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ABSTRACT OF THE DISSERTATION

Modeling phonological interactions using recursive schemes

by CHRISTOPHER DONAL OAKDEN

Dissertation Director:

Adam Jardine

This dissertation pursues a computational theory of phonological process interactions whereby in-

dividual processes are formalized as input-output mappings (i.e. functions), and interactions are

the combinations of those functions using a set of two operators : one previously defined in the

literature and another defined in this dissertation. Building on hypotheses regarding the compu-

tational complexity of phonological processes in isolation (Heinz and Lai, 2013), the primary novel

contribution of this dissertation is to extend these insights to interactions within larger phonological

grammars, but in a systematic way. Specifically, it shows that the subsequential class of functions,

sufficient to describe a great majority of phonological generalizations in isolation, also provides a

well-motivated upper bound on the complexity of phonological interactions. Analyses developed

in this work offer a straightforward solution to a number of outstanding cases of interactions in

the Chinese tone sandhi literature. Crucially, this includes sandhi paradigms for which traditional

generative phonological theories (rule-based SPE (Chomsky and Halle, 1968a) and Optimality The-

ory (Prince and Smolensky, 2004)) fail to account. Thus this novel approach permits an explicit,

restrictive theory of phonological interactions whose predictions more closely align with attested

data.

The formal apparatus for defining functions and operators used in this work is boolean monadic

recursive schemes (BMRS; Bhaskar et al., 2020; Chandlee and Jardine, 2020). BMRS are a logical

formalism rooted in theoretical computer science, and have been recently applied to computational

analyses of phonology. Thus another important contribution of this dissertation is that it represents

the first major work using BMRS to explore a specific type of linguistic phenomenon. In addition

to demonstrating its application to specific tone sandhi paradigms, this study identifies advantages

to BMRS in modeling interactions more generally, especially in comparison to other computational

formalisms. The dissertation also leverages the phenomenon-independent nature of this logical for-

malism by applying BMRS to questions of phonological representation. Specifically, it is shown

ii



how operations over BMRS contribute to recent computational work using model theory and logic

to explore notational equivalence across representational theories (Strother-Garcia and Heinz, 2015;

Danis and Jardine, 2019; Oakden, 2020).
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1 Introduction

1.1 Overview

This dissertation pursues a computational theory of phonological process interactions. It does

so by formalizing phonological processes as mappings (i.e. functions) from input structures to out-

put structures, adding to a growing body of work within the Subregular Hypothesis of phonology

(Heinz and Lai, 2013). Specifically, the current study defines functions using boolean monadic re-

cursive schemes (BMRS; Bhaskar et al., 2020; Chandlee and Jardine, 2020), a logical formalism

recently applied to computational analyses of phonological transformations. The main thrust of this

theory is that process interactions are the combination of functions (defining individual phonolog-

ical processes) via a set of two BMRS-definable operators : one previously defined in the literature

and another defined in this dissertation. This approach permits an explicit, restrictive theory of

phonological interactions, crucially in ways unavailable to other grammatical formalisms in tradi-

tional generative phonology (rule-based SPE (Chomsky and Halle, 1968a) and Optimality Theory

(Prince and Smolensky, 2004)), as well as to other computational formalisms.

1.1.1 Interactions in phonology

Broadly speaking, an interaction occurs when some individual process influences or is influenced

by another process, caused by an overlap of the processes’ targets or triggers. Four basic types of

interactions in a serial rule-based framework are summarized below (adapted from McCarthy, 2007).

An implicit one-to-one correspondence between process and rule is assumed.

(1.1) a. Rule A feeds rule B when A creates additional inputs to B

b. Rule A bleeds rule B when A eliminates potential inputs to B

c. Rule B counterfeeds rule A when B creates additional inputs to A and B is ordered

before A

d. Rule B counterbleeds rule A when B eliminates potential inputs to A and B is ordered

before A
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A substantial body of work over the past 40 years has been devoted to studying process in-

teractions, and especially opaque interactions—(1.1c) and (1.1d), as contrasted with transparent

interactions (1.1a) and (1.1b)—for which certain processes appear on the surface to have either

overapplied or underapplied (McCarthy, 1999). Early attempts at explaining opaque interactions

(Kenstowicz and Kisseberth, 1971; Kean, 1974; Kiparsky, 1976, 1982; Mascaró, 1976) proposed

various principles by which separate ‘rules’ apply, either in an ordered, serial fashion, simultane-

ously, or cyclically. Opaque interactions have proven difficult to capture in classic parallel OT

(Prince and Smolensky, 2004), but subsequent constraint-based work (McCarthy, 1999, 2003, 2007)

has proposed extensions to this formalism to accommodate opacity, and has identified other inter-

actions (Baković, 2007) beyond the traditional four. This includes opaque interactions which are

problematic for rule-based accounts but have an intuitive explanation in OT (Baković, 2011).

1.1.2 Rules, ordering, and their relation to functions

Traditionally, interaction between individual processes in rule-based phonology is formalized via

rule ordering. The first rule in a pairwise ordering applies to the input form, and its output—

an intermediate representation—becomes the input to the following rule; the surface form is the

output of the final ordered rule. The creation/elimination of (potential) inputs in (1.1) thus refers

to the intermediate representations generated by the application of non-final rules. A hypothetical

example from Baković (2011) illustrates: a system in which a Deletion process is ordered before a

Palatalization process.

(1.2) a. /tue/ b. /tio/

Deletion: V → ∅ / V [te] [to]

Palatalization: t → tS / [-back] [tSe] —

Output: [tSe] [to]

For inputs /tue/ and /tio/, Deletion produces the respective intermediate forms [te] and [to]. These

serve as inputs to Palatalization. Deletion thus feeds Palatalization for the form /tue/ by creating

an intermediate representation that satisfies the structural description of the latter. The opposite is

true for /tio/—a bleeding interaction. The opposite ordering (Palatalization ordered before Deletion)

would yield counterfeeding and counterbleeding, respectively.

Individual processes in an interaction scenario can be conceived as input-output mappings (i.e.

functions). Given Kaplan and Kay (1994)’s result connecting regular relations and their closure

properties to rewrite rules in SPE, ordering of these individual rules within a grammar corresponds
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to function composition. Using the example above, let f(x) and g(x) denote functions that de-

scribe the mappings produced by Deletion and Palatalization, respectively. The composition g ◦ f

or g(f(x)) defines the result of applying g to the output of f . This composite function models

the interaction of Deletion and Palatalization given the ordering above. Order of composition is

also consequential as in ordering of rules; the opposite composition f ◦ g would predict the same

counterfeeding/counterbleeding outputs as the inverse rule ordering.

A great many process interactions receive a straightforward account via rule-ordering (composi-

tion). Composition alone, however, offers an incomplete picture of the typology of rule interaction,

especially with respect to opaque patterns. Some interactions present ordering paradoxes ; no pair-

wise rule ordering—therefore no order of composition—will derive attested output forms (see §2 of

this Chapter, as well as Chapter 2). Additionally, Baković (2011) cites several examples of rule

blocking which require additional mechanisms beyond ordering. These cases are amenable to an OT

analysis, and their existence suggests that other operations exist by which individual rules combine

in interaction contexts.

Unfortunately, extracting such operations from a satisfactory OT account of interaction is im-

possible. Parallel evaluation over a total order of constraints selects a single output candidate from

a single input representation. An interaction is ‘one jump’ from an input to an output, without

distinct sub-evaluations or intermediate forms. This means that individual processes have no onto-

logical status in an OT framework. In other words, OT provides a glimpse into g(f(x)) as a single

function, but not g(x) or f(x) as individual functions. A rule-based framework provides the opposite

perspective—decomposability. Neither formalism permits both decomposable and undecomposable

perspectives on process interaction.

1.1.3 A computational approach

A theoretical computational approach—i.e. one that focuses on the nature of mappings between

input and output structures—is well-suited in this regard. This is because individual processes

and their interactions (referred to as the ‘combined map’) can be formalized as single functions,

thereby providing a vantage point unavailable to SPE and OT. And while advances in computa-

tional theories of phonology have focused primarily on single processes, recent studies have turned

their attention toward interactions (Chandlee et al., 2018; Chandlee, 2019; Oakden and Chandlee,

2020).1 The main thrust of this work is to show that certain types of interactions are describable

1In addition to work in the subregular paradigm, work by Baković and Blumenfeld (2017, 2018, 2020) provides
formal characterizations of input-output map relations and interactions.
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by subregular function classes; that is, that theories of the computational complexity of individual

processes also extend to their interactions. Chandlee et al. (2018), for example, demonstrate that a

number of opaque interactions are input strictly local (ISL; Chandlee, 2014) functions as combined

maps. Individual generalizations comprising interactions are also ISL, with the implicit understand-

ing that the two relate via function composition. A later analysis by Oakden and Chandlee (2020)

echoes this result, identifying a different ISL-definable opaque interaction, as well as a transparent

output strictly local (OSL; Chandlee, 2014) one. Likewise, they do not relate individual maps with

combined maps, but it is noted that composition would be insufficient to capture these interactions.

This also gels with Baković (2011)’s conclusion introduced above, that rule ordering is insufficient

in capturing process interactions in phonology.

The computational approach furnishes a framework for combining individual and combined (in-

teraction) maps; however previous studies do not do so explicitly. This dissertation capitalizes on

this feature; it builds on recent computational studies by proposing a theory whereby interactions are

the combination of functions (describing individual processes) via a set of operators.2 This includes

composition as well as a novel operator, acknowledging that composition alone is insufficient.

1.2 Tone sandhi in Chinese dialects and their interaction

The empirical focus of this dissertation is the set of tonal processes known as tone sandhi attested

in, among other groups, Chinese (Sinitic) dialects. Broadly speaking, tone sandhi can be understood

as a process affecting tones which appear together within a domain. A vast and diverse set of

alternations have been termed ‘tone sandhi’ in the literature (see Chapter 2 for in-depth discussion).

This dissertation focuses on right-dominant tone sandhi (Yue-Hashimoto, 1987; Chan, 1995a; Zhang,

2007); that is, processes which preserve the tone on the final syllable in a domain and alternate non-

final syllables. A well-known example of right-dominant sandhi comes from Standard Mandarin (see

Wang and Li, 1967, for an early discussion) and is given in (1.3); when two low-dipping tones in

isolation (represented as ‘L’) appear adjacently, the first surfaces as a rising ‘R’ tone.

(1.3) xiao ‘small’

L isolation form

xiao gou ‘small dog; puppy’

R L sandhi form

2The phonological grammar then is a single function that comprises combinations of functions.
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A sandhi paradigm comprises a set of individual alternations like in (1.3). Some dialects have only

several such alternations, while others have many. For example, the Hakka dialect Changting (Li,

1965; Luo, 1982; Rao, 1987; Chen, 2004) exhibits 15 distinct sandhi alternations out of 25 possible

disyllabic combinations of five lexical tones: H(igh), M(id), L(ow), R(ising), and F(alling). In many

dialects, patterns observed in disyllabic environments generalize to longer sequences such that tonal

changes in strings of three or more tones (within a single domain) can be understood in terms of the

disyllabic patterns. Given the restricted set of phonological primitives—that is, lexical tones—over

which sandhi processes operate, overlap of the targets and triggers of these processes is inevitable in

longer sequences. This gives rise to sandhi paradigms with complex interactions, both transparent

and opaque.

Consider an example from Changting. Two of its 15 attested disyllabic sandhi changes are

as follows: a falling tone becomes a rising tone before a mid tone (FM → RM), and a high tone

becomes a falling tone before a rising tone (HR → FR). In a trisyllabic sequence /HFM/, these

patterns interact in the following way. First, the FM sequence in the input triggers the FM → RM

sandhi process. Then, the resulting R satisfies the structural description of (HR → FR), triggering it

and yielding the surface form [FRM]. This overlap of target and trigger in the latter case constitutes

a feeding interaction, as shown in (1.4).

(1.4)

/HFM/

FM → RM HRM

HR → FR FRM

[FRM]

Overlapping targets and triggers in Changting trisyllabic sequences gives rise to a rich and

complex sandhi paradigm, which includes feeding, bleeding, counterfeeding, and counterbleeding,

all within a single system (Chen, 2004). And Changting is not the only such case; the descriptive

literature on Chinese tone sandhi abounds with interactions in trisyllabic constructions. Tone sandhi

is thus well-suited to a comprehensive study of phonological process interactions given the abundance

of complex paradigms from which to draw, each with a distinct set of interactions playing out over a

relatively small inventory of lexical tones. Additionally, tone sandhi patterns tend to be arbitrary in

nature, meaning that they seldom evince general markedness pressures or phonetic grounding (see

Chapter 2 and Chapter 4 for more details). In a sense, they are pure interaction.

Further justification for adopting tone sandhi as the focus of this dissertation comes from the

existence of outstanding cases of sandhi interaction in the literature. These have proven difficult for
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current theories of phonology to explain, and each paradigm presents distinct analytical challenges

to rule-based and optimization-based theories. Two examples are introduced briefly here, but the

reader is directed toward Chapters 2, 5, and 6 for more discussion.

One challenge posed by sandhi interactions is in determining the so-called ‘directionality’ of rule

application; in other words, how strings of tones ought to be parsed in mapping underlying forms

to surface forms. To illustrate, consider Tianjin (Chen, 1986, 2000), which has a four-tone system:

H(igh), L(ow), R(ising), F(alling). Among its attested sandhi patterns is an RR ‘rule’—R surfaces

as H before another R (RR → HR)—and an LL ‘rule’—L surfaces as R before another L (LL → RL).

In the mappings in (1.5), /RRR/ seems to require a left-to-right parse to yield the attested [HHR],

while /RLL/ seems to require a right-to-left parse to yield the attested [HRL].

(1.5) RRR

|

HRR by RR rule

|

HHR by RR rule

RLL

|

RRL by LL rule

|

HRL by RR rule

Previous SPE (Zhang, 1987; Tan, 1987; Hung, 1987) and OT (Chen, 2000; Ma, 2005; Lin, 2008;

Wee, 2010) analyses struggle to account for these directionality affects using general principles, and

must either stipulate a parsing direction ad hoc or propose questionable extensions to the theory.

The Changting sandhi paradigm presents an even greater challenge given the seemingly para-

doxical interaction of four disyllabic sandhi patterns in (1.6).

(1.6) a. MR rule: M becomes L before R (MR → LR)

b. RM rule: R becomes H before M (RM → HM)

c. LM rule: L becomes M before M (LM → MM)

d. ML rule: M becomes L before L (ML → LL)

Changting sandhi presents challenges for rule-based theories in the form of ordering paradoxes.

In the trisyllabic form mappings in (1.7), opposite rule orderings are necessary to derive each output:

MR < RM in (1.7a) but RM < MR in (1.7b).

(1.7) a.

/MRM/ /RMR/

MR rule LRM RLR

RM rule LHM —

[LHM] *[RLR]

b.

/MRM/ /RMR/

RM rule MHM HMR

MR rule — HLR

*[MHM] [HLR]
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Likewise in (1.8), contradicting orders of LM and ML rules is necessary to derive the attested

output forms of /MLM/ and /LML/.

(1.8) a.

/MLM/ /LML/

LM rule MMM MML

ML rule — MLL

[MMM] *[MLL]

b.

/MLM/ /LML/

ML rule LLM LLL

LM rule LMM —

*[LMM] [LLL]

Achieving this same set of examples in a constraint-based theory results in ranking paradoxes.

For example, Chen (2004) posits two constraints—Temp (scan the string from left to right) and

Econ (minimize derivational steps)—which evaluate sets of derivations as candidates. Selecting the

attested outputs requires conflicting orders of these constraints, as illustrated in the tableau in (1.9).

(1.9) a.

/MRM/ Temp Econ

☞ MRM - LRM - LHM **
MRM - MHM * *

b.

/MLM/ Econ Temp

MLM - LLM - LMM **
☞ MLM - MMM * *

Given such complications, Chen et al. (2004) capitulate to the ‘dauntingly complex’ Changting

paradigm, and argue that current theories of phonology are incapable of capturing it.

Recent computational analyses of both paradigms, however, abstract away from formalism-

specific assumptions about how the interactions are represented, focusing instead on the compu-

tational power necessary to compute the attested input-output maps. Using this approach, analyses

of both Tianjin (Chandlee, 2019) and Changting (Oakden and Chandlee, 2020) interactions have

shown that the computational complexity of these interactions aligns with well-attested and uncon-

troversial phonological processes, despite the difficulty posed to traditional theories. These studies

serve as a launching point for this dissertation.

1.3 Modeling interactions using boolean monadic recursive

schemes

This dissertation models process interactions in phonology via logical transduction over strings.

It borrows from logical techniques in model theory and graph theory (Engelfriet and Hoogeboom,

2001; Courcelle, 1994) and builds on a growing body of recent work in computational phonology

that defines phonological processes as functions (Lindell and Chandlee, 2016; Strother-Garcia, 2018;
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Chandlee and Jardine, 2019a; Koser et al., 2019; Mamadou and Jardine, 2020; Koser and Jardine,

2020; Oakden, 2020; Chandlee and Jardine, 2020). In particular, it adopts a formalism known

boolean monadic recursive schemes (BMRS; Bhaskar et al., 2020) to model tone sandhi interactions.

BMRS are based on the well-studied notion of recursive program schemes, a tool used in com-

puter science to study the complexity of algorithms (Moschovakis, 2019). Chapter 3 introduces the

formalism in detail, but here I give an intuitive introduction.

Broadly speaking, the BMRS formalism describes mappings from input structures to output

structure. It does so using a series of unary, boolean functions that take input string positions as

their domain. Functions define the conditions under which some part of the input structure maps

to a particular output. This is achieved using an if .. then .. else .. syntax which operates

over structures in the input or output. To demonstrate with a simplified example, recall Mandarin

3rd tone sandhi in (1.3): a low tone becomes a rising tone before another low tone. The crucial

question here is whether a low tone maps to L (doesn’t undergo sandhi) or R (undergoes sandhi) in

the output. Two BMRS functions below in (1.10) describe how L and R outputs (Lo(x) and Ro(x)

respectively) are computed in Mandarin tone sandhi. Variable x refers to any input position, ⊤

denotes ‘true’ and ⊥ denotes ‘false’.

(1.10) Lo(x) = if LL(x) then ⊥ else L(x)

Ro(x) = if LL(x) then ⊤ else R(x)

The definition of Lo(x) states the following: if x is an input L tone and is followed immediately by

another input L tone (given by LL(x)), Lo(x) evaluates to ⊥ (false). This means that x does not

map to L in the output. Otherwise, if x is an input L tone (that is, not followed by another L), it

maps directly to an output L tone.3 For output L, the configuration LL(x) is a blocking structure,

because it prevents L from surfacing in the output.

Definition Ro(x), on the other hand, states that if x is an input L tone and is followed immediately

by another input L tone, Ro(x) evaluates to ⊤ (true), meaning that x does map to R in the output.

The same configuration LL(x)—that blocks output L—licenses output R, and is therefore referred

to as a licensing structure for output R. Otherwise, if x is an input R tone, it maps directly to R in

the output. Taken together, definitions Lo(x) and Ro(x) describe exactly the sandhi alternation in

(1.3).

BMRS are a useful tool for phonological analysis. Chandlee and Jardine (2020) highlight some

advantages of BMRS compared to other computational formalisms. This includes the ability to

3For the same reason, if it is not input-specified L, it will not map to output L.
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intensionally express phonological generalizations in a way that gels with a traditional generative

outlook on phonology. One example is blocking structures; in identifying marked structures that

trigger phonological transformations, they are not unlike markedness constraints in OT. BMRS also

provides a means to represent phonological substance, and this is something unavailable to other

computational approaches such as finite-state models. Importantly, the BMRS formalism preserves

crucial insights regarding the complexity of phonological processes, given the result of Bhaskar et al.

(2020), who show that BMRS-definable transductions describe the subsequential class of functions.

A primary goal of this dissertation is to advance a computational theory of phonological process

interactions, and demonstrate how analyses using this theory outperform rule- and optimization-

theoretical accounts of tone sandhi interactions. However, it will also evaluate BMRS relative to

other theoretical computational formalisms used in phonology. Bhaskar et al. (2020)’s result means

that BMRS systems have the same extensional properties as, for example, deterministic finite-state

transducers. And it is also the case that both formalisms can model process interactions either

as single maps or as combinations of maps describing individual processes (see more discussion in

Chapter 3, §5.1). However, this dissertation will highlight additional benefits of BMRS—compared

to other computational approaches—that are specific to interactions. One key advantage of BMRS

is that it provides an intuitive means of defining new operations over functions. This is crucial

to the theory of interactions advocated in this dissertation. Additionally, the result of combining

functions via operations is considerably more interpretable than equivalent combinations in other

computational approaches, and the BMRS formalism furthermore clarifies the contribution of each

individual process in such combinations. This clarity is especially useful in modeling interactions

of multiple processes. Chapter 7 explores these issues in greater detail, building on the analyses

developed in Chapters 5 and 6.

1.4 Main contributions of this dissertation

This dissertation makes three main contributions to phonological theory.

One contribution of this dissertation is that it represents the first major work using boolean

monadic recursive schemes to explore a specific type of phenomenon (tone sandhi in Chinese dialects),

building on recent formal and theoretical work on BMRS (Bhaskar et al., 2020; Oakden et al., 2020;

Chandlee and Jardine, 2020; Oakden and Jardine, 2020). This dissertation demonstrates how the

formalism can be fruitfully applied to sandhi interactions, and identifies its advantages, especially

compared to other computational approaches. Ideally, it serves as a proof of concept for future work
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that utilizes BMRS to examine other phenomena in phonology, its interfaces, and beyond.

Second, this dissertation develops a novel computational theory of phonological process interac-

tions: as operations over BMRS systems of equations. This provides for a straightforward solution

to a number of outstanding cases of interaction in the tone sandhi literature. Stated simply, the the-

ory pursued here captures Chinese tone sandhi in a way that previous rule- and optimization-based

approaches cannot. This is true for directionality issues raised by Tianjin sandhi mentioned above,

and importantly for certain paradoxical cases such as Changting and Xiamen addressed in detail in

Chapter 6. Given the challenges that these tone sandhi interactions pose to SPE and OT, they are

of broad theoretical concern. However, interest in them has waned within theoretical discussions

of phonology in the past 20 years or so. A main contributor to this trend is the commonly-held

attitude that these interactions are beyond the scope of current phonological theories. For example,

Chen (2004, 818)’s assessment of Changting is as “a limiting case that severely test[s] the adequacy

of conceptual tools at our disposal.” Indeed, a full monograph devoted to Changting by Chen et al.

(2004, 1-3) is prefaced with a grudging admission of failure to “render a satisfactory account of

the Hakka facts, either in rule-based generative framework or in constraint-based OT terms.” The

intractability of the Xiamen paradigm, similarly, has led to its dismissal as irrelevant to questions

of tonal phonology (Anderson, 1987; Ballard, 1988), and assertions that it is “neither learnable, nor

productive, in fact ‘not a part of the speakers’ grammars, but historical artifacts.’” (Chen, 2000,

42). This has stymied serious inquiry into the properties of sandhi interactions—and their potential

contributions to phonological theory more broadly—yet remains the consensus in the Chinese lin-

guistics literature (Zhang, 2014). In proposing a computational theory of process interactions, this

dissertation will demonstrate the continuing relevance of tone sandhi to phonological theory, and

future work can further refine this theory by applying it to a broader set of interactions.

A third contribution of this dissertation comes in the form of BMRS applications to questions of

phonological representation, building on recent computational work using model theory and logic to

explore representation (Strother-Garcia and Heinz, 2015; Danis and Jardine, 2019; Oakden, 2020).

These studies extend the notion of logical transduction between input and output structures—for

modeling phonological processes—to mappings between structures that describe distinct theories of

phonological representation. Under certain conditions, these mappings constitute formally-rigorous

arguments that two representational schema are notationally equivalent. That is, that there are no

substantive differences between the theories from a formal perspective. The dissertation leverages

this tool to adopt one string-based representation of tone over another (see Chapter 4 for more

details); it does so in two ways. First, it presents BMRS-definable transductions that map from
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one string-based structure to another (and vice versa). More importantly, however, it applies the

composition operator defined in Chapter 5 to demonstrate the bi-interpretability (in the sense of

Friedman and Visser, 2014) of these representations (see Chapter 7), a formal measuring stick of

notational equivalence adopted in previous studies. The ability to compose transductions is a crucial

component to proving bi-interpretability, but previous work in the area has fallen short (see especially

Oakden, 2020) given the lack of an established composition procedure for logical transductions. Thus,

future work can adapt BMRS-definable transductions—and their composition—to the notational

equivalence of other reprsentational schema.

1.5 Outline of the dissertation

Chapter 2 provides a broad introduction to the empirical focus of the dissertation: interactions

among tone sandhi processes in Chinese dialects. It identifies the subset of sandhi processes which

form the main focus, presenting sandhi paradigms from four dialects to be analyzed in Chapters 5 and

6: Tianjin (Li and Liu, 1985; Chen, 1986; Shi, 1990; Chen, 2000), Changting (Li, 1965; Luo, 1982;

Rao, 1987; Chen, 2004), Xiamen (Dong, 1960; Cheng, 1968; Chen, 1987), and Nanjing (Fei and Sun,

1993; Liu and Li, 1995; Ma and Li, 2014). Previous analyses of these sandhi patterns—if extant in

the literature—are also summarized, along with issues of theoretical interest raised by each paradigm.

The main goal of this chapter is to demonstrate the suitability of tone sandhi for analysis of phono-

logical process interactions.

Chapter 3 establishes the formal framework for the computational analysis of interactions pur-

sued in the dissertation. This includes outlining foundational concepts such as string models (the

adopted representational formalism for tonal structures), the conception of phonological processes as

input-ouput maps or functions, and the Subregular Hypothesis for phonology (Heinz and Lai, 2013;

Heinz, 2018). This chapter also introduces boolean monadic recursive schemes (BMRS), the adopted

formalism for describing functions. It describes the basic properties of BMRS and discusses some

advantages of this formalism in capturing phonological generalizations (to be further developed in

Chapter 7).

Chapter 4 leverages the computational framework to motivate the adoption of syllabic string

models as the preferred representational schema for modeling tone sandhi interactions in Chinese

dialects. Syllabic strings are string representations whereby the tone on each syllable is repre-

sented with a single symbol, including contours. Both conceptual and formal arguments are pre-

sented to motivate this type of representation specifically over melodic string representations; that
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is, those which decompose tonal contours into sequences of level tones. This chapter argues that

not only do melodic representations not provide a more restrictive theory of tone sandhi than syl-

labic representations, but also that analyses utilizing melodic representations can make paradoxical

generalizations about sandhi data. Two case studies of sandhi are presented—one from Hakha

Lai (Hyman and VanBik, 2004) and another from Nanjing—to demonstrate the pitfalls of adopt-

ing melodic representations, and highlight the benefits of adopting syllabic representations. The

conceptual motivation is then bolstered by a rigorous formal demonstration that syllabic repre-

sentations and melodic representations (crucially those enriched with syllable boundary symbols)

are notationally equivalent, following recent computational work on phonological representations

(Strother-Garcia and Heinz, 2015; Danis and Jardine, 2019; Oakden, 2020). Given these results,

syllabic string models are well-motivated as the representational scheme of choice.

Chapters 5 and 6 present a formal theory of interactions whereby phonological processes are

defined as individual BMRS systems of equations, and process interactions are combinations of these

systems using a set of two operators. Chapter 5 builds on Kaplan and Kay (1994)’s observation that

composition of string relations models pairwise rule ordering—that is, the effect of one rule operating

on the output of an earlier-ordered rule. It defines a composition operator over BMRS systems

and relates this operator to pairwise rule ordering. A broad typology of strictly-local (Chandlee,

2014) function compositions is also presented. Drawing upon case studies of three dialects, each

composition type is manifested in a specific interaction that is amenable to a BMRS-composition

(and thus a rule-ordering) analysis. This includes: feeding in Tianjin, feeding in Changting, and

counterbleeding in Nanjing. Composite systems are defined, and a series of evaluation tables are

given to both familiarize the reader with the formalism, as well as to confirm that the analyses do in

fact make the purported predictions. The analyses presented in Chapter 5 build on earlier insights

about directionality effects in sandhi interactions (Chandlee, 2019; Oakden and Chandlee, 2020),

and the chapter discusses benefits of this approach, in particular as they relate to previous attempts

to explain directionality effects in SPE and OT frameworks. The chapter ends by presenting an

ordering paradox in Changting sandhi; this interaction cannot be captured by BMRS composition,

thus setting the stage for the next chapter.

Given that composition alone is insufficient to model sandhi interactions in this way, an addi-

tional operator—termed parallel satisfaction (PS)—is defined in Chapter 6, and added to the set of

operators in the theory of interactions. Its formal properties are introduced, and it is shown that

combinations of BMRS systems using PS model parallel evaluation of more than one BMRS-definable

string function over a single input and output string. This type of operation bears some similarity to
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previous approaches such as simultaneous application of rules (Chomsky and Halle, 1968a; Postal,

1968; McCawley, 1968; Harms, 1968) and two-level phonology (Koskenniemi, 1983), and the PS

operator is distinguished from these approaches. Using the enriched set of operators, analysis of

a broader range of tone sandhi interactions is thus possible, including mutual counterbleeding and

mutual bleeding in Changting, as well as the Xiamen tone circle. As in Chapter 5, the BMRS PS

analyses outperform rule- and optimization-based accounts of both Changting and Xiamen. Alter-

native analyses of counterbleeding and counterfeeding in Nanjing are presented, which demonstrates

an overlap in the mappings that can be captured by composition and PS operators respectively.

The discussion section of this chapter introduces interactions which are not formalized by the PS

operator, and poses the question of the relative order of systems using PS, to be discussed in further

detail in Chapter 7.

Chapter 7 interprets the results of the preceding chapters, considers their ramifications, and

identifies new avenues for research. First, it continues the discussion introduced in Chapter 2,

which highlights the benefits of the BMRS formalism in formalizing phonological process interac-

tions. It does so specifically by comparing the BMRS analyses to other formalisms in theoretical

computational phonology. Representational issues are also examined, including how modification

of representational assumptions permits alternative analyses to the Xiamen data. Additionally, the

discussion of notational equivalence in Chapter 4 is revisited, and a more rigorous demonstration

of the equivalence of syllabic and melodic string representations is presented, this time using the

composition operator. Further formal properties of the PS operator are then presented, including

its closure properties and non-commutativity. The chapter also presents an in-depth comparison of

PS with other formalisms. Finally, areas for future research using BMRS are identified, including

process-specific constraint effects (Davis, 1995; McCarthy, 1997), and learnability.

Chapter 8 summarizes the results of the dissertation and concludes.
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2 Empirical Focus and Review

2.1 Introduction

This chapter introduces the empirical focus of the dissertation—tone sandhi in Chinese dialects—

and motivates this focus as it is relevant to theoretical investigation of phonological process interac-

tions. Tone sandhi is a tonal process attested in, among other groups, Chinese (or Sinitic) languages.

This family consists of roughly ten mutually-unintelligible dialect groups: Mandarin (Guanhua), Jin,

Wu, Hui, Gan, Xiang, Min, Yue, Pinghua, and Hakka (Kejia) (Yuan, 1960; You, 1992). Individual

dialects within groups can be mutually-unintelligible as well (Norman, 1988), underlying the high

degree of linguistic diversity among Chinese languages. Sandhi systems attested across these dialects

reflect that diversity.

A sandhi system can contain multiple alternations, and in such systems interactions among indi-

vidual patterns are commonplace. Interactions can be highly complex, and a number of outstanding

cases of interaction exist in the literature which have evaded a straightforward analysis using current

theoretical tools. For these reasons, tone sandhi is an appropriate phenomenon to examine within a

study of phonological process interactions.

Introducing the class of alternations labeled tone sandhi, identifying relevant cases, and moti-

vating their relevance to the theoretical questions broached by this dissertation are the primary

goals of this chapter. To achieve these goals, this chapter is organized as follows. §2 introduces the

diverse set of processes that have been described as tone sandhi, and identifies the subset that forms

the main empirical focus of this dissertation. In particular, these are sandhi paradigms containing

interacting processes. Four case studies from among this set—including outstanding cases in the

literature—are discussed in detail in §3. Each subsection presents the basic facts and outlines the

results of previous analyses, with a focus on the issues of theoretical interest. Finally, §4 summarizes

and offers further justification for adopting tone sandhi as the empirical focus of the dissertation.

2.2 Tone Sandhi

Generally speaking, tone sandhi can be understood as a process affecting tones based on their

context. A classic example is 3rd tone sandhi in Mandarin (an early discussion is due to Wang and Li,
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1967); when two low-dipping tones—aka 3rd tone or ‘L’ below—appear adjacent to one another, the

first surfaces as a rising tone (‘R’ below). This is shown in (2.1).1

(2.1) xiao ‘small’

L citation form

xiao gou ‘small dog; puppy’

L L base form

R L sandhi form

The terms citation, base, and sandhi form are widely adopted in the tone sandhi literature (Chen,

2000; Yip, 2002; Zhang, 2014), but I explain them briefly here, following an overview by Chen (2000).

Citation tones (Chinese danzidiao ‘single word tone’) refer to tones on syllables when pronounced

in isolation, as in the low tone on xiao ‘dog’ in (2.1). In Chinese dialects, most tonal contrasts are

preserved in this environment. This has led most analysts to conflate the citation tone with the

base tone (Chinese jidiao ‘base tone’), which in traditional generative thinking is the underlying

form. The sandhi tone (Chinese biandiao ‘changed tone’), then, is the tone on the surface form.

Differences in citation and sandhi forms are taken as indication that a sandhi process has occurred.

Tonal contrasts are typically preserved in citation form and may neutralize in a sandhi environ-

ment. In Fuzhou (Chan, 1985, 1989), for example, a three-way contrast between H(igh), F(alling),

and L(ow) tones is neutralized to H before another F tone.

(2.2) a. sing ‘new’

H citation

sing ing ‘newlywed’

H F base

H F sandhi

b. sing ‘grown’

F citation

sing ing ‘grownup’

F F base

H F sandhi

c. sing ‘holy’

L citation

sing ing ‘sage’

L F base

H F sandhi

This situation is common in Chinese tone sandhi, and supports positing citation forms as underlying.

However, there are cases where the opposite situation obtains; that is, where tonal contrasts only

arise in a sandhi environment. Under such circumstances, it incorrect to assume that contrasts are

preserved in isolation. An example comes from Wenling (Li, 1984); the contrast between a R(ising)

and F(alling) tone is neutralized (to F) in isolation, only surfacing before another falling tone, as in

(2.3).

1A common convention is to give phonetic values for tones using Chao tone letters (Chao, 1930); that is, where 1
denotes the low end of the pitch range and 5 the highest. Thus the low-dipping tone is given the value ‘214’ and the
rising tone ‘35’. This dissertation adopts syllabic string representations, i.e. ‘L’ and ‘R’ for low and rising tones. See
chapter 3 for motivation and discussion.
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(2.3) a. bi ‘skin’

F citation

bi li ‘inside the skin’

R F sandhi

b. bi ‘blanket’

F citation

bi li ‘inside the blanket’

F F sandhi

Sandhi interactions explored in this dissertation do not display such characteristics, and thus I join

the general consensus in the field that citation forms are the basic (underlying) forms for tone.

2.2.1 What counts as tone sandhi?

Tone sandhi as a class of alternations has been defined in a variety of ways in the literature,

and most descriptions are purposefully vague. Yip (2002, xx) defines sandhi as a “phonologi-

cal process [usually tonal changes] which happens between words”, while Zhang (2014, 443) de-

scribes the alternations as “complex patterns of tone alternation caused by adjacent tones or the

prosodic/morphosyntactic environment in which a tone appears”. Perhaps the most authoritative

source on Chinese tone sandhi of the last twenty years, (Chen, 2000), describes sandhi thusly (19):

“processes which often drastically alter the phonetic shape of adjacent tones, when they come into

contact with each other in connected speech”.

The vagueness of these definitions underlies the breadth of the range of phenomena labeled tone

sandhi. While patterns like 3rd-tone sandhi in (2.1) can be understood simply as phonological

dissimilation via substitution based on a local tonal environment, this is by no means characteristic

of tone sandhi in general, either in terms of tonological operation or the context in which the

operation occurs. Tone sandhi—whether understood as assimilatory, dissimilatory (especially in

terms of contour (Chang, 1992)), or something else—can manifest in the form of local substitutions,

tonal metathesis, neutralization, and tonal deletion, among others (Chen, 2000). An example from

Pingyao (Hou, 1980) illustrates metathesis as contour dissimilation in (2.4); a rising contour tone

becomes a falling tone before another rising tone.2 Note that this generalization holds whether the

process is formalized over melodic string representations by permuting the order of single tones, or

autosegmental representations by permuting the order of terminal tonal nodes.

(2.4) hai bing ‘become ill’

LH. LH base form

HL. LH sandhi form

2This dissertation adopts syllabic string representations (see Chapter 4), thus giving a non-metathetic account of
Pingyao. The examples in this section are presented using the tonal notation of the original sources which differ from
the representational assumptions adopted in the dissertation.
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These changes are not limited to local environments of two adjacent tones, either. Tone sandhi in

some Wu dialects often involves deletion of all but the initial tone in a phrase, followed by the exten-

sion (or spread) of the initial tone over the entire phrase. The result is extensive contrast neutral-

ization in non-initial syllables. Data from Shanghai (Sherard, 1972; Yip, 1980; Zee and Maddieson,

1980) in (2.5) provide an illustration; in lexical compounds of three or more syllables, non-initial

tones are deleted, and the initial tone spreads to the right edge of the domain (assuming that the

lexical compound forms a domain, but see more below).3

(2.5) s1 sang c1 ‘bastard’

HL HL LH base tones

HL . . Deletion

H. L L Spread

s1 ka dha cœ ‘world war’

HL LH LH LH base tones

HL . . . Deletion

H. L L L Spread

Additionally, the locus of sandhi application—often referred to as the ‘sandhi domain’—is seldom

definable by a local phonological environment alone. Instead, these domains commonly interact with

morphological and syntactic structure, and even interface with stress and higher prosodic structure.

A recent acoustic study by (Shih, 2017), for example, finds that the domain of 3rd tone sandhi in

Taiwan Mandarin is the Major Phrase (Selkirk, 1984; Nespor and Vogel, 1987), with Minor Phrases

being separated by glottal stops. In Xiamen (see §3), the sandhi domain has been claimed to be

influenced by syntactic, morphological, and prosodic factors (Chen, 1986; Lin, 1994; Du, 1983). Some

sandhi processes are even parameterized for specific types of constructions. Old Chongming, a Wu

dialect, presents such a case (Chen and Zhang, 1997). Not only do identical tonal sequences behave

differently in single lexical items (2.6a) vs phrasal environments (2.6b), but also differ depending on

the type of morphosyntactic construction in which they occur (2.6c-d).

(2.6) a. fang xing ‘to let pass through customs’ (lexical)

M LM base tone

HMH H sandhi form

b. fang ping ‘to lay flat’ (phrasal)

M LM base tone

M H sandhi form

c. si dun ‘four meals’ (number + measure word)

M M base tone

M H sandhi form

d. ci ci ‘every time’ (reduplicated nouns)

M M base tone

HMH M sandhi form

3See (Xu et al., 1981; Selkirk and Shen, 1990; Duanmu, 1991) for more discussion of this phenomenon, but also
acoustic work by Chen (2008) for a dissenting viewpoint and alternative explanation.
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Crucially, this is not a property of the individual morphemes, in spite of the fact that sandhi is

determined in part by morphological structure; any sequence of /M.M/ tones in a number+measure

construction surfaces as [M.H], and in a reduplicated noun construction as [HMH.M].

Given the breadth of attested tone sandhi operations, it is also the case that these patterns vary

in terms of tonological naturalness (in the sense of Hyman and Schuh, 1974; Hyman, 2007). Often,

sandhi systems evade a straightforward characterization using rules that target natural classes, or

a basic set of operations over an enriched autosegmental representation (e.g. feature-geometric

representational models proposed by Yip, 1980, 1989; Bao, 1990; Duanmu, 1990, 1994, among many

others).4 Consider as an example the Southern Min dialect Zhangping (Zhang, 1985; Chen, 2000),

in which disyllabic combinations of seven lexical tones surface as one of three surface forms in an

essentially arbitrary manner. Below in (2.7), ‘q’ denotes a checked tone and ‘T’ any lexical tone.5

(2.7)
second σ

R, LL, Hq, F, Fq ML, L

first σ R

LL

L M-T H-T

Hq

ML

F L-T

Fq

Sometimes, clear patterns only emerge when one examines the diachronic development of sandhi

in related dialects. Zhang (2014, citing Mei (1977)) points out that 3rd tone sandhi in Mandarin

originates from the Middle Chinese pattern shang → yang ping / shang, which has phonetically-

distinct (but identical in terms of MC category) exponents in other Northern dialects, as in (2.8).

(2.8) a. Jinan (Qian and Zhu, 1998)

Tone MC category

H.H shang.shang base form

F.H yang ping.shang sandhi form

b. Taiyuan (Wen and Shen, 1999)

4See chapter 4 for more discussion of representation.
5Originally given in Chao numbers: LL = ‘11’, ML = ‘31’, L = ‘21’. The characterization here is simplified

somewhat as a result, but it begs the question of how to distinguish these three using only L and M. See Chapter 4
on representation for more discussion.
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Tone MC category

F.F shang.shang base form

L.F yang ping.shang sandhi form

The arbitrary nature of numerous sandhi patterns presents a challenge both for synchronic analysis

and in securing a robust typological characterization of the process itself.

Perhaps a better to question to ask, then, is: what doesn’t count as tone sandhi? Answering

this question is non-trivial, and is beyond the scope of this dissertation, but Chen (2000) identi-

fies certain distinctions as a point of departure. First, categorical tone sandhi alternations can be

compared to (oftentimes) gradient tonal coarticulation effects. A commonly-cited example of one

such effect is: a falling tone in Beijing Mandarin [HL] does not fall to the bottom of the pitch range

when followed by another tone, being produced instead as [HM] (Shih, 1988). Shen (1990, 1992)

distinguishes tonal coarticulation from tone sandhi based on their basic properties (assimilatory

only vs. assimilatory or dissimilatory) and their conditioning factors (largely language-independent

and based on production vs. language-specific and based on morphological/phonological factors).

The picture is considerably more complicated than this, and disagreement abounds regarding which

patterns are regulated by the phonology and which patterns the phonetics.6 Traditional accounts

(Chao, 1968) categorize the [HL]/[HM] alternation described above as a proper sandhi pattern.

The same is true for other phenomena as well—e.g. a ‘sandhi’ rule changing a rising tone to a

high tone within trisyllabic sequences, but that subsequent work claims is actually a coarticula-

tion effect (Shen, 1992; Shih and Sproat, 1992; Xu, 1994). Other tonal variations mentioned by

Chen (2000) are less controversially distinguishable from tone sandhi. These include intonational ef-

fects like declination (Pierrehumbert and Beckman, 1988) and catathesis (‘automatic downstep’;

Liberman and Pierrehumbert, 1984), as well as morphologically-conditioned tonal modifications

(called bianyin ‘tone change’) such as the tonal morpheme in Cantonese (see (Yip, 1980, 60-65)

and (Bao, 1990, 182-193) for data and autosegmental analyses).

2.2.2 Interaction, directionality, and the focus of this dissertation

A sandhi paradigm comprises a set of individual alternations like those described above. Some di-

alects have only a few such alternations, but others contain many. Changting (Li, 1965; Luo, 1982;

Rao, 1987), a Hakka dialect with five lexical tones—H(igh), M(id), L(ow), R(ising), F(alling))—

6More recent work has addressed this question in other dialects including Tianjin (Zhang and Liu, 2011), Nanjing
(Sun and Huang, 2015), and Fuzhou Min (Li, 2015).
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exhibits 15 sandhi changes among 25 possible disyllabic combinations.7 In many dialects, disyllabic

sandhi patterns generalize to longer sequences such that tonal changes in strings of three, four, or

more tones within a sandhi domain can be understood in terms of the basic set of two-syllable

patterns. Given that processes within a paradigm operate over a single, self-contained set of phono-

logical primitives (i.e., lexical tones), sandhi patterns often interact in such environments as targets

and triggers overlap. To illustrate, the Changting paradigm has two disyllabic sandhi changes: a

falling tone becomes rising before a mid tone (FM → RM), and a high tone becomes falling before a

rising tone (HR → FR). In a trisyllabic sequence /HFM/, these two patterns interact in the follow-

ing way. Input F tone becomes R as a result of FM → RM. This R then triggers HR → FR, as its

structural description is satisfied. Overlap in the target of the former and the trigger of the latter

constitutes a feeding interaction, illustrated in the derivation in (2.9).

(2.9)

/HFM/

FM → RM HRM

HR → FR FRM

[FRM]

Examples such as the one above are widely attested in sandhi paradigms. Many systems demonstrate

a complex interplay of both opaque and transparent interactions. This is the case for Changting

trisyllabic sequences; overlapping targets and triggers between disyllabic changes gives rise to feed-

ing, bleeding, counterfeeding, and counterbleeding within a single system (see Chen, 2004, for more

details). The arbitrary nature of some disyllabic patterns also extends to longer sequences as well,

meaning that interactions seldom evince general markedness pressures or phonetic grounding. They

can be thought of as “pure interaction” in the sense that they offer a view into phonological com-

putation of interactions, but divorced from synchronic, phonetically-grounded markedness effects.

Tone sandhi paradigms are thus well-suited to studying the abstract properties of phonological pro-

cess interactions. Rich and complex interactions play out over relatively small tonal inventories,

and the descriptive literature abounds with such cases. As the following sections will show, many

interactions have proven difficult for current theories of phonology to explain.

Much of this interaction is concentrated in sandhi systems with so-called ‘right-dominant’ direc-

tionality. This refers to an early but influential classification of sandhi systems into ‘left-dominant’

and ‘right-dominant’ groups based on which tones are preserved in sandhi and which alternate

(Yue-Hashimoto, 1987; Chan, 1995a; Zhang, 2007). Put simply, left-dominant sandhi preserve the

base tone on the initial syllable while alternating non-initial syllables, and right-dominant sandhi

7See §3.2 for more details.
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preserve the base tone on the final syllable while alternating non-final syllables.8 Zhang (2007) and

others note an asymmetry between left- and right-dominant systems. The former are typified by

rightward extension of the initial tone across the entire sandhi domain. A number of Northern Wu

dialects exhibit classic left-dominant behavior, such as the Shanghai example in (2.5), but also Wuxi

(Chan and Ren, 1989), Changzhou (Wang, 1988), and Tangxi (Kennedy, 1953). The latter are not,

however, characterized by leftward extension onto non-final tones. Instead, right-dominant sandhi

usually manifests as default insertion and paradigmatic neutralization. 3rd-tone Mandarin sandhi

(2.1), neutralization in Zhangping (2.7), and substitution in Changting (2.9) are prototypical cases

of right-dominant sandhi.

Interactions are less common in left-dominant systems because rightward extension obliterates

all non-initial tonal contrasts ‘in one sweep’ (Chen, 2000, 98). Insertion and substitution in right-

dominant systems, by contrast, impart local, incremental changes on input tonal strings. Given this

and the tendency of targets and triggers to overlap (described above), interactions are common. The

empirical focus of this dissertation, then, is on right-dominant sandhi systems in Chinese dialects,

particularly those for which interactions are attested. The following section formally introduces four

right-dominant sandhi paradigms to be analyzed in detail in subsequent chapters. Each exhibits a

unique set of interactions among individual alternations.

2.3 Empirical Focus

Interactions within four right-dominant sandhi paradigms form the empirical focus of this dis-

sertation. The purpose of this section is to introduce each study case. Each subsection includes the

basic facts of respective paradigms as well as a summary of previous analyses, with a focus on the

issues of theoretical interest that the patterns highlight. They are presented in the following order:

Tianjin (§3.1), Changting (§3.2), Xiamen (§3.3), and Nanjing (§3.4).

2.3.1 Tianjin

The Mandarin dialect Tianjin (Chen, 1986, 2000) has garnered much attention in the literature

for its seemingly paradoxical sandhi system.

8An alternative typology based on the behavior of targets and triggers is given in (Bao, 2004).
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2.3.1.1 Basic paradigm

Chen (2000) assumes four lexical tones for Tianjin based on phonetic descriptions by Li and Liu

(1985) and Shi (1990): two level tones H(igh) and L(ow), and two contour tones R(ising) and

F(alling). Disyllabic sandhi targets sequences of identical tones, with the exception of HH sequences.

Relevant data are presented below (Chen, 2000, p. 106):9

(2.10) a. FF 7→ LF e.g. jingF zhongF → jingLzhongF ‘net weight’

b. LL 7→ RL e.g. feiLjiL → feiRjiL ‘air plane’

c. RR 7→ HR e.g. xiRlianR → xiH lianR ‘wash one’s face’

A falling tone becomes low before another falling tone (as in (2.10a), hereafter ‘FF rule’); a low

tone becomes rising before another low tone (as in (2.10b), hereafter ‘LL rule’); and a rising tone

becomes high before another rising tone ((2.10c), hereafter ‘RR rule’).

The mode of application of these rules in sequences of three or more syllables has been a source

of substantial debate. It centers on the observation that the rules appear to apply in different

directions. Consider the tritonal sequences in (2.11).

(2.11) a. FFF 7→ FLF e.g. suoF liaoF buF → suoF liaoLbuF ‘plastic cloth’

b. LLL 7→ LRL e.g. tuoLlaLjiL → tuoLlaRjiL ‘tractor’

c. RRR 7→ HHR e.g. liRfaRsuoR → liHfaHsuoL ‘barber shop’

The forms above suggest that FF and LL rules apply right-to-left. For example, in the FF rule

application above, the second and third Fs satisfy the triggering environment of the rule, and the

middle F surfaces as L. The string no longer contains the conditioning environment (a sequence of

two Fs), so FLF is the output of the rule. In (2.11b), the same generalization applies. The RR rule,

however, does not apply in the same manner, that is, the output is not *RHR. Instead, the rule is

said to apply left-to-right, to the first R, then the second R, yielding HHR.

Motivating and accounting for this discrepancy poses a challenge in and of itself. A further

complication to the pattern is two feeding relationships which obtain between rules, where the

output of one rule (a ‘derived’ tone) provides the conditioning environment for the application of

another rule.

(2.12) a. LL rule feeds RR rule: RLL → RRL → HRL

b. FF rule feeds LL rule: LFF → LLF → RLF

9This is not the full disyllabic sandhi paradigm; there is also a FL → HL rule described as tonal absorption
(Hyman and Schuh, 1974). However, I follow Chandlee (2019) in putting this rule aside, as accounting for it is
straightforward and is not directly relevant to interactions.
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A full account of Tianjin sandhi should explain the interactions in (2.12) in light of the directionality

paradox of individual rule application. Unfortunately, morphological structure does not clarify the

issue; the full paradigm is summarized with relevant data below (adapted from (Chen, 2000, p.

107)), which the reader will notice applies in a variety of morpho-syntactic (left-branching, right-

branching, and unstructured) contexts. Chen et al. (2004) term this type of sandhi application

‘structure neutrality’:

(2.13) Input Output [x x] x x [x x] [x x x]

RRR HHR [li.fa] suo mu [lao.hu] ma.zu.ka

“barber shop” “tigress” “mazurka”

FFF FLF [su.liao] bu ya [re.dai] yi.da.li

“plastic cloth” “subtropical” “Italy”

LLL LRL [tuo.la] ji kai [fei.ji]

“tractor” “pilot a plane”

RLL HRL [bao.wen] bei da [guan.qiang]

“thermos cup” “speak in a

bureaucratic tone”

LFF RLF [wen.du] ji tong [dian.hua]

“thermometer” “make a phone call”

For strings of Ls and Rs which may or may not satisfy the structural environment for either—that

is, LL or RR—rule, directionality does not seem to matter. The mapping /LRR/ 7→ [LHR], for

example, is achieved regardless of a leftward or rightward parse.

(2.14) LRR

|

LRR n/a

|

LHR by RR rule

LRR

|

LHR by RR rule

|

LHR n/a

Complications arise, however, when reconciling directionality of rule application in isolation and

in situations of rule interaction. To illustrate: while the mapping /RRR/ 7→ [HHR] suggests a

left-to-right parse, the mapping /RLL/ 7→ [HRL] (where the LL rule feeds the RR rule) requires a

right-to-left parse.

(2.15) RRR

|

HRR by RR rule

|

HHR by RR rule

RLL

|

RRL by LL rule

|

HRL by RR rule
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As Chen (2000, p. 109) observes: “the crux of the problem...is to find some general principle or

principles which govern the traffic of sandhi operations”. That is, how to determine the direction in

which strings are parsed. A unified analysis of Tianjin reconciles the difference in directionality to

account for the full set of trisyllabic forms, ideally using basic principles of the theory.

2.3.1.2 Previous approaches

Following Chen (1986), a sizable body of literature endeavored to identify the single (or set

of) directionality principles underlying Tianjin. Early attempts couched in a rule-based framework

stipulate directionality ad hoc. This is something of a necessity given that consistent rightward

or leftward iterative application fails to derive the full paradigm. Similarly, cyclic application is a

nonstarter, as sandhi application is structure-neutral (as in (2.13)). Zhang (1987), therefore, claims

right-to-left application as default, as application happens ‘away from the determinant’, and that

the left-to-right directionality of the RR rule is a special case attested in other dialects. Tan (1987)

assumes the same. Hung (1987) instead proposes a phonotactic constraint to motivate both the

rules and the directionality of their application, resulting in a less stipulative analysis. According

to Hung’s account, Tianjin bans sequences of adjacent low tones. This explains why HH sequences

are well-formed, but LL, FF (=HLHL), and RR (=LHLH) sequences are not. FF and LL rules

then apply right-to-left because doing so avoids the marked structures. For comparison, left-to-

right application of the FF rule for a sequence FFF would yield *LLF which contains the banned

sequence. Since left-to-right application of the RR rule does not yield adjacent low tones—e.g. RRR

→ HHR—it is free to do so. This early attempt advances output markedness as a condition driving

directionality of application in Tianjin.

The advent of OT brought about a renewed interest in the paradox, as evaluation of output

candidates using violable constraints promised a less stipulative explanation of directionality. Chen

(2000, 110) proposes a constraint ‘temporal sequence’ (Temp) which “makes the default assumption

that we apply rules left to right, in tandem with the planning and execution of speech.” Thus in

Chen’s formalism, candidates are derivational histories and constraints target both output forms and

derivations. Temp ranks below a set of general well-formedness conditions driven by the Obligatory

Contour Principle (OCP), specifically an instantiation of the OCP that does not target HH sequences.

Pressure to apply rules in a particular direction can therefore be overridden by a stronger surface

markedness stricture—the OCP. This captures the difference in directionality of FF, LL, and RR

rules in tritonal sequences in a very similar manner as Hung (1987)’s analysis. However, it falls short

in its fidelity to classic parallel OT.
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Ma (2005) points out that Chen’s approach merely recasts a serial derivation in an optimization

framework, and instead offers an account of Tianjin using basic principles of OT: parallel evaluation

of a set of surface candidates against a ranked hierarchy of markedness and faithfulness constraints.

Ma’s solution leverages markedness constraints over tonal melodies—*L.LL militates against ad-

jacent low tones LL.LL10 while *XY.XY (essentially OCP for contours) covers rising LH.LH and

falling HL.HL sequences—coupled with positional faithfulness privileging the right edge of the sandhi

domain (Beckman, 1999). Ranking positional faithfulness >> markedness >> general faithfulness

correctly selects optimal outputs for the tritonal mappings in (2.11) and (2.12) argued to require

a right-to-left parse. That is, all but the form RRR 7→ HHR. This is not a coincidence; Ma main-

tains that right to left application results from the high ranking of a right-edge-preserving positional

faithfulness constraint. To explain the left-to-right form RRR 7→ HHR, Ma claims that such forms

are opaque and therefore amenable to an analysis using sympathy (McCarthy, 1999). While this

analysis is more orthodox than Chen’s, recent work (Hsiao, 2015) has criticized the combination

of OCP and positional faithfulness for producing potential paradoxes in typology. More impor-

tantly, though, Ma’s analysis still retains the basic assumptions about directionality—and crucially

derivation—implicit in earlier work.

Other accounts reconcile directionality by appealing to correspondence in prosodic structure

(Lin, 2008), while Wee (2010) uses tree structures to represent derivational histories, introducing

the notion of inter-tier correspondence. This analysis, however, gives rise to questionable extensions

to the theory, underlying the inherent evasiveness of an explanation of Tianjin using basic princi-

ples. Similar to Chen (2000)’s serialist account, the notion of derivational histories as candidates

is unorthodox (Chen (2004) admits this in later work) in OT as it abandons the central tenet of

parallel evaluation, coercing a serial outlook into a non-serial framework.

A computational approach to Tianjin abstracts away from how the sandhi patterns are repre-

sented within a particular grammatical formalism, and instead focuses on the type of computation

necessary to a) determine the well-formedness of a given surface string or b) map a set of inputs to

the set of attested outputs. An early paper by Jansche (1998) investigates the Tianjin paradox in

a finite-state framework (Johnson, 1972; Karttunen, 1993; Kaplan and Kay, 1994), and shows that

the pattern is eloquently captured as a finite-state acceptor.11 This work lay the foundation for

future work on the functional characterization of the paradox.

10as well as a falling+low (FL = HL.LL) pattern not discussed here
11Jansche also claims that, when modeled as transducers, the FF/LL rules cannot be computed deterministically,

and thus are not (sub)-sequential (Mohri, 1997). Future work has shown that this is not the case, so I abstract away
from this detail.
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More recent computational work by Chandlee (2019) shows that the Tianjin data are describable

using strictly-local functions, a class of functions that model a great number of attested phonological

processes (Chandlee, 2014; Chandlee et al., 2015a; Chandlee and Heinz, 2018).12 This shows that

the ‘complex’ nature of Tianjin sandhi does not correlate to an increase in computational complexity,

despite the issues posed to rule- and optimization-based frameworks. The main contribution here is

how the computational perspective bears on the ‘paradox’ of directionality. Chandlee shows that the

apparent difference in directionality between RR and FF/LL rules can be formalized in terms of input

strictly-local (ISL) and output strictly-local (OSL) functions over string models (Chandlee, 2014,

see also Chapter 3). Such a distinction mirrors the difference between simultaneous and iterative

rule application in an SPE framework. Specifically, FF and LL rules describe Right-OSL (ROSL)

functions, computed using bounded reference to the output string, and formalized as a automaton

reading a string from the right. The RR rule, on the other hand, describes an ISL function, computed

using bounded reference to the input string only. It does so regardless of whether the string is read

from the left or the right. This asymmetry elegantly captures Tianjin sandhi, including feeding

interactions.

Chandlee’s analysis formalizes each of the three ‘rules’ as a finite-state machine, and the full

paradigm as a single ‘combined map’ machine, but does not explore how the former relate to the

latter in any great detail. Chapter 4 builds on (Chandlee, 2019), offering a computational account of

the Tianjin data, and leveraging the BMRS framework to explore the relationship between individual

‘rules’ as functions and the combined map functions that comprise them.

2.3.2 Changting

Like Tianjin, the Hakka dialect Changting (Li, 1965; Luo, 1982; Rao, 1987) exhibits sandhi alter-

nations that appear paradoxical. Sources vary somewhat on the details of disyllabic and trisyllabic

sandhi; this dissertation follows the generalizations put forth in (Chen, 2004) (as well as (Chen et al.,

2004), considered the most authoritative work on Changting).

2.3.2.1 Basic paradigm

Changting is a five-tone system comprising L(ow), M(id), H(igh), R(ising), and F(alling) tones.

Out of 25 possible two-tone combinations, Chen (2004, 800) reports 15 combinations which undergo

sandhi, as in the table in (2.16), where rows represent the leftmost tone in a disyllabic sequence and

12Oakden (2019a) provides an account of the same data using logical transduction.
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columns the rightmost. Empty cells indicate no alternation, and ‘x’ stands for the tone that does

not alternate.

(2.16) M R F H L

M Lx Lx

R Hx xF

F Rx Lx Mx Lx; xM Rx

H Fx Fx Fx

L Mx Mx Mx

Of these only a subset are relevant to the interactions explored in this dissertation. These are given

in (2.17) with example forms; as with Tianjin, this section refers to each transformation as a ‘rule’

named based on its conditioning environment.

(2.17) a. LF 7→ MF e.g. daiLbiaoF → daiM biaoF ‘represent’

b. RM 7→ HM e.g. hanRlengM → hanH lengM ‘cold’

c. MR 7→ LR e.g. huaMqianR → huaLqianR ‘spend money’

d. LM 7→ MM e.g. shiLzhaiM → shiMzhaiM ‘vegetarian’

e. ML 7→ LL e.g. ganMyuanL → ganLyuanL ‘willing’

These basic patterns extend to sequences of three or more tones, with overlapping targets and triggers

giving rise to interactions. Trisyllabic data in (2.18) illustrate the following feeding relationships:

the LF rule (2.17a) feeds the RM rule (2.17b), and the MR rule (2.17c) feeds the LM rule (2.17d).

(2.18) a. LF rule feeds RM rule: RLF → RMF → HMF

b. MR feeds ML rule: MMR → MLR → LLR

Changting feeding interactions exhibit similar features to those in Tianjin, namely their structure

neutrality. This is illustrated in (2.19).

(2.19) Input Output [x x] x x [x x]

RLF HMF [wen.xue] shi lan [mo.shui]

“history of literature” “blue ink”

MMR LLR [deng.xin] rong zuo [ban.fang]

“corduroy” “sit in the office”

The root of the controversy in Changting is not the feeding interactions described above. Rather,

it stems from interactions between two pairs of alternations summarized in (2.20): the RM/MR

interaction (2.20a-b) and the LM/ML interaction (2.20c-d).



28

(2.20) a. /MRM/ 7→ [LHM]

b. /RMR/ 7→ [HLR]

c. /MLM/ 7→ [MMM]

d. /LML/ 7→ [LLL]

Formalized in a rule-based framework, these interactions represent ordering paradoxes. To illustrate:

the mapping in (2.20a) suggests the rule ordering MR >> RM. This derives the intermediate form

LRM to which RM applies, yielding surface form [LHM]. In (2.20b), however, the opposite ordering

is necessary; RM first applies to /RMR/ to generate intermediate representation HMR, then MR

applies to derive the output [HLR]. Derivations in (2.21) show that the interaction is a kind of

mutual counterbleeding, as each rule counterbleeds the other.13

(2.21) a.

/MRM/ /RMR/

MR rule LRM RLR

RM rule LHM —

[LHM] *[RLR]

b.

/MRM/ /RMR/

RM rule MHM HMR

MR rule — HLR

*[MHM] [HLR]

As Chen (2004) notes, these mappings are also structure-neutral.

(2.22) Input Output [x x] x x [x x]

MRM LHM [hua.qian] duo xin [bei.jing]

“spending a lot of money” “new Beijing”

RMR HLR [yi.jin] you chu [feng.tou]

“one catty of oil” “to show off”

Likewise, (2.20c) seems to indicate the ordering LM >> ML such that the former applies to /MLM/

to generate the surface form [MMM] directly—thus bleeding the latter. But (2.20d) again suggests

ML >> LM and the reverse bleeding relationship. The LM/ML interaction represents a mutual

bleeding paradox (originally due to Kiparsky, 1971, but also see (Baković, 2011)), summarized in

the derivations in (2.23).

(2.23) a.

/MLM/ /LML/

LM rule MMM MML

ML rule — MLL

[MMM] *[MLL]

b.

/MLM/ /LML/

ML rule LLM LLL

LM rule LMM —

*[LMM] [LLL]

The LM/ML interaction mappings are also structure-neutral based on data from (Chen, 2004).

13This terminology is used more for its convenience than its appropriateness, as no order of these rules correctly
generates all attested surface forms.
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(2.24) Input Output [x x] x x [x x]

MLM MMM [gan.yuan] jiao wo [shi.zhai]

“willing to teach” “I am a vegetarian”

LML LLL [ren.zhen] du shi [xi.yao]

“seriously study” “take western medication”

2.3.2.2 Previous approaches

Ordering paradoxes described above indicate that an analysis of Changting using serially-ordered

rules is untenable. Chen (2004) demonstrates that no single order can derive outputs from in-

put forms. Additionally, he argues in this paper and elsewhere (Chen, 2000; Chen et al., 2004)

that ordering paradoxes are merely a side effect of directional rule application (Howard, 1972;

Kisseberth and Kenstowicz, 1977)—and so the fundamental challenge in capturing Changting sandhi

is of the same nature as that of Tianjin. This is based on the observation that the tritonal strings

evincing the RM/MR interaction require a left-to-right parse, while the LM/ML interaction cases

require a right-to-left parse, illustrated in (2.25).

(2.25) a. MR/RM: left-to-right

/RMR/: RMR → HMR → HLR [HLR]

/MRM/: MRM → LRM → LHM [LHM]

b. LM/ML: right-to-left

/LML/: LML → LLL [LLL]

/MLM/: MLM → MMM [MMM]

Couched in similar terms as the earlier Tianjin OT analysis Chen (2000)—that is, where con-

straints are derivations—Chen (2004, 806) proposes a set of general principles which may bear on

predicting directionality of tone sandhi application, operationalized as violable constraints. These

are summarized in (2.26).

(2.26) a. Structural affinity (SA): cyclicity of rule application

b. Temporal Sequence (Temp): apply rules from left to right

c. Derivational economy (Econ): minimize derivational steps

d. Transparency (Transp): maximize transparency (i.e. feeding and bleeding)

e. Simplicity (Simp): avoid contour (i.e. complex) tones on the surface

f. Wellformedness (WF): avoid marked tonal combinations on the surface
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Despite the reasonably complete analysis this approach provides for Tianjin, it falls short of a

unified analysis for Changting. Evidence comes in the form of ranking paradoxes for the same set

of cases (2.20) that confounded the rule-based approach. In Chen (2004)’s account, ranking Temp

above Econ is motivated as it correctly chooses the derivation MRM → LRM → LHM over MRM

→ MHM, as in (2.27).

(2.27)

/MRM/ Temp Econ

☞ MRM - LRM - LHM **
MRM - MHM *! *

But then the opposite ranking—Econ>>Temp in (2.28)—is necessary to select the derivation MLM

→ MMM over a different candidate containing an unattested surface form MLM → LLM → LMM.

(2.28)

/MLM/ Econ Temp

MLM - LLM - LMM **!
☞ MLM - MMM * *

Given these complications, Chen et al. (2004) capitulate to the ‘dauntingly complex’ pattern of

Changting sandhi, arguing that current phonological theory is incapable of capturing it.

Other work on Changting has made headway by focusing attention on how rules apply to inter-

mediate representations in a derivation. Extending an early observation by Hung (1985), Hsu (1994,

1995, 2002, 2005) promotes an analysis based in part on the interaction of the One Step Principle

(OSP), defined in (2.29)14, with general wellformedness.

(2.29) One Step Principle (OSP): A tone that has undergone change cannot change again; a

derived tone must not serve as input to another tone sandhi rule.

This principle disfavors derivations in which an input tone is operated upon twice by different sandhi

rules. As an illustration, consider a trisyllabic input /RLL/. It has (at least) two derivational paths

to an output (recall disyllabic rules from (2.17)): RLL → RFL → RRL and RLL → RFL.

(2.30) a. RLL

|

RFL (RL → RF)

|

*RRL (FL → RL)

b. RLL

|

RLL n/a

|

RFL (RL → RF)

Derivation (2.30a)—representing the unattested output—modifies the middle tone twice in the

derivation, from input L, to F, to output R, violating OSP. The output of derivation (2.30b) contains

14Hsu has defined these principles differently in different papers. I include definitions from both (Hsu, 1994) and
(Hsu, 2005).
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an ill-formed surface substring FL (the locus of the RL → FL) rule, but does not make multiple mod-

ifications to the same input tone. According to Hsu’s analysis, the OSP takes priority over surface

well-formedness in selecting outputs from possible derivations. In later OT accounts (Hsu, 2002),

these are expressed as violable constraints with the ranking OSP >> WFC. Further motivation for

the OSP comes from its applicability to other sandhi such as Tianjin, Dongshi Hakka (Chiang, 1985),

Yaoping (Yang, 1963; Zhan, 1993; Hsu, 2002), and Taiwanese secret languages based on Ilan (Li,

1985, 1997). In spite of being couched in an optimizational framework, Hsu’s clearly derivational

analyses bear the same burden as Chen (2000)’s Tianjin account with respect to unconventional

extensions to the theory.

As was the case with Tianjin, sandhi interactions in Changting receive a straightforward account

in a computational framework, falling well within established complexity bounds for phonological

processes despite what rule- and optimization-based accounts might suggest. Oakden and Chandlee

(2020), for example, show that the RM/MR interaction (2.20a-b) is describable using an ISL func-

tion, and that the LM/ML (2.20c-d) interaction is describable using an OSL function (see Chapters

4 and 5 for more details). A main contribution of that study is its demonstration that intermediate

representations—i.e. within a derivation in a rule-based analysis—are not necessary to determine

how an input tone will be mapped to an output tone within the sandhi paradigm. In fact, it is

precisely the reference to these intermediate forms that creates the reported ordering/ranking para-

doxes. Also like the computational analysis of Tianjin, this work represents ‘rule’-pair interactions

as single functions. In doing so, it foregoes an investigation of how the each ‘rule’ relates to the

other within a pair. Chapter 5 of this dissertation builds on Oakden and Chandlee (2020)’s result,

emphasizing how these relationships can be formalized in the BMRS framework.

2.3.3 Xiamen

The Southern Min tone circles are a notorious set of sandhi alternations sharing a distinct

characteristic: mapping from base tones to sandhi tones in a circular chain shift pattern. This

section introduces the oft-cited Xiamen tone circle (Dong, 1960; Cheng, 1968; Chen, 1987) as a

representative case. While a substantial amount of literature has been devoted to identifying the

sandhi domain in these dialects and their relationship to syntactic (Chen, 1987, 1992; Lin, 1994) and

prosodic (Hsiao, 1991; Hsu, 1992; Ku, 1993; Duanmu, 1995) structure, this dissertation will focus

instead on the circular nature of the mapping itself.
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2.3.3.1 Basic paradigm

Xiamen is a five tone system comprising R(ising), H(igh), M(id), L(ow), and F(alling) tones:15

Chen (1987) gives the following disyllabic sandhi data, where sandhi tones are given in bold.

(2.31) a. p’ang H “fragrant”

p’ang tsui MF “perfume” (lit. fragrant + water)

b. we R “shoes”

we tua ML “shoe laces”

c. pĩ M “sick”

pĩ lang LR “patient” (lit. sick + person)

d. ts’u L “house”

ts’u ting FF “roof” (lit. house + top)

e. hai F “ocean”

hai kĩ HR “ocean front”

The above generalization is not limited to sequences of two tones; any non-final tone within a sandhi

domain surfaces as a sandhi tone, and domains may contain arbitrarily long strings of sandhi tones.

Two examples (also from Chen, 1987) demonstrate.

(2.32) a. pang hong ts’e ‘fly a kite’

L H H Base form

F M H Surface form

b. yi kiong kiong kio gua ke k’uah puah tiam tsing ku ts’eq

H R R L F H L L F H F M Base

M M M F H M F F H M H M Surface

‘He insisted that I read for another half an hour’

Curiously, the mapping from base (i.e. isolation) tone to sandhi variant proceeds in a circular

manner, which Chen (2000, 42) describes as “a musical-chair pattern produced by the replacement of

tone A by tone B, which is in turn replaced by tone C, and so forth.” This is shown diagrammatically

below in (2.33).

(2.33)

L

R M F

H

Intuitively, a citation tone is realized as the ‘next’ tone in the circle when it appears in non-final

position. Another way to state these generalizations is in the form of rewrite rules. A set of five

15Chen gives Chao letter equivalents 24, 44, 22, 21, and 53 respectively. In addition, this analysis follows the
conventional assumption that citation forms are underlying.
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rules in (2.34) describe the individual sandhi transformations in (2.31), where ‘T’ denotes any lexical

tone.

(2.34) a. R → M / T

b. H → M / T

c. M → L / T

d. L → F / T

e. F → H / T

The mapping thus forms a type of chain shift. In a rule-based framework, linear chain shifts produce

counterfeeding orders (Kisseberth and Kenstowicz, 1977). However, given the circular nature of the

mappings in (2.33), Xiamen sandhi outputs cannot be produced by ordering these individual rewrite

rules. To see why, consider the ordering e < d < c < b < a in (2.35) as an example; this produces

some correct surface forms but not others.

(2.35) Input RT MT LT FT HT

e – – – HT –

d – – FT – –

c – LT – – –

b – – – MT MT

a MT – – – –

Output MT LT FT *MT MT

Indeed, any permutation over the rules will result in an unwanted feeding relationship between

two rules; above, rule e feeds rule b over input /FT/ producing *[MT] when [HT] is attested.

Xiamen tone sandhi can therefore be described as a type of circular counterfeeding. And like mutual

counterfeeding and bleeding patterns in Changting, the data present an ordering paradox.

2.3.3.2 Previous approaches

The past 50 years have witnessed numerous accounts of Xiamen, approaching the problem from

various theoretical viewpoints. Examining even a modest portion of that work in any detail is beyond

the scope of the current dissertation, so the discussion here shall proceed as follows. Rule-based and

autosegmental analyses are introduced briefly. The main focus, however, is on the recalcitrant nature

of circular chain shifts in an OT framework. This section introduces the fundamental challenge that

Xiamen poses to classic OT, summarizes attempts to capture the paradigm using certain extensions

to the theory, and examines some criticisms of those methods.

Despite the paradoxical nature of a rule-based analysis sketched in the previous section, some

of the earliest accounts of Xiamen were rule-based (Wang, 1967; Cheng, 1968, 1973; Shih, 1986). A
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famous analysis posited by Wang (1967) casts the tone circle as switching operations over two tonal

features: high and falling. Five Xiamen tones are represented as matrices of these features, as in

(2.36).16

(2.36) a. High:







+high

−falling







b. Mid:







−high

−falling







c. Low:







−high

+falling







d. Falling:







+high

+falling







e. Rising:







+high

−falling







A single alpha-switching rule (2.37) derives the circular mapping—H→ M → L → F → H—between

those four tones.

(2.37)







α high

β falling






→







β high

−α falling







This analysis, though approximating the Xiamen facts, is not without criticism. Chen (2000, 43-44)

remarks that it is essentially arbitrary and lacks any explanatory power. In particular, the focus on

the phonetic substance of Xiamen tones fails to explain the more basic issue wanting attention: the

arbitrary nature of the circular mapping. Wang’s analysis might work for Xiamen, but fails with

other historically-related Southern Min tone circles. A related dialect Longxi exhibits a different

tone circle in terms of surface phonetic values, but when one strips away this level of representation,

we find that the mappings are identical in terms of their Middle Chinese categories. The diachronic

relatedness of the two patterns notwithstanding, a superior analysis ideally pinpoints the basic

properties of the circle such that it could apply to the Southern Min circles in general.

Other researchers apply an autosegmental approach (Yip, 1980; Wright, 1983; Du, 1983), cap-

turing the tonal chain shift as operations over autosegmental representations. Yip (1980)’s analysis

hinges on Mid tone’s ability to assume two distinct surface representations (albeit being pronounced

the same); the transformation R → M is a tonal node deletion process producing one representation

16The phonetic value of L is 21 in Chao tone letters, thus is +falling. Also, H and R have the same featural
specifications.
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while H → M is the result of a switch in register (± upper in her model; see Chapter 4) producing

a different representation. These are summarized in (2.38a) and (2.38b) respectively.

(2.38) a.
[-upper]

HL

→
[-upper]

H

=R → M

b.
[+upper]

HH

→
[-upper]

HH

=H → M

This effectively ‘breaks’ the circle. Positing two phonological representations for phonetically-

indistinguishable tones transforms a circular chain shift into a linear one. And while it successfully

accounts for the data (including dialectical variations on the same pattern), both Moreton (2004)

and Barrie (2006) criticize this approach as ad hoc and arbitrary. It also lacks the same explanatory

adequacy as the rule-based accounts by side-stepping the core issue of circularity, instead reducing

the pattern to a representational issue, despite being motivated more generally.

It is also the circularity of the pattern that provides the greatest challenge for optimization-

based theories of phonology. Linear chain shifts are problematic for classic OT given that they are

neither output-driven (Tesar, 2014) nor idempotent (Magri, 2018). Circular chain shifts such as

Xiamen are especially vexing, then. Moreton (2004) proves that such mappings cannot be computed

by any conservative OT grammar—that is, a grammar consisting of markedness and faithfulness

constraints only. To provide a simple illustration of why, consider a circular mapping A → B → A.

The submapping /A/ → [B] implies that surface form [B] is less marked than the fully-faithful

candidate [A]. But the other submapping /B/ → [A] also implies that surface [A] is less marked

than fully-faithful [B], leading to a contradiction—[B] must be less marked than itself. Xiamen thus

poses an empirical challenge to the predictions about phonological maps made by OT. Moreton

salvages his main point—that conservativity is a property of phonological processes expressible by

OT grammars—by claiming that since Xiamen is conditioned by a non-homogeneous representational

factor (phrase-level prosody), it does not provide a counterexample to the claim that conservative

OT grammars cannot compute circular chain shifts. Instead, Xiamen is simply an example of

paradigmatic substitution, irrelevant to the phonological generalizations captured in OT.

This early result did not stifle further exploration into Xiamen within an optimization framework,

as other scholars aimed to bring the tone circle under the umbrella of phonology proper. Extension of

the basic set of constraint types to include anti-faithfulness (Alderete, 1999, 2001), for example, paved

the way for subsequent analyses using variants of OT enriched with these constraints (Hsieh, 2005;
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Thomas, 2008). Mortensen (2002, 2004) cautions, however, that anti-faithfulness analyses contravene

the basic principles of OT, that is, that phonological alternations are the product of the competing

pressures to avoid marked surface structures and preserve underlying contrasts. More concerning is

the danger that anti-faithfulness is too powerful, and thus limits the valuable restrictions classic OT

places on the space of possible grammars.

Other analyses of Xiamen in OT are of a similar vein. Barrie (2006), for example, offers a model

using contrast preservation and tokenized markedness (based on  Lubowicz, 2003). In this framework,

Eval comprises two stages—one that applies preserve contrast and markedness constraints and

another that applies generalized faithfulness constraints. Additionally, candidates are not surface

representations, but rather ‘scenarios’ illustrating transformation patterns. This begs the question of

whether such augmentations—like Chen (2000)’s derivational-histories-as-candidates—are desirable

for the theory. And while this approach does model the circular chain shift using independently-

motivated constraints, it only applies in cases where some degree of neutralization obtains. As

Mortensen (2006) and Hsiao (2015) point out, however, there exist numerous non-neutralizing tone

circle patterns, both in Southern Min and elsewhere.

Circular chain shifts, exemplified by the Xiamen tone circle, pose significant challenges to rule-

based and optimizational theories of phonology. This dissertation will argue that much like Tianjin

and Changting, Xiamen tone sandhi enjoys a straightforward characterization in a computational

framework.

2.3.4 Nanjing

Nanjing is a Jianghuai Mandarin dialect (Liu and Li, 1995; Fei and Sun, 1993). Sandhi interac-

tions in trisyllabic sequences have only recently been reported in the literature, following a production

study by Ma and Li (2014). This dissertation will thus offer one of the first formal analyses of this

data.

2.3.4.1 Basic paradigm

Nanjing has five lexical tones: H(igh), L(ow), R(ising), F(alling), and a C(hecked) tone, which is

described as high, short, and containing a glottal stop, and which is distinct from the high tone in

terms of its phonological—i.e. tone sandhi—behavior. Liu and Li (1995) report six right-dominant

disyllabic tone sandhi alternations out of 25 possible combinations of five lexical tones, summarized
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in (2.39)17. Nanjing differs from other dialects surveyed so far in that it exhibits a sandhi variant

of the checked tone—denoted C′ below—that is not found among the set of citation tones. C′ is

defined as having a lower pitch than C (3 in Chao letters compared to 5).

(2.39) a. FF 7→ HF e.g. bingFxiangF → bingHxiangF ‘refrigerator’

b. LF 7→ RF e.g. laoLshiF → laoRshiF ‘teacher’

c. LL 7→ RL e.g. henLhaoL → henRhaoL ‘very good’

d. HC 7→ FC e.g. shuHxueC → shuFxueC ‘mathematics’

e. RC 7→ LC e.g. tongRxueC → tongLxueC ‘classmate’

f. CC 7→ C′C e.g. qiCshiC → qiC
′

shiC ‘seventy’

Note also that the checked high tone (denoted C) and the non-checked high tone (denoted H) are

distinct entities within this sandhi system. For example, a rising tone undergoes sandhi when it

appears before a checked high tone (2.39e); the same alternation does not occur when a rising tone

appears before a non-checked high tone. That is, /LH/ maps directly to [LH].

Traditional sources provide little information about tone sandhi in sequences of more than two

syllables. A recent production study by Ma and Li (2014), however, provides experimental evidence

for sandhi interactions in trisyllabic forms and explores the issue of directionality in sandhi applica-

tion. The authors perform an acoustic analysis on production data elicited from four native speakers

of Nanjing. To investigate sandhi interactions, target stimuli constitute interaction contexts; that is,

sequences of three syllables where targets and triggers of the disyllabic alternations in (2.39) overlap.

Additionally, to test whether Nanjing sandhi is sensitive to morpho-syntactic structure, tonal com-

binations with different constituent structures—e.g. [xx]x, x[xx] as in (2.13,2.19,2.22)—were used.

Their analysis produces a set of ten interaction mappings in (2.40).18

(2.40) a. /FFF/ 7→ [HHF] f. /LLL/ 7→ [LFL]

b. /LFF/ 7→ [RHF] g. /CCC/ 7→ [CC′C]

c. /LLF/ 7→ [RRF] h. /LRC/ 7→ [LLC]

d. /RCC/ 7→ [LC′C] i. /FHC/ 7→ [FFC]

e. /HCC/ 7→ [FC′C] j. /LHC/ 7→ [LFC]

17Liu and Liu and others also report a pattern triggered by the combination of a rising tone and a neutral tone
(qingsheng) by which the latter surfaces as a low tone. This dissertation will not address this issue, but the reader is
referred to (Sun, 2003) for more details. Additionally, there are differences in the phonetic realization of lexical tones
between older and younger speakers, though the sandhi paradigm is robust. See (Song, 2006), (Liu and Li, 1995) and
especially (Chen and Wiltshire, 2013) for more information.

18Two surface forms are reported for (2.40f), LFL and FFL, with the former being produced by female partic-
ipants and the latter produced by male participants. This dissertation adopts the former, but the computational
characterization developed in the following chapters could accommodate either.
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Like Tianjin and Changting, these mappings are structure-neutral; morphological structure does

not affect sandhi application. In addition, they are opaque; (2.40b-e) exhibit counterbleeding on

environment and (2.40h-j) counterfeeding on environment when disyllabic sandhi patterns in (2.39)

are conceived as rewrite rules. Consider two derivations of /LFF/ 7→ [RHF] in (2.41a) and /FHC/

7→ [FFC] in (2.41b).

(2.41) a. LFF

|

RFF by LF rule

|

RHF by FF rule

LFF

|

LHF by FF rule

|

*LHF LF rule n/a

b. FHC

|

FHC by FF rule n/a

|

FFC by HC rule

FHC

|

FFC by HC rule

|

*HFC by FF rule

In their discussion of the results, Ma and Li (2014) categorize the interaction mappings in terms of

their directionality, demonstrating that the majority of the patterns exhibit left-to-right application

of sandhi in Nanjing (note that the attested forms in (2.41) are derived with a left-to-right parse). It

is not completely uniform, however; the one exception is a sequence of three checked tones /CCC/,

for which speakers produce [CC′C]. Schematized below in (2.42) are leftward and rightward parses

of the same string which show that this sequence requires a right-to-left parse:

(2.42) Input Right-to-left Left-to-right

/CCC/ CCC → CC′C CCC → C′CC → *C′C′C

Only by scanning the string from the right edge and proceeding leftward can the attested output

[CC′C] be derived from application of the CC rule. Scanning the string in the opposite direction—

i.e. from the left and proceeding rightward—yields an unattested form. Thus much like Tianjin and

Changting, the authors reduce the question of sandhi interactions to direction of application.

2.3.4.2 Previous approaches

Very few analyses of Nanjing sandhi exist in the literature, and no systematic attempt has been

made to explain the data in (Ma and Li, 2014). Ma (2009)’s OT analysis of disyllabic sandhi is

similar in nature to his 2005 account of Tianjin: surface markedness constraints target ill-formed

submelodies, and interact with positional faithfulness (specifically to the right edge of a sandhi do-

main) to select attested surface forms. Oakden (2012) adopts Duanmu (1990, 1994)’s autosegmental
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model to analyze disyllabic sandhi as a mixture of OCP effects and constraint conjunction over these

representations. Since disyllabic sandhi patterns are uniformly right-dominant, directionality is a

non-issue in those analyses.

Ma and Li (2014) offer a functional—but not formal—explanation of the discrepancy, noting

that the single mapping which requires a rightward parse consists entirely of checked tones, a cate-

gory which has a special status in the dialect: its realization includes segmental (glottal coda) and

durational (shorter than other tones) information in additional to pitch modulation, and it is the

only tone whose sandhi variant is not also a citation tone.19 Their assessment is as follows (106; my

translation):

In general, trisyllabic tone sandhi in Nanjing tends toward rightward directionality. [The map-
ping /CCC/ 7→ [CC′C]] is a special case; this is very likely related to the nature of checked
tone. When checked tone occupies the first position of a trisyllabic sequence, speakers likely
lean toward preserving the citation tone form at the beginning of a phrase in order to highlight
checked tonal features. Thus, the result is a trisyllabic sequence in which the initial checked
tone does not undergo sandhi.

How this tendency might be formalized is not addressed in their study. This dissertation will not

attempt such an undertaking, but instead will demonstrate how the Nanjing interaction data—along

with Tianjin, Changting, and Xiamen—are accounted for in a computational framework.

2.4 Discussion

The preceding sections demonstrate the suitability of tone sandhi to the study of phonological

process interactions. Sandhi paradigms in these four dialects comprise rich systems of (oftentimes)

arbitrary tonal changes, confined to a limited set of targets and triggers. Overlap of targets and

triggers is common in longer tonal sequences where patterns can be understood in terms of the basic

two-syllable rules. Many of these paradigms provide clear challenges for existing theories of phonol-

ogy, both rule-based and optimization based, and so tone sandhi provides a unique opportunity to

study the properties of interactions. This section provides further justification for adopting tone

sandhi as the empirical focus of this dissertation.

Zhang (2014) notes that tone sandhi has played an important role in the development of phono-

logical theory by providing further evidence for the autosegmental nature of tone and their feature-

geometric representation. To the extent that the sandhi interactions summarized above pose signif-

19There is much to be said about checked tone in Nanjing. Another possibility is the typological uniqueness of
checked tone among Mandarin dialects, and its current status as a mid-merger tonal category; see, for example, (Gu,
2015; Tang, 2019) for more information.
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icant challenges to SPE and OT, they are also of broad theoretical concern. However, interest in

these systems has waned within theoretical discussions of phonology in the past 20 years or so. One

contributor to this is the commonly-held attitude that these interactions are beyond the scope of

current phonological theories. Chen (2004, 818)’s assessment of Changting, for example, is a “limit-

ing case that severely test[s] the adequacy of conceptual tools at our disposal.” An entire monograph

devoted to Changting by Chen et al. (2004, 1-3) is prefaced with a grudging admission of failure to

“render a satisfactory account of the Hakka facts, either in rule-based generative framework or in

constraint-based OT terms.” This fatalism has pointed the field away from Changting and similar

paradigms for which attempts at formal analysis are considered futile. How to correctly represent

the tonal primitives undergoing sandhi (and thus which mechanisms drive it) introduces yet another

complication. Depending on one’s representational assumptions, a single sandhi pattern can be in-

terpreted to support multiple, sometimes conflicting, analyses.20 This has stymied serious inquiry

into the basic properties of sandhi and their interactions because they are impossible to fruitfully

analyze, either due to their complexity or the arbitrariness of representational choice.

To a certain extent this attitude is long-standing. The arbitrary nature of Southern Min tone cir-

cle patterns like Xiamen—not traditionally considered an interaction in the same vein as Changting

and Tianjin—has led to doubts concerning its psychological reality and its presence in the synchronic

grammars of speakers. According to Chen (2000, 42), Xiamen and similar alternations “often strike

the analyst as bizarre because they seem to relate or map one tone to another in an essentially

arbitrary and whimsical manner.” In a footnote, he echoes earlier dismissals by Anderson (1987)

and Ballard (1988), who assert that such patterns are irrelevant to questions of tonal phonology

(at least a feature-based theory of tone), and go as far to say that the synchronic rules comprising

them are “neither learnable, nor productive, in fact ‘not a part of the speakers’ grammars, but

historical artifacts.’” An early claim by Schuh (1978) casts Xiamen as an instance of ‘paradigmatic

replacement’, and Moreton (2004) echoes this sentiment. Tsay and Myers (1996) advance an ‘allo-

morph selection hypothesis’, relegating Xiamen tone sandhi to the morphological component of the

grammar. Thus in addition to potentially insurmountable analytical challenges, there is suspicion

that sandhi is irrelevant to theoretical discussions of phonology because it is not truly phonological.

Recent work has perpetuated this viewpoint by calling into question the veracity of tradi-

tional impressionistic descriptions. For example, phonetic studies of Tianjin (Zhang and Liu, 2011;

Li and Chen, 2012) suggest that patterns reported in earlier literature either apply inconsistently

20Zhang (2014) summarizes the contentious issue of tonal representation and its effect on analysis of tone sandhi,
offering several diagnoses and possible solutions. See also (Chen, 2010) for a relevant discussion of the representation
of contour and its application to Danyang (Lü, 1980) tone sandhi.
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or not at all, or that some are better understood as tonal coarticulation and not tone sandhi. The

slimmed-down paradigm is thus no longer paradoxical in the original sense, allowing for a straight-

forward analysis (Wang and Lin, 2017). Additionally, psycholinguistic studies of reduplication and

wug-tests in Xiamen indicate that the tone circle is not productive (Zhang et al., 2006, 2009, 2011),

thus lending support to the notion that it does not form part of the speaker’s phonological compe-

tence. This also indirectly insinuates that the impressionistic accounts were describing impossible

patterns to begin with.

Results of phonetic/psycholinguistic studies contradicting impressionistic accounts has become

increasingly common (see for example (Bowern et al., 2013) and (Shih, 2018) for work on stress), and

justifiably raises questions about the reliability of impressionistic field work descriptions, particularly

from non-native speaker investigators. As they apply to tone sandhi interactions, however, these

studies have not been without criticism. Both Hsieh (2005) and Barrie (2006) point out weaknesses

in wug-test paradigms used in earlier work on Xiamen (Hsieh, 1970; Wang, 1995); results of such

tests might not be reliable because they ask participants to apply tone sandhi to phonotactically

ill-formed words. The tone circle is, however, productive in loan words, so the pattern does apply to

novel forms in more naturalistic contexts. This is explainable under the assumption that the tone

circle is a phonological transformation, but perhaps less so with an allomorph selection hypothesis.

Furthermore, Mortensen (2006, 103-107) takes issue with the philosophical underpinnings of such

arguments and rails against ‘psychological reality’ as a measuring stick for what processes phono-

logical theory is tasked with explaining. Of Min tone circles he says (105-6):

In practice, in fact ‘psychological reality’ is usually evoked as a means of dismissing a pattern
or phenomenon for which one’s theory of choice is unable to account... Investigators, presented
with two generalizations, A and B, where A is compatible with the existing theory and B is not,
are likely to investigate the psychological reality of B (e.g. Min tone sandhi) rather than A.
The result of this practice is simply the reinforcement of existing ideas in the face of potentially
disconfirmatory facts.

Work by Mortensen (2006) and Hsiao (2015) casts additional doubt on the possibility that Min

tone circles are a historical fluke. This is because circular tonal shifts are attested outside the Min

group, including the Mandarin dialect Laoling (Cao, 2007) and the Tibeto-Burman language Jingpho

(Matisoff, 1974; Dai, 1990; Lai, 2002). And while careful instrumental studies of sandhi enrich the

descriptive literature, they should not be used as evidence that such processes cannot exist in a

phonological grammar. In fact, experimental work of the same vein shows that such interactions

can be a part of phonological competence; Ma and Li (2014) offer rigorous description of a sandhi
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system in Nanjing that is not unlike Tianjin in exhibiting directionality effects. Some sandhi appear

to apply left to right and others right to left, with no general principle adequately governing their

application. It is this quality—not the specifics of the rules or even the phonetic values of tones

themselves—that provides a challenge to existing theories, and thus why sandhi interactions are

of interest to phonological theory in general. Taking all the facts into account, then, I adopt the

traditional descriptions of Tianjin and Xiamen, as the nature of the paradoxes they represent are

important to address.

Recent computational work has shown that, despite the issues some recalcitrant sandhi cases pose

to existing theories of phonology, their computational complexity is still very limited, and impor-

tantly aligns with that of well-attested phonological processes (Chandlee, 2019; Oakden and Chandlee,

2020). These preliminary results suggest that further inquiry into the abstract properties of sandhi

interactions is a potentially fruitful venture despite the lack of enthusiasm in the broader literature.

The computational perspective is well-suited to this undertaking. Because it examines the nature

of the interaction mappings themselves, it can strip away assumptions particular to a grammati-

cal formalism or representational theory (recalling Zhang (2014)’s discussion of this issue). This

dissertation will expand on these earlier results in the form of a more comprehensive investigation.

Among other things, it will argue that patterns like Min tone circles are predicted by a restrictive

computational theory of phonology, and are part of speakers’ phonological knowledge—that is, these

processes are psychologically real. A related goal is to show that—as it was in the past—tone sandhi

continues to be relevant to phonological theory in general. It has the capacity to inform our theory

of interaction provided the relevant patterns are analyzed in a particular way.
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3 Formal Foundations

3.1 Introduction

This chapter lays the formal foundation for the computational analysis of tone sandhi interactions

to be pursued in the dissertation. It is organized as follows. §2 introduces string models, the

representational formalism for tonal structures that undergo sandhi transformations. §3 outlines the

computational perspective on phonological processes—whereby processes are formalized as input-

output mappings—introducing the subregular hypothesis adopted in the dissertation and several key

concepts within that hypothesis. In §4, I present a formalism for describing input-output mappings

known as boolean monadic recursive schemes, and explain its basic properties. §5 discusses some of

the advantages of this formalism as it pertains to a formal investigation of process interactions in

phonology.

3.2 String models

In this dissertation, I adopt a model-theoretic approach (Courcelle, 1994; Enderton, 2001; Libkin,

2013) to provide a mathematically-rigorous definition of syllabic strings of tones (see discussion in

Chapter 4 on motivating representations). The goal is to establish a precise characterization of

the phonological structures that undergo transformations. In the computational literature, this

approach has been applied to various phonological representations beyond simple strings, including

autosegmental representations (Chandlee and Jardine, 2019a), syllabic structure (Strother-Garcia,

2018), segmental features (Strother-Garcia, 2019), and feature-geometric models of tone (Oakden,

2020) among others. Such definitions are valuable for formalizing transformations as functions or

mappings from some input structure to a corresponding output structure.

Under this approach, strings of lexical tones are defined as models. A model is a mathematical

object comprising a domain of elements and a set of their relations defined over some universe of

elements, for example an alphabet Σ which corresponds to an inventory of lexical tones. To illustrate,

consider a dialect like Standard Mandarin (Li and Thompson, 1989) with four lexical tones: high,

low, rising, and falling. Example (3.1) provides string representations of these lexical tones with

phonetic correspondents in terms of Chao (1930) tone letters: 1-5 where 1 corresponds to the lowest
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pitch in a speaker’s register and 5 corresponds to the highest.

(3.1) Chao tone letter String Example

a. 55 H ma ‘mom’

b. 35 R ma ‘hemp’

c. 214 L ma ‘horse’

d. 51 F ma ‘scold’

Suppose we wanted to represent the string of input tones L+L that undergoes Mandarin 3rd tone

sandhi (3TS), recalling example (2.1) from the previous chapter, repeated as (3.2) below.

(3.2) xiao ‘small’

L citation form

xiao gou ‘small dog; puppy’

L L base form

R L sandhi form

This can be achieved with a relational string model defined over an alphabet Σ = {H, L, R, F}

corresponding to Standard Mandarin’s four-tone inventory. Let such a model Msm be defined

Msm
def

= 〈D;PH , PL, PR, PF ; p, s〉. The domain D contains a set of integers denoting individual

elements in the model (string positions). Their linear order is determined by unary predecessor p

and successor s functions; these take a string position as input and output the position immediately

preceding or following it.1 PH , PL, PR, and PF are instantiations of (Pσ)σ∈Σ); this set of unary

relations labels elements with a particular feature—that is, the property of being a high, low, rising,

or falling tone.

The models considered are restricted such that a given domain element is in no more than one

unary relation, a common assumption in traditional model-theoretic work (Büchi, 1960).2 Thus it

is not possible for a single element to be labeled as high and low. A string model of an L+L tonal

sequence is defined in (3.3a). Its graphical equivalent is in (3.3b).

(3.3) a.

D = {1, 2} PH = {} PL = {1, 2} PR = {}

PF = {} p(x) =
{

1 x = 2 s(x) =
{

2 x = 1

b.

1These functions can be defined as total functions such that the final element in the string is its own successor and
the first element in the string is its own predecessor. This dissertation uses partial predecessor/successor functions as
in the following example.

2But see (Strother-Garcia et al., 2016; Strother-Garcia, 2019; Chandlee et al., 2019) for related work which relaxes
this assumption.
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L
1

L
2

s

p

The model contains two elements in its domain, one for each lexical tone segment. Natural numbers

are used to denote the domain elements for clarity, but this choice is arbitrary and does not suggest

any intrinsic ordering on or relationship between the elements; this is defined entirely in the relations

and functions. Unary relations label string positions with one of the tones from the alphabet, and

are denoted by sets containing the domain element bearing that label. PL is the set containing

elements 1 and 2, meaning that both string positions are labeled L. Since none of the other three

lexical tones show up on string positions, all other relations—PH , PR, PF —are the empty set {}.

Unary predecessor and successor functions define ordering relations over these positions, such that

1 is the immediate predecessor of 2, and 2 the immediate successor of 1 (indicated with labeled

arrows). Taken as a whole, this model offers an explicit characterization of a disyllabic LL sequence

in Standard Mandarin.

The unary relations and functions described in the model above are not limited to the description

of a single string. They comprise a general model signature ζ = {PH , PL, PR, PF ; s, p} over which

any tonal string in Standard Mandarin may be represented. The sandhi form (output) of (3.2) is

represented in much the same way in (3.4); the different sets denoting unary relations reflects the

difference between input and output structures.

(3.4) a.

D = {1, 2} PH = {} PL = {2} PR = {1}

PF = {} p(x) =
{

1 x = 2 s(x) =
{

2 x = 1

b.

R
1

L
2

s

p

Models provide a means for explicit representation of phonological structures. Relating input struc-

tures to output structures models phonological transformations, the focus of the next section.
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3.3 Transformations as functions

That phonological processes like tone sandhi are psychologically-real transformations from an

underlying form to a surface form is a foundational idea in generative perspectives on phonology,

including SPE (Chomsky and Halle, 1968a) and OT (Prince and Smolensky, 2004). In the former,

transformations are formalized using a potentially-ordered set of rewrite rules. In the latter, a

transformation is the result of an evaluation over a set of possible output candidates against a

ranked hierarchy of constraints. Phonological transformations are also amendable to a more abstract

characterization: a function. A function of the form f : A → B pairs members of set A (the set of

underlying representations) to set B (the set of surface realizations) such that each member of A

is paired to at most one member of B. Sandhi processes in Chinese dialects may be formalized as

functions which relate the set of input tonal strings to corresponding output strings that have—or

have not—undergone sandhi. Using Standard Mandarin 3TS as an example:3

(3.5) Input Output

L L

LL RL

LLL RRL

LLLL RRRL
...

...

A function modeling Mandarin 3TS maps any input string to a corresponding output string regardless

of length. That is, it is a relation between infinite sets.

The current section frames this view of phonological transformations as it applies to modeling

tone sandhi and their interactions in this dissertation. It begins with an introduction to compu-

tational complexity (and the important notion of classifying functions based on their complexity),

outlining early results relevant to phonology (§3.1). Chief among these is the subregular hypothesis,

which argues (in part) that phonological transformations are sufficiently described by a subsequen-

tial class of functions (Heinz and Lai, 2013; Heinz, 2018). §3.2 and §3.3 introduce subclasses of the

subsequential class, the input strictly-local and output-strictly local functions, respectively. Sandhi

processes and interactions examined in this dissertation are describable by functions of these two

classes.

3For simplicity, this assumes that strings of tones belong to a single domain. Deriving sandhi domain formation is
not a primary objective of this dissertation; see (Shih, 1986, 1997) and (Chen, 2000, ch. 9) for a prevailing explanation
in terms of prosody. The generalization for sandhi in strings of 2+ syllables reflects data found in (Zhang, 1997), e.g.
gouR biR maR xiaoL ‘a dog is smaller than a horse’.



47

3.3.1 Complexity and the (sub)regular hypothesis

What is the nature of the function in (3.5)? More generally, what is the nature of functions

which describe phonological transformations such that they can be distinguished from functions

which describe non-phonological transformations? For example, we may also imagine a function

for the set of Standard Mandarin input strings, but instead of producing sandhi outputs, it simply

produces a mirror image of the string by reversing its linear order.

(3.6) Input Output

H H

RH HR

FHRL LRHF

HLRRFL LFRRLH
...

...

Another example is a function which takes symbols in a string and puts them in alphabetical

order such that HLRRFL 7→ FHLLRR. These functions are definable but are clearly unnatural as

phonological processes and are likely unattested.4 A means to restrict functions such that they

describe (ideally) all and only phonological transformations, and do not describe transformations

like the one above, becomes necessary.

One avenue is to categorize functions based on their computational complexity. A founda-

tional measuring stick for the complexity of formal languages—crucially sets of strings and not

mappings between strings as explored in this dissertation—generated by grammars and expressing

linguistically-significant generalizations is the Chomsky hierarchy (Chomsky, 1956), given in (3.7).

This hierarchy is a set of nested classes of increasing complexity; e.g. every regular language is also

a context-free language but not the other way around.

(3.7) finite ⊂ regular ⊂ context-free ⊂ context-sensitive ⊂ recursively enumerable

The Chomsky hierarchy has been applied to natural language phenomena, and it has been noted that

linguistic patterns differ in terms of the expressivity of the grammars that generate them (Chomsky,

1959; Shieber, 1985; Heinz and Idsardi, 2011, 2013). For example, syntactic patterns fall within the

context-free/context-sensitive region, but no phonological pattern has been shown to do so.

Instead, an early result relevant to phonology (Johnson, 1972; Kaplan and Kay, 1994) determined

that SPE-style rewrite rules of the form A → B / C D correspond to the regular class of relations

4However, Lamont (2018) shows that alphabetization is possible in OT and Harmonic Grammar, even using simple
constraints.
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(that is, they generate regular languages) leading to the hypothesis that phonology is regular.5

In intuitive terms, regular relations are those for which a fixed amount of memory is required to

compute an output; the needed memory does not increase as the size of the string increases. Thus the

Mandarin 3TS pattern is regular in that the rule can be computed using a fixed amount of memory.

Scanning through the input string, if an input L is followed by an input L, the first L is output

as an R. This generalization thus requires a scanning window of length 2: the current symbol and

the following symbol. Importantly, this description holds true for strings of any length—including

potentially arbitrarily long strings—using the same fixed window, as in the example below.

(3.8) Input Output Steps

...LLLLL... ...RLLLL... 1

...LLLLL... ...RRLLL... 2

...LLLLL... ...RRRLL... 3

...LLLLL... ...RRRRL... 4

The restriction that phonological transformations must be regular correctly rules out phonologi-

cally unnatural functions like the mirroring function in (3.6) whose memory requirements increase

proportionately to the size of the input string.

(3.9) Input Output

H H

RH HR

FHRL LRHF

HLRRFL LFRRLH

...
...

To produce a mirror image of a string, the requisite memory window is the length of the string itself.

As the size of the string increases, so does the window. This pattern is therefore not regular.

Refinements were needed to rule out functions that were regular in their complexity but unat-

tested for phonology. This includes pathological spreading patterns such as sour grapes.6 Sour

grapes is a logically-possible but unattested progressive vowel harmony pattern whereby vowels

harmonize, but only if there are no opaque vowels later in the word. Example (3.10), using nota-

tion from (Heinz and Lai, 2013), offers some examples where ‘+’ indicates a vowel containing the

harmony trigger, ‘−’ a vowel containing the target, and ‘⊟’ an opaque vowel.

5With the important caveat that the rule does not apply to its own output within the same cycle.
6The term is originally due to Padgett (1995), who uses it to refer to spreading of an entire bundle of feature-

geometric representations or none. The sense of sour grapes used by Heinz and Lai (2013) in this section is that of
Wilson (2003).
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(3.10) Input Output

+ + − + + +

+ − + + + +

+ −⊟ + −⊟

+ −−⊟−− + −−⊟−−
...

...

The problem with patterns like sour grapes is that they require unbounded lookahead; a vowel

needs access to information at a potentially arbitrary distance to determine whether or not it will

harmonize. Restricted subclasses of the regular region therefore must capture the myopic nature (in

the sense of Wilson, 2003) of spreading patterns and phonological processes in general, to distinguish

them from regular—yet pathological—patterns like sour grapes.

In terms of functions, Heinz and Lai (2013) identify a well-known restriction on regular rela-

tions that captures this generalization: the subsequential (SEQ) class (Schützenberger, 1977; Mohri,

1997). The subsequential class is properly regular, and is divided into two incomparable sub-

classes, left-subsequential (LSEQ) and right-subsequential (RSEQ). Importantly, when parsing a

string, subsequential functions impose a bound on the lookahead in either direction. The Subse-

quential Hypothesis—the hypothesis that phonological functions must be subsequential functions

(Heinz and Lai, 2013; Heinz, 2018)—thus presents a more restrictive theory of phonological trans-

formations. Subsequent work demonstrates that a variety of phonological processes can be modeled

with subsequential functions: vowel and consonant harmony (Heinz and Lai, 2013; Luo, 2013, 2017),

dissimilation (Payne, 2014, 2017), and metathesis (Chandlee and Heinz, 2012), among others.7 Sub-

sequentiality is also an attractive complexity bound for phonology because functions of this class has

also been shown to be learnable (Oncina et al., 1993; Chandlee et al., 2014; Jardine et al., 2014).

3.3.2 Input strictly-local (ISL) functions

One of the most restrictive classes of subsequential functions is the input strictly-local class (ISL,

Chandlee, 2014). Functions of this class, simply put, compute outputs using only local, bounded

reference to input structure. Mandarin 3TS is regular, subsequential, and also ISL. A diagram in

(3.11) shows the mapping /LL/ 7→ [RL].

(3.11)
Input: L L

Output: R L

7Other work has identified non-subsequential tonal (Jardine, 2016) and vowel harmony (McCollum et al., 2017;
McCollum and Essegbey, 2018) patterns. This dissertation acknowledges these results but notes that the tone sandhi
patterns and their interactions investigated here are properly subsequential, along with a significant amount of phono-
logical processes.
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Whether input /L/ maps to its base form [L] or sandhi form [R] (the gray cell) can be determined

solely from a bounded window of information in the input (the pink cells). In this case, the size of

the window is two string positions: the tone on the current position and on the position immediately

to its right. An ISL-2 function—indicating a window of size 2—is sufficient to describe not merely

the mapping in (3.11), but the infinite set of maps {(/LLL/, [RRL]), (/LLLL/, [RRRL]), (/HLLH/,

[HRLH]), ...}.

Chandlee (2014) finds that ISL functions model the simultaneous application of rules of the form

A → B / C D. Written as a rule L → R / L, the ISL-ness of Mandarin 3TS is apparent in the

mappings in (3.5). ‘Application’ of the rule is triggered by satisfaction of the structural description

in the input string, and crucially not the output string (but see the next section).

As a class, ISL functions are sufficient to model a wide range of segmental and autosegmental

phonological processes, despite their restrictiveness (Chandlee, 2014; Chandlee and Jardine, 2019a).

Maps describable by this class encompass those corresponding to individual processes, as well as mul-

tiple phenomena applying to the same input structure (Chandlee and Heinz, 2018). Chandlee et al.

(2018) find that a number of opaque interactions are also formalizable as ISL functions. Interactions

of sandhi processes explored in subsequent chapters also share this quality.

3.3.3 Output strictly-local (OSL) functions

Chandlee (2014) also identifies a class of output strictly-local functions (see also Chandlee et al.,

2014, 2015a; Chandlee and Heinz, 2018). As the name suggests, functions of this type compute out-

puts using a bounded window in the output structure. OSL is split into two intersecting subclasses,

L(eft)-OSL and R(ight)-OSL—proper subsets of Left- and Right-subsequential classes respectively—

named so based on the orientation of the output window. To provide an illustration, recall the LL

rule in the Tianjin dialect (Li and Liu, 1985) introduced in the previous chapter. On its face, it

resembles Standard Mandarin 3TS; both map input /LL/ to [RL]. The patterns diverge, however,

in strings of length greater than two, with Tianjin resembling iterative right-to-left rule application.

Compare the respective mappings in (3.12).

(3.12) Standard Mandarin Tianjin

Input Output Input Output

LLL RRL LLL LRL

LLLL RRRL LLLL RLRL

LLLL RRRRL LLLLL LRLRL

OSL functions model iterative rule application in the same way ISL functions model simultaneous
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application. This difference is a reflection of the formal difference between OSL and ISL functions:

OSL functions scan a local output window and ISL functions a local input window. As Chandlee

(2019) argues, the Tianjin LL pattern describes a ROSL function—outputs are computed using a

bounded output window to the right of the current input string position under evaluation. The

diagram in (3.13) demonstrates the computation of /LLL/ 7→ [LRL] in Tianjin.

(3.13) a.
Input: L L L

Output: R L
b.

Input: L L L

Output: L R L

The triggering environment for the Tianjin LL rule is still a sequence of two L tones, much like 3TS,

with the difference being that the second L in the sequence is an output L. In (3.13a), the second

string position (in gray) is output as R because it is an input L and its immediate successor in the

output is L. Evaluation of the first string position in (3.13b) does not produce an output R; its

immediate successor in the output is R. That it is input-specified as L is immaterial.

OSL functions model iterative application like Tianjin LL sandhi above, as well as output-oriented

spreading processes not captured by ISL functions like nasal spreading in Johore Malay (Onn, 1980).

Subsequent chapters in this dissertation build on the result in (Chandlee and Heinz, 2018) by showing

that, like ISL functions, both individual processes and their interactions are formalizable as OSL

functions.

3.4 Boolean monadic recursive schemes (BMRS)

This dissertation follows a growing body of work that defines phonological transformations us-

ing logical transduction (Lindell and Chandlee, 2016; Strother-Garcia, 2018; Chandlee and Jardine,

2019a; Koser et al., 2019; Mamadou and Jardine, 2020; Koser and Jardine, 2020; Oakden, 2020).

Simply put, logical transduction is a method for representing mappings from input structures to

output structures. A transduction comprises a set of logical formulae, one for each relation and func-

tion in an output model, to be interpreted in terms of the structure of the input model (Courcelle,

1994; Engelfriet and Hoogeboom, 2001; Filiot, 2015).

In this section, I introduce a type of logical transduction using Boolean Monadic Recursive

Schemes (henceforth BMRS; Bhaskar et al., 2020; Chandlee and Jardine, 2020) to be utilized in the

following chapters. BMRS have their basis in recursive program schemes, which are used to study

the complexity of algorithms (Moschovakis, 2019). They are a useful tool for two reasons. First,

Bhaskar et al. (2020) show that BMRS describe exactly the subsequential class of functions, so they

have utility in an analysis couched within the subregular hypothesis. Second, they capture both
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input-based and output-based mappings, which will be crucial in accounting for the full extent of

tone sandhi processes and interactions explored here.8 This section begins with an introduction to

the structure of BMRS and BMRS logical transductions (§4.1), then introduces classes of BMRS

corresponding to ISL (§4.2) and OSL (§4.3) functions.

3.4.1 Structure of BMRS

This section introduces the basic structure of BMRS and BMRS transductions. The discussion

presented here is intuitive, and focuses on application of BMRS to modeling phonological transfor-

mations over string structures.9

3.4.1.1 Sorts and Terms

BMRS operate over string models using two types (sorts) of data structures: boolean values ⊤

(true) and ⊥ (false) and string positions (also called indices). The basic units of BMRS are called

terms (T ), and are formed with the following grammar:

(3.14) T → x | T = T | ⊤ | ⊥ | f(T ) | p/s(T ) | σ(T )(σ ∈ Σ) | if T1 then T2 else T3

Terms can be of sort boolean or sort index. Sorts are determined inductively with the following

rules.

(3.15)

a. For terms f(T ), σ(T ), p(T ), and s(T ), T must be of sort index.

b. Sorts T1 and T2 for term T1 = T2 must match.

c. For terms if T1 then T2 else T3, T1 must be sort boolean, sorts T2,T3 must match.

Terms of sort index range over positions in a string model. This includes the variable x, and the

terms p(T ) and s(T ). As in section 2 of this chapter, p and s identify the immediate predecessor

and successor of a given string position. That is, when given an index term T denoting a string

position, they return either the position that comes immediately before or after it.

Unlike index terms which return a string index, boolean terms return a boolean value: true

⊤ or false ⊥. This includes T = T (the equality of two terms), σ(T ) (which I focus on in this

section), if T1 then T2 else T3 (see §4.1.2), and f(T ) (see §4.1.3). Terms σ(T )—one for each

symbol σ in a string model’s alphabet Σ—denote monadic predicates. These take a single index

8See also (Chandlee and Jardine, 2019b,c; Oakden, 2019a; Oakden and Chandlee, 2020).
9For a more formal introduction, see (Bhaskar et al., 2020; Oakden et al., 2020). For an introduction of BMRS

structure using feature-based representations, see (Chandlee and Jardine, 2020)
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term T as an argument and return a boolean value (⊤/⊥) based on whether or not the string index

is labeled with that particular symbol σ. Importantly, index and boolean terms can be embedded

within one another, provided they conform to the inductive rules defined in (3.15). Thus p(p(x))

(‘the predecessor of the predecessor of x’) is a well-formed term, as is σ(s(x)) (‘the index that is the

successor of x is labeled with σ’).

To illustrate with an example, consider a string model of a sequence of three tones: LLR. The

table below shows, for each string position, the index values returned for p(x) and s(x), as well

as the boolean values returned for predicates L(x) and R(x). It also shows the values returned for

L(s(x))—that is, whether the successor of some position is labeled L.10

(3.16) L
1

L
2

R
3

s s

p p Label: L L R

Position: 1 2 3

p(x) 1 2

s(x) 2 3

L(x) ⊤⊤⊤ ⊤⊤⊤ ⊥

R(x) ⊥ ⊥ ⊤⊤⊤

L(s(x)) ⊤⊤⊤ ⊥ ⊥

When the variable x is interpreted as string position 1 or 2, the predicate L(x) returns a true value,

because those positions are labeled L. Likewise, R(x) returns ⊤ when x is interpreted as position 3

(but importantly not positions 1 or 2). Only position 1 is true for the predicate L(s(x)), because it

is the only position in the string followed immediately by an index labeled L.

3.4.1.2 if . . .then . . .else and local structures

Boolean terms of the form if T1 then T2 else T3—which I refer to as ‘if-then-else

statements’—are the logical workhorse of the BMRS formalism as they are utilized in this dis-

sertation. They take three terms T1, T2, T3, as arguments, and return a boolean value depending

on the evaluation of those terms. Evaluation of these terms follows that of similar statements in

programming languages, and crucially not material implication in logic. That is, if T1 (a boolean

term) returns true ⊤, then T2 is evaluated (i.e. returning its boolean value). If T1 returns false ⊥,

then T3 is evaluated. Graphically:

10Recall that a partial successor function is assumed, meaning that (s(x)) is undefined on the final string position
and that (p(x)) is undefined on the initial string position. I adopt the convention, like Chandlee and Jardine (2020),
that σ(T ) and f(T ) evaluate to false whenever T returns undefined.
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(3.17) T1

T2 T3

⊤ ⊥

Consider, in (3.18), an if-then-else statement that takes monadic predicates L(x) and R(x) as terms,

as well as a graphical representation of its evaluation.

(3.18) if L(x) then ⊤ else R(x) L(x)

⊤ R(x)

⊤ ⊥

The evaluation of this statement can be described as follows. If x is interpreted as a string index

labeled L, return a true (⊤) value. Otherwise, return a value based on evaluation of R(x): ⊤ if

x is interpreted as a string index labeled R, and ⊥ otherwise. Note that all three string positions

in the LLR example in (3.16) would return a true value upon being evaluated by the statement in

(3.18). This is consistent with the intuition that the above if-then-else statement describes the state

of being labeled as either L or R.

This dissertation will use if-then-else statements to describe local structures over strings. For

example, consider the following statement (and its graphical evaluation):

(3.19) if L(x) then L(s(x)) else ⊥ L(x)

L(s(x)) ⊥

⊤ ⊥

Evaluation first checks whether a certain string position is labeled L (L(x)), and if it is, evaluation

then checks whether its immediate successor is labeled L (L(s(x))). A true ⊤ value is returned

only when these two conditions are met; otherwise a false ⊥ value is returned. In other words, this

statement identifies—i.e. it only returns a ⊤ value for—a sequence of adjacent L symbols in the

string, that is, a local structure. Statements of this type are also well-formed BMRS terms, and so I

will denote them with a shorthand notation, such that the term if L(x) then L(s(x)) else ⊥ is

written LL(x). To briefly illustrate, consider the evaluation of different positions in the string LLR

against the term LL(x), as in the evaluation table below.

(3.20)
Label: L L R

Position: 1 2 3

LL(x) ⊤⊤⊤ ⊥ ⊥
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String position 1 evaluates to true ⊤ for LL(x) because it is labeled L and so is its immediate

successor. This is not the case for the second and third positions, which therefore return false ⊥

for LL(x). In other words, the only LL sequence in this string is the one that begins with string

position 1.

The ability to identify local string structures is a crucial property of the BMRS formalism, and

will be utilized extensively in this dissertation. This is important because it captures the intuition

that the majority of tone sandhi patterns are computationally local (Chandlee, 2019; Oakden, 2020;

Oakden and Chandlee, 2020, see also the analyses in chapters 5 and 6).

3.4.1.3 Systems of equations and BMRS transductions

Having described the basic structure of BMRS, I now turn to how the formalism is used to model

phonological transformations, that is, as mappings (i.e. functions) from inputs to outputs using

logical transduction. In this section, I use the example of Mandarin 3rd tone sandhi to illustrate.

In intuitive terms, logical systems like BMRS can formalize input/output mappings by defining

the output structure in terms of the input structure (Engelfriet and Hoogeboom, 2001; Courcelle,

1994; Enderton, 2001).11 This is achieved in BMRS via a system of equations. A system of equations

is a set of function names f(T ) of sort boolean (recall the grammar in (3.14)), where for each function

name fi, there is a corresponding term fi(x) = Ti, where Ti is a term of sort boolean. I will refer to

this term Ti as the ‘definition’ of the function.

Over tonal string models, the set of output functions in a system of equations corresponds to the

set of output tones. Thus, a system of equations modeling Mandarin 3TS comprises four function

names Ho(x), Lo(x), Ro(x), Fo(x)—one for each output tone in Mandarin—along with the definition

for each function. Note that these function names are denoted with a subscripted ‘o’ to distinguish

them from the monadic predicates (e.g. L(x), R(x)) introduced in the previous subsection.

Function definitions describe the conditions under which some input string position (interpreted

as x) is mapped to a particular tone in the output, and are built using well-formed BMRS terms.

If the function definition evaluates a ⊤ (true) value for some input string position interpreted as x,

it is mapped to that tone in the output. Likewise, if the term evaluates to a ⊥ (false) value, that

position does not map to the given output tone. Each input position in a string will evaluate to

⊤ for exactly one output function (and ⊥ for all the others), and so the output structure is ‘built’

from the input structure based on the function definitions.12

11For more formal details on the semantics of these transductions, see (Bhaskar et al., 2020; Oakden et al., 2020).
12This is not guaranteed by the syntax that I define here. Instead, I only consider BMRS systems with this quality.

See (Chandlee and Jardine, 2020) for BMRS systems for which a single input position evaluates to true for multiple
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Function definitions can be any boolean term, including an if-then-else statement. Many of

the definitions provided in this dissertation are of this type. Continuing with the Mandarin 3TS

example, a definition for Lo(x), given in (3.21), provides one such example.

(3.21) Lo(x) = if LL(x) then ⊥ else L(x)

The definition of this function is an if-then-else statement. In (3.21), if the string position under

evaluation is true for term LL(x)—a local structure denoting a sequence of adjacent input L tones,

recalling (3.19) from the previous subsection—then the function Lo(x) evaluates to false ⊥, meaning

that the string position will not be labeled L in the output. If it is false for LL(x), it evaluates the

term L(x), that is, whether it is labeled as L.

Importantly, LL(x) can be understood as a blocking structure for output L, because it blocks it

from surfacing on x. In general, any structure denoted by T1 in a term if T1 then ⊥ else . . .

is a blocking structure for some output function name.

A definition for Ro(x) is provided in (3.22).

(3.22) Ro(x) = if LL(x) then ⊤ else R(x)

It also contains a single if-then-else statement, and references the same local structure as its T1. But

instead of a false ⊥ value, this structure causes Ro(x) to evaluate to ⊤, meaning that the string

position will be labeled R in the output. Again like Lo(x), if it is false for LL(x), evaluation proceeds

to the third term R(x).

For output R, LL(x) is a licensing structure, because it allows the tone to surface on x. Similarly

any structure denoted by T1 in a term if T1 then ⊤ else . . . is a licensing structure for some

output function name.

A full system of equations modeling Mandarin 3TS comprises (3.21) and (3.22), as well as

the function names Ho(x) and Fo(x). Since H and F tones do not participate in 3TS, function

definitions for output High and Falling tones are defined such that input H/R tones map directly to

corresponding outputs. The complete definition is in (3.23).

(3.23) Ho(x) = H(x)

Lo(x) = if LL(x) then ⊥ else L(x)

Ro(x) = if LL(x) then ⊤ else R(x)

Fo(x) = F (x)

output functions—modeling various segmental and suprasegmental processes.
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This system defines a logical transduction over string models. It maps input string structures to

output string structures such that for any sequence of two input L tones, the first tone surfaces as

R. In other words, it models a Mandarin 3TS function. The table in (3.24) shows how this system

evaluates an input string /LLL/ and maps it to [RRL] (i.e. consistently with the characterization

in (3.5)).

(3.24)
Input: L L L

1 2 3

LL(x) ⊤⊤⊤ ⊤⊤⊤ ⊥

R(x) ⊥ ⊥ ⊥

L(x) ⊤⊤⊤ ⊤⊤⊤ ⊤⊤⊤

Ho(x) ⊥ ⊥ ⊥

Lo(x) ⊥ ⊥ ⊤⊤⊤

Ro(x) ⊤⊤⊤ ⊤⊤⊤ ⊥

Fo(x) ⊥ ⊥ ⊥

Output R R L

Each string position returns a true ⊤ value for exactly one function name from the system, meaning

that output positions are labeled with one of the four lexical tones. Positions 1, and 2 evaluate to

true for the structure LL(x)—an input L tone with input L tone as its immediate successor. Output

R is therefore licensed on these positions in the output, and output L is blocked. These two positions

evaluate ⊤ for Ro(x), and appear as R in the output string. Position 3 does not return a true value

for this structure. As a result, it returns a false ⊥ value for Ro(x). This also means that, in its

evaluation by Lo(x), it passes on to the final term L(x). Since position 3 is an input L, it returns

a true value for Lo(x) and is labeled L in the output. Note that all three positions return false for

Ho(x) and Fo(x) because none are input-specified as High or Falling tones.

Thus the system of equations models Mandarin 3TS as a mapping from input structures to

output structures. It does so using local structures in the input.

3.4.1.4 BMRS with recursive definitions

Recall that function names f(T ) are boolean terms. Well-formed function definitions—themselves

well-formed boolean terms—can therefore contain function names. In other words, output functions

in a system of equations can be defined recursively. As an example, consider a new system of

equations with the same four output function names as in the Mandarin 3TS example: Ho(x),

Lo(x), Ro(x), Fo(x). Their definitions are different from those presented in (3.23), namely that they

contain recursive definitions. The new definition of Lo(x) is given in (3.25).
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(3.25) Lo(x) = if LLo(x) then ⊥ else L(x)

As in the system for Mandarin 3TS, the function Lo(x) is defined using a single if-then-else statement

indicating a blocking structure. Note that the blocking structure LLo(x) is shorthand for

if L(x) then Lo(s(x)) else ⊥

This term returns a true value if and only if the input string index under evaluation (interpreted as

x) is specified as L and its immediate successor returns true for Lo(x)—that is, if it is output as L.

Thus the definition of Lo(x) is recursive: Lo(x) is part of the definition of Lo(x).

Recursive statements like the above also identify local structures. As part of a function definition,

they determine which string positions are output with a particular label using the current string

position and a local, bounded window of output structure.

Example (3.26) gives the equivalent full system, but using the recursively-defined function defi-

nition.

(3.26) Ho(x) = H(x)

Lo(x) = if LLo(x) then ⊥ else L(x)

Ro(x) = if LLo(x) then ⊤ else R(x)

Fo(x) = F (x)

Despite its similarity to the Mandarin 3TS system in (3.23), this system of equations describes a

different function. Whereas the function described by (3.23) maps /LLL/ to [RRL], this function

maps /LLL/ to [LRL], as in (3.27).

(3.27)
Input: L L L

1 2 3

LLo(x) ⊥ ⊤⊤⊤ ⊥

R(x) ⊥ ⊥ ⊥

L(x) ⊤⊤⊤ ⊤⊤⊤ ⊤⊤⊤

Ho(x) ⊥ ⊥ ⊥

Lo(x) ⊤⊤⊤ ⊥ ⊤⊤⊤

Ro(x) ⊥ ⊤⊤⊤ ⊥

Fo(x) ⊥ ⊥ ⊥

Output L R L

The crucial difference here lies in evaluation of position 1. Note that since position 2 satisfies the

structure LLo(x), it is output as R. But because of that, position 1 does not evaluate to true for the
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same structure—that is, the structure that licenses R. Instead, it is mapped to L by not conforming

to the (same) blocking structure LLo(x), and being input-specified as L.

3.4.1.5 Summary

The BMRS formalism developed here is a form of logical transduction over strings. Specifically,

BMRS transductions are defined as systems of function names of sort boolean, one for each output

symbol. The function names take single string indices as arguments—and hence are monadic. They

can also be defined recursively.

Despite the introduction of recursion, BMRS transductions are restrictive in ways that are rele-

vant to phonology. Bhaskar et al. (2020) show that, when recursion on f(T ) is limited to terms p(T )

or s(T ), the resulting transductions correspond to exactly the left- and right-subsequential functions

(respectively).

As shown above, BMRS transductions compute outputs using reference to local structures in

either in input or output. The next sections connect classes of BMRS systems to subclasses of

subsequential functions based on these properties, and which are relevant to the analyses of tone

sandhi interactions explored in this dissertation.

3.4.2 ISL in BMRS

BMRS systems of equations describe subsequential functions. Subclasses of BMRS systems

describe subclasses of subsequential functions. In particular, a class of non-recursive BMRS (NR-

BMRS) describes ISL functions.

Definition 1 NR-BMRS are the class of well-formed BMRS systems of equations where no term

Ti in list (f1(x1) = T1, . . . , fk(xk) = Tk) contains a term of the type f(T ).

Like the name suggests, non-recursive BMRS systems are those whose definitions do not contain

any recursive function calls. Intuitively, it restricts computation to a bounded window in the input,

as the remaining set of model-relational terms upon which licensing/blocking structures can be

built is limited to σ(T )(σ ∈ Σ)—that is, terms that reference input structures. This is precisely

the restriction that defines ISL functions. Oakden et al. (2020) prove that the set of NR-BMRS

transductions corresponds to the ISL class of functions. The discussion below uses 3TS to illustrate.

Recall that an ISL function models Mandarin 3TS. That function is described by the NR-BMRS

system in (3.23). Below in (3.28), a list of terms for each function definition verifies this.
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(3.28) Function definition Terms

Ho(x) H(x)

Lo(x) L(x)

L(s(x))

Ro(x) L(x)

L(s(x))

R(x)

Fo(x) F (x)

None of the definitions contain recursive function calls. They are limited to instantiations of terms

s(T ) and σ(T ); the transduction thus computes outputs using bounded reference to input structure

only.

3.4.3 OSL in BMRS

OSL functions can also be modeled using a class of output-restricted BMRS (OR-BMRS).

Definition 2 OR-BMRS are the class of well-formed BMRS systems of equations where no term of

the form σ(T ) takes index sort terms of the type s(T ) or p(T ).

OR-BMRS systems are those for which terms σ(T ) can only take the index variable x. Index

terms s(T ) and p(T ) can form recursive function terms f(T ). Thus σ(s(x)) is not a well-formed

term in a OR-BMRS system, but f(s(x)) is. In intuitive terms, functions described by OR-BMRS

transductions restrict reference to the current input string, and a bounded window in the output

structure to either the right or left of the current input under evaluation. I conjecture that OR-BMRS

describe the OSL functions, but forego a formal proof here.13 Using the same intuition, LOSL and

ROSL classes are describable by OR-BMRS systems for which recursive function terms f(T ) take

only terms p(T ) and s(T ), respectively. This is in line with Bhaskar et al. (2020)’s generalization

regarding LSEQ and RSEQ classes.

13This proof will require restrictions to OR-BMRS beyond the limitation of using either p or s in recursive calls,
as below. To illustrate, well-formed BMRS systems can describe long-distance agreement patterns, which have been
shown to be non-OSL. Chandlee and Jardine (2019b) provide a schematic definition—for Σ = Γ = {a, b, c} and b

spreads to a with c as a blocker—using QFLFP:

b′(x) = [lfp(b(y) ∨ A(p(y)))](x) ∧ ¬c(x)

This definition models long-distance agreement by building a set of string positions following a b, plucking out the
input cs (the blockers), and outputting the resulting set as b. A BMRS system describing this function is possible
(with the use of helper functions), and is OR-BMRS-definable:

b′(x) = if bs(x) then

if c(x) then ⊥ else ⊤
else ⊥

where bs(x) is defined as if b(x) then ⊤ else bs(p(x)) (and hence is OR-BMRS). Restricting recursion to rule
out such cases is a crucial step in proving equivalence with OSL, and is left for future work.
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Recall in §3.3 that an OSL function models the iterative Tianjin LL sandhi pattern. This function

can be described as an OR-BMRS system. Its definition is given in (3.29).

(3.29) Ho(x) = H(x)

Lo(x) = if LLo(x) then ⊥ else L(x)

Ro(x) = if LLo(x) then ⊤ else R(x)

Fo(x) = F (x)

In the system above, all terms of type σ(T ) (i.e. H(T ), L(T ), R(T ), F (T )) take only the variable x.

The only instance of recursion—Lo(T ) in definitions Lo(x) and Ro(x)—takes s(x) as its term. It is

OR-BMRS given that it conforms to Definition 2, and intuitively describes an ROSL function. Note

that this system is nearly identical to (3.23), the exception being that the structure that licenses

output R and blocks output L is defined recursively. Like the ISL-equivalent, LLo is a shorthand

for the term

if L(x) then Lo(s(x)) else ⊥

and describes precisely the pink highlighted structure in (3.13a): an input L followed immediately

by an output L. In (3.30), an evaluation table shows that the transduction maps /LLLL/ to [RLRL],

consistently with attested Tianjin data (see (3.12)).

(3.30)
L L L L

1 2 3 4

LLo(x) ⊤⊤⊤ ⊥ ⊤⊤⊤ ⊥

R(x) ⊥ ⊥ ⊥ ⊥

L(x) ⊤⊤⊤ ⊤⊤⊤ ⊤⊤⊤ ⊤⊤⊤

Ho(x) ⊥ ⊥ ⊥ ⊥

Lo(x) ⊥ ⊤⊤⊤ ⊥ ⊤⊤⊤

Ro(x) ⊤⊤⊤ ⊥ ⊤⊤⊤ ⊥

Fo(x) ⊥ ⊥ ⊥ ⊥

Output R L R L

This generalization extends to all mappings from strings in Σ = {H,L,R, F} that undergo Tianjin

LL sandhi, regardless of the size of the string. A bounded window in the output structure—the

hallmark of an OSL function and formalized as a OS-BMRS transduction—is sufficient to compute

correct outputs.
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3.5 Discussion

So far, this chapter has framed the formal apparatus to be utilized in exploring phonological

process interactions. This section highlights some of the benefits of this approach, and in particular

the BMRS formalism. First, it provides a means to study both individual processes and their

interactions as single functions (§4.1). Additionally, the BMRS formalism provides an intuitive

means to explore process interaction compared to other computational formalisms, among its other

advantages (§4.2). Subsequent chapters will clarify this point in more detail, but it is prefaced here.

3.5.1 Individual map vs combined map

One advantage of the computational characterization advocated here is that it provides a vantage

point unavailable to either rule-based or optimization-based formalisms. That is, both individual

processes and their interactions can be modeled as single functions. Consider as an illustration a

hypothetical counterfeeding interaction between Mandarin 3TS and another sandhi processes given

by the following rule: R → H / R, denoted ‘RR rule’. In this toy example, the former counterfeeds

the latter such that /LLLL/ maps to [RRRL] and not *[HHRL]. This is shown in the derivations in

(3.31).

(3.31) a.

/LLLL/

RR rule —

3TS RRRL

[RRRL]

b.

/LLLL/

3TS RRRL

RR rule HHRL

*[HHRL]

A separate BMRS system defines each individual ‘rule’. The 3TS system in (3.23) is repeated below

as (3.32a); a NR-BMRS system for the RR rule is given in (3.32b).

(3.32) a. Ho(x) = H(x)

Lo(x) = if LL(x) then ⊥ else L(x)

Ro(x) = if LL(x) then ⊤ else R(x)

Fo(x) = F (x)

b. Ho(x) = if RR(x) then ⊤ else H(x)

Lo(x) = L(x)

Ro(x) = if RR(x) then ⊥ else R(x)

Fo(x) = F (x)

When each pattern is modeled as a distinct entity, it is possible to study their individual properties.

For example, both sandhi patterns can be characterized as ISL functions, but compute outputs using
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distinct sets of licensing/blocking structures. In this way, the computational framework offers a view

of the grammar not unlike an SPE-style analysis, where each transformation is defined as a separate

rewrite rule.14 This is unavailable to OT, which conceptualizes the grammar as a single mapping

from input to output.

A ‘combined map’ description of the grammar—modeling the interaction as a single step—can

also be defined using BMRS. In (3.33), a single BMRS system describes the counterfeeding order in

(3.31a).

(3.33) Ho(x) = if RR(x) then ⊤ else H(x)

Lo(x) = if LL(x) then ⊥ else L(x)

Ro(x) = if LL(x) then ⊤ else

if RR(x) then ⊥ else R(x)

Fo(x) = F (x)

As this system is NR-BMRS, it also serves as verification that the combined map (and crucially the

counterfeeding interaction) is ISL. This cannot be deduced simply by looking at (3.32a) and (3.32b)

in isolation. Thus it is possible to understand the properties of the interaction itself by defining it

as a single function (like an OT grammar), properties unavailable to a formalism that decomposes

interactions into discrete units (like SPE).

3.5.2 Benefits of BMRS

Chandlee and Jardine (2020), responding to earlier criticisms lodged by Pater (2018), outline

a number of advantages to the BMRS formalism compared to other computational formalisms

(especially automata-theoretic characterizations of phonological transformations). One is its abil-

ity to intensionally express phonologically-significant generalizations more directly than previous

approaches. For example, blocking structures represent marked surface structures that trigger a

phonological transformation, not unlike markedness constraints in OT. They capture the motivation

for the process itself, crucially in a way that aligns with traditional phonological analysis, but that

might be obscured if it were represented as an automaton. Additionally, BMRS provide a means to

implement phonological substance, something that is unavailable to previous approaches as well.15

It does so all while maintaining the important insights about subsequential complexity.

14One crucial difference is how BMRS models pairwise ordering of rules (or non-ordering). The next several chapters
explore this in detail.

15This dissertation does not explore the issue of substance in detail. BMRS analyses using phonological features
can be found in (Chandlee and Jardine, 2020). Thus, a benefit of this formalism is that it introduces one of Pater
(2018)’s senses of ‘substance’ into the theory—phonetic substance. The other sense, i.e. restrictions on combining
formal primitives, is not a priori guaranteed by representing phonological transformations as functions over string
models, whether as finite-state machines or logical transduction.



64

This dissertation will add another advantage of the BMRS formalism to the list: an intuitive

means to explore the relationship between individual maps and combined maps (in the terms de-

scribed in the previous section), and therefore a formal method for investigating phonological process

interactions. BMRS will be leveraged to determine how functions defined in (3.32a) and (3.32b) re-

late to an extensionally-equivalent combined map function in (3.33). In particular, this dissertation

highlights BMRS’ ability to clearly define sets of operations over systems of equations. This is the

focus of chapters 5 and 6.
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4 Motivating Representations

4.1 Introduction

The purpose of this chapter is to provide motivation for a particular string-based representation

of tone. There exist a variety of options—both linear string models and non-linear representations—

for representing tone and tonal processes. String models vary from phonetic descriptions of pitch

height (as in Chao (1930)’s tone letters), to syllable-level symbols, to melodic representations (e.g.

falling is represented as ‘HL’, rising as ‘LH’, etc.), to the more abstract characterizations in terms

of Middle Chinese register (yin and yang) and category (ping, shang, qu, ru) distinctions (see Mei

(1970); Pulleyblank (1978) for discussion but also Yip (1980); Pulleyblank (1986); Bao (1990) for a

generative view). A falling tone can thus be represented in any of the following ways as strings:

(4.1) Chao Tone Letter Syllable String Melody

53 F HL

Non-linear representations comprise classic autosegmental representations (ARs; Goldsmith, 1976)

and any of the numerous feature-geometric models that have been proposed for tone. Differences

among the latter type focus primarily on the set of features relevant to tone, as well as how to

represent hierarchical relationships between TBU, register, tonal root, and contour (see Chen, 2000;

Yip, 2002, for in depth discussion). Contours can be represented as single features (Wang, 1967),

or as a constituency of level tones with an additional binary (upper/high vs. lower/low) register

feature. Contour may be independent from register (Yip, 1980), dominated by it (Yip, 1989), or

a sister to it (Bao, 1990). Other models reject constituency of contour (Duanmu, 1990, 1994),

instead representing contours as sequences of level tone/register complexes. The same falling tone

in (4.1) therefore corresponds to any one of the following non-linear representations, where ‘TBU’

denotes the tone-bearing unit (syllable, mora, or vowel depending on the theory), ‘H’ denotes upper

register, ‘T’ a featureless root node, ‘c’ a featureless contour node, and ‘h’/‘l’ terminal tonal nodes

corresponding to ‘high’ and ‘low’:1

1This is only a small number of available non-linear theories. Others include (Clements, 1983; Hyman, 1986; Snider,
1990) for a tier-based approach and (Shih, 1986) for a prosodic approach.
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(4.2)

Goldsmith, 1976 Wang, 1967 Yip, 1980 Yip, 1989 Bao, 1990 Duanmu, 1990

TBU

lh

TBU

[+fall]

H

TBU

lh

TBU

H

lh

TBU

T

c

lh

H

TBU

hH

TBU

lH

Given this wealth of options, the choice of which representational scheme to adopt—linear or

non-linear—is non-trivial. One representation may be preferable to another on conceptual grounds,

for example if it can distinguish natural and unnatural tonal patterns in a way unavailable to other

representations. Adopting one representation may also be preferable if it makes relatively clearer

and more straightforward generalizations about tonal processes in a given language.

Another important question to address is whether a representational choice made for expository

clarity has theoretical consequences, as different theories of representation may or may not make

different predictions. Chen (2000, 56-7), for example, argues that the string representations (as in

(4.1)) are equivalent, and can thus be used interchangeably. The non-linear representations presented

above are claimed to constitute distinct theories as they make different empirical predictions (Chen,

2000; Yip, 2002). One’s choice of a feature geometric model of tone ostensibly commits them to the

particular predictions of that theory.

Recent computational work (Oakden, 2019b) has called this claim into question by showing

that feature geometric models proposed by Yip (1989) and Bao (1990) are notationally equivalent

in a mathematically rigorous way (see more discussion in §4). The computational framework can

therefore meaningfully inform choices of representation by verifying (or refuting) that the selection

between two representations carries theoretical ramifications. It also provides a means to test Chen

(2000)’s claim of equivalence of string representations.

The focus of this chapter is on the choice between syllable string and melodic string represen-

tations (in (4.1)) as it pertains to tone sandhi processes. It shall provide conceptual and formal

motivation for adopting syllabic string representations over melodies, and is organized as follows.

§2 introduces these representations and sketches some general advantages of melodies from local

and non-local tonal domains which are unavailable to syllabic string representations. Despite this,

§3 provides a series of conceptual arguments in favor of syllabic representations particular to tone

sandhi. The first is that melodies do not provide a more restrictive theory of tone sandhi than
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syllabic strings. The two thus make the same claims about natural and unnatural patterns in the

sandhi typology. Two case studies are then presented. They show that, on the level of individual

sandhi paradigms, melodic analyses make stipulative, sometimes paradoxical generalizations about

this data. Assuming syllabic representations, by contrast, permits straightforward and unproblem-

atic generalizations and thus allows greater focus on computation. §4 uses BMRS transductions to

verify Chen (2000)’s claim that these string representations are notationally equivalent, and there-

fore that the choice between the two is theoretically non-binding. However, this is contingent on the

crucial assumption that melodic representations are enriched with syllable boundaries. §5 interprets

these results together and speculates on possible extensions.

4.2 Syllabic Strings and Melodic Strings

This section introduces two forms of tonal representation over strings—syllabic strings and

melodic strings—as well as their properties, as they relate to tonal patterns. These properties

are relevant to the choice of which string representation to adopt for tone sandhi pattern analysis.

For simplicity, this chapter limits melodies to strings of H(igh) and L(ow) tonal segments and syllabic

strings to H(igh), L(ow), R(ising), and F(alling) symbols. It does not explicitly discuss M(id) tone as

a melodic/syllabic element, its possible permutations with H and L (low-rising/falling [LM/ML] and

high-rising/falling [MH/HM]), or its relevance to motivating representations. In-depth examination

of the issues presented in this chapter incorporating Mid tone is thus left for future work, but it is

important to note that the characterization of restricted melodies and syllabic strings is sufficient

to motivate one representation over the other.

In traditional autosegmental theory (Goldsmith, 1976), individual [H] and [L] tonal autosegments

populate a separate tier from a tier of timing units (e.g. syllables or morae) and relate to them via

an association relation (denoted by lines below). Assuming a timing tier of syllables, a trisyllabic

sequence of a rising tone followed by a low tone followed by a falling tone is thus represented:

(4.3) L H L H L

σ σ σ

As a string, the melodic representation of the structure above is [LHLHL]. Syllabic tier string

representation, on the other hand, can be thought of as a projection of the tonal information on the

melodic tier, but condensed such that the number of symbols in the string is equal to the number

of syllables. Contour tones, which necessarily comprise two autosegments on the melodic tier, are
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denoted with a single symbol in syllabic representation. Rising tones [LH] are denoted [R] and falling

tones [HL] are denoted [F]. Keeping with the projection analogy, level high and low tones project

directly to [H] and [L]. The same sequence in (4.3) can be represented over syllabic strings as [RLF].

Both [LHLHL] and [RLF] describe the same tonal structure. Thinking of the projection analogy

in a different manner, the key difference between these two representations is that syllabic strings

represent contour tones as single symbols while melodic strings decompose contours into sequences

of level tones.

While both representations have been utilized in previous studies of tonal phonology, one benefit

of melodic representations (not available to syllabic representations) is that they can capture tonal

patterns with non-local dependencies. For example, Jardine (2018, 2020) posits a class of melody-

local grammars which capture long distance tonal phenomena such as H-tone spreading patterns in

Copperbelt Bemba (Bickmore and Kula, 2013). In this pattern, final H tones spread rightward to

the end of the word (in phrase-final position), and any preceding (non-final) H tones only spread

one additional TBU. This is summarized below where acute accents denote high tone:2

(4.4) Example Gloss Syllabic string

a. tu-léé-pát-á ‘we are hating’ LHHH

b. bá-ká-f́ık-á ‘they will arrive’ HHHH

c. tú-lúb-ul-ulé ‘we should explain’ HHLLH

d. *tú-lúb-úl-ulé *HHHLH

e. *bá-ká-fik-a *HHLL

This pattern cannot be captured using string representations with a one-to-one correspondence

between tones and syllables. Crucially, spread of the first H tone is determined by the presence

of another H tone later in the string, but the two may be separated by an arbitrary number of

intervening L tones. This means that there is no way to locally determine whether a string is

wellformed with respect to this pattern. Distinguishing grammatical and ungrammatical surface

string representations would therefore require an arbitrarily large number of constraints (Jardine,

2018, 4):

(4.5) a. HHLLH b. *HHLLL

HHLLLH *HHLLLL

HHLLLLH *HHLLLLL

... ...

2Jardine’s analysis uses TBU strings for which the tone-bearing unit is the mora. The same generalization about
locality applies regardless of whether syllables or morae are the TBU (though some details about the Copperbelt
Bemba analysis differ). For consistency with the discussion in this chapter, syllabic strings are used instead.
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This non-local dependency can be described, however, as a constraint on the melodic tier. Be-

cause association from autosegments to timing tier segments can be one-to-many, the simple con-

straint *HL#—that is, a prohibition on a ‘H+L+word edge’ melody—captures the (potentially)

long-distance dependency in Copperbelt Bemba. It thus distinguishes grammatical (4.5a) and un-

grammatical (4.5b) tonal structures, importantly those where an arbitrary number of Ls intervene

between two H tones. This is shown below using traditional autosegmental representations.

(4.6) a. Satisfies *HL# b. Violates *HL#

H L H #

σ σ σ σ . . . σ

H L #

σ σ σ σ . . .

Given that tone sandhi does not exhibit long-distance dependencies as in Copperbelt Bemba, this

feature of melodies may not be directly relevant to the issue of string representations of sandhi

processes. Does the difference between melodic and syllabic string representations also extend to

local phenomena such that it bears on sandhi representation?

There is reason to believe that it does, as much previous work has adopted melodic representations

(Chen, 2000; Hyman and VanBik, 2004, and many others) enriched with a ‘.’ syllable boundary

symbol to analyze tone sandhi. These representations are discussed in detail in the following sections,

but an intuitive introduction about possible conceptual and computational differences between these

representations is provided here. It focuses on the observation that melodies ‘zoom in’ on sub-syllabic

tonal environments, a perspective which is unavailable to syllabic representations.

Consider the example of Tianjin tone sandhi (Li and Liu, 1985; Chen, 2000; Chandlee, 2019).

In sequences of disyllables, three sandhi alternations are attested: a falling tone surfaces as a low

tone before another rising tone (FF → LF or the ‘FF rule’), a low tone surfaces as a rising tone

before another low tone (LL → RL or the ‘LL rule’), and a rising tone surfaces as a high tone before

another rising tone (RR → HR or the ‘RR rule’).

(4.7) Input Output Gloss

a. jingFzhongF jingLzhongF ‘net weight’

b. feiLjiL feiRjiL ‘airplane’

c. xiRlianR xiHlianR ‘wash one’s face’

Both syllabic and melodic representations can describe the FF, LL, and RR rules. Note that the

melodic tier string in the example below utilizes the enriched representation to include syllable

boundaries (§3 and §4 offer conceptual and formal support for the enriched representation):
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(4.8) Syllable Representation Melodic Representation

FF rule F → L / F H → ∅ / L.HL

LL rule L → R / L ∅ → R / L .L.

RR rule R → H / R L → ∅ / H.LH

Two differences are apparent here. The first deals with characterizing the nature of each process,

and in particular the repair strategy employed to resolve an illicit tonal structure. Notice that over

syllabic representations, Tianjin tone sandhi rules are uniformly substitution patterns; an [F] tone is

substituted for an [L] tone, an [L] tone is substituted for an [R] tone, etc. Over melodies, however,

the rules can be described as either deletion (FF and RR rules) or epenthesis (LL rule). This level

of representation distinguishes the rules’ repair strategies in a way that the syllabic representation

does not, and therefore provides more information with which to generalize the paradigm. In other

words, decomposing contour tones into sequences of level tones provides an additional sub-syllabic

local environment at the syllable boundary (i.e. ‘edge-effect’ environments; see the next section for

more discussion). To the extent that sandhi grammars are sensitive to this level of representation,

melodies may be preferable over syllabic tier strings in analyzing tone sandhi processes.

The second difference is computational in the nature: the size and structure of the window

(i.e. the value of k) needed to identify the triggering environment and thus compute the mapping

from input to output. For syllabic representations, the value of k for all three rules is 2: they can

be computed by referencing the current input symbol and one input symbol immediately to the

right. No other information is needed. Representation over melodies entails a uniform increase of

the k-value to 5 when syllable boundaries constitute a distinct symbol (consistent with analysis in

Chandlee, 2019). This is shown for the RR rule in the example below.

(4.9) a.
Input: ... R R ...

Output: ... H R ...
b.

Input: ... L H . L H ...

Output: ... H . L H ...

Using syllabic representations (4.9a), the sandhi output (the grey cell) can be determined solely by

a window of size two in the input, whereas melodic representations (4.9b) require a window of five

string positions to identify the same sequence: two adjacent rising tones.

There is also a difference in the nature of the conditioning environment. As illustrated in (4.8),

the FF and RR rules contain triggers to the right of the target only, but the LL rule must be described

with both rightward and leftward environments. Melodic representations thus divide the Tianjin

rewrite rules into distinct categories along two dimensions. FF and RR rules are deletion rules with

right environments, and the LL rule is an epenthesis rule with both right and left environments.

These generalizations are absent from syllabic tier string representations, which collapse all three
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rules into a single category: substitution rules with a right environment. Whether these intuitions

provide substantial motivation for adopting one representation over the other to analyze tone sandhi

is the topic of the next two sections.

4.3 Conceptual Motivation

Syllables and melodies offer two distinct levels of representation over which tonal strings are

defined. As the previous section illustrates, melodies capture tonal phenomenon at the non-local

level (unavailable to syllabic representations) while also allowing ‘decomposition’ of contour tones

at the local level (also unavailable to syllabic representations). A reasonable assumption following

from the latter observation is that melodic string representations are a good candidate for analyzing

local tone sandhi processes, and are perhaps preferable to syllabic representations. The purpose

of this section, however, is to attack that assumption. Three conceptual arguments presented here

indicate that melodic tier string representations are ill-suited to tone sandhi processes, and that their

syllabic string counterparts are in fact preferable. The first argument weakens the conceptual appeal

of melodies by illustrating that they do not permit a more restrictive theory of tone sandhi than is

available to syllabic strings. Two case studies of attested sandhi paradigms are then presented. These

case studies show that while adopting melodic representations present numerous complications,

syllabic string representations allow for straightforward and focused computational analysis of the

data. They are thus preferable to adopt in this dissertation.

4.3.1 Phonetically-arbitrary Sandhi

Recall that the apparent nature of the process changes when switching from a syllable-level

string representation to a melodic representation: substitution over syllabic strings and deletion or

epenthesis over melodies. Does this suggest that melodies capture the more basic mechanisms of

sandhi that are obscured in a syllabic-representation? On the surface, it would seem that melodies

‘zoom in’ on tonal information by representing a local environment below the syllable level. This

allows for a more fine-grained description of both triggering environments and repair strategies. A

reasonable conjecture, then, might be that a melodic representation is preferable because it may

separate natural and unnatural sandhi patterns, and therefore it offers a more restrictive theory

of tone sandhi in language. The general consensus in phonological theory is that natural patterns

are typologically frequent, phonetically grounded, and describable with simple rules or constraints

(Halle, 1962; Chomsky and Halle, 1968b; Hyman, 1975). In a computational sense, this simplicity
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might correspond to the value of k (Danis et al., 2017), where natural patterns have a lower k value

and unnatural patterns have a higher k value. Though the Tianjin sandhi rules defined over melodies

in §2 did not differ in the value of k, a wider search of attested patterns would likely yield differing

values, whereas syllabic representations would not. Might this mean something?

One way to test this conjecture is to determine whether melodies’ fine-grained descriptions can

explain systematic gaps in the typology. Examining the typology indicates that melodic representa-

tions do not distinguish natural and unnatural sandhi patterns. This is due in part to the fact that

many tone sandhi patterns are phonetically unnatural and seemingly arbitrary (see, e.g., Zhang,

2014), and have therefore evaded a straightforward characterization in terms of one or more basic

mechanisms.3 To illustrate, consider the following table which exhausts the logically-possible ex-

tensions of disyllables with the same tone in so-called ‘right-dominant’ systems of four lexical tones

(high, falling, low, rising), and includes whether these extensions are attested in Chinese dialects.

(4.10) Input Output Attested?

H.H H.H yes (Tianjin; Li and Liu, 1985)

H.H L.H yes (Hefei; Kong, 2008)

H.H HL.H yes (Rizhao; Wu and Liu, 1981)

H.H LH.H yes (Boshan; Chen, 2000)

HL.HL HL.HL yes (Standard Mandarin; Li and Thompson, 1989)

HL.HL L.HL yes (Tianjin; Li and Liu, 1985)

HL.HL H.HL yes (Nanjing; Liu and Li, 1995)

HL.HL LH.HL yes (Pingyao; Hou, 1980)

L.L L.L yes (Laowu Zhoujia; Yan, 1981)

L.L H.L yes (Yantai; Qian, 1981)

L.L LH.L yes (Standard Mandarin; Li and Thompson, 1989)

L.L HL.L no

LH.LH LH.LH yes (Nanjing; Liu and Li, 1995)

LH.LH H.LH yes (Tianjin; Li and Liu, 1985)

LH.LH HL.LH yes (Pingyao; Hou, 1980)

LH.LH L.LH yes (Ningbo; Chan, 1995b)

The table suggests that using the types of environments distinguishable by melodic representations

to split up the typology into natural and unnatural patterns is not a good fit for tone sandhi. This

is because nearly every combination is attested in the typology.

Another possibility is that melodies’ advantages are best exploited not on the meta-level of sandhi

typology, but in providing natural explanations of sandhi paradigms within individual languages.

3This is not to say that all tone sandhi are arbitrary or do not lend themselves to analyses in terms of sequences of
melodic units. Previous arguments for feature-geometric representations of tone (Yip, 1989) demonstrate how, in some
sandhi processes, contour tones display edge effects similar to affricates, but also function as units (Clements, 1985;
Sagey, 1986). In this chapter I argue that, while this may be true for isolated cases, adopting melodic representations
for tone sandhi more broadly lacks conceptual and formal motivation.
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The primary difference between melodies and syllable-level representations is that melodies can

represent so-called ‘edge effect’ environments. Several examples below illustrate.

(4.11) Syllable Melody

FR HL.LH

LL L.L

FL HL.L

LR L.LH

Melodies demonstrate that FR is the same edge environment as LL, FL, and LR: adjacent L-tones

abutting a syllable boundary. The same principle applies to RF and HH, HF, and RH. If these

sequences pattern together in some sandhi paradigm, the melodic representation offers a potential

explanation of a trigger that is not available to syllabic representation.

In phonological analyses of tone sandhi processes, however, the vantage point afforded by melodic

representation does not return such results. Again, this is because tone sandhi is phonetically arbi-

trary. Attempts to impose a melodic framework on tone sandhi often produce stipulative analyses.

For example, Chen (2000, 123)’s analysis of Tianjin tone sandhi posits two types of OCP constraints

as the active markedness strictures; one operates over syllables (4.12a) and the other operates over

melodies (4.12b-c).

(4.12) a. OCP- no adjacent identical tones (except HH)

b. OCP′- no *FL (=HL.L) sequences

c. OCP′′- no adjacent partially-identical tones (*L.LH, *H.HL, *HL.LH, etc.)

The ranking OCP, OCP′ >> Faithfulness >> OCP′′ explains why FF maps to LF and not HF.

The string HF violates OCP′′ [H.HL] in addition to a single faithfulness violation, and so LF wins

out via an Emergence of the Unmarked effect (TETU Prince and Smolensky, 1993). This appears

to be an argument in favor of melodic representations, but the necessarily specific definitions of

these constraints suggest otherwise. OCP′ is posited as a melodic-tier constraint which prohibits

the substring [HL.L]. It does not apply to all sequences containing [L.L] as in (4.11), and thus

does not describe an edge effect or an OCP effect in the conventional sense of those terms. In other

words, it stipulates an environment that cannot be derived from general principles. Additionally, the

constraint does not apply to all sequences of [HL.L], either. One example is a disyllabic sequence of a

falling tone followed by a rising tone [FR]. According to Chen’s analysis, [FR] does not violate OCP′,

however it is unclear why this should be the case. These tones do, in fact, exhibit the prohibited

substring—[HL.LH]. Chen’s OCP′ actually targets the illicit substring [HL.L.], which is to say it
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targets syllable-level strings [FL]. The only reason to posit it as a melodic constraint is to subsume

the pattern under the OCP edge effects; as the above discussion has shown, however, it is neither.

The above example illustrates how representing tones as H/L melodies does not clarify restrictions

on tone sandhi in any way that is unavailable to syllabic strings. The only real limitation on sandhi

seems to be that patterns are local, a generalization captured by strictly-local functions regardless

of representation. In other words, the most relevant restriction is not on representation, but rather

on computation.

The following sections present two case studies: Hakha Lai tone sandhi and Nanjing tone sandhi.

These underlie the phonetic arbitrariness of tone sandhi and illustrate that imposing melodic repre-

sentations on sandhi data results in failed analyses, whereas equivalent syllable-based representations

are straightforward. These thus provide conceptual support for adopting syllable-level representa-

tions of sandhi processes.

4.3.2 Case Study 1: Hakha Lai Sandhi

The first case study analyzes representational issues emerging in an OT account of Hakha Lai

tone sandhi (Hyman and VanBik, 2004). On the disyllabic level, a conspiracy presents itself when

representing the language’s contours as sequences of level tones—that is, when the scope of analysis

is on the melodic tier. This generalization collapses upon expansion to trisyllabic sequences, as the

driving force of the conspiracy fails to hold for 3-syllable forms. By assuming syllable-level tonal

representation, however, a straightforward analysis of 2- and 3-syllable sandhi forms is possible. The

Hakha Lai data thus present a cautionary tale for sandhi analysis: appealing to the melodic tier

may present a convincing explanation of a subset of the data, but it may also lead the analyst away

from a unified account of the full paradigm.

4.3.2.1 An Ostensible Conspiracy

Given a tonal inventory of three tones R(ising), F(alling), and L(ow), three basic rules describe

disyllabic sandhi patterns in Hakha Lai:

(4.13) Rule Description

FL rule F → L / {F,L}

RL rule R → L / L

RR rule R → F / R

This means that of the 9 possible disyllabic combinations of three lexical tones, four combinations

trigger sandhi and five do not. This information is summarized in the table below, where the first
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syllable is indicated in rows and the second syllable in columns. Sandhi forms are given in bold.

(4.14) F R L

F FL

R RF LL

L LL

A natural question arises from these data: why only the four combinations above? From the vantage

point of syllabic representations, these changes are arbitrary. However, decomposing these tones

into their melodic representation presents a possible explanation which is unavailable to syllable-

level representations. To see this, consider the table below which presents the sandhi paradigm in

terms of melodic tier strings; F(alling) tones are represented as [HL] and R(ising) tones as [LH]. All

melodies are presented, and alternating sandhi forms are again given in bold.

(4.15) HL LH L

HL HL.L HL.LH HL.L

LH LH.HL LH.HL L.L

L L.L L.LH L.L

When contours are defined as sequences of level tones, the difference between alternating and non-

alternating tones is remarkably clear: only inputs whose melodic-tier tones differ across a syllable

boundary undergo sandhi. Additionally, sandhi produces forms with identical tonal units across the

syllable boundary.

(4.16) Non-alternating Alternating Sandhi Output

a. LH-HL b. HL-HL c. → HL-L

HL-LH LH-LH → LH-HL

L-LH LH-L → L-L

HL-L L-HL → L-L

L-L

Given this striking consistency, it would appear that a melodic-tier conspiracy is at work. In their

analysis, Hyman and VanBik (2004) describe the situation as: “The end-tone of one syllable should

be the same as the beginning tone of the next (i.e., do not change tone levels between syllables!).”

They formalize this stricture as a markedness constraint termed the No Jumping Principle, or No-

Jump. It prohibits a structure whereby some melodic unit (αH) associating to a TBU is immediately

followed by a melodic unit of different specification (−αH) and associates to an adjacent TBU. In

other words, tonal changes (from H to L or L to H) must take place within syllables, not across

them.
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Sequences of tones in violation of NoJump are precisely those which undergo sandhi, and those

which do not violate the constraint do not. This consistency lends support to the conspiracy approach

and the activeness of NoJump in the grammar of Hakha Lai. An OT analysis with undominated

NoJump explains the constraint’s interaction with basic tonal faithfulness and other markedness

strictures to predict optimal forms in disyllabic sequences. The fundamental markedness-over-

faithfulness ranking is NoJump >> Ident(T); that is, the pressure to avoid intrasyllabic tonal

changes outweighs faithfulness to underlying tonal specification. Both constraints outrank a univer-

sal, “phonetically-grounded” markedness scale *R >> *F >> *L, which is condensed into a single

constraint Markedness. Its effect in the grammar is to privilege the least marked repair, e.g. FF →

FL and not the more marked *FR. To capture the paradigm’s (mostly) left-dominant nature—sandhi

affects the rightmost tone—Hyman and VanBik propose LeftProm. This is violated by RL → LL,

which motivates the ranking Markedness >> LeftProm. The full hierarchy is thus NoJump

>> Ident(T) >> Markedness >> LeftProm. An example tableau for the input /RR/ is given

below to illustrate evaluation with this hierarchy.

(4.17)
/ka R-R/ NoJump Ident (T) Markedness LeftProm

F-F *! *-* *
F-R *- *!
F-L *-*! *

→ R-F -*
R-R *!
R-L *! -*
L-F *! *-* *
L-R *- *!
L-L *-*! *

The ordering over four constraints predicts observed outputs for all disyllabic forms. Hakha Lai

therefore presents a strong case for appealing to the melodic tier; seemingly arbitrary tonal changes

become principled changes by ‘zooming in’ on fine-grained tonal structure.

Compared to Chen (2000)’s melodic analysis of Tianjin introduced in the previous section, the

Hakha Lai data and their explanation by Hyman and VanBik (2004) are much more compelling.

One important reason is that—unlike Chen’s OCP′—NoJump describes a true edge effect: the

illicit substrings are [L.H] and [H.L]. In addition, the disyllabic data pattern around these edge

environments consistently such that every disyllabic sequence with one of these substrings undergoes

sandhi, and no others. Representing Hakha Lai tones as syllable-level tonal strings obscures this

generalization, and as such provides no explanation for why four disyllables undergo sandhi to the

exclusion of the other five.
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4.3.2.2 A Non-Conspiracy

The conspiracy approach, despite its clear and compelling nature, only applies to a subset of

the data. An OT analysis with NoJump as the primary markedness pressure fails when applied to

tonal strings longer than two syllables. This is because simultaneous application of the RF rule in

sequences of three or more input R tones yields outputs which themselves violate NoJump:

(4.18) a. RRR 7→ RFF

b. RRRR 7→ RFFF

For inputs /RRR/ and /RRRR/, surface forms [RFF] and [RFFF] garner multiple violations of

NoJump— e.g. RFF = LH.HL.HL. However, these outputs are preferred over the unattested *[RFR]

and *[RFRF] which incur no violations. What is remarkable here is that the repair strategy for

a NoJump conspiracy also violates NoJump! Thus, while the disyllabic data seem to indicate

a straightforward conspiracy, expanding the scope to three or more syllables problematizes that

analysis (in addition to the pattern being opaque).

Confronted with this, one way to salvage the conspiracy analysis is to propose that some other

constraint in the grammar or general principle compels violation of NoJump for tri-syllabic se-

quences, but is inactive for disyllables. Hyman and VanBik (2004) do precisely this, and attribute

the anomaly to directionality. The offending RFF and RFFF sequences are the result of right-to-left

application of the RR rule: left-to-right application would predict the non-NoJump-violating—albeit

unattested—*[RFR].

(4.19) a. right-to-left

RRR

|

RRF

|

RFF

b. left-to-right

RRR

|

*RFR

The authors cite Chen (2000, 2004)’s general principles on sandhi interaction—the same are employed

in Chen’s accounts of Tianjin and Changting—in an attempt to redeem the conspiracy analysis:

(4.20) a. Temporal Sequence

b. Well-Formedness Conditions

c. Derivational Economy

d. Transparency

e. Structural Affinity

f. Simplicity (=Markedness)
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However, they illustrate that no appeal to these principles can save the conspiracy approach with

NoJump as a driving force. It is not simply the case that the conspiracy is active in the grammar but

obscured in trisyllables as a result of other markedness or faithfulness pressures. To provide a unified

analysis of the full dataset—crucially including trisyllabic forms—an alternative non-conspiracy

account is needed. In other words, it is necessary to propose a completely different account.

One alternative analysis starts with the assumption that tone sandhi tends to be phonetically ar-

bitrary and is thus unlikely to exhibit edge effect conspiracies. Melodic representations are therefore

unnecessary as the extra information they provide may be irrelevant; syllable-level representations

are posited instead. In the next section, I sketch such an analysis using BMRS and illustrate that

it accounts for 2- and 3-syllable data equally well.

4.3.2.3 A Syllabic Analysis

Assuming syllable-level strings, the following BMRS system of equations captures the basic

sandhi facts in (4.13):

(4.21) Ro(x) = if RR(x) then ⊥ else

if RL(x) then ⊥ else R(x)

Fo(x) = if RR(x) then ⊤ else

if FF (x) then ⊥ else

if LF (x) then ⊥ else F (x)

Lo(x) = if FF (x) then ⊤ else

if LF (x) then ⊤ else

if RL(x) then ⊤ else L(x)

In intuitive terms, this system describes the following relationships between input and output lexical

tones in Hakha Lai. First, an input [R] tone will map to an output [R] tone provided it is not

immediately preceded by another input [R] tone or immediately followed by an input [L] tone. In

the former case, it is output as [F] and in the latter case as [L]. An input [F] tone will map to an

output [F] tone provided it is not preceded by an input [L] or [F] tone, in which case it surfaces

as [L]. Finally, an input [L] will always map to [L] in the output. This system describes an ISL2

function.

This system of equations makes the correct predictions regarding disyllabic sandhi. More impor-

tantly, the system describes the mapping /RRRR/ 7→ [RFFF] which proved fatal for the conspiracy

analysis using melodic representations. The table below gives the evaluation of the input /RRRR/
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against the system of equations in (4.21):

(4.22)

Input: R R R R

1 2 3 4

Ro(x) ⊤⊤⊤ ⊥ ⊥ ⊥

Fo(x) ⊥ ⊤⊤⊤ ⊤⊤⊤ ⊤⊤⊤

Lo(x) ⊥ ⊥ ⊥ ⊥

Output: R F F F

Analyzing sandhi alternations in this way—that is, as potentially arbitrary substitutions of syllable-

level lexical tones in local environments—has the advantage of accounting for both 2- and 3-syllable

forms equally well. This is unavailable to the conspiracy account, which fails in spite of providing a

compelling picture of melodic edge effects for disyllables.

4.3.2.4 Discussion

One of the advantages of the NoJump account and of conspiracies in general is that they explain

more data with fewer constraints. A potential criticism of the analysis above, then, is that it merely

lists out the changes without condensing the generalizations. It is possible to define a BMRS system

of equations over melodies which recreates the NoJump conspiracy effect. A simplified system is

defined below.4

(4.23) Lo(x) = if H.Lo(x) then ⊤ else

if L.Ho(x) then ⊥ else L(x)

Ho(x) = if H.Lo(x) then ⊥ else

if L.Ho(x) then ⊥ else H(x)

With only two licensing/blocking structures, this system accounts for the same patterns for which

the syllabic string system in (4.21) requires four. It presents a concise generalization about the

data—a prohibition on output H-L and L-H melodic sequences across a syllable boundary—using

fewer constraints. However, it will fail to account for the trisyllabic data for the same reason that

doomed the OT analysis: the full dataset cannot be explained by a melodic conspiracy. The opaque

trisyllabic mapping /LH.LH.LH/ 7→ [LH.HL.HL] (that is, /RRR/ 7→ [RFF] as above) illustrates this

point.

(4.24)

Input: L H . L H . L H

1 2 3 4 5 6 7 8

L′(x) ⊤⊤⊤ ⊥ ⊥ ⊥ ⊤⊤⊤ ⊥ ⊤⊤⊤ ⊥

H ′(x) ⊥ ⊤⊤⊤ ⊥ ⊤⊤⊤ ⊥ ⊥ ⊥ ⊤⊤⊤

Output: L H . H L . L H

4This system describes a 3-ROSL function.
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Much like the corresponding OT analysis, a conspiracy account driven by a NoJump-like restriction

will predict the unattested /LH.LH.LH/ 7→ *[LH.HL.LH] (/RRR/ 7→ *[RFR]), as it maximally obeys

the conspiracy restriction represented by H.L′(x) and L.H ′(x). This is inconsistent with the attested

forms in Hakha Lai.

Interestingly, the final conclusion Hyman and VanBik (2004) reach is not that there might be

no conspiracy in Hakha Lai after all. Rather, the output-drivenness of OT is the main culprit

of the paradox. The authors present multiple alternative analyses, including a “direct-mapping”

approach—similar to the system in (4.21)—which they select as the most simple and revealing as it

contains none of the difficulties inherent in a strictly output-driven account. However, they retain

the crucial assumption that the language’s contours are indeed sequences of level tones—that is, that

melodic representations offer the best analysis. This presents multiple options for how to describe

the basic disyllabic sandhi rules, and the picture becomes rather complicated (Hyman and VanBik,

2004, 856):

In §6 we then considered different interpretations of the tone rules. Up until this point we had
assumed that both of the changes F → L and R → L involved deletion of a H tone feature (HL,
LH → L), and that R → F involved tonal metathesis (LH → HL). In §6 we considered two
possibilities involving intermediate stages; (i) input /LH/ first becomes H by delinking the L,
and then HL by insertion of L on the other side of H (since Hakha Lai does not permit H level
tone); (ii) all three tones sandhi are spreading rules that produce HLH and LHL contours, which
then simplify by H-delinking to HL and L, respectively. We stipulate that a three-level approach
can certainly be made to work, whether by rules, direct mapping, or output constraints (whose
ranking could vary between levels 1,2 vs. levels 2,3).

Assuming syllable-level (that is, non-melodic and undecomposable) tonal representations for Hakha

Lai and positing the potentially arbitrary nature of tone sandhi obviates the need to consider any of

the complications described above. Sandhi processes are local substitutions, and the same analysis

for disyllabic forms extends automatically to trisyllabic forms.

Two claims follow from this analysis. One is that the grammar is not sensitive to—or has no access

to—the melodic tier for these patterns, and the other is that the ‘conspiracy’ Hyman and VanBik

(2004) observe is merely a coincidence. Given a melodic tier with only H and L tone segments (a

binary distinction) and a lexical inventory of three tones (R,H,L), such a configuration is inevitable.

The authors present a convincing case for the conspiracy, but the appearance of this configuration of

tones over a subset the data is not an automatic guarantee that a conspiracy is afoot. In fact, strong

evidence against a conspiracy comes from the trisyllabic data and subsequent failure to account for

these forms incorporating Chen’s general principles. This case shows that decomposing contours into

melodic elements can lead away from a unified account of the data. Syllable-level representations,
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especially for phonetically-arbitrary tone sandhi processes, provide no such danger, and are thus

preferable in the analyses of tone sandhi conducted in this dissertation.

4.3.3 Case Study 2: Nanjing Sandhi

The second case study demonstrates that melodic representations are problematic in an account

of Nanjing dialect tone sandhi. Not only do these patterns not exhibit conspiracy-like behavior as

in Hakha Lai, but an exclusively melodic explanation of the data yields paradoxical generalizations

about the sandhi paradigm. The crux of the issue is the presence of checked tones in this language’s

lexical tone inventory; these are defined both in terms of tonal realization and syllable structure.

This tone is phonologically-distinct (as evinced through sandhi) from another tone with the same

melody, so distinguishing the two representationally requires adding segmental information to the

melodic tier, an unconventional and undesirable assumption. In anticipation of the formal discussion

in the next section, it is also shown that syllable boundaries are an equally crucial component of the

melodic tier to derive the Nanjing paradigm. Thus the ‘melody’ is a tier necessarily containing tones,

segments, and syllable boundaries. By contrast, an alternative syllable-level analysis distinguishes

tones simply by positing different symbols; it avoids these complications and offers a straightforward

account of the data.

4.3.3.1 Sandhi Paradigm and Melodic Interpretation

The Nanjing dialect is a five-tone system; it contains L(ow), H(igh), R(ising), and F(alling) tones,

as well as a high ‘checked’ tone (Liu and Li, 1995). These tones are defined by the presence of an

occlusive coda, typically [p, t, k, P]. The Nanjing checked tone contains a glottal stop coda, though

recent work suggests it may be disappearing from the language (Gu, 2015; Oakden, 2017). Despite

this, the checked tone is active in the tone sandhi paradigm of the language. Disyllabic sandhi is

summarized below, where “HP” indicates the checked tone, and alternating tones are in bold. Note

that the sandhi patterns for ‘H’ and ‘HP ’ are different. H triggers sandhi on a preceding L, and

undergoes sandhi before HP , while HP triggers sandhi before R and H, and itself does not undergo

sandhi alternation.

(4.25) F R L H HP

F HF

R LHP

L RF RL RH

H FHP

HP
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As with Hakha Lai, appealing to the melodic tier may shed light on why certain concatenations of

lexical tones trigger sandhi and others do not. It has the potential to condense generalizations about

illicit tonal surface representations across processes by identifying conspiracy-like behavior. Within

the Nanjing sandhi paradigm, the melodic edge-effect approach at first glance appears fruitful,

given that five of the six disyllabic sandhi processes can be described in terms of only two illicit

submelodies.

(4.26) Sandhi Rule Melodic Representation Illicit Submelody

FF → HF HL.HL → H.HL L.H

LF → RF L.HL → LH.HL

LH → RH L.H → LH.H

RHP → LHP LH.HP → L.HP H.H

HHP → FHP H.HP → HL.HP

The illicitness of the ‘L.H’ submelody may bear some resemblance to the NoJump-driven conspiracy

in Hakha Lai tone sandhi. A ‘jump’ from a low tone to a high tone across a syllable boundary triggers

sandhi in three distinct cases involving different lexical tones, though this sequence is acceptable

within a syllable (i.e. rising tones). If such a conspiracy were active in Nanjing, the expectation

is that ‘H.L’ would be similarly ill-formed. However no sandhi is attested for disyllables with this

submelody, as the following table illustrates. Note that none of the disyllables shown in bold undergo

sandhi.

(4.27) HL LH L H HP

HL

LH LH.LH LH.L

L

H H.LH H.L

HP

The pattern /LL/ 7→ [RL] offers more evidence against the Hakha Lai-style conspiracy analysis;

its surface form violates NoJump [LH.L] to resolve an input configuration [L.L] which does not

violate this constraint. Thus the data do not enjoy a straightforward characterization in terms of

a conspiracy. This does not automatically preclude a melodic analysis, however. It may still be

possible to explain the paradigm using a tier of H and L segments. The next section addresses this

more generally.
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4.3.3.2 Issues with the Melodic Approach

A melodic analysis is in general ill-suited to the Nanjing sandhi data. It is unattractive for two

reasons, one conceptual and the other formal. This section addresses each separately.

First, the melodic interpretation of this sandhi paradigm offers no explanatory or predictive

power. Not only is there no conspiracy that can be gleaned from the melodic tier, framing the

problem in terms of illicit submelodies—crucially as edge-effects—fails to yield any meaningful gen-

eralization of the data. To see why, recall that the three disyllabic sandhi rules in (4.26) containing

the ‘L.H’ submelody all resolve to ‘H.H’. Under a melodic tier analysis, then, an H segment can be

said to trigger melody-local assimilation. The other two sandhi patterns contain the illicit submelody

‘H.H’ and resolve to ‘L.H’ suggesting local dissimilation.

(4.28) Input Output Process

HL.HL H.HL Local Assimilation

L.HL LH.HL Local Assimilation

L.H LH.H Local Assimilation

LH.HP L.HP Local Dissimilation

H.HP HL.HP Local Dissimilation

Thus the generalization from the melodic tier is that high tone segments drive assimilation and

dissimilation. Given a size two inventory of tonal segments {H,L}, this exhausts the logically-

possible options for transformations; in other words, this analysis makes no predictions because

everything is possible (and in fact is attested).

From the perspective of SPE, attempting to define melodic rewrite rules for these patterns illus-

trates that such an approach is untenable. Because each rule creates the structural environment of

the other rule, no ordering between rules will account for the subset of the data under consideration.

In other words, represented over melodies, Nanjing tone sandhi presents an ordering paradox. This

is presented schematically below, where some rule R1 maps submelody ‘L.H’ to ‘H.H’ and a different

rule R2 performs the opposite operation.

(4.29) UR /...L.H.../ /...H.H.../

R1 ...H.H... —

R2 ...L.H... ...L.H...

SR *[...L.H...] [...L.H...]

UR /...L.H.../ /...H.H.../

R2 — ...L.H...

R1 ...H.H... ...H.H...

SR [...H.H...] *[...H.H...]

The result is a melodic Duke-of-York-type effect over a subset of the data for each ordering. Positing

melodic edge environments for Nanjing sandhi is clearly a nonstarter. The only alternative—similar

to Chen’s analysis of Tianjin—is to specify a larger window of tonal information such that the
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conditioning environments are no longer edge-effects in the sense of Hakha Lai. In the case of

Nanjing, this requires including the glottal stop in the relevant window so as to distinguish the

lexical high and high checked tones.

Doing so, however, underlies a central issue facing the melodic approach. This is because the

level of representation necessary to capture Nanjing sandhi is not the conventional melodic tier,

that is, sequences of H and L tonal segments. Expanding the prohibited ‘H.H’ submelody and its

repaired melody to include the glottal stop—H.HP and L.HP —resolves the issue stated above; the

triggers and repairs for L.H and H.HP no longer overlap. It furthermore prevents the repair from

overapplying to well-formed tonal strings with the H.H submelody, namely disyllabic sequences of

rising + falling LH.HL, rising + high LH.H, high + falling H.HL and high + high H.H tones.5 In

other words, it disambiguates the phonologically-distinct checked and non-checked high tones which,

in terms of the melody, are simply ‘H’. While presenting a more complete account of the data, this

assumption is problematic because it requires segmental information, in this case a glottal stop coda,

to be represented on the melodic tier. This confounds basic assumptions about the autosegmental

nature of tone.

Relatedly, the presence of syllable boundaries ‘.’ implicit in the analyses of Nanjing and Hakha

Lai are both equally necessary (see the next section for more discussion). From a formal perspective,

a melodic tier analysis without syllable boundaries is impossible for the Nanjing data. This is

because syllable boundaries crucially distinguish licit and illicit substrings. For example, consider

the two pairs of mappings in (4.30). The first pair comprises the disyllabic sequence [FF] and

the quadrisyllabic sequence [HLHL]. Without syllable boundaries, their melodic representation is

identical: [HLHL]. But recall that their outputs are distinct; [FF] undergoes sandhi to yield [HHL]

and [HLHL] surfaces unchanged. The same is true of [R] and [LH] in the second pair.

(4.30) Intended Structure Melody Output

Disyllabic FF 7→ HF HLHL HHL

Quadrisyllabic H+L+H+L HLHL HLHL

Monosyllabic rising tone R LH LH

Disyllabic LH 7→ RH LH LHH

Lack of explicit reference to syllable boundaries produces multiple distinct outputs for the same

input. In formal terms, this mapping cannot be described by a function. The representation therefore

must include the syllable boundary (and the glottal stop) for these mappings to be described as

functions.

5This also indicates that the lexical tonal category of checked tone—represented in its entirety on the melodic
tier—is what triggers sandhi, not just the presence of a high-toned melodic segment.
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To summarize, both syllable boundaries and glottal stop coda—neither of which are ‘melodic’

elements in the conventional sense—are necessary to account for the Nanjing data. The following

discussion sketches an alternative account using syllabic representations. The phonologically-relevant

distinction between high and high checked tones is achieved simply by positing different symbols,

resulting in a straightforward analysis of the disyllabic data.

4.3.3.3 A Syllabic Analysis

A syllable-level representational analysis posits different input symbols for each lexical tone in

the Nanjing dialect. One possibility is Σ = {H, L, F, R, C} where ‘H, L, F, R’ refer to tones

in the conventional way and ‘C’ denotes checked tone syllables. High and high checked tones are

thus distinguished in the input alphabet. A BMRS system of equations describing Nanjing sandhi

contains five output boolean functions (one for each lexical tone). Separate definitions of Ho(x) and

Co(x) underlie the distinction between these lexical tones in the phonological grammar. A fragment

of such a system illustrates.

(4.31) Ho(x) = if HC(x) then ⊥ else

if FF (x) then ⊤ else H(x)

Fo(x) = if FF (x) then ⊥ else

if HC(x) then ⊤ else F (x)

Co(x) = C(x)

The definitions above relate input tones to output tones in Nanjing using two input-local environ-

ments as blocking/licensing conditions. When [HC] is read in the input, only the output [FC] (the

input high tone is realized as falling) will satisfy this system. Similarly, when [FF] is read, only

the output [HF] (the input falling is realized as high) will satisfy this system. High tones therefore

undergo sandhi when immediately followed by a high checked tone (and function as the sandhi tone

for the input [FF]), but do not trigger sandhi. This is distinct from high checked tones, which trigger

sandhi in the aforementioned environment but do not undergo it. The mappings /HC/ 7→ [FC] and

/FF/ 7→ [HF] satisfy the transduction in (4.31) as below.

(4.32) a.

Input: H C

1 2

Ho(x) ⊥ ⊥

Fo(x) ⊤⊤⊤ ⊥

Co(x) ⊥ ⊤⊤⊤

Output: F C

b.

Input: F F

1 2

Ho(x) ⊤⊤⊤ ⊥

Fo(x) ⊥ ⊤⊤⊤

Co(x) ⊥ ⊥

Output: H F
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Each string position in the above examples evaluates to true for only one output boolean function

(to the exclusion of the other two). The mappings accepted by this system are consistent with the

two disyllabic sandhi patterns described. A full system modeling all six patterns is definable using

input-local environments.

Syllabic representations thus garner additional conceptual support from the Nanjing sandhi case.

Representing lexical tones as single symbols provides a degree of abstraction from their tonal (and

potentially segmental) content. It captures the important intuition that tones can be phonologically

distinct—that is, they pattern as distinct entities in phonological processes—despite similar phonetic

realization. Adopting syllable-level representations where such distinctions are reflected in the input

alphabet circumvents the complications apparent in a melodic approach and centers the focus on

computation; the same processes which fail to be characterized even as functions when defined over

melodies are simple, input 2-local substitutions over syllabic strings.

The following section examines the formal properties of these representations, and finds that,

under certain crucial assumptions, they are indistinct. This means that adopting one representation

over another does not impel any theoretical commitment. Interpreted in tandem with the results of

this section, then, syllabic representations are not only more conceptually desirable than melodies

(to analyze tone sandhi), the choice between the two is demonstrably agnostic in terms of a theory

of representation.

4.4 Formal Motivation

Building on recent model-theoretic studies (Strother-Garcia and Heinz, 2015; Danis and Jardine,

2019; Oakden, 2019b, 2020) of notational equivalence in phonological representation, this section

provides formal verification of Chen (2000, 56-7)’s claim that melodic and syllable string represen-

tations are equivalent. In particular, it adopts Oakden (2020)’s requirement of bi-interpretability

(Friedman and Visser, 2014) to confirm that two models represent the same set of abstract proper-

ties and differ only superficially. In general terms, bi-interpretability imposes two conditions: that

the representations are intertranslatable—one can be translated into the other and vice versa—and

that these translations are contrast-preserving—any contrast expressible in one representation is not

lost as a result of translation into a different representation. This section’s primary purpose, then,

is to demonstrate bi-interpretability for syllabic and melodic string representations. In §4.1, a trans-

duction defines a translation from a model-theoretic syllable-representation string of tones (from the

alphabet Σ = {H, L, R, F}) to an equivalent melody. §4.2 presents a transduction for the opposite
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translation, that is, from any model-theoretic melody string (from the alphabet Σ = {H, L, •})

to an equivalent syllabic representation. The two representations are intertranslatable such that

one can be derived from the other and vice versa. This is schematized below, where a model of

a four-syllable string [RFHL] is translated to its equivalent melody [LH.HL.H.L]. Each circle node

represents a string position, and arrows denote immediate successor and predecessor.

(4.33) R F H L 7→

L H • H L • H • L •

§4.3 argues that these translations are maximally contrast-preserving. Formally, this means that

applying the transductions in succession (that is, their composition) to the representations generates

an equivalent structure to an identity mapping on either one. The details of the composition are

revisited in Chapter 7 (after a BMRS composition operator is defined in Chapter 5). Thus this

section illustrates a conjecture that the second condition of bi-interpretability is met, and will be

explored in a later chapter.

Note that, in keeping with the generalizations about sandhi environments introduced in the

previous section, melodic representations under consideration include a syllable boundary symbol

‘•’. §4.4 proves that deriving a syllable representation from a melody requires this structure, thus

complimenting the previous section’s conceptual arguments from a rigorous formal perspective (see

§5 for more discussion). With this crucial assumption, then, it is possible to prove bi-interpretability

of syllabic and melodic representations; any sequence of tones using the former representation can be

translated into the latter representation and vice versa, and these translations maximally preserve

all contrasts. Given this equivalence, the conclusion is that adopting one representation over the

other is non-binding theoretically.

The next two subsections provide BMRS definitions for these transductions. This is thus the

first application of the BMRS formalism to translating between representations.

4.4.1 Deriving Melodies from Syllables

Let T sm be a BMRS transduction from syllable-level representations of the signature ζs =

{H,R,L, F ; p, s} to melodic representations of the signature ζm = {H,L, •; p, s}. It is defined over a

copy set of size three. The intuition here is that F will map to H in the first copy and L in the second

copy, R will map to L in the first copy and H in the second copy, H and L will map to themselves

in the first copy, and the syllable boundary will map to the third copy. Below, superscripts denote

output boolean function definition over some copy.
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(4.34) H1(x) = if F (x) then ⊤ else H(x)

H2(x) = R(x)

H3(x) = ⊥

L1(x) = if R(x) then ⊤ else L(x)

L2(x) = F (x)

L3(x) = ⊥

•1(x) = ⊥

•2(x) = ⊥

•3(x) = ⊤

The table below shows an example derivation of T sm applied to the syllabic string [FRHL]. Values

returned by output boolean function evaluation for each input string position are shown, as well as

the predicted output string (over each copy).

(4.35)

Input: F R H L

1 2 3 4

H1(x) ⊤⊤⊤ ⊥ ⊤⊤⊤ ⊥

H2(x) ⊥ ⊤⊤⊤ ⊥ ⊥

H3(x) ⊥ ⊥ ⊥ ⊥

L1(x) ⊥ ⊤⊤⊤ ⊥ ⊤⊤⊤

L2(x) ⊤⊤⊤ ⊥ ⊥ ⊥

L3(x) ⊥ ⊥ ⊥ ⊥

•1(x) ⊥ ⊥ ⊥ ⊥

•2(x) ⊥ ⊥ ⊥ ⊥

•3(x) ⊤⊤⊤ ⊤⊤⊤ ⊤⊤⊤ ⊤⊤⊤

Output:

Copy 1 : H L H L

Copy 2 : L H

Copy 3 : • • • •

In the mapping above, string position 1 evaluates to true for H1(x) and L2(x) by virtue of being

specified as [F] in the input, and evaluates to true for •3(x) vacuously. Positions 2-4 evaluate in

a similar manner. Note that positions 3 and 4 do not satisfy any definitions over the second copy

set and so contain no output in the transduction. As a result, T sm maps [FRHL] to [HL.LH.H.L.]

as is the desired effect. T sm will in fact map any syllabic string representation to an equivalent

string of tones in melodic representation, and its outputs are fully-specified with respect to syllable

boundaries. The system representing the inverse transduction is presented below.
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4.4.2 Deriving Syllables from Melodies

Let T ms be a BMRS transduction from melodies of the signature ζm = {H,L, •; p, s} to syllable-

level string representations of the signature ζs = {H,R,L, F ; p, s}. It is defined over a single copy.

The intuition here is that F maps from some input string ‘HL.’, R from ‘LH.’, H from ‘.H.’, and L

from ‘.L.’.

(4.36) R1(x) = if L(x) then

if H(s(x)) then • (s(s(x))) else ⊥

else ⊥

F 1(x) = if H(x) then

if L(s(x)) then • (s(s(x))) else ⊥

else ⊥

H1(x) = if H(x) then

if • (p(x)) then • (s(x)) else ⊥

else ⊥

L1(x) = if L(x) then

if • (p(x)) then • (s(x)) else ⊥

else ⊥

The series of embedded if-then-else statements in output boolean function definitions above ensures

prescribed mappings between melodic substrings and syllable-level symbols. To illustrate, consider

the melody [LH.HL.H.].

(4.37)

Input: L H • H L • H •

1 2 3 4 5 6 7 8

R1(x) ⊤⊤⊤ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

F 1(x) ⊥ ⊥ ⊥ ⊤⊤⊤ ⊥ ⊥ ⊥ ⊥

H1(x) ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊤⊤⊤ ⊥

L1(x) ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

H(s(x)) ⊤⊤⊤ ⊥ ⊤⊤⊤ ⊥ ⊥ ⊤⊤⊤ ⊥ ⊥

L(s(x)) ⊥ ⊥ ⊥ ⊤⊤⊤ ⊥ ⊥ ⊥ ⊥

•(s(s(x))) ⊤⊤⊤ ⊥ ⊥ ⊤⊤⊤ ⊥ ⊥ ⊥ ⊥

•(s(x)) ⊥ ⊤⊤⊤ ⊥ ⊥ ⊤⊤⊤ ⊥ ⊤⊤⊤ ⊥

•(p(x)) ⊥ ⊥ ⊥ ⊤⊤⊤ ⊥ ⊥ ⊤⊤⊤ ⊥

Output:

Copy 1 : R − − F − − H −

In the mapping above, string position 1 satisfies the definition of R1(x). It does so by evaluating to

true for the hypothesis in the first if-then-else statement, as well as the hypothesis and consequent
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of the embedded statement; it is input-specified as L (L(x)), and is followed by an input-specified H

(H(s(x))) and then a syllable boundary (•(s(s(x)))). Note that both if-then-else statements contain

⊥ as their ‘else’ condition; this means that the function returns a false ⊥ value when any of these

conditions fail to be met. String positions 4 and 7 evaluate to true for F 1(x) and H1(x) by the same

principles. The remaining positions—2, 3, 5, 6, and 8—do not satisfy any definition as they are the

pieces of input structure that are ‘deleted’ in the transformation. The output of the transduction is

[RFH], as is the desired effect.

4.4.3 Contrast Preservation between Representations

Syllabic and melodic string representations are intertranslatable because some transduction exists

by which the former can derive the latter and vice versa. The second condition on bi-interpretability

states that these transductions must preserve all contrasts. That they do so is intuitively apparent;

for any tonal contrast available to syllabic strings as defined in this chapter—R(ising), F(alling),

H(igh) and L(ow)—there is a distinct sequence of melodic elements that will map to it via the

transduction. The same condition holds in the opposite direction. To validate this explicitly, it is

necessary to show that both orders of composition of the transductions are isomorphic to the identity

map on either model. In Chapter 5, a composition operator is defined for BMRS systems, and the

formal demonstration of bi-interpretability is pursued further in Chapter 7. At this stage, however, I

will illustrate the conjecture that, given any melodic string representation with syllable boundaries,

applying T ms to that string and then applying T sm to its output will produce a structure that is

equivalent to the original melody. Similarly, for any syllabic string representation, applying T sm to

that string and then applying T ms to its output will produce a structure that is equivalent to the

original syllabic-tier representation. The strings [RFHL] and [LH.HL.H.L.] provide illustration as a

general case, with the understanding that this example can be extended to all possible permutations

and strings of any size.

First, applying T sm to [RFHL] yields [LH.HL.H.L.] over a copy set of size three. When T sm is

applied to that output, it returns [RFHL] over one copy.

(4.38)
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Input: R F H L

1 2 3 4

H1(x) ⊥ ⊤⊤⊤ ⊤⊤⊤ ⊥

H2(x) ⊤⊤⊤ ⊥ ⊥ ⊥

H3(x) ⊥ ⊥ ⊥ ⊥

L1(x) ⊤⊤⊤ ⊥ ⊥ ⊤⊤⊤

L2(x) ⊥ ⊤⊤⊤ ⊥ ⊥

L3(x) ⊥ ⊥ ⊥ ⊥

•1(x) ⊥ ⊥ ⊥ ⊥

•2(x) ⊥ ⊥ ⊥ ⊥

•3(x) ⊤⊤⊤ ⊤⊤⊤ ⊤⊤⊤ ⊤⊤⊤

Output:

Copy 1 : L H H L

Copy 2 : H L

Copy 3 : • • • •

→

Input: L H • H L • H • L •

1 2 3 4 5 6 7 8 9 10

R1(x) ⊤⊤⊤ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

F 1(x) ⊥ ⊥ ⊥ ⊤⊤⊤ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

H1(x) ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊤⊤⊤ ⊥ ⊥ ⊥

L1(x) ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊤⊤⊤ ⊥

Output:

Copy 1 : R − − F − − H − L −

The output [RFHL] is equivalent to the result of applying the identity map to the original string

[RFHL]. Thus the translations preserve all string representation contrasts.

In a similar manner, first applying T ms to [LH.HL.H.L.] yields [RFHL] over a single copy. When

T sm is applied to the output, it returns [LH.HL.H.L.] over three copies.

(4.39)

Input: L H • H L • H • L •

1 2 3 4 5 6 7 8 9 10

R1(x) ⊤⊤⊤ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

F 1(x) ⊥ ⊥ ⊥ ⊤⊤⊤ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

H1(x) ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊤⊤⊤ ⊥ ⊥ ⊥

L1(x) ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊤⊤⊤ ⊥

Output:

Copy 1 : R − − F − − H − L −

→

Input: R F H L

1 2 3 4

H1(x) ⊥ ⊤⊤⊤ ⊤⊤⊤ ⊥

H2(x) ⊤⊤⊤ ⊥ ⊥ ⊥

H3(x) ⊥ ⊥ ⊥ ⊥

L1(x) ⊤⊤⊤ ⊥ ⊥ ⊤⊤⊤

L2(x) ⊥ ⊤⊤⊤ ⊥ ⊥

L3(x) ⊥ ⊥ ⊥ ⊥

•1(x) ⊥ ⊥ ⊥ ⊥

•2(x) ⊥ ⊥ ⊥ ⊥

•3(x) ⊤⊤⊤ ⊤⊤⊤ ⊤⊤⊤ ⊤⊤⊤

Output:

Copy 1 : L H H L

Copy 2 : H L

Copy 3 : • • • •

The output [LH.HL.H.L.] is equivalent to the result of applying the identity map to the original

string [LH.HL.H.L.]. Thus the translations preserve all melodic representation contrasts.

Results from this section and the previous two form the conjecture that syllabic and melodic

string representations are bi-interpretable and are therefore notationally-equivalent in a strict formal
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sense.

4.4.4 On the Necessity of Syllable Boundaries

Bi-interpretability likely holds between syllabic string and melodic string representations. Impor-

tantly, the latter assumes an enriched representation with syllable boundaries, resembling melodies

posited in previous analyses of tone sandhi (as in §3.1-2), but unlike those used in Jardine (2018,

2020)’s work on non-local dependencies in tone. This section proves that equivalence between these

representations hinges on the necessary assumption that melodies contain syllable boundaries. Recall

the stringent conditions imposed by T ms using embedded if-then-else statements. These guarantee

a univalent mapping between melodies and syllable string representations. That is, for any possi-

ble string of melodic-tier elements, the transduction will map it to one distinct syllabic-tier string.

Relaxing this condition results in non-univalence and bi-interpretability becomes untenable.

To see why, suppose that the transduction T sm in (4.34) is redefined such that outputs do

not contain syllable boundaries. The resulting function is equivalent to Jardine (2018, 2020, 43)’s

cntr(x) function—it ‘expands contour-toned TBUs (but leaves H and L-toned TBUs as is).’ The

new transduction T ′sm is defined over two copies as in (4.40).

(4.40) H1(x) = if F (x) then ⊤ else H(x)

H2(x) = R(x)

L1(x) = if R(x) then ⊤ else L(x)

L2(x) = F (x)

Much like the original T sm, when this transduction reads [F], it outputs [H] to copy 1 and [L] to copy

2. Similarly, reading an [R] segment yields [L],[H] across both copies. [H] and [L] segments are left

as is, as identity maps over the first copy. Application to the string [FRHL] produces [HLLHHL];

this is identical to the output form in (4.35), with the exception that there is no third copy with a

single syllable boundary for each input.

(4.41)

Input: F R H L

1 2 3 4

H1(x) ⊤⊤⊤ ⊥ ⊤⊤⊤ ⊥

H2(x) ⊥ ⊤⊤⊤ ⊥ ⊥

L1(x) ⊥ ⊤⊤⊤ ⊥ ⊤⊤⊤

L2(x) ⊤⊤⊤ ⊥ ⊥ ⊥

Output:

Copy 1 : H L H L

Copy 2 : L H
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Similarly, the redefined T ′ms, as the inverse of T ′sm—i.e. cntr−1(x)—outputs [HL] sequences

as [F], [LH] sequences as [R], but leaves [H] and [L] alone. Updating the definition in (4.36) entails

removing terms which reference the syllable boundary ‘•’. This is given below.

(4.42) R1(x) = if LH(x) then ⊤ else ⊥

F 1(x) = if HL(x) then ⊤ else ⊥

H1(x) = H(x)

L1(x) = L(x)

Defined in this way, however, the resulting transduction represents a non-univalent function; for the

input [HLLHHL], there are multiple outputs which satisfy the system of equations. Eight possible

mappings are shown below.

(4.43)

Input: H L L H H L

1 2 3 4 5 6

R1(x) ⊥ ⊥ ⊤⊤⊤ ⊥ ⊤⊤⊤ ⊥

F 1(x) ⊤⊤⊤ ⊥ ⊥ ⊥ ⊤⊤⊤ ⊥

H1(x) ⊤⊤⊤ ⊥ ⊥ ⊤⊤⊤ ⊤⊤⊤ ⊥

L1(x) ⊥ ⊤⊤⊤ ⊤⊤⊤ ⊥ ⊥ ⊤⊤⊤

Output 1 : F − R − F −

Output 2 : F − R − H L

Output 3 : F − L H F −

Output 4 : H L R − F −

Output 5 : H L R − H L

Output 6 : F − L H H L

Output 7 : H L L H F −

Output 8 : H L L H H L

Without syllable boundaries, then, melodies and syllable representations cannot be bi-interpretable.

An informal proof by contradiction shows why this is the case. Assume that models S of syl-

labic strings and models M of melodies (without syllable boundaries) are bi-interpretable. By the

definition of bi-interpretability, there exists some interpretation of S in M, a surjective map from

a M-signature to a S-signature (Hodges, 1997). Let T ′ms define this interpretation. However, as

shown in (4.43), T ′ms defines a non-univalent function. Since it is not univalent, it cannot be sur-

jective. Therefore, syllabic and melodic string representations (without syllable boundaries) cannot

be bi-interpretable.

It is possible in principle to coerce T ′ms into univalence, but this does not lead to bi-interpretability.

As an example, consider the re-updated transduction T ′′ms defined below.
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(4.44) R1(x) = if LH(x) then ⊤ else ⊥

F 1(x) = if HL(x) then ⊤ else ⊥

H1(x) = if HH(x) then ⊤ else ⊥

L1(x) = if LL(x) then ⊤ else ⊥

Despite making intuitively incorrect predictions, it does describe a surjective map onto all logically-

possible combinations of syllabic-tier symbols. Applied to the melody [HLLHHL], it yields a single

syllabic representation [FLRHF]:

(4.45)

Input: H L L H H L

1 2 3 4 5 6

R1(x) ⊥ ⊥ ⊤⊤⊤ ⊥ ⊥ ⊥

F 1(x) ⊤⊤⊤ ⊥ ⊥ ⊥ ⊤⊤⊤ ⊥

H1(x) ⊥ ⊥ ⊥ ⊤⊤⊤ ⊥ ⊥

L1(x) ⊥ ⊤⊤⊤ ⊥ ⊥ ⊥ ⊥

Output : F L R H F −

Combined with T ′sm, this transduction satisfies the first condition of bi-interpretability: intertrans-

latability. Ultimately, however, it fails, because it does not satisfy the second condition of contrast

preservation.

Another informal proof by contradiction shows why this is the case. Assume that models S of

syllabic strings and models M of melodies (without syllable boundaries) are bi-interpretable. By the

definition of bi-interpretability, given two surjective maps G and F and any M-structure K, G(F (K))

produces a structure which is homomorphic to the identity map on K. Let G be denoted by T ′′ms, and

let F be denoted by T ′sm. Also, let K be the M-structure [HLLHHL]. As in (4.45), T ′′ms([HLLHHL])

yields [FLRHF]. By the definition of T ′sm in (4.40), T ′sm([FLRHF]) yields [HLLLHHHL]. Since

[HLLLHHHL] 6= [HLLHHL], it cannot be the case that G(F (K)) produces a structure which is

homomorphic to the identity map on any K. Therefore, syllabic and melodic string representations

(without syllable boundaries) cannot be bi-interpretable. The following section relates these results

to the conceptual arguments presented in §3.

4.5 Discussion

Adopting syllabic-tier string representations over melodies for tone sandhi analysis is motivated

on both conceptual and formal grounds. Despite providing a fine-grained description of edge envi-

ronments, melodic tier representations do not provide a more restrictive theory of tone sandhi than

is available to syllabic strings. This is due primarily to the phonetic arbitrariness of tone sandhi.
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Attempts to impose a melodic framework on tone sandhi data often result in stipulative or paradox-

ical analyses. They may even guide the analyst away from a unified account of the full paradigm

by identifying non-existent conspiracies over a subset of the data. The case studies presented here

thus serve as a cautionary tale, and underlie the importance of considering especially tone sandhi

data that contain longer sequences of tones. Often, the full paradigm only emerges in trisyllabic

sequences (or longer), as was seen with Hakha Lai.

As the case studies illustrate, syllabic string representations circumvent these issues and provide

straightforward accounts of sandhi patterns. They permit a degree of abstraction in positing input

alphabets (recall Nanjing checked tone) which is well-suited to the arbitrary nature of attested

sandhi. Using these strings, it is possible to focus directly on the computational properties of sandhi

processes which are of interest to this dissertation.

Fortunately, the choice of one representation over the other does not impel any theoretical com-

mitment. The reason for this is that melodic and syllabic representations of tone are notational

variants of one another. It is possible to prove this in formal terms using a restrictive definition of

equivalence from model theory and implementing the definition within the BMRS framework. As

§4 illustrates, syllable and melody strings can be freely translated into and from one another, and

translation does not entail any loss of contrast.

This is contingent on the crucial assumption that melodic representations contain syllable bound-

aries; without them, melodic tier and syllabic tier representations are no longer notationally equiv-

alent. Interestingly, this formal result is directly related to the conceptual results discussed in §3.

Recall that in the proposed melodic analysis of Nanjing sandhi, syllable boundaries are required

to differentiate licit and illicit substrings. For example, a sequence of two falling tones [HL.HL.]

(which undergoes sandhi to produce [H.HL.]) can only be distinguished from a quadrisyllabic se-

quence [H.L.H.L.] (which does not undergo sandhi) with the use of syllable boundaries. When

syllable boundaries are deleted, the two melodies are identical: [HLHL]. This means that no func-

tion can describe the sandhi data, because applying the hypothetical sandhi function to [HLHL]

would produce two outputs (as in (4.30); partially repeated in (4.46)):

(4.46) Intended Structure Melody Output

Disyllabic FF 7→ HF HLHL HHL

Quadrisyllabic H+L+H+L HLHL HLHL

The core of this paradox is precisely the complication facing the transduction T ′ms defined in

(4.42). Applied to the melodic string [HLHL], this transduction accepts both the 2-syllable [FF] and

4-syllable [HLHL] as well-formed outputs.
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(4.47)

Input: H L H L

1 2 3 4

R1(x) ⊥ ⊥ ⊥ ⊥

F 1(x) ⊤⊤⊤ ⊥ ⊤⊤⊤ ⊥

H1(x) ⊤⊤⊤ ⊥ ⊤⊤⊤ ⊥

L1(x) ⊥ ⊤⊤⊤ ⊥ ⊤⊤⊤

Output 1 : F − F −

Output 2 : H L H L

In other words, string representations over melodies are ambiguous with respect to the syllabic tier

unless syllable boundaries are explicitly stated. This underlies the important observation that the

locus of the tone sandhi alternations discussed in this chapter is the syllable.

Melodic representations without syllable boundaries are ill-suited to tone sandhi pattern analysis,

but they are the key to analyses of other tonal phenomena. In particular, boundary-free melodic-tier

strings successfully capture long-distance tonal dependencies by recreating one-to-many associations

between tonal segments and timing tier segments (Jardine, 2018). As §2 demonstrates, syllabic-tier

strings fail to capture this level of representation. This raises an important conceptual question

about the autosegmental nature of tone sandhi. That syllables are a required component of the

representation seems to indicate that tone sandhi is fundamentally connected—or tethered—to the

syllable itself. However, perhaps the most basic and crucial insight of autosegmental tonology is that

tones are “semi-autonomous from the tone-bearing units on which they are realized” (Goldsmith,

1976; Hyman, 2011, 2014). Is it possible, then, that tone sandhi is somehow less autosegmental than

other tonal phenomena such as Copperbelt Bemba H-tone spreading? And if so, is this a dimension

along which tonal systems can be distinguished typologically? This question is not within the scope

of the current dissertation and is therefore left for future work, but the discussion in this chapter

can serve as a foundation for later inquiry.

Given the conceptual and formal results presented here, syllabic-tier string representations are

adopted for computational analysis of tone sandhi patterns in the dissertation. In the next chapter

(and in Chapter 6), the theory is formally introduced and analyses of tone sandhi interactions—

formalized using syllabic-tier representations—are presented.
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5 Interactions as Composition with ⊗

5.1 Introduction

BMRS systems of equations describe subsequential functions. They can therefore be used to

formalize a broad range of phonological transformations. A single BMRS system of equations can

model an individual process, or it can model a ‘combined map’ which represents interactions of two

or more individual processes. This includes transparent interactions such as feeding and bleeding,

as well as interactions traditionally labeled as ‘opaque’, e.g. counterfeeding and counterbleeding.

To briefly illustrate, consider two context-free rules (a → b and b → c) which transform inputs in

isolation as in (5.1).

(5.1) a. a → b Input: /aba/

Output: [bbb]

b. b → c Input: /aba/

Output: [aca]

When applied to an input string /aba/, the context-free rules in (5.1a) and (5.1b) produce different

output strings. An interaction occurs between the rules when placed in a particular order.

(5.2) a < b Input: /aba/

a: [bbb]

b: [ccc]

Output: [ccc]

In (5.2), the rules are ordered such that the output of (5.1a) becomes the input to (5.1b), yielding

a distinct output. This represents a feeding relationship; the first rule provides additional inputs to

the second rule that were not present in the input string.

Each rule in (5.1) also has a functional characterization. Assuming sets of strings over an alphabet

Σ = {a, b, c}, the rule in (5.1a) describes a function which maps every a to b, every b to b, and every

c to c. Similarly, (5.1b) as a function maps a to a, b to c, and c to c. Example (5.1c) also describes

a single function; it maps a, b, and c to c. The three functions are properly subsequential (more

specifically, 1-ISL), which means that they may be characterized as BMRS systems of equations.

Let systems T1, T2, T3 denote these functions, respectively. Their definitions are given in (5.3a-c).
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(5.3) a. a1(x) = ⊥

b1(x) = if a(x) then ⊤ else b(x)

c1(x) = c(x)

b. a2(x) = a(x)

b2(x) = ⊥

c2(x) = if b(x) then ⊤ else c(x)

c. a3(x) = ⊥

b3(x) = ⊥

c3(x) = ⊤

Both individual rules and ‘combined maps’ of interactions can be defined as individual BMRS sys-

tems of equations. But suppose that we wanted to relate (5.3a-b) to (5.3c) in a way that reflects the

ordering relationship apparent in (5.1c). Following the observation that the composition of string

relations models the effect of having one rule operating on the output of another rule (Johnson, 1972;

Kaplan and Kay, 1994), we could compose the functions described by systems T1 and T2, keeping

in mind that (5.1a) applies before (5.1b). The resulting composite function would be extensionally-

equivalent to T3 (5.3c)—that is, it maps inputs to the same outputs as does T3—with the added

benefit of clarifying the modifications to input strings contributed by each function. In other words,

it captures the notion that “individual rules of a grammar are meant to capture independent phono-

logical generalizations”, and that interactions are the effect of overlap in targets/triggers of inde-

pendent generalizations (Kaplan and Kay, 1994, 364). Additionally, the computational properties

of the composite function can be understood along with that of its component parts.

The purpose of this chapter is to define a composition operation over BMRS systems that relates

individual processes to ‘combined map’ interactions in the manner described above. It applies this

framework to attested tone sandhi interactions in three Chinese dialects (Tianjin, Changting, and

Nanjing), specifically those which may be derived via pairwise rule ordering. This includes trans-

parent feeding interactions as well as opaque counterbleeding interactions. By defining individual

BMRS systems modeling sandhi ‘rules’ and then composing them, the approach advocated here

clarifies the distinct contributions made by each part. This is unavailable to analyses that only

consider a combined map function. Furthermore, this chapter expands on earlier insights about so-

called ‘directionality’ effects in sandhi interactions (Chandlee, 2019; Oakden and Chandlee, 2020)

by applying them to new data. These insights are rooted in Chandlee (2014)’s finding that pro-
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cesses formalized as simultaneous or iterative rule application can be described using ISL or OSL

functions, respectively (recall §3.2 and §3.3 of Chapter 3). Analyses in terms strictly-local (SL)

function compositions clarify the issue of directionality in a way that is not apparent in rule-based

or optimization-based theories.

This chapter is organized as follows. §2 offers a formal definition of the composition operator (de-

noted ⊗). This section outlines the operator’s basic properties, relates it to pairwise rule ordering,

and develops a broad typology of SL function compositions. Building on the aforementioned con-

nections between ISL/OSL functions and rule application (simultaneous vs iterative), the typology

makes explicit predictions about so-called ‘directionality’ effects from the sandhi literature. §3, §4

and §5 present case studies of tone sandhi interactions in Tianjin, Changting, and Nanjing dialects,

respectively. Across three case studies, each composition type in the typology manifests in a specific

interaction, and the predictions regarding directionality contribute to a straightforward account of

interaction paradigms. Attention is also paid to the individual contribution of each ‘rule’ in the

interaction, and how the composition of individual systems recapitulates rule-ordering generaliza-

tions. A discussion section (§6) summarizes the results of the chapter. It offers further support for

composition/ordering equivalence by showing that reversing the order of composition produces the

same effect as reversing rule order. Benefits of the SL functional approach are discussed, in partic-

ular as they relate to previous attempts to explain directionality effects in SPE or OT frameworks.

This chapter ends with an ordering paradox from the sandhi data, demonstrating the failure of rule

ordering (and thus composition) to account for it, thus setting the stage for the next chapter.

5.2 Definition and Formal Properties

This section defines a syntactic operator ⊗, the analog of function composition over BMRS

transductions. Oakden et al. (2020) provide a proof that BMRS composition is identical to function

composition, but the discussion in this chapter focuses on the relationship between the ⊗ operator

and pairwise rule ordering. Primarily, it will show that composition recreates the effect of ordering in

a serial rule-based framework. That is, given two rules A and B and the ordering A < B, the output

of A serves as the input of B. Similarly, given two BMRS systems of equations denoted A and B,

and which model the separate processes formalized as rules, the composite function B ⊗ A accepts

the same input-to-output mappings as the crucial order A < B, and is thus an analog of pairwise

rule ordering. This syntactic operator shall be used to formalize attested tone sandhi interactions

in three case studies.
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Additionally, this section sketches a typology of composition orders based on strictly-local func-

tions and examines their features. A broad typology includes composition of two ISL functions (ISL

⊗ ISL), two OSL functions (OSL ⊗ OSL), and OSL function with an ISL function (OSL ⊗ ISL),

and an ISL function with an OSL function (ISL ⊗ OSL). All four composition orders are attested,

as the subsequent sections demonstrate.

5.2.1 A syntactic operator ⊗

What follows is a definition of the syntactic operator ⊗ over BMRS systems of equations. This

dissertation focuses on compositions of length-preserving transductions, that is, those defined over

a single copy set. See (Oakden et al., 2020) for definition of this operator in the general case, and a

proof that it produces composition.

Definition 3 For a BMRS transduction T1 from strings in Σ∗ to strings in ∆∗ and a transduction

T2 from strings in ∆∗ to strings in Γ∗, let T2 ⊗ T1 be a syntactic operation on BMRS transductions

as follows. Let

T1 = { f1(x1) = T1, . . . , fn(xn) = Tn}

be a system of equations over a signature of strings in Σ∗: a set of recursively-defined, boolean-type

function symbols F where each fi corresponds to some δi in the output alphabet ∆, where n = |∆|.

Similarly, let

T2 = { g1(x1) = T1, . . . , gm(xm) = Tm}

be a system of equations over a signature of strings in ∆∗: a set of recursively-defined, boolean-type

function symbols G where each gj corresponds to some γj in the output alphabet Γ, where m = |Γ|.

Let T ′
2 then be identical to T2 with the exception that any occurrence of boolean term δi(x) on

the right-hand side of an equation in T2 is replaced with fi(x) (corresponding to δi(x)) from T1, for

each function symbol fi(x) in F. Then, let T2 ⊗ T1 := T ′
2 ∪ T1.

The composition of two transductions T2⊗T1 is the union of T1 with a modified T2 (denoted T ′
2 ), the

result of replacing every non-recursively defined function name in T2’s function definitions with the

corresponding function definition from T1. Recursively-defined function names remain unchanged.

Transduction compositions explored in this dissertation are primarily those for which input and

output alphabets across both transductions are the same, that is, Σ = ∆ = Γ. There are some

minor exceptions, however (e.g. in §5). Additionally, I restrict compositions of certain function

types to guarantee that the complexity of composite functions does not exceed subsequential (see



101

more discussion in §2.3.2).

To illustrate the functionality of ⊗, consider a BMRS system denoted T1, defined over an alphabet

Σ = {a, b, c} (with the assumption that the input and output alphabet are the same). T1 describes

a function that maps an a to a b whenever its immediate successor is an a. As a rewrite rule, this

would be: a → b / a (henceforth the ‘aa rule’). The system is defined below in (5.4); it contains

three output boolean function definitions, one for each symbol in the output alphabet (function

names are subscripted with ‘1’ for T1, etc., for clarity).

(5.4) a1(x) = if aa(x) then ⊥ else a(x)

b1(x) = if aa(x) then ⊤ else b(x)

c1(x) = c(x)

Definition a1(x) evaluates input string positions in the following way: if the current string position

under evaluation is an a and its immediate successor in the input is also an a (the term aa(x)), a

false ⊥ value is returned. A sequence of consecutive as constitutes a blocking structure for a in this

system. If the structure is not satisfied, evaluation moves to the final term, where a truth value is

returned based on whether that position is input-specified as a. Note that the same structure (two

consecutive a’s) constitutes a licensing structure for b; the same evaluation will cause b1(x) to return

a true ⊤ value, otherwise it proceeds to the ‘default’ evaluation (that is, input specification as b).

The definition of c1(x) states that a symbol maps to c in the output only if it is specified as such in

the input. Applied to input string /aaaa/, the system accepts output [bbba], as in (5.5).

(5.5)
Input: a a a a

1 2 3 4

a1(x) ⊥ ⊥ ⊥ ⊤⊤⊤

b1(x) ⊤⊤⊤ ⊤⊤⊤ ⊤⊤⊤ ⊥

c1(x) ⊥ ⊥ ⊥ ⊥

Output: b b b a

The first three positions each return a true value for b1(x) by satisfying the first term—the licensing

structure aa(x). String position 4 is false for aa(x); although the current position is an input a,

its successor is undefined, and evaluates to false by default. It proceeds to the final term a(x), for

which it is true. None of the positions are true for c1(x).

Now, let another BMRS system of equations be denoted T2 and defined over the same alphabet

Σ = {a, b, c}. This system describes a function that maps b to c whenever its immediate successor

is a. It is describable by the rewrite rule b → c / a, henceforth that ‘ba rule’. The definition of

T2 is given in (5.6):
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(5.6) a2(x) = a(x)

b2(x) = if ba(x) then ⊥ else b(x)

c2(x) = if ba(x) then ⊤ else c(x)

Like (5.4), this set of output boolean function definitions contains a pair of licensing/blocking struc-

tures; a ba sequence—represented by the term ba(x) in b2(x) and c2(x)—blocks an output b but

licenses an output c. Applied to an input string /bbba/, this system accepts the output [bbca], as

illustrated by the evaluation table in (5.7):

(5.7)
Input: b b b a

1 2 3 4

a2(x) ⊥ ⊥ ⊥ ⊤⊤⊤

b2(x) ⊤⊤⊤ ⊤⊤⊤ ⊥ ⊥

c2(x) ⊥ ⊥ ⊤⊤⊤ ⊥

Output: b b c a

These individual systems may be combined using the ⊗ operator. For clarity, the transduction

to the left of the operator is termed the ‘outer’ function, while the transduction to the right of

the operator is termed the ‘inner’ function. The result is a new system of equations describing

the composition of the individual transductions. To illustrate, the composite system T2 ⊗ T1 is the

union of T1 with a modified T2 (denoted T ′
2 ), the result of replacing every non-recursively defined

function name in T2’s function definitions—that is, every occurrence of a(x), b(x), or c(x)—with

the corresponding function definition from T1. Put another way, combination via ⊗ modifies T2

(the outer function) such that the right side of every output boolean function definition is indexed

with definitions from T1 wherever a labeling predicate appears and is not defined recursively. Truth

values returned from evaluating T ′
2 determine the output string. T2⊗T1 is defined below in (5.8); the

example contains the modified T ′
2 as well as the original T1 for reference (all subsequent definitions

in this chapter include the ‘inner’ function in each composite definition, as well).

(5.8) a. T2 ⊗ T1 a2(x) = a1(x)

b2(x) = if b1a1(x) then ⊥ else b1(x)

c2(x) = if b1a1(x) then ⊤ else c1(x)

b. T1 a1(x) = if aa(x) then ⊥ else a(x)

b1(x) = if aa(x) then ⊤ else b(x)

c1(x) = c(x)

The modified system in (5.8a) comprises three output boolean functions which determine whether
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output string positions are marked a, b, or c. Definition a2(x) contains a single term a1(x) (the

result of indexing non-recursively-defined a(x)); this means that, for any string position under

consideration, its truth value is identical to the value computed for a1(x). In other words, a sequence

of two consecutive input as will cause this function to be false, otherwise it will be true if that position

is an a in the input (otherwise false, as in the definition of a1(x)).

Functions b2(x) and c2(x) contain the modified licensing/blocking structure pair as the first

term of their if-then-else statements. In order to satisfy (i.e. return a true ⊤ value) for the term

b1a1(x), the current string position must evaluate to true for b1(x) from system T1 and its immediate

successor must evaluate to true for a1(x) from system T1. In the unmodified system T2, the crucial

structure was a ba sequence in the input, whereas the structure described here is a ba sequence in

the output of T1. This structure licenses an output b and blocks an output c, meaning that it will

cause function b2(x) to be true and output a b. Likewise, it will cause c2(x) to be false and prevent

an output c on that position. If the structure is not satisfied, b2(x) and c2(x) receive their truth

values from b1(x) and c1(x), respectively, from T1, as indicated in the third term of both definitions’

if-then-else statements.

The modified system T2 ⊗ T1 represents the composition of systems T2 and T1, and so accepts

input-output mappings where T2 applies to the output of T1. As an example, T1(aaaa)—T1 applied

to the input string aaaa—produces [bbba], as in (5.5). Plugging that output directly into T2, i.e.

T2(bbba), would predict [bbca], intuitively because the ba substring in positions 3 and 4 satisfy the

structural description of the rewrite rule b → c / a and no others, as in (5.7). The composite

system T2 ⊗ T1 in (5.8) makes the same prediction, illustrated by the evaluation in (5.9):

(5.9)
Input: a a a a

1 2 3 4

a2(x) ⊥ ⊥ ⊥ ⊤⊤⊤

b2(x) ⊤⊤⊤ ⊤⊤⊤ ⊥ ⊥

c2(x) ⊥ ⊥ ⊤⊤⊤ ⊥

a1(x) ⊥ ⊥ ⊥ ⊤⊤⊤

b1(x) ⊤⊤⊤ ⊤⊤⊤ ⊤⊤⊤ ⊥

c1(x) ⊥ ⊥ ⊥ ⊥

Output: b b c a

As in (5.5), the first three positions of input string /aaaa/ return true values for b1(x). This has

two effects on the evaluation of positions 1 and 2 against b2(x); first, neither position satisfies the

licensing/blocking structure represented by the term b1a1(x). Second, when evaluation proceeds to

the final term of b2(x)—b1(x)—those truth values are passed directly from T1, such that 1 and 2
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output as b. Position 3 does satisfy b1a1(x) (as the evaluation table shows), licensing an output c.

Finally, position 4 is output as a given its input specification; that is, it is true for a2(x) by virtue

of being true for b1(x).

5.2.2 ⊗ as rule ordering

The output of composite system T2⊗T1 is identical to ordering the aa rule before the ba rule in a

rule-based framework, denoted aa < ba. The derivation of input string /aaaa/ in (5.10) illustrates,

where modifications to a string via some rule are indicated in bold:

(5.10) /aaaa/

aa rule: a → b / a [bbba]

ba rule: b → c / a [bbca]

Output: [bbca]

Given this ordering, the aa rule applies to the input string /aaaa/, producing an intermediate

representation [bbba]. Then, the ba rule applies to that intermediate representation to yield [bbca].

As no other rules are ordered after ba, the output is [bbca]. This is the same output predicted for

the composite system T2 ⊗ T1 applied to /aaaa/, with the only difference being that the latter is a

direct mapping from input to output.1

A rule-based approach describes a stepwise derivation with distinct intermediate forms after

each rule applies, while the BMRS composition framework describes a single mapping from input

to output. However, the modifications that ⊗ makes via indexation in output boolean function

definitions serve, in a sense, to reconstruct these intermediate representations. In T2 ⊗T1, the outer

function (T2) is interpreted in terms of the changes made to the input string by the inner function

(T1), and not the input string itself. This can be seen, for example, in the modified definition of

c2(x). The structure b1a1(x)—a ba sequence as determined by transduction T1—licenses an output

c, and this is crucially not an input ba sequence. Other function definitions in T ′
2 , having also been

indexed with definitions from T1, reconstruct intermediate representations in the same way. This

applies not only to the input string /aaaa/ in (5.9) and (5.10), but any string from the alphabet

Σ = {a, b, c}.

The derivation in (5.10) also shows that the aa and ba rules interact: aa feeds ba given ordering

aa < ba. That is to say, earlier application of aa provides additional inputs to ba. The locus of

this feeding relationship is string position 3 in the input /aaaa/. After aa applies to the input

string, it yields an intermediate representation [bbba]. A substring [ba] satisfies the structural

1Here, the ‘covert’ output function definitions from T1 act as a sort of intermediate representation.
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description of the ba rule, allowing it to apply. Given that composition of BMRS systems using ⊗ is

equivalent to rule ordering, this framework can be employed to model process interactions capturable

by rule ordering. The remainder of the chapter provides further illustration of this equivalence, using

examples from three case studies of tone sandhi interactions in Chinese dialects.

Before proceeding to the case studies, however, I first sketch a broad typology of compositions

of strictly-local (SL) functions and examine their properties.

5.2.3 Compositions of strictly-local functions

Since BMRS systems of equations describe subsequential functions (Bhaskar et al., 2020), they

also describe the strictly-local subclass of subsequential functions (Chandlee, 2014). An earlier chap-

ter summarized further divisions of the strictly-local class of functions based on what information is

used to compute the output: input strictly-local (ISL), left output strictly-local (LOSL) and right

output strictly-local (ROSL). This section develops an initial typology of ⊗ composition with respect

to strictly-local functions, and examines the properties of such composite systems. This includes the

composition of two ISL functions, composition of two OSL functions, composition of an ISL function

with an OSL function, and composition of an OSL function with an ISL function (keeping in mind

that order of composition is important). This typology will come into play in the three case studies

examined in later sections, as each member of the typology is evinced by an attested interactions.

Importantly, the basic facts about SL functions will clarify the nature of tone sandhi directionality

in interaction contexts, crucially in a way that earlier theories struggle to account for.

5.2.3.1 ISL ⊗ ISL

Chandlee and Lindell (to appear) conjecture that ‘finite-to-one’ ISL functions are closed under

composition. Functions of this type are those with a bound on the ratio between input and output

string lengths, such that for a function f : Σ∗ → Γ∗, it is finite-to-one if its inverse function f−1(y)

is always finite. The length-preserving transductions investigated in this dissertation are of the

finite-to-one type, so it follows that the same closure property extends to ⊗ compositions of BMRS

systems of equations describing ISL functions.

Systems of equations corresponding to rewrite rules aa and ba in (5.4) and (5.5) describe ISL

functions because output boolean function definitions are defined only in terms of input structure

(that is, they contain no recursion). Their composition via the ⊗ operator (5.8) also describes an

ISL function, given the closure property described above. In spite of the fact that, given T2 ⊗ T1
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we say that T2 determines the output using a local bounded window over T1’s output, since T1 is

computed using reference to input structure only—and T2 is computed entirely in terms of T1 under

⊗ (i.e. all function calls are indexed)—it is the case that the composite function is computed with

a local bounded window over the input structure.

This also echoes the generalization that aa and ba rule applications—either in isolation or com-

bined in a derivation—is simultaneous application. That is, the rule(s) applies to every input

substring satisfying the structural description in a single ‘pass’ (only the input string matters); e.g.

the aa rule applied simultaneously to /aaaa/ produces [bbba] (5.5).

5.2.3.2 OSL ⊗ OSL

The generalization changes when rules apply iteratively, i.e. such that the output of a rule’s

application can feed/bleed further application of the rule; this type of application is described by

OSL functions (Chandlee, 2014, 36). Compare simultaneous and iterative application of the aa rule

over input string /aaaa/ (5.11).

(5.11) Simultaneous Iterative

aa rule a. /aaaa/ → [bbba] b. /aaaa/ → [baba]

In (5.11a), all instances of an input a followed by an input a map to b. In (5.11b), however, the

rule applies iteratively, starting from the right edge and proceeding leftward. Scanning in this way,

the third position is output as b, as it satisfies the necessary aa environment. However, the rule is

unable to apply on the second a; earlier application has bled the aa environment. Output as an a

via vacuous application, the second a provides the crucial rightward context for aa to apply to the

first string position. The full output is [baba].

The mapping in (5.11b) is described by an ROSL function. That is, the decision of how to map

an input to an output is determinable using only a bound window in the output to the right of that

input. Access to the recent output is precisely what allows for a process to apply ‘iteratively’ or

repeatedly. Example (5.12) provides a BMRS equivalent definition of the iterative rule, and it is

denoted T3:

(5.12) a3(x) = if aa3(x) then ⊥ else a(x)

b3(x) = if aa3(x) then ⊤ else b(x)

c3(x) = c(x)

Note that the definition is identical to the system describing simultaneous aa application in (5.4)

with the exception that the licensing/blocking structure pair is defined recursively. This recursion
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appears to the right of the current string position (underlined), which intuitively indicates an ROSL

function. An ROSL equivalent of the ba rule is defined in a similar way. Let this transduction be

denoted T4 in (5.13).

(5.13) a4(x) = a(x)

b4(x) = if ba4(x) then ⊥ else b(x)

c4(x) = if ba4(x) then ⊤ else c(x)

Like (5.6), T4 contains a licensing/blocking structure pair for the substring ba, however this structure

is defined recursively: the term ba4(x) evaluates to true when the current input string is b and its

immediate successor is an a in the output.

Before proceeding, an important clarification is necessary.2 Recall in (5.11b) that iterative ap-

plication of the aa rule derives [baba] from /aaaa/, but only when the input is scanned from right

to left. This is at the heart of the issues of directionality in tone sandhi interactions. Because ROSL

BMRS definitions call functions recursively to the right of some input position, it is tempting to

assume a similar directional procedure for the computation: the string is scanned from the right to

the left in a step-wise fashion, with outputs being generated at each step, etc. It is important to

remember that the BMRS systems defined here do not describe procedures or algorithms for gener-

ation. Instead, they are (in a sense) ‘timeless’, simply describing the conditions under which inputs

map to outputs. Simply put, an input-output mapping either satisfies the definitions or it does not.

This distinction is important, and is implicit in the analyses that follow.3

Unlike finite-to-one ISL functions, OSL functions are not closed under composition (Chandlee,

2014, 158-9). However, the following sections investigate tone sandhi interactions formalizable as

compositions of OSL functions. Despite the lack of closure under composition, these compositions

can be restricted such that they remain within the subsequential bound.

Bhaskar et al. (2020) define two variants of BMRS logic and connect them to the subsequential

class of functions. BMRSp defines the set of systems which contain no terms of the form s(T1)

for any term T1 (that is, which call a predecessor function only), and which correspond to the

left-subsequential class. BMRSs, by contrast, defines the set of systems containing no terms of the

form p(T1) for any term T1 (that is, which call a successor function only), and which correspond

to the right-subsequential class. LOSL functions are describable in BMRSp while ROSL functions

are describable in BMRSs. Given Elgot and Mezei (1965)’s result that any rational function is the

2I thank Jane Chandlee for helpful discussion about this issue.
3 The related distinction between simultaneous and iterative rule application—and thus between ISL and OSL

functions—is straightforward with the aa rule, but less so for the ba rule. For example, both T2 and T4 accept the
mapping /bbba/ 7→ [bbca] (and in general accept the same mappings Σ∗ → Γ∗ when Σ = Γ = {a, b, c}). Subsequent
sections explore this issue in more detail (see especially §4.1 and §5.1).
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composition of a right- and left-subsequential function, composing an LOSL function with an ROSL

function may result in a fully-regular composite function.

To prevent this, the main body of this dissertation only considers compositions of two length-

preserving ROSL or LOSL functions, with the understanding that such composite functions are

not strictly more expressive than their individual components—that is, they are right- or left-

subsequential.4 An example of the latter is T4⊗T3, the composition of two ROSL functions, defined

below in (5.14):

(5.14) a. T4 ⊗ T3 a4(x) = a3(x)

b4(x) = if b3a4(x) then ⊥ else b3(x)

c4(x) = if b3a4(x) then ⊤ else c3(x)

b. T3 a3(x) = if aa3(x) then ⊥ else a(x)

b3(x) = if aa3(x) then ⊤ else b(x)

c3(x) = c(x)

All non-recursively-defined boolean functions in definitions a4(x), b4(x), and c4(x) are indexed with

corresponding definitions from T3 as per the definition of the ⊗ operator. Portions of the definition

containing recursive function calls—crucially in the licensing/blocking structure pair ba4(x)—retain

their index. Thus the modified term which licenses an output c and blocks an output b is b3a4(x).

It only returns a true value when the current string position under evaluation is true for b3(x) and

its successor is true for a4(x). Applied to input string /aaaa/, the composite system accepts the

mapping /aaaa/ 7→ [caca], as illustrated in (5.15).

(5.15)
Input: a a a a

1 2 3 4

a4(x) ⊥ ⊤⊤⊤ ⊥ ⊤⊤⊤

b4(x) ⊥ ⊥ ⊥ ⊥

c4(x) ⊤⊤⊤ ⊥ ⊤⊤⊤ ⊥

a3(x) ⊥ ⊤⊤⊤ ⊥ ⊤⊤⊤

b3(x) ⊤⊤⊤ ⊥ ⊤⊤⊤ ⊥

c3(x) ⊥ ⊥ ⊥ ⊥

Output: c a c a

Composing the two transductions in this order recreates the effect of ordering the aa rule before

4This does not amount to a claim that compositions of LOSL and ROSL functions are impossible in phonology;
patterns modeled by such compositions are attested in segmental phonology Heinz and Lai (2013); McCollum et al.
(2020) and in tone (Jardine, 2016). Instead, the purpose of this restriction is to demonstrate that various sandhi
interactions of a purported high complexity fall well within the Subregular Hypothesis. See Chapter 7 for an analysis
of a harmony pattern that relaxes this restriction.
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the ba rule, and having both rules apply iteratively. As before, this ordering models a feeding

relationship between aa and ba, as earlier application of the former creates inputs for application of

the latter.

5.2.3.3 ISL ⊗ OSL and OSL ⊗ ISL

ISL and OSL functions may also combine via composition. Two examples of ISL/OSL composi-

tions are given in this section; they represent orderings of rules with either simultaneous or iterative

application.

First, let T2 ⊗ T3 be a system of equations denoting the composition of an ISL function with an

OSL function, defined in (5.16):

(5.16) a. T2 ⊗ T3 a2(x) = a3(x)

b2(x) = if b3a3(x) then ⊥ else b3(x)

c2(x) = if b3a3(x) then ⊤ else c3(x)

b. T3 a3(x) = if aa3(x) then ⊥ else a(x)

b3(x) = if aa3(x) then ⊤ else b(x)

c3(x) = c(x)

Like T2 ⊗ T1 in example (5.8), the outer function in the composite system above is ISL, and so all

boolean functions are indexed with correspondents from T3. This includes the ba licensing/blocking

structure in b2(x) and c2(x). T3 describes an ROSL function, indicated by recursive function calls

to the right of the current string position under evaluation in its definitions. The composite func-

tion mirrors a rule-based grammar where iterative application of the aa rule precedes simultaneous

application of the ba rule. Like (5.14), the former feeds the latter, such that /aaaa/ maps to [caca].

Now, let T4 ⊗T1 be a system of equations denoting the composition of an OSL function with an

ISL function, defined in (5.17).

(5.17) a. T4 ⊗ T1 a4(x) = a1(x)

b4(x) = if b1a4(x) then ⊥ else b1(x)

c4(x) = if b1a4(x) then ⊤ else c1(x)

b. T1 a1(x) = if aa(x) then ⊥ else a(x)

b1(x) = if aa(x) then ⊤ else b(x)

c1(x) = c(x)
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Recursive calls in the outer function’s definitions—e.g. in the term ba4(x)—retain their index, and

all non-recursively-defined function calls refer to corresponding definitions in T1. Licensing/blocking

structures in the modified system therefore resemble the OSL/OSL composition T4⊗T3 (5.14). That

is, computing a truth value for the relevant term requires evaluation from both the inner function

and outer function. In (5.17), this can be seen in the modified term b1a4(x). This also means that

the function is still defined recursively, and calculates outputs based on a local output window to

the right of the current string position. It mirrors a grammar where simultaneous application of the

aa rule precedes iterative application of the ba rule.

5.2.4 Interim Summary

So far, this chapter has defined a composition operator ⊗ over BMRS systems of equations and

sketched its properties. When BMRS systems model individual ‘rules’ in a rule-based formalism,

composition provides a formal expression of pairwise rule ordering. Additionally, systems describing

strictly-local functions (ISL, LOSL, ROSL) can combine under the operator. Generalizations about

mode of application (simultaneous vs. iterative) and ISL/OSL functions extend to these composite

systems.

The typology presented in the previous section exhausts the logical combinations of two ISL

and OSL functions, keeping in mind the restriction on R/LOSL composition. Provided that the

restriction is maintained, compositions of more than two ISL and OSL functions can be defined

which describe subsequential functions (see §3.4 for an example).

In the next three sections, I present case studies of tone sandhi interactions in Tianjin, Changting,

and Nanjing. Transparent (feeding) and opaque (counterbleeding) interactions expressible by rule

ordering are formalized as compositions of BMRS systems, and all four SL compositions outlined

in the broad typology are attested. Importantly, the asymmetry between ISL and OSL functions

with respect to mode of ‘rule’ application—extrapolated to compositions of SL functions—provides

a straightforward account of so-called directionality effects in Chinese tone sandhi.

5.3 Tianjin

Chapter 2 (§3.1) introduced the sandhi paradigm in Tianjin (Li and Liu, 1985), a dialect with

four lexical tones: H(igh), L(ow), R(ising), and F(alling). The three relevant sandhi rules are

repeated below.
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(5.18) a. FF rule: FF 7→ LF e.g. jingF zhongF → jingLzhongF ‘net weight’

b. LL rule: LL 7→ RL e.g. feiLjiL → feiRjiL ‘air plane’

c. RR rule: RR 7→ HR e.g. xiRlianR → xiH lianR ‘wash one’s face’

Two adjacent falling tones surfaces with the first tone realized as a low tone (5.18a), two adjacent

low tones surfaces with the first tone realized as a rising tone (5.18b), and two adjacent rising tones

surfaces with the first tone realized as a high tone (5.18c).

Recall the tritonal sequences in (5.19), the locus of the directionality ‘paradox’ in Tianjin.

(5.19) a. FFF 7→ FLF e.g. suoF liaoF buF → suoF liaoLbuF ‘plastic cloth’

b. LLL 7→ LRL e.g. tuoLlaLjiL → tuoLlaRjiL ‘tractor’

c. RRR 7→ HHR e.g. liRfaRsuoR → liHfaHsuoL ‘barber shop’

Finally, recall the two feeding relationships.

(5.20) a. LL rule feeds RR rule: RLL → RRL → HRL

b. FF rule feeds LL rule: LFF → LLF → RLF

Following Chandlee (2019), this section formalizes transparent feeding in Tianjin sandhi using

BMRS. It adopts the same computational classifications; namely, that LL and FF rules describe

OSL functions and the RR rule describes an ISL. However, it differs from Chandlee’s analysis in

that it models the interaction through composition (using the ⊗ operator) of BMRS systems. It pro-

vides three such composite systems: one representing RR/LL interaction, one representing LL/FF

rules interaction, and a full composite system formalizing both interactions. First, however, each

individual system is introduced.

5.3.1 Individual rules as systems of equations

The FF, LL, and RR ‘rules’ in (5.18) are definable as individual BMRS systems. This sec-

tion shows that corresponding systems make correct predictions about sandhi patterns in isolation.

Additionally, their computational classification (ISL vs OSL) is maintained.

Let a BMRS system of equations denoted a model the FF rule (as before, function names are

subscripted with ‘a’ for clarity). It describes an ROSL function. Again, this means that the output

is computed by examining the current input and a bounded output window to the right of that

input. This is reflected in the output boolean function definitions in (5.21), where structures—

crucially those referring to positions to the right of the string position being evaluated—are defined

recursively.
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(5.21) Ha(x) = H(x)

Ra(x) = R(x)

La(x) = if FFa(x) then ⊤ else L(x)

Fa(x) = if FFa(x) then ⊥ else F (x)

The locus of iterative FF-rule application is the output boolean function La(x). If an input F

tone is followed immediately by an output F tone (described by the structure FFa(x)), an L tone

is licensed in the output. This same configuration blocks an output F in the same position. An

example evaluation table in (5.22) illustrates. The system accepts the mapping /FFFF/ 7→ [LFLF],

consistent with the iterative/repeated application of the FF rule attested in the sandhi data, and

associated with a ‘right-to-left’ scan in earlier accounts.

(5.22)
Input: F F F F

1 2 3 4

Ha(x) ⊥ ⊥ ⊥ ⊥

Ra(x) ⊥ ⊥ ⊥ ⊥

La(x) ⊤⊤⊤ ⊥ ⊤⊤⊤ ⊥

Fa(x) ⊥ ⊤⊤⊤ ⊥ ⊤⊤⊤

Output: L F L F

Note in particular the evaluation of string positions 1 and 3 above. They both satisfy La(x) by

virtue of being an input F followed immediately by an output F. It is for this same reason that

they fail to satisfy the definition of Fa(x), as evidenced by the false ⊥ value returned at both of

those position. Positions 2 and 4 satisfy only the final term of Fa(x) as input-specified F tones. The

reader can verify the accuracy of other mappings for this system, including non-application of the

rules, e.g. /LFLF/ 7→ [LFLF].

In a similar manner, let a system of equations b describe the LL rule. Its definition is given in

(5.23).

(5.23) Hb(x) = H(x)

Rb(x) = if LLb(x) then ⊤ else R(x)

Lb(x) = if LLb(x) then ⊥ else L(x)

Fb(x) = F (x)

Much like La in system a, the output boolean function Rb contains a licensing structure with a

recursively-defined function to the right of the evaluated (underlined) input position. Thus, this

describes an ROSL function and models iterative application of the LL rule. That the system

produces the correct mapping /LLLL/ 7→ [RLRL] is illustrated in the evaluation table in (5.24).
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I reiterate here that previous accounts of Tianjin conflate this form of iterative application with

right-to-left directionality.

(5.24)
Input: L L L L

1 2 3 4

Hb(x) ⊥ ⊥ ⊥ ⊥

Rb(x) ⊤⊤⊤ ⊥ ⊤⊤⊤ ⊥

Lb(x) ⊥ ⊤⊤⊤ ⊥ ⊤⊤⊤

Fb(x) ⊥ ⊥ ⊥ ⊥

Output: R L R L

The mapping from input string /LLLL/ to output string [RLRL] is evaluated in the following way.

Positions 1 and 3 returns a true ⊤ value for the output boolean function Rb(x) by satisfying the

licensing structure LLb (an input L tone immediately succeeded by an output L tone). String

position 2, an input L tone, evaluates to false for Rb(x), and returns a true value for Lb(x) by virtue

of being input-specified as L. This is consistent with iterative LL application.

Finally, let c be a BMRS system of equations describing the RR sandhi alternation in Tianjin.

This system (5.25) differs from systems a and b in that output boolean function definitions contain

no recursion; this corresponds to Chandlee (2019)’s observation that an ISL function describes the

RR sandhi pattern.

(5.25) Hc(x) = if RR(x) then ⊤ else H(x)

Rc(x) = if RR(x) then ⊥ else R(x)

Lc(x) = L(x)

Fc(x) = F (x)

A single structure—a sequence of two input R tones—licenses an H tone in the output and blocks

an R tone in the output. Output L and F tones map directly from identical inputs. This system

thus describes an ISL function because at any point in the string, computing the output can be done

solely by referring to a bounded window in the input. Evaluated against the input string /RRRR/

as in (5.26), this system accepts [HHHR], consistent with simultaneous application of RR. Recall

that, in earlier accounts, this mapping requires a left-to-right parse.5

5Chandlee (2019) shows that, in fact, a parse in either direction (assuming simultaneous and not iterative appli-
cation) would produce the same mapping.
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(5.26)
Input: R R R R

1 2 3 4

Hc(x) ⊤⊤⊤ ⊤⊤⊤ ⊤⊤⊤ ⊥

Rc(x) ⊥ ⊥ ⊥ ⊤⊤⊤

Lc(x) ⊥ ⊥ ⊥ ⊥

Fc(x) ⊥ ⊥ ⊥ ⊥

Output: H H H R

Here, string positions 1, 2, and 3 all return a true value for Hc(x) (and therefore a false value for

Rc(x)) as an input R tone followed immediately by another input R tone. As the licensing/blocking

structure RR(x) is defined non-recursively, the output specification of string positions 2, 3, and 4

is irrelevant to computing these positions. A given string position satisfies this structure even if its

immediate successor is output as H (as in the case of positions 1 and 2). Thus, the ISL characteristic

of this function coincides with ‘simultaneous’ application of the RR rule in strings of three or more

R tones.

5.3.2 LL rule feeds RR rule (ISL ⊗ OSL)

Having defined disyllabic Tianjin sandhi patterns as individual systems, I now turn to their in-

teraction. Recall the feeding relationship that obtains between LL and RR rules in (5.20a), repeated

below.

(5.27) LL rule feeds RR rule: RLL → RRL → HRL

This transparent feeding interaction can be modeled using BMRS composition. That is, for any two

BMRS systems of equations T1 and T2, the composition T2 ⊗ T1 is the union of T1 with a modified

outer function T ′
2 . The modification is as follows: any non-recursively-defined function appearing in

T2’s set of definitions is indexed with the corresponding function definition from system T1. Indexing

in this way, the ‘output’ of T1 becomes the ‘input’ of T2. The feeding interaction between Tianjin

LL and RR patterns—defined as systems b and c above—using this formalism is thus describable

with the composite function c ⊗ b. Composing the systems in this way entails indexing every non-

recursively-defined labeling predicate in system c’s boolean output function definitions such that it

points toward the corresponding output boolean function definition in system b. This is given in

(5.28), along with the original system b for reference.6

6For the rest of this dissertation, combined systems will follow this convention for ease of reference.
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(5.28) a. c⊗ b Hc(x) = if RbRb(x) then ⊤ else Hb(x)

Rc(x) = if RbRb(x) then ⊥ else Rb(x)

Lc(x) = Lb(x)

Fc(x) = Fb(x)

b. b Hb(x) = H(x)

Rb(x) = if LLb(x) then ⊤ else R(x)

Lb(x) = if LLb(x) then ⊤ else L(x)

Fb(x) = F (x)

Given that c is an ISL function, all labeling predicates within output boolean function definitions are

non-recursively-defined. This means that every instance of a licensing/blocking or default structure is

indexed with the corresponding definition from system b as above. The composed system corresponds

to the composition type shown in §2.3.3; that is, it mirrors a rule-based grammar where a rule

applying iteratively precedes a different rule applying simultaneously.

To see how the composite function works, consider the interaction mapping /RLL/ 7→ [HRL]

from (5.20a), correctly predicted by this system, and illustrated in the evaluation table in (5.29).

(5.29)
Input: R L L

1 2 3

Hc(x) ⊤⊤⊤ ⊥ ⊥

Rc(x) ⊥ ⊤⊤⊤ ⊥

Lc(x) ⊥ ⊥ ⊤⊤⊤

Fc(x) ⊥ ⊥ ⊥

Hb(x) ⊥ ⊥ ⊥

Rb(x) ⊤⊤⊤ ⊤⊤⊤ ⊥

Lb(x) ⊥ ⊥ ⊤⊤⊤

Fb(x) ⊥ ⊥ ⊥

Output: H R L

Mapping from input /RLL/, the composite function c⊗b accepts only the output [HRL]. When string

position 3 is evaluated against the definition Lc(x), it must refer to the corresponding definition

Lb(x). Its direct mapping from input L to output L satisfies the final term of Lb(x).

To see whether string position 2 can map to an output R, it must be checked against the blocking

structure RbRb, indexed with function names from system b. Doing so requires a truth value for

each string position (the current position 2 and its successor 3) with respect to Rb(x) in system b;

only if both evaluate to true ⊤ does an output R satisfy this definition. String position 2 satisfies

the licensing structure LLb(x) in the definition of Rb(x) (i.e. returns a true value), but its successor
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in position 3 does not, and is therefore false. String position 2 therefore moves to the third term

Rb(x), which it satisfies—i.e. recalling that b models the LL rule—and is output as R.

Unlike position 2, string position 1 satisfies the entire blocking structure RbRb, and returns a false

⊥ value for Rc(x). Importantly, this structure is not defined in terms of input string positions only,

as is RR(x) from system c; it calls Rb(x) from system b, which references output structure. Thus,

although string position 2 is input-specified as L, it satisfies the definition of Rb(x)—intuitively as

a result of the LL rule applying. The same structure RbRb, which blocks output R, licenses output

H tones via the definition of Hc(x). String position 1 is an input R, and string position 2 is an R

tone ‘fed’ by application of the LL rule. The result is a true value returned for Hc(x) for position

1, and an output H. The mapping /RLL/ 7→ [HRL] accepted by this composite system is consistent

with the Tianjin data.

This analysis is not dependent on the arbitrary choice to parse the string from right to left, as

is the case of earlier rule- and optimization-based accounts. 7 Instead, it is simply the composition

of an ROSL function (corresponding to iterative application) and an ISL function (corresponding to

simultaneous application), following Chandlee (2019)’s classifications. Importantly, the difference in

mode of rule application is explained as the difference in subclasses of strictly-local functions, and

is not constrained by a ‘general principle or principles’ for determining the direction of string parse.

5.3.3 FF rule feeds LL rule (OSL ⊗ OSL)

In addition to feeding the RR rule, the LL rule is also fed by the FF rule. Recall this interaction

from (5.20b), repeated in (5.30).

(5.30) FF rule feeds LL rule: LFF → LLF → RLF

Much like the composite system defined in the previous section, this feeding interaction is definable

as the composition of system b with system a (b ⊗ a), where b is the BMRS system of equations

describing the LL rule and system a the FF rule. Every non-recursively-defined labeling predicate

in system b’s output boolean function definitions is indexed with the corresponding definition from

system a, as in (5.31), where the original system a is also given for reference.

7Recall that Zhang (1987)’s analysis claims right-to-left application as default, as it happens away from the
determinant/trigger. This is consistent with Howard (1972)’s theory whereby directionality is determined by the
rule’s form (i.e. applies toward the target). These types of analyses are therefore not entirely arbitrary; what is
arbitrary is that the RR rule should violate this principle. A potential criticism of the current analysis is that the
choice between representing a process as ISL or OSL is equally arbitrary. However, this distinction is itself a general
principle of the theory; processes can either be sensitive to input- or output-local information. Additionally, analyses
in terms of strictly-local functions off a more complete account of sandhi interactions than what is available to SPE
and OT (see especially the next chapter).
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(5.31) a. b⊗ a Hb(x) = Ha(x)

Rb(x) = if LaLb(x) then ⊤ else Ra(x)

Lb(x) = if LaLb(x) then ⊥ else La(x)

Fb(x) = Fa(x)

b. a Ha(x) = H(x)

Ra(x) = R(x)

La(x) = if FFa(x) then ⊤ else L(x)

Fa(x) = if FFa(x) then ⊥ else F (x)

Unlike c ⊗ b in the previous section, not all labeling predicates in b ⊗ a’s output boolean function

definitions are indexed with calls to corresponding functions in system a. Again, this is because b

describes an ROSL function, and thus contains recursive function calls.

This composite system captures the FF/LL feeding relationship in Tianjin. The evaluation table

in (5.32) illustrates how b⊗ a accepts the interaction mapping /LFF/ 7→ [RLF].

(5.32)
Input: L F F

1 2 3

Hb(x) ⊥ ⊥ ⊥

Rb(x) ⊤⊤⊤ ⊥ ⊥

Lb(x) ⊥ ⊤⊤⊤ ⊥

Fb(x) ⊥ ⊥ ⊤⊤⊤

Ha(x) ⊥ ⊥ ⊥

Ra(x) ⊥ ⊥ ⊥

La(x) ⊤⊤⊤ ⊤⊤⊤ ⊥

Fa(x) ⊥ ⊥ ⊤⊤⊤

Output: R L F

Note the evaluation of string position 1; here the ‘feeding’ effect of the composition becomes clear.

Satisfying the licensing structure LaLb(x) (in Rb(x)) will map an input L to an output R (mirroring

the intuition behind the LL rule). String position 1 does just that. It satisfies the first part of the

licensing structure—La(x)—by being input-specified as L. Its successor (position 2) returns a true

value for Lb(x) crucially by satisfying FFa(x) from the definition La(x): that is, by triggering the

FF rule. In intuitive terms, then, the L furnished by the FF rule (that is, the output of a) feeds the

LL rule, the locus of system b.

This is represented explicitly in the structure LaLb(x); an L tone as determined by system a,

and an L tone as determined by system b. In addition to describing the interaction, the composed

system also preserves the individual generalizations; LL sequences trigger LL sandhi in system b
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and RR sequences trigger RR sandhi in system a. This recoverability of rules is an advantage of the

BMRS formalism—see Chapter 7 for more details.

Again, the mapping is describable as the composition of two ROSL functions, and is not depen-

dent on a procedure that generates outputs step by step in a right-to-left parse.

5.3.4 The fully-composed map (ISL ⊗ OSL ⊗ OSL)

Combining the results of the preceding two sections, the map of both interactions—FF feeds LL

which feeds RR—can be described by the composition c⊗ b ⊗ a. Composing three BMRS systems

of equations follows the same procedure as that of two systems; definitions in system c are indexed

with system b functions, and those definitions are indexed with system a functions. Thus, as shown

above, the ‘output’ of system a (the FF rule) can ‘feed’ system b (the LL rule), which in turn can

‘feed’ system c (the RR rule). The composite system is shown below in (5.33) in three parts: the

composition c⊗ b, the composition b⊗ a, and finally the original system a for reference.

(5.33) a. c⊗ b Hc(x) = if RbRb(x) then ⊤ else Hb(x)

Rc(x) = if RbRb(x) then ⊥ else Rb(x)

Lc(x) = Lb(x)

Fc(x) = Fb(x)

b. b⊗ a Hb(x) = Ha(x)

Rb(x) = if LaLb then ⊤ else Ra(x)

Lb(x) = if LaLb then ⊥ else La(x)

Fb(x) = Fa(x)

c. a Ha(x) = H(x)

Ra(x) = R(x)

La(x) = if FFa(x) then ⊤ else L(x)

Fa(x) = if FFa(x) then ⊥ else F (x)

This composite system correctly predicts interaction mappings /RLL/ 7→ [HRL] and /LFF/ 7→ [RLF]

as did c⊗ b and b⊗ a respectively, as well as non-interaction mappings (as those in §3.1) and even

mappings between input and output Tianjin tones which do not undergo sandhi, such as /HHH/ 7→

[HHH]. These are given in the evaluation table below in (5.34).
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(5.34)
Input: R L L L F F H H H

1 2 3 1 2 3 1 2 3

Hc(x) ⊤⊤⊤ ⊥ ⊥ ⊥ ⊥ ⊥ ⊤⊤⊤ ⊤⊤⊤ ⊤⊤⊤

Rc(x) ⊥ ⊤⊤⊤ ⊥ ⊤⊤⊤ ⊥ ⊥ ⊥ ⊥ ⊥

Lc(x) ⊥ ⊥ ⊤⊤⊤ ⊥ ⊤⊤⊤ ⊥ ⊥ ⊥ ⊥

Fc(x) ⊥ ⊥ ⊥ ⊥ ⊥ ⊤⊤⊤ ⊥ ⊥ ⊥

Hb(x) ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊤⊤⊤ ⊤⊤⊤ ⊤⊤⊤

Rb(x) ⊤⊤⊤ ⊤⊤⊤ ⊥ ⊤⊤⊤ ⊥ ⊥ ⊥ ⊥ ⊥

Lb(x) ⊥ ⊥ ⊤⊤⊤ ⊥ ⊤⊤⊤ ⊥ ⊥ ⊥ ⊥

Fb(x) ⊥ ⊥ ⊥ ⊥ ⊥ ⊤⊤⊤ ⊥ ⊥ ⊥

Ha(x) ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊤⊤⊤ ⊤⊤⊤ ⊤⊤⊤

Ra(x) ⊤⊤⊤ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

La(x) ⊥ ⊤⊤⊤ ⊤⊤⊤ ⊤⊤⊤ ⊤⊤⊤ ⊥ ⊥ ⊥ ⊥

Fa(x) ⊥ ⊥ ⊥ ⊥ ⊥ ⊤⊤⊤ ⊥ ⊥ ⊥

Output: H R L R L F H H H

Evaluation of the first two input strings proceeds in a similar manner as described in §3.2 and §3.3;

importantly, the addition of system c’s contributions to the computation of the first mapping and

the addition of system a’s contributions to the computation of the second mapping do not alter the

nature of the mappings which satisfy the composite system. That is to say, the mapping described

by the composition includes /RLL/ 7→ [HRL] and /LFF/ 7→ [RLF]. It also includes non-sandhi

mappings such as /HHH/ 7→ [HHH]. Here, each string position returns a true value for Ha(x) (by

virtue of being specified as an H tone in the input) and a false value for the other output boolean

functions in system a. This means that it also evaluates to true for system b’s definition Hb(x), and

false for all other functions in that system. This in turn guarantees that each position returns a true

value for Hc(x) when it computes the default term Hb(x). Since positions 1, 2, and 3 evaluate to

true for Hc(x), we may say that the entire composite system accepts the mapping /HHH/ 7→ [HHH].

This mapping from input to output tones is consistent with attested Tianjin data.

5.4 Changting

Chapter 2 (§3.2) presented data from the Hakka dialect Changting (Luo, 1982; Chen, 2000, 2004;

Chen et al., 2004), a five-tone dialect with H(igh), L(ow), M(id), R(ising), and F(alling) tones. Four

sandhi alternations relevant to this chapter are repeated in (5.35).
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(5.35) a. LF rule: LF 7→ MF e.g. daiLbiaoF → daiMbiaoF ‘represent’

b. RM rule: RM 7→ HM e.g. hanRlengM → hanH lengM ‘cold’

c. MR rule: MR 7→ LR e.g. huaMqianR → huaLqianR ‘spend money’

d. ML rule: ML 7→ LL e.g. ganMyuanL → ganLyuanL ‘willing’

Recall the trisyllabic data (5.36) which illustrate the following feeding relationships: the LF rule

(LF → MF) feeds the RM rule (RM → HM), and the MR rule (MR → LR) feeds the ML rule (ML

→ LL).

(5.36) a. LF rule feeds RM rule: RLF → RMF → HMF

b. MR feeds ML rule: MMR → MLR → LLR

The current section focuses on the transparent feeding interactions in (5.36), demonstrating how

they can be modeled as the composition of BMRS systems of equations using the ⊗ operator (and

thus as subsequential functions). In particular, the feeding relationship between LF and RM rules

in (5.36a) is the composition of two ISL functions, and the feeding relationship between MR and

ML rules in (5.36b) is the composition of an OSL function with an ISL function. Problematic

cases noted by Chen (2004) and taken up by Oakden and Chandlee (2020) are introduced in the

discussion section of this chapter, and treated in more detail in the next chapter. As before, the

following sections define individual rules as separate BMRS systems of equations first, and then

explore their interactions as composition.

5.4.1 Individual rules as systems of equations

The four Changting sandhi rules in (5.35) are definable as individual BMRS systems. This

section defines systems corresponding to the Changting disyllabic sandhi patterns, and illustrates

how they recreate the effect of those processes applying in isolation. Issues facing the designation of

a particular rule as representing a properly-ISL or properly-OSL function are also discussed. Where

relevant, a particular designation is adopted.

First, let a BMRS systems of equations denoted a model the LF rule, given in (5.37).

(5.37) Ha(x) = H(x)

Ra(x) = R(x)

Fa(x) = F (x)

Ma(x) = if LF (x) then ⊤ else M(x)

La(x) = if LF (x) then ⊥ else L(x)
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The relevant structure here is an input L tone followed by an input F tone; this structure licenses

output M and blocks output L. Given that all structures are input-oriented, the function described

by a is ISL. It accepts the disyllabic sandhi mapping /LF/ 7→ [MF], as shown in the evaluation table

in (5.38).

(5.38)
Input: L F

1 2

Ha(x) ⊥ ⊥

Ra(x) ⊥ ⊥

Fa(x) ⊥ ⊤⊤⊤

Ma(x) ⊤⊤⊤ ⊥

La(x) ⊥ ⊥

Output: M F

As in the Tianjin examples, the leftmost string position satisfies the relevant licensing structure and

models sandhi in isolation. Unlike Tianjin, however, the distinction between the ISL characterization

in (5.37) and an equally-plausible OSL characterization is less straightforward. This is because few—

in fact, only one—of the Changting disyllabic sandhi rules are of the type xx → yx, often described

as OCP effects (Chen, 2000). In Tianjin, the computational classification of the function becomes

clear upon examining the rules in trisyllabic contexts, as ISL functions correspond to ‘simultaneous’

application and OSL functions to iterative application. No such test exists for the Changting rules

under consideration because they are triggered by sequences of different tones. Thus there is no way

to determine whether the associated function is properly-ISL or properly-OSL; perhaps it occupies

the space in which these function classes overlap. For simplicity, the analysis presented here will

assume ISL-ness of individual sandhi rules, unless clear evidence from the data suggests otherwise.

The RM rule (RM → HM) is described by the BMRS system of equations denoted b, and given

in (5.39).

(5.39) Hb(x) = if RM(x) then ⊤ else H(x)

Rb(x) = if RM(x) then ⊥ else R(x)

Fb(x) = F (x)

Mb(x) = M(x)

Lb(x) = L(x)

Computation of an input string /RM/ using this definition follows a similar procedure as in (5.38).

The first position evaluates to true for the term RM(x) (an input R followed immediately by an

input M). This reflects the generalization that an output H tone is licensed in this position and an
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output R is blocked.

The same generalization holds of a system c describing the MR rule (MR → LR), and given in

(5.40).

(5.40) Hc(x) = H(x)

Rc(x) = R(x)

Fc(x) = F (x)

Mc(x) = if MR(x) then ⊥ else M(x)

Lc(x) = if MR(x) then ⊤ else L(x)

Applied to an input string /MR/, the function outputs the attested surface string [LR]. The evalu-

ation table in (5.41) shows that the mapping /MR/ 7→ [LR] satisfies system c.

(5.41)
Input: M R

1 2

Hc(x) ⊤⊤⊤ ⊥

Rc(x) ⊥ ⊤⊤⊤

Fc(x) ⊥ ⊥

Mc(x) ⊥ ⊥

Lc(x) ⊥ ⊥

Output: L R

The input string satisfies the structure MR(x), thus licensing an output L tone on position 1 and

blocking output M on the same position. As before, the string position representing the non-

alternating tone (input R in this case) maps directly to an output R by virtue of returning a true

value for Rc(x). The function described by system c is assumed to be ISL; the discussion section

presents evidence in support of an ISL characterization of both RM and MR rules as a result of

their interaction. This issue is explored in more detail in Chapter 6.

Unlike LF, RM, and MR rules, the trisyllabic sandhi data in Changting motivate a non-ISL

characterization of the ML rule (ML → LL). Luo (1982) reports the mapping /MML/ 7→ [LLL] as

in (5.42):

(5.42) a. seNM faM joNL → seNL faL joNL ‘starting fresh’

b. soNM paM loL → soNL paL loL ‘twins’

These forms illustrate iterative application, suggesting that this rule is describable by an OSL

function. Intuitively, access to output structure is necessary to generate the mappings above. If

computation of the rule’s output were to only make reference to a local bounded window in the

input, for example, the L tone created by application of the rule on the second and third tones
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would not trigger another iteration. In this case, the predicted output would be the unattested

MML. An ROSL function, by contrast, calculates the output using a local bounded window in the

output structure, thus giving it access to the output L tone. Thinking in terms of rules (and not

functions), ML feeds itself in a sense, deriving the attested output [LLL]. The derivations in (5.43)

schematize the difference between ISL and OSL computations of an /MML/ input string. Underlined

portions represent the window of computation.

(5.43) a. ISL function: MML

↓

L

MML

↓

LL

MML

↓

MLL

b. OSL function: MML

↓

L

MML

↓

L

MML

↓

LL

MML

↓

LLL

The crucial structure for the OSL functional characterization, then, is an input M followed imme-

diately by an output L (recall the FF and LL rules from Tianjin). This is reflected in the system of

equations d in (5.44).

(5.44) Hd(x) = H(x)

Rd(x) = R(x)

Fd(x) = F (x)

Md(x) = if MLd(x) then ⊥ else M(x)

Ld(x) = if MLd(x) then ⊤ else L(x)

The OSL-ness of the system is reflected in the licensing/blocking structure pair MLd(x). The

current string position (underlined) refers to the input, and other local string information refers to

the output (a recursive call of output boolean function Ld(x)). System d makes accurate predictions

about trisyllabic sandhi forms in (5.42). Example (5.45) illustrates its evaluation of input string

/MML/ mapping to output [LLL].

(5.45)
Input: M M L

1 2 3

Hd(x) ⊥ ⊥ ⊥

Rd(x) ⊥ ⊥ ⊥

Fd(x) ⊥ ⊥ ⊥

Md(x) ⊥ ⊥ ⊥

Ld(x) ⊤⊤⊤ ⊤⊤⊤ ⊤⊤⊤

Output: L L L
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Computation of the output string [LLL] with this system is identical to the procedure described

in (5.42b). Position 3 maps to L by virtue of input-specification as L (satisfying the final term of

Ld(x)). Given this, position 2 satisfies MLd(x), licensing an output L. In precisely the same manner,

the output structure contributed by position 2 permits the licensing of position 1 as an output L

tone.

Individual systems a, b, c, and d model the LF, RM, MR, and ML disyllabic sandhi rules in

Changting, respectively. These systems describe both ISL and OSL functions. Attested feeding

interactions between these rules is formalized in a BMRS framework via the composition operator

⊗.

5.4.2 LF feeds RM (ISL ⊗ ISL)

The following two sections model feeding interactions in Changting as the composition of indi-

vidual BMRS systems. Combination of two systems in a particular order via ⊗ recreates the effect

of a feeding order over rules. Recall the feeding interaction between LF and RM rules in (5.36a),

repeated below in (5.46):

(5.46) LF rule feeds RM rule: RLF → RMF → HMF

In terms of SPE rules, the crucial ordering LF < RM is necessary to derive the mapping /RLF/

7→ [HMF]. The LF rule applies first, creating the intermediate representation [RMF]. This string

satisfies the structural description of the RM rule. It applies to the intermediate form to yield

the surface form [HMF]. Earlier application of the LF rule is crucial as it imparts the requisite

environment (an M tone) for the RM rule to apply. A functional characterization of the feeding

interaction describes a similar procedure: an LF function applies first, and its output becomes the

input of an RM function. This relationship is formalized in a BMRS framework using function

composition. With systems a and b describing systems LF and RM respectively, the composite

function b ⊗ a models the same rule ordering LF < RM and thus transparent feeding. Example

(5.47) below gives this definition, in addition to individual system a.
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(5.47) a. b⊗ a Hb(x) = if RaMa(x) then ⊤ else Ha(x)

Rb(x) = if RaMa(x) then ⊥ else Ra(x)

Fb(x) = Fa(x)

Mb(x) = Ma(x)

Lb(x) = La(x)

b. a Ha(x) = H(x)

Ra(x) = R(x)

Fa(x) = F (x)

Ma(x) = if LF (x) then ⊤ else M(x)

La(x) = if LF (x) then ⊥ else L(x)

Applying the ⊗ operator proceeds as before. All non-recursively-defined labeling predicates in the

definitions of system b (the outer function) are indexed with corresponding output boolean function

definitions from system a (the inner function). And since a describes an ISL function, every labeling

predicate contains such an index. This composite system is also ISL, since all the indexed function

names also point to function names that are themselves non-recursively-defined. In other words, the

function described by b⊗ a computes outputs using bound reference to input structure only.

Given the order of composition b ⊗ a, the resulting system is predicted to model the feeding

relationship between LF and RM rules. It does exactly that, as shown by the following evaluation

of /RLF/ 7→ [HMF] against the system.

(5.48)
Input: R L F

1 2 3

Hb(x) ⊤⊤⊤ ⊥ ⊥

Rb(x) ⊥ ⊥ ⊥

Fb(x) ⊥ ⊥ ⊤⊤⊤

Mb(x) ⊥ ⊤⊤⊤ ⊥

Lb(x) ⊥ ⊥ ⊥

Ha(x) ⊥ ⊥ ⊥

Ra(x) ⊤⊤⊤ ⊥ ⊥

Fa(x) ⊥ ⊥ ⊤⊤⊤

Ma(x) ⊥ ⊤⊤⊤ ⊥

La(x) ⊥ ⊥ ⊥

Output: H M F

String position 3 returns a true value for Fa(x) (as an input-specified F) which passes directly to

Fb(x). Along with Fb(x), Mb(x) and Lb(x) also inherit their truth values directly from Ma(x) and

La(x), respectively. This means that when string position 2 satisfies the licensing structure LF (x)—
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an input LF sequence—in the definition Ma(x), it also evaluates to true for Mb(x) and is output as

M.

Importantly, the licensing/blocking structure pair for the modified system b entails evaluation

from system a over two string positions (recalling that b describes an ISL function). Returning a true

value for RaMa(x) requires the current string position to be true for Ra(x) and for its immediate

successor to be true for Ma(x). String position 1 returns true ⊤ for Ra(x)—an input R—and, as

shown in the preceding paragraph, position 2 returns a true value for Ma(x). When the input R is

evaluated against Hb(x), it returns a true value based entirely on information from the output of

system a. Part of that output is the M tone contributed by application of the LF rule, and which

crucially allows positions 1 and 2 to satisfy the licensing structure RaMa(x). This interplay between

the functions described by a and b, and mediated through the syntactic operator ⊗, is identical to

transparent feeding in a rule-ordering paradigm. Despite the fact that a, b, and b ⊗ a are all ISL,

the feeding relationship is represented in much the same way as it is for the composition of OSL

Tianjin feeding interactions discussed in §3.3.

5.4.3 MR feeds ML (OSL ⊗ ISL)

The typology developed in §2.3 predicts as possible interactions—formalizable by rule ordering—

compositions of two ISL functions (the previous subsection), compositions of two OSL functions

(Tianjin FF/LL feeding in §3.3), and the composition of an OSL function with an ISL function

(Tianjin LL/RR feeding in §3.2). The feeding relationship between MR and ML rules in Changting

thus exhausts the possible combinations from the typology: here, an ISL function composes with an

OSL function.

Recall the feeding relationship between these two rules (5.36b), repeated below in (5.49).

(5.49) MR feeds ML rule: MMR → MLR → LLR

To derive the surface form [LLR] from underlying /MMR/, the MR rule must be ordered before ML.

As in the previous section, application of the latter rule hinges on the appearance of the sequence

ML in the intermediate form MLR (furnished by earlier application of MR).

This transparent feeding interaction is formalized as the composition of system d with system c

(d⊗c), recalling that d is a BMRS system of equations describing the ML rule and system c the BMRS

system of equations describing the MR rule. The output boolean function definitions of system d

are modified such that they are indexed with definitions from c wherever a non-recursive labeling

predicate appears. This is given below in (5.50) along with the original system c for reference.
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(5.50) a. d⊗ c Hd(x) = Hc(x)

Rd(x) = Rc(x)

Fd(x) = Fc(x)

Md(x) = if McLd(x) then ⊥ else Mc(x)

Ld(x) = if McLd(x) then ⊤ else Lc(x)

b. c Hc(x) = H(x)

Rc(x) = R(x)

Fc(x) = F (x)

Mc(x) = if MR(x) then ⊥ else M(x)

Lc(x) = if MR(x) then ⊤ else L(x)

Worth noting is the fact that definitions Md(x) and Ld(x) now contain a modified licensing/blocking

structure pair: McLd(x). Computing a truth value of this term requires evaluation from system c

(on a current string position) and from system d (on the following string position, recalling that d

describes an ROSL function). Other labeling predicates directly index system c.

As defined, the composite system accepts the attested interaction mapping /MMR/ 7→ [LLR] in

the Changting data. An evaluation of this mapping is summarized below in (5.51).

(5.51)
Input: M M R

1 2 3

Hd(x) ⊥ ⊥ ⊥

Rd(x) ⊥ ⊥ ⊤⊤⊤

Fd(x) ⊥ ⊥ ⊥

Md(x) ⊥ ⊥ ⊥

Ld(x) ⊤⊤⊤ ⊤⊤⊤ ⊥

Hc(x) ⊥ ⊥ ⊥

Rc(x) ⊥ ⊥ ⊤⊤⊤

Fc(x) ⊥ ⊥ ⊥

Mc(x) ⊤⊤⊤ ⊥ ⊥

Lc(x) ⊥ ⊤⊤⊤ ⊥

Output: L L R

Position 3, input-specified as R, maps directly to R in the output (i.e. it evaluates to true for Rd(x)

via Rc(x)). The second string position satisfies the relevant structure for the MR rule, returning

a true value for Lc(x) as is expected for the rule’s application in isolation. Crucially, it returns a

false ⊥ value for Mc(x); thus when computing the truth value for Md(x) and Ld(x), it returns false

for the modified licensing/blocking structure M cLd(x). It then proceeds to the third term in the

if-then-else statement. The truth value for Lc(x) is ‘fed’ to Ld(x), outputting string position 2 as L
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via this default term.

Position 1 evaluates to true for Mc(x), also via input M-specification. In conjunction with

position 2’s value for Ld(x), the input M in position 1 conforms to the structure M cLd(x)—blocking

output M and licensing output L. The ‘feeding’ apparent in this evaluation stems from the fact

Ld(x)’s truth value comes directly from Lc(x). In other words, system c contributes an ‘output’ L

tone to the evaluation of system d. This is reflected in the composite function d⊗c, and the function

accepts mappings consistent with attested Changting interactions.

5.5 Nanjing

Chapter 2 (§3.1) introduced di- and tri-syllabic sandhi data from the Jianghuai Mandarin dialect

Nanjing (Liu and Li, 1995). Recall that this dialect has five lexical tones: H(igh), L(ow), R(ising),

F(alling) and a C(hecked) tone. Relevant sandhi alternations are repeated in (5.52).

(5.52) a. ‘LF rule’: LF 7→ RF e.g. laoLshiF → laoRshiF ‘teacher’

b. ‘FF rule’: FF 7→ HF e.g. bingFxiangF → bingHxiangF ‘refrigerator’

c. ‘RC rule’: RC 7→ LC e.g. tongRxueC → tongLxueC ‘classmate’

d. ‘CC rule’: CC 7→ C′C e.g. qiCshiC → qiC
′

shiC ‘seventy’

A recent instrumental study by Ma and Li (2014) provides experimental evidence for sandhi inter-

actions in trisyllabic forms and explores the issue of directionality in sandhi application—echoing

the left-to-right and right-to-left scanning dichotomy that led to the Tianjin ‘paradox’. Among

other findings, their results indicate that the trisyllabic paradigm includes both counterbleeding and

counterfeeding interactions. The counterbleeding mappings relevant to this chapter are introduced

in (5.53).

(5.53) a. /LFF/ 7→ [RHF]

b. /RCC/ 7→ [LC′C]

Mappings (5.53a) and (5.53b) show a counterbleeding (on environment) interaction between FF/LF

rules and RC/CC rules, respectively.

This section presents a BMRS analysis of counterbleeding interactions in Nanjing. Its primary

purpose is to demonstrate that function composition (via the ⊗ operator) offers a formalization of

rule ordering beyond transparent feeding to include opaque interactions such as counterbleeding.

This lends further support to the argument that the set of interactions expressible by pairwise rule

ordering is precisely the set of interactions modeled by function composition. Individual rules are
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defined as BMRS systems of equations describing ISL or OSL functions, which can be composed to

model counterbleeding relationships.

Analysis in terms of compositions of strictly-local functions presents a less stipulative account of

the data than the directionality-based analyses pursued by Ma and Li (2014) and others (recall dis-

cussion in Chapter 2 §3.4.2). The apparent paradox in directionality—much like Chandlee (2019)’s

account of Tianjin and the analysis of Changting in (Oakden and Chandlee, 2020)—vanishes when

examined through the lens of ISL and OSL functions and composite functions thereof. Nanjing

therefore offers additional support to SL-functional analyses of tone sandhi interactions more gen-

erally.

5.5.1 Individual rules as systems of equations

Counterbleeding interactions in Nanjing can be formalized as compositions of individual BMRS

systems of equations. Those systems—modeling the individual rules in (5.52)—are first defined,

and are shown to make correct predictions about disyllabic sandhi. Data from Ma and Li (2014)’s

findings support describing rules as either ISL or OSL functions. Note that systems are defined over

an output alphabet of surface sandhi tones in the Nanjing dialect Σ = {H,L,R, F, C,C ′}. Crucially,

this includes the output sandhi tone C′.

First, let a system a describe the LF rule (5.52a), as defined in (5.54). The relevant structure

here is an input L tone followed by an input F tone. As before, this definition assumes an ISL

function as a default.

(5.54) Ha(x) = H(x)

La(x) = if LF (x) then ⊥ else L(x)

Ra(x) = if LF (x) then ⊤ else R(x)

Fa(x) = F (x)

Ca(x) = C(x)

C′
a(x) = ⊥

Applied to a disyllabic input string /LF/, the system accepts the attested disyllabic sandhi mapping

/LF/ 7→ [RF] as in (5.55); string position 1 satisfies the structure LF (x), licensing an output R and

blocking output L on that position. String position 2 maps directly to an output F.



130

(5.55)
Input: L F

1 2

Ha(x) ⊥ ⊥

La(x) ⊥ ⊥

Ra(x) ⊤⊤⊤ ⊥

Fa(x) ⊥ ⊤⊤⊤

Ca(x) ⊥ ⊥

C′
a(x) ⊥ ⊥

Output: R F

Note also that, for this system, the output boolean function for the checked sandhi variant is set to

false.

Let b, defined in (5.56), denote a system of equations modeling the FF rule (5.52b). A single

structure—two consecutive, input F tones—licenses an output H tone and blocks an output F tone,

and thus the system describes an ISL function.

(5.56) Hb(x) = if FF (x) then ⊤ else H(x)

Lb(x) = L(x)

Rb(x) = R(x)

Fb(x) = if FF (x) then ⊥ else F (x)

Cb(x) = C(x)

C′
b(x) = ⊥

Unlike the LF rule, the FF rule is of the type xx 7→ xy, and thus whether it is properly-ISL

or properly-OSL can be determined from trisyllabic contexts, as was the case for Tianjin sandhi.

Ma and Li (2014) report the mapping /FFF/ 7→ [HHF] for this rule—i.e. simultaneous application.

Following Chandlee (2019), this supports an ISL designation. As defined, system b accepts the

mapping /FFF/ 7→ [HHF], as illustrated in the evaluation table in (5.57).

(5.57)
Input: F F F

1 2 3

Hb(x) ⊤⊤⊤ ⊤⊤⊤ ⊥

Lb(x) ⊥ ⊥ ⊥

Rb(x) ⊥ ⊥ ⊥

Fb(x) ⊥ ⊥ ⊤⊤⊤

Cb(x) ⊥ ⊥ ⊥

C′
b(x) ⊥ ⊥ ⊥

Output: H H F
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Crucially, both string positions 1 and 2 return a true value for the term FF (x), licensing output

H and blocking output F on these positions. System b contains no recursive function calls, and

thus computing the output proceeds solely with reference to input structure—that is, it describes

an ISL function. This characteristic permits the same ‘simultaneous’ application of the FF rule in

Nanjing as was observed for the ISL RR rule in Tianjin (recall the evaluation of the relevant system

in (5.26)).

The RC rule in (5.52c) can be described by a system of equations denoted c. It is defined in

(5.58) below, and receives the same default ISL-ness assumption as the LF rule.

(5.58) Hc(x) = H(x)

Lc(x) = if RC(x) then ⊤ else L(x)

Rc(x) = if RC(x) then ⊥ else R(x)

Fc(x) = F (x)

Cc(x) = C(x)

C′
c(x) = ⊥

A single structure—a sequence of a rising and a checked tone in the input—licenses an output L and

blocks an output R. Applied to a disyllabic sequence /RC/, then, the first string position satisfies

this structure, predicting the attested [LC] surface structure.

Like the FF rule, the CC rule’s designation as an ISL or OSL function can be determined by

its application over sequences of three (or more) tones. Recall Ma and Li (2014)’s claim from the

previous section of the right-to-left application of this rule, evidenced by the attested mapping

/CCC/ 7→ [CC′C] and crucially not *[C′C′C] (the outcome of a left-to-right parse). In terms of

ISL and OSL functions, this is reminiscent of the the ‘iterative’ application of LL and FF rules in

Tianjin—e.g. /LLL/ 7→ [LRL] and /FFF/ 7→ [FLF]. The CC rule (5.52d) can therefore be defined

as a system of equations—denoted d as in (5.59)—describing an ROSL function, consistent with the

characterization of Tianjin presented in §3 of this chapter.

(5.59) Hd(x) = H(x)

Ld(x) = L(x)

Rd(x) = R(x)

Fd(x) = F (x)

Cd(x) = if CCd(x) then ⊥ else C(x)

C′
d(x) = if CCd(x) then ⊤ else ⊥

The function described by d computes outputs using the current input string position and a bounded
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local window in the output and to the right of that string position. System d accepts the at-

tested /CCC/ 7→ [CC′C] but would not accept the unattested (simultaneous application) /CCC/ 7→

*[C′C′C] describable by an ISL function. An abbreviated evaluation table in (5.60) illustrates.

(5.60)
Input: C C C

1 2 3

Cd(x) ⊤⊤⊤ ⊥ ⊤⊤⊤

C′
d(x) ⊥ ⊤⊤⊤ ⊥

Output: C C′ C

Only string position 2 satisfies the licensing structure CCd(x) in the definition of C′
d(x); an input C

tone whose immediate successor is an output C. Positions 1 and 3 return a false value for this term,

and thus map directly to C via the default term C(x) in the definition Cd(x).

5.5.2 LF counterbleeds FF (ISL ⊗ ISL)

Composition of individual BMRS systems (using the ⊗ operator) models counterbleeding orders

in the same manner as feeding orders. This is because order of composition recreates the effect of

a crucial rule ordering: the output of one function (the earlier rule) serves as the input of another

function (the later rule).

In a trisyllabic environment, the Nanjing LF rule counterbleeds the FF rule. This is apparent in

the mapping /LFF/ 7→ [RHF], and shown in the derivation in (5.61).

(5.61) LFF

|

RFF by LF rule

|

RHF by FF rule

LFF

|

LHF by FF rule

|

*LHF LF rule n/a

Deriving the correct surface form requires the order LF < FF. A BMRS compositional account

recreates this effect with the composite system b⊗a, recalling that a system b describes the Nanjing

FF rule and a the LF rule, respectively. In (5.62) below, the composite system is given along with

the original system a.
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(5.62) a. b⊗ a Hb(x) = if F aFa(x) then ⊤ else Ha(x)

Lb(x) = La(x)

Rb(x) = Ra(x)

Fb(x) = if F aFa(x) then ⊥ else Fa(x)

Cb(x) = Ca(x)

C′
b(x) = ⊥

b. a Ha(x) = H(x)

La(x) = if LF (x) then ⊥ else L(x)

Ra(x) = if LF (x) then ⊤ else R(x)

Fa(x) = F (x)

Ca(x) = C(x)

C′
a(x) = ⊥

System b ⊗ a describes the composition of two ISL functions. The resulting system shares many

similarities to the composition of two ISL functions modeling the LF/RM interaction in Tianjin

(5.47). All labeling predicates in b are indexed with corresponding definitions from a given that b

describes an ISL function (i.e. no recursive function calls). The composite function is also ISL.

The composition order b ⊗ a models the counterbleeding order LF < FF. Crucially, it accepts

the mapping /LFF/ 7→ [RHF]. This is shown in the abbreviated evaluation table below in (5.63).

(5.63)
Input: L F F

1 2 3

Hb(x) ⊥ ⊤⊤⊤ ⊥

Lb(x) ⊥ ⊥ ⊥

Rb(x) ⊤⊤⊤ ⊥ ⊥

Fb(x) ⊥ ⊥ ⊤⊤⊤

Ha(x) ⊥ ⊥ ⊥

La(x) ⊥ ⊥ ⊥

Ra(x) ⊤⊤⊤ ⊥ ⊥

Fa(x) ⊥ ⊤⊤⊤ ⊤⊤⊤

Output: R H F

Thinking of in terms of rule ‘application’, the order of composition b⊗a guarantees that the FF rule

(system b) applies to the output of the LF rule (system a). In the string /LFF/, early ‘application’

of the LF rule does not modify the structural description of the FF rule: the substring FF. In the

evaluation table above, string positions 2 and 3 both return true values for the function Fa(x) in

system a. That is to say, modification of the input string imposed by system a does not extend to
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those positions. That output feeds system b directly via indices on its labeling predicates. String

position 2 returns a true value for the term F aFa(x) in the definition of Hb(x), licensing an output

H (i.e. the application of the FF rule). That structure is dependent on any modification made

by system a (i.e. application of the LF rule), of which there is none for positions 2 and 3. The

counterbleeding interaction in Nanjing is thus captured in a BMRS compositional framework.

Both systems describe ISL functions. The interaction is describable as a composition of ISL

functions (each of which corresponds to simultaneous application), provided that the correct order

of composition is maintained. This diverges somewhat from Ma and Li (2014)’s directionality-based

approach. Specifically, they claim that a left-to-right parse derives /LFF/ 7→ [RHF], while a right-

to-left parse derives an unattested output. Example (5.64) outlines the purported predictions of a

‘right-to-left’ parse.

(5.64) Input Right-to-left Left-to-right

/LFF/ LFF → *LHF LFF → RFF → RHF

Differences in parsing ‘direction’ according to Ma and Li (2014) actually correspond to different rule

orderings (and thus composition orders) The right-to-left parse follows the bleeding order FF<LF,

while the left-to-right parse follows the (attested) counterbleeding order LF<FF. The analysis pre-

sented here makes the same distinction between attested and unattested outputs, but does so via

an order of composition over ISL functions. Much like the analysis of Tianjin, this avoids arbitrary

stipulation of a parsing direction.

5.5.3 RC counterbleeds CC (OSL ⊗ ISL)

The attested counterbleeding interaction between RC and CC rules is also amendable to an

analysis using composition of BMRS systems with the ⊗ operator. Recall the relevant interaction

mapping /RCC/ 7→ [LC′C] in (5.53), with corresponding derivations below in (5.65):

(5.65) RCC

|

LCC by RC rule

|

LC′C by CC rule

RCC

|

RC′C by CC rule

|

*RC′C RC rule n/a

The order RC < CC is apparent from the derivations above. In a BMRS framework, individual

systems d and c—describing CC and RC rules respectively—compose to model this interaction.

Example (5.66) defines the composed system d⊗ c, with system c repeated.
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(5.66) a. d⊗ c Hd(x) = Hc(x)

Ld(x) = Lc(x)

Rd(x) = Rc(x)

Fd(x) = Fc(x)

Cd(x) = if CcCd(x) then ⊥ else Cc(x)

C′
d(x) = if CcCd(x) then ⊤ else ⊥

b. c Hc(x) = H(x)

Lc(x) = if RC(x) then ⊤ else L(x)

Rc(x) = if RC(x) then ⊥ else R(x)

Fc(x) = F (x)

Cc(x) = C(x)

C′
c(x) = ⊥

Note that d describes an ROSL function as per the licensing/blocking structure pair in definitions

Cd(x) and C′
d(x). Composing with system c results in the following modified structure: CcCd(x).

Much like the composition of OSL and ISL functions introduced for Changting (see §4.2), this term

is calculated by evaluating both the output of system c (on the current string position) and the

output of system d (on the current string position’s successor).

As (5.67) shows, this system accepts the relevant mapping /RCC/ 7→ [LC′C].

(5.67)
Input: R C C

1 2 3

C′
d(x) ⊥ ⊤⊤⊤ ⊥

Cd(x) ⊥ ⊥ ⊤⊤⊤

Ld(x) ⊤⊤⊤ ⊥ ⊥

Rd(x) ⊥ ⊥ ⊥

Lc(x) ⊤⊤⊤ ⊥ ⊥

Rc(x) ⊥ ⊥ ⊥

Cc(x) ⊥ ⊤⊤⊤ ⊤⊤⊤

Output: L C′ C

Evaluating string position 3 against Cd(x) returns a false ⊥ value for the modified licensing/blocking

structure, then proceeds to the final term (indexed Cc(x)), and is thus output as C via input

specification as such. The second string position does return a true value for CcCd(x) and, as a

result, evaluates to true for C′
d(x).

Note also that position 2 returns a true value for Cc(x) in system c. Thus string position 1

evaluates to true for Lc(x) in the ‘RC rule’ system c—by satisfying RC(x)—and passes that truth



136

value directly to Ld(x), such that string position 1 is output as L. Here the order of composition

is paramount; the opposite order c⊗ d would index Lc(x)’s definition with definitions from system

d, resulting in the licensing structure RdCd(x). This would effectively block (i.e. bleed) application

of the RC rule. In other words, reversing the order of composition generates the same effect as

reversing rule ordering.

As before, the SL-functional analysis offers a desirable alternative to one that invokes direc-

tionality. By Ma and Li (2014)’s account, the RC/CC counterbleeding interaction offers support of

left-to-right application, summarized in (5.68):

(5.68) Input Right-to-left Left-to-right

/RCC/ RCC → *RC′C RCR → LCC → LC′C

Such an analysis, similar to those posited for Tianjin, is then tasked with determining why the CC

rule should apply left-to-right above but right-to-left in isolation. In the SL-functional analysis, on

the other hand, the CC rule is describable as an ROSL function, and its interaction with the RC

rule as a particular order of composition with a relevant function. It requires no stipulation about

directionality, yet derives the same attested surface structures (that is, in isolation and in interaction

contexts). As was also the case with the LF/FF interaction, what these competing analyses share

is not claims about directionality, but instead the assumption that the application of RC—and in

particular the availability of its conditioning environment—is not disturbed by application of CC.

This can only be derived through an order of composition (i.e. rule order). What appears to be

directionality is merely an epiphenomenon of this more basic fact (not the other way around, as Chen

(2004) argues for Changting). Since Nanjing exhibits both so-called ‘rightward’ and ‘leftward’ sandhi

via its interactions, a directionality account will be as equally as stipulative as previous accounts for

similar effects in Tianjin and Changting. A SL-functional analysis, on the other hand, provides a

unified account of purported directionality effects using the basic mechanisms of the theory. Nanjing

tone sandhi interactions are describable as compositions of ISL and ROSL functions that correspond

to simultaneous and iterative application, respectively.

5.6 Discussion

This chapter has defined a composition operator ⊗ over BMRS systems of equations. Applied to

systems describing individual rules, this operator models phonological process interactions formal-

izable by pairwise rule ordering in an SPE framework. This includes both transparent interactions

such as feeding, as well as opaque interactions such as counterbleeding. The discussion presented
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here offers additional support to this claim by showing that reversing composition order yields the

same effect as reversing rule order. Additionally, it demonstrates the failure of composition to cap-

ture sandhi interactions presenting ordering paradoxes; given the equivalence of composition and

rule ordering, a compositional BMRS analysis of such cases merely recapitulates the generalizations

from rule ordering. This motivates the expansion of the set of operations over BMRS, which is taken

up in the following chapter.

5.6.1 Order of composition and rule ordering

Composition of BMRS systems of equations (via the ⊗ operator) models the set of transparent

and opaque tone sandhi interactions formalized by pairwise rule ordering. This section reinforces

the equivalence of rule ordering and composition of BMRS systems by showing that reversing the

order of composition makes the same predictions as reversing the order of rewrite rules. Given

some composite system of two BMRS systems combined with ⊗, inverting the composition order

changes a feeding interaction into a counterfeeding interaction, and a counterbleeding interaction

into a bleeding interaction. That is to say, it produces the same effect as reversing rule ordering.

Two example cases below—LL/FF feeding in Tianjin and LF/FF counterbleeding in Nanjing—offer

an illustration.

First, recall the feeding interaction between LL and RR rules in Tianjin (5.20a), repeated in

(5.69):

(5.69) LL rule feeds RR rule: RLL → RRL → HRL

This interaction hinges on the LL rule being ordered before the RR rule; that is, the opposite order

produces a counterfeeding effect, as illustrated in (5.70).

(5.70) a. LL < RR /RLL/

|

RRL LL rule

|

[HRL] RR rule

b. RR < LL /RLL/

|

RLL RR rule

|

*[RRL] LL rule

In (5.70b), the RR rule first applies vacuously to the input string /RLL/, after which the LL rule

applies to yield the unattested *[RRL]. The ordering LL < RR is thus crucial in deriving the feeding

relationship.

The same generalization can be made in terms of the order of composition over BMRS systems

of equations. In §3.2, the composite system c ⊗ b in (5.28) defined a function that describes the



138

interaction mapping /RLL/ 7→ [HRL]. Reversing the order of composition to b⊗c produces a system

of equations describing a different function. This is given in (5.71), with the original system c for

reference.

(5.71) a. b⊗ c Hb(x) = Hc(x)

Rb(x) = if LcLb(x) then ⊤ else Rc(x)

Lb(x) = if LcLb(x) then ⊥ else Lc(x)

Fb(x) = Fc(x)

b. c Hc(x) = if RR(x) then ⊤ else H(x)

Rc(x) = if RR(x) then ⊥ else R(x)

Lc(x) = L(x)

Fc(x) = F (x)

The inverted order of composition represented by b ⊗ c mirrors the effect of ordering the LL rule

after the RR rule, and thus accepts the unattested counterfeeding mapping /RLL/ 7→ *[RRL] in

(5.70b). The table in (5.72) illustrates the evaluation of input string /RLL/ against the composite

system b⊗ c.

(5.72)
Input: R L L

1 2 3

Hb(x) ⊥ ⊥ ⊥

Rb(x) ⊤⊤⊤ ⊤⊤⊤ ⊥

Lb(x) ⊥ ⊥ ⊤⊤⊤

Fb(x) ⊥ ⊥ ⊥

Hc(x) ⊥ ⊥ ⊥

Rc(x) ⊤⊤⊤ ⊥ ⊥

Lc(x) ⊥ ⊤⊤⊤ ⊤⊤⊤

Fc(x) ⊥ ⊥ ⊥

Output: R R L

Evaluation of string positions 2 and 3 does not differ between c⊗b and b⊗c. They do differ, however,

on the evaluation of string position 1. To see how, recall that, in the former, an output H is licensed

by the structure RbRb, that is, the current string position and its immediate successor both return

a true value for Rb(x) in system b. This means that an R tone output by ‘application’ of the LL

rule (the locus of system b) can contribute to the licensing structure in the definition of Hc(x). In

the latter system b⊗ c, however, an output H tone—Hb(x), which gets its truth value directly from

Hc(x)—is licensed by the structure RR: two adjacent input R tones. Crucially, the output structure

contributed or ‘fed’ by system b onto string position 2 is irrelevant here, as this licensing structure
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refers to input string positions only. The input sequence ‘RL’ does not conform to the structure

which licenses H, thereby returning a false value for Hc(x) and ultimately Hb(x). Position 1 does

evaluate to true for Rb(x) via the default term in the definition of Rc(x), and is output as R, thus

producing the unattested *[RRL]. This is identical to the output derived from the rule ordering RR

< LL, that is, the counterfeeding order. Reversing the order of composition in a system describing

a feeding interaction yields a system which describes a counterfeeding interaction.

The same generalization applies to opaque interactions, as well. Recall the mapping exhibiting

an opaque counterbleeding interaction between LF and FF rules in Nanjing (5.53a), repeated in

(5.73):

(5.73) LF rule counterbleeds FF rule: LFF → RFF → RHF

The counterbleeding interaction hinges on the LF rule being ordered before the FF rule. Example

(5.74)—reiterating the generalization in (5.61)—shows that the opposite order produces a bleeding

effect.

(5.74) a. LF < FF /LFF/

|

RFF LF rule

|

[RHF] FF rule

b. FF < LF /LFF/

|

LHF FF rule

|

*[LHF] LF rule

In (5.74b), the FF rule applies to the input string FF, creating the intermediate representation

[LHF]. This string no longer satisfies the structural description of LF; its environment has been bled

by earlier application of the FF rule. LF applies vacuously, yielding the unattested *[LHF]. The

ordering LF < FF is therefore crucial in deriving the counterbleeding relationship.

A BMRS characterization expresses this fact via order of composition over individual systems of

equations. In §5.2, the composite system b⊗a (5.62) defined a function describing the counterbleeding

interaction, and which accepts the attested mapping /LFF/ 7→ [RHF]. Reversing the order of of

composition to a⊗ b produces a system of equations describing a different function, and importantly

one which recreates a bleeding order on FF and LF rules. The composite system a ⊗ b is defined

below in (5.75), again with the original system b for reference.
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(5.75) a. a⊗ b Ha(x) = Hb(x)

La(x) = if LbFb(x) then ⊥ else Lb(x)

Ra(x) = if LbFb(x) then ⊤ else Rb(x)

Fa(x) = Fb(x)

Ca(x) = Cb(x)

C′
a(x) = ⊥

b. b Hb(x) = if FF (x) then ⊤ else H(x)

Lb(x) = L(x)

Rb(x) = R(x)

Fb(x) = if FF (x) then ⊥ else F (x)

Cb(x) = C(x)

C′
b(x) = ⊥

As with the Tianjin feeding interaction, the inverted order of composition represented by a ⊗ b

mirrors the effect of ordering the Nanjing LF rule after the FF rule, and thus the prediction is that

it will accept the bleeding mapping /LFF/ 7→ *[LHF] in (5.74b). The evaluation of system a ⊗ b

against input string /LFF/, as in (5.76), shows that this prediction is borne out.

(5.76)
Input: L F F

1 2 3

Ha(x) ⊥ ⊤⊤⊤ ⊥

La(x) ⊤⊤⊤ ⊥ ⊥

Ra(x) ⊥ ⊥ ⊥

Fa(x) ⊥ ⊥ ⊤⊤⊤

Hb(x) ⊥ ⊤⊤⊤ ⊥

Lb(x) ⊤⊤⊤ ⊥ ⊥

Rb(x) ⊥ ⊥ ⊥

Fb(x) ⊥ ⊥ ⊤⊤⊤

Output: L H F

Under this order of composition, the modified licensing/blocking structure pair for system a (which

describes LF rule application) is the term LbFb(x). This differs from the term in the original

definition—LF (x)—in that its locus of evaluation is no longer the input string, but rather the

output of system b (or, the input string in light of modifications made to it by system b). Evaluating

string position 1 clarifies the effect of this modification. While it does satisfy the original licensing

structure LF (x) (an LF input sequence) which would predict an output R, it does not evaluate to

true for the modified LbFb(x). This is because its immediate successor, string position 2, returns a
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false ⊥ value for Fb(x) and a true ⊤ value for Hb(x)—in other words, the FF rule has applied to

positions 2 and 3. Since system a’s evaluation of the string is dependent on system b’s modifications

to the input—as evidenced by LbFb(x)—system b can ‘block’ the application of the rule described

by system a, crucially by depriving it of the environment it needs in order to apply. The end result

is the same effect observed for the reversed rule ordering FF < LF: over input /LFF/, the FF rule

bleeds the LF rule’s environment.

The examples above offer additional support to the claim that composition of individual BMRS

systems mirrors rule ordering. Reversing the order of composition produces the same effects as

reversing rule ordering. This generalization holds for both transparent and opaque interactions

which may be modeled by pairwise rule ordering.

5.6.2 SL analysis clarifies issues of directionality

This chapter has also shown that a BMRS composition analysis of tone sandhi interactions, and

in particular insights regarding so-called ‘directionality’ effects, preserves the valuable insights from

earlier decomposed SL analyses. They provide a less stipulative alternative to explanations in terms

of ‘rightward’ or ‘leftward’ scans of input tonal strings. Analyses presented in this chapter preserve

earlier observations that ISL functions correspond to simultaneous application, and OSL correspond

to iterative application. These generalizations scale up to compositions of ISL and OSL functions,

with the understanding that interactions can be described using subsequential functions. These

generalizations are not stipulations about directionality but rather define the basic properties of

SL function subclasses. Therefore, the BMRS composition analyses put forth here—like recent SL

analyses using other formalisms (Chandlee, 2019; Oakden, 2019a; Oakden and Chandlee, 2020)—

clarify the nature of ‘directionality’ effects in tone sandhi interactions using basic principles of the

theory.

This is not apparent in earlier rule-based and optimization-based frameworks. For example, a

sizeable body of work in both formalisms has been devoted to offering a unified account of the

Tianjin paradigm. In rule-based accounts, directionality of rule application is either an ad hoc stip-

ulation (Zhang, 1987; Tan, 1987) or is achieved in conjunction with phonotactic constraints against

certain sequences of tones (Hung, 1987). OT accounts have attempted to explain directionality in a

number of ways. Chen (2000) offers an account in terms of the interplay between a ‘default’ pars-

ing direction (left-to-right) and other markedness pressures (like the OCP). Lin (2008) appeals to

prosodic correspondence, while Wee (2010) uses tree structures to represent derivational histories,
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introducing the notion of inter-tier correspondence. However, these analyses suffer from the same

arbitrariness as SPE accounts. For one, Chen (2000, 110)’s default left-to-right application, governed

by a constraint Temporal Sequence and which mirrors “planning and execution of speech”, is of

the same stipulative nature as rule-based accounts. The nature of the OCP constraints proposed for

the analysis casts doubt on whether Tianjin sandhi patterns are in fact OCP effects. Chen (2000,

123), for example, defines three separate OCP constraints:

(5.77) a. OCP- no adjacent identical tones (except HH)

b. OCP′- no *FL (=HL.L) sequences

c. OCP′′- no adjacent partially identical tones (*L.LH, *H.HL, *HL.LH, etc.)

These constraints again appear as an attempt to coerce a general principle into fitting an empirical

generalization. An exception (HH) is coded directly into the general OCP constraint, and it is

unclear what motivates separating the ill-formed sub-melody ‘HL.L’ from the others into its own

constraint OCP′, other than to subsume the observed sandhi patterns under the general category of

OCP.

Attempts to explain directionality effects in an OT framework also give rise to questionable

extensions of the theory, underlying the inherent evasiveness of an account using basic principles.

Chen (2000, 2004) and others present OT accounts of Tianjin and Changting in which candidates

are derivational histories, not surface representations. This approach is unorthodox (even by Chen

(2004)’s own admission) in OT analyses, and essentially abandons a central tenet of classic OT—

parallel evaluation—to fit a serial outlook into a non-serial framework.

Ma and Li (2014)’s preliminary analysis of Nanjing tone sandhi demonstrates that the question

of directionality is not isolated to well-known cases like Tianjin and Changting. Their conclusion,

that the Nanjing paradigm is a ‘hybrid’ system of left-to-right and right-to-left sandhi application,

would present a similar problem to rule-based and optimization frameworks. As with the classic

examples, no clear explanation using basic principles is available, and so resorting to stipulations

and questionable extensions to the theory becomes necessary. A BMRS composition analysis using

SL functions, on the other hand, provides a straightforward account of the Nanjing data and reflects

the basic properties of ISL and OSL functions (and their composition).

5.6.3 Composition recapitulates ordering paradoxes

Composition in a BMRS framework makes the same generalizations about interactions as rule

ordering in an SPE framework. This extends to interactions which cannot be described via rule
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ordering, for example ordering paradoxes. Such cases pose the same challenge to a compositional

BMRS analysis. Given the equivalence between composition and rule ordering developed in this

chapter, the expectation is that BMRS composition analyses of ordering paradoxes merely recapit-

ulate the facts from a rule-based account. This section shows that this is the case for an ordering

paradox apparent in the Changting data.

Chen et al. (2004) report an interaction between the RM (RM → HM as in (5.35b)) and MR

(MR → LR as in (5.35c)) rules in Changting. Two relevant mappings of trisyllabic forms are given

in (5.78); like the feeding interactions described in §4, morphological structure is irrelevant to rule

application (Chen, 2004, p. 803).

(5.78) Input Output [x x] x x [x x]

MRM LHM [hua.qian] duo xin [bei.jing]

“spending a lot of money” “new Beijing”

RMR HLR [yi.jin] you chu [feng.tou]

“one catty of oil” “to show off”

The trisyllabic form /MRM/ surfaces as [LHM]; this lends support to ordering the MR rule before

the RM rule. In the derivation below in (5.79), only the rule ordering MR < RM derives the correct

surface form.

(5.79) MRM

|

LRM by MR rule

|

LHM by RM rule

MRM

|

MHM by RM rule

|

*MHM MR rule n/a

This interaction is one of counterbleeding; earlier application of the RM rule would bleed the appli-

cation of the MR rule by destroying part of its environment (crucially the R). However, the other

trisyllabic mapping /RMR/ 7→ [HLR] requires the opposite ordering. This is given in (5.80).8

(5.80) RMR

|

HMR by RM rule

|

HLR by MR rule

RMR

|

RLR by MR rule

|

*RLR RM rule n/a

Here, the opposite ordering (RM < MR) is necessary to derive the attested output [HLR]. As

before, it is a case of counterbleeding; application of the MR rule destroys the necessary environment

8As Chen (2004) argues, this ordering would also feed a different ‘RL rule’ (RL → RF) to produce the unattested
*[RFR]. I abstract away from this detail.
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(crucially the M tone) for the RM rule. Thus each rule counterbleeds the other, with the consequence

being that no pairwise order of these rules can derive the attested forms. The RM and MR rules

present an ordering paradox.

Given the fundamental connection between ordering of rules and composition of systems of

equations, it follows that no order of composition generates a system which accepts both /MRM/

7→ [LHM] and /RMR/ 7→ [HLR]. Composition b⊗ c (recall that system b describes the RM rule and

c the MR rule) defined in (5.81) recreates the order MR < RM.

(5.81) a. b⊗ c Hb(x) = if RcMc(x) then ⊤ else Hc(x)

Rb(x) = if RcMc(x) then ⊥ else Rc(x)

Fb(x) = Fc(x)

Mb(x) = Mc(x)

Lb(x) = Lc(x)

b. c Hc(x) = H(x)

Rc(x) = R(x)

Fc(x) = F (x)

Mc(x) = if MR(x) then ⊥ else M(x)

Lc(x) = if MR(x) then ⊤ else L(x)

The composite system b ⊗ c and the order MR < RM make the same predictions about the coun-

terbleeding paradox; that is, they can derive /MRM/ 7→ [LHM], but fail to map /RMR/ to the

attested [HLR], and instead map it to *[RLR] as in (5.80). Predictions of this system against the

relevant trisyllabic strings are given in (5.82). Note that, as in the previous section, the same bleed-

ing interaction is apparent in the accepted (unattested) /RMR/ 7→ *[RLR]. This is the result of RM

application via system b being dependent on modifications to the input string inherited from MR

application via system c, and evidenced in the modified licensing/blocking structure RcMc(x).
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(5.82)
Input: M R M R M R

1 2 3 1 2 3

Hb(x) ⊥ ⊤⊤⊤ ⊥ ⊥ ⊥ ⊥

Rb(x) ⊥ ⊥ ⊥ ⊤⊤⊤ ⊥ ⊤⊤⊤

Fb(x) ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

Mb(x) ⊥ ⊥ ⊤⊤⊤ ⊥ ⊥ ⊥

Lb(x) ⊤⊤⊤ ⊥ ⊥ ⊥ ⊤⊤⊤ ⊥

Hc(x) ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

Rc(x) ⊥ ⊤⊤⊤ ⊥ ⊤⊤⊤ ⊥ ⊤⊤⊤

Fc(x) ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

Mc(x) ⊥ ⊥ ⊤⊤⊤ ⊥ ⊥ ⊥

Lc(x) ⊤⊤⊤ ⊥ ⊥ ⊥ ⊤⊤⊤ ⊥

Output: L H M *R L R

Reversing the order of composition to c⊗ b recreates the opposite order RM < MR. This composite

system is defined in below in (5.83).

(5.83) a. c⊗ b Hc(x) = Hb(x)

Rc(x) = Rb(x)

Fc(x) = Fb(x)

Mc(x) = if M bRb(x) then ⊥ else Mb(x)

Lc(x) = if M bRb(x) then ⊤ else Lb(x)

b. b Hb(x) = if RM(x) then ⊤ else H(x)

Rb(x) = if RM(x) then ⊥ else R(x)

Fb(x) = F (x)

Mb(x) = M(x)

Lb(x) = L(x)

System c ⊗ b and the order RM < MR also make the same predictions about the counterbleeding

paradox in Changting; they can derive /RMR/ 7→ [HLR] unlike b⊗c and MR < RM, but fail to map

/MRM/ to the attested [LHM], and instead map it to the *[MHM] as in (5.79). Example (5.84)

demonstrates the reversed composite system’s predictions against the relevant trisyllabic strings:

the predictions are the same as the ordering RM < MR. As before, note the bleeding effect on the

mapping /MRM/ 7→ *[MHM], the direct result of the dependency relationship between systems c

and b imposed by this ordering.
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(5.84)
Input: M R M R M R

1 2 3 1 2 3

Hc(x) ⊥ ⊤⊤⊤ ⊥ ⊤⊤⊤ ⊥ ⊥

Rc(x) ⊥ ⊥ ⊥ ⊥ ⊥ ⊤⊤⊤

Fc(x) ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

Mc(x) ⊤⊤⊤ ⊥ ⊤⊤⊤ ⊥ ⊥ ⊥

Lc(x) ⊥ ⊥ ⊥ ⊥ ⊤⊤⊤ ⊥

Hb(x) ⊥ ⊤⊤⊤ ⊥ ⊤⊤⊤ ⊥ ⊥

Rb(x) ⊥ ⊥ ⊥ ⊥ ⊥ ⊤⊤⊤

Fb(x) ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

Mb(x) ⊤⊤⊤ ⊥ ⊤⊤⊤ ⊥ ⊤⊤⊤ ⊥

Lb(x) ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

Output: *M H M H L R

No order over individual rules can derive both counterbleeding mappings. This means that no order

of composition can accept both counterbleeding mappings, either. In other words, composition of

BMRS individual systems fails to capture attested tone sandhi process interactions.

However, Oakden and Chandlee (2020) show that a single ISL function describes the mutual

counterbleeding interaction. An equivalent BMRS system of equations is given below in (5.85).

(5.85) H ′(x) = if RM(x) then ⊤ else H(x)

R′(x) = if RM(x) then ⊥ else R(x)

F ′(x) = F (x)

M ′(x) = if LF (x) then ⊤ else M(x)

L′(x) = if LF (x) then ⊥ else L(x)

This system accepts both /MRM/ 7→ [LHM] and /RMR/ 7→ [HLR], consistent with the Changting

data, as illustrated in the evaluation table in (5.86).

(5.86)
Input: M R M R M R

1 2 3 1 2 3

H ′(x) ⊥ ⊤⊤⊤ ⊥ ⊤⊤⊤ ⊥ ⊥

R′(x) ⊥ ⊥ ⊥ ⊥ ⊥ ⊤⊤⊤

F ′(x) ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

M ′(x) ⊥ ⊥ ⊤⊤⊤ ⊥ ⊥ ⊥

L′(x) ⊤⊤⊤ ⊥ ⊥ ⊥ ⊤⊤⊤ ⊥

Output: L H M H L R

A single ‘combined map’ function describes mutual counterbleeding in Changting, meaning that

the complexity of the interaction itself is ISL. But it cannot be the case that this function is the
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composition of two individual systems b and c, and this follows from the fact that no order over indi-

vidual rules derives both counterbleeding mappings. Therefore, what is the relationship between the

individual systems and the combined map function in such cases? The next chapter addresses this

question, and proposes an additional operation over BMRS systems which makes accurate predic-

tions about a number of attested tone sandhi ordering paradoxes, while maintaining computational

locality.

Before such a proposal, it is worth reiterating that analyses in terms of SL functions (and im-

plemented using BMRS) offer a straightforward account of paradoxical interactions not available

to traditional rule-based accounts. Changting counterbleeding, for example, is ISL, as the system

in (5.85) illustrates. It is properly subsequential, which means it is also describable as a regular

relation. But as Johnson (1972) and Kaplan and Kay (1994) point out, so are SPE grammars of

rewrite rules. What this suggests, then, is something of a blind spot in the formalism: a properly

regular subset in which phonological interactions are attested, but for which SPE cannot offer an

account. The computational formalism, on the other hand, provides an explicit characterization of

this pattern as an ISL function.
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6 Interactions as Parallel Satisfaction with ⊖

6.1 Introduction

Composition of BMRS systems formalizes transparent and opaque tone sandhi interactions by

recreating the effect of serial rule ordering. As the end of Chapter 5 demonstrates, however, this

approach fails to account for ordering paradoxes such as mutual counterbleeding in Changting (Chen,

2004). No serial order of the MR (M → L / R) and RM (R → H / M) rules can derive both

/MRM/ 7→ [LHM] and /RMR/ 7→ [HLR] mappings; they require opposite orderings of these rules.

Example (6.1) summarizes the paradox with derivations using both orders.

(6.1) a.

/MLM/ /LML/

LM rule MMM MML

ML rule — MLL

[MMM] *[MLL]

b.

/MLM/ /LML/

ML rule LLM LLL

LM rule LMM —

*[LMM] [LLL]

Because no order of rewrite rules can derive this pattern, it follows that no order of composition will

capture the interaction when RM and MR rules are defined as separate BMRS systems. §6.3 of the

previous chapter demonstrates this in detail.

Oakden and Chandlee (2020) show that the mutual counterbleeding interaction in Changting

is ISL. They do so by defining a QF logical transduction that accepts /MRM/ 7→ [LHM] and

/RMR/ 7→ [HLR]. An equivalent BMRS system is given in (6.2), defined over the output alphabet

{H,R, F,M,L}.

(6.2) H ′(x) = if RM(x) then ⊤ else H(x)

R′(x) = if RM(x) then ⊥ else F (x)

F ′(x) = F (x)

M ′(x) = if MR(x) then ⊥ else M(x)

L′(x) = if MR(x) then ⊤ else L(x)

The solution they present hinges on the non-interaction of RM and MR rules. While inevitable

in a serial derivation (given intermediate representations), the logical characterization shows that

reference to the same input string allows both rules to apply in parallel without interference. This

type of ‘simultaneous’ application derives precisely the outputs observed in Changting.
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Given this insight, we may ask: how do individual RM and MR rules in Changting ‘combine’

to produce the combined-map function described in (6.2)? More specifically, what operation over

BMRS systems guarantees that individual ISL functions describing each rule compute outputs using

bounded reference to the same input structure? Composition merely recapitulates serial ordering

paradoxes, and so is a nonstarter.

This chapter defines a new operation over BMRS systems of equations. It relates systems such

as those describing Changting RM and MR rules to combined map functions in (6.2). The operator

is termed ‘parallel satisfaction’ (PS, denoted ⊖); combining two or more systems with PS—termed

a ‘PS-join’—describes a function that satisfies both systems, crucially with reference to the same

input and output strings. That is, neither system has access to the modifications to the input string

rendered by the other system. It is in this way that it differs from BMRS composition with the ⊗

operator.

Taken together, composition and parallel satisfaction bear some resemblance to the serial vs.

simultaneous application dichotomy in a rule-based formalism (see, for example, early discussion in

Chomsky and Halle, 1968a; Postal, 1968; McCawley, 1968; Harms, 1968). While the ISL-definable

interaction in (6.2) conforms to those intuitions, ⊖ does not model ‘simultaneous application’ of rules

generally. Instead, it describes an operation that collapses input/output reference across separate

systems into a single input and output string. Reference to the output string in particular forces a

departure from a rule-based conception; rules in SPE do not describe surface (i.e. output) structure

as part of their conditioning environments.1 In addition, PS formalizes some interactions—such as

mutual bleeding in §3.3—not derivable in a simultaneous application paradigm (see Pullum, 1972,

for a relevant demonstration in Spanish).

Conceptually, the PS operator also brings to mind two-level phonology in the spirit of Koskenniemi

(1983). A PS-joined function can be thought of as a set of elements (the individual BMRS systems),

each containing information about some facet of the mapping, and which refer to the same lexical

(input) and surface (output) character pairs. That is, the elements operate in tandem. As Karttunen

(1993) puts it: “a surface form is a realization of a lexical form just in case all transducers [BMRS

systems in our formalism] accepts the pair.” This approach differs from the two-level formalism,

however, in that ⊖ is not intersection, as in Koskenniemi’s model.

PS-joins, regardless of their relation or non-relation to previous approaches, can be leveraged

to analyze a variety of tone sandhi interactions, and therefore are a meaningful addition to the set

of operations over BMRS systems. Specifically, they account for paradoxical sandhi interactions

1Rules with iterative application do, in a way, describe output structure as part of the conditioning environment.
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for which a compositional analysis fails. They also model interactions which can be derived by

rule ordering (and thus composition). In the sections that follow, both types of analyses will be

presented.

This chapter is organized as follows. §2 defines the PS operator (⊖) and summarizes its formal

properties, namely that it models parallel evaluation of more than one BMRS-definable transduction

over a single input and output string. Reference to one input and one output—that is, no access to

intermediate representations—provides a solution to ordering/ranking paradoxes in Changting; §3

builds on Oakden and Chandlee (2020)’s results, demonstrating the applicability of a PS-join analy-

sis to mutual counterbleeding and mutual bleeding interactions in Changting. §4 revisits interactions

in Nanjing sandhi to show that some opaque interactions derivable by rule ordering—counterfeeding

and counterbleeding on environment—also have a PS-join solution. A third case study of Xiamen

tone circles is presented in §5. Like Changting, the Xiamen paradigm evades straightforward char-

acterization in rule-based (ordering paradox) and optimization-based (ranking paradox) formalisms,

but receives a straightforward account in terms of parallel satisfaction over BMRS systems of equa-

tions. §6 concludes the chapter with a discussion of the implications of this operator.

6.2 Definition and Formal Properties

In this section, I define a syntactic operator ⊖, termed ‘parallel satisfaction’ (PS), over BMRS

systems of equations. Applied to BMRS systems that describe individual processes, the PS operator

recreates the effect of both processes applying in tandem. That is, they operate over the same

input (and output) representation. This contrasts with BMRS-composition ⊗, where one function

operates over an input in light of the other function’s modification to that input (i.e. its output).

Combining two systems via the ⊖ operator is referred to as a PS-join.

Because two systems evaluate the same input and output string, both PS-join orders—A ⊖ B

and B ⊖ A for two systems A and B—typically describe extensionally-equivalent functions. This

property obtains for the tone sandhi interactions explored in this dissertation. Order only becomes

relevant when a conflict arises; the notion of conflict is defined in this section, and is explored in

more detail in §6.

As in the previous chapter, this section also sketches a typology of PS-joins of strictly-local

functions, and examines their features. Preservation of a single input and output string is crucial

to formalizing tone sandhi interactions with ⊖, and applies to joins of systems describing ISL and

OSL functions, and combinations thereof.
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6.2.1 A syntactic operator ⊖

What follows is a definition of a syntactic operator ⊖ over BMRS systems of equations. As speci-

fied in specified in chapter 4, this dissertation focuses on PS-joins of length-preserving transductions,

crucially defined over a single copy set.

Definition 4 For BMRS transductions T1, T2 from strings in Σ∗ to strings in ∆∗, let T1 ⊖ T2 be a

syntactic operation on BMRS transductions as follows. Let

T1 = { f1(x1) = T1, . . . , fn(xn) = Tn}

be a system of equations over a signature of strings in Σ∗: a set of recursively-defined, boolean-type

function symbols F where each fi corresponds to some δi in the output alphabet ∆, where n = |∆|.

Similarly, let

T2 = { g1(x1) = T1, . . . , gn(xn) = Tn}

be a system of equations also over a signature of strings in Σ∗: a set of recursively-defined, boolean-

type function symbols G where each gj corresponds to some δj in the output alphabet ∆, where n = |∆|

as before.

Let T ′
1 then be identical to T1 with the exception that the final term in Ti in the definition for

each boolean-type function symbol fi in T1 is replaced with the entire definition Ti for corresponding

function gi in T2. Then, let T1 ⊖ T2 := T ′
1 ∪ T2.

Parallel satisfaction ⊖ differs from composition ⊗ in two crucial ways. First, whereas composition

combines transductions with (potentially) different input alphabets—but guaranteeing that T1’s

output alphabet and T2’s input alphabet are the same—parallel satisfaction is only definable over

transductions with identical input and output alphabets. Again, this scenario is relevant to tone

sandhi interactions, where individual processes target the same set of lexical tones, and thus forms

the focus of this dissertation. A more general definition encompassing combination of transductions

with different alphabets is left for future work.

Second, whereas composition replaces boolean terms wherever they appear in a given function

definition, parallel satisfaction replaces a term in a fixed position: that is, in final position. The

definition below gives a precise indication of this position for all possible boolean terms.

Definition 5 For a function definition fi(x) = Ti, the final term in Ti is as follows:
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⊤ if Ti = ⊤

⊥ if Ti = ⊥

σ(T ) if Ti = σ(T )

f(T ) if Ti = f(T )

T3 if Ti = if T1 then T2 else T3

Since most of the function definitions introduced in this dissertation comprise either if-then-else

statements or default-mappings from the input, the majority of replacements will be T3 from

if T1 then T2 else T3 (the former) or σ(T ) (the latter).

Crucially, parallel satisfaction joins BMRS systems of equations such that they evaluate the

same input and output string, irrespective of potential modifications made by the other system. To

illustrate, consider two systems T1 and T2 defined over the same alphabet Σ = ∆ = {a, b, c, d}. T1

(6.3) describes an ISL function that maps 1) every input a to c when it appears before an input b

(and to a otherwise), 2) every input b to b, 3) every input c to c, and 4) every input d to d. That is,

a → c / b in rule form.

(6.3) a1(x) = if ab(x) then ⊥ else a(x)

b1(x) = b(x)

c1(x) = if ab(x) then ⊤ else c(x)

d1(x) = d(x)

An input-oriented (non-recursively-defined) structure ab(x) licenses output c and blocks output a.

The map /aba/ 7→ [cba] in (6.4) satisfies T1, as string positions 1, 2, and 3 return true ⊤ values for

c1(x), b1(x), and a1(x), respectively.

(6.4)
Input: a b a

1 2 3

a1(x) ⊥ ⊥ ⊤⊤⊤

b1(x) ⊥ ⊤⊤⊤ ⊥

c1(x) ⊤⊤⊤ ⊥ ⊥

d1(x) ⊥ ⊥ ⊥

Output: c b a

T2 (defined in (6.5)) describes a different ISL function; it maps 1) input a to a, 2) every input b to

d when it appears before an input a (and to b otherwise), 3) input c to c, and 4) input d to d. That

is, b → d / a in rule form.
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(6.5) a2(x) = a(x)

b2(x) = if ba(x) then ⊥ else b(x)

c2(x) = c(x)

d2(x) = if ba(x) then ⊤ else d(x)

Like T1, output boolean function definitions in T2 contain a licensing/blocking structure pair: input-

oriented ba(x) licenses output d but blocks output b. The ISL function represented by T2 maps

input /aba/ to a different output [ada], mirroring the application of b → d / a. T2 accepts this

mapping (and only this mapping for /aba/), as illustrated in (6.6).

(6.6)
Input: a b a

1 2 3

a2(x) ⊤⊤⊤ ⊥ ⊤⊤⊤

b2(x) ⊥ ⊥ ⊥

c2(x) ⊥ ⊥ ⊥

d2(x) ⊥ ⊤⊤⊤ ⊥

Output: a d a

A third ISL function could be defined. Given input string /aba/, it maps to neither [cba] (6.4)

nor [ada] (6.6), but instead to [cda]. In a rule-based conception, this may be thought of as a

counterbleeding order over rules a → c / b and b → d / a such that the former is ordered

before the latter.

(6.7) Input: /aba/

a → c / b cba

b → d / a cda

Output: [cda]

Alternatively, the two rules may be thought of as applying simultaneously to the input string /aba/.

In a BMRS framework, T1 and T2 can join via ⊖ to model this ISL function. A PS-joined system

T1 ⊖ T2 is one in which the final term of each output boolean function definition in T1 is replaced

with the corresponding definition from T2. Since both are defined over the same output alphabet

∆ = {a, b, c, d}, output boolean functions responsible for labeling output positions are identical. In

the following definition (6.8), substituted final terms are shown in bold for clarity, and the unmodified

T2 is given for reference.
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(6.8) a. T1 ⊖ T2 a1(x) = if ab(x) then ⊥ else a2(x)

b1(x) = b2(x)

c1(x) = if ab(x) then ⊤ else c2(x)

d1(x) = d2(x)

b. T2 a2(x) = a(x)

b2(x) = if ba(x) then ⊥ else b(x)

c2(x) = c(x)

d2(x) = if ba(x) then ⊤ else d(x)

When the system in (6.8) evaluates input-output mappings, truth values for terms ab(x) and ba(x)—

the licensing/blocking structures from the original systems—are assigned with reference to a single

input string. Any input sequence ab licenses output c, and any input sequence ba licenses output

d. Whether those two bs are the same input string position is irrelevant, because the terms are

evaluated in parallel. T1 ⊖ T2 thus describes the ISL function that maps /aba/ to [cda]; this system

accepts the mapping as in (6.9):

(6.9)
Input: a b a

1 2 3

a1(x) ⊥ ⊥ ⊤⊤⊤

b1(x) ⊥ ⊥ ⊥

c1(x) ⊤⊤⊤ ⊥ ⊥

d1(x) ⊥ ⊤⊤⊤ ⊥

a2(x) ⊤⊤⊤ ⊥ ⊤⊤⊤

b2(x) ⊥ ⊥ ⊥

c2(x) ⊥ ⊥ ⊥

d2(x) ⊥ ⊤⊤⊤ ⊥

Output: c d a

Given the property of evaluation over a single input string, the PS-joined system also accepts /bab/

7→ [dcb] (6.10). Here, input substrings ab (licenses c) and ba (licenses d) converge on a single a

position.
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(6.10)
Input: b a b

1 2 3

a1(x) ⊥ ⊥ ⊥

b1(x) ⊥ ⊥ ⊤⊤⊤

c1(x) ⊥ ⊤⊤⊤ ⊥

d1(x) ⊤⊤⊤ ⊥ ⊥

a2(x) ⊥ ⊤⊤⊤ ⊥

b2(x) ⊥ ⊥ ⊤⊤⊤

c2(x) ⊥ ⊥ ⊥

d2(x) ⊤⊤⊤ ⊥ ⊥

Output: d c b

In a rule-based framework, this outcome is predicted by a simultaneous application but crucially

not with serial ordering. To derive [dca] from /bab/ requires the opposite rule ordering as that

which gives /aba/ → [cda]. The toy example above constitutes an ordering paradox similar to the

Changting interaction introduced at the end of the previous chapter. It is explored in detail in §3.

6.2.2 Order and structure-conflict

When two BMRS systems of equations are composed, the order in which they combine via ⊗

makes a difference. Often, systems with opposite composition orders—for instance T1 ⊗ T2 and

T2 ⊗ T1 for two BMRS systems T1 and T2—describe different functions entirely.

These generalizations do not apply in the same manner to PS-join orders. Intuitively, this

is because processes that apply simultaneously to an input are not ordered with respect to one

another. Combination using ⊖ has an inherent ‘order’ such that one system occupies the position

of ‘outer’ function and the other occupies the ‘inner’ position, as with composition. However, for

the PS-joins defined in this chapter (i.e. those that model tone sandhi interactions), either ‘order’

describes the same function.

To illustrate with a concrete example, the PS-joined system T1 ⊖ T2 in (6.8) models the simul-

taneous application of two rules. Reversing the order, T2 ⊖ T1 in (6.11), describes an extensionally-

equivalent ISL function. It thus models simultaneous application of rules in the same way.
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(6.11) a. T2 ⊖ T1 a2(x) = a1(x)

b2(x) = if ba(x) then ⊥ else b1(x)

c2(x) = c1(x)

d2(x) = if ba(x) then ⊤ else d1(x)

b. T1 a1(x) = if ab(x) then ⊥ else a(x)

b1(x) = b(x)

c1(x) = if ab(x) then ⊤ else c(x)

d1(x) = d(x)

Two input-oriented structures license specific output symbols and block others, as before: the ab

substring licenses output c while blocking output a, the ba substring licenses output d while blocking

output b. Additionally, the function scans a single input string, including those for which as and bs

overlap. This PS-joined system accepts the same mappings as T1 ⊖ T2. An evaluation table (6.12)

illustrates with /aba/ 7→ [cda].

(6.12)
Input: a b a

1 2 3

a2(x) ⊥ ⊥ ⊤⊤⊤

b2(x) ⊥ ⊥ ⊥

c2(x) ⊤⊤⊤ ⊥ ⊥

d2(x) ⊥ ⊤⊤⊤ ⊥

a1(x) ⊥ ⊥ ⊤⊤⊤

b1(x) ⊥ ⊤⊤⊤ ⊥

c1(x) ⊤⊤⊤ ⊥ ⊥

d1(x) ⊥ ⊥ ⊥

Output: c d a

Thus in this case order is irrelevant. In the analysis of tone sandhi interactions to follow (§3-§5),

both PS-join orders are given, and their acceptance of crucial interaction mappings is demonstrated.

The reason why order is irrelevant hinges on the nature of licensing/blocking structure pairs.

In particular, the order in which systems join via ⊖ is inconsequential when the licensing/blocking

structures from each system do not generate a conflict. Conflict can be defined as follows.

Definition 6 For any two terms of the form if T1 then ⊤/⊥ else T3, a conflict obtains when

the following conditions are met:

a. The first term is of the form if T1 then ⊤ else T3

b. The second term is of the form if T1 then ⊥ else T3
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c. T1 refers to the same structure in both terms

d. Both terms appear in the same output boolean function definition

Conditions a-c describe the notion of a licensing/blocking structure pair. In a PS-join, when both

converge on a single output boolean function definition, a conflict arises. Using T1 and T2 as an

example, terms (i.e. T1) ab(x) and ba(x) cannot be in conflict because they do not refer to the same

structure. Thus, either PS-join order will describe the same ISL function.

As mentioned above, this chapter analyzes sandhi interactions with non-conflicting PS-joins,

meaning that order does not matter for those cases (but see §6.3 a discussion of a case where order

does matter).

6.2.3 PS with strictly-local functions

Parallel satisfaction over BMRS systems formalizes the application of multiple processes, but

with reference to a single input string and a single output string. This section presents a basic

typology of PS-joins, with a focus on ISL and OSL functions.

The extended example introduced in previous sections (§2.1 and §2.2) joins two ISL functions

using the ⊖ operator. Recall T1 ⊖ T2 in (6.8), repeated below in (6.13). T1 and T2 describe ISL

functions.

(6.13) a. T1 ⊖ T2 a1(x) = if ab(x) then ⊥ else a2(x)

b1(x) = b2(x)

c1(x) = if ab(x) then ⊤ else c2(x)

d1(x) = d2(x)

b. T2 a2(x) = a(x)

b2(x) = if ba(x) then ⊥ else b(x)

c2(x) = c(x)

d2(x) = if ba(x) then ⊤ else d(x)

As separate systems, T1 and T2 contain an input-oriented licensing/blocking structure pair. The

result of combining with parallel satisfaction is that each structure ab(x) and ba(x) is evaluated with

respect to the same input string. ‘Default’ terms—b(x) and d(x) in T1; a(x) and c(x) in T2—also

refer to a single input.

Joins of ISL functions preserve a single output string vacuously, as neither function refers to the

output. When ISL and OSL functions combine with parallel satisfaction, the output-orientedness
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of a single system is co-opted by the joined system. This is implicit in Definition 4 given that two

systems share an output alphabet—a recursively defined function in either system refers to the same

output string in the PS-join. Recursive function calls in joined systems are thus labeled with the

joined system. To illustrate, consider a BMRS system T3 (6.14). It is similar to T2 in that it maps

b to d, but differs in that it does so only when b is followed by an output a.

(6.14) a3(x) = a(x)

b3(x) = if ba3(x) then ⊥ else b(x)

c3(x) = c(x)

d3(x) = if ba3(x) then ⊤ else d(x)

The function represented by T3 computes outputs with reference to the current input position, and

a bounded window in the output structure, specifically one position to the right, shown by the term

ba3(x). As such, it describes an ROSL function. Combined with T1, the PS-join T1 ⊖ T3 (6.15)

accepts mappings which satisfy both in parallel, crucially with reference to a single input and a

single output string. This is denoted by ‘1⊖3’ in recursive function calls.

(6.15) a. T1 ⊖ T3 a1(x) = if ab(x) then ⊥ else a3(x)

b1(x) = b3(x)

c1(x) = if ab(x) then ⊤ else c3(x)

d1(x) = d3(x)

b. T3 a3(x) = a(x)

b3(x) = if ba1⊖3(x) then ⊥ else b(x)

c3(x) = c(x)

d3(x) = if ba1⊖3(x) then ⊤ else d(x)

Example (6.16) collapses both into an equivalent single system for clarity.

(6.16) a1⊖3(x) = if ab(x) then ⊥ else a(x)

b1⊖3(x) = if ba1⊖3(x) then ⊥ else b(x)

c1⊖3(x) = if ab(x) then ⊤ else c(x)

d1⊖3(x) = if ba1⊖3(x) then ⊤ else d(x)

Thus the function maps input a to c when followed by an input b, and maps b to d when followed

by an output a. Given an input string /baba/, the output is [bcda]. The table in (6.17) illustrates

evaluation by the PS-join system T1 ⊖ T3.
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(6.17)
Input: b a b a

1 2 3 4

a1⊖3(x) ⊥ ⊥ ⊥ ⊤⊤⊤

b1⊖3(x) ⊤⊤⊤ ⊥ ⊥ ⊥

c1⊖3(x) ⊥ ⊤⊤⊤ ⊥ ⊥

d1⊖3(x) ⊥ ⊥ ⊤⊤⊤ ⊥

Output: b c d a

The difference between positions 1 and 3 is crucial. First, position 3 satisfies the output-oriented

structure ba1⊖3(x); it is input-specified as b followed immediately by an output a (which itself maps

directly from input a). Position 1, despite having an a as its input successor, does not evaluate

to true for ba1⊖3(x). This is because position 2 maps to c by virtue of satisfying the relevant

licensing structure (ab(x) in the definition c1⊖3(x)). The PS-join T1 ⊖ T3 therefore integrates the

ISL properties of T1 and the OSL properties of T3. It models the satisfaction of both systems in

tandem, crucially with reference to single input and output strings. Note that this mapping /baba/

7→ [bcba] is different from what T3(x) would accept in isolation—/baba/ 7→ [dada]. Additionally, it

differs from T1 ⊖ T2’s mapping—/baba/ 7→ [dcda].

Two OSL functions join via ⊖ in a similar fashion. That is, the PS-join ‘collapses’ reference

to separate output strings (in recursive function calls) into a single output string. To illustrate,

consider a system T4 in (6.18), the ROSL equivalent of T1.

(6.18) a4(x) = if ab4(x) then ⊥ else a(x)

b4(x) = b(x)

c4(x) = if ab4(x) then ⊤ else c(x)

d4(x) = d(x)

Instead of the input-oriented structure ab(x) licensing an output c, it is the output-oriented structure

represented by ab1(x) (input a with output b as its successor) which causes a to map to c.

T3 ⊖ T4 (6.19) is a PS-join of two ROSL functions. This means that definitions with recursive

function calls across both systems refer to a single output structure. As before, this is denoted with

‘3⊖4’ in the definitions below.
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(6.19) a. T3 ⊖ T4 a3(x) = a4(x)

b3(x) = if ba3⊖4(x) then ⊥ else b4(x)

c3(x) = c4(x)

d3(x) = if ba3⊖4(x) then ⊤ else d4(x)

b. T4 a4(x) = if ab3⊖4(x) then ⊥ else a(x)

b4(x) = b(x)

c4(x) = if ab3⊖4(x) then ⊤ else c(x)

d4(x) = d(x)

As an equivalent single system (6.20):

(6.20) a3⊖4(x) = if ab3⊖4(x) then ⊥ else a(x)

b3⊖4(x) = if ba3⊖4(x) then ⊥ else b(x)

c3⊖4(x) = if ab3⊖4(x) then ⊤ else c(x)

d3⊖4(x) = if ba3⊖4(x) then ⊤ else d(x)

T3 ⊖ T4 describes an ROSL function; it computes outputs with reference to the current input string

position and a bounded output window to the right of that string position. The output window is a

single output string referenced in the PS-join. This detail is crucial to the modeling of tone sandhi

interactions presented in §3 of this chapter. §6.1 explores the issue in more detail.

As with composition, the analyses presented in this dissertation limit their focus to PS-joins of

ROSL functions. Future work may investigate the combination of ROSL and LOSL functions with

the parallel satisfaction operator.

6.2.4 Interim summary

So far, this chapter has defined a parallel satisfaction operator ⊖ over BMRS systems of equations

and provided a sketch of its basic properties. When two individual systems form a PS-join, the

resulting system describes a function whose mappings from input to output satisfy both systems

in tandem, crucially with reference to a single input and output string. This bears a resemblance

to both simultaneous application of rules and two-level phonological approaches as no intermediate

representations factor into computation. Additionally, systems describing strictly-local functions

can combine under this operator. Preservation of single input and single output strings applies to

PS-joins of two ISL functions, two OSL functions, and combinations of ISL and OSL functions.

Due to the absence of intermediate forms in the PS-join framework, such analysis provides a

straightforward account of ordering paradoxes in tone sandhi, such as the Changting interaction
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sketched at the end of the previous chapter. The following three sections present case studies of

sandhi interactions in Changting, Nanjing, and Xiamen. Transparent and opaque patterns—some

ordering paradoxes and others not—are formalized as PS-joins of individual BMRS systems.

6.3 Changting

As mentioned in the previous chapter, ordering paradoxes are inherent to the Changting sandhi

paradigm. No order of rules—and thus no order of composition in a BMRS framework—can derive

output strings from underlying forms for certain three-syllable combinations. Recall that Changting

has five lexical tones: low (L), mid (M), high (H), rising (R), and falling (F). Out of the 25 possible

two-tone combinations, Chen (2004) reports 15 combinations which undergo tone sandhi. The sandhi

patterns which are of concern for this chapter are repeated in (6.21).

(6.21) a. ‘RM rule’: R → H / M

b. ‘MR rule’: M → L / R

c. ‘LM rule’: L → M / M

d. ‘ML rule’: M → L / L

These basic patterns extend to sequences of three or more tones, with overlapping targets and

triggers giving rise to interactions. This section introduces two interactions in Changting which,

in a rule-based framework, present ordering paradoxes: mutual counterbleeding between rules in

(6.21a-b) and mutual bleeding between rules in (6.21c-d).

Changting ‘RM’ and ‘MR’ rules interact act such that each rule counterbleeds the other. Recall

the relevant trisyllabic data from the previous chapter (5.78), repeated in ((6.22); Chen, 2004, p.803).

(6.22) Input Output [x x] x x [x x]

MRM LHM [hua.qian] duo xin [bei.jing]

“spending a lot of money” “new Beijing”

RMR HLR [yi.jin] you chu [feng.tou]

“one catty of oil” “to show off”

In order to derive both outputs from their corresponding inputs, conflicting rule orderings are nec-

essary. For example, the trisyllabic form /MRM/ surfaces as [LHM]; this requires the ordering MR

< RM, as illustrated by the following parallel derivations (6.23).
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(6.23) MRM

|

LRM by MR rule

|

LHM by RM rule

MRM

|

MHM by RM rule

|

*MHM MR rule n/a

RM counterbleeds MR; earlier application of the RM rule would bleed the application of the MR

rule by destroying part of its environment (crucially the R). In a different three-tone sequence,

however—/RMR/ → [HLR]—the opposite ordering is necessary. This is given in (6.24).2

(6.24) RMR

|

HMR by RM rule

|

HLR by MR rule

RMR

|

RLR by MR rule

|

*RLR RM rule n/a

Here, RM < MR is necessary to derive the attested output [HLR]. As before, it is a case of coun-

terbleeding. That is, application of the MR rule destroys the necessary environment (crucially the

M tone) for the RM rule. Thus each rule counterbleeds the other, with the consequence being that

a crucial ordering of rules cannot derive the attested forms. The RM and MR rules present an

ordering paradox.

Another ordering paradox is apparent, this time between the LM (6.21c) and ML rules (6.21d).

Example (6.25) gives the relevant data from (Chen, 2004, p. 804-5).

(6.25) Input Output [x x] x x [x x]

MLM MMM [gan.yuan] jiao wo [shi.zhai]

“willing to teach” “I am a vegetarian”

LML LLL [ren.zhen] du shi [xi.yao]

“seriously study” “take western medication”

Forms ganyuan jiao ‘willing to teach’ and wo shizhai ‘I am a vegetarian’ motivate the ordering LM

< ML. Only this order derives [MMM] from input /MLM/, as in (6.26).

(6.26) MLM

|

MMM by LM rule

|

MMM ML rule n/a

MLM

|

LLM by ML rule

|

*LMM by LM rule

2As Chen (2004) argues, this ordering would also feed a different ‘RL rule’ (RL → RF) to produce the unattested
*[RFR]. I abstract away from this detail for now.
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These derivations show that earlier application of LM bleeds the ML rule. Unfortunately, in the

mapping of these forms’ tonal palindromes renzhen du ‘seriously study’ and shi xiyao ‘take west-

ern medication’—/LML/ 7→ [LLL] as in (6.27)—the opposite ordering and resultant bleeding are

necessary.

(6.27) LML

|

LLL by ML rule

|

LLL LM rule n/a

LML

|

MML by LM rule

|

*MLL by ML rule

So again, in order to account for attested forms, both rules must bleed one another. This is a

challenge for traditional rule-based accounts as no single order can derive both outputs from their

respective input forms.

As discussed in Chapter 2, these interactions also lead to ranking paradoxes in an OT account.

According to Chen (2004)’s analysis whereby candidates are derivations, ranking Temp (apply rules

from left to right) above Econ (minimize derivational steps) is motivated as it correctly chooses the

derivation MRM → LRM → LHM over MRM → MHM, as in (6.28) (repeated from (2.27)).

(6.28)

/MRM/ Temp Econ

☞ MRM - LRM - LHM **
MRM - MHM *! *

But then the opposite ranking—Econ<<Temp in (6.29) (repeated from (2.28))—is necessary to

select the derivation MLM → MMM over a different candidate containing an unattested surface

form MLM → LLM → LMM.

(6.29)

/MLM/ Econ Temp

MLM - LLM - LMM **!
☞ MLM - MMM * *

Despite the challenges Changting poses to rule-based and optimization-based theories of phonol-

ogy, these interactions are strictly-local when defined as single combined map functions. In their

computational analysis of Changting, Oakden and Chandlee (2020) use logical transduction to show

that the mutual counterbleeding interaction (6.22) describes an ISL function, and that the mu-

tual bleeding interaction (6.25) describes an ROSL function. The crucial assumption—unavailable

to rule-based accounts—is that both ‘rules’ in an interaction refer to the same input and output

strings; that is, when intermediate representations are not considered. This section builds on that

earlier work by providing a BMRS analysis of Changting tone sandhi. In particular, it demonstrates

that mutual counterbleeding and mutual bleeding interactions in Changting can be characterized as
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the PS-join of systems of equations which describe the respective rules in isolation. These analyses

are further distinguished from compositional analyses in that the ordering of systems is irrelevant,

given the non-conflicting nature of licensing/blocking structure pairs (but see §5 for more discus-

sion). Systems which describe individual rules are given first, followed by BMRS analyses of two

interactions.

6.3.1 Individual rules as systems of equations

Four disyllabic Changting sandhi ‘rules’ (6.21) are relevant to counterbleeding and bleeding

interactions to be explored here. Each is modeled with a separate BMRS system of equations,

defined over the alphabet Σ = Γ = {H,R, F,M,L}. First, let a BMRS system of equations denoted

a model the RM rule (6.21a). Its definition is given in (6.30), and it describes an ISL function.3

(6.30) Ha(x) = if RM(x) then ⊤ else H(x)

Ra(x) = if RM(x) then ⊥ else R(x)

Fa(x) = F (x)

Ma(x) = M(x)

La(x) = L(x)

A system b, defined in (6.31), models the MR rule in a similar manner, i.e. by means of a single

input-specified licensing/blocking structure pair.

(6.31) Hb(x) = H(x)

Rb(x) = R(x)

Fb(x) = F (x)

Mb(x) = if MR(x) then ⊥ else M(x)

Lb(x) = if MR(x) then ⊤ else L(x)

BMRS systems corresponding to LM and ML rules (6.21c-d) are defined using recursion. This

reflects Oakden and Chandlee (2020)’s observation that both rules are describable by OSL functions

(as is their interaction). A system denoted c and which models the LM rule is given in (6.32).

(6.32) Hc(x) = H(x)

Rc(x) = R(x)

Fc(x) = F (x)

Mc(x) = if LMc(x) then ⊤ else M(x)

Lc(x) = if LMc(x) then ⊥ else L(x)

3Note that this is equivalent to system (5.39) defined for the same sandhi pattern in the previous chapter. The
same holds for all other systems defined in this chapter.
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The crucial structure in this system is an input L (the current string position) followed immediately

by an output M which licenses an output L and blocks output M. Reference to output structure is

also essential to a system of equations modeling the ML rule, denoted d and defined in (6.33).

(6.33) Hd(x) = H(x)

Rd(x) = R(x)

Fd(x) = F (x)

Md(x) = if MLd(x) then ⊥ else M(x)

Ld(x) = if MLd(x) then ⊤ else L(x)

As the following sections will show, the ⊖ operator combines these systems to formalize so-called

paradoxical interactions in Changting. Unlike composition, which provides access to intermediate

representations (and therefore to the ordering paradoxes apparent in serial derivations), the pro-

cedure for joining by parallel satisfaction described in §2 limits the information available to the

function to a single input and a single output string. Additionally, given the lack of conflicts be-

tween licensing/blocking structure pairs across definitions, the order in which the systems are joined

is inconsequential (but see §5 for more discussion).

6.3.2 Mutual counterbleeding with RM/MR rules (ISL ⊖ ISL)

Mutual counterbleeding between RM and MR rules in (6.23) and (6.24) presents an ordering

paradox; no ordering over individual rules can derive attested trisyllabic surface forms. As the

previous chapter demonstrates, this means a compositional BMRS account is doomed to fail as well.

Knowing that the interaction is describable by a single ISL function, and having defined individual

systems for each rule, there must exist another operation by which they may combine to yield a

function extensionally-equivalent to the combined-map. One viable operation is ⊖.

Consider the PS-joined system a ⊖ b defined below in (6.34) (recalling that systems a and b

describe RM and MR rules, respectively), with the original system b for reference. In the joined

system, replaced terms are given in bold.
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(6.34) a. a⊖ b Ha(x) = if RM(x) then ⊤ else Hb(x)

Ra(x) = if RM(x) then ⊥ else Rb(x)

Fa(x) = Fb(x)

Ma(x) = Mb(x)

La(x) = Lb(x)

b. b Hb(x) = H(x)

Rb(x) = R(x)

Fb(x) = F (x)

Mb(x) = if MR(x) then ⊥ else M(x)

Lb(x) = if MR(x) then ⊤ else L(x)

The final term of each output boolean function definition in a is replaced with the right side of the

corresponding definition (also a term) in system b. In definitions Ha(x) and Rb(x), this is the final

term of an if-then-else statement; in the other definitions, it is the licensing predicate from the input

(default case of identity mapping).

Applying the ⊖ operator, the resulting system models Changting mutual counterbleeding. It

crucially accepts both /MRM/ 7→ [LHM] and /RMR/ 7→ [HLR] interaction mappings, as illustrated

in the evaluation table in (6.35).

(6.35)
Input: M R M R M R

1 2 3 1 2 3

Ha(x) ⊥ ⊤⊤⊤ ⊥ ⊤⊤⊤ ⊥ ⊥

Ra(x) ⊥ ⊥ ⊥ ⊥ ⊥ ⊤⊤⊤

Fa(x) ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

Ma(x) ⊥ ⊥ ⊤⊤⊤ ⊥ ⊥ ⊥

La(x) ⊤⊤⊤ ⊥ ⊥ ⊥ ⊤⊤⊤ ⊥

Hb(x) ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

Rb(x) ⊥ ⊤⊤⊤ ⊥ ⊤⊤⊤ ⊥ ⊤⊤⊤

Fb(x) ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

Mb(x) ⊥ ⊥ ⊤⊤⊤ ⊥ ⊥ ⊥

Lb(x) ⊤⊤⊤ ⊥ ⊥ ⊥ ⊤⊤⊤ ⊥

Output: L H M H L R

In the first mapping /MRM/ 7→ [HLM], string position 1 (input M) returns a true value for Lb(x) by

satisfying the licensing structure MR. This evaluation is passed directly to La(x)—originally defined

as an identity mapping—and string position 1 surfaces as an L tone. The second string position is

output as H via Ha(x) (in spite of returning a false value for Hb(x)). String position 3 evaluates

to true for Ma(x) and Mb(x) by virtue of being input-specified as such. Crucially, the licensing
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structures which permit these mappings are computed with reference to input structure only, and

when a and b combine in this way, they refer to a single input string. This means, in intuitive terms,

that RM and MR rules can ‘apply’ simultaneously to the trisyllabic string /MRM/; it is not the case

that the application of one rule destroys the environment of the other.4 Such an interaction is not

possible under a composite system a⊗ b or b ⊗ a, as evaluation of non-recursively-defined licensing

and blocking structures in these definitions would necessarily refer to the potential ‘output’ of one

rule or another. The same generalization applies to the second mapping /RMR/ 7→ HLR; the input-

orientedness of terms RM(x) and MR(x)—preserved through application of ⊖—allows both rules

to apply without one bleeding the environment of the other.

Additionally, the terms RM(x) and MR(x) that define the systems’ licensing/blocking structure

pairs are non-overlapping. Therefore switching the order does not alter the predictions, and in fact

describes an (almost) identical function. In (6.36), the inverse ordering b ⊖ a is defined.

(6.36) a. b⊖ a Hb(x) = Ha(x)

Rb(x) = Ra(x)

Fb(x) = Fa(x)

Mb(x) = if MR(x) then ⊥ else Ma(x)

Lb(x) = if MR(x) then ⊤ else La(x)

b. b Ha(x) = if RM(x) then ⊤ else H(x)

Ra(x) = if RM(x) then ⊥ else R(x)

Fa(x) = F (x)

Ma(x) = M(x)

La(x) = L(x)

Because licensing/blocking structure pairs in a and b appear in different output boolean function

definitions with respect to one another (Ha(x) and Ra(x) in the case of a, and Mb(x) and Lb(x) in

b), neither order of PS-join disturbs the system-internal hierarchy of these structures. What results

is identical to the combined-map system of the interaction introduced at the end of the previous

chapter. In other words, a ⊖ b and b ⊖ a describe the function which maps /MRM/ to [LHM] and

/RMR/ to [HLR].

4This sense of ‘simultaneous’—in which a set of rules applies to an underlying representation in a single step—is
distinct from the ‘simultaneous’ used earlier whereby a single rule applies to an input string by scanning for targets,
then applying all changes to those targets in a single step.
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6.3.3 Mutual bleeding with ML/LM rules (OSL ⊖ OSL)

Mutual bleeding between LM and ML rules in (6.25) and (6.27) constitutes an ordering paradox

in the same way as the mutual counterbleeding interaction. No total order over the two rules may

derive both /MLM/ 7→ [MMM] and /LML/ 7→ [LLL]. This guarantees that no composition of systems

c and d—describing LM and ML rules, respectively (6.32-6.33)—will yield a function describing the

interaction. However, we know that the interaction itself is ROSL (Oakden and Chandlee, 2020),

suggesting that individual systems might combine via some operation to constitute the full map.

Indeed, applying the parallel satisfaction ⊖ operator to c and d describes a function which accepts

both interaction mappings of three-tone sequences described above. According to the definition

described above, the system c ⊖ d would be defined as in (6.37), with the original system d for

reference. Replaced terms are given in bold for clarity, and recursive definitions are subscripted

‘c⊖d’ to reflect collapsing multiple output strings into a single output.

(6.37) a. c⊖ d Hc⊖d(x) = Hd(x)

Rc⊖d(x) = Rd(x)

Fc⊖d(x) = Fd(x)

Mc⊖d(x) = if LMc⊖d(x) then ⊤ else Md(x)

Lc⊖d(x) = if LMc⊖d(x) then ⊥ else Ld(x)

b. d Hd(x) = H(x)

Rd(x) = R(x)

Fd(x) = F (x)

Md(x) = if MLc⊖d(x) then ⊥ else M(x)

Ld(x) = if MLc⊖d(x) then ⊤ else L(x)

In the same way that PS-join of ISL functions references the same input string, joining OSL functions

(defined in a BMRS framework using recursive function calls) references the same output string in

its computation. This is line with the single OSL function defining the interaction (see more in the

discussion). It accepts only the outputs [MMM] and [LLL] from respective input strings /MLM/

and /LML/ as illustrated below in (6.38).
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(6.38)
Input: M L M L M L

1 2 3 1 2 3

Hc⊖d(x) ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

Rc⊖d(x) ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

Fc⊖d(x) ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

Mc⊖d(x) ⊤⊤⊤ ⊤⊤⊤ ⊤⊤⊤ ⊥ ⊥ ⊥

Lc⊖d(x) ⊥ ⊥ ⊥ ⊤⊤⊤ ⊤⊤⊤ ⊤⊤⊤

Output: M M M L L L

Individual systems c and d and the PS-joined function describe an ROSL function; thus computation

of the output string begins at the right edge and proceeds leftward. String position 3 in both

mappings, as a final element, satisfies none of the licensing/blocking structures, and maps directly

based on its input specification. The second string position in /MLM/ conforms to LMc⊖d(x)—an

input L followed immediately by an output M. This structure licenses an output M. String position

2 in /LML/ returns a true value for Lc⊖d(x) by satisfying the relevant licensing structure: an input

M followed by an output L.

Computation of the first string position of each mapping is crucial. Importantly, string position

1 in the first mapping does not satisfy MLc⊖d(x) (which licenses output L and blocks output M);

though it is an input M followed by an input L, that L has already been output as M. It evaluates

to false for structures in both if-then-else statements, and is output as M as a result of being input-

specified as M. Intuitively, this is the effect of the LM rule bleeding the ML rule. The same principle

applies to the second mapping; here, the effect is one of the ML rule bleeding the LM rule. Thus both

mappings accepted by the system are consistent with observed three-syllable forms in Changting.

Note that, in system c, an output M tone is licensed by a structure LMc(x) and in system d,

output L is licensed by a structure MLd(x). Despite being defined using the same tones M and

L, these structures do not overlap. What this predicts is that, like the mutual counterbleeding

interaction above, reversing the order does not alter the nature of the resulting system. Example

(6.39) defines a system whereby c and d join via PS, but in the reverse order.
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(6.39) a. d⊖ c Hd⊖c(x) = Hc(x)

Rd⊖c(x) = Rc(x)

Fd⊖c(x) = Fc(x)

Md⊖c(x) = if MLd⊖c(x) then ⊥ else Mc(x)

Ld⊖c(x) = if MLd⊖c(x) then ⊤ else Lc(x)

b. c Hc(x) = H(x)

Rc(x) = R(x)

Fc(x) = F (x)

Mc(x) = if LMd⊖c(x) then ⊤ else M(x)

Lc(x) = if LMd⊖c(x) then ⊥ else L(x)

Both systems define rules which manipulate M and L tones; i.e. their licensing/blocking structure

pairs are defined over the same functions governing output M and L. Reversing the order of the PS

join effectively creates two hierarchies of these structures, schematized below.

(6.40)

c⊖ d d⊖ c

M(x) = if LMc⊖d(x) then ⊤ else M(x) = if MLd⊖c(x) then ⊥ else

if MLc⊖d(x) then ⊥ else M(x) if LMd⊖c(x) then ⊤ else M(x)

L(x) = if LMc⊖d(x) then ⊥ else L(x) = if MLd⊖c(x) then ⊥ else

if MLc⊖d(x) then ⊤ else L(x) if LMd⊖c(x) then ⊥ else L(x)

Despite this, c⊖ d and d⊖ c make the same correct predictions about relevant interaction mappings

in Changting, given that their respective licensing and blocking structures do not conflict with one

another. Thus, joining two OSL functions via parallel satisfaction ⊖ (in either order) models the

Changting mutual bleeding interaction, crucially by enforcing reference to a single output string.

6.4 Nanjing

This section builds on the analysis presented in the previous chapter. Recall the rules in (2.39),

repeated in (6.41) with the addition of an ‘HC’ rule in (6.41e).
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(6.41) a. ‘LF rule’: LF 7→ RF e.g. laoLshiF → laoRshiF ‘teacher’

b. ‘FF rule’: FF 7→ HF e.g. bingFxiangF → bingHxiangF ‘refrigerator’

c. ‘RC rule’: RC 7→ LC e.g. tongRxueC → tongLxueC ‘classmate’

d. ‘CC rule’: CC 7→ C′C e.g. qiCshiC → qiC
′

shiC ‘seventy’

e. ‘HC rule’: HC 7→ FC e.g. shuHxueC → shuFxueC ‘mathematics’

In addition to the counterbleeding interactions presented in Chapter 4 (repeated in (6.42a-b)),

Ma and Li (2014) report a counterfeeding interaction between HC and FF rules (6.42c).

(6.42) a. /LFF/ 7→ [RHF]

b. /RCC/ 7→ [LC′C]

c. /FHC/ 7→ [FFC]

The mapping in (6.42c) is an example of counterfeeding on environment. Derivations in (6.43)

motivate the ordering FF < HC, as only this ordering of rules produces the attested mapping

/FHC/ 7→ [FFC].

(6.43) FHC

|

FHC FF rule n/a

|

FFC by HC rule

FHC

|

FFC by HC rule

|

*HFC by FF rule

In the output, it appears that the FF rule has underapplied (i.e. it is not surface-true); this is the

result of the ordering which, if reversed, would have the HC rule feeding the FF rule to produce the

unattested *[HFC].

While both counterbleeding and counterfeeding interactions in Nanjing can be derived via serial

rule ordering—and thus do not present an ordering paradox—their interaction may also be formal-

ized using the ⊖ operator. The following sections present a BMRS parallel satisfaction analysis of

counterfeeding (6.42b) and counterbleeding (6.42c) interactions. Joining individual BMRS systems

via PS indicates that counterfeeding and counterbleeding on environment are amenable to two-level

accounts, i.e. those which assume a single input and single output. Additionally, and unlike com-

position, the order is inconsequential. For each interaction, both orders of PS join are given to

demonstrate that they describe extensionally-equivalent functions. The availability of both parallel

satisfaction and composition analyses of the data is explored in further detail in the discussion sec-

tion. Before proceeding to the main analysis, the next section specifies the set of individual BMRS

systems to be joined with ⊖.
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6.4.1 Individual rules as systems of equations

Two pairs of disyllabic sandhi rules comprise the interactions in (6.42b) and (6.42c): a FF/HC

rule pair (6.41b,e), and a RC/CC rule pair (6.41c,d). The previous chapter defined BMRS systems

to model FF, RC, and CC rules in isolation, motivating ISL and OSL functional characterizations

for these systems based on observed data. These systems are repeated below, and the reader is

referred to the previous chapter (§5.1) for relevant discussion.

A system b (6.44) describes an ISL function, and models the FF sandhi rule. That is, a sequence

of two input F tones blocks an output F on the first tone, and licenses an output H tone.

(6.44) Hb(x) = if FF (x) then ⊤ else H(x)

Lb(x) = L(x)

Rb(x) = R(x)

Fb(x) = if FF (x) then ⊥ else F (x)

Cb(x) = C(x)

C′
b(x) = ⊥

A system c (6.45) also describes an ISL function, and models the RC sandhi rule. The definition of

output boolean functions below prevents an input R from mapping to the output when followed by

a checked tone (Rc(x)). Instead, the function maps this tone to L (Lc(x)). The remaining output

boolean functions map other input tones directly to the output.

(6.45) Hc(x) = H(x)

Lc(x) = if RC(x) then ⊤ else L(x)

Rc(x) = if RC(x) then ⊥ else R(x)

Fc(x) = F (x)

Cc(x) = C(x)

C′
c(x) = ⊥

As in the previous chapter, system d (6.46) describes the CC rule.

(6.46) Hd(x) = H(x)

Ld(x) = L(x)

Rd(x) = R(x)

Fd(x) = F (x)

Cd(x) = if CCd(x) then ⊥ else C(x)

C′
d(x) = if CCd(x) then ⊤ else ⊥
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Recall that d describes an ROSL function. That is, it computes outputs using the current string

position’s input and a bounded local window in the output, crucially to the right of the string

position under evaluation, evinced by recursive definitions of Cd(x) and C′
d(x). Support for this

characterization comes from the mapping /CCC/ 7→ [CC′C] attested by Ma and Li (2014), and

accepted by system d ((5.60), repeated in (6.47)):

(6.47)
Input: C C C

1 2 3

Cd(x) ⊤⊤⊤ ⊥ ⊤⊤⊤

C′
d(x) ⊥ ⊤⊤⊤ ⊥

Output: C C′ C

Finally, let e denote a BMRS system of equations simulating the HC rule in (6.41e). It describes an

ISL function—which is assumed in the absence of evidence to the contrary—and is given below in

(6.48).

(6.48) He(x) = if HC(x) then ⊥ else H(x)

Le(x) = L(x)

Re(x) = R(x)

Fe(x) = if HC(x) then ⊤ else F (x)

Ce(x) = C(x)

C′
e(x) = ⊥

Here, the relevant licensing/blocking structure is an input sequence of a rising tone followed by a

checked tone. This sequences licenses an output falling tone for the former, and thus recreates the

effect of the HC rule in isolation. An abbreviated evaluation table (6.49) illustrates.

(6.49)
Input: H C

1 2

He(x) ⊥ ⊥

Fe(x) ⊤⊤⊤ ⊥

Ce(x) ⊥ ⊤⊤⊤

Output: F C

System d accepts only the surface string [FC] from input /HC/ and nothing else.

6.4.2 HC counterfeeds FF (ISL ⊖ ISL)

The following two sections model counterfeeding and counterbleeding sandhi interactions in Nan-

jing. They are formalized as the combination of individual BMRS systems via ⊖. For these inter-
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actions, the order of PS-join is inconsequential. That is, given two systems a and b defined over

the same alphabets and which model distinct disyllabic rules in isolation, a⊖ b and b ⊖ a describe

extensionally-equivalent functions.

Recall the counterfeeding order on HC and FF rules necessary to derive the mapping /FHC/ 7→

[FFC] in (6.42c). This is motivated by the derivations in (6.43), repeated in (6.50).

(6.50) FHC

|

FHC FF rule n/a

|

FFC by HC rule

FHC

|

FFC by HC rule

|

*HFC by FF rule

Serial ordering of rules—specifically the order HC < FF—derives the correct output. This means

that the interaction is amenable to a compositional BMRS analysis whereby systems e and a are

composed in a certain order. However, combining the same systems with the PS operator also

recreates the counterfeeding effect. Let one such system be denoted e ⊖ a, defined in (6.51). As

before, modified elements are given in bold.

(6.51) a. e⊖ a He(x) = if HC(x) then ⊥ else Ha(x)

Le(x) = La(x)

Re(x) = Ra(x)

Fe(x) = if HC(x) then ⊤ else Fa(x)

Ce(x) = Ca(x)

C′
e(x) = C′

a
(x)

b. a Ha(x) = if FF (x) then ⊤ else H(x)

La(x) = L(x)

Ra(x) = R(x)

Fa(x) = if FF (x) then ⊥ else F (x)

Ca(x) = C(x)

C′
a(x) = ⊥

Following the definition in §2, the ⊖ operator generates a system that is identical to e (the outer

function), with the exception that the final term in each boolean function definition is replaced with

the corresponding boolean function definition from a (the inner function). That e⊖ a recreates the

effect of the counterfeeding order in (6.43)—albeit not the ordering itself—is demonstrated in the

following abbreviated evaluation table (6.52); the system accepts interaction mapping /FHC/ 7→

[FFC].
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(6.52)
Input: F H C

1 2 3

He(x) ⊥ ⊥ ⊥

Fe(x) ⊤⊤⊤ ⊤⊤⊤ ⊥

Ce(x) ⊥ ⊥ ⊤⊤⊤

Ha(x) ⊥ ⊤⊤⊤ ⊥

Fa(x) ⊤⊤⊤ ⊥ ⊥

Ca(x) ⊥ ⊥ ⊤⊤⊤

Output: F F C

Both licensing/blocking structure pairs, represented by terms HC(x) and FF (x), refer to input

structure only. Unlike composition, they are not modified such that they refer to the output of

some other function. This predicts ‘application’ of the HC rule, as an HC sequence is present in

the input. For the same reason, it also predicts that the FF rule will not apply; there is no such

sequence present in the input string. Thus, the first string position F returns a true value for Fe(x)

(via Fa(x)) and maps to F in the output.

Neither licensing/blocking structure overlaps with the other resulting in potential conflict. This

means that reversing the order generates an extensionally-equivalent function. To see how, consider

a system a⊖ e, the mirror image of e⊖ a. It is defined in (6.53).

(6.53) a. a⊖ e Ha(x) = if FF (x) then ⊤ else He(x)

La(x) = Le(x)

Ra(x) = Re(x)

Fa(x) = if FF (x) then ⊥ else Fe(x)

Ca(x) = Ce(x)

C′
a(x) = C′

e
(x)

b. e He(x) = if HC(x) then ⊥ else H(x)

Le(x) = L(x)

Re(x) = R(x)

Fe(x) = if HC(x) then ⊤ else F (x)

Ce(x) = C(x)

C′
e(x) = ⊥

This has the effect of switching the orders of hierarchies on definitions Ha(x)/He(x) and Fa(x)/Fe(x).

Compare the respective definitions of each in (6.54):
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(6.54) a. Ha⊖e(x) = if FF (x) then ⊤ else

if HC(x) then ⊥ else H(x)

Fa⊖e(x) = if FF (x) then ⊥ else

if HC(x) then ⊤ else F (x)

b. He⊖a(x) = if HC(x) then ⊥ else

if FF (x) then ⊤ else H(x)

Fe⊖a(x) = if HC(x) then ⊤ else

if FF (x) then ⊥ else F (x)

However, their reference to the same input is preserved. Thus a ⊖ e also describes a function

which maps /FHC/ to [FFC], illustrated by the evaluation in (6.55).

(6.55)
Input: F H C

1 2 3

Ha(x) ⊥ ⊥ ⊥

Fa(x) ⊤⊤⊤ ⊤⊤⊤ ⊥

Ca(x) ⊥ ⊥ ⊤⊤⊤

He(x) ⊥ ⊥ ⊥

Fe(x) ⊤⊤⊤ ⊤⊤⊤ ⊥

Ce(x) ⊥ ⊥ ⊤⊤⊤

Output: F F C

Note that the same order a ⊖ e in a compositional account would merely reproduce the serial

ordering FF < HC. This composite system would accept the unattested *[HFC] from input /FFC/

as in (6.50). A parallel satisfaction analysis preserves the licensing/blocking structure pairs such

that they refer to the same input string. Given that these pairs do not conflict, both orders—e⊖ a

and a ⊖ e—formalize the counterfeeding interaction of HC and FF rules, accepting the mapping

/FHC/ 7→ [FFC] observed in the data.

6.4.3 RC counterbleeds CC (OSL ⊖ ISL)

Combining BMRS systems with PS also models counterbleeding on environment. In Nanjing, the

RC and CC disyllabic sandhi rules interact such that the former counterbleeds the latter. Evidence

for this interaction comes from the trisyllabic output [LC′C] from input /RCC/; parallel derivations

for this form are given in (6.56).
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(6.56) RCC

|

LCC by RC rule

|

LC′C by CC rule

RCC

|

RC′C by CC rule

|

*RC′C RC rule n/a

In the previous chapter, individual systems c and d were composed to formalize the counterbleeding

interaction between RC and CC rules in Nanjing. Importantly, a particular order of composition

over those systems (d ⊗ c) expressed the counterbleeding order RC < CC in a BMRS framework.

This section uses the same systems c and d to model RC/CC counterbleeding, but instead makes use

of the ⊖ operator. As the respective systems’ licensing/blocking structures do not conflict, the order

is irrelevant; that is, either order describes the function which maps /RCC/ to [LC′C]. Reference to

a single input and a single output—recalling that system d describes an ROSL function—is sufficient

to model this interaction.

First, consider the system in (6.57) that results from joining systems d and c via the ⊖ operator.

This order d ⊖ c mirrors the order of the composite system d ⊗ c in the previous chapter. In the

definition below, modifications to the outer function are given in bold, and the inner function is

repeated for reference.

(6.57) a. d⊖ c Hd⊖c(x) = Hc(x)

Ld⊖c(x) = Lc(x)

Rd⊖c(x) = Rc(x)

Fd⊖c(x) = Fc(x)

Cd⊖c(x) = if CCd⊖c(x) then ⊥ else Cc(x)

C′
d⊖c(x) = if CCd⊖c(x) then ⊤ else C′

c(x)

b. c Hc(x) = H(x)

Lc(x) = if RC(x) then ⊤ else L(x)

Rc(x) = if RC(x) then ⊥ else R(x)

Fc(x) = F (x)

Cc(x) = C(x)

C′
c(x) = ⊥

Final terms in each of d’s boolean function definitions are replaced with the corresponding definition

from c. Additionally, recursive function calls refer to the modified (PS-joined) system, denoted with

the subscript ‘d⊖c’. This has the effect of applying both functions simultaneously such that they

compute outputs using the same input (and output) strings—without the intermediate representa-
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tions that arise from serial ordering. The abbreviated table in (6.58) illustrates evaluation of input

string /RCC/ against d⊖ c. It accepts the attested surface string [LC′C].

(6.58)
Input: R C C

1 2 3

C′
d⊖c(x) ⊥ ⊤⊤⊤ ⊥

Cd⊖c(x) ⊥ ⊥ ⊤⊤⊤

Ld⊖c(x) ⊤⊤⊤ ⊥ ⊥

Rd⊖c(x) ⊥ ⊥ ⊥

Lc(x) ⊤⊤⊤ ⊥ ⊥

Rc(x) ⊥ ⊥ ⊥

Cc(x) ⊥ ⊤⊤⊤ ⊤⊤⊤

Output: L C′ C

Applying the parallel satisfaction operator in this order yields a function similar in nature to the

corresponding composite system d⊗ c. In particular, the input-orientedness of c’s licensing/blocking

structure pair (RC(x)) is preserved in both cases. This is essential because it allows output L to

be licensed on position 1 in spite of the fact that its successor is C′ in the output. In the case of

composition, this is due to order: c is the inner function, and so remains unaffected. While switching

the order of composition would disrupt the input-orientedness of c’s RC(x) term (and thus predict

the unattested *[RC′C] for input /RCC/), the same effect does not obtain with PS. The opposite

order of d⊖ c—c⊖ d—is defined in (6.59). Note that the inner function d is modified such that its

recursive function calls refer to the joined system (i.e. a single output string).

(6.59) a. c⊖ d Hc⊖d(x) = Hd(x)

Lc⊖d(x) = if RC(x) then ⊤ else Ld(x)

Rc⊖d(x) = if RC(x) then ⊥ else Rd(x)

Fc⊖d(x) = Fd(x)

Cc⊖d(x) = Cd(x)

C′
c⊖d(x) = C′

d
(x)

b. d Hd(x) = H(x)

Ld(x) = L(x)

Rd(x) = R(x)

Fd(x) = F (x)

Cd(x) = if CCc⊖d(x) then ⊥ else C(x)

C′
d(x) = if CCc⊖d(x) then ⊤ else ⊥
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System c is the outer function, but the input-orientedness of term RC(x) is preserved nonetheless.

Like d⊖ c (and unlike composite c⊗ d), it describes the function which maps /RCC/ to [LC′C].

(6.60)
Input: R C C

1 2 3

C′
c⊖d(x) ⊥ ⊤⊤⊤ ⊥

Cc⊖d(x) ⊥ ⊥ ⊤⊤⊤

Lc⊖d(x) ⊤⊤⊤ ⊥ ⊥

Rc⊖d(x) ⊥ ⊥ ⊥

Ld(x) ⊥ ⊥ ⊥

Rd(x) ⊤⊤⊤ ⊥ ⊥

Cd(x) ⊥ ⊥ ⊤⊤⊤

C′
d(x) ⊥ ⊤⊤⊤ ⊥

Output: L C′ C

6.5 Xiamen

Another oft-cited sandhi ordering paradox comes from southern Min, and in particular Xiamen

(Dong, 1960; Chen, 1987, 2000). Chen (1987) gives the following data from this five-tone system

comprising R(ising), H(igh), M(id), L(ow), and F(alling) tones:5

(6.61) a. p’ang H “fragrant”

p’ang tsui MF “perfume” (lit. fragrant + water)

b. we R “shoes”

we tua ML “shoe laces”

c. pĩ M “sick”

pĩ lang LR “patient” (lit. sick + person)

d. ts’u L “house”

ts’u ting FF “roof” (lit. house + top)

e. hai F “ocean”

hai kĩ HR “ocean front”

The Xiamen data present a tone circle sandhi pattern which Chen (2000, 42) describes as “a musical-

chair pattern produced by the replacement of tone A by tone B, which is in turn replaced by tone

C, and so forth.” This is shown diagrammatically below.

5Chen gives Chao letter equivalents 24, 44, 22, 21, and 53 respectively. In addition, this analysis follows the
conventional assumption that citation forms are underlying.
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(6.62) R

M

H L

F

Intuitively, a citation tone is realized as the ‘next’ tone in the circle when it appears in non-final

position. Another way to state these generalizations is in the form of rewrite rules. A set of five

rules in (6.63) describe the individual sandhi transformations in (6.61), where ‘T’ denotes any lexical

tone.

(6.63) a. R → M / T

b. H → M / T

c. M → L / T

d. L → F / T

e. F → H / T

Given the circular nature of the mappings in (6.62), Xiamen sandhi outputs cannot be produced

by ordering individual rewrite rules. Thus like mutual counterfeeding and bleeding patterns in

Changting, these data present an ordering paradox. Consider the ordering e < d < c < b < a in

(6.64) as an example; this produces some correct surface forms but not others.

(6.64) Input RT MT LT FT HT

e – – – HT –

d – – FT – –

c – LT – – –

b – – – MT MT

a MT – – – –

Output MT LT FT *MT MT

Indeed, any permutation over the rules will result in an unwanted feeding relationship between two

rules; above, rule e feeds rule b over input /FT/ producing *[MT] when [HT] is attested. Xiamen

tone sandhi can therefore be described as a type of circular counterfeeding. Rule ordering, and

therefore a rule-based analysis, is ill-equipped to account for this phenomenon.

Constraint-based analyses have had limited success at explaining Xiamen sandhi, as well. An

early admission of failure is due to Moreton (2004), who demonstrates that Xiamen and other circular

chain shifts are non-computable functions in classic OT, in part due to their non-idempotence.
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Numerous subsequent attempts have incorporated various extensions to OT, sometimes defining

new families of constraints, with some being more desirable than others. This includes anti-merger

constraints militating against syncretism in a tonal paradigm (Hsieh, 2005), contrast preservation

(Barrie, 2006), so-called ‘linear faithfulness’ constraints defined over candidates which are mappings

from sets of citation tones to sets of sandhi tones (Thomas, 2008), and comparative markedness

(Hsiao, 2015), among others. However, the fact that the basic principles of the theory fail to derive

the pattern—like serial ordering in an SPE framework—remains.

This has led many to question whether tone circles are psychologically-real for speakers or are

present in synchronic grammars. Chen (2000, 42) notes that the Xiamen tone circle and others

like it “often strike the analyst as bizarre because they seem to relate or map one tone to another

in an essentially arbitrary and whimsical manner.” In a footnote, he echoes earlier dismissals by

Anderson (1987) and Ballard (1988), who assert that such patterns are irrelevant to questions of

tonal phonology (at least a feature-based theory of tone), and go as far to say that the synchronic

rules comprising them are “neither learnable, nor productive, in fact ‘not a part of the speakers’

grammars, but historical artifacts.’” This section will challenge that claim, showing that the Xiamen

tone circle interaction is easily describable by a PS ⊖ operator over ISL functions, which have a

demonstrably strong connection to phonological transformations, both tonal and segmental.

An important first observation is that the Xiamen tone circle, from the computational perspec-

tive, is remarkably simple: it describes an ISL-2 function. Example (6.65) gives a ‘combined map’

BMRS system for the function, defined over Σ = Γ = {M,L,H, F,R}. As above, ‘T’ is a shorthand

for any lexical tone.

(6.65) M ′(x) = if RT (x) then ⊤ else

if HT (x) then ⊤ else

if MT (x) then ⊥ else M(x)

L′(x) = if MT (x) then ⊤ else

if LT (x) then ⊥ else L(x)

H ′(x) = if FT (x) then ⊤ else

if HT (x) then ⊥ else H(x)

F ′(x) = if LT (x) then ⊤ else

if FT (x) then ⊥ else F (x)

R′(x) = if RT (x) then ⊥ else R(x)

An evaluation table below shows that each mapping in the tone circle paradigm (6.61) is accepted
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by this combined map system, and nothing else.

(6.66)

Input: R T M T L T F T H T

1 2 1 2 1 2 1 2 1 2

M ′(x) ⊤⊤⊤ ⊥ ⊥ ⊥ ⊤⊤⊤

L′(x) ⊥ ⊤⊤⊤ ⊥ ⊥ ⊥

H ′(x) ⊥ ⊥ ⊥ ⊤⊤⊤ ⊥

F ′(x) ⊥ ⊥ ⊤⊤⊤ ⊥ ⊥

R′(x) ⊥ ⊥ ⊥ ⊥ ⊥

Output: M T L T F T H T M T

Despite its ‘whimsical’ nature, the ISL-ness of this interaction is uncontroversial. But relating

the function in (6.65) to the individual rules in (6.63) is not straightforward. Because the tone

circle presents an ordering paradox, this also means that any order of composition over equivalent

BMRS systems of equations will recapitulate some serial ordering—it cannot capture the tone circle.

Individual systems describing (6.63a-e) can, however, combine via the ⊖ operator. The resulting

system is extensionally-equivalent to (6.65) and so accepts mappings consistent with the attested

tone circle data. Demonstrating this is the main purpose of this section. Before doing so, the

following section presents individual BMRS systems of equations describing the rules in (6.63).

6.5.1 Individual rules as systems of equations

Five separate BMRS systems define mappings between non-final citation and sandhi tones. This

section defines them, where systems are denoted with letters a − e following the ordering in (6.63)

and defined over the alphabet Σ = Γ = {M,L,H, F,R}. In the definitions below, ‘T ’ is a shorthand

for any lexical tone, and omitted output boolean function definitions are understood to be direct

mappings from the input. Importantly, each system describes an ISL function.

The rule in (6.63a) is formalized as a BMRS system a. It contains the licensing/blocking structure

‘RT’, a non-final R input tone followed by any other (input) tone.

(6.67) Ma(x) = if RT (x) then ⊤ else M(x)

Ra(x) = if RT (x) then ⊥ else R(x)

System b describes the rule in (6.63b) whereby any non-final input H maps to M.

(6.68) Mb(x) = if HT (x) then ⊤ else M(x)

Hb(x) = if HT (x) then ⊥ else H(x)

Similarly, the rule M → L / T in (6.63c) can be described by a BMRS system c, defined below.
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(6.69) Lc(x) = if MT (x) then ⊤ else L(x)

Mc(x) = if MT (x) then ⊥ else M(x)

Let d denote a BMRS system of equations describing the rule in (6.63d); this maps any non-final

input L to F.

(6.70) Fd(x) = if LT (x) then ⊤ else F (x)

Ld(x) = if LT (x) then ⊥ else L(x)

Finally, the rule in (6.63e) is formalized as a BMRS system e; the input sequence ‘FT’ (a non-final

falling tone) licenses H in the output.

(6.71) He(x) = if FT (x) then ⊤ else H(x)

Fe(x) = if FT (x) then ⊥ else F (x)

Systems a − e thus comprise the individual “links” in the Xiamen tone circle pattern. Crucially

these links do not join via composition. Instead, the PS operator ⊖ is applied to individual systems

to model the circular chain shift in Xiamen. In doing so, the resulting system preserves the gener-

alization implicit in the combined map (6.65); each licensing/blocking structure is computed over

the same input string, not the intermediate representation generated by imparting a serial order

on rules. The order in which these systems are combined—much like interactions in Changting—is

inconsequential, owing to the fact that licensing/blocking structure pairs do not overlap.

6.5.2 Tone circle

The majority of function definitions in each system a−e is a direct mapping from input symbols—

i.e. is of the form T ′(x) = T (x). Applying ⊖ to these systems has a similar effect as interleaving

definitions of the form if T1 then T1 else T3. Depending on the order, a different hierarchy of

licensing/blocking structures is created. For clarity, this section assembles a total order e⊖d⊖c⊖b⊖a

(the same order over rules as in (6.64)), but does so piece by piece. Example (6.72) joins systems e

and d.
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(6.72) a. e⊖ d Me(x) = Md(x)

Le(x) = Ld(x)

He(x) = if FT (x) then ⊤ else Hd(x)

Fe(x) = if FT (x) then ⊥ else Fd(x)

Re(x) = Rd(x)

b. d Md(x) = M(x)

Ld(x) = if LT (x) then ⊥ else L(x)

Hd(x) = H(x)

Fd(x) = if LT (x) then ⊤ else F (x)

Rd(x) = R(x)

Note that e and d’s F (x) function definitions both contain if-then-else statements; applying ⊖ in

this way generates an ordered hierarchy with the former ranking above the latter. This ordering

carries no consequences in terms of evaluation, since FT (x) and LT (x) do not conflict.

The next step is to combine e⊖ d with c; this is given in (6.73).

(6.73) a. (e ⊖ d) ⊖ c Me⊖d(x) = Mc(x)

Le⊖d(x) = if LT (x) then ⊥ else Lc(x)

He⊖d(x) = if FT (x) then ⊤ else Hc(x)

Fe⊖d(x) = if FT (x) then ⊥ else

if LT (x) then ⊤ else Fc(x)

Re⊖d(x) = Rc(x)

b. c Mc(x) = if MT (x) then ⊥ else M(x)

Lc(x) = if MT (x) then ⊤ else L(x)

Hc(x) = H(x)

Fc(x) = F (x)

Rc(x) = R(x)

Another hierarchy is created with this application, this time within the output function definition

of L(x); the blocking structure LT (x) (originating in d) ranks above the licensing structure MT (x)

from c. As before, no conflict arises.

System (e⊖ d)⊖ c then combines with b to form ((e⊖ d)⊖ c)⊖ b, abbreviated ‘(e...⊖ b’ in (6.74).
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(6.74) a. (e...⊖ b M(e⊖d)⊖c(x) = if MT (x) then ⊥ else Mb(x)

L(e⊖d)⊖c(x) = if LT (x) then ⊥ else

if MT (x) then ⊤ else Lb(x)

H(e⊖d)⊖c(x) = if FT (x) then ⊤ else Hb(x)

F(e⊖d)⊖c(x) = if FT (x) then ⊥ else

if LT (x) then ⊤ else Fb(x)

R(e⊖d)⊖c(x) = Rb(x)

b. b Mb(x) = if HT (x) then ⊤ else M(x)

Lb(x) = L(x)

Hb(x) = if HT (x) then ⊥ else H(x)

Fb(x) = F (x)

Rb(x) = R(x)

Two new hierarchies emerge. One is in the definition of output function M(x), combining the

blocking structure MT (x) from c and licensing structure HT (x) from b. The other is in H(x);

HT (x) from b—here a blocking structure—ranks below licensing structure FT (x), originally from

system e.

Finally, the PS operator is applied to ((e ⊖ d) ⊖ c) ⊖ b and the remaining system a to generate

the full system (((e ⊖ d) ⊖ c) ⊖ b) ⊖ a. This is given in (6.75).

(6.75) a. (e...⊖ a M(e...⊖b(x) = if MT (x) then ⊥ else

if HT (x) then ⊤ else Ma(x)

L(e...⊖b(x) = if LT (x) then ⊥ else

if MT (x) then ⊤ else La(x)

H(e...⊖b(x) = if FT (x) then ⊤ else

if HT (x) then ⊥ else Ha(x)

F(e...⊖b(x) = if FT (x) then ⊥ else

if LT (x) then ⊤ else Fa(x)

R(e...⊖b(x) = Ra(x)

b. a Ma(x) = if RT (x) then ⊤ else M(x)

La(x) = L(x)

Ha(x) = H(x)

Fa(x) = F (x)

Ra(x) = if RT (x) then ⊥ else R(x)
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RT (x) is added to the hierarchy in M(x) (as a licensing structure), and is interleaved (as a blocking

structure) into the as yet direct-mapping definition of R(x). Example (6.76) gives the full definition

using simplified notation.

(6.76) M ′(x) = if MT (x) then ⊥ else

if HT (x) then ⊤ else

if RT (x) then ⊤ else M(x)

L′(x) = if LT (x) then ⊥ else

if MT (x) then ⊤ else L(x)

H ′(x) = if FT (x) then ⊤ else

if HT (x) then ⊥ else H(x)

F ′(x) = if FT (x) then ⊥ else

if LT (x) then ⊤ else F (x)

R′(x) = if RT (x) then ⊥ else R(x)

Combining a series of ISL systems via ⊖ yields a single ISL function. In this system, all licens-

ing/blocking structure pairs are evaluated over the same input string. This is key, because it guaran-

tees that no single ‘rule’ will feed another rule, and so successfully models the circular counterfeeding

interaction between those rules. Relatedly, the ISL function in (6.76) is not intensionally-equivalent

to the function described in (6.65), but the two are extensionally-equivalent. It accepts the circular

chain shift maps conceptualized in (6.62), as shown in the evaluation table below.

(6.77)

Input: R T M T L T F T H T

1 2 1 2 1 2 1 2 1 2

M ′(x) ⊤⊤⊤ ⊥ ⊥ ⊥ ⊤⊤⊤

L′(x) ⊥ ⊤⊤⊤ ⊥ ⊥ ⊥

H ′(x) ⊥ ⊥ ⊥ ⊤⊤⊤ ⊥

F ′(x) ⊥ ⊥ ⊤⊤⊤ ⊥ ⊥

R′(x) ⊥ ⊥ ⊥ ⊥ ⊥

Output: M T L T F T H T M T

Output boolean function definitions across both systems comprise a single set of if-then-else state-

ments which can be thought of as contributions from the separate systems a − e. What differs

is the relative ordering of those statements within a hierarchy. For example, L′(x) in the joined

system (6.76) first evaluates the blocking structure LT (x), then the licensing structure MT (x); the

corresponding function in the combined map system (6.76) evaluates the opposite order.

Yet both are equivalent. This is explained by the fact that no two licensing/blocking structure

pairs in a− e are in conflict; they describe distinct input structures. Thus switching the order of the
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PS operator over these systems—thereby rearranging the hierarchies apparent within single function

definitions—has no impact on the set of mappings accepted by the resulting system, i.e. the function

it describes. The reverse PS-join of (6.76), a⊖ b⊖ c⊖ d⊖ e, is given below in (6.78) using simplified

notation.

(6.78) M ′(x) = if RT (x) then ⊤ else

if HT (x) then ⊤ else

if MT (x) then ⊥ else M(x)

L′(x) = if MT (x) then ⊤ else

if LT (x) then ⊥ else L(x)

H ′(x) = if HT (x) then ⊥ else

if FT (x) then ⊤ else H(x)

F ′(x) = if LT (x) then ⊤ else

if FT (x) then ⊥ else F (x)

R′(x) = if RT (x) then ⊥ else R(x)

Note that the definition-internal hierarchies expressed in the system above are the mirror image of

those in (6.76). Due to the lack of conflict in the expressed structures, however, the systems in

(6.78), (6.76), and (6.65) all describe the same function. This is the function that maps Xiamen

citation tones to corresponding sandhi tones in a circular fashion.

6.6 Discussion

A variety of opaque and transparent sandhi interactions can be modeled by the simultaneous

application of two or more rules. To formalize this effect in a BMRS framework, this chapter has

defined a parallel satisfaction operator ⊖ over BMRS systems of equations. Applied to individual

systems (i.e. those which describe single rules), the operator models counterbleeding, bleeding, and

counterfeeding relationships which are not derivable via conventional rule ordering, and thus cannot

be described as the composition of systems using ⊗. The discussion presented here summarizes these

generalizations and explores their ramifications.

First, this section reiterates the effect of preserving single input and output strings via ⊖, showing

that failure to preserve the latter recreates ordering paradoxes in Changting. It also relates this effect

to the absence of intermediate representations, which Oakden and Chandlee (2020) argue is the

key to the Changting paradigm. This insight unifies seemingly disconnected interactions—mutual

counterbleeding/bleeding in Changting, classic counterfeeding/counterbleeding on environment in
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Nanjing, and the Min tone circle—which have posed different challenges for rule- and constraint-

based theories of phonology.

The same quality of ⊖ also limits its ability to formalize certain interactions, namely transpar-

ent feeding and bleeding which depend on the information present in intermediate forms. This is

illustrated with a feeding interaction analyzed in the previous chapter. Finally, this chapter presents

a demonstration that the ⊖ operator is not commutative (i.e. order does matter), despite the fact

that order does not affect many of the joined systems modeling tone sandhi interactions.

6.6.1 One input, one output

This section reiterates a key component of the ⊖ operator: collapsing the input/output structures

referred to by separate BMRS systems into a single input and output string.

6.6.1.1 Enforcing a single output

When two systems join by ⊖, ensuring a single output requires that recursion in either system

refer to the PS-joined system itself. This guarantees that it is evaluated using one output string

and not two. Limiting computation to a single output string is crucial, for example, in the mutual

bleeding interaction in Changting (§3.3). To see why, consider a system c⊖′ d (defined in (6.79)); it

combines two systems in the usual way (i.e. by replacing final terms), but also preserves recursion

from the separate systems.

(6.79) a. c⊖′ d Hc(x) = Hd(x)

Rc(x) = Rd(x)

Fc(x) = Fd(x)

Mc(x) = if LMc(x) then ⊤ else Md(x)

Lc(x) = if LMc(x) then ⊥ else Ld(x)

b. d Hd(x) = H(x)

Rd(x) = R(x)

Fd(x) = F (x)

Md(x) = if MLd(x) then ⊥ else M(x)

Ld(x) = if MLd(x) then ⊤ else L(x)

Combining two systems in this way generates two separate outputs over which output boolean func-

tion definitions across both systems are evaluated. This gives rise to the intermediate representations

that characterize the ordering paradox over rules, an undesirable result. When c⊖′ d evaluates the
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relevant three-tone sequences /MLM/ and /LML/ from Changting, it accepts the same unattested

mappings as would the composition c ⊗ d. That is, it recapitulates the rule ordering ML < LM:

/LML/ correctly maps to [LLL], but /MLM/ maps to the unattested *[LMM]. An evaluation table

in (6.80) illustrates the relevant mappings accepted by c⊖′ d.

(6.80)
Input: M L M L M L

1 2 3 1 2 3

Hc(x) ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

Rc(x) ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

Fc(x) ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

Mc(x) ⊥ ⊤⊤⊤ ⊤⊤⊤ ⊥ ⊥ ⊥

Lc(x) ⊤⊤⊤ ⊥ ⊥ ⊤⊤⊤ ⊤⊤⊤ ⊤⊤⊤

Hd(x) ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

Rd(x) ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

Fd(x) ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

Md(x) ⊥ ⊥ ⊤⊤⊤ ⊥ ⊥ ⊥

Ld(x) ⊤⊤⊤ ⊤⊤⊤ ⊥ ⊤⊤⊤ ⊤⊤⊤ ⊤⊤⊤

Output: *L M M L L L

The crux of the issue lies in the evaluation of input /MLM/’s second string position. It returns

a true value for both Mc(x) (by conforming to the licensing structure LMc(x)) and Ld(x) (maps

directly from input L as a default). Since the joined system comprises recursive function calls from

two systems c and d, computation refers to two distinct output structures while moving through the

string. When string position 1 is evaluated against definitions Mc(x) and Lc(x), it skips the first two

terms in the if-then-else statements—since the current position is not input-specified as L. This moves

evaluation directly to relevant definitions from system d. There, it checks for licensing/blocking

structures defined in terms of the output generated by system d.

Since string position 2 is true for Ld(x), position 1 returns a true value for Ld(x), modeling the

application of the ML rule, and unaware of the ‘surface’ output generated by system c. This also

means that Lc(x) evaluates to true. String position 1 surfaces as L, thus producing the unattested

*[LMM]. In intuitive terms, the availability of output string positions produced by d (the application

of the ML rule) results in a failed blocking of ML.

To prod the issue further, we may reverse the order of this operation over systems c and d and

observe its effects. Consider d⊖′ c, defined in (6.81).
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(6.81) a. d⊖′ c Hd(x) = Hc(x)

Rd(x) = Rc(x)

Fd(x) = Fc(x)

Md(x) = if MLd(x) then ⊥ else Mc(x)

Ld(x) = if MLd(x) then ⊤ else Lc(x)

b. c Hc(x) = H(x)

Rc(x) = R(x)

Fc(x) = F (x)

Mc(x) = if LMc(x) then ⊤ else M(x)

Lc(x) = if LMc(x) then ⊥ else L(x)

As before, computation proceeds with reference to two distinct output strings. What differs is that

now it is the output of d that constitutes the ‘surface’ output of the function described by the system.

Given the situation described above, a reasonable prediction is that the reversed PS-join d⊖′ c would

mirror the predictions of rule ordering LM < ML: /MLM/ correctly maps to [MMM], but /LML/

maps to the unattested *[MLL]. This prediction is confirmed, as illustrated by the evaluation table

in (6.82).

(6.82)
Input: M L M L M L

1 2 3 1 2 3

Hd(x) ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

Rd(x) ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

Fd(x) ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

Md(x) ⊤⊤⊤ ⊤⊤⊤ ⊤⊤⊤ ⊤⊤⊤ ⊥ ⊥

Ld(x) ⊥ ⊥ ⊥ ⊥ ⊤⊤⊤ ⊤⊤⊤

Hc(x) ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

Rc(x) ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

Fc(x) ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

Mc(x) ⊤⊤⊤ ⊤⊤⊤ ⊤⊤⊤ ⊤⊤⊤ ⊤⊤⊤ ⊥

Lc(x) ⊥ ⊥ ⊥ ⊥ ⊥ ⊤⊤⊤

Output: M M M *M L L

A discrepancy in each system’s output for string position 2 and the resulting evaluation is the locus

of the anomaly, as before. Reproducing the effects of rule ordering LM < ML is also apparent; the

ML rule is ‘blocked’ as evinced by /MLM/ 7→ [MMM], but the failure to block LM produces the

aberrant /LML/ 7→ *[MLL].

Interactions between OSL functions illustrate the motivation for enforcing a single output when

⊖ is applied. Failing to do so generates the intermediate representations which give rise to ordering
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paradoxes.

6.6.1.2 No intermediate representations

Joining systems of equations via ⊖ yields functions whose outputs are computed with reference

to one input and one output string. This models simultaneous application of individual (i.e. sepa-

rate) rules; application neither generates nor is sensitive to intermediate representations like those

generated in a serial ordering framework.

Opaque and transparent interactions explored in this chapter are thus unified in their amenabil-

ity to an analysis using PS. What counterfeeding/counterbleeding on environment (in Nanjing),

mutual counterfeeding and mutual bleeding (in Changting), and so-called circular counterfeeding

(in Xiamen) all have in common is that they can be understood as the sum of their parts—i.e.

in terms of the individual ‘rules’ which comprise interactions—but that those parts refer to the

same input/output structure, and no inherent order between the parts is necessary. This seems to

clash with intuitions about counterfeeding/counterbleeding on environment, which assume, as part

of their definition, a specific ordering of rules. While an ordering analysis is available to these cases,

as illustrated in the preceding chapter, this chapter has shown that it is not necessary.

That a PS analysis is equally tenable for these cases is also noteworthy given that they pose

different challenges to rule- and constraint-based formalisms. Classic opaque interactions are trivial

in a serial framework. Ordering paradoxes such as those posed by transparent and opaque inter-

actions Changting, on the other hand, are intractable. And while Changting has been argued to

exhaust the limits of OT because of its directionality effects (Chen et al., 2004), it is instead the

non-idempotency of circular chain shifts in Xiamen which have earned it the title of ‘non-computable

function’ (Moreton, 2004).6 In a BMRS framework, these interactions can be accounted for as the

PS-join of individual systems of equations; that is, they share the crucial assumption that ‘rules’

apply simultaneously with bounded reference to a single input and output string. Combined with

the SL perspective on directionality developed in chapter 4, the computational framework advocated

here provides a unified solution to these sandhi interactions, some of which are outstanding cases in

the literature.

6This is different from linear chain shifts, e.g. the classic case of Danish vowel lowering (Hyman, 1975;
Lundskær-Nielsen and Holmes, 2011). (Kirchner, 1996) shows that linear chain shifts like Danish are computable
with classic OT grammars. (Chandlee et al., 2018) show that, as a single function, Danish vowel lowering is ISL. In
terms of the analyses proposed here, the vowel lowering chain shift is amenable to an analysis as a PS-join of three
functions. However since there is no ordering paradox in a rule-based account, it can also be modeled using a BMRS
compositional analysis assuming a specific order.
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6.6.2 Interactions not formalized by ⊖

BMRS analyses using the ⊖ operator model interactions which do not depend on intermediate

representations. This also means that they cannot formalize analyses of feeding and bleeding in-

teractions for which intermediate representations are a crucial component. To illustrate, recall the

feeding relationship between LF and RM rules in Changting, repeated in (6.83).

(6.83) LF rule feeds RM rule: RLF → RMF → HMF

In the previous chapter, this interaction was formalized as the composition of two BMRS systems

b ⊗ a. The outer function b is evaluated in terms of modifications to the input string made by the

inner function a. Thus for an input string /RLF/, system a ‘feeds’ an intermediate M tone (on

the second string position) which, in conjunction with the input R tone in the first string position,

licenses an output H. Importantly, only this order of composition produces the desired effect.

This effect disappears when the same systems combine with the PS operator, as in (6.84) below.

(6.84) a. b⊖ a Hb(x) = if RM(x) then ⊤ else Ha(x)

Rb(x) = if RM(x) then ⊥ else Ra(x)

Fb(x) = Fa(x)

Mb(x) = Ma(x)

Lb(x) = La(x)

b. a Ha(x) = H(x)

Ra(x) = R(x)

Fa(x) = F (x)

Ma(x) = if LF (x) then ⊤ else M(x)

La(x) = if LF (x) then ⊥ else L(x)

When input /RLF/ is evaluated against b ⊖ a, licensing structures LF (x) (Ma(x)) and RM(x)

(Hb(x)) compute truth values by examining the same input string. Because systems b and a evaluate

in parallel, neither can feed the other. The evaluation table in (6.85) demonstrates this effect.
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(6.85)
Input: R L F

1 2 3

Hb(x) ⊥ ⊥ ⊥

Rb(x) ⊤⊤⊤ ⊥ ⊥

Fb(x) ⊥ ⊥ ⊤⊤⊤

Mb(x) ⊥ ⊤⊤⊤ ⊥

Lb(x) ⊥ ⊥ ⊥

Ha(x) ⊥ ⊥ ⊥

Ra(x) ⊤⊤⊤ ⊥ ⊥

Fa(x) ⊥ ⊥ ⊤⊤⊤

Ma(x) ⊥ ⊤⊤⊤ ⊥

La(x) ⊥ ⊥ ⊥

Output: *R M F

Term RM(x) evaluates to false for input /RLF/. That string position 2 returns a true value for

Ma(x) is irrelevant; an output H is licensed by an input RM sequence only. Feeding cannot be

formalized as a PS-join of systems in this way.

Nor can switching the order of systems b and a. Recall that, throughout the chapter, both or-

ders on systems with non-conflicting licensing/blocking structures generate extensionally-equivalent

functions. The same generalization holds for the operator’s failure to formalize transparent feeding,

illustrated by the mirror image of b⊖ a in (6.86).

(6.86) a. a⊖ b Ha(x) = Hb(x)

Ra(x) = Rb(x)

Fa(x) = Fb(x)

Ma(x) = if LF (x) then ⊤ else Mb(x)

La(x) = if LF (x) then ⊥ else Lb(x)

b. b Hb(x) = if RM(x) then ⊤ else M(x)

Rb(x) = if RM(x) then ⊥ else R(x)

Fb(x) = F (x)

Mb(x) = M(x)

Lb(x) = L(x)

Applied to /RLF/, a⊖ b accepts the unattested *[RMF] by the same evaluation. Transparent inter-

actions whose analyses rely on intermediate representations—in particular rule application triggered

by intermediate representations—cannot be formalized in a BMRS framework using the parallel

satisfaction operator.
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6.6.3 Does order matter?

Unlike composition with the ⊗ operator, the nature of the resulting function does not covary

with the order in which individual systems are joined via ⊖. That is, given two BMRS systems 1

and 2 whose licensing and blocking structures do not conflict, 1 ⊖ 2 describes the same function as

2 ⊖ 1. This property holds when the crucial requirement of non-conflict is satisfied, and applies to

ISL functions, OSL functions, and various combinations of thereof.

Individual systems typically contain a single licensing structure and a single blocking structure,

distributed across two separate output boolean function definitions. A common scenario is one in

which two systems define structures over non-overlapping function definitions. When they combine

through ⊖, if-then-else statements containing those licensing/blocking structures replace default di-

rect mapping definitions (T ′(x) = T (x)). For example, joined systems describing the interaction

of Nanjing CC and RC rules (§4.3) are of this type: a system d models the CC rule with a licens-

ing/blocking structures in definitions Cd(x) and C′
d(x) while a system c models the RC rule with

licensing/blocking structures in definitions Lc(x) and Rc(x). Both d⊖ c and c⊖d generate the same

system in (6.87), denoted ‘u’.

(6.87) Hu(x) = H(x)

Lu(x) = if RC(x) then ⊤ else L(x)

Ru(x) = if RC(x) then ⊥ else R(x)

Fu(x) = F (x)

Cu(x) = if CCu(x) then ⊥ else C(x)

C′
u(x) = if CCu(x) then ⊤ else ⊥

Sometimes, this distribution overlaps, as in the case of Xiamen, creating a hierarchy of licensing

and blocking structures within a single definition. Opposite orders of PS-join thus generate opposite

hierarchies. For example, compare the respective definitions of Xiamen output M tone M ′(x) in a

system e⊖ d⊖ c⊖ b⊖ a and in a system which reverses the order a⊖ b⊖ c⊖ d⊖ e, in (6.88).

(6.88) a. e⊖ d⊖ c⊖ b⊖ a M ′(x) = if MT (x) then ⊥ else

if HT (x) then ⊤ else

if RT (x) then ⊤ else M(x)

b. a⊖ b⊖ c⊖ d⊖ e M ′(x) = if RT (x) then ⊤ else

if HT (x) then ⊤ else

if MT (x) then ⊥ else M(x)
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The hierarchy in (6.88a) is a mirror image of the hierarchy in (6.88b). However, since the structures

described by terms RT (x), HT (x), and MT (x) are non-conflicting, M ′(x) functions in both systems

evaluate input-output mappings in the same way. Therefore, even when combination through ⊖

generates hierarchies of licensing/blocking structures that are not apparent in either individual

system, this does not affect evaluation provided the structures do not conflict.

More generally, however, the ⊖ operation is not commutative; there exist cases in which varying

order of PS-join does result in a different function. As a simple illustration, consider two functions

defined over an alphabet Σ = {a, b}. Function 1 maps any string-final position to b, as in (6.89). It

is an ISL-2 function.

(6.89) a1(x) = if #(s(x)) then ⊥ else a(x)

b1(x) = if #(s(x)) then ⊤ else b(x)

In this definition, the structure #(s(x))—immediate successor is a word edge—licenses output b and

blocks an output a. Now consider Function 2 (6.90), which maps any string-final position to a. It is

also an ISL-2 function.

(6.90) a2(x) = if #(s(x)) then ⊤ else a(x)

b2(x) = if #(s(x)) then ⊥ else b(x)

The same structure has the opposite effect in this system: it blocks an output b and licenses an

output a. Across both output boolean function definitions a1/2(x) and b1/2(x), a conflict arises in

which the same structure licenses the output in one function but blocks it in another.

When 1 and 2 join via ⊖, a conflicting hierarchy is generated. Whether output a or b surfaces in

string-final position is entirely dependent on order. Example (6.91) below represents the hierarchy

created by the order 1 ⊖ 2.

(6.91) a1⊖2(x) = if #(s(x)) then ⊥ else

if #(s(x)) then ⊤ else a(x)

b1⊖2(x) = if #(s(x)) then ⊤ else

if #(s(x)) then ⊥ else b(x)

The outer function 1 determines the string-final output, as hierarchies are evaluated from the first

term downward. As a result, 1⊖ 2 only accepts mappings from strings of as and bs to b-final strings,

illustrated in the evaluation in (6.92), where x denotes either a or b.

(6.92)
Input: ... x #

a1⊖2(x) ⊥

b1⊖2(x) ⊤⊤⊤

Output: ... b
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Under the reversed order 2⊖ 1 (given below in (6.93), however, the same principle dictates that the

outer function 2 determines the string final output.

(6.93) a2⊖1(x) = if #(s(x)) then ⊤ else

if #(s(x)) then ⊥ else a(x)

b2⊖1(x) = if #(s(x)) then ⊥ else

if #(s(x)) then ⊤ else b(x)

This means that 2 ⊖ 1 only accepts mappings from strings of as and bs to a-final strings (see the

evaluation table in (6.94), and thus describes a different function from 1 ⊖ 2.

(6.94)
Input: ... x #

a2⊖1(x) ⊥

b2⊖1(x) ⊤⊤⊤

Output: ... a

Edge cases such as those above are beyond the scope of this dissertation and are therefore left

for future work. Rather, the focus of this chapter is on the relevance of ⊖ to formalizing tone

sandhi interactions, in particular those which present ordering paradoxes. Modeling simultaneous

application of rules over a single input and output string—while still allowing reference to those

strings—successfully derives interaction mappings in a number of outstanding cases.
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7 Discussion

7.1 Introduction

The preceding chapters develop a formal theory of phonological process interactions. Such a

theory formalizes interactions as a set of individual functions (as BMRS systems) that combine

using a distinct set of operators. This set includes composition ⊗ and parallel satisfaction ⊖, and

these are sufficient to model a series of sandhi interactions in Chinese tone. In this chapter I pause

to interpret these results and discuss their ramifications.

There are three main goals to this chapter: to highlight the benefits of BMRS in modeling

phonological process interactions, especially compared to other formalisms (§2); to expand on un-

derdeveloped/overlooked issues introduced in previous chapters (§§3-4); and to identify new avenues

of research using the formalism developed within the dissertation (§5).

7.2 Interactions over BMRS vs other formalisms

This chapter begins with a continuation of the discussion in chapter 2 §5.2, that is, the advantages

of the BMRS formalism in modeling phonological process interactions. It identifies benefits of BMRS

through a comparison of BMRS analyses of interactions (§2.1) and definition of function operations

over BMRS (§2.2) with other computational formalisms, namely logical and finite-state frameworks.

It is important to note that these formalisms are equivalent in the sense that they describe the same

class of functions; BMRS systems of equations (Bhaskar et al., 2020), QFLFP logical transductions

(Chandlee and Jardine, 2019b) and deterministic finite-state transducers (Mohri, 1997) all describe

the subsequential class. Instead, the focus here is on how one formalism might be more conducive

to analysis of phonological process interactions, the main focus of this dissertation.

7.2.1 Modeling interactions: BMRS vs QFLFP

BMRS systems of equations model phonological transformations via a series of statements about

how output structure is computed. These statements identify structures in the input (using non-

recursive definitions) or output (using recursive definitions) which license certain output elements or
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block them. Thus the underlying motivation for phonological processes—in the form of marked/ill-

formed structures—can be stated clearly. Processes in isolation are definable as single functions,

and interactions with other processes can be modeled as combinations of individual functions with

operators. This clarifies the contribution of each individual process to the interaction map.

Formalization using QF logical transduction (see Lindell and Chandlee, 2016) do not share

the same properties. Properly-QF transductions model input-oriented phonological processes, but

not output-oriented ones. While enhancements to QF using least-fixed point logic (QFLFP; see

Chandlee and Jardine, 2019b, for more details as well as (Libkin, 2013)) can describe output-

oriented processes, these definitions can become unruly when modeling multiple generalizations.

Stated briefly, QFLFP transductions define predicates which refer to the output structure through

inductive definitions, but still in a restricted local way. These predicates contain base case (neces-

sarily input-oriented) and recursive case (using a free set variable) components to allow for output

reference, for example in iterative rule application or non-(input-)local spreading patterns. Unlike

the BMRS formalism, the motivation for the processes being described tend to be obscured by these

logical statements. And without a means to combine individual generalizations via operations like

composition, combined map functions of even simple interactions are difficult to define and interpret.

To illustrate, recall the functions modeling the Tianjin FF (FF → LF) and LL (LL → RL) sandhi

rules from chapter 5. Each ‘rule’ is defined as a separate system, denoted a and b, respectively. I

focus on functions marking output elements as L(ow) tones, repeated in (7.1a-b) below.

(7.1) a. La(x) = if FFa(x) then ⊤ else L(x)

b. Lb(x) = if LLb(x) then ⊥ else L(x)

The definitions clearly identify structures that license or block output L: a sequence of one input

F and one output F in the former, and a sequence of one input L and one output L in the latter.

Equivalent QFLFP definitions from Oakden (2019a)’s analysis of Tianjin interactions are given in

(7.2a-b).1

(7.2)

a. P a
L(x) = PL(x) ∨ [lfp(PF (y) ∧ lastF (s(y)) ∧ ¬last(y)) ∨ (A(s(s(y))) ∧ PF (y) ∧ PF (s(y)))](x)

b. P b
L(x) = PL(x) ∧ ¬[lfp(PL(y) ∧ lastL(s(y)) ∧ ¬last(y)) ∨ (A(s(s(y))) ∧ PL(y) ∧ PL(s(y)))](x)

QFLFP definitions above represent the same logical statements as those in (7.1), but are much more

opaque regarding the relevant structures that determine the computation of output L.

1This comparison is a bit unfair, because the QFLFP analysis assumes a total successor function, requiring more
statements than assuming a partial successor function. A partial successor function analysis would not, however,
improve the legibility of these definitions to a great extent, as it would merely allow deletion of the ¬last(y) conjuncts
in the lfp base cases.
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In Tianjin, the FF rule feeds the LL rule. Chapter 5 presented a BMRS analysis of the interaction

by composing b with a. Output function La⊗b(x) is defined simply by indexing non-recursively-

defined functions with their equivalents from system a. This is given in (7.3).

(7.3) La⊗b(x) = if LaLb(x) then ⊥ else L(x)

A new blocking structure LaLb(x) indicates the relationship between the two sandhi rules: LL blocks

output L when the first L is either an input L (recalling the final term from La(x)) or a derived

L from the FF rule. Without a composition operator over QFLFP transductions, the equivalent

logical statement can only join the definitions in (7.2) by disjunction.

(7.4) P ′
L(x) = (PL(x) ∧ ¬[lfp(PL(y) ∧ lastL(s(y)) ∧ ¬last(y)) ∨ (A(s(s(y)))

∧PL(y) ∧ PL(s(y)))](x)) ∨ ([lfp(PF (y) ∧ lastF (s(y))

∧¬last(y)) ∨ (A(s(s(y))) ∧ PF (y) ∧ PF (s(y)))](x))

Not only is this definition difficult to interpret and manipulate, it also fails to explicate the FF/LL

interaction in any meaningful way.2 BMRS definitions, on the other hand, are transparent with

regard to the motivation for processes and in the interplay of multiple generalizations.

7.2.2 Defining operators: BMRS vs FST

As mentioned above, BMRS offers an intuitive framework for defining operations over functions.

This dissertation has defined two such operators—composition and parallel satisfaction. These join

two separate functions into a single function by manipulating well-formed BMRS terms in different

ways. In this section I compare BMRS operators to operations over finite-state machines. This is be-

cause operations (such as composition) in the finite-state formalism are well-understood, especially

when compared to logical transduction. I conjecture on the extent to which BMRS provides a com-

paratively straightforward and intuitive schema both for defining operators and understanding their

effects, and therefore might be more favorable in formalizing process interactions using operations

over functions.

One popular approach to composition of finite state transducers generalizes an intersection oper-

ation over finite-state acceptors (Hopcroft and Ullman, 1979; Mohri and Sproat, 1996; Mohri et al.,

2000, 2002). Karttunen (1993, 5) gives a semi-informal overview of the operation:

2Worse still, it likely makes incorrect predictions. To properly capture this relationship, it would be necessary to
embed a copy of the first lfp predicate inside the base case of the second one, which in earlier conceptions is ill-formed.
However the real point of this demonstration is to contrast the burdensome nature of QFLFP with the uncomplicated
nature of BMRS in formalizing interactions.
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The basic idea in the composition algorithm for finite-state transducer is quite simple. Every
state in the new machine corresponds to a pair of original states in the two transducers, starting
with the two initial states. Every x:z arc in the new machine corresponds to an x:y arc in the
upper transducer and an y:z arc in the lower transducer. The matching middle symbol y is
eliminated. The destination of the new arc is a state that corresponds to the destinations of
the two original arcs. In general a composite transducer is larger than its components. In the
worst case, the number of states in the composite machine is the product of the sizes of the
original transducers.

Despite this simplicity, there two are potential disadvantages as it relates to formalizing process

interactions as composite functions. One less serious consequence is that, as the number of states

in the composite machine grows, so does the difficulty in interpreting it, and indeed in actually

performing the composition without the assistance of automation. The other concern is that the

contribution of each original machine is obscured as the two combine into a single machine. This is

in addition to the more general disadvantage of finite-state approaches that Chandlee and Jardine

(2020) point out: the machines do not intensionally capture motivations for patterns in a way that

gels with traditional phonological analysis.

BMRS composition is not subject to the same pitfalls. First, while the size of the full composite

system does grow proportionately to that of the individual systems—recall that T2⊗T1 is the PS-join

of T1 and modified T ′
2—the modified outer function T ′

2 does not increase in size. Indexing refers to the

inner function which itself has not increased in size either, making manual interpretation less taxing.

More importantly, though, application of the composition operator keeps both functions mostly

intact. This delineates the contribution of each function in the composite system’s computation.

Given this accessibility, BMRS composition is perhaps better suited to modeling process interactions

using operations over functions.

Comparing the formalisms’ relative ease of defining new operators is another dimension by which

they can be compared. For example, a FST-equivalent to the parallel satisfaction operator might

follow a similar state-pair construction protocol as composition. If so, it is on a par with BMRS

composition and PS operators, in that both work by replacing terms from the outer function with

terms from the inner function. However, the resulting machine would still be subject to the same

pitfalls as the composite machine, namely potential difficulties with interpretation and the inability

to disambiguate the contribution of each function. A serious attempt at defining PS over FSTs and

comparing it with the BMRS equivalent is beyond the scope of this dissertation. Future work may

examine these similarities in greater detail. The discussion here is preliminary illustration of the

advantages of BMRS in modeling interactions compared to other approaches.
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7.3 Representation

This section examines issues relevant to the representational choices motivated in chapter 4, and

to a lesser extent the version of the BMRS formalism adopted in this dissertation. First, I consider

how modifications to one’s representational assumptions—combined with slight adjustments to the

formalism—allow for alternative analyses of sandhi interactions. Then I extend the application of

BMRS operations to the issue of notational equivalence introduced in chapter 4.

7.3.1 Alternative analyses

Analyses of sandhi interactions presented in previous chapters rely on representational assump-

tions about the string models over which transductions are defined. For example, input models

of tonal strings consist of a universe of string indices. Individual string positions are labeled with

at most one tone from a set of relations, and a set of index-type functions impose a linear order

over these elements. By modifying certain assumptions about these models and the systems that

define transductions, it is possible to consider alternative analyses of the same data. The purpose of

this section is not to present fully-formed alternative analyses, but instead to consider how altering

representational parameters might allow for such analyses.

Here I sketch an alternative analysis of the Xiamen tone circle. Instead of a PS-join of individual

systems whereby each system models a single arc in the circle, I emulate Mortensen (2006)’s account

using logical scales. Briefly, logical scales are a representational device that encode relationships

(via an ordering relation) over phonological constituents of a particular type, such as lexical tones

in Chinese sandhi. First recall the circular pattern, repeated below in (7.5).

(7.5) R

M

H L

F

Suppose we wanted to encode the circular pattern not as a system of recursive function names for

each output tone, but instead as part of the input structure by means of a logical scale. One way

to achieve this is to relax the boolean restriction on BMRS such that recursive function names can

be of type index. Next, input models under consideration contain two scale functions: one for the
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circular chain shift (c(x) in 7.6a), and another identity map scale (d(x) in 7.6b).

(7.6) a. c(x) = {(R,M), (M,L), (L, F ), (F,H), (H,M)}

b. d(x) = {(R,R), (M,M), (L,L), (F, F ), (H,H)}

Then, the circular pattern can be represented as a single index function T ′(x), as in (7.7). Note that

this is somewhat similar to Wang (1967)’s single-rule account.

(7.7) T ′(x) = if nf(x) then c(x) else d(x)

An output tonal index is selected from the scale function, based on whether it is non-final (indicated

by nf(x) above) within some domain. If domain-final, it returns the index from the identity map

function d(x). The same function could be extended to any circular chain shift pattern by modifying

the scale function in the input signature.

Clearly the analysis needs further refinement. One issue deals with imposing both a linear

order and a scalar order over the same set of string positions. If indices are represented directly as

tones H,R,L, etc., defining predecessor/successor functions seems untenable for string structures

with repeating tones, e.g. /HHRR/. However, the scale functions c(x) and d(x) depend on such

representation, and it is unclear how a logical scale as an order over elements might be implemented

using boolean terms σ(x) for σ ∈ Σ.

Another alternative analysis relates to the conceptual motivation for adopting syllabic string

representations as presented in chapter 4: namely, that decomposing contour tones into sequences of

level tones captures edge effects and potential conspiracies not available to syllabic strings. Akinlabi

(p.c.), for example, maintains that the Changting data present such a case. Recall the 15 disyllabic

sandhi patterns reported by Chen (2004), repeated from chapter 2.

(7.8) M R F H L

M Lx Lx

R Hx xF

F Rx Lx Mx Lx; xM Rx

H Fx Fx Fx

L Mx Mx Mx

Notice the rows for Mid and Low tone, presented in bold.3 Mid tone’s sandhi form is Low, surfacing

only before another Low tone (representing Rising as LH). Likewise, Low tone’s sandhi form is Mid,

surfacing only before another non-low tone: Mid, High, and Falling (HL). One interpretation of these

3There is another generalization whereby High becomes Falling (HL) before another non-high tone: M or L. I do
not discuss this.
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data is that Mid and Low tones assimilate in a stepwise fashion. There are a variety of options for

condensing this generalization into a set of two rules (using melodic segments M and L) or even one

rule (using alpha notation for a tonal feature [± low]). What is important here is that the melodic

analysis provides an alternative view which casts these alternations as a more general process of

stepwise assimilation. The detectability of such edge effects results in a more elegant analysis—one

for which the whole paradigm is captured using fewer rules/constraints. Importantly, this view is

unavailable to a theory of sandhi that adopts arbitrary syllabic strings as representations. A syllabic

string account, for example, treats L and R as separate entities, and thus has no explanation for

why M surfaces as L before Low and Rising tones to the exclusion of all others.

While this may be the case for Changting, the representation of tone adopted in this dissertation

presents a better fit for the typology of tone sandhi. Assuming a theory that predicts step-wise

assimilation over melodies (to the exclusion of other types of alternations) may provide an eloquent

account of Changting disyllabic sandhi, but it will ultimately fail the test of descriptive adequacy for

sandhi in Chinese dialects. This is due to the often non-phonologically-grounded and phonetically-

arbitrary nature of tone sandhi processes, discussed in chapters 2 and 4. In other words, the

theory pursued here may (appear to) miss generalizations about conspiracies and edge effects, but

it ultimately provides greater empirical coverage of the data.

7.3.2 Bi-inerpretability with composition

Operations over BMRS systems are not limited to modeling phonological process interactions.

This section extends BMRS composition to proving the notational equivalence of representational

theories.

Chapter 4 argues for the equivalence of melodic and syllable string representations with the notion

of bi-interpretability (Friedman and Visser, 2014; Oakden, 2020). For any representational models A

and B, this metric requires that they exhibit two properties. One is that they are intertranslatable,

such that there exist interpretations TA and TB translating A to B and B to A. The second is the two

are contrast-preserving; no contrast is lost as a result of translation. Formally this requires that the

composition of the interpretations be isomorphic to the identity map. That is, TA ◦TB—translating

A to B then back to A—is the same as mapping A to itself (id(A)). The inverse, TB ◦ TA
∼= id(B)

(where ∼= denotes isomorphism), must also hold.

Two BMRS transductions defined in chapter 4 translate any syllabic structure from Σ = {H,R, F, L}

into an equivalent melodic string structure from Σ′ = {H,L, •}4, and any melodic structure into an

4Recall the crucial assumption about syllable boundaries ‘•’ in the melodic representation.
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equivalent syllabic string representation. These are repeated as T sm (7.9) and T ms (7.10) below.

T sm is defined over copy set of size three, and T ms over a single copy set.

(7.9) a. T sm

H1(x) = if F (x) then ⊥ else H(x)

H2(x) = R(x)

H3(x) = ⊥

L1(x) = if R(x) then ⊥ else L(x)

L2(x) = F (x)

L3(x) = ⊥

•1(x) = ⊥

•2(x) = ⊥

•3(x) = ⊤

(7.10) b. T ms

R1(x) = if L(x) then

if H(s(x)) then • (s(s(x))) else ⊥

else ⊥

F 1(x) = if H(x) then

if L(s(x)) then • (s(s(x))) else ⊥

else ⊥

H1(x) = if H(x) then

if • (p(x)) then • (s(x)) else ⊥

else ⊥

L1(x) = if L(x) then

if • (p(x)) then • (s(x)) else ⊥

else ⊥

These are sufficient to prove the first requirement of bi-interpretability. However, in demonstrating

contrast preservation, chapter 4 does not compose the two systems; the composition operator over

BMRS is not introduced until a later chapter. Instead it shows with an example that applying

one transduction to a structure, then applying the other transduction to its output yields the same

structure as the original input—i.e. is equivalent to id(A) for some string representation and id(B)

for some melodic representation.

Having defined a composition operator over BMRS, it is now possible to compose the two systems,
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moving a step forward in proving bi-interpretability of string and melodic tonal representations.

This section presents one half of this proof. Since it deals with non-size-preserving transductions,

I follow Lindell and Chandlee (2016) and Jardine and Oakden (2020) in using typed variables for

output copies. That is, for a copy set C = {1, . . . ,m} and an input x, we have output copies

x1, x2, . . . , xm.5 (7.9) and (7.10) are repeated in (7.11) and (7.12) using typed variables.

(7.11) a. T sm

H(x1) = if F (x) then ⊥ else H(x)

H(x2) = R(x)

H(x3) = ⊥

L(x1) = if R(x) then ⊥ else L(x)

L(x2) = F (x)

L(x3) = ⊥

•(x1) = ⊥

•(x2) = ⊥

•(x3) = ⊤

(7.12) b. T ms

R(x1) = if L(x) then

if H(s(x)) then • (s(s(x))) else ⊥

else ⊥

F (x1) = if H(x) then

if L(s(x)) then • (s(s(x))) else ⊥

else ⊥

H(x1) = if H(x) then

if • (p(x)) then • (s(x)) else ⊥

else ⊥

L(x1) = if L(x) then

if • (p(x)) then • (s(x)) else ⊥

else ⊥

If the composition T sm ⊗ T ms is isomorphic to the identity map on string models id(Ms), this

will serve as proof of half of the contrast-preservation requirement. Following (Jardine and Oakden,

5Thus the functions defined here are polymorphic, as each function represents a set of functions relativized to the
variable type.
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2020), composition for non-size-preserving transductions proceeds as follows. Given T sm with a

copy set C = {1, 2, 3} and T ms with a copy set D = {1}, T sm ⊗ T ms is defined over a copy

set E = C ∪ (C × D). T ms is expanded to T ′ms, defined over C × D, where every expression

δ(p(x))/δ(s(x))6 from T sm with an untyped term is replaced with δ(p1(xc))/δ(s1(xc)), where p1 and

s1 denote the order-preserving index functions7 from T sm. T sm⊗T ms is thus equal to T sm ∪T ′ms.

The definition of T sm ⊗ T ms is given in (7.13); recall T sm in (7.11) for relevant definitions.

(7.13) R(x1,1) = if L(x1) then

if H(s1(x1)) then • (s1(s1(x1))) else ⊥
else ⊥

R(x2,1) = if L(x2) then

if H(s1(x2)) then • (s1(s1(x2))) else ⊥
else ⊥

R(x3,1) = if L(x3) then

if H(s1(x3)) then • (s1(s1(x3))) else ⊥
else ⊥

F (x1,1) = if H(x1) then

if L(s1(x1)) then • (s1(s1(x1))) else ⊥
else ⊥

F (x2,1) = if H(x2) then

if L(s1(x2)) then • (s1(s1(x2))) else ⊥
else ⊥

F (x3,1) = if H(x3) then

if L(s1(x3)) then • (s1(s1(x3))) else ⊥
else ⊥

H(x1,1) = if H(x1) then

if • (p1(x1)) then • (s1(x1)) else ⊥
else ⊥

H(x2,1) = if H(x2) then

if • (p1(x2)) then • (s1(x2)) else ⊥
else ⊥

H(x3,1) = if H(x3) then

if • (p1(x3)) then • (s1(x3)) else ⊥
else ⊥

L(x1,1) = if L(x1) then

if • (p1(x1)) then • (s1(x1)) else ⊥
else ⊥

L(x2,1) = if L(x2) then

if • (p1(x2)) then • (s1(x2)) else ⊥
else ⊥

L(x3,1) = if L(x3) then

if • (p1(x3)) then • (s1(x3)) else ⊥
else ⊥

This composed system maps any syllabic string representation to an equivalent syllabic string rep-

resentation, and is isomorphic to the identity map on syllabic string models id(Ms). To illustrate,

6That is, from δ ∈ ∆ = {H,L, •}
7Order is preserved on transductions by setting the definition of each p(xi). See (Jardine and Oakden, 2020) for

more details
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consider the syllabic string RHLFF . Its evaluation against the composite system is provided in

(7.14). To save space, some functions for which no string position returns true are omitted.

(7.14)

Input: R1 H2 L3 F4 F5

x1 L H L H H

x2 H L L

x3 • • • • •

Output: x1,1 R H L F F

x2,1

x3,1

1 2 3 4 5

p1(x1) 13 23 33 43

p1(x2) 11 41 51

p1(x3) 12 21 31 42 52

s1(x1) 12 23 33 42 52

s1(x2) 13 43 53

s1(x3) 21 31 41 51

H(x1) ⊤⊤⊤ ⊤⊤⊤ ⊤⊤⊤

H(x2) ⊤⊤⊤

L(x1) ⊤⊤⊤ ⊤⊤⊤

L(x2) ⊤⊤⊤ ⊤⊤⊤

•(x3) ⊤⊤⊤ ⊤⊤⊤ ⊤⊤⊤ ⊤⊤⊤ ⊤⊤⊤

R(x1,1) ⊤⊤⊤

F (x1,1) ⊤⊤⊤ ⊤⊤⊤

H(x1,1) ⊤⊤⊤

L(x1,1) ⊤⊤⊤

The reader can verify (perhaps painstakingly) that the output of the composite system is RHLFF ,

the same as the identity map on RHLFF : id(RHLFF ) = RHLFF . This extends to the set of

syllabic string models Ms, meaning that translating from a syllabic string model to a melodic model

does not entail any loss of contrast.

A full proof—crucially the inverse: T ms ⊗ T sm ∼= id(Mm)—is left for future work, but the

demonstration above illustrates the application of operations over BMRS to questions of notational

equivalence in representation.

7.4 Further properties of the PS operator

This section explores the PS operator ⊖ in more detail. It ponders some of its formal properties—

closure properties with classes of SL functions in §4.1 and its non-commutativity in §4.2—outlining

directions for future work. The remaining sections examine possible connections with phonologi-

cal and linguistic theory: §4.3 connects the operator with two-level phonology, and §4.4 considers

whether PS is similar to a priority union operator.
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7.4.1 Closure properties

One question of interest is the closure properties of classes of functions in regard to the PS opera-

tor. For example, it is known that the regular relations are closed under composition (Kaplan and Kay,

1994). That is, for any two regular relations f and g, their composition g◦f is guaranteed to be regu-

lar. This result is significant because it shows that interactions modeled by ordering over individual

rewrite rules (represented by regular regulations) does not increase the expressivity of the entire

grammar beyond the regular threshold. However subregular classes, and in particular strictly-local

classes of functions, do not share this quality uniformly. Lindell and Chandlee (2016) conjecture

the closure of finite-to-one ISL functions8 under composition, but Chandlee (2014) shows that OSL

functions are not closed under composition. As this dissertation deals primarily with interactions of

SL functions, the closure properties of ISL and OSL classes under the PS operator are most relevant.

I begin with ISL.

Given two ISL functions f and g, is f ⊖ g guaranteed to be ISL? Recall that the class of NR-

BMRS-definable transductions correspond to the ISL class, and that ⊖ joins two transductions

T1 and T2 such that the final term in each function definition in T1 is replaced with the entire

right-hand side of the corresponding definition (which itself is also a term) from T2. Let T1, T2 be

NR-BMRS-definable9 transductions, that is, for which no term Ti in list (f1T1
(x1T1

)...fkT1
(xkT1

)) or

(f1T2
(x1T2

)...fkT2
(xkT2

)) contains a term of the type f(T ). Thus T ′
2 , the result of replacing definitions

as described above, is also NR-BMRS, because no terms of the type f(T ) are introduced as a result

of the operation. T1 ⊖ T2 is also NR-BMRS and therefore ISL because the resulting transduction—

T1 ∪T ′
2—contains no terms of the type f(T ). It is clear that this extends to any number of PS joins

involving two or more NR-BMRS-definable transductions and, therefore it holds in the general case.

Thus, ISL is closed under PS.

A similar intuition holds for L-OSL and R-OSL classes. For example, let T1, T2 be OR-BMRS-

definable10 transductions, that is, for which no term of the form σ(T ) takes index sort terms of

the type s(T ) or p(T ). Additionally, restrict T1 and T2 such that recursive function terms f(T ) in

both systems take either terms p(T ) or s(T ), but not both. Let us denote these OR-BMRSp and

OR-BMRSs, respectively. This is tantamount to limiting PS-joins to two L-OSL functions or two R-

OSL functions. Thus T ′
2 , the result of replacing definitions as described above, is also OR-BMRSp/s,

because no terms σ(T ) that take p(T ) or s(T ) are introduced as a result of the operation. T1 ⊖ T2

8Recall from the composition chapter that functions of this type impose a bound on the ratio between input and
output string lengths. Therefore a function f : Σ∗ → Γ∗ is finite-to-one if its inverse function f−1(y) is always finite.

9Where NR-BMRS denotes the class of non-recursive BMRS systems. See §4.2 in the formal chapter.
10Where OR-BMRS denotes the class of output-restricted BMRS systems. See §4.3 in the formal chapter.
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is also OR-BMRSp/s and therefore L/R-OSL because the resulting transduction—T1∪T ′
2—contains

no terms of the type σ(T ) that take index sort terms p(T ) or s(T ). Extending this to the general

case, it would seem that these classes of OSL are closed under PS as well. Barring a solid proof

of the equivalence between OR-BMRS and the OSL class, however, L/R-OSL closure under PS is

merely speculative, and is therefore left for future work. Closure of the entire OSL class is also set

aside for future work.

7.4.2 The non-commutativity of PS

An earlier chapter demonstrates the non-commutativity of the PS operator; given two BMRS-

definable transductions T1 and T2, it is not guaranteed that T1⊖T2 and T2⊖T1 describe extensionally-

equivalent functions. This section provides additional illustration using an example from natural

language, and generalizes the notion of ‘conflict’ to substructures in a hierarchy of licensing and

blocking structures.11

Example (7.15) shows a quantitive-sensitive stress paradigm in Lushootseed (Hayes, 1995); this

pattern stresses the leftmost heavy (‘H’) syllable, or, if there are no heavy syllables, the leftmost

light (‘L’) syllable. Stress is indicated with an acute accent.12

(7.15) a. LLLH 7→ LLLH́

b. LLLL 7→ ĹLLL

c. HLHL 7→ H́LHL

Now consider a function that maps input unstressed heavy and light syllables Σ = {H,L} to output

syllables with the attested stress application Γ = {H,L, �́}, where ‘�́’ denotes stress marking on

a syllable. As a BMRS system, the recursive function name of interest is �́(x) (H and L inputs

will map directly to the output). For clarity, three auxiliary functions are defined. Two (7.16a-b)

are defined recursively: foll-H(x) evaluates true when a position follows an H somewhere in the

string, and prec-H(x) evaluates true when a position precedes an H somewhere in the string. The

other first-L(x) (7.16c) is non-recursive, and returns a true value only for an initial string position

input-marked as a light (L) syllable.13

11This section is inspired by lively discussion with Nate Koser and Adam Jardine.
12Koser and Jardine (2020) show that this pattern is not subsequential (specifically, it is weakly deterministic) due

to recursive calls of both predecessor and successor functions within the definitions. I abstract away from this issue
to illustrate the relevant property of the PS operator.

13first(x) is definable assuming a total predecessor function, and is shorthand for: if p(x) = x then ⊤ else ⊥.
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(7.16) a. foll-H(x) = if H(p(x)) then ⊤ else foll-H(p(x))

c. prec-H(x) = if H(s(x)) then ⊤ else prec-H(s(x))

c. first-L(x) = if L(x) then first(x) else ⊥

The definition for �́(x) is in (7.17):

(7.17) �́(x) = if foll-H(x) then ⊥ else

if H(x) then ⊤ else

if prec-H(x) then ⊥ else

if first-L(x) then ⊤ else ⊥

It generalizes the LHOL pattern by stating the following conditions (also notice their order): (line

1) if a syllable follows an H, it is not stressed; otherwise (line 2) if it is input-marked H, it is stressed;

otherwise (line 3) if it precedes an H, it is not stressed; otherwise (line 4) if it is the first L in the

string it is stressed, otherwise it is not stressed. This system accepts the mappings in (7.15), and

thus models the LHOL stress pattern. The table in (7.18) provides evaluations of each representative

mapping.

(7.18)
L L L H L L L L H L H L

1 2 3 4 1 2 3 4 1 2 3 4

�́(x) ⊥ ⊥ ⊥ ⊤⊤⊤ ⊤⊤⊤ ⊥ ⊥ ⊥ ⊤⊤⊤ ⊥ ⊥ ⊥

foll-H(x) ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊤⊤⊤ ⊤⊤⊤ ⊤⊤⊤

H(x) ⊥ ⊥ ⊥ ⊤⊤⊤ ⊥ ⊥ ⊥ ⊥ ⊤⊤⊤ ⊥ ⊤⊤⊤ ⊥

prec-H(x) ⊤⊤⊤ ⊤⊤⊤ ⊤⊤⊤ ⊥ ⊥ ⊥ ⊥ ⊥ ⊤⊤⊤ ⊤⊤⊤ ⊥ ⊥

first-L(x) ⊤⊤⊤ ⊥ ⊥ ⊥ ⊤⊤⊤ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

Output L L L H́ Ĺ L L L H́ L H L

Suppose we wanted to define two properly-subsequential functions from (7.17) such that lookahead

is restricted to a single direction in each function. Example (7.19) presents one option; separation

of recursively-defined foll-H(x) and prec-H(x) into T1 and T2 guarantees the desired restriction on

lookahead.

(7.19)

T1

�́(x) = if foll-H(x) then ⊥ else

if H(x) then ⊤ else ⊥

T2

�́(x) = if prec-H(x) then ⊥ else

if first-L(x) then ⊤ else ⊥

T1 and T2 can be combined via PS. It is clear that T1 ⊖ T2 is extensionally-equivalent to the system

in (7.17) and thus would accept the same maps; replacing the final term in T1 with T2 generates an

identical hierarchy of structures. What about T2 ⊖ T1, given in (7.20)?
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(7.20) a. T2 ⊖ T1 �́(x) = if prec-H(x) then ⊥ else

if first-L(x) then ⊤ else �́T1
(x)

b. T1 �́(x) = if foll-H(x) then ⊥ else

if H(x) then ⊤ else ⊥

In this case, the result is a different function from T1 ⊖ T2. This serves as another illustration of the

non-communativity of the PS operator. An evaluation table in (7.21) highlights differences between

functions described by T2 ⊖ T1 and T1 ⊖ T2 PS joins.

(7.21)
L L L H L L L L H L H L

1 2 3 4 1 2 3 4 1 2 3 4

�́(x) ⊥ ⊥ ⊥ ⊤⊤⊤ ⊤⊤⊤ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

prec-H(x) ⊤⊤⊤ ⊤⊤⊤ ⊤⊤⊤ ⊥ ⊥ ⊥ ⊥ ⊥ ⊤⊤⊤ ⊤⊤⊤ ⊥ ⊥

first-L(x) ⊤⊤⊤ ⊥ ⊥ ⊥ ⊤⊤⊤ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥

foll-H(x) ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊤⊤⊤ ⊤⊤⊤ ⊤⊤⊤

H(x) ⊥ ⊥ ⊥ ⊤⊤⊤ ⊥ ⊥ ⊥ ⊥ ⊤⊤⊤ ⊥ ⊤⊤⊤ ⊥

Output L L L H́ Ĺ L L L H L H L

Although it accepts the same mappings from inputs /LLLL/ and /LLLH/, this function does not

assign stress to any syllable for the input string /HLHL/. Why?

An earlier chapter demonstrates the non-communativity of the PS operator with the existence

of structural conflicts, that is, PS-joins for which the same structure both licenses and blocks the

same output across two systems. The case presented above reveals that a more general principle is

applicable and approaches perhaps a better generalization. To illustrate, consider how T1 ⊖ T2 and

T2 ⊖ T1 differ in the mapping from input /HLHL/, summarized in (7.22).

(7.22) T1 ⊖ T2 /HLHL/ 7→ [H́LHL]

T2 ⊖ T1 /HLHL/ 7→ [HLHL]

The discrepancy is attributable to relationships between licensing/blocking structures in the distinct

hierarchies created by each PS-join. In T1 ⊖ T2, H(x) (licenses stress) evaluation is higher in the

hierarchy than prec-H(x) (blocks stress); the first string position HLHL receives stress despite also

evaluating to true for prec-H(x). Order between these two structures is reversed in T2 ⊖ T1. The

initial heavy syllable in HLHL does not receive stress, as evaluation of prec-H(x)—here outranking

H(x)—returns a false value for �́(x). Satisfying prec-H(x) blocks stress on that position, rendering

satisfaction of H(x) immaterial.

This is related to what Chandlee and Jardine (2020) term the Strict Substructure Ordering

Principle (SSOP), defined in (7.23).
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(7.23) For any ranking of structures in a BMRS definition, whenever STRUCTj(x) implies

STRUCTi(x) but the converse is not true (i.e., STRUCTi is a strict substructure of

STRUCTj , it must be the case that i < j in the order, otherwise j will never be evaluated.

The set of structures H(x) is not a strict subset of the structures prec-H(x) (and clearly not vice

versa), so this example of the non-commutativity of the PS operator cannot be explained as a

SSOP effect. They do, however, have a non-empty intersection, as the mapping of input /HLHL/

illustrates, and similar effects (specifically non-evaluation of the lower-ranked structure) are observed

in such cases. A more accurate description of conflict, then, might be: a set of structures S1 licenses

some output in T1, another set of structures S2 blocks the same output in T2, and S1 ∩ S2 6= ∅.14

Here, PS-join order matters, because the operator creates hierarchies that make different predictions

for a subset of maps. Future work can narrow in on a more precise characterization of what types

of PS-joins have this property.

7.4.3 PS and two-level phonology

Applying the PS operator to individual systems models interactions whereby multiple processes

refer to the same input and output string structures in their computation. No intermediate rep-

resentations are generated as in composition. This bears a resemblance to two-level rules in the

finite-state phonological framework introduced by Koskenniemi (1983). In the parallel conceptual-

ization of phonological transformations, multiple rules range over the same sets of underlying and

surface forms without intermediate stages. As Karttunen (1993, 1) puts it, a “parallel rule does not

‘apply’ in the sense of changing one representation to another one, it is simply true or false for some

pair of forms” [emphasis mine]. In terms of models over strings, this pair is precisely the single

input (for ISL functions) and output (for OSL functions) string structures to which computation is

restricted in PS joins.

Both formalisms agree in modeling transformations without intermediate stages, but there are a

great many differences between the two. Koskenniemi’s model maps lexical strings to surface strings

through an unordered set of constraints formalized as transducers, and working in tandem. Order

is consequential for PS-joins of individual systems—as the previous section illustrates—despite the

fact that order does not seem to matter for a majority of sandhi interactions analyzed in chapter 6.

Another important difference is in how the parallel approach relates to the sequential approach;

14This definition of conflict might connect with other approaches to defining interactions, e.g. (Meinhardt et al.,
2020), in particular as it relates to predicting when order of combination under some operator matters. Connecting
these notions is left for future work.
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that is, two-level rules vs. cascades of composed transducers on the one hand, and PS-joins and

composed BMRS systems on the other. Karttunen (1993) maintains that sequential and parallel

systems in finite-state phonology are formally equivalent. They do not differ in the types of phe-

nomena that they can describe. This dissertation has shown instead that the set of interaction maps

definable as composition does not correspond to the set of interaction maps defined from PS-joins.

In fact, the insufficiency of composition in modeling ordering paradoxes and circular chain shifts is

what necessitated an enrichment of the theory to include an alternative.

This section has examined mostly superficial similarities and differences between these ap-

proaches. A serious, comprehensive accounting of the connections between BMRS PS-joins and

Koskennieni’s two-level rules in a finite-state framework is beyond the scope of the current disserta-

tion, but offers a potentially fruitful avenue for future work.

7.4.4 PS and priority union

Chapter 6 introduces PS as a new operation over BMRS systems of equations. Is this a truly novel

operation, or does it correspond to some well-understood general operation over functions/relations?

One possible candidate is priority union, which Karttunen (1998) discusses as part of a larger

composition operation relevant to OT grammars.15 Priority union “was originally defined as an

operation for unifying two feature structures in a way that eliminates any risk of failure by stipulating

that one of the two has priority in a case of conflict” (12). For example, consider two relations Q

and R, shown below.

(7.24) Q =















a 7→ x

b 7→ y

R =















b 7→ z

c 7→ w

There is a conflict between these relations for the first element b;16 Q maps it to y while R maps it to

z. The priority union of these relations such that Q is prioritized over R—denoted Q .P. R—comprises

the following mappings.

(7.25) Q .P. R =































a 7→ x

b 7→ y

c 7→ w

15This section was inspired by a lively conversation with Adam McCollum, Eric Baković, Anna Mai, and Eric
Meinhardt.

16Karttunen calls this the ‘upper element’
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That is, it includes all pairs from Q and every pair from R whose first element is not also in Q. When

there is a mapping for this element in both relations and they conflict (as with b), the priority union

of Q and R only includes the pair from Q. Does PS do something similar?

As a point of departure in probing this question, one avenue is to consider whether priority union

might work for a case that is amenable to analysis as a PS-join. Let us consider as an example mutual

counterbleeding opacity in Changting (that is, the interaction of MR and RM rules; see chapter 6).

If we take the priority union of these two mappings, do we get the attested interaction? At first

glance it appears that the answer is no. The case Karttunen describes is for relations whose ‘upper

elements’ in a pair are non-overlapping; only cases of overlap (and conflict) evince prioritization.

If we think of separate total functions describing individual MR and RM rules as relations A and

B—such that the upper element is the input and the lower input is the output—we find total overlap.

This is because the two systems of equations considered in the analysis are total functions over the

same input alphabet Σ = {L,M,H,R, F} and thus consider the same set of string inputs (‘upper

elements’ in a pair) which map to outputs. Priority union as defined would obscure the effect of one

rule entirely and thus fail to capture the interaction. Consider the predictions of A .P. B and B .P. A

under this conception below, neither of which are consistent with observed outputs—recall that the

correct mappings are /MRM/ 7→ [LHM] and /RMR/ 7→ [HLR].

(7.26) A .P. B =















MRM 7→ *MHM

RMR 7→ *HMR

B .P. A =















MRM 7→ *LRM

RMR 7→ *RLR

In other words, prioritizing with total functions seems to mean applying one rule and not the other:

A .P. B is equivalent to A and B .P. A is equivalent to B.

Now suppose that we relax certain restrictions on total functions. That is, let two relations

A and B represent partial functions for the RM and MR rules. In BMRS terms, function names

for which no change obtains between input and output—non-mutating mappings—are undefined.17

Then A .P. B might yield a total, combined-map function. However, there is no priority to speak of

because there is no overlap. Thus Changting mutual counterbleeding would be a special case of

priority(less) union.

As the Changting example suggests, the question of how PS relates to priority union is tied to

totality/partiality of functions joined by the operator. Future work can explore this issue in more

detail, but the demonstration provided here hints that equivalence between the PS and priority

17An equivalent alternative is to say that they are defined over output alphabets consisting only of tonal segments
that vary from the input.
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union (as an operation over functions) is spurious.

7.5 Beyond sandhi, beyond interactions

Finally, this section goes beyond the empirical scope (sandhi interactions) of this dissertation to

examine other applications of BMRS. First, I extends BMRS composition to harmony interactions

in Palestinian Arabic, showing how process-specific constraint (PSC) effects fall out automatically

from a characteristic of BMRS: preservation of hierarchies under composition. Then, I consider

potential applications of BMRS to learning.

7.5.1 Harmony and PSC

Here I analyze a non-sandhi interaction while demonstrating how PSC phenomena can be cap-

tured within the BMRS formalism. This section presents a case study of a PSC effect in the RTR

harmony system of Palestinian Arabic (Davis, 1995; McCarthy, 1997); rightward RTR harmony can

be blocked by high, front segments, but leftward RTR harmony proceeds unimpeded within a word.

This is shown in (7.27), where triggers are capitalized and RTR-harmony spans are underlined.18

(7.27) a. Leftward harmony: ballaS ‘thief’

b. Rightward harmony: Tuubak ‘your blocks’

c. Blocking of rightward harmony: Sayyad ‘hunter’

Davis (1995)’s rule-based analysis achieves the PSC effect by tagging the rightward spread rule

with the target condition “RTR/Hi and RTR/Fr” such that segments with these features block

rightward spread but not leftward spread. The additional claim is that OT does not predict these

effects. McCarthy (1997) responds by showing that OT not only captures PSCs—a direct result of

constraint ranking—but it also presents a more restrictive theory of PSCs. The transitive nature of

ranking predicts that if some crucial ranking between markedness constraints produces a blocking

effect for one process, the same effect will be observed for any other process compelled by a marked-

ness constraint lower in the hierarchy. This principle is termed the Subset Criterion, and no such

prediction is made by PSCs tagged on individual rules.

Following McCarthy (1997)’s generalization about rankings for PSC interactions in OT gram-

mars, the analysis presented here shows that ordered hierarchies of licensing and blocking structures

18Davis briefly discusses dialectical variability in Arabic RTR harmony. In some dialects, spreading is limited to the
adjacent vowel, while in others RTR spreads throughout the word, and there are no blockers. The forms presented
here align most closely with data from (Herzallah, 1990).
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in BMRS systems of equations produce the same effects. These obtain both when the interaction

is defined as a single, combined map system of equations and for composition of separate systems

(modeling each individual spreading process). Crucially, this is because hierarchical relations within

systems are preserved under composition. It also means that the subset criterion is predicted by

this basic mechanism in BMRS in much the same way as it is predicted in OT as a result of ranking

transitivity.

7.5.1.1 PSC effects in a combined map system

The Arabic data motivate the constraint ranking in (7.28), where RTR-Left/Right triggers

leftward/rightward spread and RTR/Hi&Fr is a local conjunction representing the blocking con-

dition.

(7.28) RTR-Left >> RTR/Hi&Fr >> RTR-Right >> Ident-RTR

In general, a PSC interaction as in Arabic RTR harmony obtains when some constraint C ranks

between two markedness constraints Mi and Mj , each of which outrank some faithfulness constraint

F. Given Mi >> C >> Mj >> F, the effect of C is ‘specific’ to the process triggered by Mj >> F

and not to the one triggered by Mi.

The PSC effects attested in Palestinian Arabic can be captured as a single combined map BMRS

system of equations using the same intuition. Here, instead of a ranking between constraints, the

effect is captured by a hierarchy of licensing and blocking structures. (7.29) gives the output boolean

function for the feature RTR.

(7.29) RTR′(x) = if RTR′(s(x)) then ⊤ else

if RTR/Hi&Fr(x) then ⊥ else

if RTR′(p(x)) then ⊤ else

RTR(x)

The first (i.e. highest-ranked) licensing structure in the hierarchy permits leftward RTR harmony

via the recursive definition RTR′(s(x)) as illustrated in the evaluation table for the form in (7.27a):

(7.30)

b a l l a S

1 2 3 4 5 6

RTR′(s(x)) ⊤⊤⊤ ⊤⊤⊤ ⊤⊤⊤ ⊤⊤⊤ ⊤⊤⊤ ⊥

RTR(x) ⊥ ⊥ ⊥ ⊥ ⊥ ⊤⊤⊤

b a l l a S
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This definition works in conjunction with the default condition RTR(x) in the following way. String

position 6 evaluates to true for RTR′(x) by virtue of being specified as RTR in the input. When

position 5 is evaluated against the definition, it satisfies the recursively-defined RTR′(s(x)) and is

output with the RTR feature. Further evaluation proceeds in an identical manner; given the licensing

structure’s hierarchical position, the RTR span extends unhindered to the edge of the word.

Rightward spread obtains via initial satisfaction of RTR(x) followed by iterative evaluation of

RTR′(p(x)). However, since the blocking condition RTR/Hi&Fr(x) comes before RTR′(p(x)) in

the hierarchy, spreading can only proceed provided the current input symbol does not return a true

value for RTR/Hi&Fr(x). If it does, then spreading is blocked as in (7.27c). See the evaluation

below in (7.31).

(7.31)

S a y y a d

1 2 3 4 5 6

RTR/Hi&Fr(x) ⊥ ⊥ ⊤⊤⊤ ⊤⊤⊤ ⊥ ⊥

RTR′(p(x)) ⊥ ⊤⊤⊤ ⊤⊤⊤ ⊥ ⊥ ⊥

RTR(x) ⊤⊤⊤ ⊥ ⊥ ⊥ ⊥ ⊥

S a y y a d

RTR spreads to string position 2 from the trigger ‘S’, but since string position 3 satisfies the higher-

ranked blocking structure (in spite of also evaluating to true for RTR′(p(x))), it returns false for

RTR′(x), blocking further rightward spread. Importantly, the same hierarchical stratification that

blocks rightward spread also permits leftward spread over high, front segments. Consider another

form xayyaT ‘tailor’ which exhibits leftward spread over the high, front blocker ‘y’.

(7.32)

x a y y a T

1 2 3 4 5 6

RTR′(s(x)) ⊤⊤⊤ ⊤⊤⊤ ⊤⊤⊤ ⊤⊤⊤ ⊤⊤⊤ ⊥

RTR/Hi&Fr(x) ⊥ ⊥ ⊤⊤⊤ ⊤⊤⊤ ⊥ ⊥

RTR(x) ⊥ ⊥ ⊥ ⊥ ⊥ ⊤⊤⊤

x a y y a T

In spite of returning a ‘true’ value for RTR/Hi&Fr(x), string positions 3 and 4 surface with an RTR

feature by virtue of satisfying the licensing structure RTR′(s(x)) higher in the hierarchy. This allows

the span to spread to the beginning of the word. The hierarchy and the observed PSC blocking thus

mirror McCarthy’s constraint ranking.
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7.5.1.2 PSC effects in a composite system

The observed effects are captured in a combined map BMRS system of equations, but they

also persist when each spreading process is defined as a separate system and the two combine

through composition. For example, let some system of equations L model unhindered leftward RTR

spreading. Its output boolean function RTRL(x) is defined in (7.33).

(7.33) RTRL(x) = if RTRL(s(x)) then ⊤ else

RTR(x)

Similarly, let R denote a BMRS system of equations modeling rightward spreading with the blocking

condition. The equivalent output boolean function in this system is RTRR(x). Note in (7.34) that

the blocking condition supersedes the licensing condition in the hierarchy; this produces the effect

of rightward spreading which is blocked by any high, front segment.

(7.34) RTRR(x) = if RTR/Hi&Fr(x) then ⊥ else

if RTRR(p(x)) then ⊤ else

RTR(x)

Now let L ⊗ R be the composition of these systems as defined in this dissertation. The composite

system is given in (7.35)

(7.35) RTRL(x) = if RTRL(s(x)) then ⊤ else

RTRR(x)

The reader can confirm that the composite system is extensionally equivalent to the combined

map system in (7.29), and computes the same set of mappings, e.g. (7.30), (7.31), and (7.32).

Computation of an output string proceeds first through the portion of the hierarchy responsible for

leftward spread (RTRL(x)), then through the established hierarchy for rightward spread (RTRR(x)).

Since composition does not alter existing hierarchical relations within individual systems, we may

say that hierarchies are preserved under composition.

7.5.1.3 BMRS preserves the Subset Criterion

One direct consequence of hierarchical relations in BMRS systems of equations and their preser-

vation under composition is that McCarthy/Prince’s Subset Criterion falls out automatically. Mc-

Carthy presents a general schema for this criterion as in (7.36), where L represents a constraint

imposing a specific limitation on Mi (which, recall, is the markedness constraint compelling some

process not influenced by blocker C):
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(7.36) L >> Mi >> C >> Mj >> F

L necessarily outranks Mj in addition to Mi given the transitive nature of strict ordering over

constraints. The Subset Criterion is thus derived from a basic property of OT: “if Mi >> Mj >> F,

then the set of constraints that can, in principle, impinge on Mi is a subset of the set of constraints

that can, in principle, impinge on Mj” (239). In other words, when higher-ranked Mi is subject to

a PSC, lower-ranked Mj may also be subject to the same PSC.

Hierarchies of licensing and blocking structures and their preservation under composition yields

the same effect in the BMRS formalism. A simplified example using McCarthy’s notation demon-

strates this fact. Let some system F model a process licensed by a structure Mi but which is subject

to some (output-oriented) PSC limitation L. A relevant output boolean function AF (x) is defined

in (7.37); the PSC is ordered before the licenser in the hierarchy.

(7.37) AF (x) = if L(x) then ⊥ else

if Mi(x) then ⊤ else

A(x)

Similarly, let system G model a process licensed by a structure Mj but subject to some (also output-

oriented) PSC limitation C. An equivalent output boolean function definition for AG(x) is shown

in (7.38).

(7.38) AG(x) = if C(x) then ⊥ else

if Mj(x) then ⊤ else

A(x)

Composition F ⊗ G follows by the normal mechanism; in this case the default condition A(x) in

system F—the only non-recursively defined boolean function—is indexed with the corresponding

definition from G. Importantly, all hierarchical relations between licensing and blocking structures

are preserved. The result is that the outer function’s PSC limitation L(x) is calculated before Mi(x)

given the hierarchy and necessarily before Mj given the hierarchical relation between L(x) and A(x)

in the original system F . In other words, when Mi is subject to L, so is Mj . An equivalent system

illustrates the full hierarchy.

(7.39) AF (x) = if L(x) then ⊥ else

if Mi(x) then ⊤ else

if C(x) then ⊥ else

if Mj(x) then ⊤ else

A(x)
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This reflects precisely the total order in (7.36), and produces the same effects. Therefore the nature

of hierarchical relations and their preservation under composition in BMRS mirrors the “irreflexive,

asymmetric, and transitive” nature of the strict ordering relation over OT constraints, a property

not derived by rule-based accounts with PSC tags on individual rules.

7.5.1.4 BMRS avoids pathological PSC effects

By McCarthy’s account, the Subset Criterion—driven by the basic mechanism of constraint

interaction—results in a more restrictive theory of PSC than is available to the rule-based formal-

ism. Davis (1995) posits a hypothetical harmony system where rightward spread is subject to one

condition and leftward spread is subject to a different condition. Such a case is predicted to be im-

possible in OT because it would require a circular ranking. McCarthy illustrates with a toy example

using the de-conjoined RTR/Hi and RTR/Fr as separate conditions on rightward and leftward

spread. The required rankings are as in (7.40):

(7.40) Ranking Interpretation

a. RTR/Hi >> RTR-Right High segments block rightward harmony.

b. RTR-Right >> RTR/Fr Front segments don’t block rightward harmony.

c. RTR/Fr >> RTR-Left Front segments block leftward harmony.

d. RTR-Left >> RTR/Hi High segments don’t block leftward harmony.

A total order over constraints with these sub-rankings is impossible; RTR/Hi cannot rank above

RTR-Right and below RTR-Left when RTR-Right >> RTR-Left via transitivity.

BMRS systems of equations make the same predictions about the hypothetical case above and

thus align with the restrictions on PSC imposed by the Subset Criterion. To see how, consider

two systems of equations R (7.41a) and L (7.41b) modeling rightward and leftward spreading with

separate PSC conditions:

(7.41) a. RTRR(x) = if RTR/Hi(x) then ⊥ else

if RTRR(p(x)) then ⊤ else

RTR(x)

b. RTRL(x) = if RTR/Fr(x) then ⊥ else

if RTRL(s(x)) then ⊤ else

RTR(x)

Preservation of hierarchical relations under composition guarantees that every composite system

definable from single systems will meet the Subset Criterion, and so also predicts that no BMRS
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system of equations can describe the hypothetical grammar in (7.40). Instead, the possible compo-

sitions R ⊗ L and L ⊗ R for the example above maintain the subset/superset relationship between

conditions on two spreading patterns.

However, BMRS preserves the Subset Criterion for PSC effects differently from OT. Recall that

a hierarchy with subrankings in (7.40) is an impossible total order over constraints (and thus an im-

possible OT grammar) because it requires contradictory ranking relationships—RTR/Hi >> RTR-

Left via transitivity with RTR-Right but also the opposite ranking RTR-Left >> RTR/Hi.

In principle, it is possible to define separate BMRS systems of equations with these exact relations

intact, and then compose them to form a full grammar. The systems in (7.42) append the definitions

in (7.41) to include all subrankings from McCarthy’s pathological hierarchy.

(7.42) a. RTRR(x) = if RTR/Hi (x) then ⊥ else

if RTRR(p(x)) then ⊤ else

if RTR/Fr(x) then ⊥ else

RTR(x)

b. RTRL(x) = if RTR/Fr(x) then ⊥ else

if RTRL(s(x)) then ⊤ else

if RTR/Hi(x) then ⊥ else

RTR(x)

Composing these systems in either direction yields a well-formed (albeit semi-redundant) system

that still observes the Subset Criterion, again because of preservation of hierarchical relations under

composition. A system of equations equivalent to R ⊗ L is given below in (7.43); high segments

block rightward and leftward spreading while front segments only block leftward spreading.

(7.43) RTR′(x) = if RTR/Hi(x) then ⊥ else

if RTR′(p(x)) then ⊤ else

if RTR/Fr(x) then ⊥ else

if RTR/Fr(x) then ⊥ else

if RTR′(s(x)) then ⊤ else

if RTR/Hi(x) then ⊥ else

RTR(x)

Thus unlike OT, the BMRS formalism can capture Davis’ hypothetical systems where individual

‘rules’ (in this case separate systems of equations) are subject to distinct conditions. Unlike Davis’

rule-based conception, though, the composition of those systems necessarily obeys the Subset Condi-
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tion. This is a direct consequence of two basic components of BMRS systems of equations: hierarchies

of licensing and blocking structures, and their preservation under composition.

7.5.2 Learning

This final section briefly considers the application of the theory of process interactions introduced

in the dissertation to learning. The main purpose here is to identify avenues for future work, and

two main veins are addressed. One concerns how the BMRS formalism (and especially BMRS oper-

ations) might be leveraged in developing learning algorithms and evaluating existing ones. A second

concerns learning of interaction grammars, and whether the conceptualization of them pursued here

is tractable from a phonological learning perspective; that is, when the target of learning is a set of

functions that combine via a set of operations.

An important result relevant to learning phonological transformations is due to Oncina et al.

(1993), who show that subsequential functions are learnable within the Gold paradigm of identi-

fication with the limit using positive data (Gold, 1967). More recent work builds on that result,

developing learning algorithms for classes of the subsequential functions (Chandlee and Jardine,

2014; Chandlee et al., 2014; Jardine et al., 2014; Chandlee et al., 2015b, and others). This includes

procedures for learning ISL (Chandlee, 2014) and OSL (Chandlee et al., 2015a) functions discussed

in previous chapters.19

These learning procedures are implemented primarily using finite-state methods. Given the ad-

vantages of BMRS discussed in §2 of this chapter and in chapter 2, it remains to be seen whether

these properties are applicable to learning algorithms. For example, could the ability of BMRS

to capture the underlying motivation for phonological processes (recalling Chandlee and Jardine

(2020)’s generaliations) be extended to model learning scenarios in a more naturalistic way? And

given the similarities between licensing/blocking structures and OT constraints—as well as hierar-

chies of such structures and rankings of OT constraints—might BMRS provide a means to fruitfully

compare learning models in the subsequential framework with OT-based models, where the ulti-

mate learning goal is a hierarchy of constraints (Tesar and Smolensky, 1998, 2000; Tesar, 2014)?

Exploring these issues requires a foundation in BMRS learnability. This has yet to be established,

but any such undertaking must begin with basic questions such has how a BMRS representation

of a function can be learned. Future work can enhance this understanding in tandem with a more

thorough understanding of the BMRS formalism.

Previous learning results demonstrate the learnability of subsequential classes like ISL and OSL.

19See also (Burness and McMullin, 2019) for a related learning result for tier-based OSL string-to-string functions.
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It is known that single ISL functions can model multiple, potentially-interacting generalizations,

including opaque ones (Chandlee and Heinz, 2018; Chandlee et al., 2018). So to a certain extent

the learnability of ISL functions already presupposes the learnability of at least ISL interactions.

What, then, could the current dissertation contribute to a general theory of learning interactions?

One possibility is an alternative to a combined map learning scenario, for which the objective is

a single function modeling multiple generalizations. Building on the conception of interactions as

single functions and operators, an alternate scenario is one for which the learner has two or more

separate generalizations (perhaps from data where the process occurs in isolation), and then learns

the interaction as an application of operators over those individual generalizations. Given a set of

operations, a learner may consider a number of hypotheses concerning which operations to apply

and in what order, with the ultimate goal being a composite/PS-join function that conforms to the

data. It is yet to be determined whether this perspective offers any insight into learning that the

combined map approach does not. Future work can examine this issue in more detail.
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8 Conclusion

This dissertation has developed a computational theory of process interactions in phonology. In

this theory, individual phonological processes are input-output mappings (functions) represented as

BMRS systems of equations, and interactions are the combination of functions via a set of BMRS-

definable operators. The current work has proposed a set of two operators. One is a composition

operator ⊗ whereby the output of one function serves as input to another function. Composite

BMRS systems capture the set of interactions derivable via serial rule ordering: feeding, bleeding,

counterfeeding, and counterbleeding. The insufficiency of composition prompted the introduction

of an additional operator termed parallel satisfaction ⊖. This operator combines BMRS systems

by enforcing reference to a single input and output string. Parallel satisfaction captures a subset

of interactions formalizable via composition, and crucially describes interactions unavailable to a

composition analysis.

Using this theory, the analyses presented here have demonstrated that the computational approach—

enhanced with BMRS operators—offers wider empirical coverage of attested phonological interac-

tions than is available to SPE and OT. It did so specifically by focusing on a number of outstanding

cases in Chinese tone sandhi. Given the compactness of tonal inventories in Chinese, richness

of disyllabic systems, and the tendency for targets and triggers to overlap in longer sequences of

tones, Chinese tone sandhi is well-suited to such an investigation. Applied to both well-known

and recently-described sandhi interactions, the BMRS analyses were shown to outperform rule- and

optimization-based accounts. Building on a recent automata-theoretic study by Chandlee (2019),

analysis in terms of strictly-local functions clarifies issues of directionality in both Tianjin and Nan-

jing. The introduction of the parallel satisfaction operator, likewise, provides a solution to so-called

paradoxical interactions in Changting as well as the Xiamen tone circle. While these cases have

plagued the literature on Chinese tone for distinct reasons—even been purported to exhaust the an-

alytical tools of current theories—both enjoy a straight-forward account using operators over BMRS

systems.

It should also be emphasized that the BMRS formalism, in addition to furnishing computational

analyses of sandhi interactions that fare better than previous attempts in SPE and OT, stands

out among other computational formalisms in its suitability for pursuing such a theory. Despite



225

the equivalence of BMRS with other logical and finite-state approaches (as discussed in the previous

chapter), BMRS provides an intuitive and easily-interpretable means for both performing operations

over BMRS-definable functions, as well as defining new operators. It also clarifies the contribution

of each function joined by an operator by keeping systems mostly intact. The degree of clarity and

interpretability afforded by BMRS is not available to other computational formalisms. This is in

addition to its general advantages in phonological analysis, namely that it captures the intensional

motivation for phonological processes.

The theory pursued in the preceding chapters hinges on the ability to define operators over BMRS

systems. This dissertation has also shown that these operations have applications outside of a theory

of interactions, namely to questions of representation. A composition operator over BMRS systems of

equations was fruitfully applied to the demonstration of bi-interpretability between representational

models using BMRS transductions. As discussed in earlier chapters, proving bi-interpretability is

a key component in arguments about the notational equivalence of representational theories, but

earlier formalisms lack an established composition procedure for logical transduction. The current

work closes this gap by defining a composition operator for BMRS transductions.

While tone sandhi is an ideal empirical focus for developing a theory of interactions, the sandhi

patterns explored here do not exhaust the full range of possible interactions in phonology. Instead,

I address outstanding cases that highlight the insufficiency of other approaches but still fall well

within the predictions of the subregular hypothesis. Future work will seek interactions in other

domains to test the adequacy of this theory and its predictions.
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