
DYNAMIC COMPOSITION AND MANAGEMENT

OF EMERGENCY RESPONSE PROCESSES

By

ABEER ELAHRAF

A Dissertation submitted to the

Graduate School-Newark

Rutgers, The State University of New Jersey

In partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

Graduate Program in Management

written under the direction of

Dr. Jaideep Vaidya & Dr. Basit Shafiq

and approved by

———————————————

———————————————

———————————————

———————————————

Newark, New Jersey, USA

October 2021

Copyright page:

©2021

Abeer Elahraf

ALL RIGHT RESERVED

ABSTRACT OF THE DISSERTATION

Dynamic Composition and Management of Emergency
Response Processes

By ABEER ELAHRAF

Dissertation Directors:

Dr. Jaideep Vaidya & Dr. Basit Shafiq

The number of disasters, whether human-made or natural, has been on the rise over the

recent years; they have destroyed lives, homes, and caused widespread damage to infras-

tructure. The increase in disasters means there is also a higher demand for efficient response

planning. Effective emergency response planning requires communication and coordina-

tion with the diverse operational systems belonging to various collaborating government

agencies, non-government organizations (NGOs), and private sector entities. An essential

requirement for developing an emergency response process is to establish information shar-

ing and system-level interoperability among the operational systems of collaborating orga-

nizations. The challenge is that emergency response processes are not well-structured and

do not have a well-defined outcome; they are knowledge-centric. Their workflow structure

and execution may evolve dynamically based on the environmental context and the type of

service or activity invoked during process execution. It is impractical to define static plans

and response process workflows for every possible situation since unforeseeable situations

may arise. Thus, a dynamic response requires adaptability to a changing situation as an

ii

incident evolves.

In this thesis, we develop an iterative end-to-end solution for the dynamic composition

and management of an Emergency Response Management System, called Dynamic Emer-

gency Response Processes System (DERPS). DERPS allows the Incident Commander to

develop a contextualized response using ontology-based reasoning and allows its dynamic

adaptation to situational changes. We also adapt and apply DERPS in the COVID-19 con-

text. Specifically, given the pandemic’s scale and scope, home-based isolation has been

considered a potential first step to reduce the spread of the virus and limit the stress on the

healthcare system. However, home-based isolation needs and requirements are unique for

each patient. We show how DERPS can be utilized to develop personalized patient care

plans to ensure that each patient’s needs are appropriately met while they are confined to

their home. We develop a prototype implementation to show the feasibility of the proposed

framework and discuss challenges and issues in deploying such a system in practice.

iii

Acknowledgments

In the name of God, the merciful and compassionate. I would like to praise and thank

Allah for guiding me through my life, especially during my Ph.D. program!

Secondly, I want to express my deepest gratitude and appreciation to my doctoral ad-

visors, Dr. Jaideep Vadiya and Dr. Basit Shafiq. My appreciation is also extended to the

committee members, Dr. Vijayalakshmi Atluri and Dr. Shamik Sura. Your insightful ad-

vice and guidance helped me finish this dissertation. I particularly enjoyed my challenging

conversations with Dr. Vadiya and Dr. Shafiq; these conversations, were filled with novel

curiosities and encouragements. I also would like to thank Dr. Nabil Adam for his help

and guidance, especially during my early years in the Ph.D. program.

I would like to thank my co-workers, fellow faculty members, and colleagues at Rut-

gers University, particularly the current and past staff of the SASN Dean’s office, for their

support and encouragement.

Last, but not least, to my steadfast husband and companion, Amr Farag, I sincerely

thank you for your unconditional love, support, encouragement, guidance, and patience.

I could not have achieved this remarkable result without your faith in me and continues

dedicated support.

iv

Contents

List of Tables viii

List of Figures ix

1 Introduction 1

1.1 Objective . 1

1.2 Environment . 3

1.3 Challenges and Problem Statement . 4

1.4 Research Contributions . 5

1.5 Outline of Dissertation . 7

2 Related Work 8

2.1 Emergency Response Management Systems and Frameworks 8

2.2 Dynamic Process Composition . 10

2.2.1 Schema Evolution Requirements 11

2.2.2 Runtime Process Adaptation Requirements 12

2.2.3 Knowledge-Driven Business Process Development 14

2.3 Conclusion . 17

3 Dynamic Composition and Management of Emergency Response Processes 19

3.1 Introduction . 19

3.2 Problem Statement . 22

3.3 Proposed Approach . 23

v

CONTENTS CONTENTS
3.3.1 Emergency Management Ontology 25

3.3.2 Reasoning Engine . 27

3.3.3 Process Composition Modeling 28

3.3.4 Executable Process Code Generation 36

3.3.5 Deployment, Instantiation, and Execution 36

3.3.6 Dynamic Adaptation and Evolution 37

3.4 Conclusion . 38

4 Developing Personalized Patient Care Plans for COVID-19 39

4.1 Introduction . 39

4.2 Problem Statement . 42

4.3 Proposed Approach . 43

4.3.1 Ontology and Reasoning Support 45

4.3.2 Care Plan Composition . 47

4.3.3 Code Generation, Instantiation, and Execution 48

4.3.4 Monitoring and Adaptation/Evolution of Care Plan 49

4.4 Conclusion . 49

5 Prototype Implementation and Experimental Evaluation 51

5.1 Introduction . 51

5.2 Emergency Response Processes Implementation 52

5.2.1 Experimental Evaluation . 54

5.2.2 Ontology-Based Reasoning . 55

5.2.3 Process Composition and Executable Code Generation 56

5.3 COVID-19 Patients’ Personalized Care Plan

Implementation . 60

6 Conclusion and Future Work 63

6.1 Conclusion . 63

6.2 Future Work . 64

vi

CONTENTS CONTENTS
6.2.1 Reusability . 64

6.2.2 Scalability . 66

6.2.3 Privacy and Security . 67

6.2.4 Interoperability and Standardization 67

6.2.5 Auditability . 68

7 References 69

vii

List of Tables

2.1 Comparison of Interoperable Systems for Emergency Management and Re-

sponse Planning . 9

2.2 Comparison of Schema Evolution and Runtime Process Adaptation Sys-

tems for Emergency Management and Response Planning 13

2.3 Comparison of Knowledge-Driven BP Composition and Management Sys-

tems for Emergency Management and Response Planning 16

4.1 Home Patient Care Systems and Services 41

5.1 Ontology Rules Inference Execution Time 56

5.2 Available Systems and Services Related to Emergency Response Planning . 57

5.3 Response Process Composition Time Results 58

5.4 Coupa Requisitions API . 59

viii

List of Figures

1.1 Environment for Emergency Response Process Management 3

3.1 Architectural Overview of the Proposed Approach for Dynamic Composi-

tion and Management of Emergency Response Processes. 23

3.2 Abstract Process Fragment Showing Default Response Actions for Haz-

ardous Materials Carrying Train Accident. 26

3.3 Example: Computing Initial State from Contextual Attributes 30

3.4 Example: Computing Goal State from Activities in the Default Actions. . . 31

3.5 Response Process Composition . 32

4.1 Framework for Management of Personalized Patient Care Plans 43

4.2 Examples of Some of the Standard Care Activities for a Self-isolated COVID-

19 Patient Requiring Weekly Dialysis . 46

4.3 (a) Initial State Computed from Patient’s Profile Attributes (b) Goal State

Computed from Selected Patient Care Activities 46

5.1 Recommended Response Actions and Resources for the Freight Train De-

railment Incident . 52

5.2 Partial View of the Generated Response Process (in the middle) and Exe-

cution Results (on left and right) . 53

5.3 Prototype System Implementation . 61

ix

1

Chapter 1

Introduction

1.1 Objective

An emergency response process is a workflow of activities that need to be executed in

response to a critical situation [44]. Effective emergency response planning requires com-

munication and coordination with the various operational systems of different collaborat-

ing organizations, including government agencies, non-government organizations (NGOs),

and private sector entities. Establishing information sharing and system-level interoper-

ability among organizations’ various operational systems is an essential requirement for

developing an emergency response process. Unlike the traditional business processes (e.g.,

e-government and e-commerce processes), which have well-defined and predictable work-

flow structure and outcomes, emergency response processes are knowledge and data-centric

and are executed in a dynamic and non-deterministic environment. Their workflow struc-

ture emerges and evolves dynamically, depending upon the environmental context, user

decisions, availability of resources, and the jurisdictions’ and response organizations’ rules

and policies. Establishing interoperability is particularly challenging in such an environ-

ment; wherein, the workflow structure, collaborating organizations, data sources, and re-

source providers may not be known a priori and would need to be identified at runtime.

Moreover, there may be new organizations that have not collaborated earlier. Therefore,

2
an approach to enable the on-the-fly composition of emergency response processes by en-

abling information sharing and interoperability among the information systems of relevant

response organizations is needed.

In a disaster situation, it is essential to have an emergency response plan that defines the

framework of necessary activities. Each incident is unique in its location, circumstances,

environmental condition, sequence of events, and the response organizations’ jurisdictions

and policies, which makes it impractical, if not impossible, to predefine emergency re-

sponse plans for every situation. Substantial research effort exists on the topic of emergency

response management systems [18, 23, 38, 45, 53, 54] as well as the workflow management

systems [44, 52] to improve the response plans and responsiveness to emergency incidents.

Previous research has assumed prior knowledge of participating organizations/agencies and

pre-existing system-level interoperability between them. Research topics have focused on

resource scheduling and the critical risk of the performance analysis in an emergency rather

than the risks posed to human lives and natural resources. It is essential to customize the re-

sponse plan based on the disaster characteristics, location, and organizations/agencies with

the resources to perform the necessary tasks.

Consider the following scenario that illustrates the need for the proposed system. A

freight train colliding with a car at a cross-track in Saddle Brook, New Jersey is causing

a sizeable greenish smoke cloud to emanate from the wreckage. This incident requires

fire trucks, firefighters, ambulances from local and most likely neighboring towns with

different jurisdictions and policies. In addition, the train’s contents are unknown, which

limits understanding of the severity of the situation. Our approach would dynamically

generate an executable response plan based on available resources in Saddle Brook using

the Web services for: 1) Saddle Brook Fire Dept (in house APIs), fire trucks, firefighters,

and ambulances; 2) askRail for train content; 3) CAMEO for chemical information; and 4)

ALOHA for Hazard Modeling.

Towards this goal, we developed an integrated approach that enables dynamic compo-

sition of response processes by interfacing the operational systems of different response

3
organizations for response process composition and management. Our proposed solution,

called Dynamic Emergency Response process System (DERPS), provides the ability to

compose, refine, deploy and execute an emergency response plan iteratively until the dis-

aster is resolved. This solution is built on a service-oriented architecture and requires that

response organizations provide Web service APIs to access their information and resource

management systems.

1.2 Environment

Figure 1.1: Environment for Emergency Response Process Management

Today’s service-oriented technology has enabled organizations to utilize the cloud in-

frastructure to provide their customers with various online services. With the assumption

that all services are easily accessible by public Web services, let us review our proposed

environment in Figure 1.1. This figure exhibits the services cloud environment for dy-

namic composition, execution, and management of emergency response processes. The

response process is composed by integrating the diverse systems and APIs of the organiza-

4
tions participating in the response activities. These organizations may use systems that are

developed in-house, proprietary, or cloud-based with various APIs to perform the systems’

underlying functional activities. Furthermore, as the situation evolves, new requirements

need to be incorporated to dynamically compose an extended response process with new

activities. These changes require evaluating the latest status, identifying the agencies and

organizations that can provide the required resources, and integrating their Web services

into the instantiated response process.

1.3 Challenges and Problem Statement

Our research focuses on the dynamic composition of emergency response processes, which

involves information sharing and interoperability among operational systems of the gov-

ernment and non-government organizations.

Establishing System-Level Interoperability Across Organizations: In an emergency,

it is essential to promptly respond to the incident and swiftly restore normality, making

time a crucial element in the response solution. The emergency response process involves

information sharing and interoperability among operational systems of governmental and

non-governmental organizations. There are many agencies/organizations involved that will

be using different systems such as components developed in-house, pre-compiled libraries,

or open-source platforms. Communication among these system-level components must be

resolved and established to be effective for this plan. We resolve this problem using the or-

ganization’s Web services. We utilize our prior work [3] to resolve heterogeneity between

the input/output parameters of services to integrate the APIs of various organizations, and

addressing this challenge in our work resolves system-level interoperability.

Dynamic Composition of Processes Workflow Structure: The collaborating organi-

zations, data sources, and resource providers may not be known a priori and may need

to be discovered at runtime. The challenge of the composition lies in the available Web

services/APIs since they are discovered dynamically based on the incident and the respon-

der(s) available resources. Therefore, our approach first determines the required activities

5
for the incident based on its characteristics; these activities need to be performed through

organizations’ available resources. Secondly, we discover and select the relevant APIs

of the organizations’ operational systems to perform the activities. Lastly, we facilitate

an on-the-fly composition of emergency response processes workflow by considering the

dependencies between activities and identifying Web services’ invocation sequence. We

address this challenge and resolve it in our work.

Process Adaptation and Evolution: Incident environmental context due to the inci-

dent evolution or user decision, and agency/organization resource availabilities may change

during the incident. A successful response process plan needs to dynamically change and

accommodate these continuous and various changes, which produce a challenge of gen-

erating a stateful approach for developing an executable response process that adapts and

evolves dynamically. As new events arise, our approach determines additional activities

for the incident and creates a new dynamic composition of processes iteratively. Also, if

resources are available at the local-level (city/town) agencies, the search expands to the

county and state-levels agencies. This dynamic re-composition will continue to execute

until the incident is resolved. Our approach has resolved this challenge as it can adapt to

evolve dynamically to the incident evaluations.

In this thesis, We also extend this framework to a COVID-19 scenario, where a patient

has pre-existing conditions. Here, the framework is successfully applied as a prototype.

However, for a successful deployment of such a system to a real-world environment, ad-

ditional challenges need to be considered, including scalability, privacy and security, in-

teroperability and standardization, and auditability. We do not address those additional

challenges.

1.4 Research Contributions

The key research contributions of this dissertation can be summarized as follows:

1. We propose an integrated approach that facilitates the dynamic composition of exe-

6
cutable response processes. Our approach develops an iterative end-to-end solution

for the dynamic composition and management of an Emergency Response Manage-

ment System.

• We have developed the DERPS that supports dynamic composition, adaptation,

and evolution of response processes by considering the incident characteristics,

operational environment, occurrence of any new events, availability of response

resources, and user decisions.

• We developed a prototype implementation of the proposed framework’s func-

tionality for dynamic composition and management of emergency response pro-

cesses.

• We performed an extensive experimental evaluation of the proposed system and

its effectiveness using a rail incident scenario similar to the Federal Emergency

Management Agency’s (FEMA) Hazardous Materials Tabletop Exercises Man-

ual Rail Incident Scenario [22].

2. We evaluated the feasibility of our proposed approach to generate personalized patient-

care plans for COVID-19 patients under home-based isolation. Home-based isolation

has been considered a potential first step for reducing both the spread of the virus and

the healthcare system’s stress. Therefore, it is necessary to develop personalized pa-

tient care plans to ensure that each patient’s needs are appropriately met. We have

applied our approach as a service-oriented framework that allows dynamic composi-

tion and management of such patient care plans assuming the existence of an appro-

priate knowledge base and availability of Web services interfaces of the underlying

systems of caregivers and service providers.

• We developed a prototype implementation to show the feasibility of the pro-

posed framework for continuous monitoring of the care plan. This monitoring

allows for a reassessment of the patient’s evolving needs, preferences, and treat-

ment responses to interventions and re-composition of the care plan.

7
1.5 Outline of Dissertation

The dissertation is organized as follows. In Chapter 2, we review the related work on

Emergency Response Management Systems and Frameworks, Schema Evolution Require-

ments, Runtime Process Adaptation Requirements and Knowledge-Driven Business Pro-

cess Development. In Chapter 3, we discuss our proposed Dynamic Composition and

Management of Emergency Response Processes. In Chapter 4, we discuss the application

of our proposed approach to develop personalized Patient Care Plans for COVID-19 pa-

tients. Chapter 5 presents our prototype implementation and experimental evaluation for

our two proposed systems. Finally, in Chapter 6, we provide the conclusion and discuss

future work.

8

Chapter 2

Related Work

In this chapter, we discuss the related work on automated service composition approaches

in the context of emergency response processes. We first review the existing emergency

response management systems and frameworks. Next we discuss the key requirements and

related approaches for dynamic process composition.

2.1 Emergency Response Management Systems and Frame-

works

There are some service-oriented platforms and systems for interoperable information ex-

change for emergency management and response planning including, XchangeCore1, for-

merly known as Unified Incident Command Decision Support System (UICDS) [38, 45],

FEMA Incident Resource Inventory System (IRIS) [23], Service-Oriented ArchiteCtures

Supporting Networks of Public Security (SoKNOS) [18], and social media alert and re-

sponse to threats to citizens (Smart-C) [2]. Below we briefly discuss each of these plat-

forms/systems and then provide a comparison of these platforms/systems.

UICDS framework for Incident Management/XchangeCore: The Department of Home-

land Security Initiative developed the UICDS framework for information sharing also known

1https://www.saberspace.org/xchangecore-home.html

9
as XchangeCore. The framework’s goal is to standardize the information-sharing infras-

tructure in minor and significant emergencies by enabling a user’s device to get answers,

push alerts, ask questions, and other functions. XchangeCore is designed to work on both

small and wide-area networks. It also includes risk decision support, which is done via

geospatial predictive analytics to detect and suggest a high-risk area for crimes or disasters.

Shafiq et al. used the UICDS framework in their research [46] to create a prototype for

an incident management middleware across various organizations (government and non-

government). The goal of this framework is to provide the emergency responders with a

plan, critical information, essential incident-related information, and to store incident in-

formation for later analysis. The solution is an ontology-based resource that consists of:

1) an ontology library with the incident types and resources; and 2) a reasoning engine to

evaluate the required resources based on the incident’s context information and policies.

Social Media Alert and Response to Threats to Citizens (SMART-C): In this research

Adam et al. proposed a plug-and-play system capable of collecting data from various

sources to analyze it and produce an easily comprehensible of the incident to systems and

different users based on relevant rules and policies. The SMART-C system is a part of the

social media initiative at the Department of Homeland Security.

Table 2.1: Comparison of Interoperable Systems for Emergency Management and Re-

sponse Planning

Information

sharing

Reasoning

support

Dynamic discovery of

response organizations

Automated process

composition

UICDS/XchangeCore Yes No No No

IRIS Yes Yes No No

SoKNOS Yes Yes Yes No

Smart-C Yes Yes Yes No

Proposed Approach [20] Yes Yes Yes Yes

10
The Incident Resource Inventory System (IRIS): IRIS is an inventory system provided

by FEMA. It is available to all government and non-government organizations/agencies. A

consistent resource inventory database tool, IRIS allows access to any resources for incident

operations and mutual aid purposes.

SoKNOS - An Interactive Visual EM Framework: Doweling et al. suggest an emergency

management framework, SoKNOS, a project funded by the German Federal Ministry of

Education and Research. For this framework, they introduce an approach to develop a

system that would allow users to create a structural and temporal view of the integrated

emergency information data based on their role. The system would have various source

inputs and integrate them into repositories, such as information about the incident, the

weather, geospatial services, organizations involved, Web services, and internally-created

data. The users would interact with the system via plugins for temporal or structural views.

To resolve the interoperability between organizations, they assume that the Web services’

underlying information is described using ontology.

Table 2.1 compares these platforms/systems and their capabilities to support the dy-

namic composition of emergency response processes. Specifically, we compared the ca-

pabilities of these platforms/systems in terms of: 1) information sharing among diverse

systems; 2) reasoning support for response planning; 3) dynamic discovery of response

organizations; and 4) automated process composition by interfacing with the various oper-

ational systems of response organizations. Although these systems employ semantic-based

reasoning for emergency response planning and decision support, they do not support the

on-the-fly composition of response processes that may evolve based on the situation at

hand.

2.2 Dynamic Process Composition

Automated business process composition and management have been extensively studied

in the literature. Significant research has been carried out on dynamic service composition,

11
process adaptation, and schema evolution in the context of structured business processes.

However, there is a lack of integrated approaches that address the dynamic composition

requirements for knowledge-driven processes that are unpredictable and emergent. Below

we discuss the essential requirements and related approaches for dynamic process compo-

sition. We discuss the work that tackles the issues of schema evolution, runtime process

adaptation, and knowledge-driven business process development for completeness. How-

ever, our work primarily tackles the issues in knowledge-driven business process develop-

ment. We do not handle schema evolution or service failure/replacement issues since these

can be be addressed using prior research.

2.2.1 Schema Evolution Requirements

Schema evolution requirements mostly arise due to process re-engineering efforts such

as business rules, policies, regulation, business strategy, and continuous process improve-

ment. Such changes in schema typically require developing a new version of the pro-

cess schema/model, which, in turn, affects the running instances of the process as well

[48]. The Schema change problem has been extensively studied, and several approaches

have been proposed. These include graph-based model matching and merging techniques

[6, 11, 31, 51], as well as rule-based techniques [21, 36, 41, 55]. Graph-based techniques

support flexibility in process models to enable process designers to compare and reuse con-

figurable elements [6] in existing process models. These approaches mainly address design

time variability in process workflows. On the other hand, rule-based approaches primarily

support dynamic changes in process schema by enabling different ad-hoc deviations from

a given process model. Table 2.2 compares these platforms/systems concerning their capa-

bilities to support schema evolution and runtime process adaptation systems for emergency

management and response planning.

Bucchiarone et al. have proposed a series of works on Context Evolution Based Pro-

cess Adaptation capable of handling stateful and non-deterministic services. Their work

proposed a goal-oriented business process approach that verifies the evolution of the pro-

12
cess context and execution against the desired goal-based model that encodes the business

policies over the domain elements [10]. In the case of divergence of the desired goal model,

the adaptation process is triggered. An automatic composition and execution are generated

considering the available services at the current state and context. Bucchiarone et al. pro-

posed another framework for context-aware dynamic composition of process fragments in

their later work [8, 9]. In this work, the composition requirements are specified on the

context properties, making this approach very useful in a dynamic environment where the

available process fragments [6] and the execution context may change. The underlying idea

is that different entities (service providers) in the system publish their functions through

process fragments that can be used in new process compositions and dynamic process evo-

lution.

2.2.2 Runtime Process Adaptation Requirements

Runtime process adaptation requirements primarily arise due to issues such as: 1) abnor-

mal termination or failure of tasks (e.g., underlying Web service failure or unavailability);

2) violation of any constraints related to data (e.g., missing input) or tasks (e.g., pre/post-

condition not satisfied); and 3) temporal requirements (e.g., expiration of a deadline) [48].

These requirements have been addressed by flexible and adaptive service composition ap-

proaches that mainly rely on exception handling mechanisms with the associated recovery

procedures built manually by a process designer at runtime.

Exception Handling Processing Adaptation: The works of Reichert et al. [41] and Red-

ding et al. [40], and their approaches to process adaptation, rely on exception handling

mechanisms paired with recovery procedures that are built manually at runtime by a process

designer. The adaptive approach used by Reichert and his team in their system ADEPT2

supports handling unanticipated exceptions by enabling different ad-hoc deviations from a

given process model. The system identifies structural conflicts that would indicate a change

in the schema. It then adapts the indicated change to the design of the business processes.

Redding et al. had a different approach; they did not structure the business objects as struc-

13

Table 2.2: Comparison of Schema Evolution and Runtime Process Adaptation Systems for

Emergency Management and Response Planning

Manual Pre-Planned Unplanned Non-

deterministic

Stateful Service

Bucchiarone et

al. (UMS) [8, 9,

10]

- Yes, Goal-based

model

Yes, Process frag-

ments dynamic com-

position

Yes

Marella et al.

(SmartPM) [36]

Yes, by Ex-

pert on pro-

cess domain

Yes, pre-planned

exceptions

Yes, Situation Calcu-

lus logic framework

& Automated Plan-

ning Techniques

Yes

Redding et al.

[40]

- Yes, Object-

centric meta-

model

- -

Reichert et al.

(ADEPT2) [41]

- Yes, Case-based

reasoning (CBR)

- -

Yu et al.

(MoDAR) [55]

- Yes, Model-

driven using

aspects & rules

- -

tural “flowchart-like notation” but rather as “what can happen during a case.” Although

their approach is still based on exception handling, it is not the typical structure.

The SmartPM Framework, an adaptation of business processes developed on the Knowl-

edge Representation and Reasoning (KR&R) technique, was proposed by Marella et al.

[36]. The framework adapts to errors (exception handling) during execution using the

expected reality and actual reality models. The framework uses situation calculus, logic-

based programming, and planning to recover from the potential gap between the two reality

14
models. The framework is developed to support monitoring and adaptation of controlled

domains (physical and expected reality), but it does not support automated process adap-

tation. Its current implementation relies on a process designer for the specification of the

process participants and model. However, an automated composition approach can be inte-

grated with SmartPM to replace the Business Process Model and Notation (BPMN) based

manual process design approach.

Adaptive Service-Based System Using Aspects & Rules: Yu et al. introduced a model-

driven approach, MoDAR, based on aspects and rules to build an adaptive service-based

system [55]. The approach separates business processes into two parts: 1) the variable part,

defined as business rules; and 2) the stable part, defined as the base part. Lastly, rules are

weaved into the base process. This approach is considered adaptive because the business

rules (variable part) can change at run time, and the base part (stable part) will not be

affected.

In this thesis, we consider process adaptation only in the sense of dynamic recom-

position of emergency response processes to respond to changes in the environment or

the emergence of new requirements. We do not focus on service replacement/failure and

schema changes and assume that the existing approaches discussed above can be employed

to handle such issues. However, we also utilize a rule-based adaptive process composition

approach to address such issues from an implementation perspective.

2.2.3 Knowledge-Driven Business Process Development

Emergency Response Management Systems, Decision Support Systems, and Medical Di-

agnosis Systems are examples of knowledge-driven and data-centric decision systems.

They contain a limited structure since scenarios might already have pre-existing plans and

activities. Still, an exact order of execution will only be determined at the time of per-

formance based on the “knowledge” and the “data” provided. These types of systems

involve taking into consideration three main characteristics of knowledge-driven processes

which differentiate them from structured business processes: 1) Unpredictable and emer-

15
gent process workflow structure: the activities and process structure are not predefined

and are determined dynamically based on the knowledge of environmental context, situ-

ation, and case-specific parameters that are not known a priori and are subject to change

at runtime; 2) Goal-oriented composition: composition goals may change, and new goals

may arise as new data or actions emerge during process instantiation and execution; and 3)

Constraint and rule-driven composition: policies, rules, and regulations can influence the

process structure and constrain its execution. While there is a lack of integrated approaches

addressing these requirements, some works address different needs in knowledge-driven

business process development in a piecemeal manner [6, 8, 9, 10, 32, 36]. Table 2.3 com-

pares these platforms/systems concerning their capabilities to support knowledge-driven

BP composition and management systems for emergency management and response plan-

ning.

Below we review some knowledge-driven BP composition and management systems:

Mobile-Based Emergency Response System (MERS): MERS, a decision support system

implemented by Amailef et al. [5] using an ontology-supported case-based reasoning ap-

proach. The system has four core components: 1) data acquisition, which includes mobile

data entries(SMS); 2) ontology, which is used for structure; 3) knowledge base, which con-

tains all the past incidents; and 4) reasoning, which compares the current incident with the

knowledge and solutions from past incident events and provides a result of similar incidents

with similarity scores (0-1). MERS reasoning component allows for adaptation, which en-

ables the user to revise the solution until it is suitable for the current incident. Lastly, MERS

also allows solutions to be saved and tagged with a solution rating (acceptability, flexibility,

completeness, adequacy, feasibility) for reusability, updating the case-base for future query

searches.

Decision-Making Model Utilizing HTN Approach: Tang et al. [49] proposed a solution

for coordinating emergency response plans among multiple organizations during an emer-

gency by integrating Hierarchical Task Network (HTN) planning and scheduling technolo-

16

Table 2.3: Comparison of Knowledge-Driven BP Composition and Management Systems

for Emergency Management and Response Planning

System Type Modeling/ framework Systems

predefined

Repository

Amailef et al.

(MERS) [5]

Mobile-

based

Ontology-supported

Case-based reasoning

(OS-CBR)

Yes No

De Nicola et al.

[16]

Scenario

Modeling

Ontology, Semantic-

based,

Yes No

Moreira et al. [37] Disaster

Management

ontology-driven

situation-aware (SA)

disaster management

(DM) framework

- No

Tang et al. (HTN)

[49]

Scenario

Modeling

HTN AI planning; On-

tology, semantic char-

acterization & pattern-

based approach

Yes Yes

gies. HTN [25] is an artificial intelligence (AI) planning technique that provides a mecha-

nism that easily converts domain knowledge at different levels and manipulates it to refine

non-primitive tasks into smaller subtasks until they are all executable. Tang et al.’s re-

search extended this approach by developing four planning requirements: 1) hierarchical

task structure vital for multiple responding organizations to execute tasks/subtasks; 2) plan

validity, which is essential and may occur due to highly dynamic environment changes;

3) interdependencies and synchronization between planned activities, which are crucial in

case of a cause-effect relationship between activities; and 4) temporal constraints for rea-

sons such as deadlines, partial order relationships, and unanticipated events (i.e., weather,

traffic). This technique provides valid results, but assumes that the organizations/agencies

are already known.

17
An EM Scenarios Application for Smart Cities: De Nicola et al. proposed a scenario

modeling software application to query, generate, and organize sets of conceptual models

that then can be adapted to fit the incident in the smart city scenario [16]. The application

has three main goals: 1) to provide an understanding of the consequences of decisions on

potential crises; 2) to provide a training tool for crisis operators and analyzing EM plans for

experts; and 3) to provide a foundational definition of executable simulation models of EM

scenarios. This framework is built on three types of knowledge: 1) structural knowledge,

which can be considered the scenarios’ blueprints; 2) domain knowledge, which refers to

the smart city and emergency management; and 3) contextual knowledge, which can be

geographical, laws, or aspects of regulations that are needed for reasoning purposes (e.g.,

metro service does not operate on holidays).

Ontology-Driven Situation-Aware Disaster Management: Moreira et al. discuss their

development of a new ontology-driven situation-aware (SA) disaster management (DM)

framework [37]. Their work concentrates on the importance of a well-founded DM core

ontology and the challenges of arranging concepts related to modeling situations in a foun-

dational ontology. The work also describes how the foundational ontology can offer proper

modeling languages and their guidelines to assist SA applications’ development. Their

framework is focused on the situational concept of SA application at design time and run-

time. Moreira et al. argue that the core ontology continues to bring challenges for the Uni-

fied Foundational Ontology (UFO) and its ontological language (OntoUML) and purpose

as it adapts to a mature foundational ontology with high-level concepts in related situations.

They also urge the need for a theoretical foundation for modeling language constructs to

support the SA application’s specifications.

2.3 Conclusion

Most of the existing composition and management systems for emergency management and

response planning are not highly dynamic. They cannot handle continuous non-deterministic

18
stateful service incidents, or incidents with a high frequency of unexpected developments.

Most of these systems cannot automatically adapt and evolve without relying on pre-

existing exception handling or the intervention of domain experts.

19

Chapter 3

Dynamic Composition and Management

of Emergency Response Processes

In this chapter, we discuss the proposed approach for a Dynamic Emergency Response Pro-

cesses System (DERPS), which supports dynamic composition, adaptation, and evolution

of response processes. DERPS provides this support through consideration of the incident

characteristics, the operational environment, occurrence of any new events, availability of

response resources, and user decisions. The proposed approach applies ontology-based

reasoning to determine the default actions and resource requirements for any given inci-

dent. It identifies relevant response organizations and APIs of their operational systems

based on their jurisdictional and mutual aid agreement rules.

3.1 Introduction

As discussed in Chapter 1, emergency response processes are knowledge-driven and are ex-

ecuted in a dynamic and non-deterministic environment. Their workflow structure emerges

and evolves dynamically depending upon the environmental context, user decisions, avail-

ability of resources, and the rules and policies of response organizations. These response

organizations may not have pre-established collaboration and are discovered at runtime.

Therefore, there is a need to facilitate on-the-fly composition of emergency response pro-

20
cesses by enabling information sharing and interoperability among the information systems

of relevant response organizations. This is also illustrated in the following scenario.

Consider a rail incident scenario similar to FEMA’s Hazardous Materials Tabletop Exer-

cises Manual Rail Incident Scenario [22], in which a freight train is reported to collide with

a car at a crossing. First responders approach the area to find a large greenish smoke cloud

emanating from the wreckage. An initial incident command structure is established, and

the incident commander (IC) determines the following response actions:

• Request dispatch of initial response resources locally from the city (including EMS,

law enforcement, fire, and HazMat teams).

• Determine the risks posed by the hazards and identify threat zones and safe distances.

• Order evacuation of the hazard area as per the identified threat zones.

• Notify appropriate regulatory agencies, schools, and the general public within the

area through Emergency Alert System (EAS) of the evacuation and shelter informa-

tion.

• Activate other public warning systems (e.g., social media and radio alerts).

• Identify local resources that can be committed and are ready to dispatch.

The situation further evolves when the city Dispatch Center informs the IC of the expected

arrival of a northbound passenger train in half an hour. Responders assisting with the evac-

uation also report that numerous people need specialized transportation (i.e., wheelchair-

bound, hearing and vision impaired, on oxygen, bedridden). Based on the current situation,

the IC decides to take the following actions:

• Evaluate the need for additional resources to deal with traffic control (i.e., portable

road signs, redirect traffic flow patterns, and limit access).

• Instruct the railroad company to take steps for halting all incoming train traffic.

21
• Request resources to assist with the special needs evacuation.

• Request additional resources from other states to assist with the evacuation (i.e.,

transportation, food, and medical supplies).

Similarly, the IC may take additional actions as the situation evolves. These actions corre-

spond to extending the instantiated response process with more activities.

Currently, there is no unified system to support automatic interfacing with the opera-

tional systems of response organizations for response process composition and manage-

ment. Moreover, existing approaches for adaptive process composition [43, 48, 55] are

limited to structured BPs, which employ event-condition-action rule-based reasoning for

process adaptation. The rules are defined for different types of events (e.g., replacing a

failed service by a pre-defined service). However, emergency response process manage-

ment involves certain types of events for which the concrete actions may not be known a

priori. For example, if a given resource request cannot be satisfied by a local agency, then

the request is sent to a state-level agency. However, the specific state-level agencies and

their service APIs need to be determined at runtime. Such events trigger recomposition

of the emergency response process, which is the main focus of this paper. Our key con-

tribution is to ensure that the needed process of recomposition can be automatically and

dynamically performed as the situation evolves.

Our proposed approach provides an integrated framework for dynamic composition of

an executable response process. It employs ontology-based reasoning to determine the

default actions and resource requirements for the given incident and to identify relevant

response organizations and APIs of their operational systems based on their jurisdictional

and mutual aid agreement rules. The discovered Web service APIs of the different re-

sponse organizations are then used to generate an executable response process that evolves

dynamically based on any changes in the environmental context as well as the availabil-

ity of resources. We experimentally validate the effectiveness of the proposed approach

using an example scenario derived from FEMA’s Hazardous Materials Tabletop Exercises

22
Manual.

In the following sections, we discuss each component of the proposed system in detail.

3.2 Problem Statement

We can formalize this problem as follows:

Given:

i. the contextual information of the incident including incident type, severity, and loca-

tion;

ii. the default actions or static response plans pre-defined for specific emergency events;

iii. response organizations, their jurisdictional and mutual aid agreement rules, and the

resources they can provide;

iv. available Web services/ APIs of the operational systems of response organizations to

request their resources;

compose an executable response process that can be instantiated for the incident at-

hand, and that can adapt and evolve as the incident unfolds or as the environmental context

changes.

An executable response process refers to a business process in which each activity is

bound to the appropriate operational system Web service/API and is deployed on a process

engine for instantiation. We assume that the functionality of the underlying operational

systems of response agencies and resource provider organizations is exposed through their

respective Web service operations. Therefore, each activity in the abstract workflows of

default actions is realized through a composition of Web service operations of the potential

response organizations.

23
3.3 Proposed Approach

The proposed approach for dynamic composition and adaptation/evolution of an emer-

gency response process is a multi-step approach that incrementally generates an executable

response process and enables adaptability to a changing situation as the incident evolves.

Figure 3.1 depicts the architectural components of our proposed approach. A vital compo-

nent of the proposed system is the ontology with reasoning support. The ontology charac-

terizes incidents based on 1) type, severity and location; 2) the default actions and resources

required for resolving different incident types; and 3) the response agencies and organiza-

tions characterized based on their jurisdictions, roles and responsibilities, and the type of

resources they can provide.

Figure 3.1: Architectural Overview of the Proposed Approach for Dynamic Composition

and Management of Emergency Response Processes.

Based on the given contextual information of the incident at hand, the reasoning engine

searches the ontology and retrieves the default actions, required resources, and the response

agencies responsible for performing these actions and providing the resources. The default

actions are encoded in the ontology as abstract process fragments, which are essentially

24
workflows of activities that need to be performed in response to specific situations. For

example, in the case of a train crash, the default actions include dispatching EMS respon-

ders to the crash site, obtaining statistical and cargo-related information (i.e., the train and

wagon numbers, and the type and quantity of material in containers) from the railroad com-

pany, finding the hazard classes and risks, establishing hazard control zones and requesting

transportation resources for evacuation [22]. In addition, the reasoning engine also discov-

ers and selects the APIs of the operational systems/Web services of the relevant response

agencies and resource providers based on their jurisdictions, rules, and policies.

Given the default actions (abstract process fragments) and the operational systems/service

APIs of the resource provider systems identified by the reasoning engine, the process com-

position modeling component generates an integrated response process. This result process

enables the IC to request resources from the selected resource provider agencies by inter-

acting with their appropriate operational systems. Essentially, this component determines

an execution order of the identified abstract process fragments and binds each activity in

these fragments to appropriate operational systems and services of the response agencies.

We employ a reachability analysis-based service composition approach for the generation

of such an executable response process. This executable response process is then presented

to the user for any customization (e.g., adding/removing some activities). The Code gen-

eration component of the system then generates an executable process code (e.g., in BPEL

language) for deployment and instantiation on a process execution engine.

We utilize a rule-based adaptive process composition approach to handle service re-

placement/failure issues as well as schema changes [7]. Essentially, our process composi-

tion approach is an event-condition-action rules-based approach considering different types

of events, including: 1) service failure/unavailability; 2) error messages returned by a ser-

vice (e.g., due to service interface changes, input validation error); 3) change in process ex-

ecution status (e.g., updated availability status of requested resources, updated threat zone);

and 4) user actions (e.g., addition/removal of a response activity, making resource request

to a specific response organization). Like existing works [7, 36], our approach includes

25
a rule base and a rule engine. The rule base includes event-condition-action rules, which

define the actions for each event type. For example, failure or unavailability of service

will trigger a service replacement action. Similarly, rules can be defined for compensation

actions in case of service failures, for example, roll-back or cancellation of previously ex-

ecuted service(s) by invoking the appropriate service API. Also, there are certain types of

events for which the concrete action may not be known a priori. Our proposed approach

enables the extension and recomposition of an instantiated response process based on en-

vironmental context changes (e.g., a chemical leakage incident evolves into a fire incident)

or the emergence of new requirements for such events (e.g., more fire trucks are needed).

As the incident evolves, the proposed approach extends and recomposes the instantiated

process in an iterative manner until the incident is resolved.

In the following subsections, we discuss each component of the proposed system in

detail.

3.3.1 Emergency Management Ontology

The key component of our proposed system is the emergency management ontology, which

describes the essential concepts and their relationships in the emergency management do-

main. The fundamental notion in the ontology is the incident class, which represents an

emergency incident. The incident class has properties (i.e., address, severity, size of the

affected population, potential hazards, etc.). It is associated with an incident-type class

that describes different types of incidents (e.g., a railroad accident, a chemical plant fire,

hurricane, or earthquake). Each incident-type is associated with: 1) location type (e.g., ur-

ban, rural, or industrial, etc.); 2) default response actions, which are represented as abstract

process fragments; 3) required resource types; and 4) response organizations.

Default Actions: An abstract process fragment representing some default action is stored

in the ontology as a graph of activities with partial ordering and dependence constraints.

Figure 3.2 shows an example abstract process fragment of default actions for a HazMat

train accident. Note that the activities in default actions are only defined at an abstract level

26
and lack any information about the specific operational systems for communication and

coordination with the response organizations.

Figure 3.2: Abstract Process Fragment Showing Default Response Actions for Hazardous

Materials Carrying Train Accident.

Emergency Management Resources: Emergency management resources are described in

the ontology-based on National Incident Management System (NIMS) standard resource

types. Each resource has an owner agency/ organization that operates in a given jurisdiction

and can potentially provide the resource for assignment to an incident (e.g., a firefighting

helicopter resource owned by a county fire department).

Response Organizations: Response organization refers to a government agency, non-

governmental organization, or a private entity that is directly or indirectly involved in

emergency management activities. All organizations have properties, which include its

name, roles, jurisdiction (city, town, county, state, or federal), location, rules/policies, the

type of resources it can provide, and the links to their operational systems/Web services

APIs (WSDL files). These APIs can be used to query the response organizations’ internal

databases and operational systems for resource availability and commitment.

Rules: The emergency management ontology also encodes the rules of response organi-

zations for responding to emergencies. These rules can generally be categorized into the

following two types:

• Jurisdictional Rules: These rules specify the jurisdictions and responsibilities of the

response organizations. For example, consider the following rules for determining

relevant government agencies for the response process:

27
– Local agencies must respond to a disaster within their jurisdiction.

– If local agencies have exhausted their resources, then the request should be

escalated to county, state, and federal-level agencies, in that order.

• Mutual Aid Agreement Rules: All emergencies originate at the local level; however,

they can escalate, warranting the need for mutual aid from outside the affected county

and contiguous counties. Mutual aid agreement rules specify the agreements between

agencies for collaboration with other public and private agencies operating in the

same or different jurisdiction.

For example, the Bergen County Fire Department in New Jersey may have a mutual

aid agreement rule that their department will, when requested, support firefighting

operations in a neighboring county in New York State.

There are several types of mutual aid agreements, including basic contracts between

government/private organizations, local, regional, interstate, intrastate, and interna-

tional agreements for assistance in the form of personnel, equipment, materials, and

other associated services1.

We encode the jurisdictional and mutual aid agreement rules of response agencies in

the ontology using the Semantic Web Rule Language (SWRL). These rules are considered

for identifying the response agencies, as discussed in the following section.

3.3.2 Reasoning Engine

The ontology reasoning engine is one of the core components of the system. Given the inci-

dent’s contextual properties, including incident type, severity, and location, this component

performs reasoning on the incident ontology to determine the default response actions, re-

sources required, and the response organizations based on their jurisdictions and mutual aid

agreements. Depending upon the incident type and characteristics, the reasoning engine is

invoked to determine the default actions, resource requirements, and the potential response

1https://emilms.fema.gov/IS703A/RES0102130text.htm

28
organizations. As discussed in section 3.3.1, the default response actions are only abstract

process fragments that define a set of activities that need to be performed for a particular

incident type. Each activity in an abstract process fragment is realized through a compo-

sition of multiple Web services that expose the functionality of the response agencies and

resource provider organizations’ operational systems. The reasoning engine is responsible

for the discovery and selection of relevant APIs of the response organization systems to

realize activities in the selected abstract process fragments. This step involves taking into

account the jurisdictional rules and mutual aid agreements between organizations.

Given the default response actions and APIs of the identified response organizations’

systems, the next step is to compose a response process that enables the IC to request

resources from the response agencies by interacting with their appropriate operational sys-

tems. We discuss our approach for this step in the following section in detail.

3.3.3 Process Composition Modeling

Process composition modeling involves elaborating the default actions identified for the

situation at hand into a concrete response process. As discussed earlier, the default actions

are only abstract workflows of response activities, which lack information about their ex-

ecution order and the specific operational systems of response organizations for execution

of the underlying response activities. In order to compose a concrete response process, we

employ a reachability analysis-based approach that determines the execution order of the

activities in the default actions and bind these activities to appropriate operational systems

and service APIs.

Below we provide the important definitions followed by a detailed description of the

approach.

Definition 1. (Web service operation): A Web service operation is defined as a 5-tuple [3],

s = (op-name, Ain, Aout, Cpre, Cpost), where

• op-name corresponds to the name of the Web service operation;

29
• Ain is the set of input parameters/attributes;

• Aout is the set of output parameters/attributes;

• Cpre represents preconditions of s, defined with respect to the values of some at-

tributes before execution of s;

• Cpost represents postconditions of s, defined with respect to the values of some at-

tributes after execution of s.

Our proposed approach builds on the Colored Petri net (CPN) reachability analysis-

based service composition approach [29]. The idea is to explore those paths in the CPN

reachability tree that satisfy a particular goal state of the system given some initial state.

Such paths denote the possible execution orders of business services for response process

composition. Below we first describe the CPN model and then our reachability analysis-

based process composition modeling approach.

Definition 2. (Colored Petri net): A Colored Petri net [29] is a tuple

CPN = (Σ, P, T, A,N,C,G,E, I), where:

• Σ is a finite set of non-empty types, called color sets.

• P is a set of places.

• T is a set of transitions.

• A is a set of arcs, such that P ∩ T = P ∩ A = T ∩ A = ∅. The arcs are categorized

as normal arcs, read arcs, and inhibitor arcs.

• N is a node function, N : A→ P × T ∪ T × P .

• C is a color function C : P → Σ

• G is a guard function defined from T into expressions such that,

∀t ∈ T : [Type(G(t)) = Bool ∧ Type(V ar(G(t))) ⊆ Σ].

30
• E is an arc expression function defined from A into expressions such that , ∀a ∈ A :

[Type(E(a)) = C(p(a))MS ∧ Type(V ar(E(a))) ⊆ Σ].

• I is an initialization function defined from P into closed expressions such that, ∀p ∈

P : [Type(I(p)) = C(p)MS].

A distribution of tokens on the places is called a marking. An initial marking is deter-

mined by evaluating the initialization expressions: ∀(p, c) : initMrkg(p, c) = (I(p))(c),

where (p, c) denotes a token element, p ∈ P and c ∈ C(p).

In the response process composition context, we model the set of selected service oper-

ations as a set of transitions T in the CPN model. A transition is linked to its corresponding

input and output places; each place can hold specific colored tokens. A colored token

corresponds to the object class associated with the input or output parameter of a service

operation. The attributes of a colored token correspond to the attributes of an object class.

The preconditions of service operation are specified as guard function and the postcondi-

tion as an arc expression to the output place(s) in the CPN model. A transition can fire if

its input places have the required tokens and its guard function evaluates true. The firing

of a transition implies invocation of the corresponding service operation when all its input

parameters are available, and its preconditions are satisfied.

Example 1 illustrates our process composition approach.

Figure 3.3: Example: Computing Initial State from Contextual Attributes

31
Example 1. For the train incident scenario discussed in Section 3.1, we first determine an

initial state of the system by considering the contextual attributes of the incident, as shown

in Figure 3.3.

To compute a goal state for process composition, we consider the system state after

successful execution of activities in the retrieved default actions. For example, consider

Activities A, B, and C in the default actions of Figure 3.2 for finding train consists, hazard

classes & risks, and establishing control zones, respectively. Each of these activities has as-

sociated input and output attributes. For example, Activity A requires train id as input and

returns materials as output; B requires materials as input and returns hazardClass and

risks as output; and C requires materials, latitude, and longitude as input, and returns

safeDistances and controlZones as output. The combined effect of the output attributes

of these activities determines the goal state of the default action as shown Figure 3.4, where

the output attributes material, hazardClass, risks, safeDistances, and controlZones

are assigned a not-null value in the goal state.

Figure 3.4: Example: Computing Goal State from Activities in the Default Actions.

Figure 3.5 illustrates our CPN reachability analysis-based service composition approach.

Given the initial state, goal state, and the CPN models of the selected Web service opera-

tions, state-space reachability analysis is performed to determine an execution order of ser-

vices that satisfies the composition goal. Figure 3.5(a) shows the CPN structures, including

the places corresponding to the input/output object classes, and the transitions correspond-

ing to the selected service operations. As shown in the figure, firing of transition t0, which

does not have any guard condition, places the tokens in the initial state in their correspond-

ing places Train and Location. Once the token train id becomes available, transition t1’s

guard condition is satisfied and it is fired. Thus, tokens material and qty(i.e., quantity)

32
are added to the place Train Consists. The transition firing process continues until the

placement of tokens (current marking) satisfies the goal state, or there are no more transi-

tions that can be fired. Figure 3.5(b) shows the corresponding transition firing sequence for

the CPN structures given in Figure 3.5(a).

Figure 3.5: Response Process Composition

Note that we assume there is no syntactic and semantic heterogeneity between the at-

tributes of the response activities in the default actions, and the input/output parameters of

service operations of response organizations; these attributes are specified using the same

terms in the default actions as well as in the appropriate Web service operations. If het-

erogeneity does exist between attribute names, we can employ the existing attribute-based

matching approaches [3, 15] to resolve differences in attribute names before continuing

with the reachability analysis.

Given the default actions determined by the ontology reasoning component, Algo-

rithm 1 computes the workflow of the concrete response process. The algorithm takes

as input, a default action F , CPN model of the selected Web services ∈ S, and the set

C = {〈a1, v1〉, . . . , 〈ak, vk〉}, containing the contextual attributes (ai) with their respec-

33
tive values (vi). The output is a composition of services that satisfies the goal state. The

algorithm first computes the initial and goal states for required service composition in S.

computeInitialState() function computes the state of the system from contextual attributes

in C as follows:

1. All the attributes whose values are given in C are assigned abstract values, null/not-

null or original values in case of enumerated data types.

2. All the attributes whose values are not-known are assigned X.

3. Relevant tokens are identified and inserted in their respective places with their values.

This placement of tokens corresponds to the input marking or initial state.

ALGORITHM 1: FindServiceComposition
Input: F : A default action

Input: CPN : Colored Petri net structures of available service operations ∈ S

Input: C = {〈a1, v1〉, . . . , 〈ak, vk〉}: The set of contextual attributes (ai) with their respective

values (vi).

Output: R: Workflow of the concrete response process

1: Init← computeInitialState(C)

2: Goal← computeGoalState(F)

3: R← ReachabilityAnalysis(Init,Goal, CPN)

4: return R

In the next step, the computeGoalState() function computes the expected state of the

system after successful execution of activities in the given abstract process fragment F as

follows:

1. Find the post-condition attributes of each abstract process fragment ∈ F by consid-

ering the expected output of component activities.

2. Assign null, not-null, or original value to the identified attributes according to the

post-conditions of their respective activities.

34
3. Identify relevant tokens and insert in their respective places with the computed at-

tribute values. This placement of tokens corresponds to the output marking or goal

state.

Given the initial state, goal state, and the CPN model, the reachability analysis algorithm

(Algorithm 2) is then invoked to compute a possible composition of selected Web services

(line 3). If the reachability analysis algorithm returns a non-empty sequence of transi-

tions, then the corresponding sequence of services is considered a valid service composition

workflow R for the given default action.

Algorithm 2 provides the pseudo-code of our CPN reachability analysis algorithm,

which uses the occurrence graph method proposed by Jensen et al. [29]. Given an ini-

tial state Init, goal state Goal, and the CPN model of the available service operations,

Algorithm 2 performs the reachability analysis by constructing the CPN occurrence graph

to find a service composition. The returned service composition is represented as a se-

quence of transitions fired to reach from the initial state to the goal state. If no such path

exists, the algorithm returns an empty set. The algorithm maintains a queue (Q), which

is a set of nodes in the occurrence graph that need to be explored for transition firing. Q

is initialized as an empty set (line 1). Graph nodes are inserted in Q as new markings are

generated. createNode() procedure creates a new occurrence graph node from a given

marking string. lines 2-6 compute the marking string from the initial state, creates the root

node, and inserts in Q. The algorithm then proceeds to perform reachability analysis by

extracting markings from Q as follows: An unprocessed node (m1) is dequeued from Q,

and the current marking string is extracted from m1 (lines 7-8). Given the current marking

string, isEnabled() procedure checks to see which of the available transitions can be fired

(lines 9-10). If a transition is enabled (all required tokens are present in input places, and

the guard evaluates true), it is fired, and a new marking string m2 is computed (lines 12-13).

The procedure isNewMarking() traverses the current path to see if the fired transition has

updated the system state (line 14). If so, a new node is created from m2 and inserted in

Q (lines 14-16). isEqualMarking() procedure compares the new marking string m2 with

35
ALGORITHM 2: ReachabilityAnalysis
Input: CPN – Colored Petri net of selected service operations ∈ S

Input: Init – Initial state

Input: Goal – Goal state

Output: T ′ = {t0, . . . , tq} - Sequence of transitions fired to reach from the initial state Init to the

goal state Goal

1: Q← ∅

2: createInitialMarking(Init)

3: m0 ← getCurrentMarking()

4: createNode(m0)

5: parent(m0)← NULL

6: enqueue(m0, Q)

7: while m1 ← dequeue(Q) do

8: setCurrentMarking(m1)

9: for all (transition t) do

10: if (isEnabled(t)) then

11: fireTransition(t)

12: m2 ← getCurrentMarking()

13: setCurrentMarking(m1)

14: if (isNewMarking(m2)) then

15: createNode(m2)

16: enqueue(m2, Q)

17: if (isEqualMarking(m2, Goal)) then

18: return T ′ /* sequence of transitions fired in the current path from root to m2 */

19: return ∅

36
Goal. If isEqualMarking() returns true, then the graph is traversed from the root to the

current node to return the sequence of transitions fired along the path, T ′ = {t0, . . . tq}.

When the goal state is reached, the algorithm returns T ′. If the goal state is unreachable,

the algorithm returns an empty sequence.

3.3.4 Executable Process Code Generation

Given the execution level response process fragments (service compositions) synthesized

through the CPN reachability analysis-based approach, the next step is to generate an ex-

ecution level workflow of the response process. Our executable process generator first

identifies any control-flow dependencies between the different process fragments and then

generates a workflow that includes parallel structures for all activities that can be executed

concurrently. Based on the mapping information of each process activity to the appropriate

operational system/service API, the code generation component then generates executable

process code (e.g., in BPEL language) of the developed workflow for deployment and in-

stantiation on a process execution engine.

Note that multiple response organizations may have independent deployments of the

same system. For example, a fire department and a law enforcement agency may both use

FEMA’s IRIS system [23] for resource management. To reduce the state-space complexity

in the CPN reachability analysis for process composition, we do not create multiple Petri

net structures for same systems of different agencies. Once we identify the service com-

position model for a given system, we replicate that fragment in our process workflow for

multiple agencies using that system.

3.3.5 Deployment, Instantiation, and Execution

In this step, the executable BPEL process generated in the previous step is first deployed

on a process execution engine then instantiated and brought to execution in the runtime

environment. We keep track of the process state in a collection of variables. These include:

1) user-specific variables, which correspond to user inputs and decisions taken by the user;

37
2) service-specific variables which includes all the elements in the service request and

response messages; and 3) emergency response process-specific state information such as

response activity status (e.g., assigned or completed), response provider agencies and their

assignments, resource status (e.g., requested, committed, or dispatched), incident status,

and events, etc. Changes in the state act as triggers for subsequent changes in the response

process.

3.3.6 Dynamic Adaptation and Evolution

Depending on the execution results of the process (e.g., current resource availability status)

as well as the dynamic changes in the environmental context due to incident evolution (e.g.,

a chemical leakage incident evolves into a fire incident) and user decisions, workflow of the

instantiated response process may need to be extended to include additional activities. As

the incident evolves, the proposed system extends and recomposes the instantiated response

process by performing ontology-based reasoning to:

• Search for additional organizations that can provide the resources which could not be

committed by organizations contacted in the previous iteration. For example, if an air

ambulance is required and is not available with the local and county-level agencies,

then state-level agencies may be contacted; and

• Discover additional abstract process fragments, required resources, and response

agencies for any new events.

The process composition modeling and code generation components in Figure 3.1 are

invoked again for executable code generation and redeployment of the extended response

process. As shown in Figure 3.1, response process extension and recomposition is per-

formed in an iterative manner. In each iteration, the current process instance is executed

to completion, and based on its output and current environmental context, the process is

recomposed by adding new activities and executed again. This process extension and re-

composition is continued until the incident is resolved.

38
We utilize a rule-based adaptive process composition approach to deal with any con-

flicts between the already-executed part of the old process and the activities in the new

composition. We assume that if there are any modifications made to the existing response

process, then appropriate service APIs that allow us to perform compensatory actions (i.e.,

actions that would result in a partial or complete rollback and/or appropriate replacement)

are available. Moreover, these compensatory actions are predefined in the rule base with

respect to different events (e.g., service failure, change in the alert severity level). This

is consistent with the Emergency Data Exchange Language (EDXL) messaging standards

that facilitate emergency information sharing between the government entities and non-

governmental organizations that provide emergency response and management services.

For example, in the EDXL standard for resource management (EDXL-RM) [39], if a re-

quest for a particular resource has already been placed but as the incident evolves, we

realize the requested resource is not needed anymore and a different resource is required,

the earlier request can be canceled by sending a request recall message which is made avail-

able through a service API. In addition, the request for the new resource needs to be made

with a service request to the appropriate agency.

3.4 Conclusion

Our integrated approach facilitates the dynamic composition of executable response pro-

cesses. It develops an iterative end-to-end solution for the dynamic composition and man-

agement of an Emergency Response Management System. Such a system would provide

the IC of an emergency crisis with a proposed response plan based on the disaster cir-

cumstances, location, policies, jurisdictions, and potential organizations/agencies that can

perform the tasks. With changes to incident circumstances, environment, or resource avail-

ability, the proposed response plan can iteratively evolve until the disaster crisis end.

39

Chapter 4

Developing Personalized Patient Care

Plans for COVID-19

In this chapter, we discuss how the proposed framework for dynamic composition and

management of emergency response processes can be extended to develop personalized

patient care plans for COVID-19 patients under home-based isolation.

4.1 Introduction

The COVID-19 pandemic is an unprecedented event in recent history that has affected the

entire world. In the absence of vaccines, physical distancing, intensive contact tracing,

and case isolation are considered the most effective measures to control the outbreak [34].

Healthcare facilities worldwide have been overwhelmed by the sudden influx of COVID-19

patients and are running out of both space and resources to care for existing and incoming

patients. Therefore, it is crucial to keep non-critical COVID-19 patients in self-isolation at

home but still provide them with proper care.

For effective management of home-based isolation, patient care should not be limited

to the illness itself; it should also consider other factors related to the needs and sustenance

of patients and their dependents. Some of the common factors identified for non-adherence

of self-isolation include lack of financial compensation [17]; lack of support for childcare

40
in a single parent family [42]; comorbidities that require regular medical support outside

home care [33]; and perceptions about the impact on mental health [47]. As an example,

consider a patient with chronic kidney disease, requiring dialysis once a week, who is also

a single mother with dependent children. Care for such a patient under self-isolation at

home may require: delivery of essential medicines; food; other necessities for the patient

and dependents; transportation arrangements for dialysis visits, home sample collection by

trained staff for relevant laboratory tests; regular visits by a nurse; and remote monitoring

of the patient condition.

A personalized patient care plan is essential to coordinate and guide the care activities

for COVID-affected individuals. Traditionally, the patient care plan is developed by and

implemented in collaboration with the patient, family members, caregivers, and service

providers to ensure consistent and coordinated care delivery while considering the patient’s

condition, needs, and preferences. Ongoing care plan review is an essential requirement

to support the care team to revisit the patient’s health care goals and cater to the patient’s

evolving needs, preferences, and treatment responses to interventions [24].

A patient care plan can be considered a structured workflow of different activities re-

quiring interaction between the various healthcare information systems, such as clinical

information systems, e-pharmacy systems, laboratory testing services, and remote patient

monitoring services [1]. Care plans and delivery support for patients under self-isolation

at home need to be extended through integration of other service providers’ systems and

applications such as food delivery, medical transportation, and other essential care ser-

vices. Services computing provides the critical enabling technology to facilitate coordi-

nation and information exchange among the applications and systems of caregivers and

service providers for the composition and management of personalized patient care plans.

Table 4.1 shows some of the available healthcare information systems and relevant

home care applications. All these systems and applications provide Web service-based

interfaces to enable their integration into processes and workflows. There are also open

service-based APIs for wearable devices for the use of remote patient monitoring (e.g.,

41

Table 4.1: Home Patient Care Systems and Services

Category Available Systems/Services

Clinical information sys-

tems

NHS Care Connect Open APIs†, Google Cloud Healthcare†,

Allscripts API for EHR integration‡, HiPaaS‡, Trella Health for

healthcare analytics‡

Home health providers

and Telehealth systems

Acurata Triage Scheduling Solution‡, BetterRX and Doxy.me‡,

GetWellNetwork‡, MatrixCare by ResMed‡, Citus Health‡,

Home Health (infection prevention for home care and hospice)‡,

Transcend Strategy Group Solution for remote alerts and

communication‡

Vital Signs Monitoring Current Health’s Automated Wearable Vital Signs Monitoring &

Alert Escalation‡, iHealth‡, ManageBGL: Cloud-based diabetes

management platform‡, Fitbit activity tracker API‡ ‡

Emergency Transportation Select Ambulance‡, Ambulance Messaging - HL7 API†, Uber

Health‡

Pharmacy Walgreens Pharmacy Prescription Refill†, CVS Pharmacy API†,

H-E-B Refill Rx‡, Truepill API‡

Laboratory Testing Covid-Rapid API†, TridentCare Portable X-Ray and Ultrasound

Services‡

Food Delivery Uber Eats‡, GrubHub‡

§ Open source systems, † Publicly available Web services, ‡ Publicly available commercial systems

heart rate, blood pressure, blood glucose levels, etc.). However, no unified system supports

automatic interfacing with the operational systems of the caregivers/service providers for

the development, real-time monitoring, and management of such care plans.

42
In this thesis, we precisely address this problem. We propose an integrated framework

that enables the dynamic composition and management of personalized patient care plans.

This integrated framework extends prior work on the dynamic composition of emergency

response processes and applies it to the COVID-19 context [20]. Our primary objective

is to demonstrate the feasibility of such an approach for creating personalized patient care

plans, specifically for COVID-19 patients. The proposed framework assumes that all req-

uisite underlying services are available through Web service-based interfaces, and that an

appropriate knowledge base exists and is encoded in the form of an ontology with reasoning

support.

The care plan is composed by selecting the appropriate patient care activities and inte-

grating the systems and Web service APIs of provider organizations, as depicted in Figure

4.1. We employ ontology-based reasoning to determine the standard care activities for the

given patient and identify the relevant service providers and APIs of their operational sys-

tems by considering the patient’s pre-existing medical conditions and contextual knowledge

(e.g., the patient’s location and preferences). The discovered Web service APIs of identi-

fied service providers are then used to generate an executable care plan that is continuously

monitored, updated, and recomposed based on the patient’s evolving needs, preferences,

and treatment responses to interventions.

4.2 Problem Statement

We address the problem of developing personalized care plans for COVID-19 patients un-

der home isolation based on their medical conditions, needs, and requirements. The care

plans are developed by integrating the Web services of the relevant caregivers and service

providers into an executable workflow, which is dynamically instantiated for each patient

for remote monitoring and care delivery. We state the problem as follows:

Given:

43

Figure 4.1: Framework for Management of Personalized Patient Care Plans

• Individual patient information, including personal details and medical condition;

• Ontology, including: i) standard care activities for various medical conditions; ii)

types of caregivers and service providers handling the standard care activities; and

iii) resources required for the different standard care activities;

• Available Web services/APIs of the operational systems of caregivers and service

providers.

Develop and instantiate a personalized care plan by creating a workflow of the rele-

vant care activities and mapping the appropriate Web services to these activities. Develop

a monitoring infrastructure that can dynamically adapt and evolve the instantiated plan

based on changes in the patient’s medical condition and the environmental context.

4.3 Proposed Approach

The proposed framework for the dynamic composition of a patient care plan employs a

multi-step approach that incrementally generates an executable care plan and enables adapt-

44
ability to the patient’s evolving care requirements. Figure 4.1 depicts the architectural view

of our proposed framework. This framework relies on an ontology for the healthcare en-

vironment and employs rule-based reasoning to dynamically develop a personalized care

plan for a given patient. The ontology includes standard care activities characterized by

medical conditions (both pre-existing and evolving). In addition, the ontology contains the

categories of caregivers and service providers involved in at-home patient care.

Rule-based reasoning is employed to identify the required care activities based on the

given patient’s information (personal details and medical conditions). Appropriate APIs

of the operational systems of caregivers and service providers are discovered considering

the contextual knowledge (e.g., patient’s location, vitals monitoring devices, insurance ser-

vice, meal preferences, etc.). The standard care activities are encoded in the ontology as

abstract process fragments, which are essentially structured workflows of activities that

need to be performed for required care/service delivery. Consider the diabetic patient with

chronic kidney disease who is under self-isolation at home. The standard care activities

may include scheduling of weekly telehealth appointments; monitoring of patients’ vi-

tals; requesting medication refills from the pharmacy; scheduling transportation scheduling

for weekly dialysis visits; and scheduling meals delivery based on patient’s dietary needs.

Given the care activities and the operational systems/service APIs of the service providers

identified from the ontology, an abstract workflow of the care plan is generated to support

care delivery. The workflow details the interaction among the operational systems of in-

volved service providers required to provide patient care; however, the abstract workflow

still needs to be converted into a concrete execution plan. Essentially, an execution order of

identified care activities is determined, binding each activity to appropriate operational sys-

tems and services is performed in this step. First, we employ a reachability analysis-based

service composition approach for generating an executable care plan. Then, executable

process code (e.g., in BPEL language) is generated to deploy and instantiate the care plan

on a process execution engine.

Patient care plans require continuous monitoring for any changes in the patient’s health

45
conditions and evaluation of the patient’s response to treatment and progress. To address

this, our proposed framework includes a care plan monitoring and management component

that updates the care plan whenever any new events are triggered as a result of a change in

the patient’s conditions or the care team’s decisions.

In the following subsections, we discuss the steps of the proposed system in detail.

4.3.1 Ontology and Reasoning Support

The patient care ontology includes standard care activities for different types of medical

conditions such as kidney disease, hypertension, cancer, asthma, hypertension, liver dis-

ease, and thalassemia. Each standard care activity has associated types of caregivers and

service providers as well as required resources.

Standard Care Activities are high-level workflows of care activities modeled as abstract

process fragments. We represent these activities using the standard BPMN. Figure 4.2

shows an example abstract process fragment of standard care activities for a self-isolated

COVID-19 patient with a chronic kidney disease condition. Note that the activities are only

defined at an abstract level and lack information about the specific operational systems for

communication and coordination with the caregivers and service providers involved in care

delivery.

Service Provider represents a caregiver organization (e.g., local health department, home

health agency, non-government/private home health care organization) or any other service

provider organization/individual directly or indirectly involved in patient care activities. A

service provider has properties including name, service-type, and location, as well as the

links to their operational systems/Web services APIs (WSDL files). These APIs can be

used to query the internal databases and operational systems of the service provider for

resource requests, information sharing, and service delivery.

Care Activities Selection and Service Discovery: Given the patient’s profile information

(including patient’s personal details, medical conditions, location, vitals monitoring de-

vice information, insurance service, transportation, meal preferences, etc.) and care team’s

46

Figure 4.2: Examples of Some of the Standard Care Activities for a Self-isolated COVID-

19 Patient Requiring Weekly Dialysis

Figure 4.3: (a) Initial State Computed from Patient’s Profile Attributes (b) Goal State Com-

puted from Selected Patient Care Activities

input, the ontology reasoning identifies required care activities. In addition, ontology rea-

soning is employed to identify appropriate caregivers and service providers and discover

their operational systems’ APIs. Note that the standard care activities are only abstract pro-

cess fragments. The abstract process fragment activities are realized through a composition

of Web services that provide an interface to the service providers’ operational systems.

Given the selected care activities and APIs of the identified service provider systems,

the next step is to compose a care plan that permits the care delivery by enabling interaction

and seamless integration of heterogeneous systems of the involved service providers as

47
discussed below.

4.3.2 Care Plan Composition

Care plan composition involves elaborating the standard care activities identified for the

patient into a concrete process. As discussed earlier, the standard care activities are only

abstract workflows of activities, which lack information about their execution order and the

specific operational systems of service providers to execute these activities. To compose

a concrete process, we employ a reachability analysis-based approach that determines the

execution order of the care activities and binds these activities to appropriate operational

systems and service APIs.

The general state reachability analysis problem is modeled as a 3-tuple 〈I, A,G〉 where

I denotes the initial state, A denotes a set of available actions and G denotes the goal state

[27]. Initial state is constituted by a set of propositions representing the initial conditions of

the problem. Goal state contains a set of propositions (called problem goals). A given state

consists of a set of facts. Set A consists of the actions that can be used to modify system

states. Each action a ∈ A has some preconditions denoted as prec(a) and an effect if the

action is taken. The effect of an action a consists of the set of additional predicates that

are evaluated to be true in the successor state (denoted by add(a)) and the set of existing

predicates that are evaluated to be false and removed from the successor state (denoted by

del(a)). Note that the set of predicates in add(a) and del(a) do not overlap. An action a ∈ A

is applicable to a state s if preconditions of a are satisfied by s. If an action a is applied to

a state s, then the successor state s′ is computed as s′ =s−del(a)∪add(a). The output of the

reachability analysis problem is a sequence of actions, which, if applied to the initial state

I , leads to a state s such that s ⊆ G [27].

In the context of care plan composition, we model the set of selected Web service

operations as a set of available actions denoted by the set A. Specifically, we model each

Web service operation as an available action and determine its preconditions and effects

by extracting the input and output attributes from the service’s description (available in

48
WSDL). We compute the initial state (I) of the composition problem from the patient’s

profile attributes and user inputs; the goal state (G) is computed from the expected outputs

of selected care activities.

Example 2, detailed below, illustrates our care plan composition approach.

Example 2. Consider the example of the self-isolation patient with chronic kidney disease

discussed in Section 4.1. Based on the patient’s profile information and user inputs, we first

compute the initial state of the process composition problem. Figure 4.3(a) shows example

attributes in the patient’s profile considered in the initial state. To compute a goal state for

the composition problem, we consider the system state after successfully executing care

activities retrieved through ontology reasoning in Figure 4.2. Each of these activities has

associated input and output attributes. For example, activity monitor vitals requires the

patient’s device information as input and returns the patient’s vitals, including temperature,

pulse rate, respiration rate, blood sugar levels, etc. Similarly, the activity schedule transport

for dialysis requires patient preferences as input and return scheduled vehicle information

as output. The combined effect of these activities’ output attributes determines the goal

state of the composition problem, as shown in Figure 4.3(b).

State reachability analysis of the formulated service composition problem determines

an execution order of services that satisfies the composition goal. The service execution

order thus obtained for the given activities is then used to construct the workflow of the

required care plan as discussed in the following subsection.

4.3.3 Code Generation, Instantiation, and Execution

In this step, any control-flow dependencies between the different care activities are identi-

fied and a workflow is generated first. Next, using the mapping information of each care

activity to appropriate operational system/service API, executable process code of the de-

veloped workflow is generated (e.g., in BPEL language). This executable process is then

deployed on a process execution engine and instantiated and brought to execution in a run-

time environment.

49
4.3.4 Monitoring and Adaptation/Evolution of Care Plan

A patient care plan is a dynamic, knowledge-driven process that adapts and evolves based

on changes in the patient’s health conditions, circumstances, and collaborative decisions

of the care team [26]. For example, a patient’s medication and care needs may change

based on their symptoms and medical conditions. Our proposed framework supports con-

tinuous monitoring and reviewing of the instantiated care plan by constantly evaluating pa-

tients’ evolving needs, preferences, and treatment responses to interventions. Essentially,

re-composition of the care plan is triggered whenever an adverse event is detected or when

a member of the care team initiates a change in care plan based on some clinical decisions.

Technically, this requires performing ontology-based reasoning to identify additional care

activities to cater to the new requirements and invoking the process composition and code

generation components for executable code generation and redeployment of the extended

care plan. This care plan extension and re-composition are continued until the patient’s

health goals are satisfied.

4.4 Conclusion

The number of disasters that have occurred in the recent years are causing immense phys-

ical, emotional, and financial burdens. Efficient response planning can help alleviate this

distress. Still, it requires communication and coordination with the diverse operational

systems belonging to various collaborating government agencies, non-government organi-

zations (NGOs), and private sector entities. Emergency response processes are not well

structured, and their workflow structure and execution may evolve dynamically based on

the environmental context and the type of service/activity utilized. Therefore, they cannot

be statically defined for every possible situation. Instead, what is needed is adaptability to

a changing situation as the incident evolves. Therefore, personalized patient care plans are

necessary to ensure that each patient’s needs are appropriately met. We have applied our ap-

proach as a service-oriented framework that allows dynamic composition and management

50
of such plans assuming the existence of an appropriate knowledge base and availability of

Web-services interfaces of the underlying systems of caregivers and service providers. We

developed a prototype implementation to show the feasibility of the proposed framework

and discuss the challenges/issues in deploying such a system in practice.

51

Chapter 5

Prototype Implementation and

Experimental Evaluation

This Chapter provides a brief overview of the prototype systems we have developed to il-

lustrate the proposed framework’s functionality for dynamic composition and management

of emergency response processes and its application to develop personalized care plans for

COVID-19 patients under home-based isolation.

5.1 Introduction

The prototype systems are built on service-oriented architecture and employ semantic-

based reasoning for response process composition. We use Ontology Web Language (OWL)

to create the ontologies to enable semantic-based reasoning. For the emergency response

process prototype, we built on the ontology presented in Shafiq et al.’s work [45]. In the

COVID-19 patients’ personalized care plan prototype, we developed an initial ontology for

patient care activities and related caregiver/service provider classes in OWL. Lastly, we

used Apache’s Jena inference subsystem for the reasoning and inference with the ontology

[12]. The Web application has been developed in Java (J2EE) and deployed on an Apache

Tomcat Web server. Apache ODE workflow engine has been used to deploy and execute

BPEL-based code for each prototype, respectively.

52

Figure 5.1: Recommended Response Actions and Resources for the Freight Train Derail-

ment Incident

5.2 Emergency Response Processes Implementation

The user, IC, is provided an interface that facilitates the creation of a new incident in the

ontology. The initial input to the system requires basic incident information as given in

the incident report (i.e., incident type, date, and location, etc.). Based on this informa-

tion, the system recommends default response actions along with the types of resources

required, as shown in Figure 5.1. The IC can then modify the recommended actions and

resources as required. Based upon the IC’s decision and the information available in the

ontology, the system identifies potential response organizations and the APIs of their opera-

tional systems/services for requesting the required resources. Upon the IC’s confirmation, a

complete response process is generated and deployed to enable interaction between the in-

53
cident command system and response agencies/organizations for: 1) checking availability

status of needed resources; 2) making resource requests; 3) committing resources against

requests; and 4) tracking the status of committed resources.

Figure 5.2 shows a partial view of the generated response process with fragments for

acquiring information about the chemical hazards and assessment of any threat areas that

may require rescue and evacuation operations. For example, due to a potential fire, as

shown in the red block, fire engines are requested from local fire department, as shown

in the blue block. Evacuation vehicles, shown in the green block, are obtained from a

local private company. The right side of the figure shows the execution results of the

response process fragment for the assessment of hazards and threat zones. On the left,

resource commitment status is presented to the user. Thus, deploying the developed system

is seamless since the proposed framework is designed to provide additional capabilities

in terms of recommending the relevant response activities as well as interfacing with the

relevant operational systems of the various response organizations.

Figure 5.2: Partial View of the Generated Response Process (in the middle) and Execution

Results (on left and right)

54
5.2.1 Experimental Evaluation

In this section, we describe the datasets used and the experiments performed to investi-

gate the practical usability of the proposed system. We validate the effectiveness of the

proposed approach using an example scenario derived from FEMA’s Hazardous Materials

Tabletop Exercises Manual. Specifically, we consider the scenario of hazardous chemi-

cal leakage in a train derailment incident. Response activities need to be performed based

on the specifications of the scenario. Note that the abstract response activities need to be

realized through concrete services provided by the operational systems of the different re-

sponse organizations. For this, we need to have the specific Web service APIs that can be

used to implement different tasks such as: 1) requesting resources (both material and per-

sonnel); 2) notifying commitment and deployment of resources; 3) monitoring hospital bed

availability; and 4) notifying hospitals of incoming patients and injury information. How-

ever, since there are no publicly accessible APIs of operational systems used for disaster

management, we simulate some of the necessary APIs and use the available systems and

services related to emergency response planning.

The objective of the experimental evaluation is to show how an effective response can

be composed by dynamically integrating with the systems of response organizations that

may not have pre-established collaboration. To this end, we need to measure parameters

such as the amount of time it takes to identify the response organizations and to integrate

with their systems, as well as any limiting factors. In specific, we evaluated the following

two sub-systems:

1. Ontology-based reasoning; and

2. Process composition and executable code generation.

Below we discuss the experiments and the datasets in each dimension. Note that our exper-

imental evaluation does not consider schema changes or service failures since that is not

within the scope of this work.

55
5.2.2 Ontology-Based Reasoning

We measure the time it takes the reasoning engine to create the new incident; identify

relevant default actions, required resource types and potential response organizations; and

discover the APIs of operational systems of the identified organizations.

Dataset Description: For the experimental evaluation, we created an incident ontology in

Ontology Web Language (OWL) by building on the structure of the emergency manage-

ment ontology presented in Shafiq et al.’s research [45]. We considered the train accident

scenario presented in Section 3.1 with varying ontology domain sizes for measuring the

rules inference time.

We considered the following parameters for experimental evaluation:

• Total Number of Response Organizations: The total number of agencies and or-

ganizations in the ontology that can potentially provide resources/services to respond

to an incident on a local level, county level, state level, and federal level. We varied

this number for the experiments.

• Average Number of Resources per Organization: The resources that individual

response organizations can offer.

• Number of Resource Types: Total resource types encoded in the ontology.

• Number of Identified Organizations: Response organizations identified as poten-

tial responders through ontology rules inference.

A total of 95 resource types and five resource instances per agency were registered in

the ontology.

Table 5.1 provides the dataset statistics and computation time results for the ontology

rules inference experiments. The total execution time from incident creation to ontology

update includes the following: 1) reading the ontology file; 2) creating a new incident

56

Table 5.1: Ontology Rules Inference Execution Time

Total No. of Response Organizations 20 40 80 160 320 640 1280

Avg. No. of Resources/ Organization 5 5 5 5 5 5 5

No. of Identified Organizations 9 10 33 44 44 174 464

Rules Inference Time (sec.) 6.511 8.601 8.657 8.692 15.672 36.736 157.13

Total Execution Time (sec.) 20.381 24.147 24.613 24.21 35.398 62.981 225.903

instance; 3) determining the default actions; and 4) updating the ontology and saving to the

file.

The Rules Inference Time is the ontology rules inference time without considering file

reading and saving time.

As depicted in the results in Table 5.1, the ontology rules inference time is directly

correlated with the number of response organizations and resources found in the ontol-

ogy. The rule inference time increases as necessary to evaluate more organizations, their

jurisdictions, mutual aid agreement rules, and available resources. However, the increase

is linear, and even with over 1000 organizations, requires no more than two minutes for

inference and four minutes for total execution. Therefore, this is quite usable in practice.

5.2.3 Process Composition and Executable Code Generation

The objective is to measure the time it takes to generate the executable code of the response

process from the abstract process fragments and response organizations’ APIs identified

through ontology-based reasoning. This computation includes the time to run the Petri

net-based reachability analysis for service composition and the time to generate executable

process code.

Dataset Description: Our experiment involved five response organizations’ systems. We

57

Table 5.2: Available Systems and Services Related to Emergency Response Planning

Activity Available Systems/Services

Resource Management NIMS Incident Resource Inventory System (IRIS) ‡

Weather Information Weather Web Service (Cdyne)†

Hazard Modeling ALOHA air hazard modeling program‡

Chemicals Information CAMEO Chemicals †

Schools Information IES NCES Public Schools Information System †

e-Procurement Coupa eProcurement System§, Magento§

Cargo Trains Tracking AskRail†

§ Open source systems, † Publicly available Web services, ‡ Publicly available commercial systems

selected these organizations based on the activities in the scenario described in Section 3.1.

Specifically, we have considered the following types of systems:

• Incident Resource Inventory System (IRIS) is provided by FEMA [23]. Various

government agencies, jurisdictions, and communities use IRIS to enter inventory

of resources into their databases and to share information with other agencies for

incident response and mutual aid purposes.

• Electronic Procurement System is used for requisitioning relief goods such as

medicines, water, and food supplies, from private organizations.

• Public Schools Information System [28] is used to query schools in affected areas

to estimate the number of school children and staff for evacuation purposes.

• Fleet Management System is used for transportation-related resource ordering.

• Weather and Environment Information Services provide contextual information.

• Cargo Train Tracking Service is used for rail incident response organizations.

58
• Hazardous Chemicals Information Services is used to get response and and pro-

vides information about hazards, such as toxic fumes.

• Plume Modeling System is used to get threat zone estimates for various types of

hazards.

The specific systems that we considered for performing our experiments are listed in Table

5.2.

Table 5.3: Response Process Composition Time Results

Systems Rcount Clen Tcomp Tcode

IRIS [23] 16 5 2 sec

5 sec

Webfleet [50] 18 8 2 sec

IES Schools [28] 20 6 22 sec

Coupa [13] 23 10 329.33 sec

Magento [35] 26 13 53 sec

An important point to note here is that different government agencies and organizations

which provide similar services but have different jurisdictions such as city, county, or state,

often use similar operational systems (e.g., FEMA’s IRIS system [23] to inventory their

resources and share information with other organizations). Similarly, several private orga-

nizations often use the same e-procurement system for processing their customer orders.

Even if these organizations are using different systems, there is work done on API mapping

such as Afzal et al.’s work [3] that can be utilized to resolve any heterogeneity in the APIs

of different organizations beforehand.

Table 5.3 provides the dataset statistics and computation time results for the process

composition experiments. Rcount denotes the total number of Web service operations mod-

eled as CPN transitions in the given dataset. Clen denotes the number of service operations

in a composition determined through the CPN reachability analysis algorithm (Algorithm

59
2) for a given default action such as the one shown in Fig. 3.5(b). Tcomp denotes the ex-

ecution time of reachability analysis-based service composition averaged over three runs.

Tcode denotes the time to generate the process workflow and executable code.

Our approach executes reachability analysis on all default actions in parallel; therefore,

the overall execution time for process composition is the maximum of all the compositions.

Thus, the total time for the generation of the response process is 329.33 sec + 5 sec = 334.33

sec.

Table 5.4: Coupa Requisitions API

Operation Name: requsition create

Precondition: {〈requester6=“null”〉, 〈req lines6=“null”〉}

Postcondition: {〈requisition id6=“null”〉}, 〈req status 6=“null”〉

Operation Name: submit for approval

Precondition: {〈requisition id6=“null”〉}

Operation Name: requisition show

Precondition: {〈requisition id6=“null”〉}

Operation Name: requisition getRequester

Precondition: {〈requisition id6=“null”〉}

We can see that the reachability analysis time for service composition is much higher

in the case of Coupa system as compared to IRIS and Webfleet. The main reason for this is

that the preconditions of service operations are very well defined for IRIS and Webflee; at

any given state, only a single operation can be applied. However, in the case of Coupa, the

preconditions of three to four service operations are simultaneously satisfied, and because

of this, the number of branches in state reachability analysis tree in Coupa are way more

than in IRIS and other systems. Hence, Coupa takes more time, and an example of this

60
is shown in Table 5.4 [13]. We can see that upon the availability of requisition id and

requisition status in a given state (e.g., after the execution of requistion create), the

preconditions of three operations are satisfied simultaneously, resulting in the creation of

four parallel branches in the reachability tree in a single state, thus incurring increased

computational time.

Moreover, once the execution sequence of the Web services is determined for a de-

fault action associated with a particular organization, the determined execution sequence

is added to the knowledge base for future reference to avoid the need for recomputing the

reachability tree for generating response processes in future incidents.

A typical resource requisition system involves a composition of three to eight services

as depicted in the case of the IRIS system. In an earlier work [3], we reviewed eCommerce

and procurement business processes in several open-source ERP systems. We observed that

a typical procurement order process involves three to 14 service calls mainly for resource

querying, request processing, and order/dispatch confirmation.

Combining the ontology-based reasoning and reachability analysis/code generation re-

sults, we note that the generation and deployment of an executable response process may

take between five to ten minutes depending on the number of response organizations in-

volved. This time overhead for executable response process composition seems reasonable

considering that the collaborating response organizations may not be known a priori and

may not have pre-established system-level interoperability.

5.3 COVID-19 Patients’ Personalized Care Plan

Implementation

We demonstrate the developed prototype system’s functionality using the example of a

COVID-19 patient with a chronic kidney disease condition, as discussed in section 4.1.

The user (a member of the patient’s care team) is provided with a Web interface that

facilitates the generation and management of a personalized care plan for an individual

61

Figure 5.3: Prototype System Implementation

patient. The system’s initial input requires basic information about the patient and their

pre-existing medical conditions as indicated in the patient’s health record. This informa-

tion may include the patient’s details, medical conditions, location, vitals monitoring device

information, insurance service, as well as any transportation and meal preferences. This in-

formation is provided either by the patients themselves or by their caregivers or healthcare

providers. For our current prototype, this information can be input through a Web inter-

face. In general, if the system were to be deployed in a practical care setting, it should be

possible to link this system to the EHR system to retrieve the requisite information auto-

matically. Based on the given information, the system recommends standard care activities,

as shown in Figure 5.3. A care team member (i.e., physician, nurse) can then review and

select appropriate activities as per the patient’s requirements (Figure 5.3, right panel). The

team’s decision and the information available in the ontology help identify relevant service

providers and the APIs of their operational systems/services to execute selected activities.

Upon confirmation, a complete care plan is composed and deployed, enabling interaction

62
between the caregivers and service providers. The formulated care plan consists of multiple

sub-processes corresponding to the care plan’s selected activities as depicted in Figure 5.3

for vitals monitoring, transport scheduling sub-processes, among other services.

We want to emphasize that the system supports continuous monitoring of the care plan.

This monitoring allows for a reassessment of the patient’s evolving needs, preferences,

and treatment responses to interventions and re-composition of the care plan discussed in

section 4.3.4. Members of the patient’s care team can remotely monitor the patient’s con-

ditions through a Web interface and receive alerts whenever the patient outcomes deviate

from the care plan’s established goals.

63

Chapter 6

Conclusion and Future Work

6.1 Conclusion

We present an integrated approach for the on-the-fly composition of emergency response

processes by enabling information sharing and interoperability among relevant response

organizations’ information systems. Our proposed approach does not require any pre-

established collaboration among the response organizations and employs ontology-based

reasoning to identify the required response activities, needed resources, and response orga-

nizations that can provide such resources. It uses the Web service APIs of these organiza-

tions’ operational systems to generate an executable response process to enable interaction

between the incident command system and response organizations for resource manage-

ment operations. We have also experimentally validated the proposed approach’s effective-

ness using an example scenario derived from FEMA’s Hazardous Materials Tabletop Ex-

ercises Manual. The experimental results show that the time taken to generate and deploy

an executable response process is reasonable considering that the collaborating response

organizations may not be known a priori and may not have pre-established system-level

interoperability.

In the light of the current circumstances, we have studied the problem of creating per-

sonalized care plans for COVID-19 patients under home isolation. We propose a service-

64
oriented framework that allows for the dynamic composition and management of person-

alized patient care plans assuming the existence of an appropriate knowledge base and

availability of Web service-based interfaces for interacting with the underlying systems.

We develop a prototype to show the feasibility of the proposed framework and discuss the

challenges/issues in deploying such a system in practice.

6.2 Future Work

This section presents the challenges/issues in realizing our vision in practice and then dis-

cusses the potential next steps from a technical and a policy perspective. Several technical

and policy issues need to be addressed to take this system beyond a prototype level for de-

ployment in a real-world environment. In the future, we plan to work on several underlying

technical challenges, including reusability, scalability, privacy and security, interoperabil-

ity, and auditability.

6.2.1 Reusability

Refinement of Default Actions/Response Plans: As presented in this thesis, our ap-

proach utilizes default action plans, incident context, and response organizations’ available

resources to create dynamic emergency response plans. This approach provides flexibility

in generating new customized emergency response plans utilizing semantic-based reason-

ing and reachability analysis, as discussed earlier, which produces computation overhead.

The ability to learn from emergency response plans generated for any past incidents, iden-

tification of the activities, and their associated APIs to reuse in new response plans would

reduce time and effort.

As previously discussed, time is a very critical element in emergencies, and the ability

to reuse these previously computed service compositions instead of regenerating the re-

sponse plan afresh can significantly reduce the new response plan composition time. For

65
example, the response plan developed for the Saddle Brook train accident discussed in

Section 3.2, involved various activities including firefighting, law enforcement, and traffic

management. Each of these activities was performed by invoking the services of agencies

selected based on the jurisdictional and mutual aid policies. For another incident in Saddle

Brook or even at a different location, if the same activities and agencies are involved, the

relevant sub-compositions of the Saddle Brook, response plan can be reused. For example,

firefighting resource requests from the Bergen County Fire Department may be commonly

required in the old plan as well as the plan being developed. Such reuse will save time

and allow for quicker creation of emergency response plans. Our idea is to save the pre-

computed response plans.

We propose to save the pre-computed response plans based on the locations and inci-

dents to have both the ability to continue to create a response plan dynamically and to be

able to develop a response plan based on past lessons learned from similar incidents. This

component would provide and refine/customize the incident as per the new requirements.

At completion, the IC will be provided with an interface to rate the effectiveness and accu-

racy of the presented and used plan. The IC, as the Subject Matter Expert (SME), would

also be provided with a customized interface to refine the associated processes for the inci-

dent by adding and/or removing different actions and associated resource types, based on

the location or the incident as he/she sees fit.

Response Processes Repository:

The refined learned plans created need to be saved in a well-organized repository that

would allow for an intuitive, quick search for the services/processes needed for the incident

at hand. The reusability of the saved, processed response processes is essential and would

reduce the overhead computational time to compose an entirely new response process from

scratch, which makes creating a well-indexed repository for quick and accurate search

results a very critical requirement.

We propose to create a repository for existing response processes that would allow for a

quick and accurate search for similar incidents within similar locations/jurisdictions in past

66
incidents. The repository would be indexed for retrieval of response plans, and some of the

indexes might be: 1) location, which includes zip code, then city and county, where zip code

would identify the area first, and the city and county would allow for better classification of

jurisdictions and policies; 2) incident type and sub-type; 3) incident severity level; 4) lives,

which includes whether there are there people at the incident, how many, and their age

range and status; 5) health danger, which includes whether the incident provides a threat to

health in the area; 6) environmental danger, which includes whether the incident provides a

threat to the environment; 7) coverage/damaged area, which includes the approximate area

coverage of the incident; and 8) incident accessibility, which includes whether the incident

accessible by car, plane, boat, etc. This indexed repository would allow for response plans

retrieval to compose new response plans based on past similar existing response plans in

the system. Allowing the reusability of the categorized, processed, saved processes data

would eliminate any unnecessary overhead re-computational time since agencies and APIs

would rarely change.

6.2.2 Scalability

While it is easily possible for our prototype to develop personalized care plans for multiple

patients, it essentially does so one at a time. However, this process becomes problematic

even when only a few thousand patients are considered, so scaling it to municipalities or

more significant administrative levels may cause more difficulties. One possible solution is

to parallelize the underlying infrastructure and utilize appropriate load balancing solutions.

Architecting such solutions is a non-trivial technical exercise. Furthermore, given the over-

lap in terms of patient needs, environments, and situations, it should be possible to utilize

the reasoning carried out in one care plan. Essentially, it should be possible to develop

a system that can take multiple care plans and appropriately split them into a set of non-

overlapping components that can be individually reasoned and then reassembled to provide

complete care plans for a group of patients with similar attributes and medical conditions.

This is a significant technical challenge. Finally, there is a degree of human supervision

67
necessary in reviewing and making the final decisions on each of the personalized care

plans, which can significantly increase the burden on the care team providers, especially

when a multitude of plans need to be developed. It is also necessary to provide appropriate

grouping/clustering solutions that can reduce the individual supervision necessary, which

is another significant technical challenge.

6.2.3 Privacy and Security

Our current system assumes that there are no system-level security or privacy issues. In

practice, given that all the system’s underlying information is sensitive and that there are

multiple participants and organizations involved in the care plan, we need to ensure that

all organizational access policies and individual and legislative privacy requirements are

satisfied.

There is prior research on collaborative access control [14, 30, 46] that can be applied

within this context concerning organizational security. Concerning privacy, we currently

assume that the system is deployed in a trusted curator setting, where the system entities

looking at and operating over the data are indeed allowed to access the underlying infor-

mation. If any broader insights are to be provided to policymakers, it should be possible to

protect the underlying individual information through privacy models such as differential

privacy [19].

6.2.4 Interoperability and Standardization

Currently, we assume no semantic heterogeneity in terms of the data/information main-

tained by different organizational systems or the Web service APIs. In general, this is not

the case, and it is essential to resolve heterogeneity issues before the different systems

can interoperate seamlessly. One such initiative was undertaken by the US Department

of Homeland Security (DHS) in the form of Unified Incident Command Decision Support

(UICDS) system for adopting standards-based Service-Oriented Architecture (SOA) to en-

able government entities, critical infrastructure owners and operators, and other private

68
organizations across the country to work together for an effective and coordinated response

to emergencies and catastrophic situations [38, 45]. An alternative is to utilize a machine

learning-based approach to resolve heterogeneity across all the different collaborating sys-

tems, as proposed by Afzal et al. [3].

6.2.5 Auditability

With a complex system consisting of multiple underlying systems, participants, and evolv-

ing environmental constraints, it is crucial to provide auditability to reduce the possibility

of misuse/gamification and increase the confidence in using such a system. One possibility

is to use a blockchain-based decentralized approach that essentially records each decision

and the underlying justification, including the provided input and interaction between the

various collaborators. This can be recorded in the form of the execution of the appropriate

smart contract. Now, if a sequence of actions needs to be audited, the transaction log of

each smart contract can be examined. Furthermore, using a game-theoretic approach as

proposed by Akhtar et al. [4], it is possible to minimize the cost of auditing while making

the overall approach incentive-compatible, thus enforcing no cheating for rational partici-

pants.

70

Bibliography

[1] S. S. Abidi and H. Chen. Adaptable personalized care planning via a semantic web

framework. In 20th International Congress of the European Federation for

Medical Informatics (MIE 2006), Maastricht. Citeseer, 2006.

[2] N. Adam, J. Eledath, S. Mehrotra, and N. Venkatasubramanian. Social media alert

and response to threats to citizens (SMART-C). In Collaborative Computing:

Networking, Applications and Worksharing (CollaborateCom), 2012 8th

International Conference on, pages 181–189. IEEE, 2012.

[3] A. Afzal, B. Shafiq, S. Shamail, A. Elahraf, J. Vaidya, and N. Adam. ASSEMBLE:

Attribute, Structure and Semantics based Service Mapping Approach for Collabo-

rative Business Process Development. IEEE Transactions on Services Computing,

PP(99):1–1, 2018.

[4] A. Akhtar, B. Shafiq, J. Vaidya, A. Afzal, S. Shamail, and O. Rana. Blockchain

based auditable access control for distributed business processes. In Proceedings of

the 40th IEEE International Conference on Distributed Computing Systems, 2020.

[5] K. Amailef and J. Lu. Ontology-supported case-based reasoning approach for in-

telligent m-Government emergency response services. Decision Support Systems,

55(1):79–97, 2013.

[6] N. Assy, N. N. Chan, and W. Gaaloul. An automated approach for assisting the

design of configurable process models. IEEE Transactions on Services Computing,

8(6):874–888, 2015.

[7] L. Baresi and S. Guinea. Self-supervising BPEL processes. Software Engineering,

IEEE Transactions on, 37(2):247–263, 2011.

[8] A. Bucchiarone, M. De Sanctis, A. Marconi, M. Pistore, and P. Traverso.

Incremental composition for adaptive by-design service based systems. In Web

Services (ICWS), 2016 IEEE International Conference on, pages 236–243. IEEE,

2016.

71

[9] A. Bucchiarone, A. Marconi, M. Pistore, and H. Raik. A context-aware framework

for dynamic composition of process fragments in the Internet of services. Journal

of Internet Services and Applications, 8(1):6, 2017.

[10] A. Bucchiarone, M. Pistore, H. Raik, and R. Kazhamiakin. Adaptation of service-

based business processes by context-aware replanning. In Service-Oriented

Computing and Applications (SOCA), 2011 IEEE International Conference on,

pages 1–8. IEEE, 2011.

[11] J. C. Buijs, B. F. van Dongen, and W. M. van der Aalst. Mining configurable

process models from collections of event logs. In Business Process Management,

pages 33– 48. Springer, 2013.

[12] J. J. Carroll, I. Dickinson, C. Dollin, D. Reynolds, A. Seaborne, and K. Wilkinson.

Jena: implementing the semantic web recommendations. In Proceedings of the 13th

international World Wide Web conference on Alternate track papers & posters,

pages 74–83. ACM, 2004.

[13] Coupa. Coupa Technical Documentation. https://success.coupa.

com/Integrate/Technical_Documentation/API/Resources/Tr

ansactional, 2019 (accessed May 6, 2019).

[14] S. Das, S. Sural, J. Vaidya, and V. Atluri. Policy adaptation in attribute-based ac-

cess control for inter-organizational collaboration. In 2017 IEEE 3rd International

Conference on Collaboration and Internet Computing (CIC), pages 136–145.

IEEE, 2017.

[15] A. Das Sarma, X. Dong, and A. Halevy. Bootstrapping pay-as-you-go data

integration systems. In Proceedings of the 2008 ACM SIGMOD International

Conference on Management of Data, pages 861–874. ACM, 2008.

[16] A. De Nicola, M. Melchiori, and M. Villani. Creative design of emergency man-

agement scenarios driven by semantics: An application to smart cities. Information

Systems, 81:21–48, 2019.

[17] B. L. Dickens, J. R. Koo, A. Wilder-Smith, and A. R. Cook. Institutional, not home-

based, isolation could contain the covid-19 outbreak. The Lancet,

395(10236):1541– 1542, 2020.

[18] S. D¨oweling, F. Probst, T. Ziegert, and K. Manske. SoKNOS: An Interactive

Visual Emergency Management Framework. In GeoSpatial Visual Analytics, pages

251–262. Springer, 2009.

72

[19] C. Dwork, A. Roth, et al. The algorithmic foundations of differential privacy. Foun-

dations and Trends in Theoretical Computer Science, 9(3-4):211–407, 2014.

[20] A. Elahraf, A. Afzal, A. Akhtar, B. Shafiq, J. Vaidya, S. Shamail, and N. R. Adam.

A framework for dynamic composition and management of emergency response

processes. IEEE Transactions on Services Computing, pages 1–1, 2020.

[21] R. Eshuis, R. Hull, and M. Yi. Reasoning about property preservation in adaptive

case management. ACM Transactions on Internet Technology (TOIT), 19(1):12,

2019.

[22] FEMA. FEMA Hazardous Materials Tabletop Exercises Manual. FEMA

Emergency Management Institute (EMI) Virtual Table Top Exercise (VTTX), July

2006.

[23] FEMA. Incident Resource Inventory System.

https://nimstools.preptoolkit.org/, 2016. Accessed: 2018-04-04.

[24] C. for Disease Control and Prevention. Steps to care: Care plans.
https://www.cdc.gov/hiv/effective-

interventions/treat/steps-to-care/dashboard/care-

plans.html (accessed Jan. 15, 2021), 2021.

[25] I. Georgievski and M. Aiello. Htn planning: Overview, comparison, and beyond.

Artificial Intelligence, 222:124–156, 2015.

[26] R. E. Glasgow, A. G. Huebschmann, A. H. Krist, and F. V. Degruy. An adaptive,

contextual, technology-aided support (acts) system for chronic illness self-

management. The Milbank Quarterly, 97(3):669–691, 2019.

[27] O. Hatzi, D. Vrakas, M. Nikolaidou, N. Bassiliades, D. Anagnostopoulos, and I.

Vlahavas. An integrated approach to automated semantic web service composition

through planning. IEEE Transactions on Services Computing, 5(3):319–332, 2012.

[28] IES, NCES. National Center for Education Statistics (NCES) Public Schools Direc-

tory. https://nces.ed.gov/ccd/schoolsearch/, 2019 (accessed

May 6, 2019).

[29] K. Jensen. Coloured Petri nets: basic concepts, analysis methods and practical use,

volume 1. Springer Science & Business Media, 2013.

73

[30] S. Jha, S. Sural, V. Atluri, and J. Vaidya. An administrative model for collaborative

management of ABAC systems and its security analysis. In 2nd IEEE International

Conference on Collaboration and Internet Computing, CIC 2016, Pittsburgh, PA,

USA, November 1-3, 2016, pages 64–73. IEEE Computer Society, 2016.

[31] M. La Rosa, M. Dumas, R. Uba, and R. Dijkman. Business process model merging:

An approach to business process consolidation. ACM Transactions on Software

Engineering and Methodology (TOSEM), 22(2):11, 2013.

[32] A. L. Lemos, F. Daniel, and B. Benatallah. Web service composition: A survey of

techniques and tools. ACM Computing Surveys (CSUR), 48(3):33, 2016.

[33] N. Liu, R. Huang, T. Baldacchino, A. Sud, K. Sud, M. Khadra, and J. Kim.

Telehealth for noncritical patients with chronic diseases during the covid-19

pandemic. Journal of Medical Internet Research, 22(8):e19493, 2020.

[34] C. R. MacIntyre. Case isolation, contact tracing, and physical distancing are pillars

of covid-19 pandemic control, not optional choices. The Lancet Infectious

Diseases, 20(10):1105–1106, 2020.

[35] Magento. Introduction to the Magento 1.x REST API. http://devdocs.

magento.com/guides/m1x/api/rest/introduction.html, 2019

(accessed May 6, 2019).

[36] A. Marrella, M. Mecella, and S. Sardina. Intelligent process adaptation in the

SmartPM system. ACM Transactions on Intelligent Systems and Technology

(TIST), 8(2):25, 2017.

[37] J. Moreira, L. Ferreira Pires, M. van Sinderen, and P. Costa. Towards ontology-

driven situation-aware disaster management. Applied ontology, 10(3-4):339–353,

2015.

[38] J. W. Morentz. Unified incident command and decision support (UICDS): a Depart-

ment of Homeland Security initiative in information sharing. In Technologies for

Homeland Security, 2008 IEEE Conference on, pages 321–326. IEEE, 2008.

[39] OASIS. Emergency Data Exchange Language Resource Messaging (EDXL-RM)

1.0. OASIS Standard. OASIS Emergency Management Technical Committee,

December 2009.

[40] G. Redding, M. Dumas, A. H. Ter Hofstede, and A. Iordachescu. Modelling flexible

processes with business objects. In 2009 IEEE Conference on Commerce and

Enterprise Computing, pages 41–48. IEEE, 2009.

74

[41] M. Reichert, S. Rinderle, U. Kreher, and P. Dadam. Adaptive process management

with ADEPT2. In 21st International Conference on Data Engineering (ICDE’05),

pages 1113–1114. IEEE, 2005.

[42] S. Rizvi Jafree, S. A. Naqi, et al. Significant other family members and their experi-

ences of covid-19 in Pakistan: A qualitative study with implications for social

policy. Stigma and Health, 5(4):380, 2020.

[43] L. Sabatucci and M. Cossentino. Supporting dynamic workflows with automatic

extraction of goals from BPMN. ACM Transactions on Autonomous and Adaptive

Systems (TAAS), 14(2):1–38, 2019.

[44] C. Sell and I. Braun. Using a workflow management system to manage emergency

plans. In In Proceedings of the 6th International ISCRAM Conference, volume 41,

page 43. ISCRAM, 2009.

[45] B. Shafiq, S. Ae Chun, V. Atluri, J. Vaidya, and G. Nabi. Resource sharing using

UICDS framework for incident management. Transforming Government: People,

Process and Policy, 6(1):41–61, 2012.

[46] B. Shafiq, J. B. Joshi, E. Bertino, and A. Ghafoor. Secure interoperation in a mul-

tidomain environment employing rbac policies. IEEE transactions on knowledge

and data engineering, 17(11):1557–1577, 2005.

[47] L. E. Smith, R. Amlot, H. Lambert, I. Oliver, C. Robin, L. Yardley, and G. J. Rubin.

Factors associated with adherence to self-isolation and lockdown measures in the

UK: a cross-sectional survey. Public Health, 187:41–52, 2020.

[48] W. Song and H.-A. Jacobsen. Static and dynamic process change. IEEE

Transactions on Services Computing, 11(1):215–231, 2016.

[49] P. Tang and G. Shen. Decision-making model to generate novel emergency

response plans for improving coordination during large-scale emergencies.

Knowledge-Based Systems, 90:111–128, 2015.

[50] T. Telematics. WEBFLEET.connect 1.43.0 Reference. https:

//telematics.tomtom.com/en_gb/webfleet/partners/integr

ation/developer-resources/, 2019 (accessed May 6, 2019).

[51] W. M. Van Der Aalst. Configurable services in the cloud: supporting variability

while enabling cross-organizational process mining. In On the Move to Meaningful

Internet Systems: OTM 2010, pages 8–25. Springer, 2010.

75

[52] H. Wang and Q. Zeng. Modeling and analysis for workflow constrained by

resources and nondetermined time: An approach based on Petri nets. IEEE

Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans,

38(4):802–817, 2008.

[53] J. Wang. Emergency healthcare workflow modeling and timeliness analysis. IEEE

Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans,

42(6):1323–1331, 2012.

[54] J. Wang, W. Tepfenhart, and D. Rosca. Emergency response workflow resource

requirements modeling and analysis. IEEE Transactions on Systems, Man, and

Cybernetics, Part C (Applications and Reviews), 39(3):270–283, 2009.

[55] J. Yu, Q. Z. Sheng, J. K. Swee, J. Han, C. Liu, and T. H. Noor. Model-driven

development of adaptive web service processes with aspects and rules. Journal of

Computer and System Sciences, 81(3):533–552, 2015.

