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ABSTRACT OF THE DISSERTATION

Neural Graph Reasoning for Explainable Decision-Making

by YIKUN XIAN

Dissertation Director:

S. Muthukrishnan

Researchers have been seeking to develop intelligent systems with the ability to behave

like humans by autonomously making accurate and reasonable decisions for real-world

tasks. It now becomes imaginable and achievable with the help of advanced artificial intel-

ligence (AI), especially the deep learning technique that is known for its superior represen-

tation and predictive power. Such deep learning based decision-making systems have been

shown to be surprisingly effective in delivering accurate predictions, but at the price of lack

of explainability due to the “black-box” of deep neural networks. However, explainability

plays a pivotal role in practical human-involved applications such as user modeling, digital

marketing and e-commerce platforms. Explanations can be leveraged to not only assist

model developers to understand and debug the working mechanism of the decision-making

process, but also facilitate better engagement and trustworthiness for the end users who

consume the results produced by the systems.

In this thesis, we concentrate on one category of explainable decision-making system

that relies on external heterogeneous graphs to generate accurate predictions accompanied

with faithful and comprehensible explanations, which is also known as the neural graph

reasoning for explainable decision-making. Unlike existing work on explainable machine
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learning that mainly yields model-agnostic explanations for deep neural networks, we at-

tempt to develop intrinsically interpretable models based on graphs with the guarantee

of both accuracy and explainability. The meaningful and versatile graph structures (e.g.,

knowledge graphs) are shown to be effective in improving model performance, and more

importantly, make it possible for an intelligent decision-making system to conduct explicit

reasoning over graphs to generate predictions. The benefit is that the resulting graph paths

can be directly regarded as the explanations to the prediction results because the traceable

facts along the paths reflect the decision-making process and can also be easily understood

by humans.

To this end, our goal is to develop neural graph reasoning approaches to generate such

path-based explainable results by marrying the merits of predictive power by deep neural

models and the interpretability of graph structures. Specifically, we propose four meth-

ods from different perspectives: (i) a fundamental graph reasoning framework based on

reinforcement learning, (ii) a neural-symbolic model featured by its self-explaining and

compositional neural symbolic modules, (iii) a neural logic model that explicitly learns

personalized and explainable reasoning rules, and (iv) an imitation learning based method

that learns to distinguish the quality of explainable paths from demonstrations. These ap-

proaches are extensively evaluated on real-world benchmarks across different applications

such as e-commerce recommendation and column annotation in digital marketing. The

experimental results demonstrate the effectiveness of the proposed methods in achieving

satisfying prediction accuracy and providing users with faithful and understandable path-

based explanations.
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CHAPTER 1

INTRODUCTION

1.1 Overview of Explainable Decision Making

The last decade has witnessed huge success of deep learning techniques that significantly

push the boundaries of real-world decision-making systems in delivering more accurate

predictions. Such deep neural models are known to be powerful at feature representation

learning from large amount of data with the complicated and non-linear operations and un-

derlying structures. The achieved performance gain brings tremendous benefits to various

applications in practice. For instance, modern recommender systems [14, 144, 39] tend to

learn user and item representations via deep neural networks to capture latent relationships

of user-item interactions and make increasingly accurate recommendations to improve user

engagement. Data management systems [76, 99, 10, 53] powered by deep neural models

are capable of automating the data cleaning process (e.g., annotating table columns and

linking entities among rows) and largely saving time and effort for humans in labeling and

evaluation. Other applications such as advertising [39, 64, 65], user profiling [25, 101], so-

cial networking [140, 75, 74], conversational systems [31, 30] and medical diagnosis [51,

50] are also benefited from the powerfulness of deep neural networks.

However, due to the blackbox nature of deep neural networks, such neural decision-

making systems may lack explainability and transparency, leading to negative consequences

in many human-centered scenarios [37, 88, 138]. For instance, if a medical-diagnosis sys-

tem fails to provide supportive evidence to justify why the prediction is correct or not, the

doctor can hardly adopt the automated decision even if its actual accuracy is high. Same

situation can be applied to other domains such as finance, e-commerce, digital marketing,

etc. Therefore, explanations are critical and useful in modern accuracy-driven automated
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decision-making system. For model developers, the explanation can assist them to debug

models and understand how the results are derived given certain inputs. For end users who

consume the results delivered from automated decision-making systems, the additional ex-

planations can better convince them why such decision is made so as to provide more

trustable results. Take personalized recommender system as an example [147]. An expla-

nation can help a user understand the process of why the model recommends the candidate

items based on his/her historical behavior, and also benefit machine learning developers

to understand the mechanism behind the model and figure out how to further improve the

performance. Moreover, the importance of providing explainable prediction results is also

emphasized by General Data Protection Regulation (GDPR) [35]. It regulates that each

individual has the right of explanation – requesting an explanation of the inference result

by an automated model especially when the decision largely affects the individual in fina-

cial, mental and legal aspects. Therefore, both accuracy and explainability are supposed to

be simultaneously and carefully considered when we utilize machine learning technique to

make automated decisions.

Two basic requirements of the generated explanation include faithfulness and under-

standability, which have been commonly adopted by previous works [67, 120, 132]. The

faithfulness refers to the consistency of explanation that should reflect the actual decision-

making process of the model. The understandability means that resulting explanation can

be understood by human regardless of the presentation forms. Both properties are sup-

posed to help model developers understand how the model actually works by examining

the generated explanation.

1.2 Categorization of Explanations

Existing explainable methods can be classified along two orthogonal dimensions: the gen-

eration paradigm and the explanation form.
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Model-agnostic vs model-specific. The generation paradigm of existing approaches can

be either model-agnostic or model-specific. The model-agnostic methods aim to provide

post-hoc explanations regardless of the specific choice of machine learning models. Repre-

sentative algorithms including LIME [107], Anchor [108] and SHAP [82] are able to iden-

tify the importance of input features that contribute most to the prediction. One advantage

of model-agnostic method is that it can be applied to any trained prediction models, which

is especially useful in the case where models have been deployed into industrial produc-

tion environment and can hardly be changed. However, the drawback is that the generated

explanation may be not faithful because it does not reflect the actual decision-making pro-

cess of the black-box model. On the contrary, model-specific methods are self-explaining,

i.e., the decision-making process is transparent and understandable by humans and the ex-

planation comes along with the prediction and hence can be regarded as the byproduct of

the result. The disadvantage is obvious because the prediction model is bundled with the

explainer and not applicable to existing trained models. However, the model itself is ex-

plainable and usually achieves comparable performance with the accuracy-driven neural

models.

Explanation forms In parallel, the explainable methods can also be categorized accord-

ing to the form of output explanation.

• Feature importance [82, 19, 107, 108]: A plethora of explainable machine learning

algorithms fall into this category, seeking to discover important features of input

instances that make significant contribution to the prediction result. Such explanation

is commonly generated for tabular data since each input dimension is comprehensible

to human.

• Nearest-neighbor [117, 124]: These methods aim to find the most similar training ex-

amples to the given test sample based on certain properties of the data and prediction

results.
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• Visual explanation [12, 48, 96]: It is often related to images as input where heatmap

can be imposed on the image to highlight the area that is relevant to the prediction.

Some methods can also plot the change of a model prediction for non-image data

[15, 27].

• Textual explanation [148, 128, 17]: The goal of this set of methods is to provide

users with natural language sentences to justify the prediction results. Some previous

works rely on predefined templates and slot-filling to constitute an explanation, while

the others directly generate word sequences via natural language generation models.

• Rule sets [3, 68]: These methods target to extract interpretable rules from data such

as decision trees and logical rules.

• Graph-based explanation [97, 139]: These methods are mainly designed for graph-

structured data such as social network and knowledge base, etc, and the output form

can be a set of nodes, edges, paths or subgraphs that summarizes the properties of

the input–output pairs.

Note that the combinations of two aforementioned dimensions for explanation catego-

rization elicit various research directions in explainable AI. For example, model-agnostic

feature importance and image-based explanation generation have attracted many researchers

in recent years, and a plethora of algorithms have been proposed to mitigate the explainabil-

ity issue of deep neural networks for image and text classification, ranking and search, etc.

Model-agnostic methods are known for its applicability and adaptability to any predictors

and hence receive more attention than the model-specific ones. However, it is important to

realize that even though the generated explanation can somehow describe the relationship

between inputs and outputs, these model-agnostic explainers still fail to make the decision-

making process transparent and understandable to humans due the black-box nature of

neural networks. Therefore, in this thesis, we try to explore self-explaining model-specific

approaches that can not only achieve comparable accuracy with the existing black-box neu-
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Figure 1.1: One-step prediction vs multi-step reasoning in making recommendations.

ral models, but also provide faithful and understandable explanations even with transparent

and interpretable model architecture.

1.3 One-step Prediction vs Multi-step Reasoning

Most existing decision-making models only make one-step prediction by directly map-

ping the input data into the output space via opaque and complex operations. To achieve

model-specific explanation, we aim to decompose the single-step black-box prediction into

a multi-step reasoning process such that each step is comprehensible and transparent to hu-

man and the results are subsequently produced once all reasoning steps are accomplished.

As an example shown in Figure 1.1, a conventional neural recommendation model will

take user information as input and directly output a set of items without revealing how the

recommendations are derived. In comparison, our idea is to enforce the model to conduct

multi-step reasoning, where each step represents a meaningful action towards the final rec-

ommendation, e.g., to look up purchased items of the user or to find items of similar brand.

In this way, the transparency of the decision-making process is increased since we know

how the prediction is made via multiple comprehensible actions.

To this end, we explore to leverage heterogeneous graphs to conduct multi-step reason-

ing and make explainable decisions. The major reasons of choosing graphs are as follows.
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• Heterogeneous graph data are ubiquitous in the real world and prior researches have

shown the effectiveness of using graphs to further improve the prediction perfor-

mance.

• Graph-based neural models have been widely studied but the explainability is less

noticeable compared to other types of explanation.

• Graph structures naturally provide a medium to conduct multi-hop path reasoning for

decision-making.

1.4 Neural Graph Reasoning for Explainable Decision-Making

We assume the heterogeneous graphs for multi-step reasoning consists of three types of

nodes: source nodes, target nodes and other nodes. The source nodes refer to the input

instances such as users, images and documents that are fed into the model for prediction.

The target nodes can be items, labels, topics, which are the output entities to be generated

by the model. The rest of nodes can be the features extracted from source and target nodes

or additional knowledge to describe entities. The edges are also allowed to have different

types or meanings such as the relations in knowledge graphs.

We formulate a decision-making problem under the graph reasoning framework. Given

a source node on a heterogeneous graph, the goal is to predict a set of target nodes that are

relevant to the source node and a set of qualified paths connecting each pair of the source

and the predicted target nodes. The output target nodes are regarded as the decision and the

corresponding paths are the accompanied explanation for the decision. Note that a wide

range of machine learning problems can be unified under the graph reasoning framework

including classification, ranking, recommendation, link prediction, etc. Take recommenda-

tion as an example. The source and target nodes refer to users and items, and the decision

is equivalent to finding relevant items for recommendation. To make the graph more versa-

tile, external knowledge graphs can also be incorporated into the user-item bipartite graph
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for further extension.

There are two major lines of researches on graph reasoning. One line is to learn

the graph representation such as node and edge embeddings, which can later be used to

make predictions via a similarity function. For example, various embedding techniques

are developed for knowledge graph representation learning [56] such as TransE [5] and

RotatE [121], which aim to capture relationship among entities and relations in the low-

dimensional continuous space. Meanwhile, graph neural networks [133] have become

popular on learning representation for more general graph structures via multiple layers

of message propagation. The representation learned by these methods can be leveraged to

make accurate predictions on different tasks. However, one drawback is that the derived

node or edge vectors are not explainable, i.e., it is impossible to understand the meaning of

each dimension of the vector. Other research focuses on conducting multi-hop reasoning

to make predictions. For example, DeepPath [139] and MINERVA [18] utilizes reinforce-

ment learning to walk over the knowledge graph from a source node towards an unknown

target node. The advantage of such methods is that they explicitly conduct multi-step rea-

soning for making predictions, which provide a prototype of explainable graph reasoning.

However, they only focus on objective tasks such as question answering, but ignore large

amount of human-centered tasks. Meanwhile, their prediction performance is not guaran-

teed compared to the embedding-based models using deep learning techniques.

In order to guarantee both accuracy and explainability, we attempt to make prediction

by marrying both merits of powerful representation ability of neural networks and the nat-

urally interpretable graph structures. We term such problem as neural graph reasoning for

explainable decision-making. The major challenges of this problem are listed below.

1. Unknown targets. The target nodes are unknown prior to the decision-making pro-

cess, which makes it very challenging to find a reliable path leading to a potentially

correct target node.

2. Large search space. The search space at each step depends on the node degree, which
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can be very large in real graph-based applications and may affect the efficiency in

performing multi-hop graph reasoning.

3. Sparse signal. The original graph may not provide strong signals to guide the model

to walk towards an unknown target, so it is important to leverage both graph structure

and semantic information as auxiliary signals for path finding.

4. Understandable explanation. The explainable paths are supposed to be composed of

comprehensible features that are relevant to the source and target nodes.

5. Faithful explanation. Since the resulting paths are used as the explanation to the

decision, they must be faithful to the actual decision-making process, i.e., the paths

can be used to trace back the multi-hop reasoning.

6. Path quality. Multi-faceted quality of explainable paths should be considered such as

path length, diversity, patterns, etc.

7. Model interpretability. Some existing works proposed complicated neural networks

to generate path-based explanation, which still fail to resolve the issue of model in-

terpretability. Thus, it would be promising to make the neural model self-explaining

and understandable to human.

8. Explainability evaluation. Unlike the accuracy evaluation, the explainability is hard

to quantify and evaluate in practice and let alone how to measure the quality of path-

based explanation.

1.5 Research Directions

In this thesis, we contribute to the answers to developing neural graph reasoning approaches

from various perspectives including model design and implementation, interpretable archi-

tecture, data acquisition and explainability evaluation. The proposed methods are expected

to work on different applications including recommendation and digital marketing.
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The first research direction is how to design and implement the basic framework of neu-

ral graph reasoning for explainable decision-making, considering unknown targets, large

search space, sparse signal and understandable explanation (challenges 1, 2, 3 and 4). In

chapter 2, we propose a reinforcement learning based graph reasoning framework by train-

ing a neural graph walker that can reason over the graph to simultaneously generate ad-hoc

explainable path and prediction results.

The second research direction is how to make the graph walker itself interpretable rather

than a black-box neural network (challenge 7). In chapter 3, we decompose the model into

a set of compositional neural relation modules, each of which represents a comprehensible

relation in knowledge graph and can be repeatedly used to conduct single hop reasoning.

The third research direction is how to leverage knowledge graphs to generate faithful

explanation (challenge 5). In chapter 4, we propose to first generate interpretable logi-

cal rules via Markov Logic Network, and the rules can be further used to guide the path

reasoning process.

The last but not least research direction is how to guarantee the quality of explainable

paths during graph reasoning (challenges 3, 6 and 8). In chapter 5, we consider a case

where graph paths can be manually labeled by crowdsourced workers so that the explana-

tions are available during training. We accordingly propose an inverse reinforcement learn-

ing approach to learn both reward function and policy network such that the policy-based

graph walker is trained guided by the learned rewards that incorporating both accuracy and

explainability factors of high-quality paths.
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CHAPTER 2

REINFORCEMENT GRAPH REASONING

Recent advances in personalized recommendation have sparked great interest in the ex-

ploitation of rich structured information provided by knowledge graphs. Unlike most exist-

ing approaches that only focus on leveraging knowledge graphs for more accurate recom-

mendation, we perform explicit reasoning with knowledge for decision making so that the

recommendations are generated and supported by an interpretable causal inference proce-

dure. In this chapter, we propose a method called Policy-Guided Path Reasoning (PGPR),

which couples recommendation and interpretability by providing actual paths in a knowl-

edge graph. Our contributions include four aspects. We first highlight the significance of

incorporating knowledge graphs into recommendation to formally define and interpret the

reasoning process. Second, we propose a reinforcement learning approach featuring an

innovative soft reward strategy, user-conditional action pruning and a multi-hop scoring

function. Third, we design a policy-guided graph search algorithm to efficiently and ef-

fectively sample reasoning paths for recommendation. Finally, we extensively evaluate our

method on several large-scale real-world benchmark datasets, obtaining favorable results

compared with state-of-the-art methods.

2.1 Introduction

Equipping recommendation systems with the ability to leverage knowledge graphs (KG)

not only facilitates better exploitation of various structured information to improve the rec-

ommendation performance, but also enhances the explainability of recommendation mod-

els due to the intuitive ease of understanding relationships between entities [147]. Recently,

researchers have explored the potential of KG reasoning in personalized recommendation.

One line of research focuses on making recommendations using KG embedding models,
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such as TransE [5] and node2vec [36]. These approaches align the KG in a regularized

vector space and uncover the similarity between entities by calculating their representation

distance [143]. However, pure KG embedding methods lack the ability to discover multi-

hop relational paths. Ai et al. [1] proposed to enhance the collaborative filtering (CF)

method over KG embedding for personalized recommendation, followed by a soft match-

ing algorithm to find explanation paths between users and items. However, one issue of

this strategy is that the explanations are not produced according to the reasoning process,

but instead are later generated by an empirical similarity matching between the user and

item embeddings. Hence, their explanation component is merely trying to find a post-hoc

explanation for the already chosen recommendations.

Another line of research investigates path-based recommendation. For example, Gao

et al. [33] proposed the notion of meta-paths to reason over KGs. However, the approach

has difficulty in coping with numerous types of relations and entities in large real-world

KGs, and hence it is incapable of exploring relationships between unconnected entities.

Wang et al. [130] first developed a path embedding approach for recommendation over

KGs that enumerates all the qualified paths between every user–item pair, and then trained

a sequential RNN model from the extracted paths to predict the ranking score for the pairs.

The recommendation performance is further improved, but it is not practical to fully explore

all the paths for each user–item pair in large-scale KGs.

We believe that an intelligent recommendation agent should have the ability to conduct

explicit reasoning over knowledge graphs to make decisions, rather than merely embed the

graph as latent vectors for similarity matching. In this chapter, we consider KGs as a versa-

tile structure to maintain the agent’s knowledge about users, items, other entities and their

relationships. The agent starts from a user and conducts explicit multi-step path reasoning

over the graph, so as to discover suitable items in the graph for recommendation to the tar-

get user. The underlying idea is that if the agent draws its conclusion based on an explicit

reasoning path, it will be easy to interpret the reasoning process that leads to each recom-
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Figure 2.1: Illustration of the Knowledge Graph Reasoning for Explainable Recommenda-
tion (KGRE-Rec) problem.

mendation. Thus, the system can provide causal evidence in support of the recommended

items. Accordingly, our goal is not only to select a set of candidate items for recommen-

dation, but also to provide the corresponding reasoning paths in the graph as interpretable

evidence for why a given recommendation is made. As an example illustrated in Figure 2.1,

given user A, the algorithm is expected to find candidate items B and F , along with their

reasoning paths in the graph, e.g., {User A → Item A → Brand A → Item B} and

{User A → Feature B → Item F}.

In this chapter, we propose an approach that overcomes the shortcomings of the pre-

vious work. Specifically, we cast the recommendation problem as a deterministic Markov

Decision Process (MDP) over the knowledge graph. We adopt a Reinforcement Learning

(RL) approach, in which an agent starts from a given user, and learns to navigate to the

potential items of interest, such that the path history can serve as a genuine explanation for

why the item is recommended to the user.

The main challenges are threefold. First, it is non-trivial to measure the correctness

of an item for a user, so careful consideration is needed regarding the terminal conditions

and RL rewards. To solve the problem, we design a soft reward strategy based on a multi-

hop scoring function that leverages the rich heterogeneous information in the knowledge
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graph. Second, the size of the action space depends on the out-degrees in the graph, which

can be very large for some nodes, so it is important to conduct an efficient exploration to

find promising reasoning paths in the graph. In this regard, we propose a user-conditional

action pruning strategy to decrease the size of the action spaces while guaranteeing the rec-

ommendation performance. Third, the diversity of both items and paths must be preserved

when the agent is exploring the graph for recommendation, so as to avoid being trapped

in limited regions of items. To achieve this, we design a policy-guided search algorithm

to sample reasoning paths for recommendation in the inference phase. We conduct several

case studies on the reasoning paths to qualitatively evaluate the diversity of explainations

for recommendation.

The major contributions of this work can be outlined as follows.

• We highlight the significance of incorporating rich heterogeneous information into

the recommendation problem to formally define and interpret the reasoning process.

• We propose an RL-based approach to solve the problem, driven by our soft reward

strategy, user-conditional action pruning, and a multi-hop scoring strategy.

• We design a beam search-based algorithm guided by the policy network to efficiently

sample diverse reasoning paths and candidate item sets for recommendation.

• We extensively evaluate the effectiveness of our method on several Amazon e-commerce

domains, obtaining strong results as well as explainable reasoning paths.

2.2 Related Work

2.2.1 Collaborative Filtering

Collaborative Filtering (CF) has been one of the most fundamental approaches for recom-

mendation. Early approaches to CF consider the user–item rating matrix and predict ratings

via user-based [106, 61] or item-based [112, 79] collaborative filtering methods. With the
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development of dimension reduction methods, latent factor models such as matrix factor-

ization gained widespread adoption in recommender systems. Specific techniques include

singular value decomposition [62], non-negative matrix factorization [70] and probabilistic

matrix factorization [111]. For each user and item, these approaches essentially learn a la-

tent factor representation to calculate the matching score of the user–item pairs. Recently,

deep learning and neural models have further extended collaborative filtering. These are

broadly classified into two sub-categories: the similarity learning approach and the repre-

sentation learning approach. Similarity learning adopts fairly simple user/item embeddings

(e.g., one-hot vectors) and learns a complex prediction network as a similarity function to

compute user–item matching scores [45]. In contrast, the representation learning approach

learns much richer user/item representations but adopts a simple similarity function (e.g.,

inner product) for score matching [146]. However, researchers have noticed the difficulty

of explaining the recommendation results in latent factor or latent representation models,

making explainable recommendation [148, 147] an important research problem for the

community.

2.2.2 Recommendation with Knowledge Graphs

Some previous efforts have made recommendations to users with the help of knowledge

graph embeddings [95, 5]. One research direction leverages knowledge graph embeddings

as rich content information to enhance the recommendation performance. For example,

Zhang et al. [143] adopted knowledge base embeddings to generate user and item rep-

resentations for recommendation, while Huang et al. [49] employed memory networks

over knowledge graph entity embeddings for recommendation. Wang et al. [125] pro-

posed a ripple network approach for embedding-guided multi-hop KG-based recommen-

dation. Another research direction attempts to leverage the entity and path information

in the knowledge graph to make explainable decisions. For example, Ai et al. [1] in-

corporated the learning of knowledge graph embeddings for explainable recommendation.
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However, their explanation paths are essentially post-hoc explanations, as they are gener-

ated by soft matching after the corresponding items have been chosen. Wang et al. [130]

proposed an RNN based model to reason over KGs for recommendation. However, it re-

quires enumerating all the possible paths between each user–item pair for model training

and prediction, which can be impractical for large-scale knowledge graphs.

2.2.3 Reinforcement Learning

Reinforcement Learning has attracted substantial interest in the research community. In

recent years, there have been a series of widely noted successful applications of deep RL

approaches (e.g., AlphaGo [118]), demonstrating their ability to better understand the en-

vironment, and enabling them to infer high-level causal relationships. There have been

attempts to invoke RL in recommender systems in a non-KG setting, such as for ads recom-

mendation [123], news recommendation [152] and post-hoc explainable recommendation

[131]. At the same time, researchers have also explored RL in KG settings for other tasks

such as question answering (QA) [139, 18, 77], which formulates multi-hop reasoning as a

sequential decision making problem. For example, Xiong et al. [139] leveraged reinforce-

ment learning for path-finding, and Das et al. [18] proposed a system called MINERVA

that trains a model for multi-hop KG question answering. Lin et al. [77] proposed models

for end-to-end RL-based KG question answering with reward shaping and action dropout.

However, to the best of our knowledge, there is no previous work utilizing RL in KGs for

the task of recommendation, especially when the KG has an extremely large action space

for each entity node as the number of path hops grow.

2.3 Methodology

In this section, we first formalize a new recommendation problem called Knowledge Graph

Reasoning for Explainable Recommendation. Then we present our approach based on

reinforcement learning over knowledge graphs to solve the problem.
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2.3.1 Problem Formulation

In general, a knowledge graph G with entity set E and relation set R is defined as G =

{(e, r, e′) | e, e′ ∈ E , r ∈ R}, where each triplet (e, r, e′) represents a fact of the relation r

from head entity e to tail entity e′. In this chapter, we consider a special type of knowledge

graph for explainable recommendation, denoted by GR. It contains a subset of a User

entities U and a subset of Item entities I, where U , I ⊆ E and U ∩I = ∅. These two kinds

of entities are connected through relations rui. We give a relaxed definition of k-hop paths

over the graph GR as follows.

Definition 2.3.1. (k-hop path) A k-hop path from entity e0 to entity ek is defined as a se-

quence of k+1 entities connected by k relations, denoted by pk(e0, ek) =
{
e0

r1←→ e1
r2←→ · · · rk←→ ek

}
,

where ei−1
ri←→ ei represents either (ei−1, ri, ei) ∈ GR or (ei, ri, ei−1) ∈ GR, i ∈ [k].

Now, the problem of Knowledge Graph Reasoning for Explainable Recommendation

(KGRE-Rec) can be formalized as below.

Definition 2.3.2. (KGRE-Rec Problem) Given a knowledge graph GR, user u ∈ U and

integers K and N , the goal is to find a recommendation set of items {in}n∈[N ] ⊆ I such

that each pair (u, in) is associated with one reasoning path pk(u, in) (2 ≤ k ≤ K), and N

is the number of recommendations.

In order to simultaneously conduct item recommendation and path finding, we consider

three aspects that result in a good solution to the problem. First, we do not have pre-

defined targeted items for any user, so it is not applicable to use a binary reward indicating

whether the user interacts with the item or not. A better design of the reward function

is to incorporate the uncertainty of how an item is relevant to a user based on the rich

heterogeneous information given by the knowledge graph. Second, out-degrees of some

entities may be very large, which degrades the efficiency of finding paths from users to

potential item entities. Enumeration of all possible paths between each user and all items is
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Figure 2.2: Pipeline of our Policy-Guided Path Reasoning method for recommendation.
The algorithm aims to learn a policy that navigates from a user to potential items of interest
by interacting with the knowledge graph environment. The trained policy is then adopted
for the path reasoning phase to make recommendations to the user.

unfeasible on very large graphs. Thus, the key challenge is how to effectively perform edge

pruning and efficiently search relevant paths towards potential items using the reward as

a heuristic. Third, for every user, the diversity of reasoning paths for recommended items

should be guaranteed. It is not reasonable to always stick to a specific type of reasoning path

to provide explainable recommendations. One naive solution is post-hoc recommendation,

which first generates candidate items according to some similarity measure, followed by

a separate path finding procedure from the user to candidate items within the graph. The

major downsides of this are that the recommendation process fails to leverage the rich

heterogeneous meta-data in the knowledge graph, and that the generated paths are detached

from the actual decision-making process adopted by the recommendation algorithm, which

remains uninterpretable.

In the following sections, we introduce our Policy-Guided Path Reasoning method

(PGPR) for explainable recommendation over knowledge graphs. It solves the problem

through reinforcement learning by making recommendations while simultaneously search-

ing for paths in the context of rich heterogeneous information in the KG. As illustrated

in Figure 2.2, the main idea is to train an RL agent that learns to navigate to potentially

“good” items conditioned on the starting user in the knowledge graph environment. The

agent is then exploited to efficiently sample reasoning paths for each user leading to the
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recommended items. These sampled paths naturally serve as the explanations for the rec-

ommended items.

2.3.2 Formulation as Markov Decision Process

The starting point of our method is to formalize the KGRE-Rec problem as a Markov

Decision Process (MDP) [122]. In order to guarantee path connectivity, we add two special

kinds of edges to the graph GR. The first one are reverse edges, i.e., if (e, r, e′) ∈ GR, then

(e′, r, e) ∈ GR, which are used for our path definition. The second are self-loop edges,

associated with the no operation (NO-OP) relation, i.e., if e ∈ E , then (e, rnoop, e) ∈ GR.

State The state st at step t is defined as a tuple (u, et, ht), where u ∈ U is the starting user

entity, et is the entity the agent has reached at step t, and ht is the history prior to step t. We

define the k-step history as the combination of all entities and relations in the past k steps,

i.e., {et−k, rt−k+1, . . . , et−1, rt}. Conditioned on some user u, the initial state is represented

as s0 = (u, u,∅). Given some fixed horizon T , the terminal state is sT = (u, eT , hT ).

Action The complete action space At of state st is defined as all possible outgoing edges

of entity et excluding history entities and relations. Formally, At = {(r, e) | (et, r, e) ∈

GR, e 6∈ {e0, . . . , et−1}}. Since the out-degree follows a long-tail distribution, some nodes

have much larger out-degrees compared with the rest of nodes. It is fairly space-inefficient

to maintain the size of the action space based on the largest out-degree. Thus, we introduce

a user-conditional action pruning strategy that effectively keeps the promising edges con-

ditioned on the starting user based on a scoring function. Specifically, the scoring function

f((r, e) | u) maps any edge (r, e) (∀r ∈ R,∀e ∈ E) to a real-valued score conditioned

on user u. Then, the user-conditional pruned action space of state st, denoted by Ãt(u), is

defined as:

Ãt(u) = {(r, e) | rank(f((r, e) | u)) ≤ α, (r, e) ∈ At}, (2.1)
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where α is a pre-defined integer that upper-bounds the size of the action space. The details

of this scoring function f((r, e) | u) will be discussed in the next section.

Reward Given any user, there is no pre-known targeted item in the KGRE-Rec problem,

so it is unfeasible to consider binary rewards indicating whether the agent has reached a

target or not. Instead, the agent is encouraged to explore as many “good” paths as possible.

Intuitively, in the context of recommendations, a “good” path is one that leads to an item

that a user will interact with, with high probability. To this end, we consider to give a

soft reward only for the terminal state sT = (u, eT , hT ) based on another scoring function

f(u, i). The terminal reward RT is defined as

RT =


max

(
0, f(u,eT )

maxi∈I f(u,i)

)
, if eT ∈ I

0, otherwise,
(2.2)

where the value of RT is normalized to the range of [0, 1]. f(u, i) is also introduced in the

next section.

Transition Due to the graph properties, a state is determined by the position of the entity.

Given a state st = (u, et, ht) and an action at = (rt+1, et+1), the transition to the next state

st+1 is:

P [st+1 = (u, et+1, ht+1)|st = (u, et, ht), at = (rt+1, et+1)] = 1 (2.3)

One exception is that the initial state s0 = (u, u,∅) is stochastic, which is determined by

the starting user entity. For simplicity, we assume the prior distribution of users follows a

uniform distribution so that each user is equally sampled at the beginning.
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Optimization Based on our MDP formulation, our goal is to learn a stochastic policy π

that maximizes the expected cumulative reward for any initial user u:

J(θ) = Eπ

[
T−1∑
t=0

γtRt+1

∣∣∣∣∣ s0 = (u, u,∅)

]
. (2.4)

We solve the problem through REINFORCE with baseline [122] by designing a policy net-

work and a value network that share the same feature layers. The policy network π(·|s, Ãu)

takes as input the state vector s and binarized vector Ãu of pruned action space Ã(u) and

emits the probability of each action, with zero probability for actions not in Ã(u). The

value network v̂(s) maps the state vector s to a real value, which is used as the baseline in

REINFORCE. The structures of the two networks are defined as follows:

x = dropout(σ(dropout(σ(sW1))W2)) (2.5)

π(·|s, Ãu) = softmax(Ãu � (xWp)) (2.6)

v̂(s) =xWv (2.7)

Here, x ∈ Rdf are the learned hidden features of the state, � is the Hadamard product,

which is used to mask invalid actions here, and σ is a non-linear activation function, for

which we use an Exponential Linear Unit (ELU). State vectors s ∈ Rds are represented as

the concatenation of the embeddings u, et and history ht. For the binarized pruned action

space Ãu ∈ {0, 1}dA , we set the maximum size dA among all pruned action spaces. The

model parameters for both networks are denoted as Θ = {W1,W2,Wp,Wv}. Addition-

ally, we add a regularization term H(π) that maximizes the entropy of the policy in order

to encourage the agent to explore more diverse paths. Finally, the policy gradient∇ΘJ(Θ)

is defined as:

∇ΘJ(Θ) = Eπ

[
∇Θ log πΘ(·|s, Ãu) (G− v̂(s))

]
, (2.8)

where G is the discounted cumulative reward from state s to the terminal state sT .
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2.3.3 Multi-Hop Scoring Function

Now we present the scoring function for the action pruning strategy and the reward func-

tion. We start with some relevant concepts.

One property of the knowledge graph GR is that given the type of a head entity and a

valid relation, the type of tail entity is determined. We can extend this property by creating

a chain rule of entity and relation types: {e0, r1, e1, r2, . . . , rk, ek}. If the types of entity e0

and all relations r1, . . . , rk are given, the types of all other entities e1, . . . , ek are uniquely

determined. According to this rule, we introduce the concept of patterns as follows.

Definition 2.3.3. (k-hop pattern) A sequence of k relations r̃k = {r1, . . . , rk} is called a

valid k-hop pattern for two entities (e0, ek) if there exists a set of entities {e1, . . . , ek−1}

whose types are uniquely determined such that {e0
r1←→ e1

r2←→ · · · rk−1←−→ ek−1
rk←→ ek} forms

a valid k-hop path over GR.

One caveat with pattern is the direction of each relation, provided that we allow reverse

edges in the path. For entities e, e′ and relation r, e r←→ e′ represents either e r−→ e′ or e r←− e′

in the path. We refer to the relation r as a forward one if (e, r, e′) ∈ GR and e r−→ e′, or as a

backward one if (e′, r, e) ∈ GR and e r←− e′.

In order to define the scoring functions for action pruning and reward, we consider a

special case of patterns with both forward and backward relations.

Definition 2.3.4. (1-reverse k-hop pattern) A k-hop pattern is 1-reverse, denoted by r̃k,j =

{r1, . . . , rj, rj+1, . . . , rk} (j ∈ [0, k]), if r1, . . . , rj are forward and rj+1 . . . rk are back-

ward.

In other words, paths with a 1-reverse k-hop pattern have the form of e0
r1−→ · · · rj−→

ej
rj+1←−− ej+1

rj+2←−− · · · rk←− ek. Note that the pattern contains all backward relations when

j = 0, and all forward relations when j = k.

Now we define a general multi-hop scoring function f(e0, ek | r̃k,j) of two entities



22

e0, ek given 1-reverse k-hop pattern r̃k,j as follows.

f(e0, ek | r̃k,j) =

〈
e0 +

j∑
s=1

rs, ek +
k∑

s=j+1

rs

〉
+ bek , (2.9)

where 〈·, ·〉 is the dot product operation, e, r ∈ Rd are d-dimensional vector representations

of the entity e and relation r, and be ∈ R is the bias for entity e. When k = 0, j = 0, the

scoring function simply computes the cosine similarity between two vectors:

f(e0, ek | r̃0,0) = 〈e0, ek〉+ bek . (2.10)

When k = 1,j = 1, the scoring function computes the similarity between two entities via

translational embeddings [5]:

f(e0, ek | r̃1,1) = 〈e0 + r1, ek〉+ bek (2.11)

For k ≥ 1, 1 ≤ j ≤ k, the scoring function in Equation 2.9 quantifies the similarity of two

entities based on a 1-reverse k-hop pattern.

Scoring Function for Action Pruning We assume that for user entity u and another

entity e of other type, there exists only one 1-reverse k-hop pattern r̃k,j for some integer

k. For entity e 6∈ U , we denote ke as the smallest k such that r̃k,j is a valid pattern for

entities (u, e). Therefore, the scoring function for action pruning is defined as f((r, e) |

u) = f(u, e | r̃ke,j).

Scoring Function for Reward We simply use the 1-hop pattern between user entity and

item entity, i.e., (u, rui, i) ∈ GR. The scoring function for reward design is defined as

f(u, i) = f(u, i|r̃1,1).
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Learning Scoring Function A natural question that arises is how to train the embeddings

for each entity and relation. For any pair of entities (e, e′) with valid k-hop pattern r̃k,j , we

seek to maximize the conditional probability of P(e′ | e, r̃k,j), which is defined as

P(e′ | e, r̃k,j) =
exp (f(e, e′ | r̃k,j))∑

e′′∈E exp (f(e, e′′ | r̃k,j))
. (2.12)

However, due to the huge size of the entity set E , we adopt a negative sampling technique

[87] to approximate logP(e′ | e, r̃k,j):

logP(e|e′, r̃k,j) ≈ log σ (f(e, e′ | r̃k,j)) +mEe′′ [log σ (−f(e, e′′ | r̃k,j))] (2.13)

The goal is to maximize the objective function J(GR), defined as:

J(GR) =
∑
e,e′∈E

K∑
k=1

1{(e, r̃k,j, e′)} logP(e′|e, r̃k,j), (2.14)

where 1{(e, r̃k,j, e′)} is 1 if r̃k,j is a valid pattern for entities (e, e′) and 0 otherwise.

2.3.4 Policy-Guided Path Reasoning

The final step is to solve our recommendation problem over the knowledge graph guided by

the trained policy network. Recall that given a user u, the goal is to find a set of candidate

items {in} and the corresponding reasoning paths {pn(u, in)}. One straightforward way is

to sample n paths for each user u according to the policy network π(·|s, Ãu). However,

this method cannot guarantee the diversity of paths, because the agent guided by the policy

network is likely to repeatedly search the same path with the largest cumulative rewards.

Therefore, we propose to employ beam search guided by the action probability and reward

to explore the candidate paths as well as the recommended items for each user. The pro-

cess is described as Algorithm 1. It takes as input the given user u, the policy network

π(·|s, Ãu), horizon T , and predefined sampling sizes at each step, denoted by K1, . . . , KT .
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Algorithm 1 Policy-Guided Path Reasoning

1: Input:u, π(·|s, Ãu), T , {K1, . . . ,KT }
2: Output:path set PT , probability set QT , reward setRT

3: Initialize P0 ← {{u}}, Q0 ← {1},R0 ← {0}
4: for t← 1, . . . , T do
5: Initialize Pt ← ∅, Qt ← ∅,Rt ← ∅
6: for p̂ ∈ Pt−1, q̂ ∈ Qt−1, r̂ ∈ Rt−1 do . path p̂ .

= {u, r1, . . . , rt−1, et−1}
7: Set st−1 ← (u, et−1, ht−1)
8: Get user-conditional pruned action space Ãt−1(u) from environment given state st−1 .
p(a)

.
= π(a | st−1, Ãu,t−1) and a .

= (rt, et)

9: Actions At ←
{
a | rank(p(a)) ≤ Kt, ∀a ∈ Ãt−1(u)

}
10: for a ∈ At do
11: Get st, Rt+1 from environment given action a
12: Save new path p̂ ∪ {rt, et} to Pt
13: Save new probability p(a) q̂ to Qt
14: Save new reward Rt+1 + r̂ toRt
15: Save ∀p̂ ∈ PT if the path p̂ ends with an item
16: return filtered PT ,QT ,RT

As output, it delivers a candidate set of T -hop paths PT for the user with corresponding

path generative probabilitiesQT and path rewardsRT . Note that each path pT (u, in) ∈ PT

ends with an item entity associated with a path generative probability and a path reward.

For the acquired candidate paths, there may exist multiple paths between the user u

and item in. Thus, for each pair of (u, in) in the candidate set, we select the path from PT

with the highest generative probability based on QT as the one to interpret the reasoning

process of why item in is recommended to u. Finally, we rank the selected interpretable

paths according to the path reward in RT and recommend the corresponding items to the

user.

2.4 Experiments

In this section, we extensively evaluate the performance of our PGPR method on real-world

datasets. We first introduce the benchmarks for our experiments and the corresponding ex-

perimental settings. Then we quantitatively compare the effectiveness of our model with

other state-of-the-art approaches, followed by ablation studies to show how parameter vari-
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CDs & Vinyl Clothing Cell Phones Beauty

Entities Description Number of Entities
User User in recommender system 75,258 39,387 27,879 22,363
Item Product to be recommended to users 64,443 23,033 10,429 12,101
Feature A product feature word from reviews 202,959 21,366 22,493 22,564
Brand Brand or manufacturer of the product 1,414 1,182 955 2,077
Category Category of the product 770 1,193 206 248

Relations Description Number of Relations per Head Entity

Purchase User
purchase−−−−→ Item 14.58± 39.13 7.08± 3.59 6.97± 4.55 8.88± 8.16

Mention User mention−−−−→ Feature 2, 545.92± 10, 942.31 440.20± 452.38 652.08± 1335.76 806.89± 1344.08

Described by Item
described by−−−−−−→ Feature 2, 973.19± 5, 490.93 752.75± 909.42 1, 743.16± 3, 482.76 1, 491.16± 2, 553.93

Belong to Item
belong to−−−−→ Category 7.25± 3.13 6.72± 2.15 3.49± 1.08 4.11± 0.70

Produced by Item
produced by−−−−−−→ Brand 0.21± 0.41 0.17± 0.38 0.52± 0.50 0.83± 0.38

Also bought Item
also bought−−−−−→ Item 57.28± 39.22 61.35± 32.99 56.53± 35.82 73.65± 30.69

Also viewed Item also viewed−−−−−→ another Item 0.27± 1.86 6.29± 6.17 1.24± 4.29 12.84± 8.97

Bought together Item
bought together−−−−−−−→ another Item 0.68± 0.80 0.69± 0.90 0.81± 0.77 0.75± 0.72

Table 2.1: Descriptions and statistics of four Amazon e-commerce datasets: CDs & Vinyl,
Clothing, Cell Phones and Beauty.

ations influence our model.

2.4.1 Data Description

All experiments are conducted on the Amazon e-commerce datasets collection [43], con-

sisting of product reviews and meta information from Amazon.com. The datasets include

four categories: CDs and Vinyl, Clothing, Cell Phones and Beauty. Each category is con-

sidered as an individual benchmark that constitutes a knowledge graph containing 5 types

of entities and 7 types of relations. The description and statistics of each entity and relation

can be found in Table 2.1. Note that once the type of head entity and relation are provided,

the type of tail entity is uniquely determined. In addition, as shown in Table 2.1, we find

that Mention and Described by account for a very large proportion among all relations.

These two relations are both connected to the Feature entity, which may contain redun-

dant and less meaningful words. We thus adopt TF-IDF to eliminate less salient features

in the preprocessing stage: For each dataset, we keep the frequency of feature words less

than 5,000 with TF-IDF score > 0.1. We adopt the same data split rule as in previous work

[146], which randomly sampled 70% of user purchases as the training data and took the rest

30% as test. The objective in the KGRE-Rec problem is to recommend items purchased by
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users in the test set together with reasoning paths for each user–item pair.

2.4.2 Experimental Setup

Baselines & Metrics We compare our results against previous state-of-the-art methods.

BPR [105] is a Bayesian personalized ranking model that learns latent embeddings of users

and items. BPR-HFT [85] is a Hidden Factors and Topics (HFT) model that incorporates

topic distributions to learn latent factors from reviews of users or items. VBPR [44] is the

Visual Bayesian Personalized Ranking method that builds upon the BPR model but incor-

porates visual product knowledge. TransRec [42] invokes translation-based embeddings

for sequential recommendation. It learns to map both user and item representations in a

shared embedding space through personalized translation vectors. DeepCoNN or Deep Co-

operative Neural Networks [153] are a review-based convolutional recommendation model

that learns to encode both users and products with reviews assisting in rating prediction.

CKE or Collaborative Knowledge base Embedding [145] is a modern neural recommender

system based on a joint model integrating matrix factorization and heterogeneous data for-

mats, including textual contents, visual information and a structural knowledge base to in-

fer the top-N recommendations results. JRL [146] is a start-of-the-art joint representation

learning model for top-N recommendation that utilizes multimodal information including

images, text and ratings into a neural network. Note that we did not include [130] as a

baseline because we are unable to enumerate all the possible paths between user–item pairs

due to the large scale of our datasets.

All models are evaluated in terms of four representative top-N recommendation mea-

sures: Normalized Discounted Cumulative Gain (NDCG), Recall, Hit Ratio (HR) and

Precision (Prec.). These ranking metrics are computed based on the top-10 predictions for

every user in the test set.
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Implementation Details The default parameter settings across all experiments are as

follows. For the KGRE-Rec problem, we set the maximum path length to 3 based on

the assumption that shorter paths are more reliable for users to interpret the reasons of

recommendation. For models’ latent representations, the embeddings of all entities and

relations are trained based on the 1-hop scoring function defined in Equation 2.11, and the

embedding size is set to 100. On the RL side, the history vector ht is represented by the

concatenation of embeddings of et−1 and rt, so the state vector st = (u, et, et−1, rt) is

of size 400. The maximum size of the pruned action space is set to 250, i.e., there are

at most 250 actions for any state. To encourage the diversity of paths, we further adopt

action dropout on the pruned action space with a rate of 0.5. The discount factor γ is

0.99. For the policy/value network, W1 ∈ R400×512, W2 ∈ R512×256, Wp ∈ R256×250

and Wv ∈ R256×1. For all four datasets, our model is trained for 50 epochs using Adam

optimization. We set a learning rate of 0.001 and a batch size of 64 for the CDs & Vinyl

dataset, and a learning rate of 0.0001 and batch size of 32 for the other datasets. The weight

of the entropy loss is 0.001. In the path reasoning phase, we set the sampling sizes at each

step to K1 = 20, K2 = 10, K3 = 1 for CDs & Vinyl, and K1 = 25, K2 = 5, K3 = 1 for the

other three datasets.

2.4.3 Quantitative Analysis

In this experiment, we quantitatively evaluate the performance of our model on the recom-

mendation problem compared to other baselines on all four Amazon datasets. We follow

the default setting as described in the previous section.

The results are reported in Table 2.2. Overall, our PGPR method consistently outper-

forms all other baselines on all datasets in terms of NDCG, Hit Rate, Recall and Precision.

For example, it obtains a 3.94% NDCG improvement over the best baseline (JRL) on the

CDs & Vinyl dataset, a significant improvement of 64.73% on Clothing, 15.53% on Cell

Phone, and 23.95% on Beauty. Similar trends can be observed for Recall, Hit Rate and
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Dataset CDs & Vinyl Clothing

Measures (%) NDCG Recall HR Precision NDCG Recall HR Precision

BPR 2.009 2.679 8.554 1.085 0.601 1.046 1.767 0.185
BPR-HFT 2.661 3.570 9.926 1.268 1.067 1.819 2.872 0.297
VBPR 0.631 0.845 2.930 0.328 0.560 0.968 1.557 0.166
TransRec 3.372 5.283 11.956 1.837 1.245 2.078 3.116 0.312
DeepCoNN 4.218 6.001 13.857 1.681 1.310 2.332 3.286 0.229
CKE 4.620 6.483 14.541 1.779 1.502 2.509 4.275 0.388
JRL 5.378∗ 7.545∗ 16.774∗ 2.085∗ 1.735∗ 2.989∗ 4.634∗ 0.442∗

PGPR (Ours) 5.590 7.569 16.886 2.157 2.858 4.834 7.020 0.728

Dataset Cell Phones Beauty

Measures (%) NDCG Recall HR Precision NDCG Recall HR Precision

BPR 1.998 3.258 5.273 0.595 2.753 4.241 8.241 1.143
BPR-HFT 3.151 5.307 8.125 0.860 2.934 4.459 8.268 1.132
VBPR 1.797 3.489 5.002 0.507 1.901 2.786 5.961 0.902
TransRec 3.361 6.279 8.725 0.962 3.218 4.853 0.867 1.285
DeepCoNN 3.636 6.353 9.913 0.999 3.359 5.429 9.807 1.200
CKE 3.995 7.005 10.809 1.070 3.717 5.938 11.043 1.371
JRL 4.364∗ 7.510∗ 10.940∗ 1.096∗ 4.396∗ 6.949∗ 12.776∗ 1.546∗

PGPR (Ours) 5.042 8.416 11.904 1.274 5.449 8.324 14.401 1.707

Table 2.2: Overall recommendation effectiveness of our method compared to other base-
lines on four Amazon datasets. The results are reported in percentage (%) and are calcu-
lated based on the top-10 predictions in the test set. The best results are highlighted in bold
and the best baseline results are marked with a star (∗).

Precision on all datasets. This shows that searching for reasoning paths over the knowl-

edge graph provides substantial benefits for product recommendation and hence—even in

the absence of interpretability concerns—is a promising technique for recommendation

over graphs. Our path reasoning process is guided by the learned policy network that in-

corporates rich heterogeneous information from knowledge graphs and captures multi-hop

interactions among entities (e.g., user mentions feature, feature is described by item, item

belongs to category, etc.). This also largely contributes to the promising recommendation

performance of our method. Besides, we notice that directly applying TransE for recom-

mendation [1] slightly outperforms ours. It can be regarded as a single-hop latent matching

method, but the post-hoc explanations do not necessarily reflect the true reason of gener-

ating a recommendation. In contrast, our methods generate recommendations through an
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Dataset # Valid Paths/User # Items/User # Paths/Item

CDs & Vinyl 173.38± 29.63 120.53± 25.04 1.44± 1.12
Clothing 60.78± 7.00 37.21± 7.23 1.63± 1.25
Cell Phone 117.22± 13.12 57.99± 14.29 2.02± 2.34
Beauty 59.95± 6.28 36.91± 7.24 1.62± 1.25

Table 2.3: Results of number of valid paths per user, number of unique items per user and
number of paths per item.

explicit path reasoning process over knowledge graphs, so that the explanations directly

reflect how the decisions are generated, which makes the system transparent.

Furthermore, we examine the efficiency of our method in finding valid reasoning paths.

A path is deemed valid if it starts from a user and ends at an item entity within three hops

(i.e., at most four entities in a path). As shown in Table 2.3, we respectively report the

average number of valid paths per user, the average number of unique items per user, and

the average number of supportive paths per item. We observe two interesting facts. First,

the success rate of our method to find valid paths is around 50%, which is calculated as the

number of valid paths out of all sampled paths (200 paths for CDs & Vinyl dataset and 125

for others). Especially for the Cell Phone dataset, almost all paths are valid. Considering

that the number of all possible paths from each user to items is very large and the difficulty

of our recommendation problem is particularly high, these results suggest that our method

performs very well in regard to path finding properties. Second, each recommended item is

associated with around 1.6 reasoning paths. This implies that there are multiple reasoning

paths that can serve as supportive evidence for each recommendation. One could hence

consider providing more than one of these if users request further details.

2.4.4 Influence of Action Pruning Strategy

In this experiment, we evaluate how the performance of our model varies with different

sizes of pruned action spaces.

Recall that conditioned on the starting user, the action space is pruned according to the
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Figure 2.3: Recommendation effectiveness of our model under different sizes of pruned
action spaces on the Clothing dataset. The results using multi-hop scoring function are also
reported.

scoring function defined in Equation 2.9, where actions with larger scores are more likely

to be preserved. In other words, larger action spaces contain more actions that are less

relevant to the user. This experiment aims to show whether larger action spaces are helpful

in exploring more reasoning paths to find potential items. We experiment on two selected

datasets, Beauty and Clothing, and follow the default setting from the previous section,

except that the size of the pruned action space is varied from 100 to 500 with a step size of

50. The results on two datasets are plotted in Figure 2.3 and Figure 2.4, respectively. The

best baseline method JRL is also reported in the figures for comparison. Its performance

does not depend on the action space.

There are two interesting observations in the results. First, our model outperforms JRL

under most choices of pruned action space sizes. Take the Clothing dataset as an example.

As shown in Figure 2.3, for any metric among NDCG, Recall, Hit Rate and Precision, the

blue curve of our method is consistently above the red curve of JRL by a large margin for

all sizes ranging from 100 to 500. The results further demonstrate the effectiveness of our
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Figure 2.4: Recommendation effectiveness of our model under different sizes of pruned
action spaces on the Beauty dataset. The results using multi-hop scoring function are also
reported.

method compared to other baselines. Second, the performance of our model is slightly

influenced by the size of the pruned action space. As shown in both figures, the common

trend is that a smaller pruned action space leads to better performance. This means that the

scoring function is a good indicator for filtering proper actions conditioned on the starting

user. Another possible reason is that larger action spaces require more exploration in RL,

but for fair comparison, we set the same parameters such as learning rate and training steps

across all different choices of action space, which may lead to suboptimal solutions in cases

of larger action spaces.

2.4.5 Multi-Hop Scoring Function

Besides action pruning and the reward definition, the scoring function is also used as a part

of the objective function in training the knowledge graph representation. By default, we

employ a 1-hop scoring function for representation learning. In this experiment, we explore

whether multi-hop scoring functions can further improve the recommendation performance
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of our method.

In particular, the 2-hop scoring function from Equation 2.9 is: f(e0, e2|r̃2,2) = 〈e0 +

r1 + r2, e2〉 + be2 for any valid 2-hop pattern r̃2,2 = {r1, r2} between entities e0 and e2.

This function is plugged into the objective function in Equation 2.14 for training entity

and relation embeddings. All further settings are adopted from the previous action space

experiment. We also plot the results in Figure 2.3 and Figure 2.4 with an additional green

curve representing our new model trained by the 2-hop scoring function. Surprisingly,

we find that our 2-hop PGPR method further outperforms the default model (blue curve).

This improvement mainly stems from the effectiveness of the multi-hop scoring function,

which captures interactions between entities with longer distance. For example, if a user

purchases an item and the item belongs to a category, the 2-hop scoring function enhances

the relevance between the User entity and the Category entity through the 2-hop pattern

{Purchase, Belong to}.

2.4.6 Sampling Size in Path Reasoning

In this experiment, we study how the sampling size for path reasoning influences the rec-

ommendation performance of our method.

We carefully design 9 different combinations of sampling sizes given a path length of

3. As listed in the first column of Table 2.4, each tuple (K1, K2, K3) means that the we

sample top Kt actions at step t as described in Algorithm 1. For fair comparison, the

total number of sampling paths (= K1 × K2 × K3) is fixed to 120 (except for the first

case). We experiment on the Clothing and Beauty datasets and follow the default settings

of other parameters. The recommendation results in terms of NDCG, Recall, Hit Rate and

Precision are reported in Table 2.4. Interestingly, we observe that the first two levels of

sampling sizes play a more significant role in finding good paths. For example, in the cases

of (25, 5, 1), (20, 6, 1), (15, 8, 1), (12, 10, 1), (10, 12, 1), our model performs much better

than in the rest of cases. One explanation is that the first two selections of actions largely
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Dataset Clothing Beauty

Sizes NDCG Recall HR Precision NDCG Recall HR Precision

25, 5, 1 2.858 4.834 7.020 0.728 5.449 8.324 14.401 1.707
20, 6, 1 2.918 4.943 7.217 0.749 5.555 8.470 14.611 1.749
20, 3, 2 2.538 4.230 6.177 0.636 4.596 6.773 12.130 1.381
15, 8, 1 2.988 5.074 7.352 0.767 5.749 8.882 15.268 1.848
15, 4, 2 2.605 4.348 6.354 0.654 4.829 7.138 12.687 1.458
12, 10, 1 3.051 5.207 7.591 0.791 5.863 9.108 15.599 1.905
12, 5, 2 2.700 4.525 6.575 0.679 4.968 7.365 13.168 1.519
10, 12, 1 3.081 5.271 7.673 0.797 5.926 9.166 15.667 1.920
10, 6, 2 2.728 4.583 6.733 0.693 5.067 7.554 13.423 1.559

Table 2.4: Influence of sampling sizes at each level on the recommendation quality. The
best results are highlighted in bold and the results under the default setting are underlined.
All numbers in the table are given in percentage (%).

determine what kinds of items can be reached. After the first two steps are determined, the

policy network tends to converge to selecting the optimal action leading to a good item. On

the other hand, our model is quite stable if the sample sizes at the first two levels are large,

which offers a good guidance for parameter tuning.

2.4.7 History Representations

Finally, we examine how different representations of state history influence our method.

We consider three alternatives for ht: no history (0-step), last entity et−1 with relation rt

(1-step), and last two entities et−2, et−1 with relations rt−1, rt (2-step). Other settings are the

same as in the previous experiments. As shown in Table 2.5, we find that the worst results

are obtained in the 0-step case, which suggests that a state representation without history

cannot provide sufficient information for the RL agent to learn a good policy. Apart from

this, the performance of using 2-step history is slightly worse than that of 1-step history.

One possible reason is that additional history information is redundant and even misleads

the algorithm in the decision-making process.
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Dataset Clothing Beauty

History NDCG Recall HR Precision NDCG Recall HR Precision

0-step 1.972 3.117 4.492 0.462 3.236 4.407 8.026 0.888
1-step 2.858 4.834 7.020 0.728 5.449 8.324 14.401 1.707
2-step 2.786 4.702 6.865 0.710 5.342 8.181 14.168 1.669

Table 2.5: Results for different history representations of state. All numbers in the table
are given in percentage (%).
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Figure 2.5: All 3-hop path patterns found in the results.

2.4.8 Case Study on Path Reasoning

To intuitively understand how our model interprets the recommendation, we give a case

study here based on the results generated in the previous experiments. We first study the

path patterns discovered by our model during the reasoning process, followed by various

cases for recommendation.

Path patterns For a fixed path length of 3, we find that our method managed to dis-

cover 15 different path patterns, which are plotted in an aggregated form in Figure 2.5.

Interestingly, the pattern
{

user
purchase−−−−−→ item

purchase←−−−−− user
purchase−−−−−→ item

}
is one kind of

collaborative filtering.
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Figure 2.6: Real cases of recommendation reasoning paths.

Case study As shown in Figure 2.6, we provide several real-world examples of the

reasoning paths generated by our method to illustrate how to interpret recommendations

through paths.

The first example (Case 1) comes from the Beauty dataset, where a user purchased

an item “shampoo” that was described by two feature words “nourish” and “lightening”.

Meanwhile, another item “conditioner” also contained these two features in some review.

Therefore, our model recommended “conditioner” to this user. In the second example

(Case 2), there are two users who both mentioned the feature words “run” and “comfort”

in their reviews, so our method made a decision based on the purchase history of one user,

by recommending the item “running shoes” purchased by the user to the other user. In

the third example (Case 3), a user bought an item “iPhone” and also viewed another item

“charger line”. Considering that other users who purchased “phone case” would also buy

“charger line”, our method accordingly recommended “iPhone case” to the user. The last

example (Case 4) depicts that one user purchased an item “neck chain”, which belonged
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to the category of “Hello Kitty”. Thus, our method recommended the user another item

“key chain” that was also in the same category “Hello Kitty”. We conclude that our PGPR

method not only achieves promising recommendation results, but also is able to efficiently

find diverse reasoning paths for the recommendations.

2.5 Conclusion and Future Work

We believe that future intelligent agents should have the ability to perform explicit reason-

ing over knowledge for decision making. In this chapter, we propose RL-based reason-

ing over knowledge graphs for recommendation with interpretation. To achieve this, we

develop a method called Policy-Guided Path Reasoning (PGPR). Based on our proposed

soft reward strategy, user-conditional action pruning strategy, and a multi-hop scoring ap-

proach, our RL-based PGPR algorithm is not only capable of reaching outstanding recom-

mendation results, but also exposes its reasoning procedure for explainability. We conduct

extensive experiments to verify the performance of our approach compared with several

state-of-the-art baselines. It should be noted that our PGPR approach is a flexible graph

reasoning framework and can be extended to many other graph-based tasks such as product

search and social recommendation, which will be explored in the future. We can also ex-

tend our PGPR approach to model time-evolving graphs so as to provide dynamic decision

support.
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CHAPTER 3

NEURAL SYMBOLIC REASONING

Recent research explores incorporating knowledge graphs (KG) into e-commerce recom-

mender systems, not only to achieve better recommendation performance, but more impor-

tantly to generate explanations of why particular decisions are made. This can be achieved

by explicit KG reasoning, where a model starts from a user node, sequentially determines

the next step, and walks towards an item node of potential interest to the user. However, this

is challenging due to the huge search space, unknown destination, and sparse signals over

the KG, so informative and effective guidance is needed to achieve a satisfactory recom-

mendation quality. To this end, we propose a CoArse-to-FinE neural symbolic reasoning

approach (CAFE). It first generates user profiles as coarse sketches of user behaviors, which

subsequently guide a path-finding process to derive reasoning paths for recommendations

as fine-grained predictions. User profiles can capture prominent user behaviors from the

history, and provide valuable signals about which kinds of path patterns are more likely

to lead to potential items of interest for the user. To better exploit the user profiles, an

improved path-finding algorithm called Profile-guided Path Reasoning (PPR) is also devel-

oped, which leverages an inventory of neural symbolic reasoning modules to effectively

and efficiently find a batch of paths over a large-scale KG. We extensively experiment on

four real-world benchmarks and observe substantial gains in the recommendation perfor-

mance compared with state-of-the-art methods.

3.1 Introduction

Recommender systems on modern e-commerce platforms serve to support the personal-

ization of the customer shopping experience by presenting potential products of interest

to users [113, 34]. They draw on diverse forms of historical user behavior, including but
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Figure 3.1: A motivating example of KG reasoning for e-commerce recommendation.
Given the start user, the target destinations (i.e., items to recommend) are unknown be-
forehand. The goal is – guided by user behavior patterns (bold edges) – to sequentially
determine the next step traversing the KG towards potential items of interest as recom-
mendations (e.g., Screen protector and Surface Dock). Two possible reasoning paths are
marked with red arrows, which are taken as explanations to the recommendations.

not limited to past browsing and previously purchased products, written reviews, as well

as added favorites [22]. The models are expected to capture customized patterns of user

preference across products, and hence can be leveraged to provide more accurate recom-

mendations [73]. In addition to accuracy-driven recommendation, it has become increas-

ingly important in modern e-commerce systems to present auxiliary explanations of the

recommendations [147], i.e., the system aims to supply customers with product recom-

mendations accompanied by informative explanations about why those products are being

recommended.

In this regard, knowledge graphs (KG) [47] have recently come to prominence to ad-

dress both requirements. A KG can not only provide abundant information about users and

items, but can also enable explainable recommendations via explicit KG reasoning [1, 136,

127]: Starting from a user node, the system sequentially determines the next-hop nodes,

and moves towards potential items of interest for the user. The derived path explicitly

traces the decision-making process and can naturally be regarded as an explanation for the
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recommended item. For instance, as shown in Figure 3.1, one possible reasoning path is

User Comment−−−−→ “Scratch-proof”
Described by−1

−−−−−−−−→ “Screen protector”, where the product “Screen

protector” is directly used as a recommendation.

Although KG reasoning for explainable recommendation is promising, several issues

still remain to be addressed. First, in order to make use of the reasoning paths to explain

the decision-making process, the recommendations are supposed to be derived along with

the KG reasoning. However, many existing approaches [1, 129] first predict the items to

be recommended, and subsequently conduct a separate search for paths matching the user–

item pair. Addressing these tasks in isolation means that the explanation may not reflect the

actual decision making process for the recommendation. Moreover, this fails to allow the

recommendation decision making to benefit from the KG reasoning process. We discuss

this further in subsection 3.2.3.

Second, previous work on KG reasoning has largely neglected the diversity of user be-

havior in the historical activity data. Most approaches consider only item-side knowledge

integrated from external sources, such as Freebase [150, 127] or product graphs [1, 23],

restricting user-side information to simple user interactions (e.g., purchasing a product or

rating a movie). However, in e-commerce recommendation, user purchases may be trig-

gered by different aspects of past behavior. As an example, in Figure 3.1, the user having

purchased product “Pixel 4” may contribute to the keyword “Camera” that the user men-

tioned in the comment, or to the brand (“Google”) of some product (“Home Mini”) owned

by the user. User behavior patterns of this sort can be extracted to guide future recommen-

dations (“Screen protectors” or “Surface Dock”).

Last but not least, a lack of effective guidance on path reasoning makes it less efficient

in finding potential paths in the large search space of the KG. Due to the large scale of the

KG and the unknown destination before path-finding, in practice, it is infeasible to follow

previous methods that enumerate paths among all user–item pairs to choose the best one.

Other works [136, 77] adopt reward shaping from reinforcement learning [122] to alleviate
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the issue. However, the reward signal is sparse and cannot effectively and efficiently guide

the model to arrive at correct items for recommendation.

In this chapter, we seek to answer the following three questions regarding the task of

KG reasoning for explainable recommendation: 1) Instead of isolating recommendation

and path-finding, how to directly perform path reasoning to arrive at items of interest so

that the derived paths can explain the recommendation process? 2) Besides rich item-side

information, how to explicitly model diverse user behaviors from historical activities so

that they can be exploited to provide good guidance in finding potential paths? 3) Upon

modeling behavior, how to exploit the user model to conduct the path reasoning in a both

effective and efficient manner?

To this end, we propose a CoArse-to-FinE neural symbolic reasoning method (CAFE),

which first generates a coarse sketch of past user behavior, and then conducts path reasoning

to derive recommendations based on the user model for fine-grained modeling. We draw

inspiration from the literature in linguistics [100, 91], where the human writing process

consists of multiple stages focusing on different levels of granularity. This has also been

invoked in NLP tasks such as long review generation, where coarse-level aspects are first

sketched to guide the subsequent long text generation [71, 21, 29]. In this work, we first

compose a personalized user profile consisting of diverse user-centric patterns, each of

which captures prominent coarse-grained behavior from historical user activities. Each

profile can provide effective guidance on what patterns of reasoning paths may more likely

lead to potential items of interest for a given user. To fully exploit the profile, we maintain

an inventory of neural symbolic reasoning modules and accordingly design a path-finding

algorithm to efficiently conduct batch path reasoning under the guidance of such profiles.

Recommendations are consequently acquired from the batch of reasoning paths produced

by the algorithm.

This work makes four key contributions.

• First, we highlight important shortcomings of past KG reasoning approaches for explain-
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able recommendation, where path-reasoning and recommendation are addressed in iso-

lation.

• Second, we introduce a coarse-to-fine paradigm to approach the problem by explicitly

injecting diverse user behavior modeling into the KG reasoning process.

• Third, we propose a novel profile-guided path reasoning algorithm with neural symbolic

reasoning modules to effectively and efficiently find potential paths for recommenda-

tions.

• Fourth, we experiment on four real-world e-commerce datasets showing that our model

yields high-quality recommendation results and the designed components are effective.

3.2 Preliminaries

3.2.1 Concepts and Notations

In e-commerce recommendation, a knowledge graph (or product graph) denoted by Gp is

constructed to capture rich meta-information of products on the platform. It is defined to be

a set of triples, Gp = {(e, r, e′) | e, e′ ∈ Ep, r ∈ Rp}, where Ep andRp respectively denote

the sets of entities and relations. A special subset of entities are called products (items),

denoted by I ⊆ Ep. Each triple (e, r, e′) ∈ Gp represents a fact indicating that head entity

e interacts with tail entity e′ through relation r.

At the same time, diverse user activities can also be modeled as a heterogeneous graph

denoted by Gu = {(e, r, e′) | e, e′ ∈ Eu, r ∈ Ru}, where Eu and Ru are entity and relation

sets satisfying that user set U ⊆ Eu, item set I ⊆ Eu, and user–item interaction rui ∈ Ru.

When |Ru| = 1 and Eu = U ∪ I, Gu is a bipartite user–item graph. Here, we assume Gu is

the general user interaction graph consisting of diverse interactions and objects, e.g., a user

can make comments as in Figure 3.1.

For convenience, we unify both product graph and user interaction graph into the same

framework, which we call User-centric KG, denoted as G = Gp ∪ Gu with combined entity



42

set E = Ep ∪ Eu and relation set R = Rp ∪ Ru. In the remainder of this chapter, the term

KG generally refers to this User-centric KG.

A path in the KG is defined as a sequence of entities and relations, denoted by L =

{e0, r1, e2, . . . , r|L|, e|L|} (or simply Le0 e|L|), where e0, . . . , e|L| ∈ E , r1, . . . , r|L| ∈ R and

(et−1, rt, et) ∈ G for t = 1, . . . , |L|. To guarantee the existence of paths, inverse edges

are added into the KG, i.e., if (e, r, e′) ∈ G, then (e′, r−1, e) ∈ G, where r−1 denotes the

inverse relation with respect to r ∈ R. One kind of path of particular interest is called a

user-centric path. Such a path originates at a user entity (e0 ∈ U) and ends with an item

entity (e|L| ∈ I). We also define a user-centric pattern π to be a relational path between a

user and an item, π = {r1, . . . , r|π|}. Hence, the relation sequence of any user-centric path

forms a user-centric pattern. Such a pattern can be viewed as a semantic rule that describes

a specific user behavior towards a product via some actions (relations) on the e-commerce

platform. Additionally, we define the user profile Tu of user u to be an aggregation of user-

centric patterns with weights, Tu = {(π1, w1), . . . , (π|Tu|, w|Tu|)}, where w1, . . . , w|Tu| ∈ N

are the weights of patterns. Each user profile distinctively characterizes prominent user

behavior from the purchase history as well as diverse other activities, and can be leveraged

to guide KG reasoning for recommendation (subsection 3.3.2).

3.2.2 Problem Formulation

In this work, we study the problem of KG reasoning for explainable recommendation in an

e-commerce scenario [136]. By leveraging rich information in the KG, we aim to predict

a set of items as recommendations for each user along with the corresponding user-centric

paths as the explanation. The problem is formulated as follows.

Definition 3.2.1. (Problem Definition) Given an incomplete user-centric KG G and an in-

teger K, for each user u ∈ U , the goal is to generate

1. a set of K items
{
i(k)
∣∣i(k) ∈ I, (u, rui, i(k)) 6∈ G, k ∈ [K]

}
, and
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2. K corresponding user-centric paths {Lu i(k)}k∈[K].

3.2.3 A Coarse-to-Fine Paradigm

The general framework to approach the problem in Def. 3.2.1 consists of two parts: a

recommendation component frec and a path inference component fpath. In most existing

approaches [1, 125, 129, 83, 136], frec : u, i 7→ R estimates a similarity score between user

u and an item i using enriched information from the KG. fpath : u, i 7→ L outputs a user-

centric path L given user u and item i (sometimes i is not necessary as input [136]). The

major differences between existing works lie in 1) the technical implementation and 2) the

composition and execution order of these components. Below we revisit the existing KG

reasoning paradigms and highlight the benefits of the proposed coarse-to-fine paradigm.

Rec-First Paradigm One group of approaches [1, 125, 129] first makes recommenda-

tions via frec, followed by a separate process fpath to search paths that best match the

predicted user–item pair:

î = argmax
i∈I

frec(u, i;G), L̂u î = fpath(u, î;G),

where î, L̂u î are the predicted item and path, respectively. Common choices of frec include

KG embeddings [5, 125] and relational graph neural networks [114, 129]. fpath usually

refers to a path ranking model [136, 28] or graph search algorithm [16, 1]. However, it is

worth noting that one critical limitation of this paradigm is the isolation of recommendation

frec and path selection fpath. This may degrade recommendation performance, as it is

solely determined by frec, but fails to benefit from the post-hoc path-finding of fpath. More

importantly, the reported path is not a genuine explanation of the actual recommendation

process.
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Path-Guided Paradigm Another line of work [136] first uses fpath to perform path-

finding with unknown destination and the reached item is naturally adopted as the recom-

mendation:

L̂u eT = fpath(u,−;Gu), î = eT ,

where “−” means no item is required as input and eT is the last entity of path L̂u eT . Here,

fpath usually adopts a multi-step reasoning model such as a policy network [122, 77, 136]

to sequentially pick the next step in the KG. Since the recommendation is derived along

with the path inference results, fpath implicitly contains the recommendation process, and

the resulting path can be used to track and explain the decision-making process. However,

due to the challenges of unknown destinations and the huge search space of KG, the signals

(e.g., rewards) are very sparse and cannot effectively guide the path inference to achieve

satisfactory recommendation, in comparison with Rec-First approaches.

Coarse-to-Fine Paradigm To achieve direct path reasoning while simultaneously ob-

taining competitive recommendation performance, we propose a novel coarse-to-fine paradigm.

In the coarse stage, we introduce a new component fprofile : u 7→ Tu that composes a

user profile Tu to capture prominent user behavior from historic data (details in subsec-

tion 3.3.1). Then, for fine-grained modeling, an improved variant of path inference com-

ponent f ′path : u, Tu 7→ L is developed to perform multi-step path reasoning guided by the

composed user profile (details in subsection 3.3.2):

Tu = fprofile(u;Gu), L̂u eT = f ′path(u, Tu;Gu), î = eT . (3.1)

The path reasoning relies on a one-step reasoner φ with learnable parameter Θ (see subsub-

section 3.3.1). It determines the tth step action by estimating the probability PΘ(rt, et|u, ht)

of choosing an outgoing edge (rt, et) given user u and history trajectory ht = {r1, e1, . . . , rt−1, et−1}.
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Figure 3.2: Illustration of CAFE, a coarse-to-fine KG reasoning approach. (a) Given a KG
and a start user, the goal is to conduct multi-step path reasoning to derive recommendations.
(b) In the coarse stage, a personalized user profile is constructed based on historic user
behavior in the KG. (c) To make use of the user profile in path reasoning, an inventory
of neural symbolic reasoning modules is maintained. (d) In the fine stage, a layout tree is
composed with the modules based on the user profile, which is exploited by the proposed
PPR algorithm (Algorithm 2) to produce (e) a batch of paths along with recommendations.

Therefore, we can estimate the probability of a multi-step path L = {u, r1, e1, . . . , rT , eT}

being generated by φ:

logPΘ(L|u) =
T∑
t=1

logPΘ(rt, et|u, ht) (3.2)

This paradigm has three notable benefits.

• Explicit user modeling from fprofile can detect prominent user-centric patterns, which

assist the path reasoning process in arriving at potential items of interest to the user.

• Path inference via f ′path is conducted under the guidance of the user profile so as to

improve both the effectiveness and efficiency of the path-finding process.

• The reasoner φ is decomposed into an inventory of neural reasoning modules, which can

be composed on the fly based on the user profile to execute f ′path.
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3.3 Methodology

Under the coarse-to-fine paradigm, we present a corresponding method called CAFE to

approach the problem of KG reasoning for recommendation. As illustrated in Figure 3.2,

given a KG (a), a user profile is first composed to capture prominent user-centric patterns

in the coarse stage (b). To conduct multi-hop path reasoning guided by the user profile,

we decompose the reasoner φ into an inventory of neural reasoning modules (c). In the

fine stage, the selective neural symbolic reasoning modules are composed based on the

user profile (d), which are exploited by a Profile-guided Path Reasoning (PPR) algorithm

to efficiently perform batch path reasoning for recommendation (e).

3.3.1 Coarse-Stage: User Profile Composition

Given a user u, the goal of fprofile is to find a set of user-centric patterns that can distinctively

characterize user behaviors, so that the potential paths with these patterns are more likely to

arrive at items of interest to the given user. Since e-commerce KGs usually contain a large

number of relations, we first adopt an off-the-shelf random walk based algorithm [68] to

produce a candidate set of M user-centric patterns, Π = {π1, π2, . . . , πM}, with maximum

length H , from interacted user–item pairs in G. To compose the user profile, one naive way

is to assign the weights in proportion to the frequency of these retrieved patterns. However,

this only provides overall information of user behavior towards items and is empirically

shown not to achieve satisfying performance compared to personalized user profile (details

in subsection 3.4.3).

Personalized Pattern Selection

The task of user profile composition now turns to selecting a subset from Π and assigning

weights that reflect the prominent behaviors for each user. Formally, let VΘ(u, π) be the

prominence of a user-centric pattern π for user u. Intuitively, if π is prominent with a larger
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value of VΘ(u, π), it is more likely that the reasoning model φ can derive a path with pattern

π from u to potential items of interest. Hence, we define VΘ(u, π) to be the likelihood of

“correct” paths being generated by φ:

VΘ(u, π) = EL∼Dπ [logPΘ(L | u)], (3.3)

where Dπ denotes the set of paths with pattern π between the user u and interacted items in

Gu, and logPΘ(L|u) is defined in Equation 3.2. Here, we assume the reasoner φ has been

trained and the parameter Θ is fixed. The representation and model learning details will be

discussed in subsubsection 3.3.1.

With the help of VΘ(u, π), we propose a heuristic method to select prominent patterns

to compose the profile for each user. Specifically, the goal is to determine the weights

{w1, . . . , wM} of candidate patterns in Π and only the patterns with positive weights are

kept. This can be formalized as an optimization problem:

max
w1,...,wM

∑
j

wj VΘ(u, πj)

s.t.
∑
j

wj = K, 0 ≤ wj ≤ Kj, j ∈ [M ],

(3.4)

where Kj is the upper bound of the quantity of pattern πj to be adopted. The optimization

problem corresponds to the well-studied bounded knapsack problem with equal weights 1

and can be easily solved [16]. Consequently, the user profile can be derived from Equa-

tion 3.4 by Tu = {(πj, wj) | πj ∈ Π, wj > 0, j ∈ [M ]} (see example in Figure 3.2(b)).

Each positive wj specifies the number of paths with pattern πj to be generated by fpath

(subsection 3.3.2).
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Modularized Reasoning Model

As introduced in subsection 3.2.3, the reasoner φ parametrized by Θ determines the next-

step decision in path-finding. It maps the given user u and historic trajectory ht to the

conditional probability of choosing outgoing edge (rt, et), i.e., φ : u, ht 7→ PΘ(rt, et|u, ht).

Inspired by previous work [136], we can treat φ as a stochastic policy network [122]. How-

ever, instead of solving a reinforcement learning problem that requires a careful hand-

crafted design of good reward functions, we train the model φ via behavior cloning [122]

by reusing the sampled paths that are previously retrieved to produce candidate patterns Π.

Nevertheless, learning φ is still challenging due to the huge search space in the KG,

where the out-degrees of nodes can be very large and the number of connecting edges

varies from node to node. To address this, instead of representing φ as a deep and complex

neural network to increase the reasoning capability, we propose to maintain an inventory

of shallow neural symbolic reasoning modules φr with parameter Θr for each relation r in

Π, as shown in Figure 3.2(c). Each φr(u,h; Θr) : Rd × Rd 7→ Rd takes as input a user

embedding u and a history embedding h and outputs the estimated vector of the next-hop

entity. The network structure of each φr is defined as:

φr(u, h; Θr) = σ(σ([u;h]Wr,1)Wr,2)Wr,3, (3.5)

where [; ] denotes concatenation, σ(·) is a nonlinear activation function (e.g., ReLU [90]),

and Θr = {Wr,1,Wr,2,Wr,3} are the learnable parameters for the module φr.

With the module φrt , we can compute the probability

PΘ(rt, et | u, ht) ≈
1

Z
exp(〈φrt(u,ht; Θrt), et〉), (3.6)

where Z =
∑

e′t
exp(〈φrt(u,ht; Θrt), e

′
t〉) is the normalization term over all possible next-

hop entities, and 〈·, ·〉 is the dot product.
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The benefits of this design are threefold. First, the total number of parameters of main-

taining such small modules is smaller than that of a deep and complex neural network.

Second, the space of next-hop actions is reduced from (rt, et) (all outgoing edges) to et

(only the edges of given relation), since the relation can be determined by the user profile.

Third, outputting a continuous vector can effectively solve the issue of varying numbers of

outgoing edges.

Objectives We consider the set of all parameters Θ = {e|∀e ∈ E} ∪ {Θr|∀r ∈ Π},

where e denotes the entity embedding and is initialized with a pretrained KG embedding

[5]. Given a positive path L = {u, r1, e1, . . . , eT−1, rT , i
+} with (u, rui, i

+) ∈ G, the

behavior cloning aims to minimize the following loss over Θ:

`path(Θ;L) = − logPΘ(L|u) = −
T∑
t=1

logPΘ(rt, et|u, ht). (3.7)

However, the objective in Equation 3.7 only forces the reasoning modules to fit the

given path, but cannot identify which path may finally lead to potential items of interest.

Therefore, we impose an additional pairwise ranking loss `rank(Θ;L) to jointly train the

parameters Θ:

`rank(Θ;L) = −Ei−∼D−u
[
σ
(〈
i+, êT

〉
−
〈
i−, êT

〉)]
, (3.8)

where D−u denotes the set of negative items of user u, i.e., D−u = {i|i ∈ I, (u, rui, i) 6∈ G},

êT = φrT (u,hT ; ΘrT ), and σ(·) is the sigmoid function.

By aggregating Equation 3.7 and Equation 3.8 over all users in KG Gu, the overall goal

is to minimize the following objective:

`all (Θ) =
∑
u

∑
L∼Lu

`path(Θ;L) + λ`rank(Θ;L), (3.9)
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Algorithm 2 Profile-guided Path Reasoning (PPR) Algorithm
1: Input: user u, user profile Tu.
2: Output: K user-centric paths.
3: procedure MAIN()
4: Construct layout tree Tu based on user profile Tu.
5: x← ROOT(Tu), x̂← u, Lx ← {{u}}.
6: Initialize queue Q← CHILDREN(x).
7: while Q 6= ∅ do
8: x← Q.pop(), p← PARENT(x).
9: x̂← φrx(u, p̂; Θrx).

10: Initialize Lx ← {}.
11: for L ∈ Lp do
12: Ex ← {e′ | ∀(e|L|, rx, e′) ∈ G, τ(e′) = τt(rx), rank(〈x̂, e′〉) ≤ nx}.
13: Lx ← Lx ∪ (L ∪ {e′}), for e′ ∈ Ex.
14: Update Q← Q ∪ CHILDREN(x).
15: return

⋃
x∈LEAVES(Tu) Lx.

where Lu = {Lu i+ | (u, rui, i
+) ∈ Gu, pattern(Lu i+) ∈ Π}, and λ is the weighting

factor to balance between the two losses.

3.3.2 Fine-Stage: Path Reasoning for Recommendation

Given the composed user profile Tu = {(π1, w1), . . . , (πM , wM)} of user u, the goal of fpath

is to output K reasoning paths along with items such that the number of paths with pattern

πj is proportional towj . Considering that finding each path individually is inefficient due to

repeated node visitation and calculation [136], we propose a Profile-guided Path-Reasoning

algorithm (PPR) that is capable of finding a batch of paths simultaneously via selective

neural symbolic reasoning modules according to the composed user profile. As illustrated

in Figure 3.2(d), it first constructs a layout tree Tu from the user profile Tu to specify the

execution order of neural symbolic reasoning modules. Then, the reasoning modules are

executed level by level to produce the next-hop embeddings that are employed to find the

closest entities in the KG (Figure 3.2(e)).

The details of the algorithm are given in Algorithm 2. Specifically, the layout tree Tu

(line 4) is first constructed by merging patterns in Tu, so that each node x ∈ Tu is associated
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with a relation rx (a dummy relation is used for the root node), and each root-to-leaf tree

path corresponds to a pattern in Tu. Next, an integer nx is assigned to each node x, which

specifies the number of entities to be generated at the current position. If node x is the

root, one sets nx = 1. If x is a leaf, nx is initialized with wj , i.e., the weight of pattern

πj that ends with relation rx. Otherwise, nx is updated by nx = minc∈children(x)(nc), and

subsequently, the value at each child c of node x will be refreshed as n′c = bnc/nxc.

In fact, Tu specifies the layout of a tree-structured neural network composed of reason-

ing modules φrx at each node x with relation rx. The execution process of the network is

described in Algorithm 2 (lines 5-15) to derive K reasoning paths simultaneously. It starts

at the root node of Tu and follows level-order traversal to generate paths. At each node

x ∈ Tu, φrx takes as input the user embedding u and the embedding from its parent node

and outputs an embedding vector denoted by x̂. Meanwhile, a set of new paths Lx up to

node x is generated based on x̂ as well as the paths from its parent node Lp. Specifically,

for each path L ∈ Lp, we find at most nx new entities such that each of them is connected

to the last entity in L in the KG, and its embedding is most similar to x̂. Eventually, we

obtain the final results by aggregating all the paths at the leaf nodes and rank them based

on the dot-product score in Equation 3.6.

3.3.3 Model Analysis

For each user, the time complexity of PPR in Algorithm 2 is O(MH(Q + KdD)), where

Q is the running time for executing each neural symbolic reasoning module, d is the di-

mensionality of entity embeddings, D is the maximum node degree in the KG. Intuitively,

there are at most O(MH) nodes in Tu, and for each node, it costs O(MHQ) time for the

inference (forward pass) of the neural reasoning module, and O(KdD) time to find nearest

entities in Algorithm 2. Unlike existing methods [136, 1] that find each individual path

separately, our PPR algorithm can derive all K paths simultaneously in the tree level order.

If some resulting paths share the same entities, their corresponding embeddings will be
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CDs & Vinyl Clothing Cell Phones Beauty

#Users 75,258 39,387 27,879 22,363
#Items 64,443 23,033 10,429 12,101
#Interactions 1.10M 278.86K 194.32K 198.58K
#Entities 581,105 425,534 163,255 224,080
#Relations 16 16 16 16
#Triples 387.43M 36.37M 37.01M 37.73M

Table 3.1: Statistics of four real-world Amazon KG datasets: CDs & Vinyl, Clothing, Cell
Phones, and Beauty.

computed only once and hence redundant computations are avoided. The efficiency of the

algorithm is also empirically evaluated in subsection 3.4.4.

3.4 Experiments

In this section, we extensively evaluate our proposed approach, providing a series of quan-

titative as well as qualitative analyses on several real-world datasets.

3.4.1 Experimental Setup

Dataset. We experiment on four domain-specific e-commerce datasets from Amazon

[43], namely CDs and Vinyl, Clothing, Cell Phones, and Beauty. They provide both rich

meta-information of products and diverse user behavior records such as purchase history,

ratings, product reviews, and preferred styles. Each dataset is considered as an individual

benchmark that constitutes a user-centric KG with various types of relations (including in-

verse relations), which implies that results are not necessarily comparable across different

domains. Table 3.1 summarizes the statistical information of the four datasets. We adopt

the same training (70%) and test splits (30%) as previous work [1, 136], which are publicly

available1.

Baselines and Metrics We consider three categories of recommendation approaches as

baselines in the following experiments.

1https://github.com/orcax/PGPR

https://github.com/orcax/PGPR
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• MF-based models: BPR [105] is a Bayesian personalized method that optimizes a pair-

wise ranking between different user–item pairs for top-N recommendation. BPR-HFT

[85] is a review-based recommendation method based on Hidden Factors and Topics

(HFT) to learn latent representations of users and items with the topic distributions incor-

porated. DeepCoNN [153] makes recommendations through a Deep Cooperative Neural

Network based on reviews, which is capable of encoding both users and products for

rating prediction.

• KG embedding models: TransRec [42] is a sequential recommendation method relying

on translated embeddings to align user and item latent representations in a shared space.

CKE [145], or Collaborative Knowledge base Embedding, is a neural recommendation

method based on jointly integrating matrix factorization and heterogeneous graph data

to infer recommendations. RippleNet [125] incorporates a KG into recommendation by

propagating user preferences on entities. JRL [146] exploits multimodal information,

including images, text, and ratings as inputs of users and items into a neural network to

learn their representations for recommendation. KGAT [129] is the the state-of-the-art

KG-based model using graph-based attention techniques.

• Path reasoning models: HeteroEmbed [1] is the state-of-the-art Rec-First approach

based on TransE [5] embeddings for recommendations, followed by a post-hoc graph

search to find paths. PGPR [136] is the state-of-the-art path-guided model, which con-

ducts path reasoning using reinforcement learning.

For all models, we adopted the same metrics as previous work [136] to evaluate the top-10

recommendations of each user in the test set, including Normalized Discounted Cumulative

Gain (NDCG), Recall, Hit Rate (HR), and Precision (Prec.).

Implementation Details The implementations of RippleNet2 and KGAT3) are from pub-

2https://github.com/hwwang55/RippleNet
3https://github.com/xiangwang1223/knowledge graph attention network

https://github.com/hwwang55/RippleNet
https://github.com/xiangwang1223/knowledge_graph_attention_network
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lic code. We tune the parameters to achieve the best performance of these models. The

results of other baselines are taken from [136]. In our model, the entity embedding di-

mensionality is 100. In each neural relation module φr with respect to some relation r, the

parameters are Wr,1 ∈ R200×256, Wr,2 ∈ R256×256, and Wr,3 ∈ R256×100. We use Xavier ini-

tialization for the parameters and train them with Adam optimization [59] with a learning

rate of 10−4, batch size of 128, and a number of training epochs of 20. The history ht is set

to et−1. The weighting factor λ for the ranking loss is set to 10. The number of output paths

K is 15. For fair comparison with previous work [1, 136], we also restrict the maximum

path length H to 3, which leads to 15 candidate user-centric patterns in Π. The influence

of these hyperparameters will be studied in subsection 3.4.6.

3.4.2 Overall Performance

We first show the top-10 recommendation performance of our proposed method CAFE

compared to all baselines. We evaluate each setting 5 times and report the average scores

in Table 3.2.

Overall, we observe that our method outperforms three kinds of state-of-the-art meth-

ods (KGAT, HeteroEmbed, PGPR) by a large margin across all settings. For example, on

the Clothing dataset, our model achieves 6.340% in Recall, which is higher than 5.172%

by KGAT, 5.466% by HeteroEmbed, and 4.834% of PGPR. Similar trends can also be ob-

served on other benchmarks. Additionally, our model shows better ranking performance

than the baselines in terms of NDCG. This is mainly attributed to the ranking loss in Equa-

tion 3.8, which encourages the model to identify the path based on whether it can lead to

good items. The influence of the ranking loss will be studied in subsubsection 3.4.6.

Note that KG embedding based approaches such as RippleNet and KGAT are less com-

petitive on these datasets. One possible reason is that unlike KGs such as Freebase, where

the reasoning rules are objective and explicit (e.g., HasNationality = BornIn ∧ CityIn), the

patterns of user behavior towards items are more diverse and uncertain in e-commence set-
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Dataset CDs & Vinyl Clothing

Measures (%) NDCG Recall HR Precision NDCG Recall HR Precision

BPR 2.009 2.679 8.554 1.085 0.601 1.046 1.767 0.185
BPR-HFT 2.661 3.570 9.926 1.268 1.067 1.819 2.872 0.297
DeepCoNN 4.218 6.001 13.857 1.681 1.310 2.332 3.286 0.229

TransRec 3.372 5.283 11.956 1.837 1.245 2.078 3.116 0.312
CKE 4.620 6.483 14.541 1.779 1.502 2.509 4.275 0.388
RippleNet 4.871 7.145 15.727 1.852 2.195 3.892 6.032 0.603
JRL 5.378 7.545 16.774 2.085 1.735 2.989 4.634 0.442
KGAT 5.411 7.764 17.173 2.120 3.021 5.172 7.394 0.747

HeteroEmbed 5.563 7.949 17.556 2.192 3.091 5.466 7.972 0.763
PGPR 5.590 7.569 16.886 2.157 2.858 4.834 7.020 0.728
CAFE (Ours) 6.868 9.376 19.692 2.562 3.689 6.340 9.275 0.975

Improvement (%) +22.86 +17.95 +12.17 +16.88 +19.34 +15.99 +16.34 +24.52

Dataset Cell Phones Beauty

Measures (%) NDCG Recall HR Precision NDCG Recall HR Precision

BPR 1.998 3.258 5.273 0.595 2.753 4.241 8.241 1.143
BPR-HFT 3.151 5.307 8.125 0.860 2.934 4.459 8.268 1.132
DeepCoNN 3.636 6.353 9.913 0.999 3.359 5.429 9.807 1.200

TransRec 3.361 6.279 8.725 0.962 3.218 4.853 9.867 1.285
CKE 3.995 7.005 10.809 1.070 3.717 5.938 11.043 1.371
RippleNet 4.837 7.716 11.454 1.101 5.162 8.127 14.681 1.699
JRL 4.364 7.510 10.940 1.096 4.396 6.949 12.776 1.546
KGAT 5.111 8.978 12.589 1.296 6.108 10.022 16.740 1.893

HeteroEmbed 5.370 9.498 13.455 1.325 6.399 10.411 17.498 1.986
PGPR 5.042 8.416 11.904 1.274 5.449 8.324 14.401 1.707
CAFE (Ours) 6.313 11.086 15.531 1.692 7.061 10.948 18.099 2.270

Improvement (%) +17.56 +16.72 +15.43 +24.60 +10.34 +5.16 +3.43 +14.07

Table 3.2: Overall recommendation performance of our method compared to other ap-
proaches on four benchmarks. The results are computed based on top-10 recommendations
in the test set and are given as percentages (%). The best results are highlighted in bold
font and the best baseline results are underlined.

tings (e.g., many factors can contribute to a user purchase behavior), making it harder to

mine useful information. Our coarse-to-fine method can first learn a sketch of user behavior

(i.e., user profile), which filters out noisy information that may be irrelevant to conduct path

reasoning. That is why our model is able to achieve better recommendation performance.

The effectiveness of user profiles is studied in the next section.
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CDs & Vinyl Clothing

NDCG Recall HR Prec. NDCG Recall HR Prec.

PGPR 5.590 7.569 16.886 2.157 2.858 4.834 7.020 0.728
Rand 5.308 7.217 16.158 2.003 2.654 4.727 6.875 0.680
Prior 5.924 8.259 17.825 2.327 3.157 5.031 7.376 0.773
Ours 6.868 9.376 19.692 2.562 3.689 6.340 9.275 0.975

Cell Phones Beauty

NDCG Recall HR Prec. NDCG Recall HR Prec.

PGPR 5.042 8.416 11.904 1.274 5.449 8.324 14.401 1.707
Rand 4.545 7.229 10.192 1.087 5.293 8.256 14.564 1.718
Prior 5.255 9.842 13.097 1.359 6.180 9.393 16.258 2.024
Ours 6.313 11.086 15.531 1.692 7.061 10.948 18.099 2.270

Table 3.3: Results of recommendation performance using different user profile variants.

3.4.3 Effectiveness of User Profile (Coarse-Stage)

In this experiment, we evaluate the effectiveness of the approach to compose user profiles

as described in subsection 3.3.1. Specifically, we consider the following ways to compose

different Tu for user uwhile keeping the same path reasoning algorithm in subsection 3.3.2.

• Rand stands for randomly sampling a subset of patterns from Π to compose Tu. This

straightforward method can represent the path reasoning methods without considering

user profiles.

• Prior samples the patterns from Π proportional to their frequencies and discards low

frequency patterns. This is equivalent to assigning each user the same profile based on

global information.

• CAFE is the approach we propose, which estimates the weights by solving the optimiza-

tion problem in Equation 3.4.

Additionally, we also compare to the SOTA path reasoning approach PGPR that also fails

to model user profiles.

The results on all datasets are reported in Table 3.3. We observe that our model CAFE

with composed user profile exhibits better recommendation performance than other base-
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CDs & Vinyl Clothing

Time (s) Rec. (1k users) Find (10k paths) Rec. (1k users) Find (10k paths)

PGPR 287.158± 5.213 26.725± 0.572 236.118± 4.840 21.889± 0.437
Hetero. 53.984± 1.201 21.674± 0.498 55.482± 1.703 18.492± 0.399
Indiv. 71.769± 1.366 25.229± 0.482 61.519± 1.966 20.128± 0.377
Ours 27.184± 1.026 17.851± 0.364 22.850± 1.378 15.233± 0.309

Cell Phones Beauty

Time (s) Rec. (1k users) Find (10k paths) Rec. (1k users) Find (10k paths)

PGPR 279.780± 5.135 25.382± 0.563 292.447± 6.139 26.396± 0.591
Hetero. 48.125± 1.148 20.037± 0.496 51.392± 1.369 21.492± 0.467
Indiv. 62.259± 1.171 23.735± 0.502 68.158± 1.209 24.938± 0.473
Ours 23.387± 1.124 15.591± 0.406 25.220± 1.141 16.813± 0.458

Table 3.4: Time costs of recommendations per 1k users and path finding per 10k paths.

lines. This shows that the path reasoning guided by the user profile can find user-centric

paths of higher quality, which are more likely to arrive at an item node of interest to the

user. In addition, we also note that the profile-driven methods CAFE and Prior outperform

the ones without profiles (PGPR, Rand). This suggests that user profiles can benefit the

path reasoning process.

3.4.4 Efficiency of Path Reasoning (Fine-Stage)

We further study the efficiency of our path reasoning algorithm in subsection 3.3.2 com-

pared to other path-finding baselines. Specifically, we consider the SOTA Path-Guided

method PGPR and the SOTA Rec-First method HeteroEmbed. We also include a variant

of our algorithm in Algorithm 2 named Indiv., which simply finds each individual path one

by one. These algorithms are evaluated on the empirical running time of 1) making recom-

mendations (including both items and paths) for 1k users and 2) the path-finding process

(only paths) for generating 10k paths. All experiments are conducted on the same hard-

ware with Intel i7-6850K CPU, 32G memory and one Nvidia 1080Ti GPU. The results are

reported in Table 3.4.

We observe that our method costs the least time for both tasks among all tested algo-
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CDs & Vinyl Clothing

#Patterns NDCG Recall HR Prec. NDCG Recall HR Prec.

100% 6.868 9.376 19.692 2.562 3.689 6.340 9.275 0.975
70% 6.713 9.152 19.270 2.488 3.586 6.175 9.020 0.946
Decrease 2.31% 2.45% 2.19% 2.98% 2.87% 2.68% 2.83% 3.05%

Cell Phones Beauty

#Patterns NDCG Recall HR Prec. NDCG Recall HR Prec.

100% 6.313 11.086 15.531 1.692 7.061 10.948 18.099 2.270
70% 6.143 10.764 15.098 1.639 6.974 10.803 17.835 2.225
Decrease 2.77% 2.99% 2.87% 3.23% 1.25% 1.34% 1.48% 2.02%

Table 3.5: Experimental results for unseen patterns

rithms. In particular, our method is about 10× faster than PGPR in making recommenda-

tions on all benchmarks, both of which aim to find paths with unknown destination. One

reason is that PGPR is required to find a lot of candidate paths, which are then ranked to

obtain top 10 paths for recommendation. On the contrary, our method seeks out useful

paths based on the user profile, and hence it saves much more time in path-reasoning based

recommendation. In addition, for both tasks, our method costs less time than Indiv., which

means that the batch path finding algorithm in Algorithm 2 is more efficient than finding

paths individually. Our algorithm thus avoids redundant computation of embeddings and

nearest nodes searches.

3.4.5 Robustness to Unseen Patterns

Recall that the candidate set Π cannot exhaustively cover all possible user-centric patterns

in a very large KG, since only high frequency patterns will be collected by the algorithm

[68]. Therefore, in this experiment, we investigate if unseen patterns that do not exist in

Π will influence the performance. To conduct the experiment, in the coarse stage of user

profile composition, we randomly preserve 70% of the candidate patterns in Π for each

user to compose the user profile. The remaining 30% of patterns are unseen to the model

for each user. All other settings remain the default ones.



59

The results on the four datasets are reported in Table 3.5. It is interesting to see that the

decrease in performance is at around 1.5–3%, which is marginal compared to the regular

setting. This shows that our model is robust to unseen patterns for user profile composition

and can still provide high-quality recommendations.

3.4.6 Ablation Study

We study how different settings of hyperparameters influence the recommendation quality

of our model. We consider the ranking weight and the number of sampling paths on the

Cell Phones dataset only due to space constraints.

Influence of ranking loss

We first show the influence of the ranking loss in Equation 3.9 under different values of

the weighting factor λ ∈ {0, 5, 10, 15, 20}, where λ = 0 means no ranking loss is imposed

for training. The results are plotted in Figure 3.3, including our model (red curves) and the

best baseline HeteroEmbed (blue curves).

We observe two interesting trends. First, our model consistently outperforms Het-

eroEmbed under all settings of λ in terms of NDCG, Recall, and Precision. Even without

the ranking loss, our model can still guarantee a high quality of recommendation. On the

other hand, a proper choice of λ (e.g., λ = 10) not only benefits the direct ranking effect

(NDCG), but also boosts the model’s ability to find more relevant items (recall, hit rate,

and precision). Second, a larger weight of the ranking loss may not always entail a better

performance, since there is a trade-off between the ranking (Equation 3.8) and path regu-

larization (Equation 3.7). This is reasonable because if the ranking loss plays a dominant

role, which implies that the model pays less attention to fitting paths, as a consequence, it

may fail to find the correct paths that reach promising items.
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Figure 3.3: Results of varying ranking weights on Clothing (blue) and Cell Phones (red)
datasets. (HE: [1])
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Figure 3.4: Results of different number of output reasoning paths on Clothing (blue) and
Cell Phones (red) datasets.

Influence of sampling sizes of output paths

Furthermore, we study how the performance varies with different sampling sizes of output

reasoning paths K ∈ {15, 20, 25, 30} (see subsection 3.3.2).

In Figure 3.4, we illustrate with box plots the recommendation performance of all users

in terms of various metrics. We observe similar trends across all metrics in that there exists

an optimal choice of K under each setting, e.g., K = 20 for NDCG on the Cell Phones

dataset. The variances are within acceptable ranges, which means that the path reasoning

procedure of our model leads to satisfying results for most of the users. One possible reason

is that some items suitable for recommendation are in fact ranked relatively low. Smaller

sampling sizes lead to smaller search spaces that preclude the discovery of such low-ranked

items.
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Figure 3.5: Two real cases discovered by our model, each containing a layout tree merged
from user profile and a subset of reasoning paths. The end nodes in the resulting paths are
the predicted items for recommendation.

3.4.7 Case Study

We showcase two recommendation examples with path-based explanations produced by

our model CAFE. As shown in Figure 3.5, each case consists of a layout tree merged from

the user profile along with a subset of generated reasoning paths. In Case 1, the pattern

containing the “mention” relation takes the dominant role (w = 10). For example, the user

mentions the keywords “absorb”, “vitamin”. The recommended items “lotion” and “facial

cream” match “absorb”, and “vitamin serum” is also consistent with “vitamin”. Case 2

shows a user profile with more diverse patterns. For example, the user purchased a “neck-

lace” by “Hello Kitty”. It is reasonable for our method to recommend “watch” from the

same “Hello Kitty” brand. Similar inferences can also be drawn for “business bag”. More-

over, the interaction with another user and the “rain” feature leads to “umbrella” being

recommended. In these cases, our method is capable of producing relevant recommenda-

tions along with the explainable paths via explicit KG reasoning.
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3.5 Related Work

There are two main research lines related to our work: KG-based explainable recommen-

dation and multi-behavior recommendation.

KG-based Explainable Recommendation Explainable recommendation [147, 148, 72,

9, 13, 12, 135] refers to a decision-making system that not only provides accurate rec-

ommendation results, but also generates explanations to clarify why the items are recom-

mended.

One line of research focuses on the KG embedding approach. Several works integrate

KG representation learning into the recommendation model [143, 52, 126, 49, 41]. Typi-

cally, they assume that the recommended items and their attributes can be mapped into a

latent vector space along with transnational relations between the them. For example, [143]

propose the CKE model, which incorporates diverse item types information into Collabo-

rative Filtering. [52] integrate a KG in multimodal formats capturing dynamic user prefer-

ences by modeling the sequential interactions over the KG. [126] consider both semantics

and knowledge representations of news contents for improved news recommendation. [49]

leverage KG to enhance item representations and [41] jointly conduct KG completion and

item recommendations. These methods demonstrate the effectiveness of incorporating KG

embedding into recommendation. However, they fail to directly leverage the KG structure

to generate reasoning paths as explanations for the recommendation [147].

Another line of work explores incorporating KG reasoning into the process of recom-

mendation. The graph structure empowers the system to exploit informative features and

also to deliver intuitive path-based explanations. Early works [8] propose to model logic

rules to conduct explicit reasoning over a KG for explainability. However, the rules are

handcrafted and can hardly generalize to unexplored entity correlations. In contrast, re-

cent approaches adopt deep neural networks to learn a direct mapping among users, items,

and other relations in a KG to enable reasoning for explainable recommendation. Some
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approaches [83, 125, 129] only use item-side knowledge but neglect the diverse historical

activities of users, while others [7, 1] isolate path generation and recommendations, so the

resulting path may be irrelevant to the actual decision making process. We argue that both

of these two types of methods fail to model user behaviors to conduct an explicit path rea-

soning process, which makes the recommendation process less intuitive. Recently, [136]

and [149] perform explicit KG reasoning for explainable recommendation via reinforce-

ment learning. Although their paths are generated together with the recommended items,

the recommendation performance is limited by the large search space of the KG and the

weak guidance of sparse rewards. In this work, we follow the setting of KG reasoning for

explainable recommendation [136], but aim to provide better guidance from user history

behavior, as confirmed in our experiments.

Multi-Behavior Recommendation On modern e-commerce platforms, users can inter-

act with the system in multiple forms [80, 75, 119, 63]. [80] provide several case studies

covering the influence of clicking and saving behavior analysis on the final purchase deci-

sion. Existing methods for multi-behavior recommendations may be divided into two cate-

gories: collective matrix factorization based approaches and approaches based on learning

from implicit interactions. [119] propose factorizing multiple user–item interaction ma-

trices as a collective matrix factorization model with shared item-side embeddings across

matrices. [151] learn different embedding vectors for different behavior types in an online

social network. [63] share the user embeddings in recommendation based social network

data based on the CMF method. In contrast, [81] proposed an extension of Bayesian Per-

sonalized Ranking [105] as multi-channel BPR, to adapt the sampling rule from different

types of behavior in the training of standard BPR. [38] proposed sampling unobserved

items as positive items based on item–item similarity, which is calculated using multiple

types of feedback. However, none of these methods consider the reasoning framework to

provide explainable recommendations, let alone explicitly model diverse user behaviors

over KGs on e-commerce platforms.
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3.6 Conclusion

In this chapter, we propose a new coarse-to-fine KG reasoning approach called CAFE for

explainable recommendation. Unlike traditional KG based recommendations, our method

is characterized by first composing a user profile to capture prominent user behaviors in

the coarse stage, and then in the fine stage, conducting path reasoning under the guidance

of the user profile. Since the recommendation and path reasoning processes are closely

coupled with each other, the output paths can be regarded as the explanation to the recom-

mendations. We extensively evaluate our model on several real-world datasets and show

that the proposed approach delivers superior results in recommendation performance.
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CHAPTER 4

NEURAL LOGIC REASONING

Knowledge graphs (KG) have become increasingly important to endow modern recom-

mender systems with the ability to generate traceable reasoning paths to explain the rec-

ommendation process. However, prior research rarely considers the faithfulness of the

derived explanations to justify the decision-making process. To the best of our knowledge,

this is the first work that models and evaluates faithfully explainable recommendation un-

der the framework of KG reasoning. Specifically, we propose neural logic reasoning for

explainable recommendation (LOGER) by drawing on interpretable logical rules to guide

the path-reasoning process for explanation generation. We experiment on three large-scale

datasets in the e-commerce domain, demonstrating the effectiveness of our method in deliv-

ering high-quality recommendations as well as ascertaining the faithfulness of the derived

explanation.

4.1 Introduction

Compared with traditional recommender systems (RS), explainable recommendation is not

only capable of providing high-quality recommendation results but also offers personalized

and intuitive explanations [147]. Incorporating a knowledge graph (KG) into recommender

systems has become increasingly popular, since KG reasoning is able to generate explain-

able paths connecting users to relevant target item entities. At the same time, there is

increasing demand for systems to ascertain the faithfulness of the generated explanation,

i.e., assess whether it faithfully reflects the reasoning process of the model and is consistent

with the historic user behavior.

However, previous work has largely neglected faithfulness in KG-enhanced explain-

able recommendation [135, 28]. A number of studies [67, 46, 132] argue that faithful



66

explanations should also be personalized and gain the capability to reflect the personal-

ized user historic behavior. However, to the best of our knowledge, none of the existing

explainable recommendation models based on KGs have considered faithfulness in the ex-

plainable reasoning process and its evaluation on the generated explainable paths. For

instance, PGPR [136, 149] infers explainable paths over the KG without considering per-

sonalized user behavior, and its prediction on next potential entities is merely based on the

overall knowledge-driven rewards. CAFE [137] builds user module profiles to guide the

path inference procedure. However, as illustrated in [120], such neural module networks

only implicitly abstract the reasoning process and lack of considering the faithfulness of

explanations.

In this chapter, we propose a new KG-enhanced recommendation model called LOGER

to produce faithfully explainable recommendation via neural logic reasoning. To fully ac-

count for heterogeneous information and rules about users and items from the KG, we

leverage an interpretable neural logic model for logical reasoning, enhanced by a general

graph encoder that learns KG representations to capture semantic aspects of entities and

relations. These two components are iteratively trained via the EM algorithm by marry-

ing the merits of interpretability of logical rules and the expressiveness of KG embeddings.

Subsequently, the learned rule weights are leveraged to guide the path reasoning to generate

faithful explanations. The derived logical rules are expected to be consistent with historic

user behavior and the resulting paths genuinely reflect the decision making process in KG

reasoning. We experiment on three large-scale datasets for e-commerce recommendation

that cover rich user behavior patterns. The results demonstrate the superior recommenda-

tion performance achieved by our model compared to the state-of-the-art baselines, with the

guarantee of the faithfulness on the generated path-based explanations. The contributions

of this chapter are threefold.

• We highlight the significance of considering faithfulness in explainable recommen-

dation.
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• We propose a novel approach that incorporates interpretable logical rules into KG

path reasoning for recommendation and explanation generation.

• We experiment on three large-scale datasets showing promising recommendation

performance as well as faithful path-based explanation.

4.2 Problem Formulation

A knowledge graph (KG) for recommendation is defined as G = {(eh, r, et) | eh, et ∈

E , r ∈ R}, where E denotes the entity set consisting of sets of users U , items I, and other

entities, whileR denotes the relation set. Each triplet (eh, r, et) represents a fact indicating

head entity eh interacts with tail entity et via relation r. In recommendation tasks, we are

particularly interested in user–item interactions {(u, rui, v) | u ∈ U , rui ∈ R, v ∈ I} with

the special relation rui meaning purchase in e-commerce or like in movie recommendation.

The problem of KG reasoning for explainable recommendation is formulated as fol-

lows. Given an incomplete KG G with missing user–item interactions, for every user u ∈ U ,

the goal is to select a set of items as recommendations {v|(u, rui, v) 6∈ G, v ∈ I} along with

a set of paths as explanations connecting each pair of the user and a predicted item. The key

challenge is to not only guarantee the recommendation quality with the rich information in

KG, but also generate faithful explanations that reflect the actual decision-making process

of the recommendation model and are consistent with historic user behavior.

4.3 Proposed Method

We introduce the novel neural LOGic Explainable Recommender (LOGER) for producing

faithfully explainable recommendations with a KG. As illustrated in Figure 4.1, it consists

of three components: (i) a KG encoder for learning embeddings of KG entities and relations

to capture their semantics, (ii) a neural logic model for conducting interpretable logical

reasoning to make recommendations, and (iii) a rule-guided path reasoner for generating
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Figure 4.1: Illustration of the proposed method for explainable recommendation including
(i) a KG encoder, (ii) a neural logic model, and (iii) a rule-guided path reasoner.

faithfully explainable paths. Both KG encoder and neural logic model are trained iteratively

via the EM algorithm [92] so that they mutually benefit to make recommendations via

logical reasoning. Additionally, personalized rule importance scores are derived for every

user and leveraged to guide the path reasoning for faithful explanation generation.

4.3.1 KG Encoder

Let Xhrt be a binary random variable indicating whether a triplet (eh, r, et) is true or not,

XG = {Xhrt | (eh, r, et) ∈ G} be a random variable regarding all observed triplets in the

KG G, and XH = {Xhrt | (eh, r, et) ∈ H} be a random variable of hidden user–item inter-

actions in H = {(u, rui, v) | u ∈ U , v ∈ I, (u, rui, v) 6∈ G}. The KG encoder is generally

defined as a triplet-wise function fθ : E ×R×E 7→ [0, 1] parametrized by θ that maps each

triplet to a real-valued score. For any triplet (eh, r, et) ∈ G ∪H , we can interpret its truth

probabilistically via the KG encoder fθ as q(Xhrt|θ) = Bernoulli(Xhrt|fθ(eh, r, et)). The

KG encoder fθ can be instantiated with any existing KG embedding [56] or graph neural

network [133] model.
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4.3.2 Neural Logic Model

We focus on composition rules for user–item interactions, i.e., rui is a composition of rela-

tions r1, . . . , rj if (u, r1, e1)∧· · ·∧(ej−1, rj, v)⇒ (u, rui, v), ∀u ∈ U , v ∈ V , e1, . . . , ej−1 ∈

E . Given a set of logical rules L mined from the KG, the goal of this component is, for

every user u ∈ U , to emit a set of personalized rule importance scores yu = {yu,l}l∈L to

capture the historic user behavior. To achieve this, we build upon Markov Logic Networks

[102], an interpretable probabilistic logic reasoning method that models the joint distribu-

tion of all triplets via a set of logical rules L, i.e., p(XG, XH |w) = 1
Z

exp
(∑

l∈Lwlnl
)
,

where w = {wl}l∈L with wl being the global weight of rule l ∈ L, and nl denotes the

number of true groundings of rule l over observed and hidden triplets. Accordingly, we

define the personalized rule importance score to be yu,l = wlnl(u)∑
l′∈L nl′ (u)

, where nl(u) is the

number of groundings of rule l over the observed triplets in {(u, rui, v) ∈ G}. However, it

is intractable to directly maximize the log likelihood of observed triplets to learn the global

weights w, i.e., maxw log p(XG|w). Instead, we employ the EM algorithm to iteratively

optimize the objective to acquire optimal global weights.

E-Step We introduce a mean-field variational distribution q(XH |θ) ≈
∏

(eh,r,et)∈H q(Xhrt|θ)

over hidden user–item interactions in H . The goal of the E-step is to estimate q(XH |θ) by

minimizing the KL divergence between q(XH |θ) and the posterior distribution p(XH |XG, w)

with fixed w. For each triplet (eh, r, et) ∈ H , we denote by Lhrt the set of rules associated

with the triplet and by Ghrt the corresponding groundings of all logical rules in Lhrt. Fol-

lowing [102], the optimal q(XH |θ) can be achieved under the fixed-point condition, i.e.,

q(Xhrt|θ) ≈ p(Xhrt|XGhrt , w), for all (eh, r, et) ∈ H . Here, q(Xhrt|θ) is approximated by

the KG encoder fθ, and p(Xhrt|XGhrt , w) can be estimated with the global weights w of

the rules in Lhrt from the last iteration:

p(Xhrt = 1|XGhrt , w) = σ

(∑
l∈Lhrt wl

|Lhrt|

)
, (4.1)

where σ(·) is the sigmoid function. In other words, if a hidden triplet (eh, r, et) is asserted
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to be true by the rules (e.g., p(Xhrt = 1 | XGhrt , w) > 0.5), the probability q(Xhrt = 1 | θ)

given by the KG encoder is also expected to be high. Therefore, to learn the parameter

θ, we aim to maximize the log-likelihood function over all observed triplets in G and the

plausibly true hidden triplets in H+ = {(eh, r, et) | p(Xhrt = 1|XGhrt , w) ≥ τ}, which

leads to the objective

`(θ) =
∑

(eh,r,et)∈G∪H+

log q(Xhrt = 1 | θ), (4.2)

where τ is a hyperparameter.

M-Step The goal of the M-step is to learn the global rule weights w by maximizing the

log-likelihood function Eq(XH)[log p(XG, XH ;w)] given a fixed θ from the E-step. Since

the log-likelihood term models the joint distribution over all triplets, which is hard to

compute for a large KG, we approximate it with the pseudolikelihood [4]: `PL(w) =∑
(eh,r,et)∈G∪H Eq(XH |θ)[log p(Xhrt|XGhrt , w)]. Then, we can invoke gradient ascent to ac-

quire the optimal w, with the gradient defined as:

∇wl`PL(wl) =
∑

(eh,r,et)∈G

1− phrt
|Lhrt|

+

∑
(eh,r,et)∈H

q(Xhrt = 1|θ)− phrt
|Lhrt|

,

(4.3)

where phrt = p(Xhrt = 1|XGhrt , w). Once the optimal global weights are acquired, we can

make a recommendation by calculating the ranking score of a user u ∈ U and an item v ∈ I

as q(Xurv|θ) + α p(Xurv = 1|XGurv , w), where r = rui and α ∈ R is a hyperparameter.

4.3.3 Rule-Guided Path Reasoner

We draw on the KG encoder fθ and the personalized rule importance scores yu from the last

two steps to generate explainable paths for every user u. Specifically, we train an LSTM-

based path reasoning network φ that takes the start user embedding as input and predicts a

sequence of entities and relations to form a path. For every user u, we restrict the reasoner
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to generate the paths that follow the rules with the largest scores in yu. The LSTM-based

path reasoner φ is based on the graph walker in [89]. It takes as input the embedding of the

current entity et−1 and outputs the embeddings of the next relation rt and the next entity et,

i.e., rt, et = φ(et−1). In particular, the next relation embedding rt is defined as:

αt = σ(Wαet−1 + bα),

rt =
∑
r∈R

αt,rr,

where Wα, bα are parameters and αt are the attention weights over all relations in the KG.

The next entity embedding et is defined as:

zt = et−1 + rt

it = σ(Wi[et−1; ct−1] + bi)

ct = (1− it)� ct−1 + it � tanh(Wc[zt; et−1] + bc)

ot = σ(Wo[zt, et−1, ct] + bo)

et = ot � tanh(ct)

Here, [; ] denotes concatenation, � is elementwise multiplication, it, ot are vectors passing

through corresponding gates, and zt is the context vector.

During training, for every user and its observed user–item triplets, we sample a set of

training paths following the rules, with numbers proportional to the rule weights. The goal

is to make the path reasoner φ generate paths that are close to the training samples, which

can be optimized by the hinge loss.

The inference pipeline using the trained path-reasoning network is described in Algo-

rithm 3. Starting with a user u encoded as e0 = u, the estimated entity embedding et

and relation embedding rt at the t-th hop is obtained by the model φ. At each hop, for all

potential neighbors, we calculate a ranking score based on the dot-product of the neighbor
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and estimated (et, rt). After ranking these neighbors based on such scores, we can filter a

set of candidate neighbors and invoke a Beam Search to identify a set of paths as well as

corresponding items for u.

Algorithm 3 Rule-guided path reasoning
1: Input: KG G, user u, item v, rule set L
2: Output: a set of paths P
3: procedure MAIN()
4: P ← {{u}}.
5: for t← 1 to T do . T is path length.
6: Pcurr ← {}.
7: for path p ∈ P do
8: et−1 ← last node of p.
9: Vcurr ← {}.

10: for (et−1, r
′, e′) ∈ G do

11: êt, r̂t = φ(et−1)
12: s = 〈êt, e′〉+ 〈r̂t, r′〉.
13: Vcurr ← Vcurr ∪ {(r′, e′, s)}.
14: Pcurr ← Pcurr ∪ {p ∪ {r′, e′}|rank(s) ≤ β, (r′, e′, s) ∈ Vcurr}.
15: P ← Pcurr.

16: P ← {p|p ∈ P,rule(p) ∈ L,lastnode(p) = v}.
17: return P .

4.3.4 Implementation Details

In order to guarantee path connectivity, we add reverse relations into the knowledge graph,

i.e., if (eh, r, et) ∈ G, then (et, r
−1, eh) ∈ G. We restrict the length of candidate rules to

be 3. We adopt TransE [5] as the KG encoder fθ, with the dimensionality of entity and

relation embeddings set as 100.

To learn the global rule weights, we first generate the hidden triplet set according to the

result of the KG encoder. For each user, the top 50 estimated items with the highest scores

predicted by KG encoder are taken as the hidden triplet set H+. The threshold τ is set to

0.5 and the weighting factor α is set to 0.3 by default. In the path reasoning algorithm, we

set the neighboring size β to 10. Other training details can be found in Table 4.1.
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Parameter Cellphones Grocery Automotive

# of epochs 4 2 3
KGE batch size 512 512 512
KGE optimizer Adam Adam Adam
KGE learning rate 10−4 10−4 10−4

NLM learning rate 10−5 10−5 10−5

# of sample node 100 100 100

Table 4.1: Training detail for three datasets. KGE = KG encoder. NLM = neural logic
model.

Dataset Cellphones Grocery Automotive

#Users 61,254 57,822 95,445
#Items 47,604 40,694 78,557
#Interactions 607,673 709,280 1,122,776

#Entities 169,331 173,369 270,543
#Relations 45 45 73
#Triples 3,117,051 3,742,954 4,580,318

Table 4.2: Overall statistics of the datasets. We identify appreciated aspects of items from
a user’s historical records on Amazon for the user side and consider the following facts:
item category, brand, price, listed features, and predefined styles for item meta-data.

4.4 Experiment

Dataset We experiment on three domain-specific e-commerce datasets from Amazon,

namely Cellphones, Grocery, and Automotive. There are two requirements that lead to the

selection of these categories in our experiments. First, the constructed KG should contain

rich user behavior patterns, e.g., user mentioned features or preferred styles, etc. This is

the major difference from most of the existing work [150], which only extends knowledge

on the item side. Second, the KGs are assumed to be large-scale. We select several large

subsets from [32], where the constructed KG can be regarded as an updated version of

those of [2] based on the Amazon review dataset [94]. The remaining three datasets are the

ones that satisfy both of the aforementioned requirements. The statistics of our datasets are

shown in Table 4.2.
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Cellphones Grocery Automotive

Precision Recall NDCG Hit Precision Recall NDCG Hit Precision Recall NDCG Hit

CKE 0.0360 0.1760 0.1847 0.3067 0.0612 0.2528 0.3070 0.4511 0.0458 0.1871 0.2257 0.3621
RippleNet 0.0419 0.2141 0.2177 0.3715 0.0591 0.2682 0.2858 0.4800 - - - -
PGPR 0.0462 0.2148 0.2366 0.3801 0.0649 0.2710 0.3174 0.4926 0.5893 0.2315 0.2804 0.4409
KGAT 0.0476 0.2274 0.2365 0.3835 0.0702 0.2916 0.3381 0.5020 0.0601 0.2500 0.2859 0.4514
HeteroEmbed 0.0527 0.2543 0.2626 0.4226 0.0785 0.3316 0.3701 0.5572 0.0695 0.2923 0.3314 0.5082
LOGER 0.0622 0.2977 0.3227 0.4808 0.0906 0.3754 0.4370 0.6121 0.0743 0.3091 0.3653 0.5346

Table 4.3: Recommendation performance of all methods on four proposed datasets. The
results are computed based on the top-10 recommendation on the test set. The best results
are highlighted in bold and the second best results are underlined.

Baselines & Metrics We consider several state-of-art baselines in the following experi-

ments. CKE [145] uses semantic representations derived from TransR [78] to enhance the

matrix factorization process. RippleNet [125] is a hybrid method combining regulariza-

tion and path formats, and augmenting user representations with a memory-network-like

approach. PGPR [136] designed a policy-guided graph search algorithm for recommenda-

tion over KGs. HeteroEmbed [1] aims to learn the embeddings of a heterogeneous graph

including users, items, and relations for recommendation. KGAT [129] explicitly models

higher-order KG connectivity and learns node representations by propagating the embed-

ding of neighbors with corresponding importance discriminated by an attention mecha-

nism. We adopted the same metrics as [1] to evaluate the recommendation performance of

all models: Precision, Recall, Normalized Discounted Cumulative Gain (NDCG), and Hit

Rate (HR).

4.4.1 Recommendation Results

We first evaluate the recommendation quality of our model. The results of all methods

across all three datasets are reported in Table 4.3. In general, our method significantly

outperforms all state-of-the-art baselines on all metrics. Taking Cellphones as an example,

our method achieves an improvement of 6.01% in NDCG against the best baseline (un-

derlined), and an improvement of 5.82% in Hits@10. Similar trends can be observed on

other benchmarks as well. Note that both our model and HeteroEmbed adopt TransE for
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KG representation learning, yet our model achieves better performance, mainly attributed

to the iterative learning of graph encoder and neural logic model.

4.4.2 Faithfulness of Explanation

We aim to measure whether the generated explainable paths are consistent with the historic

user behavior via a faithfulness metric and a user study.

Measuring Faithfulness Inspired by previous work [84, 116, 120], we define the faith-

fulness to be the Jensen–Shannon (JS) divergence of rule-related distributions from training

and test sets. Specifically, we randomly sample 50 users from the training set. For each user

u, we further sample around 1,000 paths between the user and the connected item nodes,

and calculate the rule distribution over these paths, denoted by F (u). We compare the pro-

posed LOGER with two baselines, PGPR, and KGAT, each of which is used to generate

20 explainable paths for every selected user in the test phase. Similarly, we can calculate

the rule distribution over these 20 paths, denoted by Qf (u). The JS scores are defined as

follows.

JSf = Eu∼U [DJS(Qf (u) ‖F (u))]

JSw = Eu∼U [DJS(Qw(u) ‖F (u))]

Here, Qw(u) is the rule weight distribution derived from the personalized rule importance

scores of our method or the path weights of baselines. Smaller values of two JS scores

correspond to better faithfulness of the explainable paths. This faithfulness evaluation is

motivated in terms of the consistency of the explainable paths with respect to the user

historic behavior.

User Study Additionally, we conduct a user study to evaluate the faithfulness of the ex-

plainable paths. We display 50 sampled KG paths starting from one user towards purchased

items in the training set to represent examples of user historical behaviors. For compari-
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Cellphones & Accessories Grocery & Gourmet

JSf JSw Avg. Rank JSf JSw Avg. Rank

PGPR 0.56 0.49 2.52 0.42 0.38 2.27
KGAT 0.53 0.45 2.14 0.39 0.41 2.08
LOGER 0.47 0.32 1.52 0.34 0.28 1.75

Table 4.4: 20 testers are asked to rank three groups of paths in ascending order. We calcu-
late corresponding averaged rank scores. Bolded number are used to label the best perfor-
mance.

son, we also present 10 explainable paths generated by three methods for the same user

in the test dataset. We ask 20 human subjects to rank these methods based on whether

the generated paths are consistent with those from the training set. Then, we calculate the

average ranking scores (Avg. Rank) by averaging the rank given by each human tester on

each method.

Results The results on the Cellphones and Grocery datasets are reported in Table 4.4. We

observe that our method LOGER achieves the lowest JS scores and average ranking score,

which reveal the effectiveness of our model in producing more faithful explanations in both

quantitative measurements and in the user study.

4.4.3 Ablation Study.

We further study how hidden triplets used in training KG encoder (Equation 4.2) influence

the recommendation performance. We experiment on the Cellphones data under different

sizes of hidden triplet sets H+. We choose the sizes of {10, 20, 30, 40, 50} and keep all

other settings unchanged. The results are plotted in Figure 4.2, including our model (red

circles) and the best baseline HeteroEmbed (blue crosses). We find that our model consis-

tently outperforms the baseline in all the metrics under different numbers of hidden triplets.

Better recommendation performance can be achieved with more hidden triplets included in

training the KG encoder, because more candidate items will enhance the capability of our

model to discern the logical rules of good quality and hence benefit the recommendation
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Figure 4.2: Recommendation performance with varying sizes of estimated hidden triples.

prediction.

4.5 Conclusion

In this chapter, we propose LOGER for faithfully explainable recommendation, which gen-

erates explainable paths based on personalized rule importance scores via neural logic rea-

soning that adequately captures historic user behavior. We experiment on three large-scale

datasets for e-commerce recommendation showing superior recommendation quality of

LOGER as well as the faithfulness of the generated explanations both quantitatively and

qualitatively. We hope to encourage future work that values explainability and in particular

the faithfulness of explanations.
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CHAPTER 5

INVERSE REINFORCEMENT GRAPH REASONING

Column annotation, the process of annotating tabular columns with labels, plays a fun-

damental role in digital marketing data governance. It directly impacts how customers

manage their data and ensures compliance with regulations, restrictions, and policies appli-

cable to data use. Despite substantial gains in performance brought by recent deep learning-

driven column annotation methods, the incapability of explaining why certain columns are

matched to the target labels has drawn concern due to the black-box nature of deep neural

networks. Such explainability is of particular importance in industrial marketing scenar-

ios, where data stewards1 need to quickly verify and calibrate the annotation results to

guarantee the correctness of downstream applications. This work sheds new light on the

explainable column annotation problem, which is the first of its kind column annotation

task. To achieve this, we propose a new approach called EXACTA, which conducts knowl-

edge graph reasoning using inverse reinforcement learning to find a multi-hop path from a

column to a potential target label while ensuring both annotation performance and explain-

ability. We experiment on four open-source and real industrial benchmarks, and undertake

a comprehensive analysis on explainability. The results suggest that our method not only

provides competitive annotation performance compared with existing deep learning-based

models, but more importantly, produces faithfully explainable paths of annotated columns

to facilitate human examination.
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match
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Figure 5.1: Explainable column annotation via multi-step reasoning over a KG to find the
target label “Email” for the source column “Contact” with the accompanying explainable
paths marked by red and black arrows.

5.1 Introduction

Structured tabular data are commonly acknowledged as a convention for recording rela-

tional information with wide application in data management systems and can be consumed

to develop business insights and benefit decision-making in industry. One important task in

the early stages of a tabular data analysis pipeline is called column annotation [76, 99, 10,

53], which aims to match table columns to annotation labels. Take the digital marketing

industry as an example: annotated columns usually serve as the input of downstream tasks

and a missing or false annotation of a personally identifiable information (PII) column may

cause a severe privacy leakage. To comply with the General Data Protection Regulation

(GDPR) [35], industry experts such as data stewards and marketers are required to manu-

ally verify the correctness of the labeling results, which usually incurs enormous costs in

both time and effort. To accelerate the human evaluation process, automated labeling tools

are preferred, which ought to obtain good accuracy in column annotation while providing

the explanation to the experts to justify why such decision is made. This is the task of
1Data stewards are the heart of data governance who are responsible for interpreting regulations, contrac-

tual restrictions, and policies and applying them directly to data.
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explainable column annotation. Existing approaches are mostly accuracy-driven, seeking

superior annotation performance via modern deep neural networks [10, 11, 53, 142]. How-

ever, they have critical limitations in real industry scenarios due to the lack of explainability

and trustworthiness for the experts who conduct manual verification.

To meet both requirements, knowledge graph (KG) reasoning [69], known as an ex-

plainable predictor, has been widely adopted in link prediction [139, 77], medical diagnosis

[109], and recommendation [136], etc. The benefits are that it can not only achieve com-

petitive performance with deep neural networks but also generate explainable KG paths

that allow tracing back the entire decision-making process. Motivated by this, in this work,

we explore approaching the task of explainable column annotation under the framework of

KG reasoning. Specifically, a KG is built over all columns, annotations, and their extracted

features. Then, a model iteratively traverses this graph from a starting column node towards

candidate label nodes. The inferred paths directly reflect the reasoning and decision mak-

ing and hence can serve as an explanation for the prediction. As an example, illustrated

in Figure 5.1, the column “Contact” is expected to be matched with the label “Email”,

which can be reached by navigating along an evidence path: “Contact”
freq. of “@”−−−−−−→ “com”

freq. of “@”−−−−−−→ Column “Info” match−−−→ “Email”.

To achieve this, recent works primarily rely on reinforcement learning (RL) techniques

[122, 139, 77], i.e., a policy network is first learned over a KG-based Markov decision

process and then used to conduct multi-step reasoning from an unlabeled source node to

a potential target node as the prediction. However, the major challenge of these methods

lies in the manual definition of the reward function: it is easy to specify relevance between

sources and targets, but very hard to quantify the explainability of intermediate nodes.

This may result in spurious paths that do not genuinely confer explainability of the column

annotation results. For instance, there are two possible paths between the column “Contact”

and label “Email” in Figure 5.1, respectively marked by red and black arrows. But the

black-arrowed path is intuitively less explainable than the other one due to the keyword
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“com” being too vague to the prediction. If we only define a sparse reward on the last-

step of Label “Email”, the RL agent is very likely to opt for the less explainable path,

since both paths result in the same cumulative rewards. To avoid handcrafting rewards,

the alternative solution is to leverage imitation learning (IL), which requires high-quality

trajectories to learn the policy via supervised learning or behavior cloning [54, 154, 93].

In the real industry, however, it is easier to acquire large-scale noisy path data from less-

skilled crowdsourced workers than carefully labeled data from experts. As a trade-off,

the quality of these paths may be unsatisfactory, e.g., due to the lack of knowledge of

business scenarios, the crowdsourced workers may choose less explainable paths than those

preferred by the experts. Thus, the conventional IL methods are not adapted for training

the graph traversal model, as they do not explicitly tolerate noise in the inputs and may lead

to suboptimal choices of paths.

To this end, we propose a novel KG reasoning method EXACTA for EXplAinable

Column anoTAtion based on the framework of inverse reinforcement learning (IRL). Given

a set of noisy explainable paths between columns and labels, EXACTA first learns a noise-

tolerant reward function from the paths, which is then facilitated to guide policy learning so

that policy-based KG walker can generate both accurate predictions and explainable paths

via multi-hop reasoning. Our method is specially designed to cope with industry-scale

column annotation tasks, as it does not require high-quality expert paths to train the policy,

but can still guarantee to produce faithfully explainable paths for the predicted column

annotations. We experiment on four open-public and real industrial benchmarks and the

results not only demonstrate better column annotation performance compared to various

baselines, but more importantly show better explainability provided by our model. The

following four aspects highlight our contributions.

• To the best of our knowledge, this is the first work formally studying the problem of

explainable column annotation. We articulate the importance of this problem in industrial

marketing data management pipelines.
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• We propose a novel KG reasoning approach EXACTA based on IRL that can automat-

ically learn a noise-tolerant reward function from noisy input paths to guide the policy

learning.

• We experiment on four offline open-public and industrial benchmarks and conduct an

online simulation of explainable column annotation, observing promising results of EX-

ACTA in both annotation performance.

• We also systematically evaluate the explainability of our model in terms of perceived

explainability, robustness, and faithfulness of the path-based explanations.

5.2 Preliminaries

5.2.1 Problem Formulation

We consider the explainable column annotation problem in the framework of knowledge

graph reasoning. Formally, given an entity set E and a relation set R, a knowledge graph

(KG) for column annotation, denoted by G, is defined to be a set of triples, G = {(e, r, e′) |

e, e′ ∈ E , r ∈ R}, where each triple represents a fact between a head entity e and a

tail entity e′ via relation r. There are two special subsets of entities in the KG, namely

“columns” X ⊆ E and “labels” Y ⊆ E , and the relation connecting them, denoted by

rmatch ∈ R, means a column is matched (or annotated) with a label. We assume that each

column can only be matched with one correct label via relation rmatch. The remaining

entities in E \ {X ∪ Y} stand for the explainable features extracted from columns and

labels such as keywords and statistical values, and the relations in R \ {rmatch} reflect

the has-a property of columns and labels with respect to these features. For instance, a

triple (“Contact”, has keyword, “com”) expresses that the column “Contact” ∈ X has the

property of being associated with the keyword (i.e., relation has keyword∈ R \ {rmatch})

with value “com” ∈ E \{X ∪Y}. The details of the KG construction process are described

in the Appendix. By taking advantage of the rich heterogeneous information and relational

graph structure in the KG, we are interested in predicting (i) the missing links of relation
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rmatch for unmatched columns, and (ii) an explanation for the matching decision. In this

work, we define an explanation for the column–label pair (x, y) to be a KG reasoning path,

which is a sequence of entities and relations, denoted by L = {e0, r1, e1, . . . , el−1, rl, el |

e0 = x, el = y, l ∈ R+, (et−1, rt, et) ∈ G ∀t ∈ [|L|]}. The KG-enhanced explainable

column annotation problem is formulated as follows.

Definition 5.2.1. (Explainable Column Annotation) Given a KG G, the goal is, for every

unmatched column entity x ∈ X , to predict a label entity y ∈ Y along with a reasoning

path L of nodes from x to y that serves as the explanation for the annotation (x, y).

The challenges of this problem are threefold.

• Faithful Explanation. The explanation is required to be faithful to the decision-making

process, which means the reasoning path should reflect the actual multi-hop inference

process of the model, and the visited nodes along the paths should be the genuine causes

of the model’s annotation outcome.

• Unknown Target. Since the annotation results are derived with the path-finding process,

the target node is unknown prior to the KG reasoning, which makes it hard for the agent

to determine if the next step will potentially lead to a “correct” label node.

• Noisy Paths. Since the input paths are noisy and not warranted to be the most explainable,

a good solution should explicitly model such noise and be robust to the diverse quality of

the explainable paths, so that it can find optimal paths in the inference step.

5.2.2 (Inverse) Reinforcement Learning

A finite Markov Decision Process (MDP) in reinforcement learning (RL) is defined as a

tuple (S,A, p(st+1|st, at), R(st, at)) with state st ∈ S, action at ∈ A, transition probability

p(st+1|st, at) and reward function R : S ×A 7→ R for each step t ∈ [T ]. The goal of RL is

to find a policy π(at|st) over the MDP that maximizes the expected cumulative reward, i.e.,

Eτ∼pπ(τ)[
∑

(st,at)∈τ R(st, at)], where τ = {s1, a1, s2, . . . , sT , aT , sT+1} denotes a trajectory
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Figure 5.2: Pipeline of the proposed EXACTA. (a) A KG is constructed with columns,
labels, and explainable features. (b) Given noisy paths, the reward function and policy
network are iteratively learned under the IRL framework with explicit noise modeling via
worker policy. (3) KG reasoning is conducted to generate an explainable path and predicted
label for the column.

sampled from the distribution pπ(τ) = p(s1)
∏T

t=1 p(st+1|st, at)π(at|st). The discounting

factor is ignored for simplicity.

One limitation of RL occurs when the reward function is unavailable and hard to define

in practice [93], so an alternative solution is to adopt the notion of inverse reinforcement

learning (IRL), which aims to learn the reward function from expert trajectories D = {τ}.

The common approach to the IRL problem is under the framework of maximum-entropy

IRL (ME-IRL) [154], which models the probability of a trajectory by the maximum en-

tropy principle [55], i.e., pφ(τ) = 1
Zφ
p(s1)

∏T
t=1 p(st+1|st, at)eRφ(st,at), where Rφ(st, at)

is the estimated reward function parametrized by φ and Zφ is the partition function de-

fined over all possible trajectories. ME-IRL learns φ by maximizing the log-likelihood

of pφ(τ) over all training trajectories, which leads to the following optimization problem:

maxφ
1
|D|
∑

τ∈D
∑

(st,at)∈τ Rφ(st, at) − logZφ. Once the reward function Rφ is derived,

we can further learn the policy π over the MDP with the estimated rewards.

5.3 Our Method

In this section, we propose a new method based on ME-IRL called EXACTA, which it-

eratively learns the reward function from noisy explainable paths and the policy with the
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estimated rewards, so that the agent is able to find high-quality explainable paths leading

to the correct target labels for the given source columns.

5.3.1 Formulation as IRL Problem

We start by casting explainable column annotation as an IRL problem with noisy paths as

input.

KG-based MDP At each step t ∈ [T ], the state st is defined to be the joint represen-

tation of the starting column x ∈ X and the current entity et−1 ∈ E , i.e., st = (x, et−1),

with the initial state s1 = (x, x).2 The valid action space of the state st consists of all

outgoing edges of the current entity, At = {(rt, et) | (et−1, rt, et) ∈ G}. We also add

a special STOP action that allows the agent to stop at the current entity. Given the state

st and an action at = (rt, et) ∈ At, the transition probability is p(st+1|st, at) = 1 if

st+1 = (x, et) and 0 otherwise. A KG path L = {x, r1, e1, . . . , eT−1, rT , y} can be iden-

tically converted to a trajectory τ = {s1 = (x, x), a1 = (r1, e1), s2 = (x, e1), . . . , sT =

(x, eT−1), aT = (rT , y), sT+1 = (x, y)}, so we will use them interchangeably. This defi-

nition of MDPs over KGs is commonly adopted by existing works [139, 77], however, its

limitation is also obvious, i.e., node out-degrees determine the sizes of the discrete action

space, which may vary significantly among different states and become space-inefficient in

policy network implementation. Therefore, we reformulate the MDP in continuous space

by vectorizing each entity and relation by means of pretrained KG embeddings3, with state

st = [x; et−1] ∈ S ⊆ R2d and action at = [rt; et] ∈ A ⊆ R2d, for t ∈ [T ]. Here d is the

dimensionality of entity and relation embeddings and [; ] denotes concatenation. The actual

reward is unknown and expected to be estimated by the function Rφ(st, at).

IRL-based Objective Given a set of noisy and less explainable paths of correctly labeled

2More historical information can be encoded into the state, which can be easily extended under our frame-
work and is not the focus of this work.

3We adopt TransE [5] in this work, which can be replaced by other KG embeddings.
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columns, we aim to learn the reward function Rφ that indicates both the explainability of

moving to the next node and the probability of arriving at the correct label eventually. Then,

the optimal policy π(at|st) can be learned via RL with the help of the estimated rewards by

Rφ.

To explicitly model the behavior of crowdsourced workers, we assume each noisy tra-

jectory τ̃ = {s1, ã1, s2, . . . , sT , ãT , sT+1} is generated following a worker policy with

Gaussian noise pω(ãt|st, at) = N(ãt|at,Σω(st)). That is, each noisy action ãt ∈ A is

sampled from a multivariate Gaussian distribution with a mean of the optimal action at and

a state-dependent covariance Σω(st) = diag(FFω(st)), which is a diagonal matrix with

values approximated by a multi-layer feed-foward neural network FFω with parameters ω.

Accordingly, the probability of the noisy trajectory τ̃ is p(τ̃) = p(s1)
∏T

t=1 p(st+1|st, ãt)p(ãt|st),

which can be rewritten by pω as:

p(τ̃) = p(s1)
T∏
t=1

∫
at∈A

π(at|st)pω(ãt|st, at)dat, (5.1)

where p(s1) is the constant probability of the initial state, and the transition probability

p(st+1|st, ãt) = 1 is ignored in Equation 5.1. Inspired by ME-IRL [154], we also model the

probability p(τ̃) with the reward functionRφ(st, at) under the maximum-entropy principle:

pφ,ω(τ̃) =
1

Zω,φ
p(s1)

T∏
t=1

∫
at

eRφ(st,at)pω(ãt|st, at)dat, (5.2)

where Zω,φ is the partition function defined over all trajectories with fixed horizon T . By

plugging pω(ãt|st, at) = N(ãt|at,Σω(st)) into Equation 5.2, we can simplify the model as

follows:

pφ,ω(τ̃) =
1

Zω,φ
p(s1)

T∏
t=1

∫
at

efφ,ω(st,at,ãt)dat, (5.3)

fφ,ω(st, at, ãt) = Rφ(st, at)−
1

2

(
D2
ω(ãt) + log det(Σω(st))

)
(5.4)
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Here, Dω(ãt) =
√

(ãt − at)>Σ−1
ω (st)(ãt − at) is the Mahalanobis distance between ãt and

ã. The constant term in the Gaussian distribution is disregarded, as it will not be used in

the optimization. Equation 5.3 implies that the higher the quality of an explainable path,

the more rewards it is likely to confer to the agent.

Let D̃ = {τ̃} be the set of input noisy trajectories. We can learn the reward function Rφ

and the worker policy pω by maximizing the log-likelihood of pφ,ω(τ̃) over all trajectories

in D̃:

max
φ,ω

1

|D̃|

∑
τ̃∈D̃

T∑
t=1

log

∫
at

efφ,ω(st,at,ãt)dat − logZφ,ω. (5.5)

5.3.2 Training Framework

However, directly solving Equation 5.5 is intractable in practice due to the integral over the

large-scale continuous action space. We adopt the variational approach [57] to change the

integral into an expectation by introducing additional variational distributions.

Specifically, for the first logarithm term in Equation 5.5, we introduce a variational

distribution qψ(at|st, ãt) approximated by a neural network parametrized by ψ. For each

noisy path τ̃ ∈ D̃, we have

T∑
t=1

log

∫
at

efφ,ω(st,at,ãt)dat =
T∑
t=1

logEat∼qψ

[
efφ,ω(st,at,ãt)

qψ(at|st, ãt)

]
≥

∑
(st,ãt)∈τ̃

Eat∼qψ [fφ,ω(st, at, ãt)− log qψ(at|st, ãt)] (5.6)

= Lpath(φ, ω, ψ; τ̃),

where Equation 5.6 is derived via Jensen’s inequality and the expectation can be easily

approximated via Monte Carlo methods [110]. Note that
∑T

t=1 log
∫
at
efφ,ω(st,at,ãt)dat =

maxψ Lpath(φ, ω, ψ; τ̃). Therefore, we can first estimate ψ by maximizing the objective
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Lpath and then solve the original problem in Equation 5.5, which is equivalent to

max
φ,ω

1

|D̃|

∑
τ̃∈D̃

Lpath(φ, ω, ψ̂; τ̃)− logZφ,ω, (5.7)

where ψ̂ = arg maxψ Lpath(φ, ω, ψ; τ̃).

Then, we can approach the partition function in Equation 5.7 in a similar way, which

can first be expanded as follows.

logZφ,ω = log

∫
τ̃∈(S×A)T

(
p(s1)

T∏
t=1

∫
at

efφ,ω(st,at,ãt)dat

)
dτ̃

= log

∫
ξ∈(S×A×A)T

p(s1)
T∏
t=1

efφ,ω(st,at,ãt)dξ (5.8)

Here, ξ = {s1, a1, ã1, . . . , sT , aT , ãT , sT+1} denotes the augmented trajectory with paired

actions {(at, ãt)}t∈[T ]. To simulate the generation process of augmented trajectory ξ, we

assume that the optimal action at is first sampled from the policy network πθ(at|st) and

then the noisy action ãt is sampled from another Gaussian noise distribution N(ã|at, σ2I).

Note that we cannot adopt the worker policy pω here to sample noisy action ã, as it is

based on the assumption of crowdsourced workers generating noisy paths, while here it

corresponds to a different MDP setup with paired actions. To simplify the computation of

ãt in practice, we can sample Gaussian noise εt ∼ N(0, I) and then compute ãt = at+σεt,

which is known as the reparameterization trick [60]. Accordingly, the probability of ξ is

pθ(ξ) = p0

∏T
t=1 p(st+1|st, at + σεt)πθ(at|st)N(εt|0, I).

Thus, we can introduce the distribution πθ(at|st)N(εt|0, I) into Equation 5.8 to elimi-
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nate the integral via the variational approach:

logZφ,ω = logEξ∼pθ

[
T∏
t=1

efφ,ω(st,at,ãt)

πθ(at|st)N(εt|0, I)

]
(5.9)

≥ Eξ∼pθ

[
T∑
t=1

fφ,ω(st, at, ãt)− log πθ(at|st) +
1

2
‖εt‖2

]
(5.10)

= Eξ∼pθ

[
T∑
t=1

Rφ(st, at)− log πθ(at|st)

]
+ gω = Lrl(φ, ω, θ),

where gω = Eξ[
∑T

t=1 σ
2tr(Σ−1

ω (st)) + log det(Σ−1
ω (st))] is a regularization term on param-

eter ω. Eξ∼pθ [
∑T

t=1
1
2
‖εt‖2] in Equation 5.10 is a constant based on the quadratic form of

random variables and is ignored. It is easy to find that logZφ,ω = maxθ Lrl(φ, ω, θ), which

results in an RL problem for which we can learn the policy πθ over the MDP with paired

action (at, ãt) and the estimated reward Rφ(st, at). Hence, another benefit of this formula-

tion is that we can adopt any state-of-the-art RL algorithm (e.g., PPO [115] in this work) to

learn the optimal policy πθ̂(at|st) with θ̂ = arg maxθ Lrl(φ, ω, θ).

The ultimate goal is to maximizing the following objective:

L(φ, ω; D̃) =
1

|D̃|

∑
τ̃∈D̃

Lpath(φ, ω, ψ̂; τ̃)− Lrl(φ, ω, θ̂). (5.11)

The complete training pipeline is summarized in Algorithm 4.

5.3.3 Inference

In the inference stage, we leverage the learned policy network πθ(at|st) to walk over the

KG from an unmatched column step-by-step towards a potential label node. Specifically,

given a (t−1)-hop path Lt−1 = {x, r1, e1, . . . , rt−1, et−1}, we first obtain the mean action

vector ât = πθ(at|st) by taking as input the state vector st = [x; et−1]. Then we select top
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Algorithm 4 Training Pipeline
1: Input: KG G, noisy paths {L}.
2: Output: reward function Rφ, policy network πθ
3: Convert paths {L} to trajectories D̃ with pretrained TransE.
4: Initialize policy network πθ(at|st), reward function Rφ(st, at).
5: Initialize FFω and variational distribution qψ(at|st, ãt).
6: for epoch n = 1 . . . , N do
7: Update qψ with gradient

∑
τ̃∈D̃∇ψLpath(φ, ω, ψ; τ̃).

8: for i = 1, . . . ,m do . Sample m augmented trajectories
9: Initialize ξi = {s1 = [x;x]}, for random x ∈ X .

10: for t = 1, . . . , T do
11: Sample at ∼ πθ(at|st), εt ∼ N(0, I), ãt = at + σεt
12: Sample st+1 ∼ p(st+1|st, ãt) and add (at, ãt, st+1) to ξi.
13: Compute Lrl(ω, φ, θ) with {ξi}i∈[m].
14: Update πθ via PPO with Rφ. . Solve RL problem
15: Update pω with gradient∇ωL(ω, φ; D̃).
16: Update Rφ with gradient∇φL(ω, φ; D̃). . Learn rewards

17: return Rφ, πθ

k outgoing edges by calculating

{(rt, et) ∈ G | et 6∈ Lt−1, rank(‖ât − [rt; et]‖2
2) ≤ k}. (5.12)

By extending the path Lt−1 with these k edges, we obtain k t-hop paths, each of which is

further extended until the length reaches the horizon T . At the end, at most O(kT ) paths

will have been generated and we rank them according to the cumulative rewards by Rφ

along each path. The top-ranked reasoning path is expected to end with the correct label

and the nodes along the path faithfully explain the decision-making process.

5.3.4 Implementation Details

In this section, we describe the implementations of our method including knowledge graph

construction and model training details.
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Knowledge Graph Construction

Since we adopt KG reasoning paths as explanations for the column annotation predictions,

it is required that each node in the graph must be understandable to a human. Therefore,

for KG construction, we extract the following four groups of useful and comprehensible

features from columns and labels.

Cell-level statistics Inspired by the previous work [53], we extract 27 global statistical

features from each column, including the number of non-empty cell values, the entropy

of cell values, fraction of {unique values, numerical characters, alphabetical characters},

{mean, std. dev.} of the number of {numerical characters, alphabetical characters, special

characters, words}, {percentage, count, any, all} of the missing values, and {sum, min,

max, median, mode, kurtosis, skewness, any, all} of the length of cell values. The values of

these features are real-valued numbers, and hence for each feature, we uniformly bucketize

its values into Nstat bins such that the number of values in each bin is approximately equal.

If a feature f with value fi (i ∈ [Nstat]) is extracted from a column x ∈ X , we accordingly

add a triple (x, rf , fi) to the KG, where rf ∈ R is the relation indicating that column

x (head entity) has the property of possessing feature f with value fi (tail entity). For

instance, suppose f represents “average number of numerical characters” with value fi =

[1.0, 3.5]. The triple (x, rf , fi) stands for the fact that the average number of numerical

characters in column x lies in the range [1.0, 3.5].

Character-level statistics We also extract statistical features for a set of ASCII-printable

characters including digits, letters, and several special characters from each column. Given

a character c, we extract 10 features: {any, all, mean, variance, min, max, median, sum,

kurtosis, skewness} of the number of occurrences of c in the cells. Again, we bin the

values of each feature into Nchar buckets. If a feature fc of character c with value fc,i is

extracted from column x, we add the corresponding triple (x, rfc , fc,i) to the KG, where

rfc represents the column x has the property of feature fc with value fc,i. For instance,
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if fc represents “average number of character @” (c =“@”) with value fc,i = [0.5, 2.2],

the triple (x, rfc , fc,i) asserts that the average number of occurrences of “@” in the column

values for x is within the range of [0.5, 2.2].

Cell keywords The above two kinds of features cover statistical information at different

levels of granularity. We further consider word-level features by tokenizing all cell values

in a column. After aggregating all unique values, we choose the top |Vcell| frequent values as

the keyword vocabulary Vcell. The reason not to directly utilize a word embedding such as

word2vec [87] for feature extraction is that individual dimensions of the word embedding

are not comprehensible. If a column x contains a keyword w ∈ Vcell, we add a triple

(x, rhas keyword, w) to the KG, meaning that the column entity x connects to a keyword

entity w via relation rhas keyword ∈ R.

Header/Label features In some cases, a header can directly reflect the meaning of the

column, which can be used to establish a correspondence to a candidate label. Similar

to cell keywords, we also tokenize headers and labels to enlargen the keyword set Vcell.

Supposing a label y or the header of column x contains a keyword w, we denote this fact as

(y, rdescribed by, w) or (x, rdescribed by, w). In addition, if a column x is known to be matched

to a label y, we directly add a triple (x, rmatch, y) to the KG.

Neural network architectures and hyperparameters

For the TransE[5] embeddings that are used for initializing the state and action representa-

tions, we set both the entity and relation embedding dimensionality to 100. The model is

implemented in OpenKE [40], and trained using Adam optimization with a learning rate of

0.0008, batch size of 100, and the number of training epochs set to 100.

For our KG reasoning model, the architectures of the four neural networks are defined

below.
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• The policy network is defined as

πθ(at|st) = N(at|µθ(st), diag(Σθ(st))),

µθ(st) = W2ReLU(W1(st)), Σθ(st) = W3ReLU(W1(st)),

where W1 ∈ R200×256 and W2,W3 ∈ R256×200.

• The reward function is defined as

Rφ(st, at) = W5ReLU(W4[st; at]),

where W4 ∈ R400×256 and W5 ∈ R256×1.

• The state-dependent covariance matrix in the worker policy is:

Σω(st) = W7ReLU(W6st),

where W6 ∈ R200×256 and W7 ∈ R256×200.

• The variational distribution is defined as

qψ(at|st, ãt) = N(at|µψ(st), diag(Σψ(st))),

µψ(st) = W9ReLU(W8([st); ãt]),

Σψ(st) = W10ReLU(W8([st; ãt])),

where W8 ∈ R400×256 and W9,W10 ∈ R256×200.

For φ, ω, and ψ, we rely on Adam optimization with a learning rate 10−4 and batch size 256.

We adopt PPO [115] to train the policy network with parameter θ. The model is trained for

100,000 steps on the WWT, Retailer, and Marketing datasets, and for 200,000 steps

on the WebTable78 dataset.

In the KG construction, we set the bin sizes Nstat = 20, Nchar = 20 and vocabulary
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size |Vcell| = 15, 000.

5.4 Experiments

We extensively evaluate our method in terms of both the annotation performance and the

explainability on two open-source datasets and two genuine industry datasets. We aim to

answer the following three research questions via experiments.

• RQ1: How is the column annotation performance of the proposed EXACTA compared

to prior work? (subsection 5.4.2)

• RQ2: Does our method provide good explainability for column annotation despite the

noisy input paths? (subsection 5.4.3)

• RQ3: What other factors may influence the annotation performance? (subsection 5.4.4)

5.4.1 Experimental Setup

Datasets We experiment with four real-world datasets from both open-public domains

and industrial platforms. WWT is an open-sourced dataset [134] originally used for query

search on web tables. It contains over 18,000 columns, about 460,000 rows and 160 unique

annotation labels derived from ontology entities. Retailer is a real industrial dataset col-

lected from the Adobe Analytics platform4, which records customer relationship manage-

ment (CRM) and customer web browsing data. It comprises 16,500 columns and 33 unique

manually-annotated labels and each column can harbor thousands of values of diverse data

types. WebTable78 is a subset of WebTable collections [6] for semantic data type de-

tection on column cells. It comprises 5 disjoint datasets including approximately 80,000

columns labeled with 78 classes in total. Marketing is another industry dataset collected

from the Adobe Marketo Engagement Platform5, which manages marketing across vari-

ous channels (e.g., email, text messages, etc). It contains around 24,000 columns with 81

unique labels. Note that WebTable78 and Marketing are more challenging, as they do
4https://www.adobe.com/analytics/adobe-analytics.html
5https://www.marketo.com/adobe-experience-cloud/
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Table 5.1: Statistics of the KG constructed on four datasets.

Dataset #columns #labels #entities #relations #triples

WWT 18,670 160 52,755 150 3.503M
Retailer 16,500 33 48,015 150 2.213M
WebTable78 80,000 78 42,515 148 13.409M
Marketing 23,835 81 44,050 148 6.157M

not include column header names. For each dataset, we perform a random split into 60%

of columns for training, 20% for validation, and 20% for testing.

KG construction and path generation We construct a KG for each dataset by ex-

tracting explainable features from columns and labels following the previous work [53].

These include cell-level statistics (e.g., mean number of numerical characters in column),

character-level statistics (e.g., mean number of “@” in each cell), keywords in cells, head-

ers, and label descriptions. The statistics of the 4 KGs are given in Table 5.1. In order

to obtain large quantities of paths without quality guarantees, we randomly sample 3 to

5 paths for each training column, and then ask crowdsourced workers to manually assess

whether these paths are suitable as explanations for the column–label pairs. A score of

“0” is assigned to a path if it does not make any sense for the pair and “1” otherwise. We

discard all paths with “0” scores and keep around 1.756 paths that are deemed “somewhat

explainable” for each training column–label pair over all 4 datasets. Note that these paths

are not the most explainable and serve as the noisy input trajectories for our model.

Baselines We mainly consider the following three categories of baselines. Rule-based

methods are earlier techniques for column annotation that are explainable but less effec-

tive. Deep neural network based approaches show better performance but the annotation

mechanism is opaque to humans due to their black-box nature. KG-based methods rely on

the same constructed graph to make predictions with path-based explanations.

• Rule-based methods: LexicalMatch [104] is an early heuristic approach that detects

column types by collecting frequent lexical keywords across all columns. DSL [99] is
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a representative column annotation model that exploits column features and makes its

prediction via random forest.

• Deep neural networks: ColNet [10] is a deep neural model that relies on an external

knowledge base to identify column types together with entity lookup voting. Sherlock

[53] is a deep neural model that also utilizes the features extracted from columns. SATO

[142] is the state-of-the-art neural model based on Sherlock with additional topic model-

ing components. For a fair comparison, we train these models with the cell-level statis-

tical features, character-level statistical features, and pretrained word2vec [98] features,

which are consistent with our KG-based model.

• KG-based approaches: TransE [5] is a KG embedding technique via vector transla-

tion operations. We also use it to initialize the state and action representation in our

model. RotatE [121] is an advanced KG embedding modeled in a complex vector

space. ME-IRL [154] is an IRL method that learns rewards from expert trajectories via

the max-entropy principle. KGRL [77] is the state-of-the-art RL-based KG reasoning

model to predict missing links.

The implementation of our method is described in the Appendix. For each dataset, we tune

each method on the validation set, and repeatedly run it 5 times on the test set and report

average performance on four metrics (F1 score, hit rate@1, 3 and 5).

5.4.2 Experiment on Column Annotation

We first evaluate the column annotation performance of our method compared to the se-

lected baselines on four datasets (RQ1). The benchmark results of all methods are reported

in Table 5.2.

Overall, we observe that our method EXACTA shows superior performance over other

baselines on all benchmarks in terms of F1 and Hits@k. For example, on the WWT and

Retailer datasets, our model obtains around 5.06% and 3.64% improvement in F1 score,

and 3.07% and 2.70% in Hits@1 over the best baseline RotatE. Our model can also handle
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Table 5.2: Benchmark results of our method compared to other baseline approaches on four
datasets for the column annotation task. The best results are highlighted in bold and the
second best results are underlined.

WWT Retailer

Methods F1 Hits@1 Hits@3 Hits@5 F1 Hits@1 Hits@3 Hits@5

LexicalMatch 0.2479 0.2545 0.3438 0.3638 0.3741 0.4173 0.5252 0.5576
DSL [99] 0.3649 0.3957 0.5728 0.6464 0.7856 0.8009 0.9988 0.9994

ColNet [10] 0.4148 0.4332 0.6429 0.7125 0.7592 0.7706 0.9921 0.9994
Sherlock [53] 0.4437 0.4735 0.6524 0.7293 0.7724 0.7988 1.0000 1.0000
SATO [142] 0.4387 0.4664 0.6681 0.7296 0.7974 0.8188 1.0000 1.0000

TransE [5] 0.4347 0.4563 0.6924 0.7768 0.7771 0.8030 1.0000 1.0000
RotatE [121] 0.4835 0.5150 0.7282 0.7911 0.8111 0.8303 1.0000 1.0000
ME-IRL [154] 0.3250 0.3372 0.5305 0.5968 0.7250 0.7458 0.9154 0.9525
KGRL [77] 0.4049 0.4304 0.6623 0.7453 0.7927 0.8102 0.9858 0.9994

EXACTA (ours) 0.5080 0.5308 0.7353 0.7966 0.8406 0.8527 1.0000 1.0000

WebTable78 Marketing

Methods F1 Hits@1 Hits@3 Hits@5 F1 Hits@1 Hits@3 Hits@5

LexicalMatch 0.4268 0.4344 0.5155 0.5454 0.5362 0.5339 0.6122 0.6294
DSL [99] 0.5132 0.5262 0.6493 0.7093 0.6226 0.6440 0.6705 0.6831

ColNet [10] 0.5133 0.5173 0.6589 0.7217 0.7005 0.7202 0.9240 0.9328
Sherlock [53] 0.5714 0.5852 0.7183 0.7735 0.7400 0.7889 0.9901 0.9952
SATO [142] 0.6244 0.6279 0.7476 0.7873 0.7692 0.7975 0.9903 0.9960

TransE [5] 0.5352 0.5233 0.6867 0.7517 0.7567 0.7712 0.9874 0.9937
RotatE [121] 0.5858 0.5753 0.7233 0.7853 0.7661 0.7953 0.9863 0.9937
ME-IRL [154] 0.4483 0.4928 0.6193 0.6598 0.6057 0.6209 0.8815 0.9052
KGRL [77] 0.5025 0.5121 0.6805 0.7422 0.7397 0.7428 0.9808 0.9916

EXACTA (ours) 0.6358 0.6347 0.7566 0.7949 0.7973 0.8155 0.9921 0.9976

the very challenging case of column headers being entirely missing, as we see that the

results are still promising on WebTable78 and Marketing. This indicates that our KG

reasoning method can also guarantee the performance even if header keywords are absent

in the KG.

It is of particular interest to see that our model outperforms other KG embedding models

and RL-based KG reasoning methods. As we adopt TransE embeddings for initializing

state and action representation, the considerable gains achieved by our model indicate that
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explicit KG reasoning yields additional information such as useful features to deliver final

predictions. At the same time, our model also outperforms KGRL and ME-IRL by a large

margin across all benchmarks. The former only learns the policy from handcrafted rewards,

while the latter learns rewards without accounting for potential noise in the input paths.

Hence, the results imply that the performance gap mainly stems from the superior quality

of the reward functions, which cause the model to learn a good policy.

We also notice that the KG-based methods (e.g., RotatE) generally work better than the

deep neural networks (e.g., SATO) on the datasets with column headers (WWT, Retailer).

After checking the header names with the label names and description, we find headers to

be a strong indicator for annotation, e.g., “email” is the common keyword in some columns

and the label in the Retailer dataset. In addition, all models attain much better perfor-

mance on two industrial datasets (Retailer, Marketing) than on the others (WWT,

WebTable78). After investigating column content in the datasets, we find this perfor-

mance gap is caused by data intricacies and ambiguity. For instance, many columns in

WWT consist of names of people but are annotated with diverse labels such as “actors”,

“footballer”, “presidents”, etc. This makes annotating this dataset particularly challeng-

ing unless one incorporates additional features to introduce world knowledge regarding the

profession of a person. On the contrary, most columns in the Retailer dataset are fairly

easy to recognize and hence one quickly approaches 100% top 5 accuracy. For example, an

“ID” column consists entirely of integer values, which can be discerned using the statistical

features.

5.4.3 Experiment on Explainability

In this experiment, we comprehensively evaluate the explainability of KG reasoning paths

emitted by our model in terms of perceived explainability, robustness, and faithfulness

(RQ2).
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Methods Retailer Marketing

Random 2.29±1.60 2.08±1.23
KGRL 2.41±1.56 2.03±1.22
ME-IRL 3.20±1.21 2.28±0.93
Ours 3.49±1.15 2.55±0.86

Table 5.3: Average perceived explainability (with std. dev.) of 4 methods on 2 datasets.

Expert Evaluation of Perceived Explainability

We first study the perceived explainability of our model compared with other KG reasoning

baselines (ME-IRL, KGRL) and random path sampling.

We experiment on two industrial datasets (Marketing and Retailer) and collabo-

rate with 5 human experts who are specialized in the digital marketing platform and familiar

with the domain.6 For each dataset, we randomly select 50 column–label pairs that are cor-

rectly predicted by our model. For every such pair, we run 4 algorithms that each generate

a path of fixed length 3, resulting in 4 paths for the pair. Upon completion of the procedure,

we collect 400 explainable paths in total from these algorithms on two datasets. Human

experts are requested to rate each path along a 5-point Likert scale, where “5” means the

path is completely explainable for the prediction, while “1” means the path does make any

sense. We consider the path relevance to be the perceived explainability score given by the

participants.

We report the average score of 4 algorithms given by 5 experts in Table 5.3. Overall,

our method obtains a substantially better perceived explainability compared to all the base-

lines. Specifically, our model outperforms the other IRL-based method ME-IRL, which

establishes that our method is able to find more explainable intermediate nodes despite

being trained on unreliable input paths, while ME-IRL is affected by noise in the input

trajectories. Meanwhile, both of the IRL-based methods achieve better explainability than

the RL method, which merely has comparable performance with random path sampling.

6Note that we cannot experiment on the other two datasets due to a lack of experts who can evaluate
explanations with specialization in those domains.
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Figure 5.3: Perceived explainability of our method on various path lengths.

This implies that such RL-based methods completely fail to distinguish the explainability

of different paths between the same column–label pair.

Path length on perceived explainability

We further evaluate the influence of the path length on perceived explainability and attempt

to answer what the most suitable length is for explanatory purposes. For each of two

datasets, we adopt the same 50 column–label pairs as in the last experiment but generate

further paths of length 2, 4, 5 by our model. We again ask 5 human experts to score the

perceived explainability of the paths.

As shown in Figure 5.3, we find that the highest score across both datasets is achieved

when the path length is 3, which is slightly higher than the length of 2, but significantly

preferred over longer paths. We further check the paths generated in this experiment and

find that shorter paths contain mostly more comprehensible features such as keywords,

whereas longer paths tend to consist of less understandable statistical features. Intuitively,

if the path length is overly restricted, people may not recognize the reasoning process as

legible and logical. However, when the path becomes too long, it may fail to possess

meaningful explainability, due to the presence of various redundant reasoning steps.
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Figure 5.4: Perceived explainability of our method and ME-IRL when trained with varying
percentages of noisy paths.

Robustness to Very Noisy Input Paths

Recall that when generating training paths annotated by crowdsourced workers in subsec-

tion 5.4.1, we only keep the “1”-scoring random paths but discard all the “0”-scoring ran-

dom paths, as they are deemed not at all explainable. In this experiment, we evaluate how

these very noisy paths as training data influence the perceived explainability of our model

compared to the regular IRL method (ME-IRL). Specifically, we add the “0”-scoring paths

to the training set at different ratios of 0%, 20%, and 40% among all paths. Both our model

and ME-IRL are retrained with these new training paths, while maintaining all other set-

tings as in the default setup. The perceived explainability is evaluated in the same way as

in the previous experiments.

The average scores of the two methods are plotted in Figure 5.4. We observe that

our method (blue curve) consistently achieves better perceived explainability than ME-IRL

across both datasets. Furthermore, the gap between the methods grows as further noisy

paths are included in the training set, which implies our method is more capable of coping

with noise during training and is more robust to varying degrees of quality of the input

training data.
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Faithfulness of Feature Explainability

In addition to the human evaluation, we further quantitatively measure the faithfulness of

explainability, i.e., the extent to which explanations provided by a model genuinely in-

form the predictions. Motivated by recent work in the field of NLP [20, 141], we adopt

two metrics known as comprehensiveness and sufficiency to evaluate the faithfulness of the

generated explanation. Specifically, let x be a column associated with a set of extracted

explainable features and f(x) be an annotation model that takes the column x as input and

emits top k predicted labels along with k explainable features vk (or features nodes connect-

ing columns). With the annotation metricm(·), e.g., Hits@k, we define comprehensiveness

hcom and sufficiency hsuf as:

hcom =
1

|Xtest|
∑

x∈Xtest

m(f(x))−m(f(x\vk))
m(f(x))

(5.13)

hsuf =
1

|Xtest|
∑

x∈Xtest

m(f(x))−m(f(vk))

m(f(x))
(5.14)

Here, x\vk denotes the column excluding the predicted k features. Note that the metrics

hcom and hsuf focus on the difference ratio of the model performance, assessing to what

extent the features contribute to the prediction. Therefore, these new metrics eliminate

the effect of absolute differences in performance between models. We set k = 5 in this

experiment. A high score of hcom indicates the extracted explanations vk indeed influence

the annotation, while hsuf captures the degree to which the extracted explainable features

are adequate for the model to make predictions.

We consider two sets of baselines in this experiment, including model-agnostic ap-

proaches and KG-based approaches. Methods in the first category (LIME [107], Anchor

[108]) can be applied to any deep classifiers (e.g., SATO) to generate explainable features,

and hence the two faithfulness metrics can be directly calculated on the test set. KG-based

approaches (KGRL, ME-IRL and ours) first generate reasoning paths and then extract the
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Table 5.4: Evaluation of faithfulness of the explainability

Retailer Marketing

Methods hcom ↑ hsuf ↓ hcom ↑ hsuf ↓

SATO + LIME 0.024 0.519 0.019 0.601
SATO + Anchor 0.029 0.480 0.022 0.584
KGRL 0.035 0.184 0.029 0.227
ME-IRL 0.041 0.143 0.035 0.209
Ours 0.070 0.116 0.058 0.165

feature nodes connecting the start column in KG. The comprehensiveness is computed by

removing all these features nodes and their edges from the KG, while sufficiency is obtained

by removing the outgoing edges of the column that do not belong to the extracted features.

The results are reported in Table 5.4. As we discussed before, one possible reason that

SATO with LIME is not competitive is that it does not specify which local feature space is

applicable. It always yields explanations that may vary considerably for different neighbor-

hoods in the feature space. Compared to the model-agnostic approaches, the graph-based

explainable methods are able to provide more faithful feature entities within the reasoning

paths. We observe that features extracted by our method indeed make a notable contribu-

tion, especially for the sufficiency evaluation. With purely extracted top-k features, it is

reasonable that SATO performance will drop substantially, whereas our graph-based ap-

proach is able to maintain the path inference procedure, which quantitatively proves the

faithfulness of the model’s explainability.

5.4.4 Ablation Study

We further seek a better understanding of what other factors may influence the performance

of our model (RQ3).
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Figure 5.5: Column annotation performance (F1) of our method trained with various por-
tions of input paths compared to the best baseline on two industrial datasets.

1.0 0.9 0.8 0.7 0.6 0.5
Ratio of input paths

0.475

0.500

0.525

A
nn

ot
at

io
n

F
1 Ours

RotatE

1.0 0.9 0.8 0.7 0.6 0.5
Ratio of input paths

0.600

0.625

0.650

A
nn

ot
at

io
n

F
1 Ours

SATO

(a) WWT (b) WebTable78

Figure 5.6: Column annotation performance (F1) of our method trained with various por-
tions of input paths compared to the best baseline on two open-source datasets.

Influence of quantity of input paths

In this experiment, we evaluate if our model requires a large amount of training paths as

input and how the performance will change with less training data. Specifically, for each

of the four datasets, we only retain paths for 90%, 80%, 70%, 60%, 50% of the input

columns while leaving the rest of the columns with no corresponding paths. We retrain

our model with these smaller-sized training sets and report F1 scores of our model and the

best baseline in Figure 5.5 and Figure 5.6. We find that the performance drop is within

an acceptable range, i.e., even if 50% of the columns are left without training paths, our

model still achieves comparable results to the best baseline. The benefit is that our model

does not require enormous amounts of training paths, which saves much effort in manual

explainability labeling of paths.
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Figure 5.7: Column annotation performance (F1) of our method when varying the maxi-
mum step size in reasoning compared to the best baseline on two industry datasets.
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Figure 5.8: Column annotation performance (F1) of our method with various output path
lengths compared to the best baseline on two open-source datasets.

Influence of maximum steps

We further evaluate how different maximum step sizes (i.e., horizons) T influence the an-

notation performance of our model. In general, larger values of T result in longer paths and

hence make it harder to reach the correct destination in KG reasoning. The resulting F1

scores of our method on four datasets are reported in Figure 5.7 and Figure 5.8. We observe

that the best performance is consistently achieved when T = 3, which is comparable to the

case of T = 2, but much better than when operating with longer horizons. The reason

behind these results is that when reasoning for longer numbers of steps, one is more likely

to arrive at spurious nodes instead of a potentially correct target.
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Figure 5.9: Visualization of learned rewards on a subgraph of the Retailer dataset. The
explainable path with the highest cumulative rewards is highlighted in bold.

5.4.5 Qualitative Analysis on Learned Reward

In order to better investigate why our model is able to reach explainable feature nodes

during path reasoning, we visualize the learned rewards to see if important feature nodes

in the KG are assigned higher rewards by our model. As illustrated in Figure 5.9, we

showcase one example from the test set, where rewards marked in brackets are associated

with each edge (action in MDP). We can see that there are in total four paths connecting the

starting “Column A” and two potential labels, and the predicted path is highlighted using

bold edges, along which the agent is able to collect the highest rewards. Intuitively, the

predicted path leads to a correct label and its explainability is better than that of the other

3 paths. This intuition is consistent with the observed reward values, suggesting that our

model is able to learn good rewards for KG reasoning.

5.4.6 Online Simulation

Finally, we evaluate our model in the production environment for column annotation in the

digital marketing domain. Specifically, we compare with a deployed model that only pre-

dicts the annotation for each column without providing explanations, to see if our model

can bring performance gains in annotation prediction and genuinely improve the work ef-

ficiency of the human experts in evaluating the labels. The experiment is conducted on a

newly dumped dataset about retail management including around 1,000 unlabeled columns,
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each of which belongs to one of the labels in the Retailer dataset. Therefore, each

model is trained on the historical Retailer dataset and then makes predictions on around

500 columns that are randomly partitioned from the new dataset. To simulate the real col-

umn annotation scenario, the derived results by both models are presented to the human

experts who verify the correctness of the prediction. Note that our model also generates

additional explanations for the human, and for simplicity in presentation, the explanation is

only made of important features extracted by our model rather than the whole path. The re-

sults show that our model achieves an accuracy of 85.26% on average compared to 82.54%

by the deployed model. More importantly, the human experts expend around 12% less time

evaluating the results by our model than those by the existing one, which confirms that the

additional explanations provisioned by our model are beneficial for the human verification

process.

5.5 Related Work

Column Annotation. The task of column annotation involves annotating an entire tab-

ular column with a semantic label. Cell-level or row-level annotation tasks (e.g., knowl-

edge base entity alignment [103, 24]) are not considered in this chapter because they are

designed for a different granularity of data. Early works on column annotation usually em-

braced rule-based methods. Many open-source and commercial systems [66, 26, 86] adopt

regular expression and dictionary methods to match columns with predefined patterns or

keywords. Ramnandan et al. [104] propose a frequency-based method with heuristics to

detect data types of table columns. However, these rule-based methods lack extensibility

to unseen data and require considerable effort to manually manage rules.

Another line of recent research relies on machine learning techniques to address the

problem [58]. Limaye et al. [76] annotate tables with types using probabilistic graphical

models (PGM) by maximizing a potential function over a set of predefined feature vari-
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ables. Pham et al. [99] extract statistical features from tables and use random forests to

predict the annotations. However, the performance of these methods heavily depends on

handcrafted features and they have less generalizability compared to deep learning meth-

ods, which have recently been adopted to learn rich features from tabular data. Chen et al.

[10] embed context information in the model by first looking up cells to retrieve entities in

a knowledge base, followed by a prediction step to estimate the classes via a convolutional

neural network and majority voting. Chen et al. [11] propose another hybrid deep neural

network by exploiting table locality features and inter-column semantic features. Zhang

et al. [142] integrate deep learning and topic modeling to annotate columns with semantic

types. Hulsebos et al. [53] directly extract richer features, including semantic features such

as word embeddings and paragraph embeddings and then invoke a deep neural network to

classify the label. These methods achieve superior annotation performance compared to the

previous generation of models due to the representational power of deep neural networks.

However, the issue of explainability remains under-explored, despite being crucial in a real

industry business scenarios.

KG Reasoning for Explainable Prediction. KG reasoning is known for its transparent

decision making process via multi-hop reasoning and has been widely explored in miss-

ing link prediction [139, 77], medical diagnosis [109], and recommendation [1, 136]. In

particular, Ai et al. [1] first proposed to leverage the KG path as an explanation of a rec-

ommendation, which was shown to be effective in boosting the user shopping experience.

Different from the task of recommendation, the problem of column annotation is more

challenging due to the complexity and intricacies of tabular data. Moreover, none of these

works evaluate the quality of the explainable paths, while we collaborate with domain ex-

perts to conduct a comprehensive evaluation of the path explainability.
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5.6 Conclusion

We proposed a novel KG reasoning model under the IRL framework, called EXACTA,

to approach the explainable column annotation task, which plays an important role in in-

dustrial digital marketing data pipelines. Our method automatically learns a noise-tolerant

reward function from noisy, potentially less explainable paths to guide the policy learn-

ing process such that the agent is able to reason over the KG from a source column node

to a potential target label. The derived reasoning paths can naturally be regarded as ex-

planations for the predicted labels. We empirically show that the proposed EXACTA can

produce higher-quality column annotations compared with state-of-the-art deep learning-

based methods. We also comprehensively evaluate the explainability of our model, which

obtains promising results in terms of the perceived explainability, robustness, and faithful-

ness.
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CHAPTER 6

SUMMARY AND FUTURE WORK

In this thesis, we propose four different methods to approach the neural graph reason-

ing problem for explainable decision-making. We first propose a basic graph reasoning

framework based on reinforcement learning called PGPR, which is able to generate ad-

hoc path-based explanation via a policy-guided agent to conduct multi-hop reasoning over

knowledge graphs. The resulting reasoning paths can be directly regarded as the explana-

tion to the prediction since they explicitly expose the multi-step decision-making proce-

dure. Extensive experiments are conducted to evaluate the performance of the proposed

method compared with several state-of-the-art baselines. Note that the PGPR method is a

flexible graph reasoning framework and can be easily extended to other graph-related tasks

in various domains such as product search and advertising.

Next, we further investigate how to enable the neural reasoning model itself to be trans-

parent and interpretable. Unlike the previous work that represents the graph walker as a

single black-box neural network, we propose a second method called CAFE that is charac-

terized by maintaining a set of explainable neural relation modules, each of which represent

a concrete relation in knowledge graphs. The graph walker is constructed on the fly with

a composition of selected neural relation modules based on user profile, so that the archi-

tecture of the graph walker directly reflects the execution process of the decision-making

procedure. We evaluate the CAFE model on several real-world datasets and show that it

achieves significant performance gain over PGPR.

Moreover, we also study how to leverage logic rules from knowledge graphs to produce

faithful explanation during the graph reasoning process. Accordingly, we propose a neural

logic model called LOGER, which learns personalized and important logic rules to guide

the path-reasoning process for explanation generation under the Expectation-Maximization
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framework. We experiment on three large-scale datasets in e-commerce recommendation

and the results show the effectiveness of the proposed method in making high-quality de-

cisions accompanied with faithful explainable paths.

Lastly, we consider a special case where explainable paths are available during training

and whether the demonstrations are useful in generating high-quality explainable paths.

We propose a new graph reasoning approach based on inverse reinforcement learning

called EXACTA, which explicitly learns rewards from demonstrated paths to capture both

accuracy-driven quality and explainability of each state over knowledge graphs. The learned

rewards will be used to jointly learn a policy network for multi-hop graph reasoning. We

experiment on four open-sourced and real industrial benchmarks in the digital marketing

scenario and show that our method can provide competitive prediction performance in the

column annotation task. We also undertake a comprehensive analysis on path-based ex-

plainability indicating that our model can produce faithfully explainable paths to facilitate

human examination.

Future Work The following related problems/directions would be interesting to re-

searchers in studying explainable graph reasoning.

• Reasoning over Dynamic Graphs. Our work primarily focuses on conducting

multi-hop reasoning over static knowledge graphs. However, graphs can be also dy-

namic in two aspects. First, new source and target nodes can be added in the inference

stage, which results the inductive graph reasoning problem. The key challenge here

is how to estimate the representation of these unseen nodes when conducting graph

reasoning. One possible solution is to leverage heterogeneous graph neural networks

to model latent embeddings of nodes and edges by incorporating high-order neigh-

boring information. Besides, the dynamics can also occur during the evolution of

graphs, where additional temporal information needs to be considered during repre-

sentation and reasoning. In this case, an additional model may be required to model
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temporal dynamics of graphs, which can be later utilized to drive the multi-hop rea-

soning procedure.

• Fairness in Graph Reasoning. Fairness can be another interesting yet important

factor to be considered along with explainability in graph reasoning. Many fairness

related problems have been studied in human-involved tasks such as recommenda-

tion, law judgement, marketing and some potential issues have been discovered in

existing machine learning models including gender bias, group unfairness, etc. How-

ever, limited effort has been put on the fairness issue in graph reasoning and let alone

the derived explanations. Some existing well-formulated fairness frameworks may

not be directly applicable to the graph setting since they do not explicitly take into

consideration the unique properties in graph structures. Meanwhile, fair explanation

can also be critical if the generated explanation is presented to end users who may

react distinctly to the explanations when they belong to different groups (e.g., active

users, cold-start users in recommender system).

• Causal Inference for Graph Reasoning. Our proposed graph reasoning methods

can produce explanation by finding the most relevant next-hop nodes that are more

likely to lead to a potentially correct target node. Such methods usually consider

associative relation among visited graph nodes, but do not model causal relationship,

i.e., what if the graph walker moves to another node with lower predicted probabil-

ity. It would be interesting to study the graph reasoning problem under the casual

inference framework to generate counterfactual path-based explanation.

• Graph Pretraining. Training representations and graph walkers over large-scale

graph may cost lots of time and resources, and it is obviously unreasonable to always

retrain the model from scratch when the graph is updated. Recent work that borrows

the idea from pretrained language model in the natural language processing field

attempts to pretrain the graph representations for later use in downstream tasks. This
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may also benefit the graph reasoning approaches that rely on graph representations

to make decisions as well as explanations.

• More Applications. More human-involved tasks that requires both high accuracy

and trustable explainability can be explored under the graph reasoning framework.

This includes but not limited to product search, advertising, conversational AI, med-

ical diagnosis, financial related scenarios and so on.
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