the run is set if the region is valid.

It is worth noting that heap metadata needs sufficient space to grow. In current

design, we reserve enough memory pages in the enclave to store it. Although the

current version of SGX (1.0) cannot dynamically extend the enclave memory space,

later versions will have the ability to add more pages to an enclave at runtime[72].

5.3 Protection of User Program Critical Data

The aforementioned solution protects metadata and related functions by packaging

them together into an enclave. We will leverage a similar means of protection that

provides a mechanism to protect critical data of a user program.
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int g_security_settings = 0;

int set_security(Token* token)
{

if (PASS == check(token))
{

sgx_store_data(&g_security_settings, 2);
}

...
}

int func( ...)
{

int tmp;

tmp = sgx_get_data(&g_security_settings);

if (2 == tmp)
printf("Running as administrator.\n");

else
printf("Running as user.\n");

....
}

Enclave

...
0x0018ff28: [0x00000000]
...

data

code

sgx_store_data()

sgx_get_data()

Other APIs ...

CDA_Create() {...}
CDA_Read() {...}
CDA_Write() {...}
....

Internal CDA API

Figure 2.7: Memory layout of user program protection through enclave.

In this context, critical data refers to non-control flow data, i.e., data that is not a

code pointer but can be used indirectly to corrupt a program. When an attacker hijacks

a code pointer, in theory he can run arbitrary binary code. In practice, the attacker

needs to find a way to bypass all the related protection mechanisms in addition to

finding a way to place shellcode in a reachable location. Although it has become more

and more difficult for an attacker to exploit fully protected software, we have presented

a case study where the corruption of a single byte in memory can defeat all the security

protections.

We used the enclave implementation to provide a safe location to store critical data

and non-control flow data in the process memory address space. We use the data’s

address as an index for storage since the memory address is unique to a process. Inside

the enclave, we use a red-black binary tree to improve search efficiency. When a process

starts, we first create and initialize an enclave. When the data needs to be stored, one

of the APIs is called to provide the data’s address and value. The API will update the

value at an address if the value has changed since the last call.

Figure 2.7 depicts how the corresponding metadata is stored inside an enclave. This

application can prevent a typical DOP attack[64] which leverages the vulnerable local

variable to achieve an arbitrary memory write attack. Essentially, in order to elevate
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privileges, the DOP attack will modify global settings of the vulnerable program, e.g.,

the SafetyOption in the IE browser in the case study we previously presented. We

consider this non-control data as critical data. Logically, such settings should not

be accessible by an unrelated part of the program. In the case of the IE browser, the

SafteyOption should not be accessible by the web content. Only the logically related

functions need to call APIs to access it. In some sense, it binds the critical data and

the member functions together. The critical settings should exist only in the enclave

and registers. The ideal circumstance is that no temporary local variables are used and,

hence, no memory leaks and tampering are possible. But in practice, it’s difficult to

assign a register exclusively to hold an variable in a high level programming language.

Local variable is used in a short amount of time, but the attack surface is reduced

significantly.

6 Metasafe Implementation

In this section we present the implementation details for our aforementioned solution.

We propose two ways to protect data using an enclave. One requires that the data

and its associated functions are closely integrated with the enclave. Data is stored

in the enclave and there is no corresponding variable declared outside of the enclave.

Data associated functions contain inner functions that work inside the enclave and

outer functions called by user programs as an interface. Data and functions are packed

together as an independent library, providing services to the user program.

Memory Management Interface. In order to implement the sgx malloc() API,

we offered a set of standard C runtime library functions use for memory allocations.

Namely, we implement custom versions of malloc, free, calloc, realloc and -

msize. Furthermore, we provided two more functions, sgx malloc init() and

sgx malloc uninit, to initialize the creation of the enclave as well as to cleanup

the resources of enclave when the program is finished, respectively.

We used Intel Software Guard Extensions Evaluation SDK for Windows OS to com-

pile our sgx malloc() library. The sgx malloc() function that was implemented
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to replace malloc(). Other functions such as calloc() and realloc() could be

seen as its derivatives. As mentioned previously in Section 5, sgx malloc() is di-

vided into two parts. The inner part or trusted part is the set of functions that access

the internal metadata. The sgx malloc() function is the wrap of the enclave inner

functions such as the i sgx malloc() and i sgx newrun() functions. These

functions are in a stand alone library. Those are real enclave interfaces which will be

defined through the EDL (Enclave Definition Language) file.

Furthermore, we implemented sample wrapper functions to interface with the critical

data access API (CDA API) inside the enclave for user programs. Figure 2.7 depict

a sample program that use the MetaSafe APIs to store and retrieve critical data.

The functions sgx store data and sgx get data are intended to be wrapper

functions for storage and retrieval functions implemented by the user program. These

sample APIs simply demonstrate that MetaSafe’s APIs can be extended beyond the

protection of just heap metadata.

Critical Data Access Management. We created a common critical data access

(CDA) broker mechanism to provide critical data in the SGX domain. The broker

system includes three parts: 1) the critical data manager 2) the critical data access

broker and 3) the critical data access stub. Both the critical data manager and the

broker are running within SGX inside. The stub code is outside of SGX and provides

the stub functions for a set of APIs.

The full list of the CDA components is as follows: Critical Data Manager: The

critical data manager provides the functions for SGX memory allocation and deallo-

cations, reading and writing data, as well as encryption/decryption. Critical Data

Access Broker: The critical data access broker defines the broker request command

for a stub to use. Critical Data Access Stub: The critical data stub provides a set

of APIs to the application for critical data isolation usage. Within the APIs implemen-

tation, it creates broker request per API.

The system also provides a set of APIs for importing and exporting data, creating

and destroying critical data, reading and writing critical data, as well as encryption/de-

cryption. The list of APIs is as follows: cda import: The import API can be used
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Figure 2.8: sgx malloc() overhead in five non-trivial open source application.

to import critical data if the data has to be initialized by code outside SGX. Once

critical data is imported into SGX, it will keep as secret from any code outside SGX.

cda export: The critical data within SGX usually should not be exported to an

outside SGX. For certain cases, export APIs can be used to export critical data if the

import parameter indicates the data is exportable later. Otherwise, the API just fails.

cda create: The Creation API is used to create a dedicated size SGX buffer for

critical data, which can be read or written later. This can indicate the read/write per-

mission for late usage. cda destroy: The Destroy API is used to destroy the SGX

buffer which keeps SGX memory for critical data. cda read: The Read API provides

the functions to read critical data with SGX. cda write: The Write API provides

function to write critical data with SGX. cda encrypt: The Encrypt API provides

some encryption capability once the key is imported into SGX as critical data. The

application can use this API to encrypt data with the imported key. cda decrypt:

The Decrypt API provide some decryption capability once the key is imported into

SGX as critical data. Application can use this API to decrypt data with imported key.

7 Evaluation

In this section, we will demonstrate the utility of sgx malloc() in protecting meta-

data from exposure in user program memory. We evaluate the performance overhead
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Figure 2.9: Local memory access, commonly used IPC methods and SGX’s performance,
each access is repeated 10000 times.

of our memory allocator. We also demonstrate the utility of our SGX CDA API. We

provided a sample use case in which the API was used to protect the private key of

the corresponding web server certificate in openssl, which was the first priority target

of the Heartbleed exploit[46]. The experiments were performed on a 64-bit Windows

10 Operating System running on a 6th generation Intel CPU with SGX enabled. The

Intel SGX SDK was also installed on the operating system.

Overall Performance. We chose five non-trivial open-source applications to demon-

strate the practicality of our solution. Each of the applications was modified to use

our memory allocator APIs. Most importantly, our solution can hide the heap meta-

data with a guaranteed hardware-separated memory mechanism, reducing the attack

surface by design. We use a program to show that even though the metadata’s address

is known to the attacker, it still cannot be corrupted. We also apply our solution to

previously mentioned software whose glibc library is vulnerable to the aforementioned

GHOST exploit. It is obvious that once the memory allocator is changed, the attack

mostly likely won’t work. However, we show that there is no attack surface for the

metadata. Although an attacker can still exploit heap overflow vulnerabilities, e.g.,

by overwriting adjacent application data structures, the attacker cannot leverage the

metadata for exploitation purposes.

Figure 2.8 shows the performance overhead of sgx malloc() in the five open
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source applications. The first two open source applications are widely used web servers:

Nginx and nullhttpd. We test their performance by counting the response time per

request after modifying the applications with our APIs. The overhead is low due to

the web servers only needing a few malloc calls to complete one web request. We also

measure the performance overhead in our sgx malloc() solution. We run a pair

of sgx malloc() and sgx free() calls 10000 times to accumulate time. As a

comparison, we take the inner part of allocator out of enclave and convert it into a

set of normal functions. Although our heap allocator algorithm is relatively easy, the

process causes about a 400 percent overhead. The overhead is mostly due to the cost of

SGX runtime library calls and environment switches caused by the SGX instructions.

Although the performance overhead is relatively high, the solution provides a much

stronger security guarantee. For the purpose of testing, and because the heap allocator

is considered a public resource for the whole system, we use a debug version of the

enclave which supports software debugging and use a test private key stored in the

build system to sign the generated enclave file. A certificate may not be needed for the

release version of enclave code as operating systems can police the launching of certain

enclaves. This could also improve the performance overhead in further.

Another alternative isolation technique is to place the critical data into another

process space. Programs can make an inter-process communication call to the other

process asking for data. We list several common methods to exchange data between

processes and measure their performance.

Figure 2.9 shows the performance for several commonly used inter-process commu-

nication methods. The test involved simple accesses of a variable in another process.

To accumulate the result, each access is repeated 10000 times. Direct access to the

memory address space costs less than 1 millisecond of performance time. Shared mem-

ory accesses, which is the fastest inter-process communication mechanism, also cost less

than 1 millisecond. The operating system maps memory pages in the memory address

space of two or more processes. Underneath different processes access the same physical

pages. Its performance is the same as direct memory access within a process. However,
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Web Server

OpenSSL
If (enclave not initialized)
{
    sgx_init();
    sgx_load_privatekey(...);
}

…

ssl3_get_client_key_exchage(...)
{
    ...
    RSA_private_decrypt(cipher, ...)
    {

...
sgx_rsa_decrypt (cipher, cleartxt...);

    }
}
...

Enclave

RSA Private Key

data

code

sgx_load_privatekey()

sgx_rsa_decrypt()

Other APIs ...

CDA_Create() {...}
CDA_Read() {...}
CDA_Write() {...}
....

Internal CDA API

Figure 2.10: MetaSafe implementation of OpenSSL with SGX enclave. The RSA
private key is stored in the enclave, while MetaSafe provides an interface to the
internal CDA APIs that facilitates typical functions with the RSA private key, such
as decryption. This mechanism would protect the RSA public key in spite of zero-day
exploits such as the Heartbleed vulnerability.

it does not provide any security guarantee such as isolation. Socket and named/un-

named pipe communication are commonly used for inter-process communication. Our

results show that SGX performs better.

Case Study: Heartbleed Defense. The HeartBleed is a serious vulnerability in the

OpenSSL library. The vulnerability allows the stealing of critical information that is

normally protected by SSL/TLS encryption. The vulnerability is due to a bug in the

tls1 process heartbeat() and dtls1 process heartbeat() functions. In

a nutshell, an attacker can specify an arbitrary memory size for a message request

regardless of the actual size of the message. Therefore, an attacker can return a buffer

much larger than the expected message, leading to possible information leaks.

An attacker can read up to 65535 bytes of the server’s memory. The memory may

contain confidential information such as user names and passwords of web applications

or it could leak memory layout information for a future attack that wants to bypass

ASLR protection mechanisms. Even more critically, the private key of the web server’s

certificate can be exposed. With the private key in hand, an attacker can pretend to
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be the legit web server using HTTPS. Once this happens, the certificate may not be

recoverable. The owner of the server needs to revoke the certificate and redistribute a

new one. Therefore, we implemented the OpenSSL library with MetaSafe in order

to provide an example as to how critical data such as the private key can be protected

from a vulnerability like Heartbleed.

Figure 2.10 depicts our implementation of part of the OpenSSL SSL3 protocol.

This protection was implemented by first loading the encrypted private key in PEM

format into the enclave. When required, the key is decrypted inside of the enclave. The

password for the PEM file is later sent into the enclave. After use, it will immediately

be erased from memory.

The MetaSafe implementation of this protocol required modification of a few

OpenSSL functions. Because the RSA private key is now stored in the enclave, essen-

tially any function that directly accesses the RSA private key needs to be modified to

call the associated MetaSafe API function call. For example, the RSA private -

decrypt() function is used to decrypt the RSA cipher. We modified the RSA -

private decrypt() function to call the MetaSafe function wrapper sgx rsa -

decrypt(), which passes the cipher’s address into the enclave and lets the built-in

functions inside the enclave copy the value of the cipher. A buffer is also provided to

receive the clear text. Within the enclave, we did not implement our own version of the

RSA algorithm. We ported a version from the mbedTLS library. Because the functions

are inside the enclave, the functionality of several of the APIs are rendered useless. For

example, any APIs that involve I/O operations, calls to system services, or references

to Win32 APIs cannot be implemented within the enclave directly. Only a limited C

runtime library is available for use. To make it more straight forward and safe, any

outside enclave system API is not used.

Performance Overhead and Exploitability. Because the RSA key exchange algo-

rithm is only used once per session, the performance overhead introduced byMetaSafe

implementation is almost 0. The only overhead introduced are the additional instruc-

tions used to call the functions of MetaSafe’s OpenSSL function implementations.
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Additionally, we evaluated our modified version of OpenSSL against the aforemen-

tioned Heartbleed exploit. We used an implemented Metasploit module that is used to

exploit programs with the Heartbleed vulnerability[119]. Furthermore, we usedWinDbg

[142] to observe the memory manually to see if the private key was exposed. In both

cases, the private key was securely stored in the SGX enclave and could not be accessed

by either method.

Case Study: IE Browser Simulation. Since we cannot test our solution against

the arbitrary memory writing vulnerability in the IE browser, a custom program is

made to simulate the same environment. As Figure 2.7 depicted, g security -

setting is the global variable that needs to be protected. Assuming the attacker has

the capability of arbitrary memory writing, if g security settings is changed

anywhere besides the function set security() using sgx store data() and

the value that function func() receives is equal to 2, then the attacker is considered

to have escalated privilege.

We assume that the program first calls set security(), which verifies the token

and sets g security settings to 0. In between set security() and func(),

the attacker finds the address of g security settings in memory and uses an

arbitrary memory writing vulnerability to set it to 2 in order to escalate privilege.

Later, func() is called to check the program’s privilege and perform correspondingly.

sgx_store_data(&g_security_settings, 0);

...

g_security_settings = 2;

...

func();

The results show that even though g security settings is set to 2, func()

still gets the correct value of 0.

The global variable g security settings that is defined in the program is just

a placeholder. It provides an index into the private data inside of the enclave. Since

the enclave memory space is protected by hardware, an attacker cannot access them

unless there is a call to the corresponding functions. We also tested the case in which an

attacker gets the address of the private data that represents g security settings
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in enclave memory and tried to access it directly. This resulted in a memory access

violation being raised.

There is still a footprint left in the program’s memory. The temporary variable

tmp will hold the real value of g security settings for a limited amount of time.

This means that once the real value is transferred from the enclave to a temporary

variable that exists on the stack, it will still be vulnerable to buffer overflows within

the function. This is demonstrated in the following assembly code representation of the

function func().

...

tmp = sgx_get_data(&g_security_settings);

011D161E push 11D9130h

011D1623 call _sgx_get_data (011D10E6h)

011D1628 add esp,4

011D162B mov dword ptr [tmp],eax

if (2 == tmp)

011D162E cmp dword ptr [tmp],2

011D1632 jne func+4Dh (011D164Dh)

...

We argue that the attack surface is reduced significantly. Because the address of

the local variable exists on stack as a variable, it depends on the call stack. Once

the function returns, local variables will be invalid even when there is a reentry to

the function. Furthermore, ASLR makes it more impractical for the address of the

local variable to be a target for arbitrary memory writing. We also argue that the

local variable should not hold the value for too long before use, while value should be

retrieved every time.

8 Related Work

In this section we investigate the state-of-the-art implementations of the heap. To

address those weaknesses in various heap implementations, many mitigation methods

focusing on protecting heap metadata have been introduced into the representative
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memory allocators in the past decades. We analyze several popular mitigation ap-

proaches and notice that, as a result of integrating effective protection mechanisms, it

has become less likely nowadays for an adversary to overwrite heap metadata (e.g., a

doubly link list implementation) directly to achieve the capability of arbitrary memory

writing. However, the adversary may still be able to overwrite heap metadata to steal

the control of users’ internal data, such as objects and settings, and hence exploit a

further advantage.

Dlmalloc and ptmalloc. Dlmalloc is one of the most widely used memory allocators.

Another well-known memory allocator ptmalloc, which is based on Dlmalloc, is the

default memory allocator for GNU libc in Linux systems. One important feature of

Dlmalloc and its derivatives, such as ptmalloc, is the inband metadata, which consists

of chunk size and usage flags. An unallocated chunk uses a doubly linked list pointing

to other available chunks. The use of the doubly linked list data structure is convenient

for legitimate users. However, it also facilitates attackers as once there is a buffer

overflow that overwrites the doubly linked list, attackers can easily access arbitrary

memory space. To address this issue, a link pointer checking mechanism is introduced

later. Unfortunately, this improvement is not sufficient enough, and there are still other

ways to leverage a heap buffer overflow. Take the GHOST vulnerability which was

discovered in 2014 [130]. The adversary overwrites the size field of the next contiguous

free buffer to a larger size than it should be. This leads to overlapping the internal data

structure of the user software, which is the Exim’s internal memory allocator. This

leads to an overlap of the internal data structure of the user software, known as Exim’s

internal memory allocator, and makes the internal data structure subject to malicious

modification, such as arbitrary memory writing or information leakage.

Windows heap. Many vulnerability mitigation techniques have been implemented

for the Windows heap since Windows XP SP2. They generally fall into two categories:

metadata protection and non-determinism [155] [159] [171]. Because the majority of

public exploitation techniques have traditionally relied on the corruption of one or more

heap data structures, metadata protection is their focus. Windows heap uses free lists,

which are are several doubly linked lists for different memory chunk sizes ranging from
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16 bytes to 1024 bytes[116]. Although the free list data structure is fast, it relies upon

metadata, making the structure a target for attackers. The technique to exploit a

doubly linked list is the same as used in the dlmalloc exploit, in which an attacker

uses the unlink operation performed during the coalescing of three chunks to achieve

the capability of arbitrary memory writing. Since Windows XP SP2, integrity checking

has been implemented to verify the process of unlinking any list. The integrity of

the structure member Entry->Flink->Blink is verified. With our jemalloc design, we

already prevent similar attacks by design.

Several mitigation techniques have also been applied to protect the metadata in the

heap manager from corruption, such as the use of a heap entry header cookie, heap

entry metadata randomization, and function pointer encoding. For example, an 8-bit

random value was added to the header of each heap entry to be validated when a heap

entry is freed. In Windows Vista, the cookie is extended into a random 32-bit value

which is XORed with each heap entry. The heap manager then unpacks and verifies

the integrity of each heap entry prior to operating on it[103][152][154]. It’s become very

difficult for the attackers to abuse the heap metadata without crashing the program.

Furthermore, Guard Pages have been used for heap management since Windows 8.

They are added added between HEAP USERDATA HEADER objects. Therefore,

an overflow will need to exist in the same UserBlock in order to be effective. However,

one guard page is very costly, using 4KB of memory (one page) just to act as a tripwire.

To reduce the overhead, the Windows 8 heap manager decides to add guard pages for the

subsequent UserBLock only when one user block is big enough. This allows attackers to

avoid the the trigger guard page by finding an unprotected portion of the metadata[179].

In Windows 8, an attacker can manage to overwrite HEAP USERDATA HEADER’s

FirstAllocationOffset. This allows the attacker to control the allocation of new proper-

sized objects.

From the evolution of Windows heap manager we can see that the reason for most

vulnerabilities is not because the heap manager is poorly implemented. The vulnerabili-

ties arise when programs use the heap buffer improperly so that they are left susceptible

to buffer overflows. When a buffer overflow happens, metadata is no different than any
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other part of memory and hence is vulnerable to any overwriting. In our design, we

propose that the metadata be placed inside of an enclave. The chances of the heap

manager internal functions inside the enclave having vulnerabilities is very low. If bugs

are found, they can be fixed without changing any of the data structures.

DieHarder. Dieharder[124] stores metadata separately from user buffers. To prevent

metadata from being overwritten, it also uses a guard page for isolation. This solution

could be vulnerable to arbitrary memory writing vulnerability, even though with such

an ability an attacker may choose a more valued target such as critical global settings.

9 Conclusions

In this paper, we presentedMetaSafe, a solution that leverages Intel’s Software Guard

Extensions (SGX) to provide hardware-separated memory space using enclaves to pro-

tect critical data, especially the metadata of certain APIs. In particular, we imple-

mented a novel set of heap management APIs that leverage Intel’s SGX to protect

against tampering of heap metadata by securing the critical data within SGX’s en-

claves. MetaSafe protects critical data from buffer overflow attacks, including the

novel set of buffer overflow attacks on non-control data such as DOP attacks. Addi-

tionally, we introduced a suite designed for ease of use so that the programmers can

protect and manage critical data in the user programs without significantly modify-

ing the current programming model. We evaluated the practicality and overhead of

MetaSafe on several open source projects and found the results to be very promising.

Furthermore, we implemented a use case that shows how MetaSafe can be used to

protect against the exposure of critical data of user programs via zero-day exploits such

as the Heartbleed vulnerability.
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Chapter 3

Use-After-Free Mitigation via Protected Heap Allocation

1 Introduction

Despite ongoing battle against software attacks, memory corruption vulnerabilities are

still discovered in popular applications and exploited to provide adversaries with ca-

pabilities such as remote arbitrary code execution. Specifically, use-after-free (UAF)

vulnerability, as a class of memory corruption bugs, play a dominant role in exploiting

complex software packages. UAFs are prevalent in latest releases of popular browsers

such as Tor, Internet Explorer, Chrome, Safari, and Firefox [115].

According to the Common Vulnerabilities and Exposures (CVE) statistics, almost

one in every five reported arbitrary code execution vulnerabilities in 2016 originated

from UAF bugs [110], where a pointer to a freed object is dereferenced by mistake.

More specifically on Firefox, out of the 420 CVE vulnerabilities between 2014-2016, 194

(46%) were UAF vulnerabilities [41]. In Pwn2Own 2014 [63], an annual contest among

hackers and security research groups, the VUPEN team was awarded with the largest

cash amount, $100,000, for a single UAF exploit that affects all major WebKit-based

browsers. A common exploitable feature of the aforementioned software is their client-

side scripting support (e.g., JavaScript and ActionScript). This enables adversaries

to invoke memory allocation and rearrange memory layout in order to complete the

attack by sending in the malicious payload, e.g., return-oriented programming (ROP)

chain [136].

Despite deployed mitigations by various software vendors (e.g., Mozilla, Apple,

Google, and Microsoft) and research groups, defense against UAF exploits remains

unsolved. Noteworthy attempts to address UAF include heap canaries [135], memory
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isolation (e.g., isolated heap (IH) [117]), deferred freeing (protected free [59]), pointer-

seeking garbage collection (e.g., MemGC [172]), and random heap allocation schemes

(e.g., DieHarder [124] and Windows 8 low fragmentation heap (LFH) [158]). As a re-

cent mechanism in real world, Microsoft IH [101] allocates different memory regions

for different “types” of objects. This makes it difficult for the adversaries to replace a

freed object content in the isolated heap with controlled malicious data. As the result,

IH assumes all pointer dereferences later are safe. Although IH raised the difficulty for

UAF attacks, it was later broken [2].

In this paper, we present ZEUS that protects web browsers against UAF exploita-

tions using fine-grained randomness. Although coarse-grained randomization plays a

major role in memory security nowadays, it still cannot completely protect against fine-

grained attacks such as UAF in web browsers [117]. We show that fine-grained object

address perturbation can prevent certain UAF exploits in web browsers. ZEUS makes

the memory allocation outcomes locally unpredictables. Hence, even in the presence of

UAF vulnerabilities, the adversaries cannot precisely align past (freed) and currently

allocated object images and the corresponding in-object member fields.

Upon each allocation, ZEUS perturbs the object addresses randomly given an extra

memory buffer within the same allocation region. The introduced random prefix offset

at the beginning of each allocated object prevents the adversaries from refilling the

exact target freed memory addresses with malicious content. Consequently, the follow-

up dereferencing of the misaligned malicious content results in a process crash due

to segmentation faults. ZEUS also provides protection against later stages of UAF

exploitations. In a typical UAF scenario, the adversary launches a code reuse (e.g.,

return-oriented programming - ROP) attack after refilling a recently freed memory. The

payload is previously prepared in memory using heap spray mechanisms [124]. The first

gadget in code reuse is often stack pivot [43] to switch stacks. ZEUS’s nondeterminism

provides an extra layer of defense against precise determination of the stack pivot

address in sprayed heap regions.

Compared to existing UAF mitigations, ZEUS provides a application-agnostic al-

ternative, i.e., it provides protection for closed-source software binaries without the need
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for tedious discovery of individual UAF vulnerable points. ZEUS’s unpredictable allo-

cation outcomes prevents UAF exploits that require exact object alignment and often

rely on deterministic memory layout. Incorporation of randomness into memory alloca-

tion have been introduced in the past work [124]. These include fundamentally different

solutions such as randomization of the heap’s base address [18], random heap chunk

sizes [74], random chunk selection [158], and random heap meta-data location [124].

All the past work that use non-determinism randomly modifies the location and size of

each heap object to be aligned at the multiples of its size. This leaves them vulnerable

to heap spray attacks that make sure one of the sprayed locations aligns with the target

freed object. ZEUS deploys fine-grained non-determinism within each region. It intro-

duces prefix random offsets to individual objects independently, and violates in-object

member field alignment.

We have implemented and validated ZEUS against several CVE vulnerability ex-

ploitations in large and popular software packages such as Firefox and Tor web browsers.

ZEUS terminates the exploits at early stages of the attack in all those cases with neg-

ligible 1.2% runtime performance overhead. ZEUS requires additional dynamic mem-

ory space because of introducing random allocation offsets. The overall extra process

memory requirement can be adjusted to optimize the trade-off between lowering the

success probability of an exploit and smaller additional random offsets. Based on our

experiments, lowering the probability of an attack against Firefox’s CVE-2016-9079

vulnerability to 0.0069 leads to 15% of overall extra memory space. Given ZEUS’s

very low runtime performance overhead, we believe it is suitable for most practical set-

tings, where dynamic performance overhead is penalized much more heavily compared

to extra memory requirements.

The contributions of this are as follows:

• We propose ZEUS, a secure practical memory allocation design that prevents

UAF vulnerability exploitations by using fine-grained randomness.

• We implemented ZEUS and applied it to well known complex and large scale

software packages (Firefox and Tor web browsers).
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• We validate ZEUS against several CVE exploits. Our results show, with negligi-

ble performance overhead (1.2% on average), ZEUS is resilient to sophisticated

bypassing techniques.

Threat model. We focus on protecting web browsers against UAF exploitations. We

assume the adversary has the power to launch remote attacks and allocate and free

objects at will to exploit UAF vulnerabilities. As shown in practice, such attacks are

most useful against software packages that combine client-side scripting languages with

back-end operations such as web browsers, where the adversary has the unlimited ability

to allocate and free objects through executing JavaScript or Flash code. This model

thus assumes the worst-case for prime attack targets in the real world. Furthermore,

unlike server applications, web browsers’ context does not facilitate repeated brute-force

attacks for the adversary to repeatedly launch the attack if the previous attempts fail.

In a web browser, if the first attempt fails and causes the browser to crash, the user

may not attempt to reload the page. The attack has often only one chance to succeed

per target. Therefore, ZEUS does not assume repeated attacks as its threat model.

2 ZEUS’s Design

ZEUS’s objective is to prevent UAF exploitations in real software systems, where

there may be no knowledge about the source code details or access to the source code

at all. The recent emerging popularity of UAF exploitation among malware in the

wild, their success despite the existing proposed defense mechanisms, and complications

of discovering UAF bugs in large software packages further motivates the need for a

practically deployable protection scheme.

The core reason that UAF attacks succeed is the adversarial knowledge and possible

control over the exact fine-grained heap memory data layout. Predictable layout leaves

many of the existing mitigations ineffective. For instance, a recent exploit [2] leveraged

the fine-grained determinism in memory layout to complete the UAF steps for remote

code execution despite Microsoft’s state-of-the-art IH defense.

ZEUS redesigns heap allocation functionality such that every allocation leads to
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a proceeding offset of a random length before each memory object. For backward

legacy compatibility and to ensure the randomness will not compromise the heap lay-

out maneuver (so-called heap massage [151]), ZEUS uses and expands the concept of

memory regions in popular heap allocators such as Jemalloc, used in known widely-used

software such as Firefox and Tor web browsers. The added random prefix makes subse-

quent heap allocation outcomes (e.g., in-object member field addresses) unpredictable.

Hence, the random prefixes prevent malicious deterministic planning, layout control,

and exploitation to complete UAF steps.

Traditional heap allocators use free lists to maintain runtime information about

available memory areas. Depending on the dynamic allocation trace, a free list node

may split after an allocation, and two adjacent nodes may merge together following

a free operation to lower memory fragmentation. UAF exploits use such a design to

take control of the heap layout evolution over the program execution. For instance, a

carefully crafted JavaScript code can make the web browser reallocate the memory area

for a recently freed large object with several smaller objects, or vice versa.

Inspired by seminal research results [17], state-of-the-art heap allocators segregate

meta-data from user data, and partition the memory space into a hierarchy of fixed-

sized buffers, so-called chunks, runs, and regions. Regions are the basic heap items

that reside in predetermined memory addresses, and are returned to the program upon

allocation calls. Unlike traditional free list nodes, regions neither split nor merge to-

gether. Therefore, for a UAF exploit to reallocate a recently freed object memory,

the new object should be almost the same size of the original one. Otherwise, a dif-

ferent run and region with a suitable size will be picked by the allocator. Fixed-size

region-based allocation schemes further raise the security bar against UAF exploits

by limiting their options. However, several attacks have been reported against them

because of predictable region addresses [133].

Recent research work [124] proposed coarse-grained non-determinism through ran-

dom selection of regions for object allocations. However, location of objects at the

beginning of the randomly selected regions by the allocators leave them susceptible to

heap spray attacks. Those attacks exploit the fine-grained determinism in allocators to
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align one of the sprayed objects in the target region that previously hosted the recently-

freed object of interest. ZEUS protects against those attacks by providing fine-grained

non-determinism.

...free region

...free region

...free region

allocated buffer

allocated buffer

allocated buffer

Region at 0x2305300

First time allocation, 0x2305320

Second time allocation, 0x2305340

Third time allocation, 0x230530C

Figure 3.1: Region-based allocations with random prefix.

For each memory request by the program, ZEUS allocates an area that is larger

than the requested amount by a randomly selected margin. the margin is selected for

individual memory requests independently. ZEUS uses the introduced extra memory

buffer as the prefix to the object location within the region. Consequently, the objects

are not anymore located at the beginning of the regions, and their exact location within

the region is not predictable to adversaries. Figure 3.1 shows a sample outcome, where

individual allocation calls are assigned a random number as the prefix offset to the

allocated memory. Hence, malicious same-size memory allocation after an object free

operation will result in misalignment between the original and new objects, and hence

their fields such as the target virtual table pointer used for UAF exploits. As the result,

the maliciously refilled target pointer value will not match the adversary’s objective

value. Hence, the follow-up pointer dereferencing does not reference the adversary’s

buffer and the attack fails.

In case of a “lucky” alignment between the new and the original freed objects,

ZEUS’s extra lines of defense prevent the next steps of the attack by randomizing the

allocated heap buffer that contains the stack pivot gadget address. Figure 3.2 shows how

ZEUS allocator causes a misalignment among the set of heap-sprayed ROP payloads.

Each illustrated payload includes a padding, stack pivot address, return chain, and
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random 
size
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llcode

...

...

High address

Low address

Figure 3.2: ROP chain after unpredictable heap spray.

possibly a shell code if ROP deactivates DEP. Consequently, the exploit cannot make

the instruction pointer register (eip) point to the stack pivot address deterministically.

2.1 Optimization

We discuss ZEUS’s dynamic system resource consumption. Its built-in protection does

not require any binary or source code instrumentation, or any explicit runtime checks.

These are among the reasons for ZEUS negligible runtime performance overhead. On

the other hand, its adjustable extra use of memory because of slightly enlarged memory

allocations plays as a trade-off vs. improved protection, i.e., larger object prefixes result

in less lucky adversaries. We have taken steps to optimize ZEUS’s design to reduce its

memory overhead on web browser’s runtime execution.

0 48 96

...

14435

13 bytes left could be used 
as extra space for offset Allocated memory

Free memory
Space left

Figure 3.3: Wasted memory used for random allocation.
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The allocator maintains fixed sized memory regions of various lengths from 2 bytes

to regions of 2048 bytes each or even one whole page. Upon a memory request, the

heap allocator designates the smallest memory region that is bigger than the requested

buffer size. The difference between the requested amount 𝑟 and the selected region size

𝑠 often leaves a wasted buffer (with size 0 ≤ 𝑠 − 𝑟) within the region that is not used

for the user data (Figure 3.3). If the wasted buffer’s size exceeds ZEUS’s predefined

minimum threshold 𝜏 (i.e., 𝑠 − 𝑟 ≤ 𝜏), ZEUS leverages the space as its “leeway” to

randomize the allocated memory’s address within the region. ZEUS picks a random

number 𝑝 uniformly from [0, 𝜏 ] as the prefix size for the object within the region.

Consequently, ZEUS’s protection does not introduce runtime memory overhead for the

aforementioned request types, where the requested size plus the threshold fits in the

region (i.e., 𝑟+ 𝜏 ≤ 𝑠). Otherwise, ZEUS allocates the requested buffer in the smallest

free region with the size larger than the request buffer plus the threshold value.

As an optimization to take full advantage of the provided entropy source by the

allocator, ZEUS’s implementation picks the random number 𝑝 within anywhere in the

available wasted buffer, i.e., 𝑝 ∈ [0, 𝑠 − 𝑟]. Based on our experiments with Firefox,

with a threshold of 48 bytes, approximately 29% of memory allocations on average fall

into the first category above, and do not require extra memory space when ZEUS is

deployed.

It is noteworthy that ZEUS’s current implementation does not consider any ap-

plication specific features. However, if such information is available, ZEUS can take

advantage potentially. For instance, not all memory allocations in a program may re-

quire ZEUS’s protection. As a case in point, the data structures and buffers that do

not include UAF-sensitive fields such as pointers may be exempted; ZEUS can switch

to the original deterministic allocator when a white-listed buffer allocation is invoked

by the program.

2.2 Security

When choosing where to allocate a new object, ZEUS chooses a fine-grained prefix

offset 𝑝 uniformly between zero and the predefined threshold 𝜏 , so that the object
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is not located at the beginning of the memory region deterministically. It provides

sufficient and adjustable level of entropy against probabilistic UAF attacks that target

random offsets by making a random guess about the offsets. It is noteworthy that the

allocated object addresses can be disclosed through information leaking vulnerabilities

that leave not only ZEUS but also many past mitigation mechanisms (e.g., ASLR)

ineffective. ZEUS provides partial defense against information leaking exploits by

randomizing individual object allocations independently; therefore, launching a UAF

attack requires deployment of information leaking attacks to disclose the reallocated

object address and stack pivot address in heap memory.

We analyze the entropy level provided by ZEUS, and calculate how the probability

of success for the attack varies given a allocation offset threshold value 𝜏 . Targeting a

single allocation succeeds with probability of 1
𝜏 . Hence the success rate of the UAF’s

first step (alignment and refilling the freed object content, e.g., virtual table pointer

value) is 1
𝜏 . The second step (dereferencing a member function that requires two indi-

rections through virtual function table) will succeed with probability of 1
𝜏2

that leads

to execution of the stack pivot. Similarly, modification a certain field of a string object,

as the attacker tries to obtain the read primitive to bypass ASLR, will have a success

probability of 1
𝜏 . Consequently, the whole UAF attack succeeds with probability of

1
𝜏3

because of the independence among ZEUS’s choices of random numbers for indi-

vidual allocations. As a concrete example, with an offset threshold size of 16 bytes,

ZEUS can pick 𝑝 to be any element in the following set: 𝐴 = {0, 4, 8, 12, 16}1. Hence,

𝜏 ← |𝐴| = 5, and the attack success rate drops to 1
53

= 0.008. Increasing the offset to

48 bytes diminishes the success rate significantly down to 0.00045.

In our calculations above, we only considered the minimum number of steps that are

required for a successful UAF attack. However, successful completion of a UAF attack

in real world requires several other steps that rely on deterministic heap allocation

outcomes. We review details of real CVE exploits in Section 4.4. Figure 3.10 shows

a sample inter-memory dependencies that need deterministic layout for the attack to

1Selection of numbers that not coefficient of 4 is not possible in most of the programs due to the
x86 memory alignment requirements.
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succeed. We did not consider these steps in our calculations conservatively.

3 Implementation

We implemented ZEUS and used it in real-world popular web browsers.

Interface To ensure legacy compliance, ZEUS provides a typical heap allocation

interface to web browsers, and keeps its protection mechanisms transparent to the ap-

plication. Traditional C dynamic allocation functions such as malloc, free, calloc,

realloc are supported. Furthermore, ZEUS provides extra interfacing API such as

additional default-valued arguments to the aforementioned functions so that the devel-

opers can optimize the overhead-vs.-security trade-off. The extra API functionalities

may be ignored by the program, and in that case, the default settings will be applied.

As the result, ZEUS works with closed-source programs out-of-the-box without any

changes required.

Randomization granularity If a browser does not require typical x86 memory

alignment (e.g., 4 bytes in 32-bit systems for improved data cache performance), ZEUS’s

implementation increases the randomness granularity of memory allocations to 1 byte.

This would lead to a larger entropy source. Therefore, one can decrease the minimum

required randomization range (threshold 𝜏) without affecting the scheme’s overall se-

curity. We evaluate the performance of different randomization entropy levels in the

next section.

Randomization offset According to our observations (see, for instance, Figure 3.4

for Firefox), most of the memory allocations by popular browsers are for medium-sized

buffers (from 16 to 1024 bytes). The recent UAF CVE exploits mostly target such

medium-sized buffers, and even more so the larger buffers. This is because very small

regions (less than 9 bytes in size) are infeasible candidates for heap sprays. Addition-

ally, by design and unlike traditional free list-based solutions, the memory regions are

not split or merged in ZEUS. Hence, our implementations do not randomize memory
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Figure 3.4: Firefox heap allocation request size frequency.

allocations for buffers with fewer than 9 bytes. On the other end of the spectrum, large

buffers (> 1𝐾𝐵) are often used by real UAF exploits to spray the stack pivot’s address

on the heap memory. Large allocations in real programs lead to larger wasted memory

(discussed in the previous section). This provides ZEUS with a larger entropy source

for its randomized allocations. As the result, more popular buffer sizes among UAF

exploits are protected better by our implementations.

Reallocating The program may call realloc to increase or reduce the size of a

previously allocated memory buffer on the heap. Traditionally, free-list allocators could

resize and return the same pointer as passed in as the argument. Like existing state-

of-the-art allocators, ZEUS does not coalesce adjacent regions to enlarge an allocated

buffer. However, if the increased requested buffer size plus ZEUS’s randomization

offset threshold fit in the same memory region, ZEUS will re-randomize and return a

pointer to the new buffer within the same region. Otherwise, ZEUS treats the memory

reallocation request as a brand new one. It copies the original buffer’s content to a new

allocated one, and releases the original buffer memory.

4 Evaluation

We evaluated ZEUS and validated its practicality when used in real-world popular web

browsers (four different versions of Firefox and Tor) without source code modification

requirements, and against several real CVE exploits. We performed our experiments
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on Intel Core i5-3337U CPU with 8GB of RAM, and running x86 64 Windows 7

operating system. In particular, our experiments answered the following questions: i)

what is ZEUS’s runtime performance and memory overhead? ii) how well does ZEUS

increase the security of the existing web browsers? iii) how does ZEUS compare to

state-of-the-art commercial mitigation mechanisms against UAF exploits? and iv) how

can ZEUS stop real past CVE UAF attacks?

4.1 Performance

ZEUS’s protection does not require runtime checks such as memory value checks or

control flow monitoring to ensure protection against UAF. Its main runtime functional-

ity is to generate random offsets and designate the corresponding memory regions upon

heap allocation calls by the browser.
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Figure 3.5: ZEUS’s performance overhead with different allocation request sizes.

Figure 3.5 shows our results for the runtime performance overhead caused by ZEUS’s

protection in Firefox. We measured the time requirement for heap allocation for four

different object sizes. The numbers are averaged over 10K runs. The results compare

the ZEUS-protected vs. vanilla Firefox executions. The performance overhead is negli-

gible, i.e., around 2.7% on average for individual allocation instances. ZEUS’s overall

overhead on the application as a whole (Firefox) is lower, i.e., 1.2% on average.

We use Firefox’s network tool to monitor the loading time of different web pages.

On each time, the loading time may varies significantly because of the dynamic part

of the web page. Thus we choose to count the time for certain amount of requests for
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Figure 3.6: ZEUS’s performance overhead with loading different websites.

each page(each request for one element on the page).

We believe that ZEUS’s overhead is very promising and acceptable for real deploy-

ments in practice.

4.2 Memory

ZEUS’s introduced random offsets to allocated buffers cause runtime memory overhead

to the browser.

Table 3.1: ZEUS’s overhead on browser’s memory (%).

Site URL 0x30 bytes 0x60 bytes 0x90 bytes

www.google.com 14.82 24.72 34.46
www.facebook.com 12.53 26.09 32.3
www.quroa.com 17.17 35.76 51.67
www.youtube.com 18.4 33.20 45.7
www.gmail.com 9.9 13.9 20.4

Table 3.1 shows the results for Firefox web browser, when surfing five popular web-

sites. Numbers indicate the overall extra memory that the browser requires because

of ZEUS’s deployed protection. Each column represents different minimum prefix off-

set sizes (threshold 𝜏) for allocation address randomization. Use of 0x30 bytes as the

randomization offset size results in very low success rate (0.00003) for probabilistic

attacks, and causes a reasonable overall memory overhead (14.4% on average). The

memory requirement does not double when moving from offset sizes of 0𝑥30 to 0𝑥60

bytes, because ZEUS uses the wasted memory within regions (discussed earlier in the
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paper).

4.3 Security

We performed a security analysis to calculate the success probability of a UAF exploit

despite ZEUS’s mitigation.
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Figure 3.7: Exploit success probability against ZEUS.

Figure 3.7 shows the results, where the horizontal axis indicate the entropy source

in bytes (randomization offset size). The vertical axis shows the success probability of a

UAF exploit. The graph contains the rates for first step of the UAF exploitation (object

matching) and the rates for the first two stages that are crucial to launch the stack pivot.

In addition to the aforementioned analytical calculations, we also performed empirical

tests. We ran the exploits 20K times, and counted the success rates. The results from

empirical measurements matched those from the analytical calculations closely.

Table 3.2: Vulnerabilities used in the evaluation.

Program Vulnerability Result with ZEUS

Firefox 45.5.0 CVE-2016-9079 protected
Firefox 17.0 CVE-2013-0753 protected
Firefox 9.0.1 CVE-2011-3659 protected
Firefox 3.6.16 CVE-2011-0065 protected
Tor 6.4 CVE-2016-9079 protected

To validate ZEUS in real world, we evaluated ZEUS against five real CVE ex-

ploits (see Table 3.2 for the list). For exploits, we either implemented them ourselves

given CVE information, or (if available) obtained them online or through Metasploit

modules [111]. For instance, to exploit CVE-2011-3659 in AttributeChildRemoved
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function of Firefox 9.0.1, we used Metasploit’s browser/mozilla attribchildremoved

module [134]. On default state-of-the-art heap allocators, the exploits were successful

every time we ran them. Each session involved directing the browser to a malicious

website that contained the crafted script.

Through its randomized allocations, ZEUS was able to terminate all the exploits at

the early stages of UAF attacks before even the corresponding ROP chains launched.

Using hardware read breakpoints in Windbg, we were able to inspect the randomized

allocation offset values.

4.4 Case studies

We briefly explain ZEUS’s protection against real-world past UAF exploitations in

Tor(Firefox) browsers.

CVE-2016-9079 The Tor web browser’s CVE-2016-9079 [114] was a recently dis-

covered atypical and fairly complicated zero-day UAF exploit. It leverages an iterator

pointer that could overpass the buffer limits.

The vulnerability resides the code snippet above, in function NotifyTimeChange [166].

The attacker puts <svg> JavaScript element, which uses <animate>, in the ma-

licious web page. A nsSMILTimeContainer object is assigned to it to perform

time bookkeeping for the animations. Each nsSMILTimeContainer has a member

mMilestoneEntries array that organizes each event in the animation. Then a single

call to pauseAnimation triggers the member function NotifyTimeChange shown

in the snippet above. As illustrated, in the function, the pointer p iterates through

the elements of the mMilestoneEntries array, and calls each element’s member

function HandleContainerTimeChange. The call may potentially add elements to

mMilestoneEntries increasing its size. If the size increase goes beyond the heap

allocator’s memory region size, the array gets reallocated to a bigger region by the al-

locator automatically. This leaves the pointer p pointing to a freed memory space, and

still iterating through the freed space by the while loop above beyond the boundaries

of the original array.
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1 void

2 nsSMILTimeContainer::NotifyTimeChange()

3 {

4 // Called when the container time changes w.r.t the document time.

5

6 const MilestoneEntry* p = mMilestoneEntries.Elements();

7 ...

8

9 while (p < mMilestoneEntries.Elements() + mMilestoneEntries.Length())

{

10 mozilla::dom::SVGAnimationElement* elem = p->mTimebase.get();

11 elem->TimedElement().HandleContainerTimeChange();

12 MOZ_ASSERT(queueLength == mMilestoneEntries.Length(),

13 "Call to HandleContainerTimeChange resulted in a change to the queue

of milestones");

14 ++p;

15 }

16 }

125e7100 00000000 00000000 00000000 00000000 300fff80 00000000 00000000 00000000
125e7120 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
125e7140 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
125e7160 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
125e7180 e5e5e5e5 e5e5e5e5 e5e5e5e5 e5e5e5e5 e5e5e5e5 e5e5e5e5 e5e5e5e5 e5e5e5e5
125e71a0 e5e5e5e5 e5e5e5e5 e5e5e5e5 e5e5e5e5 e5e5e5e5 e5e5e5e5 e5e5e5e5 e5e5e5e5
125e71c0 e5e5e5e5 e5e5e5e5 e5e5e5e5 e5e5e5e5 e5e5e5e5 e5e5e5e5 e5e5e5e5 e5e5e5e5
125e71e0 e5e5e5e5 e5e5e5e5 e5e5e5e5 e5e5e5e5 e5e5e5e5 e5e5e5e5 e5e5e5e5 e5e5e5e5
125e7200 00000000 00000000 00000000 00000000 300fff80 00000000 00000000 00000000
125e7220 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
125e7240 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
125e7260 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
125e7280 00000000 00000000 00000000 00000000 300fff80 00000000 00000000 00000000
125e72a0 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
125e72c0 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
125e72e0 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
125e7300 00000000 00000000 00000000 00000000 300fff80 00000000 00000000 00000000
125e7320 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
125e7340 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000

Figure 3.8: Tor’s memory snapshot after the heap sprays that surround the target buffer
with crafted data.

ZEUS’s protection of CVE-2016-9079 is based on the fact that the attack exploits

the determinism in controlling the memory layout. This atypical UAF exploit does not

leave any time window after the free operation for the attacker to allocate the original
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freed memory space, since all operations above happen during the pauseAnimation

call. Hence, the attacker prepares the memory before the pauseAnimation call. Since

mMilestoneEntries’s initial size is 0x80 bytes, the attacker starts by spraying 0x80

bytes of JavaScript ArraryBuffers and then sets up animate data to create the

mMilestoneEntries array. Figure 3.8 shows our Tor browser’s memory snapshot af-

ter the heap sprays. The crafted data surround the freed target mMilestoneEntries,

which sits at 0x125e7180.

Figure 3.9: Call sequence for UAF attack in Tor browser.

In our experiments, once the freed pointer p went beyond the target buffer mMilestoneEntries,

it landed on attacker-controlled sprayed data, from where the rest of the attack followed

typical UAF exploit steps by hijacking the control flow. Figure 3.9 shows the function

call sequence that led to a indirect call-site call [eax+144h]. The call-site was
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later used for the control flow hijack by ultimately2 copying the stack pivot address in

memory address eax+144h.

30100010 30100014 30100010 00000000 00000000 00000100 00000000 ...
30100030 00000000 00000000 00000000 00000000 00000000 00000000 ...
30100050 00000000 00000000 00000000 00000000 00000000 00000000 ...
30100070 00000000 00000000 00000000 00000000 00000000 00000000 ...
30100090 00000000 00000000 00000000 00000000 00000000 00000000 ...
301000b0 00000000 00000000 00000000 00000001 00000000 00000000 ...
301000d0 00000000 00000000 00000000 00000000 00000000 00000000 ...
301000f0 00000000 00000000 00000000 00000000 00000000 00000000 ...
30100110 00000000 00000000 00000000 00000000 00000000 00000000 ...
30100130 00000000 00000000 00000000 00000000 00000000 00000000 ...
30100150 00000000 6176d8e6 00000000 00000000 00000000 00000000 ...
...

...
0de5d550 e5e5e5e5 e5e5e5e5 e5e5e5e5 e5e5e5e5 e5e5e5e5 e5e5e5e5 ...
0de5d570 e5e5e5e5 e5e5e5e5 e5e5e5e5 e5e5e5e5 e5e5e5e5 e5e5e5e5 ...
0de5d590 e5e5e5e5 e5e5e5e5 e5e5e5e5 e5e5e5e5 e5e5e5e5 e5e5e5e5 ...
0de5d5b0 aaaaaaaa aaaaaaaa aaaaaaaa aaaaaaaa 300fff80 00000000 ...
0de5d5d0 00000000 00000000 00000000 00000000 00000000 00000000 ...
...
...
...

5c616da6       mov    eax,dword ptr [ecx+0ACh] ds:002b:301000bc=1
5c616dac       cmp    eax,1
...

5c616d09       mov    ecx,dword ptr [ecx] ds:002b:30100010=30100014
...

5be8c161       mov     eax,dword ptr [edi+0Ch] ds:002b:30100020=00000100
5be8c164       shr       eax,8
5be8c167       test      al,1
...

5be8c16b       mov     eax,dword ptr [edi]  ds:002b:30100014=30100010
5be8c16d       mov     ecx,edi
5be8c16f        call      dword ptr [eax+144h] ds:002b:30100154=6176d8e6
...

Address calculated from
Read

Figure 3.10: Exact manipulation of several addresses (pointer values) is required for
CVE-2016-9079 attack success.

For ZEUS, it is noteworthy that the completion of the CVE-2016-9079 attack in-

volves i) heap sprays at four different steps, and ii) several careful manipulation of

pointer data to maliciously direct the control flow according to Figure 3.9. Figure 3.10

shows the memory snapshot that we took after the exploit succeeded. As illustrated,

many pointer values need to be correctly updated to the exploit’s success ultimately.

Consequently, determinism in heap allocation functionalities is the core weakness that

CVE-2016-9079 exploits. ZEUS targets this weakness directly through its randomized

allocations.

Once ZEUS’s mitigation was deployed, all allocated memory regions addresses were

subject to a random change. With so many specific pointers that the exploit had to get

right for the correct function of the malware, ZEUS’s randomized allocation lowered

the possibility of a successful attack remarkably. The exploit resulted in a process crash

all 10K times of our retrials. Figure 3.11 shows the memory snapshot during the attack

with ZEUS enabled. The allocated areas with random addresses causes the intended

malicious control flow to be not followed as planned. The region right after the prefix

offset (shown in dashed box) is supposed to be under attacker’s control for the exploit

to determine the exact subsequent addresses to replace with crafted values (300fff80).

However, ZEUS’s randomized allocation removed that determinism in CVE-2016-9079

2We skip details here for space limitations.
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0d7449f0 00000000 00000000 00000000 e5e5e5e5 e5e5e5e5 e5e5e5e5 e5e5e5e5 e5e5e5e5
0d744a10 e5e5e5e5 e5e5e5e5 e5e5e5e5 e5e5e5e5 e5e5e5e5 e5e5e5e5 e5e5e5e5 e5e5e5e5
0d744a30 e5e5e5e5 e5e5e5e5 e5e5e5e5 e5e5e5e5 e5e5e5e5 e5e5e5e5 e5e5e5e5 e5e5e5e5
0d744a50 e5e5e5e5 e5e5e5e5 e5e5e5e5 e5e5e5e5 e5e5e5e5 e5e5e5e5 e5e5e5e5 e5e5e5e5
0d744a70 e5e5e5e5 e5e5e5e5 e5e5e5e5 00000000 00000000 00000000 00000000 00000000
0d744a90 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
0d744ab0 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
0d744ad0 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
0d744af0 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
0d744b10 00000000 00000000 00000000 300fff80 00000000 00000000 00000000 00000000
0d744b30 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
0d744b50 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
0d744b70 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
0d744b90 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
0d744bb0 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
0d744bd0 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
0d744bf0 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
0d744c10 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
0d744c30 00000000 00000000 300fff80 00000000 00000000 00000000 00000000 00000000

Figure 3.11: Tor browser’s memory with ZEUS enabled.

(it reads 00000000 in the red box) leading to an exception and process crash even before

the exploit got to the stack pivot launch point.

UAF exploits are often interested in large chunks of available memory space (e.g.,

1-2 MB) to ensure deterministic control over the memory layout locally. When dealing

with allocations larger than 1 MB, ZEUS puts its randomization buffer limit to one

page (4096 bytes). This is relatively a small overall memory overhead, but it provides a

strong protection by minimizing the possibility of a successful exploit that requires luck

in all consequent steps of the attack as shown above in CVE-2016-9079. Figure 3.12

shows the probability of the exploit’s success in CVE-2016-9079 for ZEUS’s different

randomization buffer sizes for memory allocations. The figure includes results i) for

only the exploit’s first step before the HandleContainerTimeChange call and stack

pivot launch (which is insufficient for the attack’s completion), and ii) considering all

the aforementioned steps of the exploit that results very low success likelihood.

4.5 Complementing Isolated Heap

Microsoft developed isolated heap (IH) [101] in 2014 for Internet Explorer following

emerging UAF attack. It stores each object in one of two isolated heaps depending on

which function initiates the object. Most of the DOM objects are allocated in a different

heap from strings and arrays that are commonly used in UAF exploits. IH’s objective
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Figure 3.12: Exploit success rate for CVE-2016-9079.

05ad6760  601b3e5c MSHTML!CDOMTextNode::`vftable'
05ad6764  00000001
05ad6768  00000001
05ad676c  00000008
05ad6770  00000000
05ad6774  00000000
05ad6778  08602420
05ad677c  07215c90
05ad6780  05ad4338
05ad6784  05ad4338
05ad6788  00000000
05ad678c  071ade78
05ad6790  40000000  
05ad6794  00000000
05ad6798  1512471a
05ad679c  0c009ca8
...

Object MSHTML!CDOMTextNode

Figure 3.13: Internet Explorer CDOMTextNode object in memory. Object’s offset 0x30
(boxed) is attacker-controllable memory address.

is to limit the options for the adversaries to reallocate a freed object. Later, Google

and Adobe adopted very similar ideas for Chrome (PartitionAlloc [34]) and Flash [100].

IH leaves the heap layout deterministic (predictable). Additionally, its deployment

requires detailed knowledge about the program source and manual effort to select a sub-

set of data structures for isolated heap allocations. Recently IH was broken [2]. The ex-

ploit managed to replace a member field of pointer type in a recently freed CTableRow

object with another CDOMTextNode object content (value: 0x40000000). Those two

type of objects reside in the same heap by IH. The replaced and replacing values sit

at the same offsets from the beginning of the corresponding objects. Due to the fine-

grained determinism of IH, both objects were allocated at the beginning of the regions.

This facilitated the successful exploit. The address 0x40000000 was a user model
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Figure 3.14: ZEUS prevents Microsoft IH UAF exploits.

attacker-controlled memory. It was already heap-sprayed using a maliciously invoked

JavaScript function. Once IE browser dereferenced the original object’s member field

to involve a member function, it launched the stack pivot as the starting point of the

ROP attack.

As mentioned, an exact alignment between the original and the new object is re-

quired for the attack to succeed. Furthermore, heap-sprayed address 0x40000000

relies on deterministic memory layout. ZEUS’s protection targets both steps, and pre-

vents controlled alignment and the deterministic heap layout. Figure 3.14 illustrates

the defense.

5 Conclusion

We presented ZEUS, a defense mechanism against use-after-free (UAF) exploitations.

ZEUS uses fine-grained non-determinism and implements a random heap allocator. It

leaves the heap layout non-deterministic to the adversaries. Upon each allocation, the

proposed defense introduces a random offset before each object on the heap. Hence,

it prevents the attackers from implanting the target freed memory addresses precisely.

According to our experiments, ZEUS was able to terminate the real past CVE exploits

against large popular web browsers such as Firefox and Tor at their early stages within

a negligible runtime performance overhead of 1.2% on average.
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Chapter 4

Effective Mitigation for Kernel-Level

Time-of-Check-to-Time-of-Use Vulnerabilities

1 Introduction

Time-of-check-to-time-of-use (TOCTOU), a.k.a race condition, or double fetch, is a

long-standing issue in software security. As the name implied, it involves two references

on the same variable or system state at different timing. The attacker usually passes the

first security check with a benign value and then replace it with a malicious one before

the second reference. This behavior could introduce faults into the system, therefore

empower the attack ability to exploit the system.

This paper focuses on kernel-level TOCTOU vulnerability and mitigation. Modern

operating systems such as Windows and Linux separate the kernel and user programs

into two security domains. The kernel runs in the privileged domain, and the user pro-

grams run in the unprivileged domain. Due to the domain separation, the kernel serves

the user programs on a service-client basis through system calls, and it unavoidably

gets parameters from the userspace. Reading the same user-mode variable repeatedly

by the kernel may lead to data inconsistency under a race condition between the kernel

and user programs. In specific, the user program invokes a system call with the valid

parameters and then replaces them with the malicious values after the security check

passing. In this way, a user program can inject faults into the kernel, leading to the

kernel malfunction or even running user-provided unsafe code. In particular, attackers

could utilize such vulnerabilities to bypass sandbox protection of browsers or further

get the administrator privilege after having a local user account.

By studying the real-world TOCTOU cases, we found that kernel-level TOCTOU

vulnerabilities widely exist in the operating systems, especially Microsoft Windows.
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Notably, a graphical subsystem kernel module tightly coupled with user-mode libraries

freely access user data structures, among which double fetches on the same variable

is not unusual. In essence, the kernel repeatedly reads the same user memory address

within the same system call.

To find the bugs with the typical memory-access pattern, we develop TTFuze, a

fuzzing tool that leverages an Intel processor feature, Supervisor Mode Access Preven-

tion (SMAP), and then combine it with a run-time hypervisor to monitor the Windows

kernel efficiently. SMAP is introduced since the Intel Broadwell microarchitecture. It

prevents the kernel from freely accessing userspace so that such access will raise an

exception. It accurately serves the purpose of notifying us when the kernel access a

user-mode address. For each system call, we pick out those user-mode addresses that

the kernel reads twice, which are the candidates for further analysis. We contacted

Microsoft for our findings.

Furthermore, we present SMAPro, to the best of our knowledge, the first run-time

protection for kernel-level TOCTOU vulnerabilities. It also leverages the same hardware

feature SMAP and the hypervisor. Base on our observation of the vulnerabilities, to

retain the virtual memory that the kernel fetched unwritable is the key to successful

protection. Considering hardware capability and practical aspects, we propose the

following idea. Whenever the kernel accesses a user-mode memory, SMAPro protects

the corresponding page by setting it as a kernel page until the current system call ends

so that no other user threads can tamper with it. We also solve the practical issue that

benign read and write to the data that resides on the protected page.

Due to the Windows system’s complex nature and the fact that it did not adopt

SMAP, the amount of exceptions is enormous when enabling this feature, and the root

causes are various. It is difficult to handle such a multifactorial situation, if not impos-

sible. To first solve the core issue without interference from other factors, we use the

hypervisor to confine SMAP within specific processes. The hypervisor takes action on

the process context switch event and makes SMAP active only when the specific process

is running on the processor. Later, we find that to prevent nested SMAP exceptions

from forming a deadlock during page table walking, isolating SMAP is also crucial.
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Additionally, it makes SMAPro more configurable, avoids unnecessary processes, thus

improves performance. Therefore, we consider the light-weight hypervisor framework

as one of the contributions of this paper.

SMAPro successfully mitigates real-world vulnerabilities such as CVE-2008-2252

and the family of CVE-2013-1254. It prevents the race condition from happening so

that the system can operate normally during the attacks. We evaluate SMAPro and

the light-weight hypervisor with 18 benchmark programs and real-world applications.

Our evaluation results show that SMAPro imposes little extra overhead (less than

10% on average).

Contributions. To summarize, we make the following contributions in this paper:

• We identified kernel TOCTOU vulnerability using study cases and demonstrated

with practical exploits against them.

• We present SMAPro, a novel run-time mitigation framework leveraging hardware

feature (SMAP).

• We propose a configurable light-weight hypervisor to isolate system-wide processor

features.

• We develop a fuzzing tool TTFuze for detecting kernel TOCTOU vulnerabilities.

• We have implemented SMAPro and evaluated it with a number of benchmark pro-

grams with real-world vulnerabilities.

Roadmap The rest of this paper is organized as the following. In Section 2, we

provide necessary background related to the mechanism behind kernel TOCTOU vul-

nerabilities and SMAP. Section 3 describes the objectives, threat model and scope,

challenges and architecture of SMAPro. Section 4 shows the vulnerability findings on

Windows with our fuzzing tool, we present how we perform run-time mitigation with

SMAP and a light-weight hypervisor ( Section 5), with implementation details ( Sec-

tion 6), and evaluation ( Section 7) respectively. In Section 8, we discuss an alternative

to solve the writing conflicts and fuzzing methods, followed by related work in Section 9,

we discuss related works. Finally Section 10 concludes the paper.
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2 Background

2.1 Kernel-level TOCTOU Vulnerability

TOCTOU is a type of vulnerability that involves two references on the same variable or

system state. The attacker usually passes the first security check with a benign value

and then alters it to malicious before the second reference. It is a classic vulnerability,

mostly existing among file system APIs. There are some previous research works have

been working on addressing it [44] [23] [20] [19] [165].

Besides, TOCTOU also exists in the operating system kernel. Unlike the classic

file system TOCTOU among APIs, kernel-level TOCTOU happens within individual

system calls. When a user program invokes a system call, it usually needs to provide

parameters. The kernel’s responsibility is to verify the parameters’ legitimacy and saves

a kernel copy for subsequent use. However, the kernel may fail to accomplish that. The

first reason is the developer’s coding style or the unawareness of such vulnerability. The

kernel routines could fetch the data from userspace instead of using the kernel copy.

What is even worse is that for a historical reason, the kernel module may not fully

decouple with the user-mode components; thus, it directly uses user-mode data.

The double or multiple fetches may lead to a severe issue, as we call it kernel-level

TOCTOU vulnerability that attackers usually use to escalate privilege. The parameter

sent into the kernel is benign initially to pass the security check; then, the attacker alters

it to malicious to introduce an error such as a buffer overflow to the kernel. Although

the time window between two kernel fetches may be as narrow as several instructions, it

is feasible to create the race condition with careful craft, especially on a multi-processor

system.

Due to mistakenly repeated operations on user data, kernel-level TOCTOU widely

exists among operating systems [164] [169] [97], even in a system such as Linux that

use particular gateway functions, copy to user() and copy from user(), to

get user parameters [161]. Table 4.1 lists a portion of recent kernel-level TOCTOU

vulnerabilities.
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Table 4.1: Recent vulnerabilities categorized as race condition or time-of-check-to-time-
of-use in the CVE database.

CVE-ID
Affected
System

CVE-ID
Affected
System

CVE-2008-2252 Windows CVE-2016-5728 Linux
CVE-2013-1280 Windows CVE-2016-6130 Linux
CVE-2018-7249 Windows CVE-2020-9796 macOS
CVE-2020-9839 macOS CVE-2020-9990 macOS
CVE-2016-10439 Android CVE-2016-7624 macOS
CVE-2016-10383 Android CVE-2017-7115 iOS
CVE-2020-5967 Nvidia CVE-2020-8680 Intel

Figure 4.1 shows a Windows Win32k module’s kernel-level TOCTOU vulnerabil-

ity [78] [144], which has been identified and patched in Microsoft security bulletins ms08-

061. The pseudo-code reassembles to a Win32k system call, and the red part shows the

vulnerable data’s trace. The user program passes lParam to win32k function()

through upper layer APIs. Adding my struct->cbData to cbCapture is where

the kernel first gets this user-mode variable and allocates a buffer based on its value.

Notice, although there is a local variable called capture, the developer forgot to use

it subsequently. Several instructions after, the kernel reread this user-mode variable

when copy data into the new buffer. An attacker can alter the user-mode variable

my struct->cbData between the two reads, and especially by enlarging it, a kernel

buffer overflow is created.

Figure 4.2 gives the assembly-code-level exploit simulation. As a local privilege

escalation vulnerability, the attacker can invoke the vulnerable system call as many

times as needed to succeed. Meantime, thread one is spawned to race with the kernel,

aiming to enlarge the user variable. To generate the buffer overflow, the attacker needs

to flip the high bit an odd number of times during the time window.

2.2 Supervisor Mode Access Prevention (SMAP)

Monitoring the kernel’s userspace behavior is essential to SMAPro. Due to x86 pro-

tected mode characteristics, there is no mechanism available for a broad range of mon-

itoring memory modifications. Techniques such as leveraging hardware watchpoints or

transactional memory are fittable for fuzzing such vulnerabilities but not for run-time
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// lParam points to data located in user space
void win32k_function(... LPARAM lParam, ...)
{

DWORD cbCapture;
...
my_struct = (PMY_STRUCT)lParam;

// first fetch
cbCapture = sizeof(MY_STRUCT) + my_struct->cbData;
...
pNew = UserAllocPoolWithQuota(cbCapture, AG_SMS_CAPTURE)
if (pNew != NULL)
{

RtlCopyMemory(pNew, my_struct, sizeof(MY_STRUCT);
// second fetch
RtlCopyMemory(pNew, my_struct->lpData, my_struct->cbData);

}
...

}

Figure 4.1: Pseudocode of the vulnerability fixed in ms08-061. The vulnerable variable
is in red. The kernel reads it twice, and it may get a different value for the buffer
allocation and the subsequent buffer copying. It is common to see such a coding style.
However, it is vulnerable because the two reads cross the privilege boundary.

protection. We discuss these two techniques in more details in Section 4 and Section 9.

Fortunately, we notice an Intel processor feature so-called Supervisor Mode Ac-

cess Prevention (SMAP) [37] that accurately serves our kernel monitoring requirement.

SMAP is a feature that prevents the kernel from freely accessing userspace so that such

access will raise an exception. It complements Supervisor Mode Execution Prevention

(SMEP) [52] that introduced earlier. SMEP can be used to prevent the kernel from

unintentionally executing user-mode code. SMAP extends this protection to reads and

writes. It makes it harder for a malicious program to deceive the kernel into using code

or data from the userspace.

Setting SMAP (20) bit in CR4 enables it, and it can also be temporarily disabled

by setting the AC flag in EFLAGS or through using stac and clac instructions.

Temporarily disabling SMAP usually indicates that the kernel is fully aware of its

userspace-access behavior. For example, The Linux kernel supports SMAP since ver-

sion 3.7. The kernel-to-userspace accesses must go through two gateway functions

copy to user() and copy from user(), in which SMAP is temporarily dis-

abled.
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Attack
Time
Window

(Thread 0)
...
mov [eax+var_48], eax
mov ebx, [eax+4]
add ebx, 0Ch
mov ebx, [ebp+var_24], ebx
test ebx, ebx
jnz bailout
push 1
push 63737355h
push ebx
call 
UserAllocPoolWithQuota
...
mov [eax+8], edi
mov eax, ecx
mov ecx, [eax+4]
mov esi, [eax+8]
mov eax, ecx
shr ecx, 2
rep movsd
...

(Thread 1)
mov eax, pcbData
...
...
...
xor [eax], 0x80000
xor [eax], 0x80000
xor [eax], 0x80000
xor [eax], 0x80000
xor [eax], 0x80000
xor [eax], 0x80000
xor [eax], 0x80000
xor [eax], 0x80000
xor [eax], 0x80000
xor [eax], 0x80000
...
...
...

Figure 4.2: Thread zero invokes the vulnerable system call. The attack windows lie
in between the two kernel reads, namely, the two instructions that underscored. The
attacker can repeatedly open the attack time window by calling the system call. Si-
multaneously, thread one flips the high bit of the user-mode variable in a loop. The
two threads compete, hoping an odd number of flips occur during the time window. It
enlarges the variable; otherwise, the variable remains the same.

However, Windows does not support SMAP still. The kernel takes a different ap-

proach other than gateway functions; it uses probe and capture in each system call.

ProbeForWrite() and ProbeForRead() [109] validates user-mode variables and

buffers and this method is effective if done correctly and thoroughly. However, kernel

components such as Win32k failed to follow the coding rule. Some of its code is still

coupled with user-mode components. It will cost a huge engineering effort to change

the coding style for the enormous codebase.

2.3 Intel Virtualization Technology

Intel Virtual-Machine Extensions (VMX) provides hardware-assistant virtualization

that adds 13 new instructions: VMPTRLD, VMPTRST, VMCLEAR, VMREAD,

VMWRITE, VMCALL, VMLAUNCH, VMRESUME, VMXOFF, VMXON, INVEPT,

INVVPID, and VMFUNC. VMX has root and non-root mode, where root mode runs

the hypervisor, and the non-root mode runs virtual machines or called guests. On x86

architecture, the processor has four privilege rings. The kernel runs at ring zero, the
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highest priority ring; the user programs run at ring three; ring one and ring two are

unused. With VMX, the root model is commonly viewed as the ring minus one, which

is more privileged than ring zero.

VMXON/VMXOFF enters/exits VMX mode. The Virtual Machine Control Struc-

ture (VMCS) is the most important data structure, storing the data and states of one

virtual processor of one virtual machine. Each core in a physical processor has a VMCS

pointer. It points to the physical address of the VMCS. VMPTRLD loads the VMCS

pointer from physical memory and set it active and current. VMCLEAR stores VMCS

active states back to memory and set it inactive. Although the hypervisor is fully

aware of the physical address of each VMCS, it can not modify them directly. All the

modifications on VMCS should use the instruction VMREAD and VMWRITE instead.

The VMCS manages aspects of a virtual machine using many data-fields organized

into six logical groups: Guest-state area, Host-state area, VM-execution control fields,

VM-exit control fields, VM-entry control fields, and VM-exit information fields. The

last four groups compose VMX controls that conduct the virtual machine’s behavior.

In VMX’s term, VM entry is the transition from VMX root mode to the non-root mode;

VM exit is the opposite. During a VM exit, the processor stores its running state into

the Guest-state area in memory and loads the Host-state area into the hardware. The

processor does the opposite when entering a virtual machine, the so-called VM entry.

2.4 x86 Architecture

In this part, we briefly describe concepts and mechanisms regarding x86 architecture

that are used in SMAPro. Some techniques are rarely mentioned in researches but

vital to SMAPro. Although IPI and APIC may not technically belong to x86 architec-

ture concepts, we put them here because they are related to the underlying hardware

mechanisms.

Paging and Virtual Memory. On x86 architecture, with the flat or the seg-

mented memory model, linear address space is mapped into the processors’ physical

memory space either directly or through paging. Direct mapping is a one-to-one map-

ping between the linear address and physical address, also known as the real-mode.
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When using the paging mode, the linear address space (often referred to as virtual

memory) is composed of pages. For simplicity, we only consider 4KB pages in this

paper. The pages are backed with physical pages through the Memory Management

Unit (MMU). This hardware component automatically translates virtual addresses to

physical addresses using a data structure called the page table. The translation creates

the illusion for each process that it has its own large flat virtual memory space (4GB

on a 32-bit system).

Page Table. The MMU uses page tables to map physical pages to virtual pages [70]

so that each process in the system can have a flat virtual memory space. Because each

process has a page table, the memory used to store those page tables is unignorable.

Therefore the system designs a hierarchical data structure to save physical memory. As

shown in Figure 4.3, a virtual address splits into three parts. The last 12-bit is the

byte offset of the page; the first two 10-bit are the index to the page directory and

page table. The page tables are also composed of 4KB pages where the system swaps

out the long-time unvisited pages to save physical memory. When walking through the

page table, we often encounter a swap-out page, which is not an issue because it will

be automatically brought back by a page fault regarding page absence. However, this

becomes a problem since we are already in the context of a SMAP page fault. The

page swap-in process needs the system to read the hard disk, thus more system calls,

which inevitably trigger more SMAP exceptions. Eventually, they may cause a dead

loop. Therefore, our hypervisor-based solution that confines SMAP at the process level

is essential to solving this issue.

Figure 4.3: Linear-Address Translation to a 4-KBbyte Page using 32-Bit Paging [70]
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Translation Lookaside Buffer. As mentioned above, page table walking is a

lengthy process. A full walk needs to access two pages (PD page and PT page). If any

of the two pages are not present in the memory, it further triggers a page fault to bring

the absent page back.

A Translation Lookaside Buffer (TLB) is part of MMU, and it is a memory cache

used to reduce the time to access virtual memory. The TLB has a fixed number of

slots that stores the recent translations of virtual memory to physical memory and

permission bits. If a valid TLB entry exists, the processor will not walk the page table

trying to find the Page Table Entry (PTE). The system kernel is responsible for the

consistency between TLB and the page tables.

Interrupt Descriptor Table. The Interrupt Descriptor Table (IDT) is a data

structure used on the x86 architecture to implement an interrupt vector table. The

processor uses the IDT to determine the correct response to interrupts and exceptions.

Interrupt and Exception. The fundamental difference in microarchitectural be-

tween interrupt and exception is as follows. An interrupt is an asynchronous event that

is typically triggered by an I/O device. An exception is a synchronous event gener-

ated when the processor detects one or more predefined conditions while executing an

instruction. However, one thing in common is that their handlers are all in the IDT,

making them easily confused.

Furthermore, exceptions are categorized as faults, traps, and aborts depending

on the way they are raised and whether the instruction that caused the exception can

be restarted without loss of program or task continuity. Aborts are not recoverable.

They are used to report severe errors, such as hardware errors and inconsistent or illegal

values in system tables. Faults and traps are recoverable. The main difference between

them is that when recovers from faults, the return address is the faulting instruction;

the trap’s return address points to the instruction after the trapping instruction. In

our case, the SMAP exception is a fault and handled through the page fault handler.

The IDT has 256 entries. Entry 0-31 are for exceptions, except entry two is for

Non-Maskable external Interrupt (NMI). The rest is for external interrupts from INTR

pin or INT n instruction. However, INT n also known as a software interrupt. It is



65

essentially an exception with interrupt in its name, and its vector located with other

external hardware interrupt vectors. Fun.

Trap Frame. The trap frame is a data structure that the processor pushed into

the kernel stack when an interrupt or exception occurs. It contains part of the faulting

thread’s registers. In the context of a page fault, the trap frame contains ErrorCode,

CS: EIP, EFLAGS, and SS: ESP. The SS: ESP is included based on whether the CS

register’s current privacy level (CPL) changes.

Gate. Code modules in lower privilege can only access higher privilege modules

through a tightly controlled and protected interface called a gate. There are four types

of gate, namely, task gate, trap gate, interrupt gate, and call gate. Fully describe

and distinguish them is out of the paper’s scope. The project only involves the interrupt

gate.

The vectors in the IDT go through either the interrupt gate or trap gate. The

difference is subtle. Suppose the interrupt or exception handler is called through an

interrupt gate. In that case, the processor clears the interrupt flag (IF) in the EFLAGS

register to prevent subsequent interrupts from interfering with the handler’s execution.

On the other side, when through a trap gate, the processor does not change the IF flag.

Setting the interrupt flag is a requirement to control stack depth, which also involves

the type of interrupt controller installed in the system. We observed that the processor

invokes the page fault handler through an interrupt gate, and we think the reason

for that is as follows. The processor loads the CR2 register with the faulting virtual

address that caused the exception. If the interruption is allowed in the processor, a

thread context switch may swap out the page fault handler, and another page fault

occurs subsequently and overwrites the CR2.

CS Segment and Current Privilege Level. Unlike other segment registers, the

CS segment register cannot be set directly using instruction such as MOV, but only

through a trap or an interrupt gate. The processor maintains the Current Privilege

Level (CPL) field in the CS segment. Thus it is always equal to the processor’s current

privilege level. The CS register of the trap frame provides us the privilege of the code

when the SMAP exception happens. Therefore, we do not make decisions based on
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EIP’s apparent value, making the mitigation more reliable.

Inter-processor Interrupt. It is an interrupt controller mechanism to interrupt

another processor or group of processors on the system bus. They are used for software

self-interrupts, interrupt forwarding, or preemptive scheduling. In SMAPro, we use

IPI to flush the TLB cache on all the processors.

Inter-processor Interrupt. It is an interrupt controller mechanism to interrupt

another processor or group of processors on the system bus. They are used for software

self-interrupts, interrupt forwarding, or preemptive scheduling. In SMAPro, we use

IPI to flush the TLB cache on all the processors.

Local APIC. Intel’s Advanced Programmable Interrupt Controller (APIC) is a

family of interrupt controllers. Nowadays, multi-processor systems utilize APIC instead

of the obsoleted Intel 8259 Programmable Interrupt Controller (PIC). The APIC is a

split architecture design, with a local APIC integrated into the processor and the I/O

APIC on the system chipset. The local APIC receives interrupts from various sources

such as I/O APIC then sends them to the processor, and it also receives/sends IPI

messages from/to other processors on the system bus. On the other side, the I/O

APIC is responsible for receiving interrupts generated by I/O devices and forwarding

them to the local APIC.

A processor can program the local APIC’s interrupt command register (ICR) to send

out IPIs. The target local APIC receives the IPI message and calls the processor’s IDT

vector according to the information that comes with it, such as the vector number. Local

APIC registers are memory-mapped to a 4-KByte region of the processor’s physical

address space with an initial starting address at 0xEFF00000. The system software

interacts with it through memory operations.

3 Overview

3.1 Threat Model

Kernel TOCTOU is a local privilege escalation vulnerability. The vulnerability could

allow local users or malicious software to gain full root privileges. We assume that
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an attacker has a user account that can upload and run arbitrary programs with user

privilege or access such a program. The attacker has arbitrary memory reads and writes

primitives. He is also able to call any system service or load any library. The DEP

policy (Write ⊕ eXecute) and ASLR is not necessary. We assume the attacker has full

knowledge about the system kernel, including the memory layout. However, he can not

read or write any kernel memory because a classical operating system would not allow

it. The attacker aims at running arbitrary code in the kernel, hence obtains the highest

privilege.

We endeavor at the Windows OS, a complicated operating system. Linux kernel is

out of scope. Considering we leverage a hardware feature from the Intel processor, The

host system needs to have an Intel processor with SMAP capability.

3.2 High-Level Design and Challenges

The kernel double fetching a user address may cause a TOCTOU vulnerability. There

are two ways to prevent exploitation; one is to drop the kernel’s double-fetch action;

the other is to prevent data mismatch between fetches. From a practical point of view,

we can not decline the kernel’s double-fetch behavior. Therefore, this paper proposes a

framework to prevent data mismatch between fetches. The high-level idea is that when

the kernel accesses a user address, we freeze the containing page so that no other user

thread can overwrite it.

However, there have been many challenges here:

• How can we know when the kernel accesses a user address?

• It is overkill to freeze an entire page just for one variable and reads should allow.

• The two fetches should happen within a short time, more specifically, within the

same system call.

• Windows is a complex operating system. How can we practically enable a system-

wide hardware feature such as SMAP without crashing the system?
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3.3 Approach Overview

How to get notified when the kernel accesses a user address is the biggest challenge.

Since the processor reading memory is such an ordinary operation, no official hardware

feature is available for monitoring it in a broad range of memory. To solve this challenge,

we abuse a hardware feature SMAP. Originally, SWAP is designed to prevent the at-

tacker from tricking the kernel into getting shellcode or malicious data from userspace.

However, one unique characteristic of this feature is that when the kernel accesses a

user address, the processor raises a page fault exception. This feature accurately serves

our purpose so that we will leverage it in a novel way to solve the challenge.

Subject to the x86 architecture, the protection has to base on the page granularity.

To protect even one byte, we have to protect an entire page. First, we separate the

subsequent user reads from writes because the reads are harmless. When we temporarily

release a page, we set this page as read-only to ensure no writing. When a user writes

on the protected page, we make the thread suspend on the writing instruction until the

current system call ends.

As previously mentioned in Section 2, the kernel-level TOCTOU vulnerabilities

happen inside individual system calls. We hook Windows internal functions to know

when a system call ends and releases the pages it accessed. Also, we monitor the

creation and termination for both processes and threads and use Windows internal

data structures to distinguish each thread.

We develop a light-weight hypervisor to confine the SMAP feature into specific

processes. It makes debugging less painful to us, and it is also necessary to prevent

nested SMAP exceptions that cause a dead loop.

Figure 4.4 shows the high-level overview. The hypervisor enables SMAP only in one

process, which is the one currently running on the processor. The kernel has accessed

three user pages, as marked in the user process memory space, and one user thread in

the same process tries to access those pages. Notice the read is allowed. The protected

page is temporarily released and set read-only. However, the write is not permitted

for the moment; the page fault handler suspends the thread to avoid causing any data
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inconsistency in the kernel.

System Kernel
(guest mode)

Hardware

Hypervisor

Process

Current Process

CR4.SMAP = 0      ...        =1          ...          =0 

0x80000000

0x00000000

0x7FFFFFFF

... ...
Process

user
space

kernel
space

smap
enable

Page
Fault

wait

user
write

user
read

SET
VMCS.CR4.SMAP = 1

SET
VMCS.CR4.SMAP = 0

VM EXIT VM ENTER

SMAP Active

Thread 1

Figure 4.4: The hypervisor is capable of confining the system-wide feature SMAP into
one process. When the hypervisor catches the process context switch events, it changes
the SMAP enable bit in the CR4 register to only set during the target process. The
processor raises page fault exception when the kernel accesses userspace so that we can
protect those pages. Thread 1 can read a protected page but can not write. The read is
allowed by automatically setting the protected page back to userspace with a read-only
permit. However, when the write instruction raises an exception, the page fault handler
suspends the thread until the system call ends.

4 Finding Kernel TOCTOU Bugs

This section presents our fuzzing tool TTFuze for kernel-level TOCTOU vulnerabil-

ity and the results we obtained on Windows, especially from the Win32k graphical

subsystem.

Kernel-level TOCTOU vulnerabilities are subtle. It is not intuitive for the devel-

opers to be aware of those double fetches. They are not apparent errors such as buffer

overflow that the compiler-based method [118] [175] can detect. It is even harder to

spot than the use-after-free vulnerability that code emulation or run-time checks can

expose [51] [30] [92] [143]. As described in Section 2, the exploit needs to win the race

with the kernel in high speed, and only by chance that it can trigger the vulnerability.
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From previous research works and vulnerabilities’ publicly available information, the

cause of kernel-level TOCTOU vulnerability is either due to historical reasons that a

kernel module is highly coupled with user libraries or because of sloppy coding style.

However, this vulnerability has a solid memory access pattern, namely, two reads

from kernel to userspace. It is not convenient to observe such a pattern either from

user programs or the kernel. The most intuitive way is to use a virtual machine. Pre-

vious work such as [78] [77] utilize a full software emulated virtual machine Bochs [90],

which parses and executes each instruction without hardware virtualization assistant or

dynamic binary translation. It is straight forward to instrument the operating system

kernel, and it discovers many double-fetch vulnerabilities [78] [77]. However, due to the

nature of full software emulation, the virtual machine runs extremely slow. So it is not

easy to make a comprehensive test, especially with GUI programs, because GUI needs

a prompt response.

As previously described in Section 2, the SMAP feature is an ideal way of monitoring

kernel-to-user-memory behavior. The goal is to check if the same address is being read

twice by one system call.

However, the difficulty lies in recovering the system from a fatal SMAP exception.

Because of its original intention, the operating system should crash when it receives such

an exception. We tried different methods to cancel a SMAP exception, such as disabling

it at CR4.SMAP or temporarily disable it through setting EFLAGS.AC. None of them

works. Fortunately, setting the faulting page to kernel-mode is one way to satisfy the

processor so far. Subsequently, we want to release the page back to user-mode as soon

as possible not to lose track of the kernel.

Single Step Trap. It is the soonest way to get back control. Through setting the

trap flag (TF) in the EFLAGS register, the processor stops at every instruction. After

setting the faulting page to kernel-mode to recover from the SMAP exception, we want

the processor to stop at the next instruction. So we can release the protected page and

continue the kernel.

For the single-step trap, the processor automatically sets the resume flag (RF)

in the EFLAGS register so that the handler itself will not be interrupted on every
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instruction. Because we use a hypervisor, the single-step trap triggers a VM exit. In

the event handler, we try to clear the TF or set the RF in the guest EFLAGS and then

resume the virtual machine. However, the RF flag does not work properly under such

circumstances; the single-step still comes in.

Breakpoint We decide to take an alternative approach that writes a software break-

point directly on the next instruction. We first parse the current instruction’s length

and then write a byte 0xcc to it. Next, we record the information of this access and let

the kernel continue. When the hypervisor gets the debug trap, we fix it with the origi-

nal byte, release the protected page, and then resume the virtual machine to re-execute

the faulting instruction.

Results. We found a few double fetch candidates; Table 4.3 in Section 7 gives a

glimpse of the problem. This method has advantages over the binary static analysis.

In the x86 instruction set, there are a few addressing modes of accessing memory, such

as absolute, register, register + offset, which makes it difficult to identify the same

address from the syntax perspective. For example, in Figure 4.5, it needs to trace both

ECX and EDX registers and, in some cases, need to get user input to calculate the

final address eventually. In TTFuze, each user address visited is reported through

the hardware mechanism SMAP. Therefore, it can accurately locate every double fetch

within a system call.

bf812ddf 8b03            mov     eax,dword ptr [ebx]
bf812de1 8b502c          mov     edx,dword ptr [eax+2Ch]
bf812de4 8bb284010000    mov     esi,dword ptr [edx+184h]
bf812dea 8b9288010000    mov     edx,dword ptr [edx+188h]
bf812df0 899518ffffff    mov     dword ptr [ebp-0E8h],edx
bf812df6 8b511c          mov     edx,dword ptr [ecx+1Ch]
bf812df9 3bf2            cmp     esi,edx
...

bf812e42 8b482c          mov     ecx,dword ptr [eax+2Ch]
bf812e45 8d8184010000    lea     eax,[ecx+184h]
bf812ebe 6683790203      cmp     word ptr [ecx+2],3
bf812ec3 0f84e1feffff    je      win32k!GreBatchTextOut+0x3d (bf812daa)
bf812ec9 898500ffffff    mov     dword ptr [ebp-100h],eax
bf812ecf 8b5120          mov     edx,dword ptr [ecx+20h]

(0x4808c4)

Figure 4.5: CR3 0x6d40320; TEB 0x7ffdd000; EIP 0xbf812de4 and 0xbf812e4b read
the same user-mode address 0x4808c4 within one system call.
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Whether those bugs can further become vulnerabilities is need to analyze case by

case. However, a significant potential of those accesses is not within a try-catch block.

It may lead to a local denial-of-service (DOS) attack if the attacker frees the user page

right ahead of the access.

5 SMAPro Design

This section presents the design of SMAPro. The core of SMAPro includes two key

components, the system module, and the hypervisor. The system module intercepts

the system’s page fault handler to process SMAP and relevant exceptions, which is the

protection’s main logic. The lightweight hypervisor puts the system into the virtual

machine. Its primary use is to confine the system-wide feature SMAP into specific

processes.

5.1 System Module

The system module’s core functions include enabling SMAP, recovering from SMAP

exceptions, protecting pages, and solving read/writes conflicts. We describe each tech-

nique as follows.

Monitoring Kernel to Userspace Access. The biggest challenge we confront

is how to monitor the kernel-to-userspace behavior efficiently. Accessing memory is

such an ordinary operation so that no purposeful hardware feature is available for

monitoring that. We notice a rarely mentioned hardware feature SMAP. Its initial

design prevents the attacker from tricking the kernel into getting shellcode or malicious

data from userspace. When the kernel accesses a user address, the processor raises a

page fault exception. This part accurately serves our purpose, so we want to leverage

it in a novel way.

However, not every aspect of this feature perfectly fits our exceptions. If in an ideal

situation, the hardware should report on each kernel-to-userspace access and freeze the

user memory at machine word granularity. In reality, SMAP only works on the page

level, and the exception that it raised is fatal to the system, meaning the operating
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system should crash when it receives such exceptions. We eventually find a way to

recover it. We intercept the system’s page fault handler to handle such exceptions.

Since Windows does not support SMAP, we do not pass those exceptions to the ker-

nel. Considering the violation of raising a SMAP exception is that the kernel accesses

userspace, so puts the corresponding page into kernel space does the opposite, thus

solve the violation. Otherwise, it is then too late to disable SMAP through CR4 or

EFLAGS.AC.

Putting a page into the kernel not only solves the exception but also protects the

page. The user threads no longer can access it, which prevents the race condition

between the kernel and user threads. However, it is overkill to protect the entire page

and block benign reads and writes on the rest of the data. We will elaborate on the

read/writes conflicts in the following sections.

Solving Read Conflicts. For practical purposes, solving read conflicts is essential.

It is common to have multiple global variables or multiple heap buffers share the same

page. Therefore, when we protect an entire page, we block benign access to the rest of

the data. It is especially unnecessary because reads do not harm security.

We solve the read conflicts by setting the protected page back to userspace, allow-

ing user threads to read. When user threads read a kernel-mode protected page, the

processor raises an exception due to the privilege violation. Therefore our page fault

handler gets the notification and sets the page back to userspace. Additionally, the

page is also set with a read-only permit to ensure no write. Figure 4.6 shows the tran-

sitions between kernel-mode and user-mode. We record the original page information

to handle various situations and correctly restore it at the end of the system call.

Page Attribute Transition. The modifications on the page attributes are essen-

tial to this mitigation. Because changing a user page to kernel-mode is the primary

method of protection. Moreover, to solve reads conflicts, we need to change the page

back and forth between kernel-mode and user-mode.

First, we need to locate the page’s Page Table Entry (PTE). As mentioned in Sec-

tion 2, with paging, every page in the virtual memory has an entry in the page table.

As shown in Figure 4.7, the User/Supervisor decides whether this is a kernel page or a
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Figure 4.6: Page attributes transits in different states. A user page becomes a kernel
page when the kernel read/write it 1○. Afterward, if user threads read this page, our
page fault handler changes it back to user-mode with a read-only permit 2○. This page
is again capable of triggering a SMAP exception if the kernel reaccesses it 3○. Our
page handler suspends any user thread that tries to write a protected page 4○. It then
calls a sleep function, letting the operating system, and wakes up periodically to check
the page’s status 5○. When the current system call ends, this page is restored to user-
mode with its original permits 6○. The write thread is also released and re-execute the
faulting instruction to write the page 7○. However, if the thread waits too long, it will
be terminated to avoid a deadlock 8○.

user page where set if a user page, otherwise a kernel page.

Figure 4.7: Bit 0 (Present): 0 indicates an invalid page. U/S (User/Supervisor): 0
user-mode accesses are not allowed to the page referenced by this entry. R/W: 0 writes
are not allowed to the page.

We obtain various information in the context of the page fault handler to find the

corresponding PTE. The CR2 register stores the faulting virtual address. Regarding

SMAP, it is the user address that the kernel accessed. The CR3 register stores the

physical address of the current page table base. The trap frame in the kernel stack

contains the error code, CS: EIP, SS: ESP, and EFLAGS, which describes the processor

context when the exception happens.

Changing the U/S bit in the PTE makes the user page becomes a kernel page.

It is counterintuitive because we usually have the impression that the virtual address
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between 0x80000000 to 0xFFFFFFFF is the kernel space on Windows 32-bit system.

However, the processor mechanism defines the kernel space as follows. There is the

Current Privilege Level (CPL) field in the CS segment. The processor maintains this

2-bit field to equal the processor’s current privilege level. Meantime, the U/S bit in the

PTE decides whether the unprivileged code can access it. Traditionally, we consider the

memory space that only the most privileged code (CPL:00) can run as the kernel space.

Indeed, it is a considerably complicated mechanism involving more data structure in

the processor’s microarchitecture, out of this paper’s scope. In essence, the U/S bit

decides whether the page is a kernel page or a user page, even the virtual address is

below 0x80000000.

Kernel

User

Page XPseudoSyscall(
parameter0,

  parameter1,
...

   );

Thread 0

NtPseudoSyscall(parameter0, ...)
{

allocate(*parameter0)
...

}

Thread 1para..0

PageFault Handler
{
  if (...)
  SetKernel(PageX)
  if (...)
  SetUserReadOnly(PageX)
}

①

③

② 

Page X

para..0

④

⑤

⑥

Figure 4.8: 1○ User thread 0 invokes a system call with parameters. 2○ The kernel
fetches one of the parameters from userspace hence triggers a SMAP exception. 3○ Our
page fault handler converts the page into kernel-mode to protect it. 4○ User thread 1
tries to read the protected page and triggers an exception due to privilege violation. 5○
Again, our page fault handler processes the exception and converts the protected page
back to user-mode with a read-only permit. 6○ The faulting instruction re-execute, and
the user thread successfully read the data without knowing the previous exception.

Figure 4.8 shows the mitigation convert a low address user page into a kernel

page. It is a common situation where user programs invoke a system call and provide

parameters. After that, if a user thread accesses a protected page, the processor raises

an exception due to the privilege violation. The page fault handler converts this page

to user-mode and read-only.

Solving Write Conflicts. We can not allow any user code to write a protected

page during its protection, because unlike reads, the write operation is a security threat.
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Subject to the x86 architecture, the protection has to base on the page granularity,

so not all the writes on this page will cause a TOCTOU problem. Therefore, we

can not directly terminate every user thread that accesses a protected page from a

compatibility perspective. To solve this, we choose to delay the write operation. After

the writing instruction caused an exception, our page fault handler suspends the user

thread until the end of the system call. Therefore, the protected page remains the same

for the kernel, and user threads can also write it after the system call. We explain the

practicality of suspending a thread in the context of page fault in the following section.

Kernel

sysenter
   ...

service[NtPseudoSyscall](...)
...
syscall_end()
return_to_user()

sysexit

User

Page XPseudoSyscall(
parameter0,

  parameter1,
...

   );

Thread 0

NtPseudoSyscall(parameter0, ...)
{

allocate(*parameter0)
...

}

Thread 1para..0

PageFault Handler
{
  if (...)
  SetKernel(PageX)
  ...
  while (try < nlimit){
    sleep(milliseconds);

if (check(PageX)){
       return reexecute();
    }
    try++;
  }
  return access_violation
}

①

③

② 

Page X

para..0

④

⑤

⑥ ⑦

Figure 4.9: To solve this, we choose to delay the write operation. 1○ User thread 0
invokes a system call with parameters. 2○ The kernel fetches one of the parameters
from userspace hence triggers a SMAP exception. 3○ Our page fault handler converts
the page into kernel-mode to protect it. 4○ User thread 1 tries to write the protected
page and triggers an exception due to privilege violation. 5○ This time, our page fault
handler suspends the thread by calling a sleep function, letting the operating system
schedule. It rechecks the page’s status periodically when it wakes up. 6○ When the
current system call ends, the mitigation releases all the protected pages related to
this thread. 7○ Meantime, the page fault handler wakes up and realize that the page is
released. Therefore it finishes the exception by executing the faulting instruction again.

Figure 4.9 shows that thread zero invokes a system call with parameters. The

kernel gets the user parameter so that the corresponded page is protected. Afterward,
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user thread one tries to write the page, which raises a page fault exception due to

privilege violation. The page fault handler suspends the current thread by calling a sleep

function, namely, KeDelayExecutionThread(). The thread wakes up periodically

to check whether the page is released. If so, the exception is finished and re-executes

the faulting instruction. Otherwise, the page fault handler may terminate the thread

to prevent a deadlock if it takes too long.

Interrupt and Exception. Suspending a thread inside the page fault handler

seems unusual because the page fault exception resides in the Interrupt Descriptor

Table (IDT) with interrupts, and they seems to be time-critical routines. However,

there is an essential difference between an exception and an interrupt. An interrupt

is an asynchronous event that is typically triggered by an I/O device. An exception

is a synchronous event generated when the processor detects one or more predefined

conditions while executing an instruction. Interrupts have a higher priority than the

operating system’s scheduler and most of the kernel components. Any job that takes

too much time should not be processed in an interrupt handler [108]. On the contrary,

exceptions have the lowest priority in the kernel. In Windows’ term, the Interrupt

Request Level (IRQL) that the exception handler executes at is PASSIVE LEVEL,

meaning call for thread scheduling is plausible.

Releasing Protected Pages. To be aware of when a system call ends, we choose to

intercept Windows internal functions. We keep tracking the page table base and Thread

Environment Block (TEB) to distinguish each thread, thus release the protected pages

on a thread basis.

Flushing TLB. We need to flush Translation Lookaside Buffer (TLB) to ensure

that the page attributes modification is effective on all processors of the system. TLB

is a memory cache that stores the recent translation of virtual memory to physical

memory. It accelerates the process of accessing virtual memory. Different than data

cache, TLB is not entirely transparent to the operating system. When the operating

system updates a page table, the corresponding TLB entries need to be invalidated

to get new ones. As mentioned above, we leverage the page attribute transition as

the main page protection. It is critical to ensure the PTE modification takes effect
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instantly, especially on a multi-processor system. We examine the method to flush

the TLB through local APIC as described in Section 2. Eventually, we find Windows

internal functions that flush TLB entries on all the processors. Therefore we use them

and do not have to consider the underlying hardware differences.

5.2 Hypervisor

The hypervisor plays an essential role in developing and debugging for SMAPro.

When we first enabled SMAP in Windows, instantly, an enormous amount of exceptions

flooded the system. The debugger was frozen. It is not surprising because we know

that SMP is a system-wide feature, and Windows does not support it. A significant

portion of the system calls fetches user-provided parameters and system data such as

Process Environment Block (PEB), USER SHARED DATA mapped in userspace, which

all trigger SMAP exceptions.

Due to Intel VT virtualization technology’s design [120], it is possible to load a

light-weight hypervisor as a kernel module during run time. Unlike other commercial

hypervisors such as Xen, Hyper-V, and VMWare, it does not emulate hardware de-

vices. It merely put the operating system into VM guest mode, and itself becomes the

hypervisor, thus monitors system events [157].

Hypervisor

VM EXIT

mov cr3, eax

VM ENTER

mov cr3, eax
Process Process

Target process

SMAP active

CR4.SMAP = 0

SET
VMCS.CR4.SMAP = 1

SET
VMCS.CR4.SMAP = 0

CR4.SMAP = 1CR4.SMAP = 0

Figure 4.10: Operations on the CR3 register are the decisive characteristic of process
context switching, which triggers VM exit by default. By setting the SMAP bit in the
CR4 image of the VMCS.GuestArea, it updates the CPU CR4 when the hypervisor
enters the virtual machine again. Therefore, it is possible to use the hypervisor to
enable the SMAP feature when a specific process is running on the CPU.
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By monitoring the process context switch event, namely, operations on the CR3

register, the hypervisor can temporarily enable/disable SMAP to make it only effective

in the context of specific processes. Figure 4.10 shows that mov cr3, eax triggers

a VM exit event, and the hypervisor receives it. If the new CR3 belongs to one of the

target processes, the hypervisor sets the CR4.SMAP in the Virtual Machine Control

Structure (VMCS), which is the data structure that updates the real CPU registers

when entering the virtual machine. After returning to the guest virtual machine, the

SMAP is active. When this process switches out, the hypervisor again receives the

event and unset CR4.SMAP. Therefore, this particular process has the illusion that

SMAP is active in the system while other processes feel the opposite.

The hypervisor inevitably brings performance overhead. However, it makes the

mitigation more configurable. Due to the nature of local privilege escalation attacks,

system processes that already have high privilege are not threats. Therefore it is not

very meaningful to protect them, which reduces the overall performance overhead.

Additionally, as previously mentioned, SMAP confinement is also necessary to prevent

deadlock caused by nested SMAP exceptions. Therefore we consider the hypervisor

framework as one contribution of this paper.

6 Implementation

This section provides the implementation details and discusses the issues that we en-

countered during the development.

Page Faults. Exception handling is the primary method of SMAPro. We leverage

SMAP exception to notify us when the kernel accesses userspace and use privilege-

violation exceptions to solve the subsequent read and write conflicts. Those exceptions

are all handled through the page fault handler, vector 14, in the IDT. The page fault is

not an error, but an exception raised when accessing a virtual page. It is the MMU’s

mechanism to implement virtual memory; thus, the page fault is recoverable.

We handle page fault exceptions before the kernel because, by design, the SMAP

exception indicates a fatal error that the system should stop working immediately. We
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also must be cautious about sending all the mitigation-irrelevant exceptions to the

kernel. If we miss one, it may lead to system malfunctioning or crash processes.

Figure 4.11 shows a 32-bit error code that indicates the cause of the page fault. It is

part of the trap frame, and the processor automatically pushes it into the kernel stack.

However, there is no exact error code regarding SMAP. We make the cause conclusion

from the trap frame and the values of CR2 and CR3.

Figure 4.11: Page Fault Error Code. [68] P: 0 The fault was caused by a non-present
page; 1 the fault was caused by a page-level protection violation. W/R: 0 The ac-
cess causing the fault was a read; 1 the fault causing the fault was a write. U/S:
0 A supervisor-mode access caused the fault; 1 A user-mode access caused the fault.
Notice, there is no exact error code regarding SMAP. In the context of an SMAP
exception, the U/S bit is zero, which indicates kernel-mode access. We still need to
combine this information with the faulting address and CS segment register to confirm
the cause.

We first filter out the mitigation-irrelevant exceptions because they may be nested

exceptions caused by our operations, such as page table walking. For example, P:0 in

the error code indicates a page absence, and we must pass it to the original page fault

handler without any modification. The error code may have multiple bits combined,

but we have not observed a SMAP exception on an invalid page so far. The U/S bit and

CPL field in the CS segment register reveal whether the kernel caused the exception.

Additionally, we keep track of the protected and relevant pages, which helps solve the

subsequent conflicts. Algorithm 1 shows the basic algorithm to handle the exception.

Enabling Interrupt in the Page Fault Handler. The processor calls the page

fault exception through an interrupt gate. Therefore when entering the page fault

handler, the processor clears EFLAGS: IF bit automatically. It prevents subsequent

interruptions from interfering with the handler’s execution, which we described in Sec-

tion 2. In the page fault handler, we first store a copy of the CR2 register. Then set the

IF flag before we walk the page table because it may contain swapped-out pages, and

we need the interrupt enabled so that system can get noticed, thus bring them back
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Algorithm 1 Page Fault Handler
1: procedure PageFaultHandler
2: 𝑎𝑑𝑑𝑟𝑒𝑠𝑠← 𝑐𝑟2
3: 𝑝𝑡𝑒← GetPte(𝑎𝑑𝑑𝑟𝑒𝑠𝑠)
4: 𝑡𝑒𝑏← 𝑓𝑠 : 0𝑥18
5: if SmapViolation then
6: 𝑝𝑎𝑔𝑒𝑠[]← AddPage(address, pte, cr3, teb)
7: SetPageKernel(pte)
8: FlashTlb(address)
9: return Re-execute

10: else if UserAccessProtectedPage then
11: if error.WRITE then
12: repeat
13: Sleep
14: if CheckPtePermits(pte) then
15: return Re-execute
16: end if
17: until 𝑐𝑜𝑢𝑛𝑡 < 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
18: return TerminateThread
19: else
20: SetPgeUserReadonly(pte)
21: FlashTlb(address)
22: return Re-execute
23: end if
24: end if
25: return OriginalHandler
26: end procedure

from the disk.

Hypervisor. Our light-weight hypervisor set the current system into a guest virtual

machine. Unlike a bare-metal hypervisor, it does not emulate hardware devices. All

the cores on the physical processor enter the VMX mode, and each core has its VMCS

that represents a virtual core in the guest.

The virtual machine exits to the hypervisor when operating on control registers. We

only focus on CR3 to monitor the process context switch. When the target process is

about to run, the hypervisor sets CR4.SMAP bit in the Guest-state area of VMCS so

that after re-entering the virtual machine, the SMAP is active on this core. Similarly,

the hypervisor disables SMAP if the target process is switching out.

Updating Page Table. Any module that wants to update a page table should first

hold the global spinlock to synchronize with other system components. However, as a

third-party module, we do not have such conditions because the Windows kernel does

not export this global lock. In a typical kernel-level TOCTOU attacking scenario, the
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situation worsens because the attacker races with the kernel at high speed; in response,

our mitigation also fastly operates on page table. Therefore, our code should be as

atomic as possible to avoid conflicts with the kernel. Figure 4.12 shows the PTE data

structure defined in C code. 1○ changes the Owner a.k.a U/S bit to zero, which sets

this page to kernel-mode, and 2○ is the assembly code generated by a compiler. The

one-line C statement becomes three assembly instructions. The problem is that, during

the three instructions, the thread may be interrupted and switched out, and the value

held in ECX may become outdated. It occurs many times when we test exploits against

SMAPro, making the mitigation ineffective. To solve this, we use the locked atomic

instruction [69], as shown at 3○.

typedef struct _PTE_HARDWARE
{
        ULONG Valid : 1;
        ULONG Write : 1;
        ULONG Owner : 1;
        ULONG WriteThrough : 1;
        ULONG CacheDisable : 1;
        ULONG Accessed : 1;
        ULONG Dirty : 1;
        ULONG Reserved : 1;
        ULONG Global : 1;
        ULONG Ignored: 3;
        ULONG PageFrameNumber : 20;
} PTE_HARDWARE, *PPTE_HARDWARE;

1) C

2) X86 assembly

3) Atomic instruction

pPte->u.Hard.Owner = 0;

mov eax, dword ptr [pPte]
mov ecx, dword ptr [eax]
and ecx, 0FFFFFFFBh
mov dword ptr [eax], ecx

mov eax, 'addr'
lock or/and [eax], 'mask'

Figure 4.12: Left: PTE structure defined in C. Right: C code for changing one bit in
the PTE structure, the corresponding assembly code generated by Microsoft C/C++
compiler, and the atomic instructions that serve the same purpose.

TLB Flushing. For SMAPro, there is a difference between a real hardware com-

puter and a virtual machine such as VMWare and QEMU. When we applied SMAPro

on the real hardware, it becomes ineffective because we did not flush the TLB. TLB

is a memory cache that stores the recent translation of virtual memory to physical

memory. The operating system needs to invalid the corresponding TLB entries when

updates a page table. Instruction INVLPG only invalidates a TLB entry on the current

processor. On a multi-processor system, each core has its TLB. Therefore, we need to

issue inter-processor interruption (IPI) through local APIC to flush TLB on every core.

We find a Windows kernel internal function, KeFlushSingleTb(). It sends IPI
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to all processors to invalid a TLB entry. It calls the Windows hardware abstraction

layer (HAL) to send the IPI, so the kernel does not need to mind the actual hardware

differences. With this, our mitigation effectively works on the real hardware machine.

Intercepting System Calls. As mentioned in Section 5, to solve read con-

flicts, SMAPro changes the protected page back to user-mode with a read-only per-

mit. However, since it is no longer a kernel page, the attack can change its per-

mits by calling Win32 APIs. Therefore, we need to intercept system calls such as

NtProtectVirtualMemory() to prevent it. Nevertheless, there may be other ways

to go around the system call protection, and we should improve it accordingly. It be-

comes another arms race between the attacker and the defender, which is out of this

paper’s scope.

Terminating a Thread. When solving the write conflicts, the page fault handler

suspends the thread and check the protected page’s status periodically. We set a retry

threshold to avoid deadlock, and after a few attempts, we have to terminate the thread.

However, terminating a thread is not a trivial task, so we use a trick to let the kernel

handle it. We clear the P(present) bit in the PTE and the error code in the kernel

stack. Thus, it looks like a thread reads invalid memory; then, we pass it to the kernel.

Special Cases. Windows is a complex operating system. There are always cases

that we can not fully comprehend and need to handle specially. For example, USER SHARED DATA

is a shared page between the kernel and user. Windows maps it at both 0x7FFE0000

and 0xFFDF0000. The kernel frequently reads it because it contains settings such as

system time. It is a read-only page, and we treat it differently to improve performance.

7 Evaluation

This section, we evaluate SMAPro’s performance overhead and how it protects the

operating system from real-world vulnerabilities.
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7.1 Performance

In this section, we focus on performance evaluation. As previously mentioned, SMAPro

has two key components, the system module, and the hypervisor. To present the per-

formance impact introduced by this mitigation, we conduct the tests in three parts.

All tests run on the PC with Intel Core i5-6400 (6th Gen CPU Skylake), ASUS

H110M-C motherboard (Intel H110 Chipset, Realtek RTL8111H Network Controller),

8GB RAM, and 500GB hard disk.

Benchmarks. The hypervisor plays an essential part in SMAPro. Without the

hypervisor confining the SMAP feature, it would not be possible to debug a complex

system like Windows with a system-wide unsupported feature. Nowadays, a hypervisor

is part of the cloud computing infrastructure and can be regarded as a built-in com-

ponent. The Windows 10 operating system even brings its native hypervisor to deliver

security goals. Under those circumstances, SMAPro can be added to the existing

hypervisor with less performance overhead imposed on the system.

To evaluate the hypervisor’s performance overhead, we use the well-known bench-

mark SPEC 2006. We understand that this benchmark is for processor instruction set

evaluation, specifically for microarchitectural aspects, such as instruction execution,

branch prediction accuracy, cache policies. We choose several programs from the set.

They are all non-GUI and computational intensive programs. Therefore the perfor-

mance overhead incurred is primarily due to the hypervisor. Although our hypervisor

and Windows HVCI have different objectives, we compare them to show that run-time

protection utilizes virtualization techniques is practical.

Figure 4.13 shows that hypervisor’s performance overhead is acceptable, on average,

3.25%. HVCI yields a modest performance overhead of 0.81%.

Our hypervisor is slower than HVCI, particularly in two benchmark programs.

Learning more about computer architecture and virtualization techniques, we wish to

improve our hypervisor to perform better.

Non-trivial Applications. We also evaluate SMAPro on several non-trivial

applications, as shown in Figure 4.14. The applications we choose are meaningful
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Figure 4.13: Performance overhead on the SPEC benchmarks incurred by the run-time
load hypervisor. HVCI represent the Windows 10 native hypervisor for Hypervisor-
Protected Code Integrity. All overheads are normalized to the unprotected system
running benchmark.

because the kernel-TOCTOU vulnerability may threaten them in real-world scenarios.

For example, a web server such as Nginx normally runs in a non-root account and takes

external requests.

To test web servers, we count their response time for a web page request. For

compression software, the test is to compress large files. We use speedtest1.c, which

is a performance testing program for sqlite3. The result shows that the performance

overhead is acceptable.
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Figure 4.14: Performance overhead in non-trivial applications. Overhead mostly being
introduced on system calls that need to fetch user parameters

GUI. Through our investigation, we find that the Windows graphical subsystem,

namely, Win32k.sys, has the most double-fetch issues. Since GUI programs need to

redraw their graphical components, they invoke the win32k system calls in a high fre-

quency, even for a simple program such as Windows notepad. Therefore, our mitigation
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incurs an unneglectable performance over GUI programs. The overhead is primarily

affected by how often the interface refreshes. For example, if minimizing a GUI pro-

gram’s window, its performance will not be slow down by the graphical interface at

all.

We compare GUI programs with non-GUI programs in the following aspects: the

number of user pages accessed by kernel per system call and how many double fetches

occur. We drag the GUI program’s window to trigger redraw, and we send one URL

request to the web servers per second. The measurement takes the first 500 system

calls.
Table 4.2: System call count and user-pages accessed for GUI & non-GUI programs

Programs
System
Calls

Protected
Pages(r, w)

avg.
Double
Fetch

Time
(ms)

nginx 500 711(711, 0) 1.42 223 12312
apache 500 689(689, 0) 1.38 205 11339
notepad 500 1434(1102, 241) 2.87 1373 1859
freecell 500 1352(1165, 187) 2.70 1266 1500

Table 4.2 shows some interesting results. Refreshing the GUI takes tremendous sys-

tem calls. As expected, both the kernel and the Win32k subsystem accesses user pages,

but the win32k accesses more than the kernel does. We find that they both capture the

user parameters at the beginning of each system call through reverse engineering, but

the win32k module read/write user data even in the middle of a system call.

We also count the number of reads and writes on user pages. For non-GUI pro-

grams, the number of writes is zero, which is strange because most system calls need

to write results back to the user program. With investigation, the causes are as fol-

lows. Windows provides three methods to transfer data between system calls and user

programs, namely, Buffered I/O, Direct I/O, and Neither Buffered Nor Direct I/O.

Among the three, the kernel mostly uses Buffer I/O and Direct I/O, which do not need

to write to user-mode buffer directly. However, the kernel still needs to write user-mode

variables such as the filehandle in system call NtCreateFile(). Figure 4.15 shows

the pseudo-code similar to what the kernel uses to validate user parameters. We can

see that the code always reads the variable first and the SMAP exception only captures

first access. Therefore, this coding style is another cause for the zero writes. The result
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shows that the kernel is well regulated on accessing user data. On the other side, the

Win32k module has many writes, which tell a different story.

try {
    ...
    *((volatile HANDLE *)Address) = *Address;
} except(EXCEPTION_EXECUTE_HANDLER) {
    // Error handling

...
    return GetExceptionCode();
}

Figure 4.15: Pseudo-code for validating a file handler.

The column Double Fetch lists the user addresses that are read more than once dur-

ing individual system calls. We trace this information with the TTFuze as previously

introduced in Section 4. Many of those double-fetch records are duplicates and benign.

For example, the kernel needs to read data from Process Environment Block (PEB) or

Thread Environment Block (TEB), or data structures located in userspace. However,

the Win32k module has many more cases. Table 4.3 gives a glimpse of them. Every two

rows indicate a double-fetch case, where after the first read, the subsequent instruction

revisits the same address shortly after, and the identical CR3 and TEB show that two

fetches are from the same thread of the same process.

Furthermore, we find that the Win32k module directly read the user variable not

within a try-catch block in some of those cases. It is dangerous. The user programs

can free the user memory and cause the kernel code to access an invalid page without

protection, which leads to a kernel crash.
Table 4.3: In the selected double-fetch results, for every two lines, they have the same
CR3 and TEB, which indicate the two records are from the same process, same thread.
The two EIP are shortly apart, but the addresses they reference are the same user-mode
address.

Cr3 Eip Addr. Teb
0x6d40320 0xbf812de4 0x4808c4 0x7ffdd000
0x6d40320 0xbf812e4b 0x4808c4 0x7ffdd000
0x6d40320 0xbf812dea 0x4808c8 0x7ffdd000
0x6d40320 0xbf812e55 0x4808c8 0x7ffdd000
0x6d40320 0xbf812daf 0x480750 0x7ffdd000
0x6d40320 0xbf812e21 0x480750 0x7ffdd000
0x6d40320 0xbf80c04d 0x7ffdd206 0x7ffdd000
0x6d40320 0xbf812ebe 0x7ffdd206 0x7ffdd000
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To promote the performance of SMAPro, it would be helpful if the unnecessary

SMAP exceptions during parameter validating can be eliminated. As was done in the

Linux kernel, the SMAP feature is temporarily disabled during copy from user()

and copy to user(), the gateway functions. InWindows kernel, ProbeForRead()

and ProbeForWrite() are the primary cause of SMAP exception. However, such

probe has many variants such as ProbeAndWriteHandle(), ProbeForWriteIoStatus()

and they are only partial of the user-data-copying code. Some of them are macros in-

stead of functions, making it difficult to fix them without recompiling the kernel.

7.2 Case Study

CVE-2008-2252 is a kernel-level TOCTOU vulnerability reported by Thomas Gar-

nier in 2008 and patched in Microsoft security bulletins ms08-061. It has been analyzed

by many research works [162] [78]. To evaluate the effectiveness of SMAPro, we test it

on a real hardware machine. Since SMAP and SMEP are only available on a relatively

new processor, we have to install an old system on a modern PC.

We write a program to exploit the CVE-2008-2252 vulnerability. To create a buffer

overflow in the kernel, we need to enlarge the user-mode variable between the two

kernel reads. The exploit creates two threads. Thread zero first allocates a vir-

tual page at address zero for the parameters, which is necessary to bypass the san-

ity check of the system call NtUserMessageCall(). Then, it repeatedly calls the

upper layer Win32 API SendMessage() (WM COPYDATA) with the malicious param-

eters to open the attack time window. SendMessage() calls a lower layer function

NtUserMessageCall(), which eventually calls the vulnerable win32k internal func-

tion xxxInterSendMsgEx(). Simultaneously, thread one keeps flipping the high bit

of the target variable on page zero.

As shown in Figure 4.16, the kernel reads the user-mode variable (address 0x4) at

2○ and 3○. Between the two instructions is the attack window within which thread one

tries to enlarge the variable. To successfully mitigate the attack, we need to ensure

this page remains unchanged during the time. The protection starts at 1○, several

instructions before 2○, where the CMP instruction first reads the page hence raise an
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Page
Protect
Window

Attack
Time
Window

(Thread 0 -> syscall)
...
...
cmp [eax+8], ebx ; ① eax=0x0
...
mov ebx, [eax+4] ; ② eax=0x0
add ebx, 0Ch
...
call UserAllocPoolWithQuota
...
mov ecx, [eax+4] ; ③ eax=0x0
mov esi, [eax+8]
mov eax, ecx
shr ecx, 2
rep movsd
...
(syscall ends)
...
...

(Thread 1 attack)
...
mov eax, 0x4
xor [eax], 0x80000
xor [eax], 0x80000

xor [eax], 0x80000

(Page fault enter)

Write Conflict
Sleep()

Check()
(Page fault return)

Figure 4.16: The attack thread tries to flip the data within the attack window, between
instruction 2○ and 3○. The kernel first touches the page at instruction 1○, then the
mitigation protects it afterward until the end of the current system call, creating a
larger page-protect-window. As soon as the attack thread writes the protected page,
the page fault handler suspends it until the protection ends.

SMAP exception. The protection continuously effective until the current system call

NtUserMessageCall() ends. It covers the entire attack window. When thread one

tries to tamper with the variable, it inevitably triggers a page fault regarding privilege

violation. The page fault handler then suspends thread one until the system call ends,

making it miss the opportunity.

CVE-2013-1254. Similar to the vulnerability above mentioned, CVE-2013-1254 [40]

is another typical TOCTOU vulnerability. It is a family of 27 distinct vulnerabili-

ties [107] [78] in the win32k module. It affects a variety of operating systems from

Windows XP to Windows Server 2012.

These vulnerabilities share a similar pattern. The code is part of the parameters se-

curity check, around W32UserProbeAddress, which is the highest possible address

for user-mode data. Figure 4.17 shows that the flawed code first compares it with the

passed in parameters’ address, which is ecx+8. Only if the address is legit will the

kernel uses it. However, after passing the security check, the kernel mistakenly reread

the address. The attacker can abuse this, first pass the security check, then replace
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.text:BF8A993F   mov   eax, _W32UserProbeAddr
                 ...
.text:BF8A9973   cmp   [ecx+8], eax
.text:BF8A9976   jnb   short loc_BF8A997B
.text:BF8A9978   mov   eax, [ecx+8]
.text:BF8A997B
.text:BF8A997B loc_BF8A997B:
.text:BF8A997B   mov   ecx, [eax]
.text:BF8A997D   mov   eax, [eax+4]

Figure 4.17: The family of the 27 vulnerabilities in the win32k module is mostly around
the parameter security check. The checking code with W32UserProbeAddress
makes sure that the parameter is from userspace. It is a classic time-of-check-
to-time-of-use. When checking, the value is benign where [exc+8] is less than
W32UserProbeAddress. After that, the attack can replace it with a malicious

one before the second read.

the address with a malicious one, such as a kernel-mode address, which may lead to an

arbitrary kernel write vulnerability depending on the case.

The protection takes effect when the instruction cmp [ecx+8], eax triggers the

SMAP exception. The page is protected, and the kernel gets the same value at the

second read.

8 Discussion

Fuzzing. Section 4 presents new method of fuzzing kernel TOCTOU vulnerabilities.

A practical alternative is to utilize hardware data breakpoints. Data breakpoint [85]

a.k.a watchpoint is a debug feature. It raises debug exceptions when accessing the set

memory locations. DataCollider [85] use it to dynamically detects data races in kernel

modules. Through static analysis, DataCollider first decides the sampling set. Then it

inserts code breakpoints, and when one code breakpoint fires, it uses a data breakpoint

to trap the second access to detect conflicts. Although only four data breakpoints are

available on each processor core, it is sufficient for hunting data race bugs.

Qemu [15] with the dynamic binary translation (DBT) [47] engine is a unique ap-

proach for fuzzing. It fully perceives the details of every instruction emulated, and it

is fast enough to run comprehensive tests on the latest operating system. Its dynamic

translation backend is called the tiny code generator (TCG) [16] that converts binary

code from the guest processor architecture to the host architecture. For example, it
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can take x86 guest code and turn it into an equivalent sequence of instructions natively

executable on an ARM host. It also can add instrumentation code [131]. QEMU with

TCG is still slower than the hardware assistant virtualization, but it runs much faster

than Bochs, making it capable of more in-depth fuzzing.

Write Conflicts. As previously mentioned in Section 5, we solve the write conflicts

by making the thread suspending inside the page fault handler until the current system

call ends. We also considered other methods to solve this issue, such as a thread-level

copy-on-write (COW) mechanism. When there is a write conflict, the page table splits,

and the protected page has two different mappings in each so that the kernel and the

user thread have their copy. Therefore, the user thread can freely write it without affects

the kernel. The hypervisor maintains the newly forked page table and only use it to

replace the CR3 when this particular thread is running. We use similar techniques for

controlling the thread context switching [126]. Other than the CR3 operation, we can

monitor certain kernel data structures instead. However, the issue lies in determining

the time to merge the page tables and deciding which copy to take when there are data

conflicts. Because even at the end of the current system call, many places on the page

may change. Without the precise timing sequence information, it is hard to decide

whether they would cause kernel-level TOCTOU issues and which copy has the latest

data.

Potential Attacks. When we discuss our mitigation with other security researchers,

one researcher brought up a scenario as follows. Our mitigation protects a user page

after the kernel access it. Although a user thread can not modify the page afterward,

it can manipulate the kernel to do that. We acknowledged that this could be a possible

attack because there are kernel vulnerabilities that give attacker kernel write capabil-

ity. However, if the attacker already has such capabilities, the need to trigger another

kernel-level TOCTOU vulnerability is questionable on a case-by-case basis.



92

9 Related Work

Transactional Memory. As discussed in Section 2, the root cause of kernel-level

TOCTOU is that both kernel and user access the same memory address, which produce

data inconsistency. Transactional memory [148] [132] [61] is a mechanism that allows

a series of memory operations to execute atomically. It is an intuitive method for

solving data inconsistency problems. Hardware transactional memory [58] [75] [35] [45]

has become available on Intel processors since the Haswell macroarchitecture [132].

However, even before the hardware transactional memory feature is widely available,

researchers use software transactional memory [81] [1] [56] to detect race conditions. It

is more of a static analysis based approach.

With the hardware support, TxRace [176] detects data race at run-time. It instru-

ments a multithreaded program to transform synchronization-free regions into transac-

tions and leverage the conflict detection mechanism of Intel Restricted Transactional

Memory (RTM). However, the hardware’s limitation is also apparent. Intel RTM does

not support arbitrarily long transactions, simply aborting any transactions exceeding

the hardware buffer’s capacity for transactional states. It can only run a short range

of code and does not support a wide variety of processor mechanisms such as system

calls, interruptions, special instructions (CPUID, MMX), IPI. Any of those and even

access invalid memory may cause a transactional abort. Therefore, the hardware trans-

actional memory is not suitable as run-time mitigation for kernel-level TOCOTU but a

race condition detector. Although the idea of bug hunting is quite comparable to ours,

similarly, we mark a whole system call as a transaction. Once we protect a user page

during the system call, other user accesses cause the conflicts.

Dynamic Binary Instrumentation. It is a common method for monitoring a

program’s behavior. Tools such as Intel Pin [98], DynamoRIO [121] injects instruc-

mentation stubs into the program. It is a technique that widely used in data race

detectors [138] [125] [173] [22] [99] [53] [128]. However dynamic binary instructation is

only available for user-mode programs and the high performance overhead is the biggest

limitation.
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Hardware data breakpoints. DataCollider [48] leverage software code break-

points and hardware data breakpoints to efficiently detecting data races in kernel mod-

ules. It randomly samples a small percentage of memory accesses as candidates for

data-race detection. First, it uses static analysis to decide the sampling set, which

are the instruction locations that access memory. Then it inserts code breakpoints,

and when one code breakpoint fires, it uses a data breakpoint to trap the second ac-

cess to detect conflicts. However, data breakpoint is a limited resource on commercial

processors. An Intel processor usually has four hardware data breakpoints. Thus, it

can only monitor a few program locations simultaneously. It is sufficient for hunting

data race bugs, but not enough hardware resources for run-time kernel-level TOCTOU

mitigation.

10 Conclusion

Kernel-level TOCTOU vulnerability is severe and widespread among operating system

kernels. We learn its memory access pattern by studying real-world samples and de-

velop a fuzzing tool TTFuze that effectively finds kernel-level TOCTOU candidates in

Windows.

Moreover, we creatively use an Intel hardware feature SMAP to mitigate such vul-

nerability. To the best of our knowledge, it is the first run-time protection for kernel-

level TOCTOU. We test it against real-world vulnerabilities, and it effectively protects

the Windows kernel from attacks. We also develop a lightweight hypervisor to confine

the system-wide feature SMAP into specific processes. We evaluate the mitigation and

lightweight hypervisor with 18 benchmark programs and real-world applications. The

performance overhead is acceptable (less than 10% on average).
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Chapter 5

Targeted Attacks against Cyber-Physical Infrastructures

via Distributed Hardware Implants

1 Introduction

Critical infrastructure such as power grids comprises physical and cyber systems and

assets that vital to national security. Their failure or incapacity would cause a significant

impact on people’s daily life on a large scale. Since the infrastructures systems are

automated and computer-controlled, the industry informatization also brings security

concerns.

The industrial control system (ICS) interconnects and controls the physical pro-

duction assets. Compared to traditional IT infrastructures, the physical assets and

the computer-based network’s interconnection is a unique ICS feature. It is managed

through an embedded system known as the programmable logic controller (PLC). In re-

cent years, several worldwide incidents, such as Stuxnet [88], BlackEnergy [32] targeted

critical infrastructures [26] [150] [177] [167] operated by ICS. Moreover, to sabotaging

physical facilities, PLC is the preferred target of attack.

With the continuous emergence of attacks, protection measures have also been

strengthened. ICS security has been traditionally handled using network security prac-

tices such as access control [49]. A common strategy is to use an isolated network

from the Internet. Through physical access control, less software service is exposed to

the public, reducing the potential attack surface, especially vulnerability-exploit-based

attacks.

However, real-world APT attacks show that even an air-gapped network is penetrat-

able [88]. The core of an APT attack is essentially a trojan backdoor that gains access
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to a computer network and remains undetected for an extended period. The most cru-

cial feature of a trojan is stealthiness. How to stay within the device is an essential

issue that sophisticated APT attacks should consider. In particular, firmware modifi-

cation [55] [123] [14] [21] [39] [84] [140] is the currently practiced attack plan. It injects

malicious code into the target PLC, changes the working logic that runs in the device.

However, this attack subject to the firmware verification [105] [163] [93] [96] [145] [95]

and update authentication [91] [113] [33] method. It would be much harder for the

attacker to implant the malicious code once the firmware update is encrypted and

digitally-signed and the system applies the methods mentioned above.

Another critical point for the APT attack is choosing the trigger event. Usually, the

PLC has a dedicated real-time microcontroller to control the physical world through

its IO pins. However, the microcontroller does not directly communicate with the

host, the central control terminal (human-machine interface, HMI). Therefore, firmware

modification attacks can perform a preset task individually, but it is difficult to react to

PLC firmware updates or coordinate a distributed attack with other controlled nodes,

especially among air-gapped networks.

We propose an alternative approach to circumvent existing software mitigations,

HardDoor, a parasitical hardware implant inside a PLC attaching to its circuit board

and remotely controlled through GSM network. With the recent emerging concept of

supply chain attacks and real-world incidents [4], such a hardware attack appears to

be more practical. The hardware implant can be pre-installed during the PLC device’s

assembly line or even during the shipment. We design it to be flexible because the

PLC will load operating logic only after being deployed, and it is plausible that the ICS

updates PLC’s operating logic frequently. The hardware implant is specialized for the

device’s circuit board, the microcontroller, and other chips. It controls the IO through

the digital signal and bus-level protocol hijacking, independent of the PLC’s firmware.

Memory bus and interconnect protocols such as SPI, I2C are all potential targets.

Low-speed protocols are prevalent due to their simplicity. For instance, JTAG (Joint

Test Action Group) is an industry-standard for verifying designs and testing integrated

circuits (IC) after manufacture. On ARM microcontrollers, extensive hardware features
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are also provided through this interface for system-level debugging and tracing. It can

read/write registers of processor and memory during system runtime. We leverage this

interface for IO controlling purposes, and also, we can fetch the PLC’s firmware and

operating logic for further offline analysis. Furthermore, with the ability to communi-

cate through a GSM network, it is practical to control multiple nodes and organize a

distributed attack simultaneously.

Contributions. To summarize, we make the following contributions in this paper:

• We present a novel attack class on industrial control systems: a parasitical hardware

implant, which is completely invisible to the ICS control system.

• We disassembled and reverse engineered the circuit boards of a widely deployed Allen

Bradley 1769-L18ER-BBIB CompactLogix 5370 PLC.

• We develop a prototype implementation of HardDoor, which is a small size device

installed inside the Allen Bradley PLC.

• We write a JTAG driver that runs bare-metally on a microcontroller with minimal

resource usage.

• We test and evaluate HardDoor and conduct a synchronized attack with multiple

controlled Allen Bradley PLCs.

Roadmap. The rest of this paper is organized as the following. In Section 2,

we provide the necessary background on programmable logic controllers and JTAG

protocol. Section 3 describes the objectives, adversary model and scope, challenges, and

architecture of HardDoor. Section 4 describes how we reverse-engineered the Allen

Bradley PLC and prototyped HardDoor with implementation details ( Section 5) and

evaluation ( Section 6), respectively. Section 7 provides a review of related work in

the area of embedded system firmware attacks and their mitigations. We also discuss

our views on the hardware backdoor and the possible mitigation strategies in Section 8.

Finally Section 9 concludes the paper.
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2 Background

This section provides background knowledge for the rest of the paper. We first intro-

duce the industrial control system (ICS) and provide detailed information about the

programmable logic controller (PLC). Then we give a more detailed technical back-

ground on JTAG and I2C protocols, which are heavily used in this project.

ICS is a distributed system used for industrial process control. It connects sensors

and actuators that interact with the physical systems (e.g., power grid) with the cyber

components such as networks and servers. In a factory, local operations are often con-

trolled by PLCs that receive supervisory commands from a remote host. For example,

a human operator monitors the system’s state and sends out instructions through a

human-machine interface (HMI). Most PLCs and HMI hosts are connected to the ICS

via Ethernet.

PLC . PLCs consist of a microcontroller, I/O modules, a power supply, and other

specialized addon modules. The I/O modules of PLCs interact with the physical world,

gathering digital inputs from sensors, switch, or a thermometer. The microcontroller

serves the PLC’s brain, executing pre-programmed ladder logic based on the inputs

and giving operation signals through the output module. Esensenly, a PLC is an em-

bedded system. They both use a microcontroller and have limited computing resources

compared to modern computers. However, PLCs are specially designed and rigorously

tested to withstand operating in an industrial environment where they may be exposed

to vibration and noise.

The firmware on PLC contains either a real-time operating system or code that runs

bare-metally on the microcontroller. The PLC usually also provides library routines to

operate on various I/O devices such as I2C, SPI [94] and CAN bus [24]. In this project,

the PLC we work with provides the library as ROM code, which we further discuss

later.

The PLC usually uses a fix-interval timer to run compiled ladder logic repeatedly,

which is the so-called scan cycle. Moreover, the way that PLC interacts with the IO

module is through the GPIO ports on the microcontroller. Essentially, each digital
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input/output in the PLC has a corresponding GPIO bit. The PLC also has an LED

panel that indicates each IO pin’s status, which roughly gives an idea of whether the

PLC functions correctly.

JTAG is the common name of the IEEE1149.1 standard, which defines the Standard

Test Access Port and Boundary-Scan Architecture for test access ports used for testing

printed circuit boards using boundary-scan. The JTAG interface uses very few pins

(TDI, TDO, TMS, TCK, and TRST) to connect to an on-chip Test Access Port (TAP)

that implements a stateful protocol, as shown in Figure 5.1. One or more devices

can expose multiple TAPs in a daisy chain, also known as a scan chain. The host

communicates with the TAPs by manipulating TMS and TDI in conjunction with TCK

and reading results through TDO.

Figure 5.1: JTAG TAP state machine.

The JTAG standard has four common registers: Instruction Register (IR) and Data

Register (DR), IDCODE, and BYPASS. The IDCODE register contains data that uses

a standardized format that includes a manufacturer code. The BYPASS register is a
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single-bit data register that allows this device to be bypassed (do nothing) while other

devices in the scan chain are examined. The IR and DR register’s size depends on the

TAP implementation, and they are used to send in instruction and receive result data.

The TAP implementation defines instructions and associated them with internal

data registers. For instance, the host sends the IDCODE instruction through IR and

subsequently gets the value of a 32-bit register (IDCODE) from TDO.

The PLC we used in this project uses an ARM core microcontroller, namely, Texas

Instruments Stellaris LM3S2793 [65]. The debug functionality provided in LM3S2793

is as CoreSight components. It provides real-time access for the debugger without halt-

ing the processor to AMBA (Advanced Microcontroller Bus Architecture) [54] system

memory, peripheral registers, and all debug configuration registers. The TAP controller

is implemented using CoreSight technologies, and it is called Debug Access Port (DAP)

instead.

JTAG-AP
Existing

scan chains
in core

AHB-AP

APB-AP

DAP
internal bus

SWJ-DP System AHB
matrix

JTAG

AHB

APB

Memory
block

APB-mux

AHB

APB

Debug APB

TDI
TDO
TMS
TCK

Figure 5.2: The debug port (DP) receives host signals and maintains the JTAG state
machine. The instruction and data are sent to the DAP core through IR and DR,
respectively. Unlike the JTAG standard that needs to halt the processor before reading
registers, using CoreSight DAP, the registers, SARM, and MMIO can be accessed during
runtime without halting the processor.

As shown in Figure 5.2, each DAP contains Debug Ports (DPs) and Access Ports

(APs). The DP provides access to the DAP from an external debugger. Then the DAP

uses the APs to access on-chip resources. Multiple APs such as AHP-AP, ABP-AP, and

JTAG-AP respond to each type of bus and the devices that connect to it. For instance,

the AHB-AP provides an AHB-Lite master for accessing the system AHB bus, which
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we use to access the RAM and MMIO.

I2C is a serial protocol that connects low-speed devices in embedded systems. The

I2C bus only has two wires, namely, SCL and SDA (the third wire connects to the

ground). SCL is the clock line that synchronizes all data transfers over the I2C bus,

and the SDA is the data line. All the low-speed devices in the system can be connected

to the same I2C bus as slave devices, where each device has a unique address. The

master device initiates a transaction by sending a high-to-low signal on the SDA while

keeps SCL high. It is called a start condition. After that, the master sends the target

device address byte onto the bus. The first 7 bits are the address, and the last bit

indicates the data direction where one indicates reading, zero indicates writing. Only

the device that matches this address continues with this transaction. It acknowledges

this byte by pulling SDA low during the next SCL pulse. After addressing the target

device, the master sends out the target device’s internal location or register number.

Next, the master device sends the data. The target device automatically increases its

internal register address after receiving each byte. When the transaction is complete,

the master device sends a stop sequence onto the bus.

3 Overview

Critical infrastructure such as power grids comprises physical and cyber systems and

assets that are vital to national security. Their failure or incapacity would have a

significant impact on people’s daily life on a large scale. The recent Ukrainian power

grid attack, the massive blackout in south American countries [57] demonstrated that

influence not only affects people’s livelihoods but even international politics. The cy-

berattack on the ICS system can even cause physical damage to the infrastructure [174],

which makes it harder to recover. Incidents such as the Stuxnet proved this point.

Consequently, ICS has received considerable attention due to security concerns.

There are many ways to breach a computer system, and most of them are focus on

software-based approaches such as vulnerability hunting and exploiting, cracking of au-

thentication and protocols. Therefore, the attacker needs to break into the network



101

and avoid existing access control and other mitigations. Moreover, most critical in-

frastructures use their air-gapped network, and It may take a state-sponsored team to

accomplish such as mission [88].

Under such circumstances, we believe that cyber-attacks with the assistance of phys-

ical approaches are underestimated, especially before the emergence of the so-called

supply-chain attacks. Among those world-class attacks, the term APT(Advanced Per-

sistent Threat) is often mentioned. In essence, the APT attack is an extremely well-

hidden trojan that can be deployed for many years without being detected. Thus,

installing the trojan and remotely triggering it is the crucial point of a successful at-

tack.

In this paper, we provide two plans for physically installing a trojan and provide

a prototype hardware implant HardDoor that can be used for this type of attack.

Figure 5.3 depict the scenario. In many parts of the supply chain, such as the factory

and shipment, numerous employees have the opportunity to access the PLC. Installing

an extra piece of a circuit board is not a difficult task for professionals. Moreover, a

large-scale infrastructure such as a power grid has many remote substations with very

few staff. An attacker can sneak into one of the substations and install the hardware

backdoor. The difficulty between the targeted PLC and the attacker, in reality, can

be just a few padlocks. We believe that the breach of a substation can cause a chain

reaction in a power grid, and it is a real threat [127] [28].

After the attacker controls enough PLCs, he can remotely initiate a distributed

attack to cause more significant damage using a cellular network.

The advantage of this attack is that it does not rely on the existing ICS network, nor

is it limited to the firmware running on PLCs so that it can evade most software-based

mitigations. It only needs to know the specific PLC model of the target and modify

the hardware implant accordingly.

3.1 Adversary Model

The attacker knows the target’s specific PLC model and can obtain the exact model

for studying.
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PLC Supply Chain

Substation

Figure 5.3: In the PLC manufacturer factory or during the product shipment, numerous
employees can access the PLCs. The hardware backdoor installation should follow
specific procedures to be efficiently accomplished without advanced software knowledge.
The hardware backdoor can communicate with the attacker through the GSM network.
Therefore it does not need to join the ethernet used by the ICS system.

The printed circuit board (PCB) and the IC chips of the PLC should be well exposed.

For example, the Chip-on-Board (COB) [89] packing brings extra challenges for the

attacker. The black glob-top makes it no easy to identify the chip model and pins.

Fortunately, high-end microcontroller products rarely use this packaging. It would be

a great advantage that the attacker can use the JTAG interface of the microcontroller.

In other words, the JTAG interface is not disabled by programming fusing bits at the

factory. Nevertheless, the attacker can control the IO or tamper with the firmware

image when transferred through the bus without JTAG.

To remotely control the device, the attacker uses a GSM network or WIFI to com-

municate with the hardware backdoor. The PLC must not be deployed in an elec-

tromagnetic isolation environment where the wireless signal can not be transmitted

outside.

The operating system and software mitigation that runs on the microcontroller

does not affect the backdoor. Therefore the PLC system allows having any memory

protection based on MMU [147] and MPU [83].

3.2 Challenges and Approaches

The major challenge in attacking PLCs is not having enough information about the

device. Some vendors publish the microcontroller’s datasheet, but some vendors use
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proprietary design with highly customized instruction set architecture (ISA). The layout

of the PCB board and the on-board pin definition are also not publicly available.

Firmware. In an embedded system, flash memory usually stores a file system

and a real-time operating system (RTOS) such as VxWorks [122]. It is the so-called

firmware. Specific to a real-time microcontroller, the firmware runs bare-metally on

the microcontroller or with a lightweight RTOS such as FreeRTOS [13]. The PLC we

use in this project is Allen Bradley 1769-L18ER-BBIB CompactLogix 5370. Through

JTAG, we read the flash and ROM memory out of the microcontroller. Moreover, we

also ported a driver to read an on-board SPI flash chip, namely, AT45DB021. The

source code is available at the github 1. We can identify the PLC use’s internal data

structures and libraries used with some reverse engineering effort.

JTAG Pins. On some boards, the JTAG pins are difficult to trace, mainly when

the microcontroller chip uses BGA packaging [76] that all the balls are buried under-

neath. In our case, there is a 10-pin solder pad, as shown in Figure 5.4, which is likely

to be an unsoldered JTAG socket (we also own one PLC that the socket is soldered

on). To identify each pin, we use a multimeter to conduct the connectivity test. The

microcontroller supports both JTAG and Serial Wire Debug (SWD)[11] interfaces.

JTAG

VDD VDD

GND

RST TDO

TDI TMS

CLK

JTAG 

Figure 5.4: JTAG pins on the real-time microcontroller board. A square pad with ten
pins is very likely to be a JTAG interface. We need at least to have the TDI, TDO,
TMS, and CLK. RST is optional.

1https://github.com/whensungoesdown/at45db021 teensy32



104

JTAG Protocol. To make our hardware backdoor small, we use the Teensy 3.2

development board. We also code a driver to send JTAG commands, hence accessing the

microcontroller’s on-chip resource. It is the equivalent of a trivial hardware debugger.

Although the open-sourced debugger OpenOCD [62] supports many platforms, the

Cortex-M3 core that the Teensy has can not support its runtime environment. Our

driver runs bare-metally on the microcontroller with minimal resource usage, and it

can be ported to an even more restrained embedded system. We also consider it as one

of the paper’s contributions. The source code is available at the github 2.

Remote Control is a core function of the hardware backdoor. To avoid existing

access control and even penetrate an air-gapped network, we use the SIM800C module

to communicate with the backdoor through a separate GSM network. It connects with

the Teensy board using a serial port.

4 Reverse Engineering and Design

The major challenge in making a PLC-specific hardware backdoor is that PLC does not

use open standards like PC. During the development, a significant amount of time is

spent on the reverse engineering of the PLC. After a basic understanding of its modules

and chips, we can choose how to control it, whether through JTAG or intercepting other

low-speed buses.

4.1 Reverse Engineering

The PLC we use is Allen-Bradley 1769-L18ER-BB1B/B CompactLogix 5370. The

reverse engineering work includes both the hardware and software parts. First, we

speculate on the function of each board of the PLC. Then we identify the on-board

IC chips and use a multimeter to conduct the connectivity test for wire tracing. The

purpose of this is to find the interconnections between chips and between boards. For-

tunately, the real-time module is a two-side PCB, and the wire connectors that pass

through the board are well exposed, as seen in Figure 5.9. Furthermore, we dump the

2https://github.com/whensungoesdown/teensy jtag
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firmware from the microcontroller and flash chip for reverse-engineering analysis.

Backplanes. The Allen Bradley PLC contains several PCB module boards, known

as backplanes. Figure 5.5 shows each module. In this paper, we name the board with

the Ethernet socket and USB port as the communication module (B). The one controls

that has a microcontroller and controls the 16 digital DC input pins and 16 digital DC

output pins as the real-time module C, which is our main target. Module D is merely

a connector for the digital IO. The rest are the power supply module(A) and LED

module(E).

The communication module (B) itself is an embedded system, including a CPU,

DRAM, and other peripherals such as Ethernet, SD card, and USB. It communicates

with the host (HMI) to receive firmware and ladder logic updates, and it also hosts a

web server to display status. However, this module does not directly interact with IO.

By analyzing the PLC firmware update files, we find that this board runs VxWorks

operating system. Nevertheless, this board’s primary chip is an FPGA [86] chip that

runs a soft-core ARM processor, and it is in BGA packaging. It is not easy to trace and

identify which GPIO pins of the FPGA are used as the JTAG interface. We consider

it as one of our further works. Therefore, our focus is the real-time module (C) that

runs ladder logic and directly controls IO. Fortunately, this module uses a commercial

microcontroller, namely, Texas Instruments Stellaris LM3S2793 SoC.

The digital IO sockets on the connector module (D) connects to the real-time module

(B). The IO goes through the power switches and optically coupled isolator chips and

eventually connects to the microcontroller, as shown in Figure 5.12. There are 32 LEDs

corresponds to each IO socket, and the real-time module also controls the LED module

through the I2C protocol. The power module (A) provides stable 3 volts for other

boards. Our backdoor can either get power directly from it or the JTAG pad.

Microcontroller. The TI Stellaris LM3S2793 SoC has an ARM Cortex-M3 pro-

cessor core that operates at 80 MHz. It contains 64 KB SRAM and 128 KB flash. The

internal ROM is preprogrammed with Stellaris Peripheral Driver Library (DriverLib)

to drive the on-chip peripheral devices. Table 5.1 shows the memory map.
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Start End Description
Memory (0x00000000 - 0x22200000)
0x00000000 0x0001FFFF On-chip Flash
0x00020000 0x00FFFFFF Reserved
0x01000000 0x01004FFF On-chip ROM
0x01005000 0x01005EFF AES+CRC lib in on-chip ROM
...
0x20000000 0x2000FFFF Bit-banded on-chip SRAM
...
FiRM Peripherals (0x40000000 - 0x4001FFFF)
...
0x40008000 0x40008FFF SSI0
...
Peripherals (0x40020000 - 0xDFFFFFFF)
0x40020000 0x400207FF I2C Master 0
...
0x4005C000 0x4005CFFF GPIO Port E (AHB aperture)
0x4005D000 0x4005DFFF GPIO Port F (AHB aperture)
0x4005E000 0x4005EFFF GPIO Port G (AHB aperture)
0x4005F000 0x4005FFFF GPIO Port H (AHB aperture)
...
Private Peripheral Bus (0xE0000000 - 0xFFFFFFFF)
...
0xE000E000 0xE000EFFF Nested Vectored Interrupt Controller (NVIC)
...

Table 5.1: LM3S2793 Memory Map. Only list the address space of the memory and
devices related to this paper. FiRM-compliant (compliant to the ARM Foundation IP
for Real-Time Microcontrollers specification).
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A
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D E

Figure 5.5: Allen-Bradley 1769-L18ER-BB1B/B CompactLogix 5370 PLC. A: Power
supply module B: Communication module C: Real-time module D: (16) DC Digital
Outputs & (16) DC Digital Inputs Connector E: LED module

Reset Vector. The vector table is at a fixed address 0x00000000 after the system

reset. The core starts to execute from memory 0x00000004, which is the reset vector.

Table 5.1 shows that the reset vector resides in the flash memory instead of the ROM.

It is because the ROM boot loader is only executed in two scenarios. The first case

is when the flash memory is empty. The other one is when an application initiates a

firmware update and calls the ROM boot loader to execute. For instance, if data at

0x00000004 is 0xFFFFFFFF, which indicates an empty flash, then the ROM is mapped

to 0x00000000 to substitute the flash and execute instead.

The data at 0x00000000 and 0x00000004 will be loaded into the stack pointer (SP)

and the program counter (PC), respectively. In our case, the SP is 0x20000B48, and

the PC is 0x000000E3. Notice that 0xE3 is an odd number. As we know, RISC

processors such as ARM uses fixed-length instruction. On ARM processors, setting

the PC’s least significant bit indicates that the following code will be executed as the
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ROM APITABLE (0x1000010)
[0] = ROM VERSION
[1] = pointer to ROM UARTTABLE
[2] = pointer to ROM SSITABLE
[3] = pointer to ROM I2CTABLE
[4] = pointer to ROM GPIOTABLE
[5] = pointer to ROM ADCTABLE
...

Table 5.2: LM3S2793 ROM API table is at a fixed address 0x1000010, and each table
entry is 4 bytes address that points to a second-level table, which corresponds to a class
of peripheral devices.

two-byte Thumb instructions. Therefore, we dump the flash memory and disassemble

it at address 0x000000E2 instead.

Flash Boot Loader. Right after the flash boot loader starts, it copies itself to

SRAM, starting at 0x20000000. Although both SRAM and flash memory can be ac-

cessed in a single cycle, flash memory can do that as long as the code is linear and

branches incur a one-cycle stall. The bootloader copies 0x00000000 - 0x00000A88 to

0x20000000 - 0x20000A88, and clear the data section (0x20000A88 - 0x20000F54). As

mentioned earlier, on system reset, the vector table is at the fixed address 0x00000000.

However, it can be relocated by writing the vector table offset register (VTOR:0xE000ED08).

Changing the vector table indicates a complete change of the system’s behavior because

all the interrupt handlers are new, and they interpret how the system behaves regarding

peripheral device’s requests. The bootloader sets the vector table to 0x20000000 and

jumps back to SRAM to continue execution.

Stellaris Peripheral Driver Library. The Drivelib [66] is a set of APIs utilized

to control the on-chip peripheral devices. It is provided in ROM code and placed in a

fixed location on Cortex-M3 SoCs. It helps identify what functions the firmware calls.

Through the fixed location of APIs and the Drivelib datasheet, the function matches

with names. It is a two-level table structure. The main table is at 0x1000010, and it

contains the address of the second-level table for each type of peripherals, as shown

in Table 5.2. For example, Table 5.3 shows the ROM GPIOTABLE, which contains all

the GPIO related APIs.
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ROM GPIOTABLE
[0] = function ROM GPIOPinWrite
[1] = function ROM GPIODirModeSet
[2] = function ROM GPIODirModeGet
[3] = function ROM GPIOIntTypeSet
[4] = function ROM GPIOIntTypeGet
...

Table 5.3: GPIO API Table. Each table entry is the entry address of an API, and the
function parameters are passed through registers. There is no privilege or mode change
when calling into the APIs.

Figure 5.6 shows a typical code snippet that calls a ROM API. The second-level

table is at 0x1000010 + 0x10 (ROM APITABLE[4]), which is the the GPIO table.

And the API it calls is ROM GPIOPinRead() (ROM GPIOTABLE[11]). Because all

the ROM API call sites have the same pattern, it makes firmware’s reverse engineering

work much easier. Calling the API is merely locating the function address from the

two-level tables and jumps to it, and the parameters are passed in through registers.

There is no privilege change when calling into the APIs, and the firmware code all runs

in the system mode.

MOVS R1, #1
LDR.W R0, =0x40059000 ; GPIO Port B
LDR.W R2, =0x1000020
LDR R2, [R2]
LDR R2, [R2, #0x2C]
BLX R2 ; ROM_GPIOPinRead

; Reads the values present
; of the specified pin(s).

Figure 5.6: A code snippet that calls ROM GPIOPinRead(). The parameters are
passed through registers. In this case, the ROM GPIOPinRead() has two parameters.
R0 contains the GPIO port address, and R1 indicates the pins to operate.

GPIO. The PLC interacts with the physical world through digital inputs and out-

puts. The IO goes through the power switches and optically coupled isolator chips and

eventually connects to the microcontroller’s GPIO.

In the microcontroller LM3S2793, the GPIO module comprises nine physical GPIO

blocks, and each corresponds to an individual GPIO port. Depending on the microcon-

troller’s configuration, it supports up to 67 programmable input/output pins or several
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pins grouped to provide peripheral functions such as I2C. The GPIO ports can be ac-

cessed either through AHB or APB bus, which matters when we access the GPIOs

through JTAG. We choose the AHB-AP.

Each GPIO port has several associated control registers, such as GPIO Digital En-

able (GPIODEN), GPIO Alternate Function Select (GPIOAFSEL), GPIO Port Control

(GPIOPCTL), and GPIO Data Control registers. All GPIO pins are configured as in-

dividual input/output pins and tri-stated by default. The GPIO Direction (GPIODIR)

register configures each GPIO pin as an input or output, and we do not change it. To

change the inputs and outputs, we primarily operate on the GPIO Data (GPIODATA)

register that modifies individual bits in GPIO ports.

The way to control the GPIO data is not straightforward. Different microcontrollers

adopt different operating methods. For example, the GPIO port may take Output Data

Register (ODR), Bit Reset Register (BRR), Bit Set/Reset Register (BSRR) [38]. In

our case, the LM3S2793 microcontroller uses a more complicated model to conduct

bit-wise operations. The GPIO Data register is memory-mapped. When read/write,

bits[9:2] of the address are treated as a bitmask, as well as the bits[1:0] are always zero

because the memory access should be at 4-byte alignment on ARM. Therefore, for each

GPIO port, the memory-mapped range should be 1KB long, that is, from GPIODATA

to GPIODATA + 0x3FC. A write can only change the data bit when the corresponded

bitmask is set. Otherwise, the data bit is unchangeable.

For example, GPIO Port A (AHB) is mapped at 0x40058000, and it controls 8 GPIO

pins. We want to set bit2 to 0 and bit5 to 1. As shown in Figure 5.7, the bitmask is

0x90, and the data is 0xF0. Hence, the operation should be writing 0xF0 to address

0x40058090.

The same applies to reading. Only the corresponding bit in the bitmask will be

read. Otherwise, it reads zero. For example, to read the four high bits from GPIO

Port A, the address with bitmask should be 0x40058000 + 0x3C0, and it reads 0xA0,

as shown in Figure 5.8.

Control Output. After knowing how to control GPIO, we can directly control

the output of the PLC. There are 16 inputs and 16 outputs on the IO connector.
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9 8 7 6 5 4 3 2 1 0

0 0 1 0 0 1 0 0 0 0

1 1 1 1 0 0 0 0

u u 1 u u 0 u u

7 6 5 4 3 2 1 0

ADDR[9:2]

0x090

0xF0

GPIODATA

Figure 5.7: Writing a byte of 0xF0 to address GPIODATA + 0x90. The bitmask only
allows bit2 and bit5 to be modified. Therefore, only two bits are valid for the write
operation. u indicates the new bit is ignored.

9 8 7 6 5 4 3 2 1 0

1 1 1 1 0 0 0 0 0 0

1 0 1 0 1 0 0 0

1 0 1 0 0 0 0 0

7 6 5 4 3 2 1 0

ADDR[9:2]

0x3C0

GPIODATA

Returned value

Figure 5.8: The address GPIODATA+0x3C0 reads the high four bits of the GPIO port.
The rest reads zero regardless of the actual value.

Through reverse engineering, we know the GPIO port corresponding to the IO. That

are, GPIO port E (0x4005C000) GPIO port F (0x4005D000) for inputs, and GPIO port

G (0x4005E000), GPIO port H (0x4005F000) for outputs. Intuitively, each GPIO bit

corresponds to a pin on the connector. One indicates the high voltage, which is the

field power voltage; zero dictates the low voltage (8 volts).

To conduct a stealthy attack, we want to change the output secretly. For example,

we want to keep the LEDs in their original state and the host (HMI) not to find any

abnormalities. To achieve this goal, we need to leverage the firmware itself. The PLC

periodically scans the inputs, runs ladder logic, and updates outputs. It is trivial to find

the ladder logic binary by following the timer handler routine. There are a few local

variables that control how the ladder logic behaves. For example, one local variable

determines if any logic state has changed. If so, the corresponded GPIO pin will be

updated according to the ladder logic. We modify this local variable so that everything

looks up to date. In the meantime, we can change the outputs without triggering any
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alarms.

AT45DB021E SPI Flash Memory. It is quite noticeable that right next to the

LM3S2793 microcontroller, there is an 8-pin flash chip, which is an Adesto 45DB021E 2-

Mbit SPI flash memory. It connects with the PLC’s SSI0 (Synchronous Serial Interface),

as shown in Figure 5.9.

SSI0Clk 27

SSI0Fss 28 SSI0Rx 28
SSI0Tx 29

SO

SI

SCK
nCS

1

50

75

100

PD4

PD5

PD2

PD3

Figure 5.9: Through wiring tracing, we find that the AT45DB21E SPI Flash Memory
connects to LM3S2793’s SSI0 interface. The eight solder joints on the left may be used
to install four LEDs. They are controlled by GPIO port D, but they are not installed.

During the boot process, the pins in GPIO port A are assigned for the SSI0 master

device. The firmware first reads one byte from the flash chip (offset 0x2000), which

looks like a status byte. If it equals 0x55 or 0xAA, the PLC will be reset. If not, the

firmware checks the integrity of the address 0x4000 to 0x1FFFC, the compiled ladder

logic. The algorithm is a simple checksum. Accumulate each byte in this address range,

and the result should be equal to the byte in address 0x1FFFF.

So this status byte at 0x2000 indicates the status of the PLC last time it was

running. The value 0x55 indicates that the system has encountered a severe failure. If

so, the firmware operates on GPIO port D, leading to the eight solder joins next to the

SPI flash. We think they may be four LEDs to show the status. Furthermore, if the

value is 0xAA, it means that the ladder logic binary has been broken, and the firmware

will copy the code from 0x6100 in the SPI flash. We think this is a backup code and
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also a place where malicious code can be stored.

To read the AT45DB21E flash chip’s content, we port its driver to the Teensy 3.2

board. The source code is available at the github 3.

Front Panel LED. There are four rows of LEDs on the front panel of the PLC.

Each LED represents the state of an input or output. Usually, this is a very intuitive

reflection of the current status of the PLC.

There are four rows of LED lights on the PLC’s front panel. Each LED shows

individual input and output pins’ status, which is an intuitive way for the administrator

to check whether the device works properly. The microcontroller controls these LEDs

through the I2C protocol [141].

There are two 24-pin PD9535 chips (Remote 16-bit I2C/SMBus, Low-Power I/O

Expander [67]) on module E. It provides general-purpose I/O expansion for micro-

controllers via the I2C bus. The two pins in GPIO port B(PB2 and PB3) on the

microcontroller are used as the SCL and SDA signal lines for the I2C master device.

These two signal lines also pass through the connector between module B and C, as

shown in Figure 5.13.

Each I2C slave device on the same bus has a unique 7-bit address. In our example,

the addresses of the two PD9593 chips are 0x20 and 0x21. Table 5.4 shows that the

chip has eight internal registers. As mentioned in Section 2, after the master device

successfully sends the address byte, it will send another byte to select the internal

register. Among these internal registers, the configuration register is responsible for

controlling the directions of the IO pins. Zero means the corresponding pin is output.

Because the PLC uses PD9593 to control the LED, all the pins are outputs. The input

port registers reflect the pins’ incoming logic levels, regardless of whether the pin is

defined as an input or an output by the configuration register. Nevertheless, we do not

need to read the input registers.

Figure 5.10 shows the pseudo-code to initialize the I2C IO expander using the ROM

3https://github.com/whensungoesdown/at45db021 teensy32
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CMD
Byte

Register Protocol
Power-up
Default

0x00 Input Port 0 Read byte xxxx xxxx

0x01 Input Port 1 Read byte xxxx xxxx

0x02 Output Port 0 Read/Write byte 1111 1111

0x03 Output Port 1 Read/Write byte 1111 1111

0x04 Polarity Inversion Port 0 Read/Write byte 0000 0000

0x05 Polarity Inversion Port 1 Read/Write byte 0000 0000

0x06 Configuration Port 0 Read/Write byte 1111 1111

0x07 Configuration Port 1 Read/Write byte 1111 1111

Table 5.4: The internal registers of the PD9593 are selected by the master device sending
the command byte. To control the LED, we need to operate the control register and
the output register and keep the two polarity inversion registers’ default value.

API. It first enables the I2C master device and sets the clock frequency to be the

same as the microcontroller. After that, call ROM I2CMasterSlaveAddrSet()

to select the target device’s address, whether to send or receive data. Then call

ROM I2CMasterDataPut() to set the data to be sent next. Only after calling

ROM I2CMasterControl(), the data will be sent out. In our example, two bytes

with content zero are sent to Configuration Port0 and Port1. This operation sets a

total of 16 pins as output mode.

ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_I2C0);
ROM_GPIOPinTypeI2C(0x40059000, 0xC);
clock = ROM_sysCtlClockGet();
ROM_I2CMasterInitExpClk(0x40020000, clock, TRUE);
ROM_I2CMasterSlaveAddrSet(I2C0, 0x21, FALSE);
ROM_I2CMasterDataPut(I2C0, 0x6);
ROM_I2CMasterControl(I2C0, I2C_MASTER_CMD_BURST_SEND_START);
while (ROM_I2CMasterBusy(I2C0)) {
};
ROM_I2CMasterDataPut(I2C0, 0x0);
ROM_I2CMasterControl(I2C0, I2C_MASTER_CMD_BURST_SEND_COUNT);
while (ROM_I2CMasterBusy(I2C0)) {
};
ROM_I2CMasterDataPut(I2C0, 0x0);
ROM_I2CMasterControl(I2C0, I2C_MASTER_CMD_BURST_SEND_FINISH);
while (ROM_I2CMasterBusy(I2C0)) {
};

Figure 5.10: The pseudo-code to initialize the I2C IO expander is reversed-engineered
from the firmware. To make it more intuitive, we use some macro definitions as param-
eters. These macros’ actual value is not difficult to find in the header files released by
the vendor. The code is provided to help understand how to control the LED lights on
the PLC through the I2C bus.

After initialization, Figure 5.11 shows how to control the LEDs. For example, we
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send two bytes with content 0xFF to the Output Port0 and Port1, lighting up 16 LED

lights controlled by this device.

ROM_I2CMasterSlaveAddrSet(I2C0, 0x21, FALSE);
ROM_I2CMasterDataPut(I2C0, 0x2);
ROM_I2CMasterControl(I2C0, I2C_MASTER_CMD_BURST_SEND_START);
while (ROM_I2CMasterBusy(I2C0)) {
};
ROM_I2CMasterDataPut(I2C0, 0xFF);
ROM_I2CMasterControl(I2C0, I2C_MASTER_CMD_BURST_SEND_CONT);
while (ROM_I2CMasterBusy(I2C0)) {
};
ROM_I2CMasterDataPut(I2C0, 0xFF);
ROM_I2CMasterControl(I2C0, I2C_MASTER_CMD_BURST_SEND_FINISH);
while (ROM_I2CMasterBusy(I2C0)) {
};

Figure 5.11: Each pin in the Output register controls an LED light separately, so
two 0xFF bytes can control 16 LEDs. If we only want to control a few of the
LED lights in one register, we can call ROM I2CMasterControl() with parame-
ter I2C MASTER CMD SINGLE SEND.

Onboard Connectors. There are several connectors on the real-time module C,

as shown in Figure 5.12. P607 connects to the communication module B and P609

connects to the power module A. Usually, we think that the module A is just a power

module responsible for providing three volts to others. However, this is a good place

for purposefully damage the PLC by a short circuit, where the power flow is large.

By conducting the connectivity tests with a multimeter, we perceive some pins’

function in P607 as shown in Figure 5.13. As mentioned earlier, the I2C bus passes

through this connector. Besides, the CAN bus also passes through this connector. In

this way, both the communication module and the real-time module are connected to

the CAN bus connector in the bottom right corner in Figure 5.12. These two modules

can not only control the external CAN bus device, but they can also communicate via

the CAN bus themself. However, the communication module has a higher priority.

Setting pin29 on the P607 connector can block the transmission of the signal on pin21,

the CAN bus’s RxD signal line. On the microcontroller side, the master device CAN0

uses the PA6 and PA7 pins.



116

P607: Connector to the 
communication module

P609: Connector to 
the power module

CAN bus connector

PS2801-4  Optically 
coupled isolator

IO Connector

BTS5210G
power switch

LM3S2793

AT45DB021E

Figure 5.12: The real-time module reads the input signals, runs the ladder logic, and
then drives the output signal according to the result. Therefore this module needs to be
connected to all other modules. In addition to the microcontroller and the flash memory,
there are power regulators and IO chips on this module. The optically coupled isolators
prevent high voltages from affecting the microcontroller when receiving the signal, and
the power switches provide the electrical connection between the output pin and the
voltage source.

4.2 Design

Typically, the PLC has a dedicated real-time microcontroller that handles IO, in this

case, module D. It runs minimal code, mainly the compiled ladder logic. To receive

ladder logic update, the communication module C talks to the HMI and then update

the real-time microcontroller through the CAN bus. Therefore, to remotely control the

PLC’s IO, the attacker needs to control further the communication module C, which

itself is an independent system usually with a more powerful processor. Moreover, an

abnormal traffic filtering mechanism [82] also may be deployed to protect ICS networks.

Even though we successfully controllers all the embedded system in the PLC and pen-

etrates the network traffic monitors, we still have to face the challenge that a critical

infrastructure may run on an isolated local network. Therefore, we choose to use a

separate network using GSM.
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TxD RxD: 
Connect to CAN bus. CAN0 on LM3S2793  
with PA6 PA7 pins also connects to it.

SDA SCL:
I2C0 on LM3S2793. They connects to the 
LEDs on module E. 

a:
Connect to PB0 on LM3S2793.

b:
0 disable the real-time module C; 1 enable

c:
0 disable CAN bus receive (RxD); 1 enable

p607

p609

Figure 5.13: The connector between the communication board (module B) and real-
time board (module C). There are many pins, but the majority of them are power and
ground. The microcontroller controls the LED module through the P607 connector.
The communication module can block the operation of the entire real-time module
through pin28. However, there are still a few pins that we have not figured out their
functions. We consider it as one of our further works.

The SIM800C is a Quad-Band GSM/GPRS module. It has strong extension ca-

pability with interfaces including UART, USB2.0, and GPIO. Figure 5.14 shows that

the SIM800C module connects with the Teensy board through a serial port. First,

the Teensy boart initializes the cellular module using AT command, connecting to the

network. Once a text message is received, the Teensy board reads it and looks for

control commands. In such a case, the command will be parsed as IO operations that

eventually turn into particular memory read/write on PLC’s GPIO port.

5 Implementation and Experiment

This section provides the implementation details and discusses the issues that we en-

countered during the development.

Read/Write Memory. We briefly introduced the JTAG protocol in the back-

ground ( Section 2) earlier. Our driver sends instructions to the IR and reads the

returned result according to the JTAG state machine. Nevertheless, we need to know

how to operate ARM’s CoreSight components for this particular hardware backdoor

prototype. We choose the JTAG interface instead of SW (Serial Wire), so the corre-

sponding debug port is JTAG-DP or SWJ-DP, as shown in Figure 5.2.
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VDD VDD

GND

RST TDO

TDI TMS

CLK

JTAG 
+5V

GND

JTAG

UART

PWR

+3V

DC-DC Voltage 
Step Up

Teensy 3.2

SIM800C

Figure 5.14: The power can be drawn from the JTAG pad or directly from the border
connector p607. Since the JTAG pad provides the 3 volts source, we also need a DC-DC
voltage step-up module that boosts from 3 volts to 5 volts. One GPIO pin from Teensy
connects the PWR pin of the SIM800C board. It is used to deliver the power and reset
sequence. After SIM800C initialized, the Teensy module sends AT commands through
the serial port.

IR
value

JTAG-DP
Register

DR
width

Description

b1000 ABORT 35 JTAG-DP Abort Register
b1010 DPACC 35 JTAG DP Access Register
b1011 APACC 35 JTAG AP Access Register
b1110 IDCODE 32 JTAG Device ID Code Register
b1111 BYPASS 1 JTAG Bypass Register

Table 5.5: DPACC is used for Debug Port (DP) accesses. APACC is used for Access
Port (AP) accesses, and it can access a register of a debug component of the system to
which the interface is connected.

Through DPACC and APACC registers, the debugger can access resources provided

by other access ports (AP). As mentioned earlier, an access port provides the interface

between the debug port interface and one or more debug components present within

the system. There are two kinds of access ports: Memory Access Ports (MEM-AP) and

JTAG Access Ports (JTAG-AP), and MEM-AP is designed for connects to memory bus

system with address and data controls. Since our backdoor wants to access memory

and GPIO, we need to access either AHB-AP or the MEM-AP, which handled the

differences between the underlying bus.
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Data[31:0] A[3:2] RnW

DPACC

Data[31:0] A[3:2] RnW

APACC

Figure 5.15: Both of the two registers are 35 bits long and can be scanned in/out
through the JTAG protocol with IR instruction b1010 and b1010, respectively. RnW
takes one bit, and zero indicates a write. A[3:2] selects the register within a bank.

Offset Register Description
0x00 Reserved
0x04 CTRL/STAT Control and State Register
0x08 SELECT AP Select
0x0C RDBUFF Read Buffer

Table 5.6: Debug Port registers. Debug Port only has one bank, a total of four registers,
which can be specified by A[3:2] of the DPACC register.

Figure 5.15 shows that both DPACC and APACC have the same structure, and they

can be scan in/out through the JTAG state machine with the specific IR instruction

value. The lowest bit indicates whether to read or write DP/AP, where zero means

write.

According to ARM Debug Interface Architecture Specification v5.0 to v5.2, every

bank has four registers, and A[3:2], the two bits are used to select the register from the

bank. The DP only has one bank, and the MEM-AP has 16 banks, as listed in Table 5.6

and Table 5.7, respectively. To select the AP’s bank, we also need to write the bank

address into the DP’s SELECT register.

Offset Register Description
0x00 CSW Control/Status Word register
0x04 TAR Transfer Address Register
0x08 Reserved
0x0C DRW Data Read/Write register
...
0xFC IDR Data Identification register

Table 5.7: Part of Memory Access Port (MEM-AP) registers. MEM-AP has 16 banks,
and each bank has four registers, which can be specified by A[3:2] of the APACC
register. The bank needs to be specified by the DP:SELECT register.
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To read and write memory, we need to use the internal registers provided by the

MEM-AP. Specifically, we need to sue CSW, TAR, DRW, and others. Since these

registers are in the MEM-AP’s bank 0, we must first use DPACC to select it. Take

writing memory as an example. Next, we need to write the destination address to TAR

and then write the value to DRW. Figure 5.16 shows a pseudo-code for writing memory.

TAP_Idle();
// shift to DPACC
TAP_ShiftIR(DPACC);
// select DP.CTRL/STAT, scan in data
TAP_ShiftDR(DP.CTRL/STAT, CSYSPWRUPREQ | CDBGPWRUPREQ); 
// scan out status
TAP_ShiftDR(status);  
// select DP.SELECT, set AP bank0     
TAP_ShiftDR(DP.SELECT, AP_BANK0);

// shift to APACC
TAP_ShiftIR(APACC);
// select AP.CSW, set write size
TAP_ShiftDR(AP.CSW, SIZE_WORD);
// select AP.TAR, set destination address
TAP_ShiftDR(AP.TAR, address);
// select AP.DRW, write data
TAP_ShiftDR(AP.DRW, value);

Figure 5.16: Pseudo-code for memory writing through MEM-AP. Notice, CSW, TAR
and DRW are all in the bank zero. However, the bank is specified in the DP.SELECT
instead of a register in AP.

Send/Receive SMS Message. SIM800C provides a serial port as the interface

to receive AT commands. When HardDoor is started, we use the AT+CMGF com-

mand to set the GSM chip in SMS Text Mode. Then we use the AT+CNMI command

to set how to notify when new messages come. After that, the Teensy board keeps

checking the serial port for new messages every second. If there is one, read the content

and parse if it is a pre-defined attack command.

To send out a message, use the AT+CMGS command to set the destination phone

number and then send the text message to the serial port.

6 Evaluation

In this section, we evaluated several aspects of HardDoor. Since it is a hardware

backdoor, we need to measure its physical dimensions and appearance. We also evalu-

ated the effects of HardDoor on the PLC, including the impacts on the performance,
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memory storage, and power consumption.

The model PLC is the Allen Bradley 1769-L18ER-BBIB CompactLogix 5370, which

is equipped with a TI Stellaris LM3S2793 microcontroller. The microcontroller is based

on ARM Cortex-M3 architecture and operates at 80MHz. It has 128KB single-cycle

flash memory and 64KB single-cycle SRAM. The PLC has 16 DC digital inputs and 16

DC digital outputs, which eventually corresponds to the microcontroller’s GPIO port.

Dimensions and appearance. We use commercial off-the-shelf modules to

build the prototype, namely the Teensy 3.2 development board andWaveshare SIM800C

HAT. They are not the smallest in size. For example, the SIM800C in SiP packaging

with a minimal PCB board is much smaller. However, the SiP needs a voltage of 3.7

volts which a Lithium-Ion battery usually provides. GSM is an impulse type transmit-

ting power, even though the average current is low, but the instantaneous current can

reach more than 1.5A, so the board’s external power supply is necessary.

9.2 cm

3.2 cm

6.0 cm

Figure 5.17: The Allen Bradley 1769-L18ER-BBIB CompactLogix 5370 PLC is in a
9.2cm x 13cm rectangle shape with sufficient space to contain the two bords and extra
wires and connectors. The SIM800C HAT takes a full-size sim card, and the antenna
takes much space.

Figure 5.17 shows the physical size of the two boards compared to the Allen Bradley

PLC. Notice that the two main chips on each board are relatively small. Especially

some WIFI chips [12] [10] also provide a microcontroller for general-purpose tasks,
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which the two chips can combine. In that case, the hardware can further reduce its

size. However, we can not shrink its physical size as small as invisible. We argue that

the more effective way to hide the hardware implant is to make it easily overlooked. It

means to use customed PCB with the same color and same style connector attaching

to the PLC’s board. Because until today, there is very little information publicly

available regarding those widely deployed PLCs. Some good examples are the separate

IPMI (Intelligent Platform Management Interface) [149] and KVM (Board, Video, and

Mouse) [80] modules that usually mounted on the server’s motherboards.

Figure 5.18: We cover the necessary parts using tape to prevent a short circuit. The
HardDoor connects to the PLC’s microcontroller board’s JTAG pad through a 10-pin
socket and a long cable. The antenna for receiving GSM signal is also stuffed inside the
PLC.

Figure 5.18 shows that after wiring two boards and wrapping them with tape to

prevent a short circuit, it is small enough to fit inside the PLC’s plastic case. We

connect the JTAG pads with GPIO pins from the Teensy board. One of the PLC we

use for this experiment turns out to have a 10-pin socket soldered on the pad, but all

other PLCs we own do not have such a setting. A novel design for easy installation

avoiding soldering in the field and reliable connection with the JTAG pad is necessary.

We consider this as one of our further works.

As shown in Figure 5.20, the hardware implant is not noticeable from the PLC’s
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Connect to cellular 
network 

Receive command 
message

Send two JTAG 
commands to the PLC

Figure 5.19: The hardware implant does not consume a lot of power, and the power
consumption will only increase slightly when starting and executing the attack com-
mand. Sub-figure 1 shows the power consumption during the startup. Sub-figure 2.a
shows the power consumption during an demo attack. 2.b indicates an output pin of
the attacked PLC.

outside appearance; no parts are exposed, it only seems to take up some space. However,

heat dissipation may be a problem to be considered in the future.

Performance. Since this backdoor is implemented on the hardware level, it almost

cost zero performance overhead. For instance, if we choose to change IO through

override signals transmitting in the low-speed bus, pull-up or pull-down the voltage

level, there will be no overhead added to the microcontroller. On the other side, if we

use the JTAG interface instead, it may cause a slight performance overhead based on

the microarchitecture. Due to various implementations, JTAG debugging capabilities

can be intrusive or non-intrusive. The conventional JTAG debug is invasive, which halt

the processor using breakpoints and watchpoints. It also needs to halt the processor

before it can modify any register.

Nevertheless, the debug functionality provided in LM3S2793 is as CoreSight com-

ponents. It provides real-time access for the debugger without halting the processor

to AMBA system memory, peripheral registers, and all debug configuration registers.
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(a) Front (b) Back

Figure 5.20: The two figures are the Allen Bradley 1769-L18ER-BBIB CompactLogix
5370 PLC’s front and back view, in which both the PLC on the right has the hardware
implant installed. There is no significant difference from the appearance point of view,
and no parts are exposed to the outside.

Therefore HardDoor can modify the GPIO through the AHB bus without any soft-

ware overhead.

Also, the external or timer interrupt may be delayed for a few clock cycles when

encountering JTAG related operations. However, HardDoor has no operation when in

standby mode, and controls on IO only take a few memory reads/writes. Furthermore,

we regulate our attacking operations at a low pace not to jam the system. The resulting

performance overhead is generally negligible, as shown in Figure 5.21.
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Figure 5.21: To accumulate execution time, we use a counter in the ladder logic and
use an output signal to indicate the begin/end time of the test. During the standby
test, HardDoor has attached the PLC, but no command is sent. We alter the PLC’s
output every 500ms to imitate a malicious operation for the attack test.
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Memory Consumption. HardDoor neither occupies flash memory to reside

on the system nor take SRAM during the runtime. Even when it is controlling IO,

the operations are performed on memory-mapped IO for GPIO ports. Therefore, the

memory consumption for HardDoor is zero.

Power Consumption. Because of the extra circuitry we bring to the system, the

power consumption of the PLC increases. Although the two embedded devices consume

very little power compared to the field power that the PLC provides, this is an anomaly

we brought into the system. Therefore we measure it with the PLC that is connected

to the field power but carries no applicants. We connect a resistor in series to the

power supply line of the PLC and use an oscilloscope to measure the voltage across the

resistor. Figure 5.19 shows that several slight current peaks occur when the cellular

chip is searching and connecting to the GSM network and when HardDoor receives

the SMS message and sending JTAG commands to the PLC.

SMS Message. One concern we have is that since the antenna is also stuff inside

the PLC’s case, the signal strength may not be good. So we test it for receiving various

lengths of SMS messages, as shown in Figure 5.22. We use a phone to send the

command messages to HardDoor, and we send each command 20 times to calculate

the average. The cellular networks we used are T-Mobile and Google Fi. Although the

time of message transmission is not very accurate, it is reliable. Different lengths of

information have different purposes. For starting a denial-of-service attack or a pre-

defined function, one byte is enough. To change specific IO, we need a few bytes to

descript its address or index. We also test receiving hundreds of bytes. It can be used

to update the firmware on the PLC’s flash remotely.

7 Related Work

Firmware modification attacks [123] [14] [21] [39] [84] [140] constitute significant attacks

targeting embedded systems, industrial control systems, and IoT devices.

Harvey [55] is a physical-aware stealthy rootkit against a cyber-physical power grid

control system. It hides within the PLC’s firmware below the control logic and modifies



126

1 10 100 200 400 800
SMS Content Length (bytes)

0
10
20
30
40
50
60
70
80
90

SM
S 

Tr
an

sm
iss

io
n 

Ti
m

e 
(s

ec
on

ds
)

Figure 5.22: The GSM network may be congested when there are many users around.
The large piece of message, such as 800 bytes, will be segmented into several packets,
and the transmission time varies, but still, the received order and the message content
are correct.

control commands before sending it to the physical plant’s actuators. This work [112]

implements a malicious firmware that ignored incoming print commands for a printed

3D model, substitutes malicious print commands for an alternate 3D model. If the

firmware attacks can be carried out remotely, the harm will be even more significant.

Cui et al. [39] gives a detailed case study of the HP-RFU (Remote Firmware Update)

LaserJet printer firmware modification vulnerability, which allows arbitrary injection

of malware into the printer’s firmware via standard printed documents.

These systems have one thing in common: they all run on a microcontroller with

limited computing power. Therefore, these devices run a simple real-time operating

system, and there has not been a complete anti-virus system or a series of integrity

verification features and programs provided by hardware and operating system like

those on modern PCs. Due to the lack of security features, the programs run on those

systems are often more vulnerable. Moreover, because they usually focus on specific

areas and are not easily accessible, security issues are ignored. However, once those

systems are compromised, through firmware modification, the attacker can stay in the

dark for a long time without being discovered and cause a significant impact at a

particular moment.

On the other hand, there are many ways to protect the firmware from being modified.
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ConFirm [163] is a low-cost technique to detect malicious modifications in the firmware

of embedded control systems. It measures the number of low-level hardware events

that occur during the execution of the firmware. Lee et al. [93] presented a technique

for binding software to hardware instances that use the devices’ hardware security

properties. The proposed technique assures manufacturers that only they can perform

their hardware and software binding and create their products.

Remote software attestation [96] is also a defense against firmware modification.

SWATT [145] verifies embedded devices’ memory contents and establishes the absence

of malicious changes to the memory contents without using extra security hardware

features. It uses a challenge-response protocol between the verifier and the embedded

device. The verifier sends a challenge to the embedded device. The embedded device

computes a response to this challenge in a pre-defined protocol between the verifier

and the device. The device can only give the correct answer if the memory content is

intact. Otherwise, the attacker has to know the verifier’s secret algorithm to break the

verification. Similarly, SBAP [95] also provides a software-only solution to verify the

firmware integrity but with the help of an existing peripheral device.

Other methods such as firmware binary obfuscation [42] [139] [31], makes it very

challenging for firmware modification attacks. It requires comprehensively analyzing

each device to find a suitable place to inject malicious code.

8 Discussions and Mitigations

Reducing the size of the hardware implant is necessary but not the main factor in dis-

guising. A customized PCB board allows all the required chips to be installed together

so that there is no Dupont jumper wire, which makes the hardware implant very sus-

picious. The SIM800C chip already is a SiP (System in a Package), and the JTAG

driver can run on a minimal core such as cortex-M0. Combining these two can make

the backdoor simpler, and we can already find such WIFI chips, such as ESP32 [129],

as of the time of writing this paper. Moreover, a better camouflage makes the hard-

ware backdoor look like a legit accessory of the PLC. The IPMI (Intelligent Platform
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Management Interface) module is a good example. It needs to be purchased separately

and installed on the reserved socket on the server motherboard to activate the remote

control function.

To mitigate a hardware backdoor attack such as HardDoor, we first measure the

power usage to find the overhead caused by the extra circuitry, as evaluated in Section 6.

The result shows a few current peaks when HardDoor connects to the GSM network

and sends JTAG commands to PLC. However, its power consumed is not much, a few

milliamperes. Moreover, the PLC’s power consumption is also constantly fluctuating,

and setting a threshold with little redundancy will affect the system’s reliability.

In particular, to avoid malicious use of the JTAG interface, the manufacturer can

blow the corresponding physical JTAG fuse at the factory [137] [25]. Blowing the fuse

completely disables the JTAG port and is not reversible.

However, by tapping the open wire on the boards, we can directly control each

peripheral device because they are connected to the microcontroller through various

buses. We think that some physical protection will cause trouble to the attacker. For

example, the Chip-on-Board (COB) [89] packaging with a black blob for low-cost IC

items makes it more challenging to identify the chip underneath. Nevertheless, we

believe it is not a good practice to cover the whole board, and heat dissipation is

critical for large area ICs. One possible direction for preventing bus signal hijacking is

to send packet-based encrypted data, which requires the microcontroller and peripherals

to exchange encryption keys and maintain a connection state. However, it may not be

practical for low-speed devices and low-end microcontrollers.

9 Conclusions

To achieve more stealthiness in a sophisticated APT attack, we think the trend is that

the trojan moves towards the hardware level, especially with the emerging supply chain

attacks. We present HardDoor, a parasitical hardware implant that directly controls

the PLC through wire and bus signal hijacking. HardDoor does not modify the

firmware nor relies on PLC’s network communication. It can manage/damage the ICS
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system’s physical assets by controlling PLC’s IO. At the same time, it provides a faked

expected view of the system to circumvent detections. Our prototype is small in size,

and the experiment results demonstrate the feasibility of HardDoor in practice.
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Chapter 6

Conclusion

This dissertation presents novel system memory protection techniques to address several

state-of-the-art vulnerability challenges and bring a new class of attack.

First, the author aims at mitigating heap overflow vulnerabilities. In a heap overflow

attack, the attacker often abuses the heap metadata to exploit the system. Therefore,

the author presents a novel heap allocator that protects heap metadata with a secure

environment in the user space, using the hardware feature Intel Software Guard Ex-

tensions (SGX). SGX provides separated memory spaces, so-called enclaves, to protect

critical user data. With the heap metadata reorganized and protected, the mitigation

prevents vulnerabilities from abusing metadata, hence stop attacks of such kind.

Next, the author aims at mitigating use-after-free (UAF) vulnerabilities. UAF is es-

pecially prevalent in the world of web browsers. Despite many successful UAF exploits

against widely-used applications, state-of-the-art defense mechanisms have proved to

leave the systems vulnerable still. The author argues that a successful UAF exploit is

feasible because of the fine-grained determinism provided by existing heap memory allo-

cators. Therefore, the author presents a new defense strategy that leverages additional

memory buffers to make allocation outcomes locally unpredictable to adversaries. It

significantly lowers the success rate of a UAF exploit.

Then, the author aims at mitigating kernel-level time-of-check-to-time-of-use (TOC-

TOU) vulnerabilities. Kernel-level TOCTOU widely exists in operating systems, es-

pecially Microsoft Windows. When serving a system call, the kernel inevitably gets

parameters from the userspace. Read the same user-mode variable repeatedly may lead

to data inconsistency under a race condition between the kernel and userspace. The
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core of this mitigation is to use Supervisor Mode Access Prevention (SMAP), a hard-

ware feature, to detect kernel access to userspace data. Due to the Windows system’s

complex nature, the author further develops a lightweight hypervisor to contain the

system-wide hardware feature SMAP into specific processes to prevent deadlock caused

by nested SMAP exceptions. It is the first runtime mitigation technique on Windows

with acceptable performance overhead (less than 10

Last, the author tries to think out of the box, present a new class of attack that

deploys a small-size parasitical hardware implant attached to a victim programmable

logic controller (PLC). It controls the PLC by modifying the digital signal or hijack-

ing the various buses on the boards. This attack can be deployed either during the

supply chain or stealthily installed in remote plants. The author makes such a point,

although software-level weakness mitigation and protection make attacks more difficult

to succeed, lower-level and new types of attacks will be more challenging to detect and

protect in the software domain, and this is a real threat.
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