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ABSTRACT OF THE DISSERTATION

Neural Methods for Entity-Centric Knowledge Extraction and Reasoning in Natural

Language

by Rajarshi Bhowmik

Dissertation Director: Prof. Gerard de Melo

Entities are the cornerstone for the dissemination of factual knowledge in natural lan-

guage. Human verbal and written communication invariably refer to entities, their prop-

erties, and their relationships. Moreover, human reasoning often relies on a proper un-

derstanding of relationships among various entities. It is perceived that representing entity-

centric knowledge in a structured form is most suitable for machines to consume and reason

about it. Over the past few decades, numerous methodological advances have been made

in extracting entity-centric knowledge from unstructured and semi-structured sources, rep-

resenting entity-centric knowledge as graph-structured data known as Knowledge Graphs,

and using these knowledge graphs in various knowledge-intensive natural language pro-

cessing tasks. Despite these advances, machines are yet to achieve human-level ability

to extract and reason with factual knowledge and use it for various knowledge-intensive

tasks. This dissertation proposes novel neural methods to narrow this gap. In particular,

for factual knowledge extraction, it proposes efficient and effective methods for the tasks

of Entity Linking and Relation Extraction. For knowledge-based logical reasoning, an ex-

plainable link prediction method for emerging entities in knowledge graphs is proposed.

Furthermore, as a representative of knowledge-intensive natural language processing tasks,

this dissertation studies the problem of entity summarization to retrieve relevant facts and

generate fact-allegiant textual descriptions of entities.
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CHAPTER 1

INTRODUCTION

Human languages in both written and spoken forms are built around semantic relatedness

of entities, their properties, and their relationships. For machines to interpret human lan-

guages as effortlessly as humans do, the machines must possess the ability to ’understand’

the underlying semantic structures of entities and their relationships. It is often perceived

that equipping machines with world knowledge of entities and their relationships is a key

component of Artificial Intelligence [1]. A predominant approach towards this goal is

constructing structured repositories of factual knowledge containing entities and their rela-

tionships, also known as Knowledge Graphs [2].

Over the last few decades, several open-domain and domain-specific knowledge graphs

have emerged driven by Semantic Web technologies. For example, existing open-domain

knowledge graphs such as DBpedia [3], YAGO [4], Wikidata [5], etc. contain factual

knowledge about millions of entities of various types such as a person, organization, lo-

cation, etc. Domain-specific knowledge graphs such as Amazon Product Graph, UMLS

[6], etc. contain factual knowledge from a particular domain such as e-commerce and

biomedicine. Many of these knowledge graphs are curated by experts (e.g., UMLS), ex-

tracted from semi-structured sources such as Wikipedia infobox (e.g., DBpedia, YAGO), or

crowdsourced (e.g., Wikidata). Despite being large-scale repositories of factual knowledge,

these knowledge graphs contain only a fraction of world knowledge. The Web predomi-

nately has data in textual form, and thus, a vast amount of factual knowledge is hidden in

these textual data. The key challenge, therefore, is to extract factual knowledge from these

textual data automatically.

In recent years, knowledge extraction from texts has gained momentum due to the ad-

vances in deep neural models. Information extraction techniques such as Named Entity
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Recognition (NER), Entity Linking (EL), and Relation Extraction (RE) are widely used for

the automatic extraction of factual knowledge from texts. Although pre-trained language

models have excelled in some of these tasks, there is always a trade-off between the ef-

ficiency and effectiveness of these models. In this dissertation, an efficient yet effective

neural method for these tasks is explored. Besides, many of the existing models rely on

pipelined execution of these tasks which is susceptible to error propagation. To alleviate

this issue, this dissertation explores end-to-end differentiable neural models for these tasks.

Despite the recent advances in extraction of factual knowledge from various structured,

unstructured, and semi-structured sources, most of the open-domain knowledge graphs

inherently suffer from incompleteness and sparsity due to the open-world assumption. For

example, it might be possible to extract facts such as (Joe Biden, position held, President

of the United States) from the text ”Joe Biden becomes the 46th president of the United

States”, but it may not be possible to extract Joe Biden’s occupation only from the text.

Thus, to answer questions such as ”What is Joe Biden’s occupation?, an intelligent system

should be able to derive the fact that Joe Biden is a politician since the president of a

country is usually a politician. Such logical reasoning ability is essential to knowledge

graph completion as it enables answering any query that might not be directly available in

the knowledge graph.

Despite recent progress in the knowledge graph completion tasks such as link predic-

tion and relation prediction, there are various challenges to be solved. Existing knowledge

graph completion methods perform link prediction only for a static snapshot of the knowl-

edge graph (transductive setting) and often lack explainability. This dissertation proposes

neural methods to deal with these two challenges. The proposed model performs link pre-

dictions for emerging entities in knowledge graphs using inductive representation learning

and makes the link prediction process interpretable to humans through multi-hop reasoning.

Various knowledge-intensive natural language processing tasks rely on knowledge graphs

as a source of factual knowledge. One such use case is the semantic search used by mod-
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ern search engines. Entity-centric search queries that solicit specific factual information

about an entity constitute a significant proportion of all search queries processed by popu-

lar search engines. Almost all modern search engines incorporate facts from an underlying

knowledge graph that acts as a reliable source of factual information. However, it is crucial

to render only the most relevant information about an entity aligned with the user’s specific

information needs. To this end, this dissertation studies the tasks of entity summarization

and entity description generation that are deemed necessary in the context of semantic

search and are representatives of knowledge-intensive natural language processing tasks.

Entity summarization ensures retrieval of relevant facts pertaining to a query. For example,

a search engine query such as einstein education ought to give preference to different facts

than a query such as einstein family.

On the other hand, given a set of facts about an entity, entity description generation gen-

erates concise natural language texts that precisely entail those facts. For example, given

the facts (Beethoven, born in, Bonn), (Beethoven, occupation, composer and pianist), and

(Bonn, located in, Germany), an AI system should also be able to generate ”German-born

composer and pianist.” to describe Beethoven. Such textual description often helps to

discern the most important factual information that distinctively identifies an entity. Addi-

tionally, these descriptions can serve as fine-grained semantic types of the entities and help

in named entity disambiguation.

1.1 Contributions

The main contributions of this dissertation are summarized in the following.

Knowledge Extraction This dissertation explores end-to-end differentiable models for

extracting entity-centric knowledge from text. The contributions here are two-fold. (1)

Many prior works have explored modular approaches for knowledge extraction from text.

These methods deploy a pipeline of modules in which each module is specialized to per-
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form a subtask such as mention span detection, candidate generation, entity disambigua-

tion, and relation extraction. Although many of these models have been deployed for prac-

tical purposes, their major disadvantage is the error propagation that occurs when one of

the pipeline’s modules makes an incorrect prediction. To alleviate this issue, several re-

cently proposed methods learn to perform a combination of these subtasks jointly [7]. This

dissertation extends this line of work on multi-task learning to perform mention span de-

tection, candidate generation, entity disambiguation, and relation extraction by training a

single end-to-end differentiable BERT-based dual encoder model. (2) Recent advancements

in entity linking using BERT-based models follow a retrieve and rerank paradigm [8, 9],

where the candidate entities are first selected using a retriever model. Then the retrieved

candidates are ranked by a reranking model. While this paradigm produces state-of-the-

art results, they are slow both at training and inference time as they can process only one

mention at a time. This dissertation proposes a BERT-based dual encoder model that can

perform both retrieval and reranking of candidate entities and resolves multiple mentions

in a document in one shot to mitigate these issues. The proposed model is multiple times

faster than existing BERT-based models while being competitive in accuracy for the entity

linking task.

Inductive Knowledge Graph Representation Learning and Explainable Reasoning

Recent approaches to knowledge graph completion can broadly be classified into two cat-

egories: embedding-based methods [10], and path-based methods [11, 12]. In contrast

to embedding-based methods, which operate in an uninterpretable latent semantic vector

space of entities and relations, path-based methods operate in the symbolic space, making

the inference process explainable. Traditionally, link prediction methods are studied with

static snapshots of the knowledge graphs, thus severely restricting their applicability for a

dynamic knowledge graph with many emerging entities. This dissertation proposes a joint

model for representation learning and reasoning in knowledge graphs that aims at achiev-



5

ing inductive node representation learning capabilities applicable to a dynamic knowledge

graph with many emerging entities while preserving the unique advantage of the path-

based approaches in terms of explainability. For inductive node representation learning,

the model uses a variant of Graph Transformer encoder that aggregates neighborhood in-

formation based on their relevance to the query relation. For explainability, the model

deploys policy gradient-based reinforcement learning (REINFORCE [13]) to decode a rea-

soning path to the answer entity. Additionally, three benchmark datasets are introduced for

link prediction in inductive settings.

Knowledge Retrieval for Entity Summarization Entity summarization requires the rank-

ing of facts about an entity in a knowledge graph for a user’s search query based on their

importance and relevance or a combination of both. This dissertation proposes a cross-

attention model with a pointwise and a pairwise loss function to address query-dependent

fact retrieval for entity-centric search queries. In contrast to existing feature-based models

that rely on various forms of statistical and ontological features extracted from a large-scale

knowledge graph, the proposed model draws on recent advances in Transformers with self-

attention [14]. It leverages the linguistic connection between the query and the candidate

facts and can be applied even to entirely novel sets of candidate facts to answer ad-hoc

search queries.

Fact-Allegiant Entity Description Generation Generating factually correct entity de-

scriptions is a two-step process. First, a model needs to select the most discernible facts

that can uniquely identify an entity and then generate a succinct textual description of the

entity using the selected facts. This dissertation proposes two methods for generating tex-

tual descriptions from factual knowledge. First, a dynamic memory network-based model

is proposed that performs adequately in generating short textual descriptions of Wikidata

entities. However, the main limitation of this approach is its inability to generate out-

of-vocabulary words in the output description. To mitigate this issue, a fact-to-sequence
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encoder-decoder model is proposed that is equipped with an explicit copy mechanism. The

ability to copy out-of-vocabulary words significantly improves the factual fidelity of the

generated descriptions. Additionally, two new datasets are curated for this task which are

publicly available to foster future research in this direction.

1.2 Dissertation Outline

The remaining chapters of this dissertation are organized as follows. Chapter 2 presents an

overview of the prior work and relevant methods. Chapter 3 explores entity linking and re-

lation extraction methods for extracting factual knowledge from texts. Chapter 4 contains a

novel method for inductive representation learning and explainable reasoning in knowledge

graphs. Chapter 5 presents an entity summarization method that improves retrieving rele-

vant knowledge graph facts pertaining to a search query. Chapter 6 introduces a novel task

of generating short textual descriptions from knowledge graph facts. Concluding remarks

and a discussion on future research directions are presented in Chapter 7.
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CHAPTER 2

BACKGROUND

This chapter contains a brief overview of Knowledge graphs, various methods for knowl-

edge graph representation learning and reasoning, and methods for knowledge extraction.

Additionally, this chapter introduces the relevant deep neural methods that are used in this

dissertation.

2.1 Knowledge Graphs

Knowledge graphs are structured repositories of entity-centric factual knowledge contain-

ing entities, properties, and relationships among entities in a graph data structure [2]. For-

mally, a knowledge graph is defined as a directed multi-graph G = (E ,R,F) such that

each node e ∈ E represents an entity, each r ∈ R represents a unique relation or property,

and each directed edge is a triple (eh, r, et) ∈ F that represents a fact about entity eh. In

existing literature, entities eh and et are often referred as head entity and tail entity, and

relation r ∈ R is often called a predicate. In some cases, the tail entity et can also be a

literal. For example, a person’s birth date can be denoted as a triple (Albert Einstein, born

on, March 14, 1879) where the tail entity is a date. Note that the above notation is strictly

applicable to binary relations. In the case of N -ary relations, reification can be used to map

them to binary relations. Some knowledge graphs mandate the use of a predefined set of

predicates (relations) and a predefined set of semantic types for entities. Such knowledge

graphs are called schema-based knowledge graphs. Much of the work in this dissertation

assumes schema-based knowledge graphs unless stated otherwise.

The pioneering works on knowledge graphs are Cyc [15] and WordNet [16]. However,

Cyc did not focus on explicit entity-centric knowledge that can be extracted from text.

Rather, it was intended to capture implicit common sense knowledge to help AI agents
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learn basic concepts and rules about how the world works. On the other hand, WordNet

is a large lexical database of English words interlinked through conceptual-semantic and

lexical relations. Contemporary to Cyc and Wordnet, several domain-specific ontologies

also emerged. For example, UMLS [6] is a large meta-thesaurus in the biomedical domain

that integrates information from over 200 biomedical source vocabularies that cumulatively

account for millions of biomedical concepts. Most of these early knowledge graphs were

curated manually by experts.

Since the 2000s, driven by the grand vision of Semantic Web, several large-scale open-

domain knowledge graphs have been developed. There was also a significant paradigm

shift in the approach of constructing these knowledge graphs. Instead of being hand-crafted

by experts, these knowledge graphs were populated using automatic and semi-automatic

methods. These methods help to extract knowledge from structured (e.g., WordNet), semi-

structured (e.g., tabular data), and unstructured data (e.g., free form text) in the Web. For

example, DBpedia [3] is constructed by extracting triples from Wikipedia infobox. YAGO

[4] is automatically extracted from Wikipedia, WordNet, and other sources. NELL [17]

was initialized with a set of basic semantic relationships between a few hundred prede-

fined categories of entities and is constantly crawling web pages and collecting new factual

knowledge automatically. MENTA [18] induced a large-scale multilingual entity taxon-

omy by leveraging Wikipedia articles, categories, infoboxes, and WordNet synsets from

multiple languages.

Large-scale knowledge graphs such as Freebase (now obsolete) and Wikidata [5] adopted

a different knowledge graph construction approach. Instead of manual curating or auto-

matic and semi-automatic extraction, these knowledge graphs rely on community contribu-

tions to enrich the factual coverage. Due to its crowdsourcing approach, Wikidata expanded

rapidly in size and, as of March 2021, contains factual knowledge for more than 93 million

entities.

In the past decade, several technology companies have adopted knowledge graphs for a
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variety of commercial applications. For example, Google Knowledge Graph, Microsoft

Satori, Baidu Knowledge Graph have become an integral part of their search engines

and virtual assistants. Amazon Product Graph, Alibaba e-Commerce Graph, etc. help in

product search and recommendations in their respective e-commerce platforms. Besides,

domain-specific knowledge graphs have emerged in finance, transportation, life sciences,

etc. to support a variety of commercial and non-commercial applications.

2.2 Knowledge Graph Representation Learning

Since knowledge graphs are built to support machine intelligence, they are increasingly

being used in various predictive and generative machine learning models. Various natural

language processing tasks integrate knowledge graphs as a source of factual knowledge.

Some examples are semantic search, open-domain question answering, fact checking, di-

alog generation, summarization, etc. [19]. Over the past decade, neural methods have

been overwhelmingly successful in many of these tasks. However, knowledge graphs are

symbolic and cannot be directly integrated into these neural models that operate on contin-

uous and differentiable vector space. To solve this problem, knowledge graphs are mapped

from discrete symbolic representations to distributed vector representations. Over the past

decade, several methods have been proposed for learning knowledge graph representation,

also popularly known as knowledge graph embeddings. The goal of knowledge graph rep-

resentation learning is to learn low-dimensional distributed vector representations (embed-

dings) of entities and relations so that they preserve the semantics and inherent structure

of knowledge graphs such as symmetry, antisymmetry, inversion, composition, semantic

hierarchies, etc. The embeddings space can be broadly classified as Euclidean and non-

Euclidean vector space.

Euclidean space is widely adopted for representing entities and relations in various

knowledge graph embedding methods. For example, TransE [20] represents the head and

tail entities of a triple (eh, r, et) as d-dimensional vectors eh, et ∈ Rd in the Euclidean space
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and the relation r as a translation vector r ∈ Rd such that eh + r ≈ et. This method in-

spired many other translational models such as TransR [21], TransH [22], etc. TransR maps

entities and relations to different vector space. TransH maps entities to relation-specific hy-

perplanes. These models can represent inversion and compositional patterns in knowledge

graphs. Bilinear models such as DistMult [23] can represent symmetry in relations. To

capture both symmetry and antisymmetry, ComplEx [24] extended the DistMult model by

mapping entities and relations into the complex vector space where eh, et, r ∈ Cd and

eh = Re(eh) + iIm(eh). RotatE [25] models relations as a rotation from the head entity to

the tail entity in the complex vector space such that et ≈ eh ◦ r. RotatE captures relation

patterns inversion and composition as well as symmetry and antisymmetry in the learned

representations. HAKE [26] captures the semantic hierarchy of entities by mapping them

into the polar coordinate system where the radial coordinate corresponds to hierarchy level

and the polar coordinate corresponds to various semantic types in the same level of the

hierarchy.

In recent years, convolutional neural networks (CNN) have been successfully used for

knowledge graph representation learning. Examples of this approach are ConvE [27] and

ConvKB [28]. ConvE models the interations between head entity eh and relation r by

reshaping the embeddings eh ∈ Rd and r ∈ Rd into 2D tensors Mh ∈ Rdw×dh and Mr ∈

Rdw×dh where d = dw × dh, and then apply 2D convolutional kernels and other non-linear

functions to obtain a score for each triple (eh, r, et) as follows

f(eh, r, et) = ψ(vec(ψ([Mh,Mr] ∗ ω))W)et (2.1)

where ψ is a non-linear activation function such as Rectified Linear Unit (ReLU) and ω is

the convolutional kernels. While ConvE aims to maximize interactions between head entity

and relation by 2D reshaping, ConvKB stacks the embeddings of head entity, relation, and

tail entity and then applies convolutional filters.
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Since knowledge graphs are graph-structured data, recent advances in graph represen-

tation learning using graph neural networks have been adopted for knowledge graph rep-

resentation learning. Graph Convolution Networks (GCN) [29] are widely used for graph

representation learning, particularly for homogeneous graphs. GCNs are instances of Mes-

sage Passing Neural Networks (MPNN), in which the node representations are learned

by aggregating information from the nodes’ local neighborhood. A key disadvantage of

GCN is its large memory footprint as the entire graph needs to be loaded and kept in the

memory for this model to work, which prohibits this model’s application to large-scale

graphs. GraphSAGE [30] attempts to reduce the memory footprint of GCN by random

sampling of the neighborhood. Graph Attention Networks (GAT) [31] is a variant of GCN

that learns node representations as weighted averages of the neighborhood information.

However, GCN and its variants, such as GAT and GraphSAGE, are not directly applicable

for knowledge graph representation learning. They ignore the edge (relation) information

for obtaining the node embeddings. To alleviate this issue, Schlichtkrull et al. proposed

R-GCN [32] that operate on relational multi-graphs. However, similar to GCN, R-GCN

also needs all nodes of the graphs to be present in memory and therefore are not scalable to

large-scale knowledge graphs. Hamaguchi et al. [33] proposed a model for computing rep-

resentations for out-of-KG entities using graph neural networks. The recent models such

as SACN [34], and CompGCN [35] leverage the graph structure by inductively learning

representations for edges (relations) and nodes (entities). More details on graph represen-

tation learning are given in Subsection 2.6.2 of this chapter, and a comprehensive survey of

knowledge graph representation learning is provided by Ji et al. [36].

2.3 Knowledge Graph Reasoning

Knowledge graph representation learning methods have been successfully applied to knowl-

edge graph completion tasks, such as link prediction and relation prediction. The link pre-

diction task requires a model to predict the tail entity, given a head entity and a relation.
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On the other hand, the relation prediction task requires a model to predict the relation be-

tween a head and a tail entity. Both tasks require a fair amount of reasoning ability which is

implicitly done by many of the knowledge graph representation learning methods. Despite

the embedding-based models’ success, they provide limited human interpretable reasoning

to support link prediction and relation prediction.

An alternative stream of research has explored means of identifying specific reasoning

paths. To this end, the Path Ranking Algorithm (PRA) [37] uses random walks with restarts

for multi-hop reasoning. Following PRA, other approaches [38, 39, 40, 41] also leverage

random walk based inference. However, the reasoning paths that these methods follow are

gathered by random walks independently of the query relation.

Recent approaches have instead adopted policy gradient based reinforcement learning

for a more focused exploration of reasoning paths. Policy gradient based models such

as DeepPath [42], MINERVA [43], MultiHop [12], and M-Walk [44] formulate the KG

reasoning task as a Partially Observable Markov Decision Process and learn a policy con-

ditioned on the query relation. The underlying principles of these approaches are described

in Subsection 2.6.3.

Another sub-category of path-based methods, e.g., AMIE+ [45], AnyBURL [46], and

RuleS [47] proceed by mining Horn rules from the the existing knowledge graphs for link

prediction. The body of a Horn rule provides the reasoning path. Although these ap-

proaches are capable of fast rule mining, the quality of the learned rules are affected by the

sparsity of the knowledge graph.

2.4 Automatic Knowledge Extraction

Many large-scale domain-specific and open-domain knowledge graphs contain millions of

entities and billions of facts due to community contributions and expert annotations. These

knowledge graphs are reliable as they provide high precision factual knowledge about en-

tities. However, they lack recall as most of these knowledge graphs do not have enough
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facts about the so-called tail entities. The Web is a rich source of factual knowledge and

can be leveraged to increase the knowledge graphs’ coverage. The factual knowledge in

the web contents can be in semi-structured forms such as tables, lists, and DOM trees.

Many existing open-domain knowledge graphs, including DBpedia and YAGO, uses au-

tomatic knowledge extraction methods to extract factual knowledge from semi-structured

data. However, the Web predominantly consists of textual data. Thus, a large amount of

factual knowledge is available in text format. Extracting factual knowledge from texts can

potentially enhance the knowledge graphs’ factual coverage. Several existing knowledge

graphs, including NELL and YAGO, extract factual knowledge from texts using a combi-

nation of various techniques discussed in the following.

Some earliest approaches in knowledge extraction from texts rely on lexico-syntactic

pattern matching. A fixed pattern such as a regular expression is used to locate specific facts

in texts in these approaches. The earliest method in this direction is the Hearst pattern [48]

which was proposed to extract hyponym relations between entities. Hearst pattern has

been extended for the task of relation extraction that identifies semantic relations among

entities. These hand-crafted patterns have the advantage of high precision. However, they

often suffer from low recall.

Semi-supervised learning approaches automatically discover new patterns after they

are initiated with a few high-precision seed patterns. This approach is often called Boot-

strapping. Bootstrapping starts with finding sentences in text documents that contain the

same pair of entities as in the seed patterns and then extracts new patterns from all such

sentences. NELL is built using such a semi-supervised learning approach.

The supervised learning paradigm has also been widely adopted for knowledge extrac-

tion. In this approach, a gold standard dataset is prepared with manual annotations of entity

mentions and their relations. In some datasets, the entity mentions are also canonicalized

by mapping them to a predefined set of entities in a knowledge graph – a task known as

entity linking. A model should perform the tasks of mention span detection to detect the
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spans of entities in the input text and relation classification to identify any potential rela-

tion(s) between a pair of entity mentions. These models can also perform entity linking to

map mention spans to their corresponding canonical form in a target knowledge graph.

A key disadvantage of supervised knowledge extraction is that it requires a large amount

of annotated training data that is expensive to obtain. To this end, distant supervision

methods combine the advantages of bootstrapping with supervised learning [49]. Instead

of a handful of seed examples, distant supervision methods use an existing knowledge

graph as seed examples. For each existing triple in the knowledge graph, this method then

follows the same approach as bootstrapping to identify sentences that mention the head and

tail entities of the triple. This approach collects many sentences that are potentially noisy

but can be refined by using supervised methods.

The unsupervised learning approach has also been successful for knowledge extraction.

The unsupervised approach is often called Open Information Extraction (OpenIE) [50]. In

this approach, sets of entities and relations are not predefined. Rather, both entities and

relations are captured in their surface forms without canonicalization. For example, ReVerb

[51] uses the subject and object phrases in a sentence as the head and tail entities and the

verb phrase as the relation between them. ClausIE [52] derives triples by analyzing the

clauses in a sentence. MinIE [53] advanced ClausIE by making the extracted triples more

concise.

2.5 Entity Summarization

Entities in knowledge graphs usually have tens of associated facts. However, an entity

can be uniquely identified with only a handful of salient facts. Entity summarization is

the task of identifying these salient descriptor facts. Many existing methods for entity

summarization are extractive methods that select a size-constrained subset of facts from

the set of all facts of an entity. It requires ranking the set of facts for an entity regarding

its salience. Existing methods [54, 55, 56, 57] consider the task of ranking as selecting the
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most important facts about an entity, typically to compile these into a concise listing that

summarizes “important” information about the said entity. Thus, these works primarily

focus on some general notion of fact importance as the basis of ranking.

In recent years, knowledge graphs are widely used in semantic search. Modern-day web

search engines such as Google, Bing, and Baidu use knowledge graphs to answer entity-

centric search queries that solicit specific factual information about entities. The retrieved

facts ought to be relevant to the search query to meet users’ specific information needs.

Therefore, existing approaches of entity summarization that primarily focus on the notion

of importance are not suitable. To this end, Hasibi et al. [58] proposed a supervised model

of fact ranking that considers both the importance and relevance of facts concerning a given

query. In Chapter 6 of this dissertation, Hasibi et al.’s line of work is extended further using

pre-trained language models and a pairwise ranking objective.

2.6 Relevant Methods

This section outlines some methods that are used throughout the dissertation.

2.6.1 Text Representation

Texts are ordered sequences of discrete symbols called tokens. A token can be a word or

a word-piece (sub-word). These discrete tokens are mapped to continuous vectors repre-

sentation using Word2Vec [59] or other representation learning methods (e.g., GloVe [60],

ELMo [61], etc.). Additionally, several neural models have been proposed to learn contex-

tual representations of tokens in a sequence. Given an input sequence S = w1, w2, . . . , wN ,

these models learn contextual representations H = h1,h2, . . . ,hN such that hi ∈ Rd. In

the following, two popular neural architectures for representation learning are presented.

Recurrent Neural Network A recurrent neural network learns to represent a token in a

sequence based on the input token’s embeddings and the current hidden state of the network
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that encodes contextual information. For each tokenwt ∈ S, the network updates its hidden

state as follows,

ht = RNN(xt,ht−1) (2.2)

where xt is the embedding of input tokenwt and RNN(·) is a non-linear function. In Elman

RNN [62], this non-linear function is represented as follows,

ht = tanh(Wixt + bi + Whht−1 + bh) (2.3)

where Wi,Wh ∈ Rd×d are learnable parameters and bi,bh ∈ Rd are the biases.

However, in practice, RNNs are not suitable for modeling long-term dependencies be-

tween tokens in a long sequence. Backpropagation through time causes vanishing or ex-

ploding gradient problems. Two variants of RNN were proposed to combat these issues

that are presented in the following.

LSTM Long Short-Term Memory (LSTM) [63] combats the long-term dependency prob-

lem by memorizing long contextual information in cell states. The LSTM can add or re-

move information to the cell state, regulated by structures called gates. LSTM uses three

gates, namely input, forget, and output gates. These gates regulate information flow through

the network. The LSTM network is represented as follows.

it = σ(Wi[xt,ht−1] + bi) c̃t = tanh(Wc[xt,ht−1] + bc)

ft = σ(Wf [xt,ht−1] + bf ) ct = ft � ct−1 + it � c̃t

ot = σ(Wo[xt,ht−1] + bo) ht = ot � tanh(ct)

(2.4)

Here σ denotes the sigmoid activation function and � denotes Hadamard product. ct is the

cell state, and it, ft,ot are input, forget, and output gates, respectively. Wi,Wc,Wf ,Wo ∈

Rd×2d and bi,bc,bf ,bo ∈ Rd are learnable parameters.
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GRU The Gated Recurrent Unit [64] simplified the structure of LSTM as it does not have

an output gate. Instead, the GRU uses a reset gate and an update gate as follows.

rt = σ(Wr[xt,ht−1] + br)

zt = σ(Wz[xt,ht−1] + bz)

h̃i = σ(Wh[rt,ht−1] + bh)

ht = zt � h̃i + (1− zt)� ht−1

(2.5)

Here σ denotes the sigmoid activation function and� denotes Hadamard product. rt and zt

are the reset gate and update gate respectively. Wr,Wz,Wh ∈ Rd×2d and bi,bc,bf ,bo ∈

Rd are learnable parameters.

Both LSTM and GRU encode contextual information from left to right. However, a

bidirectional LSTM or a bidirectional GRU encode contexts from left to right and from

right to left and have been more effective empirically. Various natural language processing

tasks adopted BiLSTM and BiGRU as the default text encoder, often stacking multiple

layers of BiLSTM and BiGRU.

This dissertation uses GRUs for text generation in Chapter 6.

Transformers Not every token in a sequence is of equal importance for any predictive or

generative task. It is shown that attention mechanism-based encoder-decoder models that

learn to assign variable weights to different tokens in a sequence are effective when applied

along with an LSTM or GRU [65]. This led to the development of a purely attention-based

encoder-decoded model called Transformer [14].

The basic building block of the Transformer architecture is the scaled dot product at-

tention, also called self-attention. The self-attention models pairwise interactions between

all tokens in a sequence. The embeddings xt of each token wt in the sequence is mapped

to three linear projections – query qt = WQxt, key kt = WKxt, and value vt = WVxt.

Thus, the input sequence of embeddings X = x1,x2, . . . ,xN is projected to sequences of
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queries Q = q1,q2, . . . ,qN, keys K = k1,k2, . . . ,kN, and values V = v1,v2, . . . ,vN.

The output of the self-attention is obtained as follows.

Attention(Q,K,V) = Softmax(
QK>√
dk

)V (2.6)

where dk is the dimension of the keys.

Instead of performing single attention, the Transformer model applies multiple attention

heads. For each of the M heads, the model learns a different set of projection parameters

WQ
m,WK

m,WV
m ∀m ∈ {1, 2, . . . ,M}. The outputs of the attention heads are concate-

nated and projected back to the d-dimensional vector space.

Ĥ = Wo

(
[Attention(Q1,K1,V1), . . . ,Attention(QM,KM,VM)]

)
(2.7)

The model then adds this intermediate representation to the input embeddings X and per-

forms layer normalization [66]. The model then applies a position-wise feed-forward net-

work that has two fully connected layers with a non-linear layer (ReLU) in between. The

output of the feed-forward network is added to its input, and another layer normalization is

performed to obtain the final representations of the tokens.

H̃ = FFN(LayerNorm(Ĥ + X))

H = LayerNorm(H̃ + Ĥ)

(2.8)

where FFN(z) = W2ReLU(W1z + b1) + b2 and ReLU(x) = max(0, x).

The architecture described above is called a Transformer block. Several such Trans-

former blocks are stacked to encode an input sequence. Each layer takes the previous

layer’s output as its input, except the first layer. In the first layer, as described above, the

input is the embeddings of the tokens in the input sequence.

The Transformer encoder has been adopted by BERT [67] – a deep bidirectional trans-
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former for language modeling. In traditional language modeling, the objective is to predict

p(wt|wt−1, wt−2, . . . , w1), i.e., the likelihood for the next token wt in the sequence given

the previous tokens wt−1, wt−2, . . . , w1. BERT uses a different objective called masked lan-

guage modeling. In masked language modeling, a small percentage of tokens in the input

sequence is masked, and the model predicts those missing tokens. Additionally, BERT also

performs next sentence prediction where the two sentences S1 and S2 are concatenated us-

ing a special separator token [SEP]. The model predicts whether S2 is the next sentence

of S1. The first token of every input sequence is always a special token [CLS] that is used

for various classification tasks. BERT is pre-trained with a large corpus obtained from the

Book Corpus [68] and the English Wikipedia.

In this dissertation, BERT and its domain-specific variant BioBERT [69] are used as

text encoder in Chapters 3 and 5. The Transformer architecture is adapted to graph neural

networks in Chapter 4.

2.6.2 Graph Neural Network

Representation learning for graph-structured data is different from textual data as unlike

texts, there is no specific order in which the nodes in a graph can be arranged. Graph

representation learning must posses a vital property called permutation invariance so that

the learned representation does not depend on the arbitrary ordering of nodes in a graph.

Graph Neural Network (GNN) is a general framework for graph representation learning

using deep neural networks. Prior to GNN, various shallow graph representation learn-

ing methods have been proposed (e.g., DeepWalk [70], LINE [71], Node2Vec [72], etc.).

However, none of these approaches directly exploit the structure of the graph to learn rep-

resentations. A GNN, on the other hand, learns representations of nodes by exploiting the

neighborhood structure.

The defining feature of GNN is that it uses a form of neural message passing in which

vector messages are exchanged between adjacent nodes and updated using neural networks.
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Each node u ∈ V in a graph G = (V , E), receives messages from its immediate neighboring

nodes N (u) = {v, (u, v) ∈ E}. These messages are aggregated using an aggregation

function and the representation of node u is updated as follows.

h(k)
u = UPDATE(k)

(
h(k−1)
u ,AGGREGATE(k)({h(k−1)

v , ∀v ∈ N (u)})
)

(2.9)

Here UPDATE(·) and AGGREGATE(·) are arbitrary differentiable functions. At each

iteration k of the GNN, the AGGREGATE(·) function takes as input the set of embeddings

of the nodes in u’s local neighborhoodN (u) and generates a message m(k)
N (u) based on this

aggregated neighborhood information. The update function UPDATE(·) then combines

the message m
(k)
N (u) with the previous embedding h

(k−1)
u of node u to generate the updated

embedding h
(k)
u . The initial embeddings h

(0)
u are set to the features of node u. After K

iterations of message passing, the final representation of a node is obtained.

Over the past few years, several variants of GNNs have been proposed. They differ

in the formulation of the aggregate and update functions. One such popular variant is the

Graph Convolutional Networks (GCN) [29]. A GCN employs a symmetric-normalized

aggregation as well as a self-loop update approach.

h(k)
u = σ

W(k)
∑

v∈N (u)∪{u}

h
(k−1)
v√

|N (u)||N (v)|

 (2.10)

A GCN gives equal importance to all the neighboring nodes in aggregation. In contrast,

a Graph Attention Network (GAT) [73] enables assigning different importance to different

nodes in the neighborhood of a node. A GAT learns attention weights using the self atten-

tion mechanism as follows. For each pair of nodes (u, v), the model obtains an attention

coefficient e(u,v) as shown in the following.

eu,v = σ(a>[Whu,Whv]) (2.11)
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In the above equation, a and W are learnable parameters, and σ(·) is a non-linear activa-

tion function such as LeakyReLU. The model then obtains the importance weight of each

neighbor by normalizing the attention coefficients as shown in the following.

αu,v =
exp(eu,v)∑

v′∈N (u)∪{u} exp(eu,v′)
(2.12)

The normalized attention coefficients are used to compute a linear combination of the fea-

tures corresponding to them, to serve as the final output features for every node as shown

in the following.

hu = σ

 ∑
v∈N (u)∪{u}

αu,vWhv

 (2.13)

A GAT also uses multiple attention heads for each node and concatenates the output of

each attention head for the final representation of a node.

The GCN has been extented for relational multi-graphs (e.g., knowlegde graphs). Ex-

amples of this line of work includes R-GCN [32], CompGCN [35], and SACN [34]. These

models also consider the edge type while performing message passing and aggregation.

This dissertation uses a variant of GNN in Chapter 4 that resembles the Transformer

model for inductive representation learning in knowledge graphs.

2.6.3 Policy Gradient

Reinforcement learning is a general-purpose framework for sequential decision making.

Many natural language processing tasks (e.g., knowledge-based question answering, dialog

generation, text generation, etc.) can be formulated as sequential decision making tasks.

Reinforcement learning is often modeled as a Markov Decision Process (MDP). MDP is

defined by a 4-tuple (S,A,P ,R) where S is a finite set of states,A is a finite set of actions

that an agent can choose from, P is a set of probability distribution functions that define the

transition probability Pr(st+1 = s′|st = s and at = a), i.e., the probability of transitioning

from state s′ to state s under action a, and R is a set of reward functions r(s, a, s′) that



22

is the immediate reward after transitioning from s to s′ with action a . A policy π(at|st)

determines the action at that the agent chooses to perform at a given state st. The goal is

to find an optimal policy π∗(at|st) so that the total reward along the trajectory followed by

the optimal policy is maximized.

Several learning algorithms have been proposed for policy learning. They are broadly

categorized into model-based and model-free algorithms, and on-policy and off-policy

learning algorithm. The details of these algorithms is available in [74]. This section fo-

cuses on an off-policy model-free learning algorithm called policy gradient.

Policy gradient optimizes parameterized policies with respect to the expected return

using gradient descent. The objective function of policy gradient can be defined as the

following.

J(θ) = Eτ∼πθ

[∑
t

r(st, at)

]
(2.14)

where τ = (s0, a0, s1, a1, ..., sT ) is a trajectory sampled from the policy πθ parameterized

by θ.

The gradient of this objective function is obtained as

∇θJ(θ) = Eτ∼πθ

[(∑
t

∇θ log πθ(at|st)

)(∑
t

r(st, at)

)]
(2.15)

In the policy gradient algorithm REINFORCE [13], the gradient is approximated by sam-

pling N trajectories from policy πθ as the following.

∇θJ(θ) ≈ 1

N

N∑
i=1

[(∑
t

∇θ log πθ(at|st)

)(∑
t

r(st, at)

)]
(2.16)

This dissertation uses policy gradient for explainable knowledge graph reasoning in

Chapter 4.
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CHAPTER 3

KNOWLEDGE EXTRACTION

3.1 Overview

This chapter presents automatic knowledge extraction methods using the supervised learn-

ing paradigm and large pre-trained language models. Automatic knowledge extraction

requires the identification of entities and their relationships in text documents. In this chap-

ter, we first introduce an efficient and effective model for entity disambiguation (aka. entity

linking) where we assume that the mention spans are known following prior works. Then,

we extend this model for end-to-end entity linking, where our proposed model jointly per-

forms the tasks of mention span detection and entity disambiguation. Finally, we further

extend our model for end-to-end knowledge triple extraction in which the model can pre-

dict the head and the tail entities and their relationship(s). Furthermore, the model can map

these extracted triples to their canonical form in a target knowledge graph.

Entity Linking Entity linking is the task of identifying mentions of noun phrases in a

text document and disambiguating them by mapping them to canonical entities listed in a

reference knowledge base. This is an essential step in information extraction, and therefore

has been studied extensively both in domain-specific and domain-agnostic settings. Recent

models [8, 9] attempt to learn better representations of mentions and candidates using the

rich contextual information encoded in pre-trained language models such as BERT [67].

These models follow a retrieve and rerank paradigm, which consists of two separate steps:

First, the candidate entities are selected using a retrieval model. Subsequently, the retrieved

candidates are ranked by a reranker model.

Although this approach has yielded strong results, owing primarily to the powerful

contextual representation learning ability of BERT-based encoders, these models typically
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process a single mention at a time. Processing one mention at a time incurs a substantial

overhead both during training and test time, leading to a system that is slow and impractical.

In this chapter, we propose a collective entity linking method that processes an entire

document only once, such that all entity mentions within it are linked to their respective

target entities in the knowledge base in one pass.

Compared to the recently proposed retrieve and rerank paradigm-based entity linking

model BLINK [9], our model is up to 25x faster. BLINK deploys two separately train-

able models for the candidate retrieval and reranking tasks. In contrast, our method learns

a single model that can perform both the retrieval and reranking steps of entity linking.

Our model does not require candidate retrieval at inference time, as our dual encoder ap-

proach allows us to compare each mention to all entities in the target knowledge base, thus

significantly reducing the overhead at inference time.

Contributions The key contributions of our work are as follows.

• We empirically demonstrate that it is possible to match the efficacy of a retrieve and

rerank paradigm-based model by processing multiple mentions in a document in one

shot using a collective dual encoder.

• We measure the efficiency of our proposed model in terms of training and inference

time by comparing it to a per-mention entity disambiguation model that is used in

retrieve and rerank paradigm-based models. We show that training our collective en-

tity disambiguation model is 3x faster than other dual encoder models with the same

number of parameters that perform per-mention entity disambiguation. At inference

time, our model is 3-25x faster than other comparable models.

• Our model can also perform end-to-end entity linking when trained with the multi-

task objective of mention span detection and entity disambiguation. We show that

without using any semantic type information, our model significantly out-performs
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two recent biomedical entity linking models – MedType [75] and SciSpacy [76] – on

two benchmark datasets.

3.2 Related Work

3.2.1 Entity Linking

The task of entity linking has been studied extensively in the literature. In the past, most

models relied on hand-crafted features for entity disambiguation using surface forms and

alias tables. With the advent of deep learning, contextual representation learning for men-

tion spans has become more popular [77, 78]. Recent advances in Transformer-based mod-

eling of entity linking [9, 79] have achieved state-of-the-art performance on traditional

benchmark datasets such as AIDA-CoNLL and TACKBP 2010.

In the biomedical domain, there are many existing tools, such as TaggerOne [80],

MetaMap [81], cTAKES [82], QuickUMLS [83], among others, for normalizing men-

tions of biomedical concepts to a biomedical thesaurus. Most of these methods rely on

feature-based approaches. Recently, [84] proposed a model that utilizes the latent semantic

information of mentions and entities to perform entity linking. Other recent models such

as [85] and [75] also leverage semantic type information for improved entity disambigua-

tion. Our work is different from these approaches, as our model does not use semantic type

information, because such information may not always be available. Recent works such as

[85] and [86] deploy a BERT-based retrieve and re-rank model. In contrast, our model does

not rely on a separate re-ranker model, which significantly improves its efficiency.

3.2.2 Collective Entity Linking

Collective entity linking aims to combine and exploit the local contextual information and

global structural dependencies of mentions. To this end, NCEL [87] applies Graph Con-

volutional Networks to integrate both local contextual features and global coherence infor-

mation for entity linking. [88] address entity disambiguation as a sequential decision task,
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disambiguating mentions one by one, while using words and already disambiguated enti-

ties to disambiguate new mentions. [89] proposed a gradient tree boosting based structured

learning method that applies bidirectional beam search to consider contextual information

from the past and future to perform better collective entity resolution. [90] proposed a re-

current random walk based model that exploits external semantic information for sequen-

tially disambiguating mentions. In contrast to these models, our model does not perform

entity disambiguation sequentially and is capable of resolving every entity in the document

in one shot. Recently, [79] proposed a BERT-based model for collective entity linking.

However, their method requires external sources such as alias tables, phrase tables, and

co-occurring entity mentions in Wikipedia pages for candidate retrieval during training.

Hence, this method can only be used for wikification and is not applicable for entity linking

with regard to other targets, as for example in the biomedical domain. Our dense retrieval

approach, in contrast, is domain-agnostic. Moreover, in [79], the mentions along with their

contexts are encoded using a BERT-based encoder, but the candidates are encoded using a

linear projection to the dense vector space. This asymmetry in representation learning is

avoided in our dual encoder model, where both the mentions along with its contexts and

the candidate entities are encoded by two BERT-based encoders.

3.2.3 End-to-End Entity Linking

End-to-end entity linking refers to the task of predicting mention spans and the correspond-

ing target entities jointly using a single model. Traditionally, span detection and entity dis-

ambiguation tasks were done in a pipelined approach, making these approaches susceptible

to error propagation. To alleviate this issue, [7] proposed a neural end-to-end model that

performs the dual tasks of mention span detection and entity disambiguation. However, for

span detection and disambiguation, their method relies on an empirical probabilistic entity

mapping p(e|m) to select a candidate set C(m) for each mention m. Such mention–entity

prior p(e|m) is not available in every domain, especially in the biomedical domain that we
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consider in this chapter. In contrast, our method does not rely on any extrinsic sources of

information.

3.2.4 Relation Extraction

Identifying named entities and relationships among them is the core task in information ex-

traction. Prior works have explored various pipe-lined approaches where entity mentions in

a document (or a sentence) are identified by a Named Entity Recognition (NER) model, and

then a relation classifier is used to determine relationships between pairs of entity mentions.

These models are susceptible to error propagation as they rely heavily on the accuracy of

the NER model. To alleviate the problem of error propagation, many approaches adopted

a multi-task learning setup where a model jointly learns to detect named entities and de-

termine the relationships among entities. Many of these models rely on extrinsic linguistic

information provided by NLP methods such as dependency parsers, POS tagger, etc. that

may not be available in many domains. Some more recent approaches, such as [91, 92],

proposed end-to-end models for entity recognition and relation extraction. These models

fine-tune pre-trained language models (BERT) with various span detection and relation ex-

traction methods. Other Non-BERT methods [93, 94, 95] have also produced state-of-the-

art results on various benchmark relation extraction datasets. Although these models yield

state-of-the-art results for relation extraction, they cannot produce canonicalized triples that

can be directly integrated into a knowledge graph. In this chapter, we propose a model that

directly extracts canonicalized triples to aid knowledge graph completion.

3.2.5 End-to-End Entity Linking and Relation Extraction

There exists some prior work on joint relation extraction and entity linking [96, 97, 98].

The goal is to extract named entities and their relations, and simultaneously link them to

their canonical forms in a target knowledge graph.

[96] used the BC5CDR dataset to extract relations between diseases and chemicals.
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However, in this dataset, there is only one relation Chemically induced disease. Therefore,

a model only needs to make a binary decision for a pair of chemical and disease. Using a

more complex dataset, [98] aim to canonicalize the extracted entities and the relations to

their corresponding Wikidata items. [97] proposed a framework for joint entity linking and

relation extraction that rely on Open IE techniques and additional side information.

3.3 Entity Linking Model

Given a document d = [xd1, . . . , x
d
T ] of T tokens with N mentions {m1, . . . ,mN} and a set

of M entities {e1, . . . , eM} in a target knowledge base or thesaurus E , the task of collective

entity disambiguation consists of mapping each entity mention mk in the document to a

target entity tk ∈ E in one shot. Each mention in the document d may span over one or

multiple tokens, denoted by pairs (i, j) of start and end index positions such that mk =

[xdi , . . . , x
d
j ].

3.3.1 Encoding Mentions and Candidates

Our model consists of two BERT-based encoders. The mention encoder is responsible for

learning representations of contextual mentions and the candidate encoder learns repre-

sentations for the candidate entities. A schematic diagram of the model is presented in

Figure 3.1. Following the BERT model, the input sequences to these encoders start and

end with the special tokens [CLS] and [SEP], respectively.

Mention Encoder Given an input text document [xd1, . . . , x
d
T ] of T tokens with M men-

tions, the output of the final layer of the encoder, denoted by [h1, . . . ,hT], is a contextu-

alized representation of the input tokens. For each mention span (i, j), we concatenate the

first and the last tokens of the span and pass it through a linear layer to obtain the repre-

sentations for each of the mentions. Formally, the representation of mention mk is given as
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Figure 3.1: A schematic diagram of the Dual Encoder model for collective entity disam-
biguation. In this diagram, the number of mentions in a document and the number of
candidate entities per mention are for illustration purpose only. The inputs to the BioBERT
encoders are the tokens obtained from the BioBERT tokenizer.

um
k = W[hi;hj] + b (3.1)

Since the encoder module deploys a self-attention mechanism, every mention inherently

captures contextual information from the other mentions in the document.

Candidate Encoder Given an input candidate entity e = [ye1, . . . , y
e
T ] of T tokens, the

output of the final layer corresponding to the [CLS] token yields the representation for the

candidate entity. We denote the representation of entity e as ve. As shown in Figure 3.1, we

use the UMLS concept name of each candidate entity as the input to the candidate encoder.

3.3.2 Candidate Selection

Candidate Retrieval Since the entity disambiguation task is formulated as a learning to

rank problem, we need to retrieve negative candidate entities for ranking during training.

To this end, we randomly sample a set of negative candidates from the pool of all entities
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in the knowledge base. Additionally, we adopt the hard negative mining strategy used by

[99] to retrieve negative candidates by performing nearest neighbor search using the dense

representations of mentions and candidates described above. The hard negative candidates

are the entities that are more similar to the mention than the gold target entity.

Candidate Scoring The retrieved set of candidate entities Ck = {ck1, . . . , ckl } for each

mention mk are scored using a dot product between the mention representation um
k and

each candidate representation vc. Formally, for each c ∈ Ck

ψ(mk, c) = (um
k )ᵀvc (3.2)

3.3.3 Training and Inference

Loss Function and Training We train our model using the cross-entropy loss function

to maximize the score of the gold target entities.

Inference During inference, we do not require candidate retrieval per mention. The rep-

resentations of all entities in the knowledge base E can be pre-computed and cached. The

inference task is thus reduced to finding the maximum dot product between each mention

representation and all entity representations.

t̂k = arg max
e∈E

{(um
k )ᵀve} (3.3)

3.4 End-to-End Entity Linking Model

Many of the state-of-the-art entity disambiguation models assume that gold mention spans

are available during test time and thus have limited applicability in real-world entity linking

tasks, where such gold mentions are typically not available. To avoid this, recent works [7,

79, 100] have investigated end-to-end entity linking, where a model needs to perform both
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mention span detection and entity disambiguation.

3.4.1 Mention Span Detection

We experiment with two different methods for mention span detection with different com-

putational complexity. In our first method, following [79], we use a simple BIO tagging

scheme to identify the mention spans. Every token in the input text is annotated with one

of these three tags. Under this tagging scheme, any contiguous segment of tokens starting

with a B tag and followed by I tags is treated as a mention. Although this method is com-

putationally efficient (O(T )), our empirical results suggest that it is not as effective as the

following.

Following the recent work of [7] and [100], our mention span detection method enu-

merates all possible spans in the input text document as potential mentions. However,

enumerating all possible spans in a document of length T is prohibitively large (O(T 2))

and computationally expensive. Therefore, we constrain the maximum length of a mention

span to L� T .

We calculate the probability of each candidate mention span (i, j) as follows.

p(m|(i, j)) = σ(wᵀ
shi + wᵀ

ehj +

j∑
q=i

wᵀ
mhq) (3.4)

where ws, we, and wm are trainable parameters and σ(x) = 1
1+e−x

.

3.4.2 Entity Disambiguation

We represent each mention (i, j) by mean pooling the final layer of the encoder, i.e.,

um
(i,j) = 1

j−i+1

∑j
q=i hq. During training, we perform candidate selection as described in

Subsection 3.3.2.

We jointly train the model by minimizing the sum of mention detection loss and entity

disambiguation loss. We use a binary cross-entropy loss for mention detection with the
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gold mention spans as positive and other candidate mention spans as negative samples. For

entity disambiguation, we use the cross-entropy loss to minimize the negative log likelihood

of the gold target entity given a gold mention span.

During inference, we choose only the candidate mentions with p(m|(i, j)) > γ as

the predicted mention spans. Then, as mentioned in Subsection 3.3.3, we determine the

maximum dot product between the mention representations and all candidate entity repre-

sentations to predict the entity for each predicted mention during inference.

3.5 Evaluation

3.5.1 Datasets

We evaluate our method on two challenging datasets from the biomedical domain. In re-

cent times, there is an increased focus on information extraction from biomedical text such

as biomedical academic publications, electronic health records, discharge summaries of

patients, and clinical reports. Extracting named concepts from biomedical text requires

domain expertise. Existing automatic extraction methods, including the methods and tools

catering to the biomedical domain [82, 83, 81], often perform poorly due to the inherent

challenges of biomedical text: (1) Biomedical text typically contains substantial domain-

specific abbreviations and acronyms. For example, CT could stand for Computed tomog-

raphy or Copper Toxicosis. (2) The target concepts in the knowledge base often have

very similar surface forms, making the disambiguation task difficult. For example, Pseu-

domonas aeruginosa is a kind of bacteria, while Pseudomonas aeruginosa infection is a

disease. (3) The colloquial form of many concept names differ significantly from standard

medical terminology. For example, reductions in mean arterial blood pressure corresponds

to Hypotension in medical terminology. Many existing biomedical information extraction

tools rely on similarities in surface forms of mentions and candidates, and thus invariably

falter in more challenging cases such as these. Besides, long mention spans (e.g., disease

names) and the density of mentions per document make the biomedical datasets substan-
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tially more challenging.

Our experiments are conducted on two challenging datasets from the biomedical do-

main – MedMentions [101] and the BioCreative V Chemical Disease Relation (BC5CDR)

dataset [102]. In the following, we provide some details of these two datasets, while basic

statistics are given in Table 3.1.

Datasets Mentions Mentions/Doc Unique Concepts Types
MedMentions 352,496 80 34,724 128
BC5CDR 28,559 19 9,149 2

Table 3.1: Details of the datasets used for evaluation.

MedMentions is a large-scale biomedical corpus annotated with UMLS concepts. It

consists of a total of 4,392 abstracts published on PubMed®. The dataset has 352,496

mentions, and each mention is associated with a single UMLS Concept Unique Identifier

(CUI) and one or more semantic types identified by a Type Unique Identifier (TUI). The

concepts belong to 128 different semantic types. MedMentions also provides a 60% – 20%

– 20% random partitioning of the corpus into training, development, and test sets. Note

that 12% of the concepts in the test dataset do not occur in the training or development sets.

The BC5CDR corpus consists of 1,500 PubMed® articles with 4,409 annotated chemi-

cals and 5,818 diseases, which are equally partitioned into training, development, and test

sets. Each entity annotation includes both the mention text spans and normalized concept

identifiers, using MeSH as the target vocabulary. Apart from entity linking annotations,

this dataset also provides 3,116 chemical–disease relations. However, identifying relations

between mentions is beyond the scope of our study on entity linking and hence, we ignore

these annotations.

3.5.2 Baselines

We compare our model against some of the recent entity linking models from both the

biomedical and non-biomedical domains. In the biomedical domain, LATTE [84] showed
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state-of-the-art results on the MedMentions dataset. However, we find that LATTE adds

the gold target entity to the set of candidates retrieved by the BM25 retrieval method during

both training and inference.

The Cross Encoder model proposed by [8], which follows a retrieve and rerank paradigm,

has been successfully adopted in the biomedical domain by [85] and [86]. We use our own

implementation of the model by [8] for comparison.

We also compare with BLINK [9], a linking model that uses dense retrieval using dual

encoders for candidate generation, followed by a cross-encoder for reranking.

Additionally, we use the dual encoder model that processes each mention independently

as a baseline. In principle, this baseline is similar to the retriever model of [9] and [99].

For the task of end-to-end entity disambiguation, we compare our models with two

recent state-of-the-art models – SciSpacy [76] and MedType [75]. SciSpacy uses overlap-

ping character N-grams for mention span detection and entity disambiguation. MedType

improves the results of SciSpacy by using a better candidate retrieval method that exploits

the semantic type information of the candidate entities.

3.5.3 Experimental Details

In this section, we provide details pertaining to the experiments for the purpose of repro-

ducibility.

Domain-Adaptive Pretraining Recent studies [8, 79, 9] have shown that pre-training

BERT on the target domain provides additional performance gains for entity linking. Fol-

lowing this finding, we adopt BioBERT [69] as our domain-specific pretrained model.

BioBERT is intitialzed with the parameters of the original BERT model, and further pre-

trained on PubMed abstracts to adapt to biomedical NLP tasks.

Data Wrangling In theory, our collective entity disambiguation model is capable of pro-

cessing documents of arbitrary length. However, there are practical constraints. First, the



35

GPU memory limit enforces an upper bound on the number of mentions that can be pro-

cessed together, and secondly, BERT stipulates the maximum length of the input sequence

to be 512 tokens. To circumvent these constraints, we segment each document so that each

chunk contains a maximum of 8 mentions or a maximum of 512 tokens (whichever happens

earlier). After this data wrangling process, the 4,392 original documents in the MedMen-

tions dataset are split into 44,983 segmented documents. We postulate that with more GPU

memory and longer context [103], our collective entity disambiguation model will be able

to process documents of arbitrary length without segmentation.

For the other baselines, we process each mention along with its contexts independently.

We found that a context window of 128 characters surrounding each mention suffices for

these models. We also experimented with longer contexts and observed that the perfor-

mance of the models deteriorates.

Hyperparameters To encode mentions, we use a context window of up to 128 tokens for

the single-mention Dual Encoder. The candidate entities are tokenized to a maximal length

of 128 tokens across all Dual Encoder models. In the Cross Encoder and BLINK models,

where candidate tokens are appended to the context tokens, we use a maximum of 256

tokens. For Collective Dual Encoder models, the mention encoder can encode a tokenized

document of maximum length 512. For all our experiments, we use AdamW stochastic

optimization. We also use linear scheduling for the learning rate of the optimizer. For

the single-mention Dual Encoder, Cross Encoder and BLINK model, we find an initial

learning rate of 0.00005 to be optimal. For collective Dual Encoder models, we find an

initial learning rate of 0.00001 to be suitable for both the end-to-end and non-end-to-end

settings. The ratio of hard and random negative candidates is set to 1:1, as we choose 10

samples from each.
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3.5.4 Evaluation Metrics

Picking the correct target entity among a set of candidate entities is a learning to rank prob-

lem. Therefore, we use Precision@1 and Mean Average Precision (MAP) as our evaluation

metrics when the gold mention spans are known. Since there is only one correct target en-

tity per mention in our datasets, Precision@1 is also equivalent to the accuracy. One can

consider these metrics in normalized and unnormalized settings. The normalized setting is

applicable when candidate retrieval is done during inference and the target entity is present

in the set of retrieved candidates. Since our model and other Dual Encoder based models

do not require retrieval at test time, the normalized evaluation setting is not applicable in

these cases.

3.5.5 Results

Candidate retrieval method Unnormalized Normalized
Model Training Test P@1 MAP P@1 MAP
† LATTE BM25 BM25 - - 88.5 92.8
† Cross Encoder BM25 BM25 - - 91.6 95.1
Cross Encoder BM25 BM25 53.8 56.2 90.4 94.4
Dual Encoder (1 mention) DR (random) all entities 54.1 64.8 N/A N/A
Dual Encoder (1 mention) DR (random + hard) all entities 62.9 69.7 N/A N/A
BLINK DR (random + hard) DR (hard) 68.1 73.0 84.7 90.8
Dual Encoder (collective) DR (random) all entities 58.2 68.5 N/A N/A
Dual Encoder (collective) DR (random + hard) all entities 68.4 75.6 N/A N/A

Table 3.2: Precision@1 and Mean Average Precision (MAP) for the entity disambiguation
task on the MedMentions dataset when the gold mention spans are known. † LATTE results
are copied from the original paper and always incorporate gold entities as candidates (thus
recall is always 100%). † Cross Encoder shows results in this setting as a reference point.
Models without † do not add gold entities to the candidate set. ’N/A’ stands for ’Not
Applicable’. ’DR’ stands for dense retrieval.

Entity Disambiguation We provide the results of our experiments for the entity disam-

biguation task on the MedMentions and BC5CDR datasets in Table 3.2 and Table 3.3,

respectively. For the MedMentions dataset, our collective dual encoder model outperforms
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Candidate retrieval method Unnormalized Normalized
Model Training Test P@1 MAP P@1 MAP
Cross Encoder BM25 BM25 72.1 73.1 96.8 98.1
Dual Encoder (1 mention) DR (random) all entities 76.3 82.4 N/A N/A
Dual Encoder (1 mention) DR (random + hard) all entities 84.8 87.7 N/A N/A
BLINK DR (random + hard) DR (hard) 74.7 75.6 97.2 98.4
Dual Encoder (collective) DR (random) all entities 69.0 77.2 N/A N/A
Dual Encoder (collective) DR (random + hard) all entities 80.7 85.1 N/A N/A

Table 3.3: Precision@1 and Mean Average Precision (MAP) for the entity disambiguation
task on the BC5CDR dataset when the gold mention spans are known. ’N/A’ stands for
’Not Applicable’. ’DR’ stands for dense retrieval.

all other models, while being extremely time efficient during training and inference. On

the BC5CDR dataset, our method performs adequately as compared to other baselines.

Our model compares favorably against the state-of-the-art entity linking model BLINK on

both datasets. Surprisingly, for the BC5CDR dataset, BLINK is outperformed by the Dual

Encoder baselines that process each mention independently, despite the fact that BLINK’s

input candidates are generated by this model. We conjecture that BLINK’s cross encoder

model for re-ranking is more susceptible to overfitting on this relatively small-scale dataset.

Our model consistently outperforms the Cross Encoder model, which reinforces the prior

observations made by [9] that dense retrieval of candidates improves the accuracy of entity

disambiguation models. Finally, comparisons with an ablated version of our model that

uses only random negative candidates during training show that hard negative mining is

essential for the model for better entity disambiguation.

Training and Inference Speed We perform a comparative analysis of the training speed

of our collective dual encoder model with the single-mention dual encoder model. We show

in Figure 3.2 and Figure 3.3 that our model achieves higher accuracy and recall@10 much

faster than the single-mention dual encoder model. To be precise, our model is 3x faster

than the single-mention Dual Encoder model.

We also compare the inference speed of our model with BLINK and the single-mention

Dual Encoder model. The comparisons of inference speed for the two datasets are presented
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Figure 3.2: Comparative analysis of training speed measured in terms of accuracy achieved
in first 24 hours of training. Both models were trained on 4 NVIDIA Quadro RTX GPUs
with 24 GB memory.

Figure 3.3: Comparative analysis of training speed measured in terms of recall@10
achieved in first 24 hours of training. Both models were trained on 4 NVIDIA Quadro
RTX GPUs with 24 GB memory.

in Table 3.4 and Table 3.5, respectively. The inference speed is measured on a single

NVIDIA Quadro RTX GPU with batch size 1. We observe that our collective dual encoder

model is 3-4x faster than the single-mention Dual Encoder model and up to 25x faster (an

average over two datasets) than BLINK. Since our model can process a document with

N mentions in one shot, we achieve higher entity disambiguation speed than the single-

mention Dual Encoder and the BLINK model – both require N forward passes to process

theN mentions in a document. Caching the entity representations also helps our model and

the single-mention Dual Encoder model at test time. The cross encoder of BLINK prevents
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it from using any cached entity representations, which drastically slows down the entity

resolution speed of BLINK.

Model mentions/sec
BLINK (reranker) 11.5
Dual Encoder (1 mention) 65.0
Dual Encoder (collective) 192.4

Table 3.4: Inference speed comparison for the MedMentions dataset.

Model mentions/sec
BLINK (reranker) 11.5
Dual Encoder (1 mention) 87.0
Dual Encoder (collective) 402.5

Table 3.5: Inference speed comparison for the BC5CDR dataset.

Candidate Recall We compare the recall@10 metrics of BM25 retrieval method used

in LATTE and Cross Encoder to the dense retrieval method used in BLINK and in our

model. We present our results in Table 3.6 for the MedMentions and BC5CDR datasets,

respectively. Similar to the observations made for BLINK and [99], we also find that dense

retrieval has a superior recall than BM25. However, we observe that the recall value of

dense retrieval depends on the underlying entity disambiguation model. For instance, on

the MedMentions dataset, our model has much higher recall@10 than the Dual Encoder

model that processes each mention independently, while both models are trained using a

combination of hard and random negative candidates.

MedMentions BC5CDR
Model Dev Test Dev Test
BM25 59.8 59.5 76.3 74.5
Dense retrieval (1 mention) 80.2 80.6 92.1 92.3
Dense retrieval (collective) 87.5 87.6 92.2 92.3

Table 3.6: Comparison of Dev and Test set Recall@10 for MedMentions and BC5CDR
datasets
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MedMentions BC5CDR
Model Partial match Strict match Partial match Strict match

P R F1 P R F1 P R F1 P R F1
SciSpacy 40.9 40.2 40.6 37.7 36.6 37.1 15.5 53.4 24.0 14.5 48.4 22.3
MedType 44.7 44.1 44.4 41.2 40.0 40.6 16.6 57.0 25.7 15.3 51.0 23.5
Dual Encoder (BIO tags) 44.5 37.6 40.7 41.2 34.9 37.8 29.2 31.5 30.3 10.2 10.8 10.5
Dual Encoder (Exhaustive) 56.3 56.4 56.4 52.9 53.8 53.4 76.0 74.4 75.2 74.6 73.1 73.8

Table 3.7: Micro Precision (P), Recall (R) and F1 scores for the end-to-end entity linking
task on the MedMentions and BC5DCR datasets.

End-to-End Entity Disambiguation For the end-to-end entity linking task, we evaluate

the models with two different evaluation protocols. In the strict match protocol, the pre-

dicted mention spans and predicted target entity must match strictly with the gold spans

and target entity. In the partial match protocol, if there is an overlap between the pre-

dicted mention span and the gold mention span, and the predicted target entity matches the

gold target entity, then it is considered to be a true positive. We evaluate our models using

micro-averaged precision, recall, and F1 scores as evaluation metrics. For a fair compari-

son, we use the off-the-shelf evaluation tool neleval1, which is also used for MedType.

We follow the same evaluation protocol and settings as used for MedType.

We present the results of our collective Dual Encoder model and the baselines in Ta-

ble 3.7. The results show that exhaustive search over all possible spans for mention de-

tection yields significantly better results than the BIO tagging based method, despite the

additional computational cost. Moreover, our dual encoder based end-to-end entity linking

model significantly outperforms SciSpacy and MedType. Note that there are highly spe-

cialized models such as TaggerOne [80] that perform much better than our model on the

BC5CDR dataset. However, TaggerOne is suitable for a few specific types of entities such

as Disease and Chemical. For a dataset with entities of various different semantic types

(e.g., MedMentions), [101] show that TaggerOne performs inadequately. For such datasets

where the target entities belong to many different semantic types, our proposed model is

more effective as compared to highly specialized models like TaggerOne.

1https://github.com/wikilinks/neleval
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3.6 Triple Extraction Model

The task of triple extraction directly extracts canonicalized fact triples from an input text

document. Given the sentence The Black Crusade is a 2004 horror novel by Richard Har-

land, our model learns to extract fact triples (Q7718294, P50, Q1771570) where

Q7718294 and Q1771570 are the Wikidata IDs for entities The Black Crusade and

Richard Harland respectively, and P50 is the Wikidata ID for property author which is

the relationship between the two entities.

We frame the triple extraction task as a multi-task learning problem. Our model per-

forms mention span detection to identify potential mentions of entities, entity disambigua-

tion to link mention span to a target knowledge graph, and relation classification to identify

the relationship between a pair of entity mentions using a single end-to-end differentiable

model.

For mention span detection and entity disambiguation we follow the proposed model

in Section 3.4. It is shown in [104] that both entity mentions and contextual information

contributes in neural relation extraction. Therefore, we use the mean pooling of mention

spans to represent the head and tail entities and the last hidden state of the BERT encoder’s

[CLS] token as the sentence representation for relation classification. The representations

are concatenated and mapped to a d-dimensional vector uC+M as follows.

uC+M = W[uh;ut;vd] (3.5)

Here uh ∈ Rd is the head entity’s mention embedding, ut ∈ Rd is the tail entity’s mention

embedding, and vd is the context sentence embedding.

For each mention pair, we score the candidate relations using a dot product between

uC+M and relation vectors vr ∀r ∈ R where R is the set of all relations. Note that we

use the same BERT encoder that is used to learn entity representations to learn relation
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representation. Formally,

ψ(h, r, t) = uC+M
>vr (3.6)

During inference, we extract a triple (h, r, t) from the input document d if the likelihood

p(h, r, t|d) is greater than a threshold γ. We obtain the likelihood using the chain rule as

shown in the following.

p(h, r, t|d) = p(r|h, t, d)p(h|d)p(t|d) (3.7)

The value of γ is determined using the validation set.

3.7 Evaluation of Triple Extraction

3.7.1 Dataset

TACRED [105] is a popular benchmark dataset for the relation extraction task. However, in

TACRED, entity mentions are not aligned to their canonical forms. Therefore, this dataset

is not suitable for the triple extraction task. Recently, Trisedya et al. [98] proposed a dataset

of Wikipedia sentences mapped to Wikidata triples. The collected dataset contains 255,654

sentence-triple pairs. For each pair, the maximum number of triples is four (i.e., a sentence

can produce at most four triples). The dataset contains 330,005 mapped triples from Wiki-

data, including 279,888 entities and 158 Wikidata properties that serve as relations in the

triples.

3.7.2 Experiments

We compare our model to N-gram Attention model proposed by [98]. Addtionally, we also

use the results reported in [98] for unsupervised relation extraction [53] followed by end-

to-end entity linking [7] and dictionary-based paraphrase detection for relation canonical-
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Model Micro-P Micro-R Micro-F1
†MinIE (+ E2E EL [7]) 36.7 48.6 41.8
† N-gram Attention [98] 84.7 67.6 75.2
? Our Model (γ > 0.4) 31.06 42.83 36.01

Table 3.8: Micro-averaged precision, recall, and F-1 scores of the proposed model and
other baselines for the WIKI dataset. ? We report the results of our model after 10 epochs
of training. † results are taken from Trisedya et al. [98].

ization. We use Micro-averaged precision, recall, and F-1 scores as the evaluation metrics.

We show the results in Table 3.8.

3.8 Discussion

This chapter introduces a collective entity linking approach using BERT-based dual en-

coders to disambiguate multiple mentions of entities in a document in a single shot. We

show empirically that our method achieves higher precision than other competitive baseline

models in significantly less training and inference time. We also showed that our end-to-

end entity linking approach is substantially better than two recently proposed biomedical

entity linking models for the end-to-end entity disambiguation task.

Although supervised methods are widely adopted for relation extraction for academic

publications, their practical use is limited due unavailability of training data across various

domains. Recently, a large-scale dataset called BioREL [106] is proposed for biomedical

relation extraction. For open-domain relation extraction, T-REx [107] is emerging as a

benchmark dataset that contains millions of annotated sentences.

The WIKI dataset and the other relation extraction datasets have sentence-level anno-

tation. A recently proposed dataset DocRED [108] extended the relation extraction task

to the document level. Document-level relation extraction often requires the extraction of

relations beyond the sentence boundaries. This involves detection and aggregation of multi-

ple entity mentions and their co-references present in a document. However, like TACREC,

DocRED also does not have canonicalized entity annotations.
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CHAPTER 4

INDUCTIVE REPRESENTATION LEARNING AND EXPLAINABLE

REASONING FOR KNOWLEDGE GRAPHS

4.1 Overview

Recent years have seen a surge in the usage of large-scale cross-domain knowledge graphs

[KnowledgeGraphs2020] for various tasks, including factoid question answering, fact-

based dialogue engines, and information retrieval [109]. Knowledge graphs serve as a

source of background factual knowledge for a wide range of applications [2]. For example,

Google’s knowledge graph is tightly integrated into its search engine, while Apple adopted

Wikidata as a source of background knowledge for its virtual assistant Siri. Many such

applications deal with queries that can be transformed to a structured relational query of

the form (es, rq, ?), where es is the source entity and rq is the query relation. For exam-

ple, the query “Who is the director of World Health Organization?” can be mapped to the

structured query (World Health Organization, director, ?) while executing it on a knowl-

edge graph. Unfortunately, due to the inherent sparsity and incompleteness of knowledge

graphs, answers to many such queries cannot be fetched directly from the existing facts but

need to be inferred indirectly.

Furthermore, with the ever-increasing volume of knowledge graphs, the number of

emerging entities also increases. Many of these emerging entities have a small number

of known facts when they are integrated into the knowledge graphs. Therefore, their con-

nectivity to pre-existing entities in the knowledge graph is often too sparse.

In recent years, embedding-based models [10] have widely been adopted to infer miss-

ing relationships in a knowledge graph. In such embedding-based models, distributed vec-

tor representations of entities and relations in the knowledge graph are used to learn a
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Figure 4.1: A subgraph of NELL with Tom Cable as an emerging entity. The solid-lined
circles and arrows represent the existing entities and relations. The dashed-lined circles
and arrows denote an emerging entity and some known relationships to other existing en-
tities. The unknown relationships that need to be inferred through inductive representation
learning and explainable reasoning are shown as dotted arrows.

scoring function f(es, rq, eo) in a latent embedding space to determine the plausibility of

inferring a new fact. However, these models lack in terms of the interpretability and ex-

plainability of the decisions they make. One does not obtain any clear explanation of why

a specific inference is warranted. For example, from the embeddings of facts (A, born in,

California) and (California located in, US), the fact (A, born in, US) could be deduced. But

logical composition steps like this one are learned implicitly by knowledge graph embed-

dings. This means that this approach cannot offer such logical inference paths as support

evidence for an answer.

In contrast, path-based reasoning approaches operate in the symbolic space of entities

and relations, leveraging the symbolic compositionality of the knowledge graph relations,

thus making the inference process explainable. This means that the user can inspect the

inference path, consisting of existing edges in the knowledge graph, as supportive evidence.

To this end, purely symbolic and fast rule-mining systems, e.g., PRA [37], AMIE+ [45],

and AnyBURL [46] may attain a level of performance that is comparable to embedding-

based methods but neglect many of the statistical signals exploited by the latter. To leverage
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the advantages of both path-based and embedding-based models, some neural-symbolic

approaches [38, 39, 40, 41, 47] have as well been proposed. Some recent path-based

reasoning approaches [43, 12] formulate the path-finding problem as a Partially Observable

Markov Decision Process (POMDP), in which the model learns a policy to find an inference

path from the source entity to the target entity using REINFORCE [13], a policy gradient-

based reinforcement learning algorithm.

However, most of these approaches are studied with static snapshots of the knowledge

graphs, thus severely restricting their applicability for a dynamically evolving knowledge

graph with many emerging entities. Except for the purely symbolic rule-mining systems

mentioned above, most existing approaches that depend on learning latent representations

of entities require that all entities are present during training. Therefore, these models are

incapable of learning representations of arbitrary newly emerging entities not seen during

training. Some recent approaches such as HyTE [110], and DyRep [111] have considered

dynamically evolving temporal knowledge graphs. However, similar to embedding-based

models, these models are not explainable.

To overcome this issue, we propose a joint framework for representation learning and

reasoning in knowledge graphs that aims at achieving inductive node representation learn-

ing capabilities applicable to a dynamic knowledge graph with many emerging entities

while preserving the unique advantage of the path-based approaches in terms of explain-

ability. For inductive node representation learning, we propose a variant of Graph Trans-

former encoder [112, 113] that aggregates neighborhood information based on its relevance

to the query relation. Furthermore, we use policy gradient-based reinforcement learning

(REINFORCE) to decode a reasoning path to the answer entity. We hypothesize that the

inductively learned embeddings provide prior semantic knowledge about the underlying

knowledge environment to the reinforcement learning agent.

This chapter is based on a published work [114]. We summarize the contributions of

this chapter in the following.
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• We introduce a joint framework for inductive representation learning and explainable

reasoning capable of learning representations for unseen emerging entities during in-

ference by leveraging only a small number of known connections to the other pre-

existing entities in the knowledge graph. Our approach can not only infer new con-

nections between an emerging entity and any other pre-existing entity in the knowl-

edge graph but also provides an explainable reasoning path as support evidence for

the inference.

• We introduce new train/development/test set splits of existing knowledge graph com-

pletion benchmark datasets appropriate for inductive representation learning and rea-

soning.

4.2 Related Work

4.2.1 Embedding-based Methods

Due to advances in representation learning, embedding-based methods have become the

most popular approach for knowledge base completion. Such methods learn d-dimensional

distributed vector representations of entities and relations in a knowledge graph. To this

end, the translation embedding model TransE [20] learns the embedding of a relation as a

simple translation vector from the source entity to the target entity such that es + er ≈ eo.

Its variants, e.g., TransH [22], TransR [21], TransD [115] consider similar objectives. Tri-

linear models such as DistMult [23], along with its counterpart ComplEx [24] in the com-

plex embedding space, use a multiplicative scoring function f(s, r, o) = e>s Wreo, where

Wr is a diagonal matrix representing the embedding of relation r. Convolutional neural

network models such as ConvE [27] and ConvKB [28] apply convolutional kernels over

entity and relation embeddings to capture the interactions among them across different di-

mensions. These models obtain state-of-the-art results on the benchmark link prediction

datasets. However, none of the above-mentioned approaches deliver the full reasoning
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paths that license specific multi-hop inferences, and hence they either do not support multi-

hop inference or do not support it in an interpretable manner. Moreover, these approaches

assume a static snapshot of the knowledge graph to train the models and are not straight-

forwardly extensible to inductive representation learning with previously unseen entities.

4.2.2 Path-based Methods

An alternative stream of research has explored means of identifying specific paths of infer-

ence, which is the task we consider in this paper. To this end, the Path Ranking Algorithm

(PRA) [37] uses random walks with restarts for multi-hop reasoning. Following PRA, other

approaches [38, 39, 40, 41] also leverage random walk based inference. However, the rea-

soning paths that these methods follow are gathered by random walks independently of the

query relation.

Recent approaches have instead adopted policy gradient based reinforcement learning

for a more focused exploration of reasoning paths. Policy gradient based models such as

DeepPath [42], MINERVA [43], MultiHop [12], and M-Walk [44] formulate the KG rea-

soning task as a Partially Observable Markov Decision Process and learn a policy condi-

tioned on the query relation. Although the inference paths are explainable in these models,

there may be a substantial performance gap in comparison with embedding-based models.

4.2.3 Graph Convolution-based Methods

Graph Convolution Networks (GCNs) can be used for node classification in a homoge-

neous graph [29]. They are an instance of Message Passing Neural Networks (MPNN),

in which the node representations are learned by aggregating information from the nodes’

local neighborhood. GraphSAGE [30] attempts to reduce the memory footprint of GCN

by random sampling of the neighborhood. Graph Attention Networks (GAT) [73] are a

variant of GCN that learn node representations as weighted averages of the neighborhood

information. However, GCN and its variants such as GAT and GraphSAGE are not di-
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Figure 4.2: A schematic diagram of a Graph Transformer block, along with an illustration
of the workflow of our model, demonstrating successive applications of inductive node
representation learning and action selection to find a reasoning path.

rectly applicable for link prediction in knowledge graphs, as they ignore the edge (relation)

information for obtaining the node embeddings. To alleviate this issue, R-GCNs operate

on relational multi-graphs [32], but, similar to GCNs, R-GCNs also need all nodes of the

graphs to be present in memory and therefore are not scalable to large-scale knowledge

graphs. Hamaguchi et al. [33] proposed a model for computing representations for out-

of-KG entities using graph neural networks. The recent models such as SACN [34] and

CompGCN [35] leverage the graph structure by inductively learning representations for

edges (relations) and nodes (entities). However, unlike our model, these methods are not

explainable.

4.3 Model

Our model consists of two modules that are subject to joint end-to-end training. The en-

coder module learns inductive entity embeddings while accounting for the query relation

and the local neighborhood of an entity (Subsection 4.3.2). The decoder module operates

on this learned embedding space of entities and relations. By leveraging the embeddings of
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the source entity and the query relation, the decoder module infers a reasoning path to the

target entity using policy gradient-based reinforcement learning (Subsection 4.3.3). Before

describing these components in more detail, Subsection 4.3.1 first provides preliminary

definitions.

4.3.1 Problem Statement

Formally, we consider knowledge graphs G(E ,R,F) defined as directed multi-graphs such

that each node e ∈ E represents an entity, each r ∈ R represents a unique relation, and

each directed edge (es, r, eo) ∈ F represents a fact about the subject entity es.

Given a structured relational query (es, rq, ?), where es is the source entity, rq is the

query relation, and (es, rq, eo) /∈ F , the goal is to find a set of plausible answer entities

{eo} by navigating paths through the existing entities and relations in G leading to answer

entities. Note that, unlike previous methods that consider transductive settings with a static

snapshot of the knowledge graph, we allow for dynamic knowledge graphs, where es may

be an emerging entity, and therefore, previously unseen. Moreover, while embedding-

based methods only deliver candidate answer entities, we here also seek the actual paths,

i.e., sequences of nodes and edges for better interpretability.1

4.3.2 Graph Transformer for Inductive Representation Learning

The state-of-the-art embedding based models either focus on learning entity embeddings

by using only the query relations, ignoring the subject entity’s neighborhood, or use mes-

sage passing neural networks to learn embeddings conditioned on neighboring entities and

relations while being oblivious of the query relation. However, we observe that in many

cases a new fact can be inferred by using another existing fact. For example, the fact (Per-

sonX, Place of Birth, Y) can often help to answer to the query (PersonX, Nationality, ?).

Motivated by this observation, we propose a Graph Transformer architecture that learns the

1From here onwards, we will use the terms node and entity, as well as edge and relation(ship) interchange-
ably.
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embedding of the source entity by iterative aggregation of neighborhood information (mes-

sages) that are weighted by their relevance to the query relation. To learn the relevance

weights, our Graph Transformer model deploys multi-head scaled dot product attention,

also known as self-attention [14].

Formally, we denote the local neighborhood for each entity ei ∈ E as Ni such that

Ni = {ej | ej ∈ E ∧ (ei, r, ej) ∈ F ∧ r ∈ Rij}, where Rij is the set of relations between

entities ei and ej .

Each neighboring entity ej ∈ Ni connected to ei by a relation r sends in a message

to entity ei. The message mijr is a linear transformation of the fact (ei, r, ej) followed

by the application of a non-linear function, specifically, the leaky rectified linear unit

(LeakyReLU) function with a negative slope of 0.01. Formally,

mijr = LeakyReLU(Wf [ei; r; ej]), (4.1)

where Wf ∈ Rd×3d is a shared parameter for the linear transformation and [;] is the con-

catenation operator.

To compute an attention head, our model performs linear projections of the query rela-

tion rq, the neighborhood relations r ∈ Rij , and the neighborhood messages mijr to con-

struct queries Q, keys K, and values V , respectively, such that Q = WQrq, K = WKr,

and V = WVmijr, where WQ,WK ,WV ∈ Rd′×d are learnable parameters.

Next, we use the queries Q to perform a dot-product attention over the keys K. For-

mally,

αijr =
exp((WQrq)

>(WKr))∑
z∈Ni

∑
r′∈Rij

exp((WQrq)
>(WKr

′))
(4.2)

We adopt the common procedure of scaling the dot products of Q and K by a factor of 1√
d′

[14].

The attention weights are then used to aggregate the neighborhood messages. Note
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that self-attention deploys multiple attention heads, each having its own query, key, and

value projectors. The aggregated messages from N attention heads are concatenated and

added to the initial embedding ei through a residual connection to obtain new intermediate

representation

êi = ei + ‖Nn=1

∑
j∈Ni

∑
r∈Rij

αnijrW
n
Vmijr

 , (4.3)

where ‖ is the concatenation operator.

Layer normalization (LN) [66] is applied to the intermediate representation êi, followed

by a fully connected two-layer feed forward network (FFN) with a non-linear activation

(ReLU) in between. Finally, the output of the feed forward network is added to the inter-

mediate representation through another residual connection. The resulting embedding is

again layer normalized to obtain the new representation gi
l for ei. Formally,

gi
l = LN(FFN(LN(êi)) + LN(êi)) (4.4)

This pipeline is called a Transformer block. Figure 4.2 represents a schematic diagram

of a Transformer block in Graph Transformers. We stack L layers of Transformer blocks

to obtain the final embedding gi
L for ei.

4.3.3 Policy Gradient for Explainable Reasoning

To infer the answer entity, we could leverage the entity representations obtained by the

Graph Transformers. However, our goal is not only to infer the answer entity, but to find

a symbolic reasoning path to support the inference. Following previous work [43, 12], we

formulate the reasoning task as a finite horizon, deterministic partially observable Markov

Decision Process (POMDP). A knowledge graph can be seen as a partially observable

environment with out-going relations at each entity node corresponding to a set of discrete

actions that an agent can explore to reach the target answer from the source entity.
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Knowledge Graph Environment Formally, a Markov Decision Process is defined by

a 4-tuple (S,A,P ,R), where S is a finite set of states, A is a finite set of actions, P

captures state transition probabilities, and R is the reward function. In a knowledge graph

environment, the state space is defined as a set of tuples st = (et, rq) ∈ S, where et is an

entity node in the knowledge graph, and rq is the query relation. The action space At ∈ A

for a state st is defined as the set of outgoing edges from entity node et in the knowledge

graph. Formally, At = {(rt+1, st+1) | (et, rt+1, st+1) ∈ G}. Since state transitions in a KG

environment are deterministic, the transition probabilities P (st+1 | st, at) = 1 ∀P ∈ P .

The agent receives a terminal reward of 1 if it arrives at the correct answer entity at the end.

Graph Search Policy To find a plausible path to the answer entity, the model must have a

policy to choose the most promising action at each state. Note that in the KG environment,

the decision of choosing the next action is not only dependent on the current state, but also

on the sequence of observations and actions taken so far in the path. We use a multi-layer

LSTM as a sequence encoder to encode the path history.

Formally, each state st is represented by a vector st = [et; rq] ∈ R2d and each possible

action at ∈ At is represented by at = [et+1; rt+1] ∈ R2d, where et, et+1 ∈ Rd are the

embeddings of the entity nodes at timesteps t and t+1, respectively, that are obtained from

Graph Transformer encoders. rt+1 ∈ Rd is the embedding of an out-going relation from

entity et, and rq ∈ Rd corresponds to the embedding of the query relation rq. Each of

these embeddings is also obtained from the Graph Transformer encoder. The path history

is encoded as ht = LSTM(ht−1, at−1). Given the embedded action space At ∈ R2|At|,

i.e., the stacked embeddings of actions at ∈ At, and the path history ht, we define the

parameterized policy as:

πθ(at | st) = Softmax(At(W2ReLU(W1[ht; et; rq])))
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Policy Optimization. The policy network is trained to maximize the expected reward for

all (es, rq, eo) triples in the training sub-graph. The agent learns an optimal policy πθ by

exploring a state space of all possible actions. The objective of the agent is to take actions

to maximize the expected end reward. Formally:

J(θ) = E(es,rq,eo)

[
Ea1,...,aT−1∼πθ [R(sT |es, rq)]

]
(4.5)

Since policy gradient uses gradient-based optimization techniques, the estimated gradi-

ent of the objective function can be derived as follows:

∇θJ(θ) = Ea1:T∼πθ [∇θ log πθ(a1:T |es, rq)R(sT |es, rq)] (4.6)

≈ 1

N

N∑
n=1

∇θ log πθ(a
n
1:T |es, rq)R (4.7)

Here, N is the number of policy rollouts.

Each policy rollout explores a sequence of actions a1:T . At each timestep t ∈ {1 : T},

the agent selects an action at conditioned on the current state st. Therefore, the gradient of

the log-likelihood in Equation 4.7 can be expressed as

∇θ log πθ(a1:T |es, rq) =
T∑
t=1

∇θ log πθ(at|st, es, rq) (4.8)

Reward Shaping. Previous work [12] observed that a soft reward for the target entities

is more beneficial than a binary reward. Following their work, we use pre-trained ConvE

[27] embeddings for the observed entities and relations to shape the reward function. If

the agent reaches the correct answer entity, it receives reward 1. Otherwise, the agent

receives a reward estimated by the scoring function of the pre-trained ConvE. Note that the

ConvE model is trained only on the training sub-graph of seen entities. ConvE plays no

role during inference. Its only purpose is to provide soft reward signals during training to

help the model in learning a better policy.
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4.4 Evaluation

4.4.1 Datasets

Dataset |E| |R| |U| |F|
train dev test aux

FB15k-237-Inductive 13,119 237 1,389 227,266 17,500 32,197 61,330
WN18RR-Inductive 35,928 11 4,029 67,564 3,000 11,015 19,395
NELL-995-Inductive 71,578 200 776 137,221 500 1,679 2,267

Table 4.1: Evaluation datasets for inductive setting

We evaluate our model based on three standard benchmark knowledge graph comple-

tion datasets. (1) FB15k-237 [116], introduced as a replacement for the FB15k dataset [20].

In FB15k-237, the reverse relations are removed, rendering the dataset more challenging

for inference. (2) WN18RR [27] is a subset of the WN18 benchmark dataset. Similar

to FB15k-237, the reverse relations are removed for this dataset. (3) NELL-995 [42] is a

subset of the 995-th iteration of NELL.

To test the effectiveness of our model for inductive representation learning and reason-

ing, we create new splits of training, development, and test sets for each of the three bench-

mark datasets mentioned above. This new split of the data is necessary, as in an inductive

setting, the subject entities in the test set must not be present anywhere in the training sub-

graph. To satisfy this requirement, we first sample 10% of all the entities present in each of

the benchmark datasets. We denote this as the set of unseen entities U , while the remaining

entities are denoted as seen entities E . Then, we proceed to split the triples in the datasets

into three disjoint sets. The first set contains the triples in which both the head and the tail

entities are in E . The second set consists of the triples with head entities belonging to U ,

but tail entities in E . In the third set, the head entities belong to E , but the tail entities are in

U . We further split the first set into train and dev triples. The second set becomes the test

triples, and the union of the second and the third set is denoted as auxiliary data. Auxiliary

triples are required to obtain the local neighborhood of a source entity at inference time.
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Note that an emerging entity in the test set is not disconnected from the training graph. It

has at least one seen entity in its neighborhood. This ensures that our model can find a path

to the target entity during inference. If the emerging entity were completely disconnected

from the training graph (i.e. all neighboring nodes were in U), finding a path to the target

entity would not be possible.

We append the suffix ”-Inductive” to distinguish these newly derived datasets from

their original counterparts. A summary of these datasets is presented in Table 4.1. To help

with the reproducibility for future research on this topic, we make the datasets and our

source code publicly available 2.

4.4.2 Baselines

Embedding-based Models We compare our model to a set of embedding based models

that perform well under the transductive setting of link prediction. Although these models

are particularly unsuitable for the inductive setting, we include them to better demonstrate

the challenges of applying such algorithms in an inductive setting. In particular, we com-

pare our model to ConvE [27], TransH [22], TransR [21], and RotatE [25]. For these

experiments, we adapted the PyKEEN3 implementations of these models.

Graph Convolution Models We choose a state-of-the-art graph convolution-based method

CompGCN [35] as a baseline. Our choice is motivated by two factors: (1) CompGCN per-

forms strongly in the transductive setting by outperforming the other baselines for most of

the datasets, and (2) since its encoder module deploys neighborhood integration through

Graph Convolution Networks, it has similar characteristics to our model, and therefore,

is a good candidate for inductive representation learning. We also compare our model to

R-GCN [32] and SACN [34], which also leverage the graph structure to learn node rep-

resentations by aggregating neighborhood information. For CompGCN and SACN, we

2https://github.com/kingsaint/InductiveExplainableLinkPrediction
3https://github.com/pykeen/pykeen

https://github.com/pykeen/pykeen
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adapted the source code made available by the authors to make them suitable for induc-

tive representation learning and link prediction. For R-GCN, we adapted the source code

available in the DGL library4.

Symbolic Rule Mining Model We compare our model with AnyBURL [46], a purely

symbolic rule mining system. AnyBURL is capable of extremely fast rule mining, has out-

performed other rule mining approaches including AMIE+ [45], and produces comparable

results to existing embedding-based models.

Path-based Model Finally, we compare our model to a policy gradient-based multihop

reasoning approach [12] that is similar to the decoder module of our model. We modified

the source code5 of this model to adapt it to our task.

4.4.3 Experimental Details

Training Protocol. Since the benchmark knowledge graph completion datasets contain

only unidirectional edges (es, rq, eo), for all methods, we augment the training sub-graph

with the reverse edges (eo, r
−1
q , es). During the Graph Transformer based inductive rep-

resentation learning, n% of local neighboring entities are randomly selected and masked.

During training, we mask 50%, 50%, and 30% of neighboring nodes, respectively, for the

FB15k-237, WN188RR, and NELL-995 datasets. Neighborhood masking helps in learning

robust representations and reduces the memory footprint, and has been shown to be effec-

tive [30]. Following previous work [43, 12], during training of the policy network, we also

retain the top-k outgoing edges for each entity that are ranked by the PageRank scores of

the neighboring entities. We set the value of k for each dataset following Lin et al. [12].

Such a cut-off threshold is necessary to prevent memory overflow. Finally, we adopt the

false-negative masking technique in the final timestep of the policy rollouts to guide the

4https://github.com/dmlc/dgl/tree/master/examples/pytorch/rgcn
5https://github.com/salesforce/MultiHopKG
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agent to the correct answer entities as described in previous work [43, 12], where it was

found helpful when multiple answer entities are present in the training graph.

Hyperparameters For a fair comparison to the baselines, we keep the dimensionality

of the entity and relation embeddings at 200. For our model, we deploy one layer of a

Transformer block (L = 1) and 4 attention heads (N = 4). We choose a minibatch size

of 64 during training due to limited GPU memory. We rely on Adam [117] stochastic

optimization with a fixed learning rate of 0.001 across all training epochs. Additionally,

we adopt entropy regularization to improve the learning dynamics of the policy gradient

method. The regularizer is weighted by a hyperparameter β set to a value within [0, 0.1].

We apply dropout to the entity and relation embeddings, the feedforward networks, and the

residual connections. The policy rollout is done for T = 3 timesteps for every dataset.

Evaluation Protocol Following previous work [12], we adopt beam search decoding dur-

ing inference with a beam width of 512 for NELL-995 and 256 for the other datasets. If

more than one path leads to the same target entity, then the path with the maximum log-

likelihood is chosen over the others. During evaluation, the auxiliary graph augments the

training graph to construct the KG environment with unseen entities and their relations to

the seen entities. For our model and the baselines, the embeddings of all unseen entities are

initialized with Xavier normal initialization [118] at inference time.

Evaluation Metrics We adopt the ranking based metrics Mean Reciprocal Rank and

Hits@k that are also used by prior work for evaluation. We follow the filtered setting

[20] adopted by prior approaches. In the filtered setting, the scores for the false negative

answer entities are masked to facilitate correct ranking of the target entity.
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WN18RR-Inductive FB15K-237-Inductive NELL-995-Inductive
Hits@N Hits@N Hits@N

Model MRR @1 @3 @10 MRR @1 @3 @10 MRR @1 @3 @10
TransR [21] 0.8 0.6 0.7 0.9 5.0 4.0 5.2 6.6 5.3 4.9 5.3 6.5
TransH [22] 0.0 0.0 0.0 0.0 6.2 5.4 6.3 8.0 3.6 3.4 3.6 3.6
RotatE [25] 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ConvE [27] 1.9 1.1 2.1 3.5 26.3 20.0 28.7 38.8 43.4 32.5 50.3 60.9
R-GCN [32] 14.7 11.4 15.1 20.7 19.1 11.5 20.9 34.3 58.4 50.9 62.9 71.6
SACN [34] 17.5 9.7 20.3 33.5 29.9 20.5 32.8 50.0 42.4 37.0 42.9 53.2
CompGCN [35] 2.2 0.0 2.2 5.2 26.1 19.2 28.5 39.2 42.8 33.1 47.9 61.0
AnyBURL [46] - 48.3 50.9 53.9 - 28.3 43.0 56.5 - 8.7 11.0 12.3
MultiHopKG [12] 45.5 39.4 49.2 56.5 38.6 29.3 43.4 56.7 74.7 69.1 78.3 84.2
Our Model w/ RS 48.8 42.1 52.2 60.6 39.8 30.7 44.5 57.6 75.2 69.7 79.1 84.4

Table 4.2: Evaluation results of our model as compared to alternative baselines on inductive
variants of the WN18RR, FB15K-237, and NELL-995 datasets. The Hits@N and MRR
metrics are multiplied by 100.

4.4.4 Results

We present the experimental results of our method and the baselines in Table 4.2. The

results of the embedding-based models TransH, TransR, and RotatE across all datasets

demonstrates their inability to deal with entities that are unseen during training. These

models are thus rendered as ineffective for inductive representation learning and reasoning.

ConvE performs better than other embedding-based models we consider. Still, the much

inferior performance of ConvE compared to our model shows that ConvE is not particularly

suitable for inductive representation learning.

We observe that our model significantly outperforms the graph convolution network

baselines CompGCN, SACN, and R-GCN across all datasets. Although these models use

the neighborhood information for learning representations, unlike our method, their neigh-

borhood integration methods do not explicitly consider the query relations.

We find AnyBURL and MultiHopKG to be the most competitive methods to ours. Any-

BURL performs adequately for the WN18RR and FB15K-237 dataset while performing

poorly on the NELL-995 dataset. MultiHopKG adapts surprisingly well to our dataset de-

spite the unseen entities being initialized with Xavier normal initialization. We conjecture

that the learned representations of the query and the outgoing edges (relations) have enough
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WN18RR-Inductive FB15K-237-Inductive NELL-995-Inductive
Hits@N Hits@N Hits@N

Model MRR @1 @3 @10 MRR @1 @3 @10 MRR @1 @3 @10
Our Model w/ RS 48.8 42.1 52.2 60.6 39.8 30.7 44.5 57.6 75.2 69.7 79.1 84.4
Our Model w/o RS 48.2 40.1 53.0 62.2 37.8 29.4 42.6 54.0 71.1 65.3 75.0 79.9
GT + ConvTransE 1.1 0.6 1.1 1.8 22.9 17.3 24.9 33.3 47.9 40.6 51.1 61.9

Table 4.3: Ablation study. The Hits@N and MRR metrics are multiplied by 100.

semantic information encoded in them to navigate to the target entity by simply exploiting

the edge (relation) information. However, our proposed model holds an edge over this

model with 7.2%, 3.1%, and 0.7% gains in the MRR metric for the WN18RR, FB15K-237,

and NELL-995 datasets respectively.

4.5 Analysis

In this section, we perform further analysis of our proposed model. First, we conduct a set

of ablation studies. Then, we qualitatively analyze our model’s ability to provide reasoning

paths as supporting evidence for inference. Finally, we analyze the effect of the cardinality

of relation types on the inference process.

4.5.1 Ablation Study

To better understand the contribution of reward shaping in our model, we perform an ab-

lation study, where our model is deprived of the soft reward signals provided by ConvE.

In general, we observe that replacing reward shaping with hard binary reward deteriorates

the performance of our model across all datasets. Note that our ablated version still mostly

outperforms the other baseline methods.

Additionally, we experiment with a non-explainable variant of our model, in which

we retain the Graph Transformer (GT) encoder, but we replace the policy gradient-based

decoder with an embedding-based decoder called ConvTransE, which is also used in SACN

as a decoder module. With this model, we observe a significant drop in performance. Thus,

we conjecture that the policy gradient-based decoder not only provides explainability, but
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also is crucial for decoding.

4.5.2 Qualitative Analysis of Explainability

Since explainability is one of the key objectives of our model, we provide examples of

explainable reasoning paths for queries that involve previously unseen source entities at

inference time. Table 4.4 contains examples of 1-hop, 2-hop, and 3-hop reasoning paths.

These examples demonstrate our model’s effectiveness in learning inductive representa-

tions for the unseen entities, which helps to infer the reasoning paths.

Query (William Green, worksFor, ?)
Answer Accenture

Explanation William Green
personLeadsOrganization−−−−−−−−−−−−−−→ Accenture

Query (Florida State, organizationHiredPerson, ?)
Answer Bobby Bowden
Explanation Florida State worksFor←−−−−− Bobby Bowden
Query (Messi, athleteHomeStadium, ?)
Answer Camp Nou

Explanation Messi
athletePlaysForTeam−−−−−−−−−−−→ Barcelona teamHomeStadium−−−−−−−−−−→ Camp Nou

Query (Adrian Griffin, athleteHomeStadium, ?)
Answer United Center

Explanation Adrian Griffin
athletePlaysForTeam−−−−−−−−−−−→ Knicks

athletePlaysForTeam←−−−−−−−−−−− Eddy Curry
athleteHomeStadium−−−−−−−−−−−→ United Center

Query (Bucks, teamPlaysInLeague, ?)
Answer NBA

Explanation Bucks
organizationHiredPerson−−−−−−−−−−−−−→ Scott Stiles

organizationHiredPerson←−−−−−−−−−−−−− Chicago
Bulls

teamPlaysInLeague−−−−−−−−−−−→ NBA

Table 4.4: Example queries from the NELL-995 test set with unseen source entities. The
answers are supported by the explainable reasoning paths derived by our model.

4.5.3 Effect of Relation Types

Following Bordes et al. [20], we categorize the relations in the seen snapshot of the knowl-

edge graph into Many-to-1 and 1-to-Many relations. The categorization is done based on

the ratio of the cardinality of the target answer entities to the source entities. If the ratio is
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Dataset to-Many to-1
% MRR % MRR

FB15k-237-Inductive 77.4 31.6 22.6 75.5
WN18RR-Inductive 48.1 60.8 51.9 30.1
NELL-995-Inductive 7.6 41.4 92.4 78.5

Table 4.5: MRR for the test triples in inductive setting with to-Many and to-1 relation types.
The % columns show the percentage of test triples for each relation type.

greater than 1.5, we categorize the relation as to-Many, otherwise as to-1. We analyzed the

results of the test set for these two types of relations. We report the percentage of triples

with these two types of relations and the corresponding MRR achieved by our model in

Table 4.5. For FB15k-237 and NELL-995, our model performs better for to-1 relations

than for to-many relations. On the contrary, we observe a reverse trend for the WN18RR

dataset. Note however that to-many relations have alternative target entities. In the current

evaluation protocol, our model is punished for predicting any alternative target entity other

than the ground truth target.

4.6 Discussion

In this chapter, we proposed an end-to-end trainable framework for explainable link predic-

tion for emerging entities. New emerging entities are continuously added to open-domain

knowledge graphs such as Wikidata. Predicting missing links for these entities help to en-

hance the fact coverage of a knowledge graph. To this end, our proposed method has two

clear advantages. First, our model’s inductive representation learning obviates the need to

retrain the model for link prediction when new emerging entities are added to a knowledge

graph. Secondly, it provides explainable reasoning paths which a human judge can use to

verify the correctness if necessary.

Although our proposed method performs better than the baselines, the empirical results

suggest there is a scope for further improvements. A key disadvantange of policy gradient-

based reasoning is that the RL agent often needs to explore in large action space due to
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large out-degrees of some nodes. Reducing the size of the action space could make the

path exploration process more efficient. To this end, one can leverage the schema structure

of the knowledge graph to find the reasoning paths.

Another limitation of our proposed model is that our model can not verify the quality

of the rules in terms of semantic correctness. It might be possible that our model finds a

spurious path that does not yield a semantically correct explanation. A thorough human

evaluation of the explanation paths generated by a our model could reveal some of these

spurious paths. However, large scale human evaluation is expensive and is beyond the

scope of this research work.
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CHAPTER 5

KNOWLEDGE RETRIEVAL FOR ENTITY SUMMARIZATION

5.1 Overview

Motivation Entity-centric search queries that solicit specific factual information about

an entity (e.g., a person, place, organization, etc.) constitute a significant proportion of all

search queries processed by the popular search engines. Almost all modern search engines

incorporate facts from an underlying knowledge graph [2] that acts as a reliable source of

factual information. Most notably, in recent years, knowledge panels have become an in-

tegral part of the contemporary search engines. Knowledge panels are information boxes

that appear on the search engine result pages when a user searches for entity-related infor-

mation. Such cards provide a series of facts taken from the knowledge graph and enable

the user get a brief overview of pertinent key facts about the entity without the need to

navigate to various Web pages. Although knowledge panels are commonplace in contem-

porary search engines, it is not very well understood how the search engines determine

which pieces of information ought to be retrieved from the underlying knowledge graph

and incorporated into the knowledge panels.

Goal In practice, different entity-related queries may pertain to quite different aspects of

an entity. A search engine query such as einstein education ought to give preference to

other facts than a query such as einstein family. Recent work by Hasibi et al. [58] makes an

effort to explain and evaluate how knowledge panels are dynamically populated to cater to

such distinct information needs of different search engine users. They argue that the factual

information that is shown on the knowledge panels is often determined by two measures:

the importance and relevance. Indeed, importance and relevance are two mutually comple-

mentary measures bearing very different information. A fact that is deemed important in
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general about an entity may be irrelevant in a given query context and vice versa. For in-

stance, for the query einstein education, Einstein’s alma mater and academic achievements

merit a high ranking, whereas for the query einstein family, siblings, spouses, and children

might be preferred.

Approach To address this task of dynamic query-specific fact ranking, Hasibi et al. pro-

pose a model called DynES [58] that performs fact retrieval and entity summarization based

on a linear combination of both importance and relevance, and compared the results to hu-

man judgements.

However, there are several points about DynES worth noting. DynES is based on hand-

crafted features extracted from the input query and from the knowledge graph. Many of

these features are statistical ones that need to be extracted beforehand from the set of all

facts in the large-scale knowledge graph, rendering this method unsuitable for ad hoc set-

tings, i.e., sets of candidate facts different from those in the knowledge graph. Moreover,

DynES performs a simple pointwise ranking of the facts, where each fact is considered

in isolation, using Gradient Boosted Regression Trees, which learn an ensemble of weak

prediction models.

In this chapter, we propose a novel model that obviates the need for a cumbersome

process of designing hand-crafted features based on the large knowledge graph. Similar to

DynES, our proposed model accounts for both the importance and relevance of each fact

with respect to the query. Instead of hand-crafted features, we exploit the linguistic and

semi-linguistic nature of the search query and the candidate facts. Our model implicitly

learns the semantic relatedness between the search queries and the facts to determine the

importance and relevance of a fact with respect to the query. In addition, we formulate

the resulting learning to rank problem as a pairwise and a pointwise ranking problem, and

compare their performances across different metrics.
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Contributions This chapter is based on a published work [119]. The key contribution of

this chapter are the following.

1. We propose a novel deep neural model with a pointwise and a pairwise loss function

to address the task of query-dependent fact retrieval for entity-centric search queries.

2. Rather than requiring a large knowledge graph from which various forms of statistics

and features are extracted, our model draws on recent advances in Transformers with

self attention [14] to better model the linguistic connection between the query and

the candidate facts, and thus can be applied even to entirely novel sets of candidate

facts.

5.2 Preliminaries

In this section, we first define relevant terminology that is used throughout the remainder

of this chapter.

We consider a fact as a predicate–object pair returned when a query is made with regard

to an entity, with that entity serving as the subject.

Definition 1. (Fact) Given a subject entity s, a fact f = 〈p, o〉 is a tuple of predicate p and

object o for a subject–predicate–object triple 〈s, p, o〉 in the knowledge graph.

We now define the importance and relevance of such facts, given an entity and a query.

Definition 2. (Importance) Importance is an attribute of a fact f that determines its re-

lation to the subject entity s in absolute terms, irrespective of the provided query. It is

denoted as is(f).

Definition 3. (Relevance) Relevance, in turn, describes to what extent a given candidate

fact f is pertinent with regard to a given natural language search query q issued by the

user along with the entity s as the subject. It is denoted as rs,q(f).
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However, a fact with a high degree of importance may not be particularly relevant with

regard to the query context, while a highly relevant fact may not be as important. Hence, we

consider utility as the overall ranking criterion. The experiments presented in this chapter

follow previous work [58] in adopting a notion of utility that is defined as a weighted sum

of importance and relevance.

Definition 4. (Utility) The overall utility of a fact f with respect to a query q and entity s is

defined as a weighted sum of the importance and relevance scores of the fact with respect

to query and entity. It is denoted as us,q(f) and computed as

us,q(f) = α is(f) + β rs,q(f) (5.1)

Without loss of generality, we follow Hasibi et al. [58] in assuming that α = β = 1

for simplicity. However, α, β may be adjusted freely to account for application scenario-

specific considerations.

Thus, utility relates the fact to the query in a more comprehensive manner than the

importance and relevance scores alone can.

Definition 5. (Fact Ranking) For a given natural language query q and a given target

subject entity s, we consider a set F = {f1, . . . , fn} of n candidate facts to be ranked,

each taking the form of an 〈p, o〉 pair. The goal is to find a ranking function g that, based

on inputs of this form, obtains an ordinal ranking of the facts with respect to a normalized

score in descending order.

In practice, we learn a function g that predicts importance, relevance, or utility scores.

Like previous work, we consider a supervised setup, and rely on ground truth rankings for

example queries and entities to guide the learning process.
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5.3 Model

Given the natural language input queryQ as well as a candidate fact fi = 〈p, o〉 ∈ F , where

F is the set of all candidate facts for Q, our model accepts the query along with the natural

language labels of p and o and invokes BERT [67], a deep neural Transformer encoder, to

encode bidirectional contextual information for the given sequence of input tokens. Since

we simultaneously supply both the query and the candidate fact to the Transformer, the

self-attention layers are able to establish connections between (parts of) these two inputs.

Figure 5.1: A schematic diagram of the model architecture.

Before feeding the tokenized sequences Q, P , O to the model, special tokens [CLS]

and [SEP] are inserted into the input sequence. The [CLS] token signifies the start of

each sequence, while the [SEP] token serves as a demarcation point separating the query

segment from the fact segment in the input sequence. The resulting sequence of input token

identifiers now becomes:

[CLS], q1, . . . , ql, [SEP], p1, . . . , pm, o1, . . . , on, [SEP]

The most relevant component for our task lies in the encoded representation of the

[CLS] token, which serves as a representation of the entire input sequence. This rep-

resentation is passed through a fully-connected layer followed by a sigmoid activation

function to yield a ranking score, which is then compared to the ground truth. Formally,
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g(fi) = σ(Whp + b), where hp ∈ Rd is the [CLS] representation from the final hidden

layer of the BERT encoder, W ∈ R1×d and b are trainable parameters, and σ(x) = 1
1+e−x

.

Note that the predicted ranking scores and the ground truth ranking scores are always in

the range of [0, 1].

Pointwise Ranking Many ranking methods, including DynES, use a pointwise ranking

approach. A pointwise ranking loss considers only one fact at a time and calculates the

training loss using a mean squared error between the ground truth ranking score r(i) and

the predicted score g(fi). Formally,

L(g;F ,R) =
n∑
i=1

(
r(i)− g(fi)

)2 (5.2)

Pairwise Ranking A pairwise ranking loss that considers pairs of facts (fs and fi) and

encourages the model to predict scores for the two involved facts that reflect the correct

relative ordering between them. Ideally, the difference between the two predicted scores

(g(fs)− g(fi)) should equal the difference (r(s)− r(i)) between the corresponding ground

truth ranking scores. These differences are computed as signed values rather than absolute

values, so the ordering is crucial. Based on this intuition, we define the loss function as a

pairwise mean squared error as follows:

L(g;F ,R) =
n−1∑
s=1

n∑
i=1

r(i)<r(s)

[(
r(s)− r(i)

)
−
(
g(fs)− g(fi)

)]2
(5.3)

The final ranking is created by ordering the candidate facts fi ∈ F by g(fi) in descend-

ing order, breaking ties arbitrarily. Thus, if g(fi) > g(fj), then fi should be ranked higher

than fj .
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5.4 Evaluation

To assess the merits of our proposed model, we conduct a detailed experimental evaluation

comparing it against a series of baseline methods.

5.4.1 Dataset

We perform our experiments on the dataset put forth by Hasibi et al. [58] for fact ranking.

It was collected by using the CrowdFlower platform. The human annotators were given a

set of queries along with the corresponding facts for a given target entity, and were asked

to rate the importance and relevance of the facts with respect to the entity as well as the

query. The importance of a fact was measured on a 3-point scale (0 – not important, 1 –

important, 2 – very important). Similarly, the relevance scores were also measured on a

3 point scale (0 – irrelevant, 1 – relevant, 2 – very relevant). All the entries in the dataset

were annotated by 5 different workers. The Fleiss’ Kappa inter-annotator agreement was

moderate – 0.52 for importance, and 0.41 for relevance. Finally, the utility scores were

obtained as a linear combination of the importance and relevance scores as described in

Equation 5.1. The utility scores are measured on a 5 point Likert scale ranging from 0 to 4.

We perform min-max normalization of the importance, relevance, and utility scores so that

the ranking scores are always between [0, 1]. Note that while some of the queries take the

form of a list query such as Which European countries have a constitutional monarchy?,

these queries are considered with respect to a single target entity such as Norway, and the

desired output is not a list of entities but rather a ranking of facts about this single target

entity. Thus, the task setting differs substantially from that of Question Answering over

Linked Data.

We observe that nearly 42% of the object values are of numerical type, and another 5%

consist of a combination of characters and numbers. To improve our model’s generaliz-

ability, we replace such values in the dataset with placeholders [NUM] and [ALPHANUM],
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respectively.

We consider two different variants of this dataset, again following Hasibi et al. [58].

For the first variant, Complete Dataset, the entire dataset is considered. The second variant,

URI-only Dataset, keeps only the subset of facts for which the objects are genuine entities

denoted by a URI, while facts with literal values are omitted.

Statistics of the two dataset variants are given in Table 5.1.

Variant #Queries #Facts Avg. #Facts per Query
Complete Dataset 100 4,069 41
URI-only Dataset 100 1,309 14

Table 5.1: Dataset Statistics

5.4.2 Baselines

To evaluate our model, we compare it against several baseline models, including DynES

[58], a BiLSTM Dual Encoder, as well as two other variants of our proposed model. We

describe these baseline models in the following.

Entity Summarization methods As mentioned, the task we consider in this paper is

distinct from regular entity summarization, due to the requirement of considering natural

language queries. Still, for comparison, we include results of entity summarization meth-

ods that can be adapted to our setting. Specifically, we include the RELIN [54] entity

summarization method, as well as the URI-only Dataset results of the LinkSum [57] and

SUMMARUM [55] entity summarizers, as reported by Hasibi et al. [58].

DynES DynES [58] is a feature-based approach that relies on hand-crafted importance

and relevance features, and employs Gradient Boosted Regression Trees as the learning

model, which is known to be one of the best-performing algorithms for ranking problems.

DynES performs pointwise ranking, as the model learns to produce a single ranking score
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per fact. The number of trees is set to 100 and the depth is 3 when the model is trained on

all features, while the depth is 2 when trained on importance or relevance feature columns.

BiLSTM Dual Encoder Before the advent of BERT, BiLSTMs were considered as the

de facto model of choice for sequence encoding. Therefore, for this baseline, we deploy

two BiLSTM encoders to encode the query and the fact independently. Formally,

hq = BiLSTM(Q) and hf = BiLSTM([P ;O]) (5.4)

where [; ] is the concatenation operation. The first and the last hidden states of each BiL-

STM are concatenated to obtain representations for the input query and fact.

Q = [hq
1;h

q
l] and F = [hf

1;h
f
m+n] (5.5)

A dot product between these two vectors yields the pointwise ranking score, i.e., ψ(Q,F ) =

Q>F. For this experiment, we deploy BiLSTMs with an input embedding and hidden state

dimensionality of 512. Note that here the input tokens to the BiLSTM are word-level to-

kens. The model is trained end-to-end using pointwise Mean Squared Error (MSE) as the

loss function (described below).

BERTBASE Our model fine-tunes a BERT encoder using a custom pairwise ranking loss.

However, since BERT is pre-trained on large text corpora, it can readily be used to de-

termine the semantic relatedness between a pair of input sequences. Thus, we conduct

additional experiments without fine-tuning BERT to evaluate (1) how well the pre-trained

BERT can perform for this specific task, and (2) to what extent we obtain gains after fine-

tuning. Note that, for this experiment, we keep the parameters of the pretrained BERT

unchanged. Thus, the only trainable parameters are those of the scoring layer.
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5.4.3 Evaluation Metric

For evaluation, the data is initially grouped by query. Then for each query, the entire set of

candidate facts is passed through the model to obtain the ranking scores for each fact given

the query.

To quantitatively measure the predicted ranks in comparison to the ground truth ranks,

we consider the standard Normalized Discounted Cumulative Gain (NDCG) metric [120].

NDCG aggregates the relevance of chosen items (facts) at every position in the ranking,

using a discounting factor that is logarithmically proportional to the rank, such that higher

ranks carry a more substantial weight, and with additional normalization with respect to the

ideal ranking, such that the final NDCG scores lie in [0, 1], where 1 is the optimal result.

We consider ranked lists of length 5 (NDCG@5) and 10 (NDCG@10).

5.4.4 Experimental Details

For all BERT models in our experiments, the maximum sequence length is set to 128 word-

piece tokens. For the BiLSTM Dual Encoder, the maximum sequence length is set to 50

word-level tokens. All BERT models are trained for 10 epochs with a learning rate of 1e−5.

The BiLSTM Dual Encoder model is also trained for 10 epochs with a learning rate of

1e−4. We use Adam [117] as the optimizer for both BiLSTM and BERT models. For every

model, we perform 5-fold cross-validation for both the datasets and report the mean NDCG

scores of the best performing epoch of every fold. We choose the best performing epoch

for each fold that gives us the highest NDCG@10 score on the held-out set.

5.4.5 Results

We present the results of our experiments for the Complete Dataset and URI-only Dataset

in Table 5.2 and Table 5.3, respectively.

Overall, we observe that our model outperforms all baselines. We analyze and discuss

these results in the following.
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Utility Importance Relevance
Model NDCG@5 NDCG@10 NDCG@5 NDCG@10 NDCG@5 NDCG@10
RELIN † 0.4680 0.5322 0.4733 0.5261 0.3514 0.4255
DynES † 0.7547 0.7873 0.7672 0.7792 0.5771 0.6423
Bi-LSTM Dual Encoder 0.4787 0.5572 0.5245 0.5703 0.4708 0.5219
BERTBASE 0.5959 0.6476 0.5655 0.6162 0.4964 0.5571
Our Model (pointwise) 0.8137N 0.8432N 0.8742N 0.8735N 0.5974N 0.6568N
Our Model (pairwise) 0.7753O 0.8065O 0.8643N 0.8577N 0.6099N 0.6609N

Table 5.2: 5-fold cross-validation results on the Complete Dataset. † results are taken from
Hasibi et al. [58]. The best results are highlighted in bold face and the second best results
are underlined. N indicates statistical significance (p-value < 0.05) w.r.t. DynES and O
indicates the results are not statistically significant (p-value >= 0.05) w.r.t. DynES. We
use Student’s paired t-test to determine statistical significance.

Utility Importance Relevance
Model NDCG@5 NDCG@10 NDCG@5 NDCG@10 NDCG@5 NDCG@10
RELIN † 0.6300 0.7066 0.6368 0.7130 N/A N/A
LinkSum † 0.6504 0.6648 0.7018 0.7031 N/A N/A
SUMMARUM † 0.6719 0.7111 0.7181 0.7412 N/A N/A
DynES † 0.8164 0.8569 0.8291 0.8652 N/A N/A
Bi-LSTM Dual Encoder 0.6594 0.7398 0.6912 0.7589 N/A N/A
BERTBASE 0.7103 0.7761 0.7246 0.7832 0.5563 0.6372
Our Model (pointwise) 0.8543N 0.8777O 0.8734N 0.8948N 0.6693 0.7264
Our Model (pairwise) 0.8459O 0.8719O 0.8635O 0.8826O 0.6422 0.7042

Table 5.3: 5-fold cross-validation results on the URI-only Dataset. † results are taken
from Hasibi et al. [58], who did not report separate relevance prediction results apart from
the overall utility prediction results. The best results are highlighted in bold face and the
second best results are underlined. N indicates statistical significance (p-value < 0.05)
w.r.t. DynES and O indicates the results are not statistically significant (p-value >= 0.05)
w.r.t. DynES. We use Student’s paired t-test to determine statistical significance.

Comparison with DynES Approach Our model with a pointwise ranking loss outper-

forms the DynES model with 7.1% and 12.1% absolute gain in terms of the NDCG@10

metric on the Complete Dataset for the utility and importance-based rankings, respectively.

We observe a similar trend for the URI-only Dataset, where our model with a pointwise

ranking loss consistently outperforms the DynES model, with respective absolute gains of

4.6% and 5.3% in the NDCG@5 metric for the utility and importance-based rankings.

It is important to note that our model learns to produce the ranking based only on

the actual training data, without any access to extrinsic information from the knowledge

graph. DynES, in contrast, draws extensively on various kinds of statistics computed from

the knowledge graph, such as the frequency of a predicate with subjects with the same



75

type as the current entity. Our method achieves superior results without consulting the

knowledge graph at all, considering only the current set of candidate facts. Thus, one could

likely obtain even higher results by augmenting our scoring layer to consider such extrinsic

signals as additional features.

Importance of BERT Transformer The BiLSTM Dual Encoder model performs much

worse than our model across all metrics and datasets. This suggests that cross-attention

between the query and the facts is important to capture their semantic connections. LSTMs,

in contrast, proceed in a unidirectional manner. Even if the left-to-right and right-to-left

context layers are concatenated in a BiLSTM, this still results in a weaker form of context

representation than that of the self-attention in BERT. Another likely reason for the weaker

results of the BiLSTM model is that it does not benefit from any linguistic pre-training.

The moderate performance of the pre-trained BERTBASE model suggests that BERTBASE

already has sufficient linguistic information embedded in it to be able to rank the facts to a

certain degree. In fact, without any fine-tuning, BERTBASE outperforms the BiLSTM Dual

Encoder baseline in most of the cases.

Comparison of Pointwise vs. Pairwise Ranking While the pairwise ranking variant of

our model yields slightly better results in relevance-based ranking of the complete dataset,

we observe that, in general, the performance of our model with a pointwise ranking loss is

better than the pairwise variant. Moreover, the pointwise variant of our model consistently

produces statistically significant improvements over DynES as shown in Table 5.2 and

Table 5.3.

Prior work [121] on learning-to-rank problem has shown the advantage of pairwise

ranking loss over pointwise ranking loss. However, [122] has shown that the loss functions

of these methods are upper bounds of the measure-based ranking errors. In other words,

minimizing these loss functions will lead to the maximization of the ranking measures.

In our experiments, pairwise ranking loss reaches a local minima that is worse than the
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pointwise ranking loss. We conjecture that this phenomenon is specific to the datasets that

we considered for our experiments.

5.5 Related Work

Entity Retrieval In traditional information retrieval, given a natural language query, a

corresponding ranked list of relevant natural language documents is sought [123]. In recent

decades, a number of different forms of knowledge-driven information retrieval have been

studied [124]. The well-known task of Question Answering over Linked Data [125] con-

siders full-length natural language questions for which one or more entities may serve as

answers. Typically, this involves transforming the natural language query into a complex

structured query that can be executed to retrieve relevant answer entities from the knowl-

edge store. Another line of work considers simpler keyword searches over structured data

[126, 127], seeking to automatically infer suitable structured queries. In this work, we con-

sider arbitrary natural language queries such as tango dance history that cannot necessarily

be converted into a specific structured query. Rather, we assume that the query is entity-

centric and that we need to select among the facts that the knowledge base provides for the

target entity, considering the natural language query to determine which of those facts are

most relevant.

Entity Summarization The task of fact-based entity summarization involves selecting a

subset of facts about a real-world entity that can serve as a summary about that entity. The

cardinality of this subset is restricted so as to obtain a concise summary. Numerous dif-

ferent approaches have been proposed for entity summarization. These include but are not

limited to RELIN [54], SUMMARUM [55], the Langer et al. method [56], and LinkSUM

[57]. However, as mentioned earlier, this task setting differs from the task that we consider

in this chapter in that the ranking is based on a generic notion of importance. For example,

several of the aforementioned approaches apply the PageRank algorithm to obtain generic
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importance scores based on the structure of the knowledge graph. In contrast, we consider

natural language queries such as “Niagara falls origin lake” and seek a ranking that also

accounts for the relevance with regard to such queries.

Fact Rankings for Entity-Centric Queries The task we consider is the one proposed

by Hasibi et al. [58]. Given a natural language query and an entity along with the cor-

responding set of candidate facts, the goal is to rank these candidate facts with respect

to the query. Their proposed method applies Gradient Boosted Regression Trees, i.e., an

ensemble of weak prediction models to learn a simple pointwise ranking score prediction

function. Yet, this model is able to outperform previous entity summarization approaches.

Thus, we consider DynES as our primary baseline model in our experiments.

Learning to Rank There is a long history of research on machine learning methods to

learn rankings. Pointwise approaches separately assign each item a score. For instance,

McRank [128] uses gradient boosting trees to learn the ranking scores. [129] consider

SVM hyperplanes to draw the boundary between different prediction labels. PRank [130]

uses a perceptron-based approach with stochastic gradient descent. Subset ranking [131]

introduces the idea of solving the problem of ranking as a regression based one by substi-

tuting a fill-in loss function that serves as an upper bound on the DCG based non-convex

optimization problem.

Compared to pointwise approaches, which consider each candidate item in isolation,

pairwise approaches explicitly learn a comparative notion of ranking by comparing differ-

ent items and predicting the relative ranks.

To this end, RankNet [121] performs pairwise ranking by training a neural ranking

function. In another approach, RankBoost [132] performs pairwise ranking using boosting

as the learning method. Our work proposes a deep neural architecture that is specifically

tailored to our task and learns to draw connections between the query and the candidate

facts.
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Another line of approach is to learn a list-wise ranking by considering entire lists of

ranked items as training instances. However, it is non-trivial to collect large amounts of

ground truth ranked lists.

5.6 Discussion

In Table 5.4, we provide examples of rankings predicted by our method (with pairwise

ranking loss), along with the corresponding ground truth rankings and utility scores. We

observe that, in most of the cases, our model correctly predicts the fact with the highest

utility scores. Additionally, we observe that even in cases when our model fails to correctly

identify the top fact, there is no severe rank inversion, and the top fact is often present in

the top-5 predicted ranks, as seen for the query directed bela glen glenda bride monster

plan 9 outer space in the table.

Dynamic fact retrieval for entity-centric search queries using a supervised pairwise

ranking methods yields us the state-of-the-art performance. However, it is non-trivial to ob-

tain large-scale annotated training data that covers a wide variety of user queries. Unavail-

abiliy of large-scale training data is indeed a practical limitation for the proposed model.

Future research in this direction should focus on obtaining human annotated data at scale

through crowd sourcing.

In our work, we assumed that gold-standard subject entity is known beforehand. For

practical use, one must use an entity disambiguation method to identify the subject entity

mentioned in a search query. To this end, the end-to-end entity linking method proposed in

Chapter 3 can be useful.
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CHAPTER 6

ENTITY DESCRIPTION GENERATION

6.1 Overview

A substantial percentage of online search requests involve named entities such as peo-

ple, locations, businesses, etc. Search engines and digital personal assistants (e.g., Google

Assistant, Alexa, Cortana, Siri) alike now extensively draw on knowledge graphs as vast

databases of entities and their properties.

Most large cross-domain factual knowledge graphs, such as Wikidata [5], the Google

Knowledge Graph, and YAGO [4] include short textual descriptions of entities. These can

be provided in response to entity queries (such as Where is Fogo Island?), e.g., as an infor-

mative direct answer or to enrich a knowledge panel given by a Web search engine such as

Google, as shown in Figure 6.1 for Fogo Island. Such textual descriptions effectively pro-

vide for a near-instantaneous human understanding of an entity. They can also be helpful

in a number of linguistic tasks, including named entity disambiguation, and can serve as

fine-grained ontological types in question answering and reasoning-driven applications.

Despite their eminent importance for information retrieval and other applications, these

descriptions are only sparsely available, typically for the more well-known entities, leaving

large numbers of entities with no such descriptions. For example, in Wikidata, which is

used by Apple’s Siri, as many as 6.8 million entities do not have any description in any

language as of March, 2021.1

Moreover, new entities are added frequently to the existing knowledge graphs. For

example, the number of entities in Wikidata almost doubled in the last couple of years.

Given the large number of entities lacking textual descriptions, a promising solution is

1https://tools.wmflabs.org/wikidata-todo/stats.php

https://tools.wmflabs.org/wikidata-todo/stats.php
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Figure 6.1: An example of a missing description in Google’s Knowledge Graph. Similar to
Fogo Island, a synoptic description for Gogo Island could be Island in Ehime, Japan.

to fully automatically generate synoptic textual descriptions from the existing factual data.

Ideally, this automatic generation process should be able to synthesize very concise descrip-

tions, retaining only a very small number of particularly discernible pieces of information

about an entity. For example, in Wikidata and Google’s Knowledge Graph, occupation and

nationality are among the preferred attributes invoked in describing a person (e.g., Magnus

Carlsen as a Norwegian chess Grandmaster). At the same time, however, an open-domain

solution is needed, in order to cope with the various different kinds of entities users may

search for in a knowledge graph, and the various kinds of names that might appear in such

descriptions. For instance, for Gogo Island in Figure 6.1, an appropriate description would

perhaps refer to Ehime, Japan as the prefecture in which the island is located. Moreover,

apart from people and locations, users could likewise also search for paintings, films, or

any other types of entities. Additionally, the generated descriptions should also be precise,
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coherent, and non-redundant.

In this chapter, we present two novel neural models for generating succinct textual

descriptions from knowledge triples.

• A dynamic memory-based generative network that can generate short textual descrip-

tions from the available factual information about the entities [133].

• A fact-to-sequence encoder–decoder model with explicit copy mechanism to copy

fact-specific tokens directly to the output description [109]. Since many names and

words in the desired output descriptions are also present in the underlying facts, it is

an intuitive design choice to selectively copy words from the facts to the description.

The copy mechanism is important, as it is difficult to predict rare or unseen words

based on mere statistical co-occurrences of words.

These approaches are substantially different from previous work on this topic. In con-

trast to some related works that focus on generating Wikipedia-style summary descriptions

from factual data [134, 135, 136], or textual verbalization of RDF triples [137, 138, 139],

these models focus on synthesizing quickly graspable synoptic textual descriptions from

factual knowledge. In most of the cases, these are single-phrase descriptions as compared

to multi-sentence Wikipedia-style summaries. Previous work has suggested generating

short descriptions using pre-defined templates. However, this approach severely restricts

the expressivity of the model and hence such templates are typically only applied to very

narrow classes of entities. In contrast, our goal is to design a broad-coverage open do-

main description generation architecture. Note that we restrict our work only to English

description generation, as English is the most prevalent language in which descriptions

are available in knowledge graphs. Typically, the first few sentences of Wikipedia articles

contain a detailed description of the entity, and one can attempt to generate brief textual

descriptions by learning to reproduce the first few sentences based on the remaining article

text. However, our goal is to make our method open-domain, i.e., applicable to any type
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of entity with factual information that may not have a corresponding Wikipedia-like article

available. Indeed, Wikidata currently has more than 90 million items, whereas the English

Wikipedia has only 6.5 million articles. Hence, for the vast majority of items in Wikidata,

no corresponding Wikipedia article is available. In such cases, a summarization will not be

effective.

6.1.1 Preliminaries

Property Each subject entity s ∈ E has a number of properties P ∈ P associated with it.

Each property name is described as a sequence of tokens P = (wp1, w
p
2, ..., w

p
|P |). Note that

these properties are predefined in a schema-based knowledge graph.

Property Value Each property P of entity s has a corresponding value OP , which is also

a sequence of tokensOP = (wo1, w
o
2, ..., w

o
|OP |). The property values could be another entity

e ∈ E , a date–time value, a string, or a numeric value, etc.

Fact Each of the property–value pairs is deemed a fact. Each subject entity s ∈ E has a

number of different facts F = {f1, f2, . . . fN} that characterize it.

Description A short textual description of entity s is a sequence of tokensD = (w1, w2, . . . , wn).

Each word in the description D can be a factual word, or a vocabulary word.

Factual Words The factual words for each fact f ∈ F , denoted as Vf , are the words

appearing in the property value. Stop words (e.g., for, of, in etc.) are excluded from the

factual words vocabulary. Note that the sets of factual words are instance-specific, i.e.,⋃
f Vf is different for different entities s ∈ E .

Vocabulary Words The vocabulary words, denoted as V , could be a list of frequent

words in the English dictionary. For our experiments, we rely on the 1,000 most frequent

words appearing in our corpus as vocabulary words. Typically, the words that appear in
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the property names constitute this vocabulary. This is aligned with the expectation for a

schema-based knowledge graph with fixed number of properties. Note that Vf ∩ V 6= ∅,

which indicates that there could be words in the property value that are also vocabulary

words.

6.2 A Dynamic Memory-based Generative Network Architecture

The dynamic memory-based generative network consists of three key components: an input

module, a dynamic memory module, and an output module. A schematic diagram of these

are given in Figure 6.2.

6.2.1 Input Module

The input to the input module is a set of N facts F = {f1, f2, . . . , fN} pertaining to an

entity. Each of these input facts are essentially (s, p, o) triples, for subjects s, predicates

p, and objects o. Upon being encoded into a distributed vector representation, we refer to

them as fact embeddings.

Although many different encoding schemes can be adopted to obtain such fact em-

beddings, we opt for a positional encoding as described by [140], motivated in part by

the considerations given by [141]. For completeness, we describe the positional encoding

scheme here.

We encode each fact fi as a vector fi =
∑J

j=1 lj ◦ wi
j, where ◦ is an element-wise

multiplication, and lj is a column vector with the structure lkj = (1− j
J

)− (k/d)(1− 2 j
J

),

with J being the number of words in the factual phrase, wi
j as the embedding of the j-th

word, and d as the dimensionality of the embedding.

Thus, the output of this module is a concatenation ofN fact embeddings F = [f1; f2; . . . ; fN].
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Figure 6.2: Dynamic memory-based generative network architecture.

6.2.2 Dynamic Memory Module

The dynamic memory module is responsible for memorizing specific facts about an entity

that will be useful for generating the next word in the output description sequence. Intu-

itively, such a memory should be able to update itself dynamically by accounting not only

for the fact embeddings but also for the current context of the generated sequence of words.

To begin with, the memory is initialized as m(0) = max(0,WmF+bm). At each time

step t, the memory module attempts to gather pertinent contextual information by attending

to and summing over the fact embeddings in a weighted manner. These attention weights

are scalar values informed by two factors: (1) how much information from a particular fact

is used by the previous memory state m(t−1), and (2) how much information of a particular
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fact is invoked in the current context of the output sequence h(t−1). Formally,

xi
(t) = [|fi − h(t−1)|; |fi −m(t−1)|], (6.1)

zi
(t) = W2 tanh(W1xi

(t) + b1) + b2, (6.2)

a
(t)
i =

exp(zi
(t))∑N

k=1 exp(zk(t))
, (6.3)

where |.| is the element-wise absolute difference and [; ] denotes the concatenation of vec-

tors.

Having obtained the attention weights, we apply a soft attention mechanism to extract

the current context vector at time t as

c(t) =
N∑
i=1

a
(t)
i fi. (6.4)

This newly obtained context information is then used along with the previous memory state

to update the memory state as follows:

C(t) = [m(t−1); c(t);h(t−1)] (6.5)

m(t) = max(0,WmC(t) + bm) (6.6)

Such updated memory states serve as the input to the decoder sequence of the output mod-

ule at each time step.

6.2.3 Output Module

The output module governs the process of repeatedly decoding the current memory state

so as to emit the next word in an ordered sequence of output words. We rely on GRUs for

this.

At each time step, the decoder GRU is presented as input the current memory state

m(t) as well as the previous context of the output sequence, i.e., the previous hidden state
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of the decoder h(t−1). At each step, the resulting output of the GRU is concatenated with

the context vector c(t) and is passed through a fully connected layer and finally through

a softmax layer. During training, we deploy teacher forcing at each step by providing

the vector embedding of the previous correct word in the sequence as an additional input.

During testing, when such a signal is not available, we use the embedding of the predicted

word in the previous step as an additional input to the current step. Formally,

h(t) = GRU([m(t);w(t−1)],h(t−1)), (6.7)

h̃(t) = tanh(Wd[h(t); c(t)] + bd), (6.8)

ŷ(t) = Softmax(Woh̃
(t) + bo), (6.9)

where [; ] is the concatenation operator, w(t−1) is vector embedding of the previous word

in the sequence, and ŷ(t) is the probability distribution for the predicted word over the

vocabulary at the current step.

6.2.4 Loss Function and Training

Training this model amounts optimizing the model parameters θ, which include the matri-

ces W1, W2, Wm, Wd, Wo and the corresponding bias terms b1, b2, bm, bd, and bo as

well as the various transition and output matrices of the GRU.

To this end, if each of the training instances has a description with a maximum of M

words, we can rely on the categorical cross-entropy over the entire output sequence as the

loss function:

L(θ) = −
M∑
t=1

|V|∑
j=1

y
(t)
j log(ŷ

(t)
j ). (6.10)

where y(t)j ∈ {0, 1} and |V| is the vocabulary size.

We train our model end-to-end using Adam as the optimization technique with a learn-

ing rate of 1e-03.
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6.3 Fact-to-Sequence Encoder-Decoder Model

In order to enable concise and precise open-domain entity descriptions, we propose a gen-

erative model consisting of a fact-to-sequence encoder–decoder architecture, aided by a

pointer network based copy mechanism. Our model comprises a positional fact encoder, a

GRU-based sequence decoder, and a copy function to directly transfer factual words to the

generated descriptions.

Figure 6.3: Model architecture. For Wikidata item Q19345316 (Michiel de Ruyterstraat),
factual words such as street and Elsloo are directly copied from the underlying facts (In-
stance of, street) and (location, Elsloo), respectively, while the general vocabulary words
in and <EOS> are selected by a softmax classifier.

6.3.1 Fact Encoder

The fact encoder transforms a set of input facts F = {f1, f2, . . . fN} into fact embeddings

using the positional encoding technique described in Subsection 6.2.1 If the word wji is not

a vocabulary word, we replace it with the special token <UNK>. This arrangement deals

with the rare or unseen words that appear in the factual phrase fi, which is a concatenation

of words in the property name and property value.

We append the fact embeddings with a mean fact – a special fact that is responsible
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for generating vocabulary words. It is derived as the element-wise mean of the fact em-

beddings, i.e., fN+1 = 1
N

∑
fi. We train the model to attend to the mean fact if it has to

generate a vocabulary word in the output sequence.

6.3.2 Output Sequence Decoder

At every time step t, the sequence decoder selects a fact. This selection governs the gener-

ation of the next word either from the corresponding factual words, or from the vocabulary

words.

Fact Selection Given the set of fact embeddings {f1, f2, . . . , fN+1} as input, the decoder

selects a fact at each time step t using an attention mechanism. The attention scores are

calculated as a likelihood distribution using the hidden state of the decoder in the previous

time step and the fact embeddings. Formally,

ei = W2 tanh(W1[fi;ht−1]) ∀i ∈ {1, N + 1} (6.11)

P (f = fi | fi,ht−1) =
exp(ei)∑

i′∈{1,N+1} exp(ei′)
(6.12)

where ei denotes the attention energy of the i-th fact, [; ] denotes the concatenation

operation, and W1 ∈ Rm×2d, W2 ∈ Rm are affine transformations of a 2-layer feed-

forward network. We select the fact with maximum attention score at time step t, denoted

as ft and its corresponding fact embedding ft as the following.

ft = arg max
i∈{1,...,N+1}

P (f = fi | fi,ht−1) (6.13)

ft = fft (6.14)

GRU Decoder We rely on Gated Recurrent Units (GRU), which is a Recurrent Neural

Network (RNN) variant, as our preferred decoder. At each time step t, the decoder input

is a concatenation of three vectors: the embedding ft of a selected fact in the current time
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step, the embedding wt−1 of the vocabulary word at the previous time step, and a one-hot

vector vt−1 corresponding to the position of the copied factual word in the previous time

step. Note that since the generated word in the previous time step can either be a vocabulary

word or a factual word, either wt−1 or vt−1 is set to a zero vector.

The input representation xt = [ft;wt−1;vt−1] is fed to the GRU decoder to update the

states.

ht = GRU(xt,ht−1) (6.15)

Generating Vocabulary Words If the attention mechanism assigns the maximum score

to the mean fact fN+1, then the decoder generates a vocabulary word wt ∈ V . To generate

the vocabulary word, we use the attention-weighted context ct =
∑

i αifi and the GRU

output state ht. A concatenation of these two vectors are fed to a 2-layer feed-forward

network with a non-linear ReLU activation applied to the hidden layer. Formally,

ot = WaReLU(Wb[ct;ht]), (6.16)

where Wa and Wb are affine transformations and ReLU(x) = max(0,x). Finally, a

probability distribution over the vocabulary words is obtained by a softmax function and

the word with the maximum probability is emitted by the decoder. Formally,

P (w | ct,ht) = Softmax(ot) (6.17)

wt = arg max
w∈V

P (w | ct,ht) (6.18)

Copying Factual Words The decoder copies factual words directly to the output when

the fact selection process selects one of the N facts. To facilitate the copy mechanism, the

decoder must select the position index of the factual word within the factual phrase. The

position index is predicted by a 2-layer feed-forward network that takes a concatenation

of the selected fact embedding ft and the output state of the GRU ht as input. Then, the
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position index of the word to copy is determined as follows.

rt = WcReLU(Wd[ft;ht]) (6.19)

P (n | ft,ht) = Softmax(rt) (6.20)

nt = arg max
n∈{1,...,|Vft |}

P (n | ft,ht) (6.21)

wt = (Vft)nt (6.22)

Here, nt is the position index of the factual word to copy and Vft is the sequence of factual

words corresponding to fact ft and (Vft)i denotes the i-th item in that sequence.

6.3.3 Training

Our method requires selective copying of factual words to generate a description. In order

to obviate the need for ground truth alignments of output description words with facts for

training, we introduce an automated method of annotating each token in the description so

as to align it to a matching fact. Specifically, we rely on a greedy string matching algorithm

as detailed in Algorithm 1 for this purpose. If a token is not aligned with any of the facts, it

is annotated as a vocabulary word. However, if the token is neither present in the vocabulary

word set nor in the factual word set, it is assigned the special token <UNK> to denote that it

is neither a factual word nor a vocabulary word. The symbol NaF in Algorithm 1 indicates

that such words are not aligned to any fact. Since in our implementation, we consider the

mean fact as a source of vocabulary words, we align these words to the mean fact.

Note that the greedy string matching algorithm used for fact alignment is a heuristic

process that can be noisy. If a token in the output description appears in more than one fact,

the string matching algorithm greedily aligns the token to the first fact it encounters, even

if it is not the most relevant one. However, our manual inspection suggests that in most of

the cases the alignment is relevant, justifying our choice of such a greedy approach.

Given the input facts F and the fact-aligned description D̃, the model maximizes the
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Algorithm 1: Algorithm for fact alignment of description
Data: Input: Set of facts F , Description D = (w1, w2, . . . , wn)
Result: Ordered sequence of fact aligned description D̃

1 for t ∈ {1, ..., n} do
2 factual flag← False
3 for f ∈ F do
4 if wt ∈ Vf and factual flag = False then
5 d̃t ← (wt, f)
6 factual flag← True

7 end
8 end
9 if factual flag = False then

10 if wt ∈ V then
11 d̃t ← (wt,NaF)
12 else
13 d̃t ← (UNK,NaF)
14 end
15 end
16 end
17 D̃ = (d̃1, d̃2, . . . , d̃n)

log-likelihood of the observed words in the description with respect to the model parame-

ters θ,

θ∗ = arg max
θ

logP (D̃ | F), (6.23)

which can be further decomposed as

logP (D̃ | F) =

|D̃|∑
t=1

logP (wt | w1:t−1,F). (6.24)

Since the log-likelihood of the word wt also depends on the underlying fact selection, we

can further decompose P (wt) as

P (wt) = P (wt | ft, w1:t−1)P (ft | w1:t−1) (6.25)
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Therefore, we train our model end-to-end by optimizing the following objective function:

L(θ) = −
|D|∑
t=1

logP (wt | ft, w1:t−1)−
|D|∑
t=1

logP (ft | w1:t−1). (6.26)

Note that the alignment D̃ of the description D to the facts F provides a ground truth fact

ft as each time step t during training.

6.4 Evaluation

6.4.1 Baselines

We compare the performance of our proposed models against a number of competitive

baselines.

Fact-to-Sequence with Attention The comparison with this baseline method can be

deemed as an ablation study, in which the decoder has no access to the copy mechanism.

This baseline resembles the standard sequence-to-sequence with attention mechanism pro-

posed by Bahdanau et al. [65]. However, unlike in their work, the input to this model

consists of positionally encoded discrete facts.

Each word in the output sequence is predicted by providing the attention-weighted fact

embeddings and the previous hidden state as an input to the GRU decoder. Then, the output

of the decoder is concatenated with the attention-weighted fact embeddings and passed

through a 2-layer feed-forward network with a ReLU activation. Finally, the output of the

MLP is fed to a softmax classifier that outputs a probability distribution for the combined

vocabulary of factual and non-factual words V ∪ {
⋃
s∈E Vsf}. The word with the maximum

probability is emitted by the decoder.

Neural Knowledge Language Model (NKLM) We compare against Ahn et al.’s Neu-

ral Knowledge Language Model [135], which is able to generate Wikipedia-style multi-



94

sentence summary paragraphs for movie actors. Although the descriptions in our case are

much shorter, we adopted their model as a representative baseline for methods yielding

multi-sentence summaries, as the tasks are similar in nature. NKLM also adopts a copy

mechanism but the decision about whether to copy is made by a binary gating variable that

is provided as an additional label by augmenting the dataset during training. By predicting

whether the word to generate has an underlying fact or not, the model can generate such

words by copying from the selected fact. On the contrary, our model decides to copy when-

ever a fact other than the mean fact is selected. We implemented and trained their model

with the benchmark datasets. Their model also requires an alignment of descriptions to the

underlying facts. Additionally, NKLM relies on pre-trained TransE [20] embeddings of

objects and relations to obtain the fact embeddings that are provided as inputs to the model.

6.4.2 Datasets

WikiFacts10k-OpenDomain WikiFacts10k-Imbalanced
Instance of Pct. Instance of Pct.
human 11.45% human 69.17%
painting 8.73% painting 2.02%
commune of france 6.41% commune of france 1.43%
film 6.27% scientific article 1.36%
scientific article 5.56% film 1.34%
encyclopedic article 3.30% encyclopedic article 0.89%
asteroid 2.89% asteroid 0.62%
taxon 2.58% taxon 0.57%
album 2.19% road 0.52%
road 2.02% album 0.46%

Table 6.1: Frequency distribution of the top-10 domains in the two datasets.

We curate two benchmark datasets, each of which consists of 10K entities with at least

5 facts and an English description. The first of these datasets, denoted as WikiData10K-

Imbalanced. Since the entities in that dataset were randomly sampled from the Wikidata

RDF dump, the ontological types of the sampled entities have a long-tail distribution, while

an overwhelming 69.17% of entities are instances of human. This highly skewed distribu-
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tion makes the dataset biased towards a particular domain. To decrease the percentage

of such entities in the dataset, we create another dataset, WikiData10K-OpenDomain, in

which the instances of human are downsampled to 11.45% to accommodate more instances

of other ontological types as evinced by the frequency distribution in Table 6.1. These

datasets, both available online2, are split into training, dev., and test sets in a 80:10:10 ratio.

6.4.3 Metrics

Following previous work, we use the automatic evaluation metrics BLEU (1 - 4) [142],

ROUGE-L [143], METEOR [144], and CIDEr [145] for a quantitative evaluation of the

generated descriptions with respect to the ground truth descriptions provided in the bench-

mark data. These metrics are widely used in the literature for the evaluation of machine

translation, text summarization, and image captioning. BLEU is a precision-focused met-

ric, ROUGE-L is a recall-based metric, METEOR uses both precision and recall with more

weight on recall than precision, and CIDEr considers TF-IDF-weighted n-gram similar-

ities. Following standard practice, as in the official implementation3, the raw scores for

CIDEr are multiplied by a factor of 10 for better readability, yielding values in [0, 10]. For

the same reason, following standard practice, the scores for other metrics are multiplied

by 100, yielding scores in the range of [0, 100]. Note that typically these metrics rely on

more than one human-written ground truth output per instance for evaluation. The lack of

any alternative descriptions in the benchmark datasets implies that the generated descrip-

tions are each evaluated on a single ground truth description. Additionally, these metrics

take a very conservative approach in that they look for overlapping words, word alignment,

longest common subsequence, etc.

2https://github.com/kingsaint/Wikidata-Descriptions
3https://github.com/vrama91/cider

https://github.com/kingsaint/Wikidata-Descriptions
https://github.com/vrama91/cider
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6.4.4 Experimental Setup

Our models and all other baselines are trained for a maximum 25 epochs. We report the

results of the best performing models on the dev set. For NKLM, we use the default hyper-

parameter settings used by the authors, and we obtain the fact embeddings by concatenating

the embeddings of object entity and relation that are obtained by using the TransE [20]

embedding model. For our models and the fact-to-sequence with attention baseline, we fix

the embedding dimensions of facts and words to 100. The hidden layers of the GRU and

the two-layer feed-forward networks are 100-dimensional. We use Adam as our optimizer

with a fixed learning rate of 0.001. We fix the maximum number of facts to 60 including the

mean fact. For instances with less that 60 facts, we resort to a suitable masking to obtain

the attention scores of the relevant facts. The maximum number of factual words for each

fact is limited to 60.

We use the 1, 000 most frequent words in the dataset as our default vocabulary. One can

also consider using a much larger vocabulary of frequent English words. However, for our

experiments we found it unnecessary. Still, because of this restricted vocabulary, our model

may occasionally sparsely generate <UNK> tokens, which we remove from the generated

description.

The datasets and the PyTorch implementations of all our experiments are available on-

line.4

6.4.5 Results

Table 6.2 and Table 6.3 provide the evaluation results of our model and the baselines

on the WikiFacts10k-Imbalanced and WikiFacts10k-OpenDomain datasets, respectively.

Our fact-to-seq encoder–decoder model with copy mechanism outperforms the dynamic

memory-based generative model by more than 8 BLEU-4 points on the imbalanced dataset.

We also observe 1 to 7 point gains on the scores across all other metrics. Similar trends are

4https://github.com/kingsaint/Wikidata-Descriptions

https://github.com/kingsaint/Wikidata-Descriptions


97

Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE-L METEOR CIDEr
Fact2Seq w. attention 62.8N 56.3 53.0 52.7 63.0 35.0 3.321
NKLM 34.7 27.7 29.1 29.0 44.1 20.1 1.949
Dynamic Memory-based Generative Model 61.1 53.5 48.5 46.1 64.1 35.3 3.295
Fact2Seq w. copy 61.9 57.3N 55.6N 54.3N 64.9N 36.3N 3.420N
– without Positional Encoder 58.9 51.9 46.3 42.5 63.4 33.7 3.126
– without Mean Fact 58.0 52.2 49.5 48.6 64.3 34.8 3.139
– Copy Only 26.8 21.2 16.5 11.8 45.3 20.6 1.766

Table 6.2: Experimental results for the WikiFacts10K-Imbalanced benchmark dataset. The
best results are shown in bold face and the second best results are underlined. N indicates
the best results are statistically significant w.r.t the second best results. We use approximate
randomization (aka. permutation test) as the method for statistical significance test.

Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE-L METEOR CIDEr
Fact2Seq w. attention 62.7 56.3 50.0 46.2 67.7 35.8 3.629
NKLM 47.9 42.1 37.5 32.3 57.4 25.9 2.958
Dynamic Memory-based Generative Model 57.8 50.7 43.6 39.7 67.6 34.9 3.556
Fact2Seq w. copy 68.2N 61.8N 56.6N 51.9N 70.0N 37.3N 4.084N
– without Positional Encoder 66.2 58.4 51.8 45.9 67.9 34.7 3.717
– without Mean Fact 62.4 58.0 55.1 51.8 67.7 36.0 3.856
– Copy Only 37.5 26.4 18.4 10.9 55.2 24.8 2.136

Table 6.3: Experimental results on the WikiFacts10K-OpenDomain benchmark dataset.
The best results are shown in bold face and the second best results are underlined. N
indicates the best results are statistically significant w.r.t the second best results. We use
approximate randomization (aka. permutation test) as the method for statistical significance
test.

observed for the more challenging WikiFacts10k-OpenDomain dataset, in which fact-to-

seq encoder–decoder model with copy mechanism improves upon the dynamic memory-

based generative model by 12.2 points in terms of the BLEU-4 metric. For this dataset,

we also observe 5 to 8 point gains across all other metrics. A substantial gain in the BLEU

scores indicates that the fact-to-seq encoder–decoder model with copy mechanism can con-

sistently generate longer sequences more accurately that the other models.

Furthermore, we observe that our attention-based fact-to-sequence model also outper-

forms the dynamic memory-based generative model in most of the metrics across both

the datasets. This observation shows that one can do without a dynamic memory module

for memorizing fact specific information. It turns out that a GRU-based architecture with

an intelligently chosen encoding of the input and an extra skip-connection in the decoder

has sufficient memory to retain fact-specific information required to generate words in the

output.
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The NKLM model by Ahn et al. obtains sub-par results on both datasets, particularly

the WikiFacts10k-Imbalanced data, although the original paper focused on descriptions

of humans. This shows that their method for generating a short text is unsuitable for our

demanding task of generating very concise entity descriptions. Additionally, the pre-trained

TransE embeddings required to obtain fact embeddings are not available for previously

unseen entities in the test set, thus severely restricting the model’s ability to cope with

unseen entities.

6.4.6 Ablation Study

In addition to comparing the fact-to-seq encoder–decoder model with copy mechanism

against a number of competitive baselines, we perform a series of ablation studies to eval-

uate the effect of different components within our model. The results of these experiments

are included in Table 6.2 and Table 6.3.

Without Positional Encoder To understand the effect of the positional encoder, we re-

place the positional encoder with the average pooling of the constituent word embeddings

of the facts to obtain the fact embeddings. The differences between the BLEU scores of

our model and this ablated version indicates that the position of the words in the factual

phrases indeed plays an important role in encoding a fact that provides a useful signal to

the decoder.

Without Mean Fact To understand the effect of mean fact in our model, we replace the

mean fact with a fixed embedding vector of dimension d. The elements of this vector are

sampled from a uniform distribution U(− 1√
d
, 1√

d
) and do not change during training. The

result of this experiment suggests that the role of the mean fact in our model is not of just

that of a sentinel responsible for generating general vocabulary words. Rather, it encodes

some useful semantic information that the model can exploit.
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Copy Only This experiment is an ablation study that we perform to understand how pre-

cisely a model can generate descriptions if it only copies factual words. This baseline is a

restricted version of our model, in which the model never generates any general vocabulary

word. The much inferior performance of this model shows that merely copying factual

words to the output does not yield precise descriptions. This further demonstrates the im-

portance of a model that dynamically decides whether to copy words from the input facts

or instead emit general vocabulary words.

6.4.7 Parameter Efficiency

Model #Parameters
Dynamic memory-based generative model 14,197,741
Fact2Seq w. attention 14,159,561
Neural Knowledge Language Model (NKLM) 20,569,361
Fact2Seq w. copy 979,986

Table 6.4: Comparison of the number of learnable parameters.

Table 6.4 shows the number of learnable parameters for our model as well as the base-

lines. Our Fact2Seq with copy model is 14x more parameter-efficient than the competitive

baselines. As there are fewer parameters to learn, this drastically improves the average

training time of the model as compared to the other baselines. The number of parameters

depends on the vocabulary size of the output softmax layer and the input to the word em-

beddings. Reducing the size of the softmax vocabulary to the most frequent words and

making the model copy fact-specific words directly from the input contributes to the pa-

rameter efficiency and faster training of the model.

6.4.8 Importance of Fact Alignment of Descriptions

The alignment of facts to the description teaches the model to choose the right fact for gen-

erating a factual word. As shown in Figure 6.4, for each word of the generated description,

our model precisely selects the relevant underlying fact. The NKLM also shows a simi-
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lar effect. However, the dynamic memory-based generative model does not always pick

the most relevant fact, although it might occasionally generate the right word due to the

statistical co-occurrence of the words in the training set.

6.4.9 Significance of the Copy Mechanism

The copy mechanism enables our model to copy fact-specific rare or previously unseen

words directly to the output sequence, generating factually correct descriptions. To demon-

strate the positive effect of this copy mechanism, we select instances from a subset of 8

ontological types that tend to require explicit copying of factual words. This subset ac-

counts for 19.6% of the test set. Table 6.5 shows some examples from this subset. We

also perform an automatic evaluation on this subset and provide the results in Table 6.7.

Both the models with copy mechanism significantly outperform the baselines lacking any

explicit copy mechanism. These results demonstrate that a suitable copy mechanism gen-

erates far more precise open-domain descriptions.

6.5 Related Work

In the following, we review previous research and describe how it differs from the task and

approach we consider in this paper.

6.5.1 Text Generation from Structured Data

Lebret et al. [134] take Wikipedia infobox data as input and train a neural language model

that, conditioned on occurrences of words in the input table, generates biographical sen-

tences as output. In a similar vein, Ahn et al. [135] infused factual knowledge into an

RNN-based language model to generate Wikipedia-style summary paragraphs of film ac-

tors. Similar to ours, their approach also uses a copy mechanism to copy specific words

from the input facts to the description. However, these approaches are not directly compat-

ible with our problem setting, which focuses on generating synoptic, rather than detailed
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Instance Of Ground Truth Description Generated Description

Album

album by hypocrisy

Dynamic Memory album by michelangelo
Fact2Seq album by song
NKLM album by hypocrisy hypocrisy
Our Model album by hypocrisy

album by canadian country music group family brown

Dynamic Memory czech hong kong by rapper laurana
Fact2Seq sparta album
NKLM album by family brown
Our Model album by family brown

Book science fiction novel by richard k morgan

Dynamic Memory science fiction novel by
Fact2Seq episode of a book by bernard dyer
NKLM fiction by richard k
Our Model novel by richard k

Painting

painting by hendrick cornelisz van vliet

Dynamic Memory painting by cornelis de vos
Fact2Seq painting by abraham van (ii) switzerland
NKLM painting by hendrick cornelisz
Our Model painting by hendrick cornelisz van vliet

painting by eustache le sueur

Dynamic Memory painting by thomas hovenden
Fact2Seq painting by california
NKLM painting by eustache le
Our Model painting by le sueur sueur

Road

highway in new york

Dynamic Memory highway in new york
Fact2Seq highway in new york
NKLM ¡UNK¿ highways york
Our Model highway in new york

road in england

Dynamic Memory area in the london borough of croydon
Fact2Seq of in london
NKLM road road in the church of england
Our Model road in the area london

Sculpture

sculpture by antoine coysevox

Dynamic Memory sculpture by frederick william pomeroy
Fact2Seq sculpture by unknown singer
NKLM sculpture by antoine coysevox
Our Model artwork by antoine coysevox

sculpture by donatello

Dynamic Memory by henry and final by the carducci
Fact2Seq sculpture by statue kreis comedy
NKLM sculpture by donatello donatello nilo
Our Model sculpture by donatello

Single/ Song

1967 gilbert bcaud song

Dynamic Memory 2014 by 2012 of the czech 2014 by czech
Fact2Seq song
NKLM song by gilbert bcaud
Our Model song by gilbert bcaud

single

Dynamic Memory song by dutch by 2014 municipality
Fact2Seq 1980 song by northern song
NKLM single by michael jackson
Our Model song by michael jackson

Street

street in boelenslaan

Dynamic Memory street in richard
Fact2Seq street in collection
NKLM street in boelenslaan
Our Model street in achtkarspelen

street in echt

Dynamic Memory street in singer
Fact2Seq street in one
NKLM street in echt
Our Model street in echt

Table 6.5: Examples from the subset of ontological types that benefits from copy mecha-
nism.
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Item Instance of Generated Description
Q11584386 Human japanese tarento
Q2198428 Human netherlands businessperson
Q3260917 Human french military personnel
Q1494733 Painting painting by august macke
Q16054316 Painting painting by liselotte

schramm-heckmann
Q15880468 Painting painting by emile wauters
Q10288648 Book book by izomar camargo guilherme
Q10270545 Book novel by antonin kratochvil
Q10272202 Book novel by jose louzeiro
Q1001786 Street street in budapest
Q10552208 Street street in orebro
Q10570752 Street street in malmo municipality

Table 6.6: Examples of generated descriptions for the Wikidata entities with missing de-
scriptions as of December, 2018.

Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE-L METEOR CIDEr
Dynamic Memory-based Generative Model 39.5 31.9 22.3 14.8 55.9 23.6 2.319
Fact2Seq w. Attention 52.8 44.5 33.5 24.0 56.9 24.1 2.337
Neural Knowledge Language Model 74.3 68.3 63.1 57.2 73.9 40.1 5.348
Our Model 75.4 69.1 62.8 55.5 76.8 41.4 5.387
- Copy Only 42.7 26.3 15.4 0.0 57.9 27.1 2.089

Table 6.7: Experimental results for the subset of ontological types that require explicit
copying of factual words.
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multi-sentence descriptions. Additionally, in contrast to our setting, which requires dynam-

ically considering a wide variety of domains and entity types, the previous studies consider

just human biographies as a single domain. Our experiments show that our method sub-

stantially outperforms the approach by Ahn et al. on our task.

The WebNLG Challenge [137] is another task aiming at generating text from RDF

triples. However, it differs quite substantially from the task we study in this paper, as it de-

mands a textual verbalization of every single triple. Our task, in contrast, requires synthe-

sizing a short synoptic description by precisely selecting the most relevant and distinctive

facts from the set of all available facts about the entity.

6.5.2 Referring Expression Generation

Referring Expression Generation (REG) is a subtask of Natural Language Generation (NLG)

that focuses on the creation of noun phrases that identify specific entities. The task com-

prises two steps. The content selection subtask determines which set of properties distin-

guish the target entity, and the linguistic realization part defines how these properties are

translated into natural language. There is a long history of research on generating referring

expressions. In one of the recent approaches, Kutlak et al. [146] convert property–value

pairs to text using a hand-crafted mapping scheme. However, their method requires spe-

cific templates for each domain. Applying template-based methods to open-domain knowl-

edge bases is extremely challenging, as this would require too many different templates for

different types of entities. Recently, Ferreira et al. [139] proposed an end-to-end neural

approach to REG called NeuralREG. They used a delexicalized WebNLG corpus for the

training and evaluation of their model. NeuralREG generates a delexicalized template of

the referring expression.
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6.5.3 Neural Text Summarization

Generating descriptions for entities is related to the task of text summarization in that the

salience of information needs to be assessed [147]. Similar to abstractive summarization,

our task requires the generation of words not seen in the inputs. At the same time, in a

similar vein to extractive summarization, our task also requires a selection of words from

input facts for copying to the output sequence. The surge of sequence-to-sequence language

modeling via LSTMs naturally extends to the task of abstractive summarization by training

a model to accept a longer sequence as input and learning to generate a shorter compressed

sequence as a summary. To this end, Rush et al. [148] employed this idea to generate

a short headline from the first sentence of a text. Recently, Liu et al. [149] presented

a model that generates an entire Wikipedia article via a neural decoder component that

performs abstractive summarization of multiple source documents. Our work differs from

such previous work in that we do not consider a text sequence as input. Rather, our inputs

are a series of property–value pairs deemed as facts.

6.5.4 Pointer Networks and Copy Mechanisms

In order to learn how to solve combinatorial optimization problems that involve output

dictionaries of varying sizes, such as the traveling salesman problem, Vinyals et al. [150]

proposed a deep neural architecture known as Pointer Networks. Such networks rely on an

attention mechanism to repeatedly select elements from the input as output. Subsequent

works [151, 152, 153] incorporated this idea into hybrid text-based sequence-to-sequence

models that occasionally select words from the input and otherwise generate words from a

regular output dictionary. This addresses how to cope with rare and unknown words in the

desired output sequence, which constitutes one of the key challenges in deploying neural

text generation in practice. Since it is not feasible to directly learn from existing examples

how to generate all possible vocabulary words that might be needed in the output, often-

times, it is easier to learn to directly select suitable words from the given input. See et al.
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[154] investigated the use of such architectures for the task of abstractive text summariza-

tion, so as to better cope with long input texts. As mentioned, Ahn et al. [135] rely on a

similar copy mechanism to transform facts into summaries.

While our model adopts similar principles, there is a significant difference in our copy

mechanism. In the above-mentioned existing works, the pointing and copying is a one-step

process, in which a token within a context window is chosen based on simple attention

weights. In our model, the pointing and copying is a two-step process. The model first

needs to identify a pertinent fact that is salient enough to merit consideration. Then, within

the chosen fact, it selects a suitable word for copying. The context window also varies de-

pending on the number of facts and the number of words within a fact. In our experiments,

we show that our approach greatly outperforms the model with copy mechanism proposed

by Ahn et al.

6.6 Discussion

This chapter introduced a new task of generating succinct textual descriptions of entities

based on available facts. Although the experiments are done on Wikidata, one can extend

the methods presented in this chapter to other knowledge graphs. However, the scope of this

study is limited to the English language. In principle, the proposed methods are language

agnostic, and therefore, they should be applicable to other languages.

Another limitation of this study is that the experiments are done on entities belonging

to the most frequent semantic types in Wikidata. Wikidata semantic types have a long-tail

distribution where many semantic types have only a few instances. Learning to generate

descriptions for such entities requires overcoming two challenges. First, many of these

long-tail entities do not have sufficient factual coverage from where our proposed models

can draw signals. Secondly, learning from a few instances requires a few-shot learning

capabilities. This is indeed a challenging problem for future research in this direction.

Finally, our proposed fact embedding method obviates the disparity in representation
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learning methods between texts and knowledge graphs by treating the facts as sequences

of tokens. Note that Ahn et al.’s model cannot be extended to newly added entities in a

knowledge graph without retraining TransE embeddings. In contrast, our proposed models

can deal with any arbitrary entity with sufficient facts.
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CHAPTER 7

CONCLUSIONS

This dissertation proposed a series of neural methods to deal with entity-centric knowledge

in natural language. The overarching theme of this dissertation was to enhance entity-

centric knowledge in knowledge graphs by means of extracting additional facts from text

documents and leveraging the existing facts in knowledge graphs. In particular, it intro-

duced an efficient and effective neural method for entity-related knowledge extraction from

texts, a novel framework for inductive representation learning and explainable reasoning

with factual knowledge present in open-domain knowledge graphs, novel methods to en-

rich knowledge graphs with concise and precise entity descriptions, and a neural method

for better retrieval of factual knowledge for entity-centric search queries.

The key contributions and findings of Chapters 3, 4, 5, and 6 are summarized in the

following.

In Chapter 3, a BERT-based dual encoder model is proposed that performs the tasks

of entity linking and relation extraction. In contrast to the existing retrieve and rerank

paradigm for entity linking that uses a BERT-based dual encoder to retrieve candidate enti-

ties and a BERT-based cross-encoder model for candidate reranking, this dissertation only

uses a dual encoder model. While the BLINK model that follows the retrieve and rerank

paradigm processes only one entity mention in each pass, the proposed model can process

multiple mentions of entities in a single pass. This leads to efficient training and inference

in wall-clock time. Additionally, it is observed in the empirical results that processing mul-

tiple mentions improves the recall of candidate retrieval and the overall performance over

other models that processes one mention at a time. This observation suggests that process-

ing multiple mentions in a context helps learn better representations of the mentions and

candidates.
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The dual encoder model is extended for end-to-end entity linking and relation extraction

tasks. The model extracts spans of entity mentions, disambiguate the mentions by mapping

them to their canonical form in a target knowledge graph and extracts possible relations

between pairs of entity mentions. In contrast to the pipelined approach, where a different

model is responsible for each of the tasks mentioned above, this approach performs all

these tasks using a single end-to-end differentiable model. Additionally, the experimental

results presented in Chapter 3 show that exhaustively enumerating all possible spans yields

better precision/recall in span detection than a sequence tagging model using BIO tags.

In Chapter 4, a model is proposed for explainable link prediction for emerging entities

in knowledge graphs. The model consists of two modules: (1) a modified graph trans-

former module to inductively learn entity representations and (2) a policy gradient-based

reinforcement learning module for explainable link prediction, which are trained jointly

in an end-to-end differentiable framework. This chapter also introduced three new bench-

mark datasets for this task. The empirical results demonstrate the advantages of the pro-

posed model compared to other inductive representation learning and explainable reasoning

methods for link prediction. Moreover, the proposed method overcomes a key disadvantage

of existing state-of-the-art embedding-based models for link prediction. The existing mod-

els work only for a static snapshot of a knowledge graph, and therefore, requires retraining

of the model when new entities are added in a knowledge graph. In contrast, the proposed

model enables link prediction for newly-added entities without being retrained.

A BERT-based ranking model is proposed in Chapter 5 to return a ranked list of facts

to enable dynamic fact retrieval for entity-centric search queries. It is a supervised model

for query-aware entity summarization that performs ranking based on two human-defined

metrics – importance and relevance, and their linear combination. In contrast to prior work,

this model does not require various statistical signals pre-computed from the underlying

knowledge graph as input. This makes the proposed model capable of handling ad-hoc

search queries.
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Chapter 6 introduces a novel task of generating succinct textual descriptions of entities

in a knowledge graph using the existing facts. Two auto-regressive description genera-

tion model is proposed. The first model uses an encoder-decoder model with a dynamic

memory network to memorize the factual information required to emit words in the out-

put description. The second model uses an encoder-decoder model with an explicit copy

mechanism to copy out-of-vocabulary words from the input facts to the output descriptions.

The generated descriptions can be useful in various natural language processing tasks such

as fine-grained entity typing, entity disambiguation, enhancing the knowledge panels’ in-

formativeness in search engine results, etc. The proposed method generated precise and

concise descriptions of several entities belonging to various semantic types in Wikidata

that have missing English descriptions. At the time of their introduction, the proposed

methods were the first to deal with sparsely available entity descriptions in Wikidata.

7.1 Future Work

While the proposed methods in this dissertation have made much progress in dealing with

entity-centric knowledge in the realm of natural language processing, there are some limi-

tations. This section highlights some of these limitations and some future directions.

7.1.1 Unified Representation Learning for Texts and Knowledge Graphs

The disparity in representation learning methods for texts and knowledge graphs is detri-

mental for seamless conversion of factual knowledge in unstructured texts to structured

triples in knowledge graphs and vice-versa. This dissertation attempted to narrow this

disparity by treating knowledge graph facts as natural language texts (Chapters 5 and 6).

Multi-head attention-based contextual representation learning has shown tremendous suc-

cess in natural language processing tasks. This dissertation used a similar representation

learning method for graph-structured data in Chapter 4, further reducing representation

learning disparity between texts and knowledge graphs. However, developing a unified rep-
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resentation learning method for structured knowledge graphs and unstructured texts could

be a promising future direction. To this end, recently proposed Transformer-based language

models [155, 156] have injected factual knowledge into the language model pretraining by

augmenting the pre-training objective with entity linking. These methods have shown im-

proved performance in various knowledge-intensive tasks.

7.1.2 Beyond Contextual Representation Learning

A key constraint in automatic knowledge extraction from text is the dependence on domain-

specific annotated data to train models. For many domains (e.g., biomedical, legal, etc.),

curating such dataset is expensive and rely on expert annotators. Moreover, the success

of transfer learning using pre-trained language models is limited as cross-domain trans-

fers often need fine-tuning using domain-specific annotated data. This shows that learning

contextual representations of tokens is not sufficient, and the model must learn meaning

representation to ’understand’ relations among entity mentions in texts. Graph-based for-

malism such as AMR parsing is a promising research direction in this regard. However, it

is limited to capturing only sentence-level semantics. Exploring the use of meaning repre-

sentation as a tool for knowledge extraction from the text - first, at sentence-level and then

at document-level is a future work.

Another advantage of graph-based formalism is the similarity in representation learning

of entity mentions in text and entities in a knowledge graph. We can leverage graph rep-

resentation learning methods in both cases. Additionally, logical rule induction on graph-

structured AMR representation may help to discover implicit relations among entities.

7.1.3 Efficient Knowledge Graph Reasoning

Learning logic rules from the training sub-graph involves path exploration in an exponen-

tially large space to search for candidate logic rules. It is often hard to learn good quality

logic rules through this expensive process. The existing approaches explore the search
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space of entities and their relations. In contrast, a semantic type augmented path explo-

ration can operate at the schema level, i.e., the search space consists of semantic types and

their relations. Since the number of semantic types is much lesser than the number of enti-

ties and each relation can only be associated with a fixed set of semantic types, the search

space will reduce, leading to more efficient path exploration. Upon finding a general rule

in the semantic type space, a model can instantiate the rule with specific entities of the

respective types.

As mentioned at the beginning of this dissertation, understanding entities and their rela-

tionships is a key for machines to understand human spoken and written languages. Future

research in this direction should explore new frontiers for better representation learning

and reasoning methods to deal with the complex interactions between entities in natural

language. Additionally, future research should also explore ways of combining the struc-

tured and unstructured sources of factual knowledge in a seamless manner.



113

ACKNOWLEDGMENT OF PREVIOUS PUBLICATIONS

P1 Rajarshi Bhowmik, Karl Stratos, and Gerard de Melo, ”Fast and Effective Biomedi-

cal Entity Linking Using a Dual Encoder,” in Proceedings of the 12th International

Workshop on Health Text Mining and Information Analysis (LOUHI), EACL 2021.

P2 Rajarshi Bhowmik and Gerard de Melo, ”Explainable link prediction for emerging

entities in knowledge graphs,” in Proceedings of the 19th International Semantic Web

Conference (ISWC) 2020.

P3 Atharva Prabhat Paranjpe, Rajarshi Bhowmik, and Gerard de Melo, ”Facts that matter:

dynamic fact retrieval for entity-centric search queries,” in Proceedings of the 19th

International Semantic Web Conference (ISWC) 2020.

P4 Rajarshi Bhowmik and Gerard de Melo, ”Be concise and precise: synthesizing open-

domain entity descriptions from facts,” in The World Wide Web Conference (WWW

’19). Association for Computing Machinery, New York, NY, USA, 116–126.

P5 Rajarshi Bhowmik and Gerard de Melo, ”Generating fine-grained open vocabulary en-

tity typedescriptions,” in Proceedings of ACL 2018, Melbourne, Australia: Associa-

tion for Computational Linguistics, 2018, 877–888.



114

REFERENCES

[1] G. Weikum, L. Dong, S. Razniewski, and F. Suchanek, Machine knowledge: Cre-
ation and curation of comprehensive knowledge bases, 2021. arXiv: 2009.11564
[cs.AI].

[2] A. Hogan, E. Blomqvist, M. Cochez, C. d’Amato, G. de Melo, C. Gutierrez, J. E.
Labra Gayo, S. Kirrane, S. Neumaier, A. Polleres, R. Navigli, A.-C. Ngonga Ngomo,
S. M. Rashid, A. Rula, L. Schmelzeisen, J. Sequeda, S. Staab, and A. Zimmermann,
“Knowledge graphs,” ACM Computing Surveys (CSUR), vol. 54, no. 4, Jul. 2021.

[3] J. Lehmann, R. Isele, M. Jakob, A. Jentzsch, D. Kontokostas, P. N. Mendes, S.
Hellmann, M. Morsey, P. Van Kleef, S. Auer, et al., “Dbpedia–a large-scale, mul-
tilingual knowledge base extracted from wikipedia,” Semantic web, vol. 6, no. 2,
pp. 167–195, 2015.

[4] F. M. Suchanek, G. Kasneci, and G. Weikum, “Yago: A core of semantic knowl-
edge,” ser. WWW ’07, Banff, Alberta, Canada: Association for Computing Ma-
chinery, 2007, pp. 697–706, ISBN: 9781595936547.

[5] D. Vrandečić and M. Krötzsch, “Wikidata: A free collaborative knowledgebase,”
Communications of the ACM, vol. 57, no. 10, pp. 78–85, 2014.

[6] O. Bodenreider, “The unified medical language system (umls): Integrating biomed-
ical terminology,” Nucleic acids research, vol. 32, no. suppl 1, pp. D267–D270,
2004.

[7] N. Kolitsas, O.-E. Ganea, and T. Hofmann, “End-to-end neural entity linking,” in
Proceedings of the 22nd Conference on Computational Natural Language Learn-
ing, Brussels, Belgium: Association for Computational Linguistics, Oct. 2018, pp. 519–
529.

[8] L. Logeswaran, M.-W. Chang, K. Lee, K. Toutanova, J. Devlin, and H. Lee, “Zero-
shot entity linking by reading entity descriptions,” in Proceedings of the 57th An-
nual Meeting of the Association for Computational Linguistics, Florence, Italy:
Association for Computational Linguistics, Jul. 2019, pp. 3449–3460.

[9] L. Wu, F. Petroni, M. Josifoski, S. Riedel, and L. Zettlemoyer, “Zero-shot entity
linking with dense entity retrieval,” in arXiv:1911.03814, 2019.

[10] D. Q. Nguyen, “An overview of embedding models of entities and relationships
for knowledge base completion,” CoRR, vol. abs/1703.08098, 2017. arXiv: 1703.
08098.

https://arxiv.org/abs/2009.11564
https://arxiv.org/abs/2009.11564
https://arxiv.org/abs/1703.08098
https://arxiv.org/abs/1703.08098


115

[11] R. Das, S. Dhuliawala, M. Zaheer, L. Vilnis, I. Durugkar, A. Krishnamurthy, A. J.
Smola, and A. McCallum, “Go for a walk and arrive at the answer: Reasoning over
paths in knowledge bases using reinforcement learning,” CoRR, vol. abs/1711.05851,
2017. arXiv: 1711.05851.

[12] X. V. Lin, R. Socher, and C. Xiong, “Multi-hop knowledge graph reasoning with
reward shaping,” CoRR, vol. abs/1808.10568, 2018. arXiv: 1808.10568.

[13] R. J. Williams, “Simple statistical gradient-following algorithms for connectionist
reinforcement learning,” Mach. Learn., vol. 8, no. 3-4, pp. 229–256, May 1992.

[14] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser,
and I. Polosukhin, “Attention is all you need,” in Advances in Neural Information
Processing Systems 30, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett, Eds., Curran Associates, Inc., 2017, pp. 5998–
6008.

[15] D. B. Lenat, “Cyc: A large-scale investment in knowledge infrastructure,” Commu-
nication of ACM, vol. 38, no. 11, pp. 33–38, Nov. 1995.

[16] G. A. Miller, “Wordnet: A lexical database for english,” Communications of the
ACM, vol. 38, no. 11, pp. 39–41, 1995.

[17] T. Mitchell and E. Fredkin, “Never-ending language learning,” in 2014 IEEE Inter-
national Conference on Big Data (Big Data), 2014, pp. 1–1.

[18] G. de Melo and G. Weikum, “MENTA: Inducing multilingual taxonomies from
Wikipedia,” in Proceedings of the 19th ACM Conference on Information and Knowl-
edge Management (CIKM 2010), (Oct. 26, 2010), J. Huang, N. Koudas, G. Jones,
X. Wu, K. Collins-Thompson, and A. An, Eds., Toronto, Canada: ACM, Oct. 2010,
pp. 1099–1108, ISBN: 978-1-4503-0099-5.

[19] F. Petroni, A. Piktus, A. Fan, P. Lewis, M. Yazdani, N. D. Cao, J. Thorne, Y. Jernite,
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Attention Networks,” International Conference on Learning Representations, 2018.

[32] M. S. Schlichtkrull, T. N. Kipf, P. Bloem, R. van den Berg, I. Titov, and M. Welling,
“Modeling relational data with graph convolutional networks,” in Proceedings of
ESWC 2018, ser. LNCS, vol. 10843, Springer, 2018, pp. 593–607.

https://arxiv.org/abs/1902.10197


117

[33] T. Hamaguchi, H. Oiwa, M. Shimbo, and Y. Matsumoto, “Knowledge transfer for
out-of-knowledge-base entities: A graph neural network approach,” in Proceedings
of IJCAI, AAAI Press, 2017, pp. 1802–1808, ISBN: 978-0-9992411-0-3.

[34] C. Shang, Y. Tang, J. Huang, J. Bi, X. He, and B. Zhou, “End-to-end structure-
aware convolutional networks for knowledge base completion,” in Proceedings of
AAAI, 2019.

[35] S. Vashishth, S. Sanyal, V. Nitin, and P. Talukdar, “Composition-based multi-relational
graph convolutional networks,” in International Conference on Learning Represen-
tations, 2020.

[36] S. Ji, S. Pan, E. Cambria, P. Marttinen, and P. S. Yu, A survey on knowledge graphs:
Representation, acquisition and applications, 2021. arXiv: 2002.00388 [cs.CL].

[37] N. Lao, T. M. Mitchell, and W. W. Cohen, “Random walk inference and learning
in A large scale knowledge base,” in Proceedings of EMNLP 2011, ACL, 2011,
pp. 529–539.

[38] M. Gardner, P. P. Talukdar, B. Kisiel, and T. M. Mitchell, “Improving learning and
inference in a large knowledge-base using latent syntactic cues,” in Proceedings of
EMNLP 2013, ACL, 2013, pp. 833–838.

[39] M. Gardner, P. P. Talukdar, J. Krishnamurthy, and T. M. Mitchell, “Incorporating
vector space similarity in random walk inference over knowledge bases,” in Pro-
ceedings of EMNLP 2014, ACL, 2014, pp. 397–406.

[40] A. Neelakantan, B. Roth, and A. McCallum, “Compositional vector space models
for knowledge base completion,” in Proceedings of ACL 2015, ACL, 2015.

[41] K. Guu, J. Miller, and P. Liang, “Traversing knowledge graphs in vector space,” in
Proceedings of EMNLP 2015, ACL, 2015, pp. 318–327.

[42] W. Xiong, T. Hoang, and W. Y. Wang, “DeepPath: A reinforcement learning method
for knowledge graph reasoning,” in Proceedings of EMNLP 2017, ACL, 2017.

[43] R. Das, S. Dhuliawala, M. Zaheer, L. Vilnis, I. Durugkar, A. Krishnamurthy, A. J.
Smola, and A. McCallum, “Go for a walk and arrive at the answer: Reasoning over
paths in knowledge bases using reinforcement learning,” arXiv, vol. 1711.05851,
2017. arXiv: 1711.05851.

[44] Y. Shen, J. Chen, P.-S. Huang, Y. Guo, and J. Gao, “M-Walk: Learning to walk
over graphs using Monte Carlo Tree Search,” in Advances in Neural Information
Processing Systems 31, Curran Associates, Inc., 2018, pp. 6786–6797.

https://arxiv.org/abs/2002.00388
https://arxiv.org/abs/1711.05851


118
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