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The study of meaning is inseparable from that of semantic representation, as design

efforts in the latter exert far-reaching implications for linguistics and related computation. In

this thesis, we present a representation formalism based on directed graphs and explore its

explanatory benefits in application to classic issues in plurality and quantification, two aspects

of natural language semantics treated in previous graph formalisms with varied linguistic

adequacy.

Our graph language (Chapter 2) covers the essentials of natural language semantics

(thematic relations, modification, co-reference, intensionality, plurality, quantification, and

coordination) while using only monadic second-order variables. We show that the model-

theoretical interpretation of this language can be defined in terms of graph traversal, where

the relative scope of variables arises from their order of valuation.

We present a unification-based mechanism for constructing semantic graphs at a simple

syntax-semantics interface (Chapter 3), whose task is to decide equivalence among discourse

referents introduced by linguistic tokens, through syntax and through non-syntactic resolu-

tions. Syntax is then formulated as a deterministic partition function on discourse referents.

By establishing a partly deterministic relation between semantics and syntactic distribution,

we show that this function finds a natural implementation in categorial grammars, owing to

the way they manipulate syntactic resources. The syntax-semantics interface described here

is automated to facilitate future exploration.
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In applying the present graph formalism to selected topics in plurality and quantification

(Chapters 4–5), we show that distributive predication of various forms (and even lack thereof)

can be attributed to variants of a graph motif that performs quantification, and the partial

determinism between semantics and syntactic distribution allows these variants to share

roughly the same syntax. Our syntax-semantics interface offers streamlined solutions to

compositional problems in cross-categorial conjunction and scope permutation of quantifi-

cational expressions. A scope taking strategy analogous to co-reference resolution is shown

to simplify the treatment of exceptional scoping behaviors of indefinites.
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Chapter 1

Introduction

This thesis embarks on a systematic investigation of empirical applications of graph repre-

sentation of meaning. Graphs, a structure dedicated to relational data, are well suited to

the relational nature of natural language semantics. Presented here is a graph formalism

that possesses useful complexity properties while explicitly representing quantification and

coordination, together with its model-theoretical interpreter that takes into account plurality

and intensionality. A unification-based mechanism is responsible for constructing semantic

graphs at an innovative syntax-semantics interface.

We obtain interesting results in applying this formalism to classic topics in plurality

and quantification. The semantic construction mechanism is automated to support future

exploration. Aswe take a less trodden path, this introductory chapter provides the background

in which our endeavor unfolds.

1.1 Representation matters

Proper representation of meaning lies at the heart of formal semantics, natural language

processing, and every discipline that studies meaning. Of course, one’s perspective on what

counts towards proper representations hinges on the purpose one wants them to serve, but

there can still be universal desiderata. Let us review what those could be by considering two

major representation paradigms, one symbolic and the other numeric.
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Higher-order logic (first-order restricts variables to those over entities; wheremonadic

second-order adds variables over sets of entities, minus “monadic” one has variables over sets

of tuples; with higher-order go variables of any finite order) became the lingua franca of formal

semantics since Montague (1973). In Heim and Kratzer’s (1998) influential textbook (and

the literature following its convention), which directly takes often transformed constituency

parses (known as Logic Forms or LFs) as semantic representations, higher-order logic still

serves to record the denotations of (abstract) constituents.

What syntactic properties of this language justify its use is not usually questioned, but its

expressive power and compositional transparency do work well towards the research goals

of theoretical investigations. For example, (1.1) pairs a sentence with its neo-Davidsonian

(Davidson, 1967) translation.

(1.1) A boy walked a dog.

∃xyv boy(x) ∧ ag(v , x) ∧walk(v) ∧ th(v , y) ∧ dog(y)

The formula here can be built from parts in λ-calculus terms:

(1.2) a. a boy λP ∃x boy(x) ∧ P(x)

b. walk λxy ∃v ag(v , x) ∧walk(v) ∧ th(v , y)

This is surely an easy example. In theory and in practice, logical expressions assigned to

pieces of meaning can be arbitrarily complex in terms of the types of their own and of the

variables involved. But the expressivity comes with a computational challenge.

In the context of semantic parsing, inducing token representations like (1.2) from those

of sentences like (1.1) requires solving higher-order unification (see Section 1.5), a problem

undecidable in general (Huet, 1973), even when restricted to second-order logic (Goldfarb,

1981). If any decomposition hypothesis about sentence semantics is nonviable, no algorithm

is to tell that within finite time. One can rephrase this concern in the context of language

acquisition, assuming that semantics observable to children is carried by sentences (or for that

matter, standalone phrases). If mental representations of semantics are formally expressible
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a boy walked a dog

y1 y2 y3

x1 x2 x3

Figure 1.1: RNN encoder.

in higher-order logic, one should wonder how lexicon acquisition is possible, unless the

unification problem is restricted to a computationally tractable subform. However, formally

characterizing the latter with linguistic justification is far from trivial. To date we have only

seen heuristics guided by practical concerns (see Kwiatkowski et al., 2010) or restrictions

identified within a particular linguistic phenomenon (see Dalrymple et al., 1991).

On the other hand, engineering often asks for coverage broader than the language frag-

ments for which higher-order logic is employed. Scalability concerns lead modern NLP to

neural network based sentence encoding (Devlin et al., 2019; Kiros et al., 2015; Peters et al.,

2018) that stems from distributional semantics (Firth, 1968; Harris, 1954). This approach

obviates the need of semantic parsing but builds on word embedding (Deerwester et al., 1990;

Mikolov et al., 2013; Rumelhart et al., 1986), which effectively maps words to points in a

real-valued vector space, such that similar words as measured by similar distributions settle

on proximate points. Sentential semantics, again a vector, is then computed as a combination

of word embeddings according to a particular network architecture.

Figure 1.1 illustrates a recurrent neural network (Elman, 1991), where the same compu-

tation unit is shared across time steps. With arrows indicating the flow of information, xt

denotes the embedding vector that serves as the input at the step t, and yt denotes the output

at the step t computed as a function of xt and the state information of the computation unit

from the previous step t − 1. The output at the final step (or a function of outputs of all steps)

is then taken as the semantic representation of the input sentence.

For all the success of neural sentence encoders in semantic tasks (see Bender and Koller,
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2020 for a critical review), this approach does not lend to interpretable compositionality.

Even as a sentence vector is composed from those of its tokens, there is a clear sense that

their relation is not as transparent as that between (1.1) and (1.2).

Less obvious is how such vectors relate to extra-linguistic models of state-of-affairs.

Whatever they implicitly encode, their interpretation has to be retrieved in a specificmachine

learning task, where the sentence encoder feeds the corresponding learning model. To

show modern sentence encoders can capture information needed for natural logic inference

(MacCartney and Manning, 2009), for example, Bowman (2016) trained a neural classifier

that takes two sentence encodings and returns their semantic relation. The situation is quite

different from that of logic, which is a self-contained system equipped with model-theoretical

interpretation of its formulas and the mechanism for inferring their semantic relations, both

among the core explananda of theoretical semantics.

1.2 Why graphs

The previous section shows how expressive power, compositional transparency, computational

tractability, and formal interpretability can be reasonable desiderata. As an effort to reconcile

the latter two, directed graph-based formalisms are gaining increasing attention in recent

computational linguistics studies (Baldridge andKruijff, 2002; Banarescu et al., 2013; Berglund

et al., 2017; Bos, 2016; Bos et al., 2017; Kalouli and Crouch, 2018; Kruijff, 2001; Kuhlmann and

Oepen, 2016; Liang et al., 2013; Stabler, 2018; White, 2006).

But in search of (symbolic) representation formalisms with sufficient expressive power

and useful complexity properties, one is brought to study the “syntax of semantics”. To the

field of formal semantics, if discourse representation theory (DRT; Kamp, 1981; see for 2.3.3 a

review) and dynamic semantics ever since (see Dekker, 2011 for a review) have taught any

lesson beyond those about themselves, one would be how fruitful this course of study can be.

So, what of graphs? Graph formalisms can be as expressive as higher-order logic, since

higher-order logic and λ-calculus have their graph representations (e.g. Buliga, 2013; Paliwal
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et al., 2020). However, graphs are flexible enough to accept complexity restrictions while

preserving expressivity:

i) Flexible interpretation. Graphs only encode the relations between objects. The interpre-

tation of those objects and the relations between is subject to each use case;

ii) Flexible construction. Graph construction is independent of the interpretation of

graphs.

Levy et al. (2004) proved that monadic second-order unification is decidable. It turns out that

with the flexibility of graphs, one can describe a good amount of natural language semantics

using only monadic second-order variables. By contrast, when posed on logic, the same

restriction would extensively affect the major existing theories of syntax-semantics interface,

where prevalence of higher-order variables follows immediately from a functional design of

semantic construction.

Graph formalisms can be of interest for their explanatory benefits. Graphs naturally

represent the relational network of discourse referents that characterizes natural language

semantics. Their model-theoretical interpretation can be defined analogously to that of logic

or DRT, and they can be constructed using a unification-based mechanism. We will see how

these ideas provide new perspectives on familiar issues from an empirical domain whose

choice is motivated in Section 1.3, how they deal with compositional challenges that would

be difficult to handle otherwise.

For the future, once graph representation of meaning reaches a reasonable level of empiri-

cal adequacy, we may study their structural properties from graph- and language-theoretical

points of view. Given the results in graph grammars achieved in the past few decades (Cour-

celle and Engelfriet, 2012, a.o.), we may examine the complexity properties of the grammars

that generate semantic graphs and the empirical implications thereof. Such inquiries have

been around in works on computational phonology and syntax (Heinz, 2010; Heinz and

Idsardi, 2013; De Santo and Graf, 2019, e.g.), and traces its root to the beginning of the

generative enterprise (see Chomsky, 1956, 1959).
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1.3 Empirical domain

We claim that natural language semantics encodes the relations or dependencies between

discourse referents. Less prefixes the formula in (1.1) describes a relational structure also

describable by a graph. Compare (1.3a) with (1.3b): the correspondence between variables and

vertices, between predicates and edges is self-explanatory (see Section 1.6 for terminology).

(1.3) a. boy(x) ∧ ag(v , x) ∧walk(v) ∧ th(v , y) ∧ dog(y)

b. vx ythag

boy walk dog

But it is not immediately clear how plurality and quantification fit into this simple relational

picture.

Consider how we want to represent the semantics of the following sentence, which has a

plural subject. It is imaginable to duplicate (1.3b) as follows.

(1.4) Two boys (each) walked a dog.

v1x1 y1
v2x2 y2

⋯⋯

⋮
boy

⋮⋮

This is analogous to squeezing plurality into first-order logic — besides overheads needed to

ensure the desired interpretation (e.g. x1 ≠ x2), structure multiplication does not make a good

generalization of plurality; it cannot represent plurals of an unknown number (e.g. many

boys). And we can say exactly the same thing about quantification. For (1.5a), a representation

like (1.4) is inconceivable because the number of boys may vary from situation to situation.

For (1.5b), as there are infinitely many even numbers, a representation of an infinite size

would be intractable.
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(1.5) a. Every boy walked a dog.

b. Every even number is divisable by 2.

Plurality and quantification are indeed two crucial aspects of natural language semantics,

calling for a generic treatment if they are to be contained in finite-size representations. This

seems one of the rationales behind the development of plural logical semantics (Boolos,

1984; Link, 1983; Simons, 1982, a.o.) and generalized quantifiers (Barwise and Cooper, 1981;

Montague, 1973; Mostowski, 1957, a.o.). However, given their respective research goals,

existing graph formalisms differ considerably in the linguistic adequacy of their treatments

of plurality and quantification. It is not uncommon to find

i) plurality or quantification left out of representation entirely (e.g. Banarescu et al., 2013);

ii) or quantification scope underspecified in representation, awaiting an interpretation

procedure to freely resolve scope ambiguity (e.g. Bos, 2016; Lai et al., 2020; Stabler,

2018);

iii) or quantification scope resolved in representation, but less a syntax-semantics interface

that constructs those resolutions compositionally (e.g. Liang et al., 2013; Pustejovsky

et al., 2019; Schuler and Wheeler, 2014).

Therefore this thesis will develop a graph formalism suitable for linguistic investigations of

plurality and quantification, while not losing sight of other essentials of natural language se-

mantics. Before giving a high-level sketch of this formalism’s interpretation and construction

modules in Sections 1.4–1.5, we want to say more about the specific phenomena that we will

discuss within the broader domain of plurality and quantification to establish the descriptive

and explanatory adequacy of our formalism.

These include, for plurality, the ways of distributing predication over it and the ways of

creating it with conjunction, and for quantification, the scope taking behaviors of quantifiers

and indefinites. For the most part, what ties this selection together are two central themes in

working with graphs to approach compositional problems:
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i) a partly deterministic procedure for aligning semantics resources with syntactic ones;

ii) the same format for recording the outputs of syntactic derivations and non-syntactic

resolutions.

The first allows not only the semantics of a linguistic expression to be partly inferred from

its syntactic distribution, but also variants of a graph motif of similar semantic import to

share roughly the same syntax. These ideas are particularly useful in studying distributive

predication of various forms (and even lack thereof), which all perform quantification in some

way. The second, on the other hand, abstracts semantic composition away from the details

of syntactic derivations, and thereby simplifies the treatment of compositional problems in

cross-categorial conjunction and scope permutation of quantificational expressions. Feeding

semantic composition with separate but combinable outputs from syntax and non-syntactic

resolutions further simplifies the treatment of exceptional scope of indefinites.

1.4 Interpretation

Semantic representations are, by definition, subject to interpretation. This can be done directly,

by defining an interpreter that executes a representation to perform actions or return values;

or indirectly, by translating representations of one formalism to those of another for which

a direct interpreter is available. For example, higher-order logic formulas receive a direct

interpretation, either for a model-theoretical truth value or for an update on information

states, while DRSs (of DRT) can be interpreted directly or translated to first-order logic

formulas (Kamp and Reyle, 1993).

Instead of working with representations of representations , or in favor of parsimony, we

will build a direct model-theoretical interpreter for the graph language to be developed in

Chapter 2, while leaving its capacity to update discourse for the future (c.f. Bonial et al., 2020;

Kruijff, 2001). For a simple graph like (1.3b), its interpretation is essentially about valuating

vertices to satisfy the constraints given by labeled edges, just as the interpretation of the

formula (1.3a) is about valuating variables to satisfy the constraints given by predicates. But
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since graphs are flat, by which we mean they do not display explicit hierarchical structures as

trees do, it is nontrivial how theymay give rise to scope-sensitive semantics like quantification.

As we will see, by carefully designing the graph language itself and a graph traversal procedure

that valuates vertices and picks up edge constraints in due order, we can nonetheless delimit

substructures in graphs, talk about their valuation dependency, and thereby retrieve scope-

sensitive semantics.

Because of the difficulty implied by flatness, graph languages in previous works have been

encoded in term languages, i.e. trees, and it is for such tree encodings that direct or indirect

interpreters are defined. For example, Bos (2016); Stabler (2018) translate the tree encoding

of augmented abstract meaning representation (AMR; Banarescu et al., 2013) to logic. Kruijff

(2001) provides a direct interpreter for hybrid logic dependency semantics (HLDS) formulas,

which are a tree encoding of graphs, while White (2006) translates them to DRSs.

1.5 Construction

Graphs belong to a broader family of constraint-satisfaction formalisms (Copestake et al.,

2001; Baldridge and Kruijff, 2002; Moore, 1989; Shieber, 1986; Zeevat, 1988), where a common

approach to semantic construction is that of unification.

In its original sense, unification refers to the process of equating symbolic formulas by

finding a system of substitutions of their free variables. For example, the equation

f (g) ≡ ∃xyv boy(x) ∧ ag(v , x) ∧walk(v) ∧ th(v , y) ∧ dog(y)

can be solved up to β-reduction by

f = λP ∃x boy(x) ∧ P(x),

g = λx ∃yv ag(v , x) ∧walk(v) ∧ th(v , y) ∧ dog(y).
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Unification as such is one of the key ideas behind, say, logic programming and type inference

in functional programming.

In unification-based grammars, variable substitutions are determined not to equate but to

combine semantic representations. A desirable combination often unifies variables separately

named and constrained. For example, the constraints in (1.3a) are a union of (1.6a-c) with

x = x′ and y = y′:

(1.6) a. boy(x) b. ag(v , x′)∧walk(v)∧ th(v , y′) c. dog(y)

In the language of graphs, the same process that produces (1.3b) can be phrased as gluing

(1.7a-c) together by fusing x with x′ and y with y′, now as vertices:

(1.7) a. x

boy

b. x′
ag

y′v th

walk

c. y

dog

Thus semantic construction reduces to unifying equivalent discourse referents. In Section

1.6.3, graph-gluing is implemented as an operation known as parallel composition from

hyperedge replacement (HR) algebra (Courcelle, 1993).

The task of syntax-semantics interface is then to decide equivalence among discourse

referents — which vertices to fuse with which. In Chapter 3, we will see that non-syntactic

resolutions and syntactic type reductions in categorial grammars (CGs; Ajdukiewicz, 1935;

Bar-Hillel, 1953) provide exactly the kind of information this decision needs (cf. Bittner,

2001, where non-syntactic resolutions are solely responsible). In fact, the bulk of this thesis

adopts the combinatory branch of CGs (Barker and Shan, 2014; Steedman, 1992, 1996, 2011;

Szabolcsi, 1992) for the sake of presentation, though the type-logical branch (Barker and

Shan, 2014; Kubota and Levine, 2020; Moortgat, 2011; Morrill, 2011; Moot and Retoré, 2012)

is no less applicable. The reason for CGs to be such an apt choice consists in the way they

manipulate lexical resources coded as syntactic types, whose makeup can be put in natural

correspondence with graph vertices.
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Since graph unification is ignorant about interpretation of the vertices, we can freely

restrict their valuation to lower-order types. The outcome of graph unification shows an

accumulative view of compositionality, even more transparent than the case of function

application. Whereas (1.7a-c) are each a subgraph of (1.3b) up to vertex names, neither (1.2a)

nor (1.2b) is a substring of (1.1) due to β-reduction.

When converted to some form of symbolic encodings, graph(-like) representations can

be constructed with λ-calculus along the functional paradigm, as showcased by Muskens

(1996) for DRT and Artzi et al. (2015) for AMR. This approach not only reintroduces higher-

order variables; to translate subsentential expressions, it further creates λ-calculus terms that

are alien to the syntax of DRT or AMR proper. By contrast, with unification, all linguistic

expressions consistently denote graphs.

1.6 Graph theory background

This chapter closes with an introduction to the language of graph theory, including concepts

of graphs in themselves, those relevant to semgraph interpretation, and those relevant to

semantic construction. We recommend Section 1.6.1 to start the next chapter. Sections 1.6.2

and 1.6.3 can wait till Section 2.2 and Chapter 3.

Except for Definitions 1.2, 1.3 and 1.6, the rest are largely standard graph-theoretic con-

structs. The presentation follows Courcelle and Engelfriet (2012).

1.6.1 Semgraphs

Semantic graphs, or semgraphs for short, are directed simple graphs with labeled edges.

Definition 1.1. A semgraph G is a triple (V , E , γ) where

i) V is a set of vertices;

ii) E is a set of (directed) unary and binary edges;

iii) γ assigns each e in E an edge label.
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Whenever necessary any G-specific construct can be indexed, e.g. (VG , EG , γG).

A unary edge consists of an arrow off a vertex u, which is its tail and of which it is an

out-edge. A binary edge consists of an arrow from a vertex u to a vertex v. In that case the

binary edge is an out-edge of u and an in-edge of v, and u and v are its tail and head. Tails and

heads are collectively called endpoints or ends. Obviously, the ends of any edge in E are to be

found in V . We write T(u) for the subset of edges of E tailed by u, that is, all the out-edges

of u.

G being simplemeans that there is no loop, a binary edge whose tail and head coincides. It

also means that there is at most one unary edge off any vertex and there is at most one binary

edge per direction between any pair of vertices. Since each edge is uniquely identifiable by its

ends, we may write, for example,Ð→u for a unary edge andÐ→uv for a binary edge.

Edge labels include unary predicate symbols boy, walk, ∀, ... for unary edges and binary

predicate symbols like ag, th, =, ... for binary edges. In some usage we prefix an edge with

its edge label, e.g. boyÐ→u or agÐ→uv, so as to avoid periphrasis like “Ð→u such that γ(Ð→u ) = boy”

or “Ð→uv such that γ(Ð→uv) = ag”. A labeled unary edge is in a sense equivalent to a vertex label.

Thus we call vertices with a labeled unary edge named and those without anonymous.

1.6.2 For interpretation

Semgraph interpretation happens as we traverse a graph. One vertex reaches another through

a path: a path from u to v of length n ≥ 1 is a sequence of binary edgesÐÐ→a0a1, ...,ÐÐÐ→an−1an, where

a0 = u, an = v, and ai = ai+1 for all ÐÐÐ→ai−1ai next to ÐÐÐÐ→ai+1ai+2. The same path can be consisely

denoted by a0 → ⋯→ an.

A path from u to v makes u an ancestor of v and v a descendant of u. The set of vertices

reachable from u by a path of length 1 are the successors of u. Conversely, the set of vertices

that reach u by a path of length 1 are the predecessors of u.

Two paths are parallel if they start and end with the same vertices. Except when n = 1, we
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Figure 1.2: (a) Rooted at u. (b) Rooted at x.

do not require all vertices a0, ..., an in a path be distinct.1 A cycle is then a path whose starting

vertex a0 and ending vertex an coincide. All cycles in semgraphs, we will see in Section 2.1.2,

contain at least one λ (labeled) edge (whose function need not concern us for now).

Definition 1.2. We say e encycles e′ if both edges lie in a common cycle and e′ would not be

in any cycle without e and, if γ(e) is equality, any equality edge sharing its head with e.

A rooted graph has one or more vertices that are somehow distinguished from other

vertices in the graph. For semgraphs we make the distinction structurally.

Definition 1.3. A root is a vertex v such that either v has no in-edge; or every in-edge Ð→uv

encycles some out-edge λÐ→vw.

As we will see in Section 2.2, a semgraph is interpretable only if it has a unique root that

reaches every other vertex. The rationale for defining roots in cyclic graphs will be given in

Section 2.1.2. To illustrate, u is the root of Figure 1.2a (the only vertex that has no in-edges

is u; the in-edge Ð→uv of v does not encycle λÐ→vw because having Ð→uv removed, we still find

v → w → v), whereas the added λÐ→xu shifts the rootship to x in Figure 1.2b (while every vertex

has in-edges, u and w cannot be roots since they have no outgoing λ-edges; v is not a root as
Ð→uv does not encycle λÐ→vw for the reasons just explained; the rootship of x is given by the fact

thatÐ→wx encycles λÐ→xu, that is, withoutÐ→wx, λÐ→xu would not be in any cycle).

Semgraphs are constructed with an important property: every vertex reached by the root

of G is in turn the root of some induced subgraph of G.
1Some authors require “paths” consist of distinct vertices and use “walks” for what we call “paths”.
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Definition 1.4. H is an (induced) subgraph of G, written as H ⊆ G, iff

i) VH ⊆ VG ;

ii) EH is the set of edges of EGthat have their ends in VH ;

iii) γH is restriction of γG to VH .

To induce a subgraph we may simply remove some edges.

Definition 1.5. G − F where F ⊆ EG is defined by VG−F = VG and EG−F = EG − F.

Another major induction is to find the subgraph reachable from some vertex (see Courcelle

and Engelfriet, 2012 for a similar construct defined on trees).

Definition 1.6. G/u is defined by VG/u: the set of vertices of VG that contains u and any v

reachable from u.

The two inductions can be combined. For example, Figure 1.2a is the subgraph reachable

from u in Figure 1.2b havingÐ→xu removed.

1.6.3 For construction

As said, semantic construction amounts to gluing disjoint graphs at distinguished vertices.

The operation is managed by HR algebra.

We extend G to a quadruple (V , E , γ, slab), where the fourth component slab assigns a

subset of vertices of V distinct source labels. We will see in later chapters that it suffices to

use integers (Z = {0, 1,−1, ...}) . We write Src(G) for the domain of slab, calling these label-

bearing vertices sources. If slab(u) = n, u is the n-source of G. The number of non-negative

sources of G is denoted by σ(G) and called the sort of G.

HR algebra performs source renaming (changing the source label of a vertex) and forgetting

(removing a vertex from the domain of slab). It is nonetheless strictly resource consuming:

what has been forgotten cannot be revived. Whatever sources left form the anchors for graph

unification.
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−1
0

1

λ

2
0

1

2−1
0

1

λ

a. b. c.

Figure 1.3: (a) G. (b) H. (c) G � H.

Definition 1.7. LetG andH be semgraphs with sources such thatVG∩VH = Src(G)∩Src(H)

and EG ∩ EH = ∅. The parallel composition of G and H, written as G � H, is their union:

i) VG�H = VG ∪ VH ;

ii) EG�H = EG ∪ EH ;

iii) γG�H = γG ∪ γH ;

iv) slabG�H = slabG ∪ slabH .

The last condition implies that slabG and slabH agree on Src(G) ∩ Src(H), whereas the labels

assigned by slabG to Src(G) − VH are disjoint from those assigned by slabH to Src(H) − VG .

Parallel composition generalizes to any pair of G and H as we consider their isomorphic

copies to which the above definition applies: the edge sets remain disjoint, but namesake

sources coincide.

Definition 1.8. G is isomorphic to H, written as G ≃ H, iff there are one-to-one correspon-

dences (bijections) fV between vertex sets and fE between edge sets, such that for allÐ→u ,Ð→uv

in EG and for all w in Src(G),

i) fE(Ð→u ) =
ÐÐÐ→
fV(u);

ii) fE(Ð→uv) =
ÐÐÐÐÐÐÐ→
fV(u) fV(v);

iii) γG(Ð→u ) = γH( fE(Ð→u ));

iv) γG(Ð→uv) = γH( fE(Ð→uv));

v) slabG(w) = slabH( fV(w)).
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In particular, with disjoint G and H we simply take their union and fuse vertices bearing the

same source labels; Figure 1.3 gives an illustration. It is easy to see that parallel composition

is associative, commutative, and therefore is well-defined for more than two graphs.
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Chapter 2

Semgraphs

In this chapter, we present a graph language, built on abstract meaning representation (AMR;

Banarescu et al., 2013) and elements of hybrid logic dependency semantics (HLDS; Baldridge

and Kruijff, 2002; Kruijff, 2001; White, 2006), that covers thematic relations, modification,

co-reference, intensionality, plurality, quantification, conjunction, and disjunction. Besides

plurality and quantification, the central themes of this thesis, the other aspects of meaning

seem too essential to be missed in any semantic formalism (where event semantics is not used,

“thematic relations” can be replaced by “predicate-argument structure”), to say nothing of the

linguistic practice of relating conjunction to plurality, and intensionality to quantification.

After presenting semgraphs and their model-theoretical interpretation, we will compare

this language with AMR, HLDS, and DRT to highlight its characteristic properties.

2.1 Elements of semgraphs

We begin with an informal introduction to the building blocks of semgraphs we will be

working with. This is to provide some intuitions before we take up in Section 2.2 a formal

interpreter that delivers the semantics here attributed to semgraphs.



18

2.1.1 Thematic relation

As in most graph formalisms, we take a neo-Davidsonian view of predicate-argument struc-

ture, representing thematic relations as relating events, or eventualities, with their participants:

(2.1) Joe walked a dog.

vx ythag

Joe walk dog

A similar semgraph (1.3) was likened to its formula counterpart. To read (2.1) directly, take

vertices as discourse referents, or variables, and binary edges with thematic labels as thematic

relations predicated of them. Usage of unary edges is due to Gilroy and Lopez (2018); their

lexical labels are predicated of the variables. Thus (2.1) declares x as Joe, v a walking event, y

a dog, v has x as its agent and y as its theme.

The above description might leave an impression that variables or vertices range over

singular values like entities, but we actually want them to take plural values like sets of entities

(see Link, 1983; Kamp and Reyle, 1993; Schwarzschild, 1996; Winter, 2001). Indeed, a claim

made in the previous chapter is that it suffices to use monadic second-order variables to

model the semantics discussed in this thesis. Given their singleton correspondents, singular

values can be seen as a special case of plural ones. The distinction between singular and

plural valuations is invisible in representation, so (2.1) passes for a semgraph of (2.2):

(2.2) Joe walked dogs.

The job is then to give sensible interpretation of thematic relations, no matter whether a set

of events or a set of participants is a singleton or not. We will discuss plurality in more detail

in Section 2.2.1.

As in DRT, our semgraphs indicate existence and logical conjunction implicitly: existence

of variable x is conveyed by presence of vertex x; co-occurrence of the edges implies the

logical conjunction of the constraints they impose on x, y, and v. These two aspects of
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meaning seem fundamental and stand out from their counterparts: across languages it is

much easier to find sentences made of a nominal being indefinites, as opposed to genuine

quantifiers, and it is much readier to interpret asyndetic listing as conjunction, as opposed to

disjunction:

(2.3) a. A dog (= there is a dog).

b. Veni, vidi, vici (= veni, et vidi, et vici).

The moral of such observations need not be taken seriously, but they should reduce our

surprise that DRT has specific devices for genuine quantification and logical disjunction but

not for existence or logical conjunction. The rationale is that meaning that can be implicitly

indicated in natural language need not be explicitly encoded in representation.

Our semgraphs also conflate proper and common nouns, indefinite and definite de-

scriptions as in DRT (Kamp et al., 2011, secs. 2.3, 4.2). There the assumption is that their

distinctions need not concern this level of semantic representation, but lies in presuppositions

about contexts, e.g. uniqueness of or familiarity with the target referent.

Before proceeding to semantic relations beyond thematic ones, it is worth asking why

for the latter a neo-Davidsonian view is taken. There is nothing in semgraphs per se that

necessitates this choice; for (2.1) one may devise (2.4b) in analogy with (2.4a):

(2.4) a. Joe(x) ∧walk(x , y) ∧ dog(y)

b. x ywalk

Joe dog

We will not review the arguments in favor of event semantics, but as we will see in Chapter 3,

the structure of (2.1), not (2.4), fits better into our syntax-semantics interface.

2.1.2 Lambda edge

One event’s participant may partake another event through modification, manifesting in

its most general form as relative clauses. (2.5), for example, illustrates a situation where the
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walking and the seeing share the same dog as their themes. The semgraph does capture all

the thematic relations involved.

(2.5) Ben saw a dog that Joe walked.

Ben dog

ag th

see

th ag

walk Joe

y v2 x2v1x1

However, (2.5) features a structural peculiarity that comes with participant sharing: the

semgraph here is multi-rooted, as both v1 and v2 are roots according to Definition 1.3. But

graph interpretation, which proceeds with graph traversal (see Section 2.2.3), requires a

semgraph be uniquely rooted. Starting from neither v1 nor v2 can we traverse the whole

semgraph.

The problem can be fixed by introducing a vacuous semantic relation, represented as a

λ-edge, directing from the modifyee y to the modifier v2. Now v1 is the root of (2.6) that

reaches every other vertex:

(2.6)
Ben dog

λ
ag th

see
th

ag

walk Joe

y v2 x2v1x1

Wemay read the λ-edge as such that.

Observe that a λ-edge creates a λ-cycle, so named for its reminiscence of Buliga’s (2013)

graph representation of λ-calculus. Such cyclic structure of modification is due to White’s

(2006) adaption of Kruijff’s (2001) general relation. While Kruijff and White treat the general

relation onparwith thematic relations, we take λ-edges as contributing no semantic constraint.

Rather, a λ-edge has the effect of guiding graph traversal by bridging vertices and shifting

vertex valuation order by shifting rootship (see Section 1.6.2). As we will see in later in

Section 2.2.6, by reducing scope effects to the order of valuation, we can also use a λ-edge for

scoping indefinites. It may be more than a coincidence that wide scope indefinites are often

paraphrased with relative clauses:
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(2.7) Every boy walked a dog. (∃ dog > ∀ boy)

= (There is) a dog that every boy walked.

Similarly λ-edges can be applied to adjectival and prepositional modifiers. We may assume

that adjectives denote stative events or states and as in AMR, distinguish between a state itself

vs. what is in a state. The following example thus represents the dog as the theme in luck.

(2.8) A lucky dog.

v x

λ

th
lucky dog

We may think of a circumstantial preposition too as denoting a state that thematically relates

a location to a theme, which can be either an individual as in (2.9a) or an event as in (2.9b).

The preposition itself specifies the nature of that relation.

(2.9) a. A dog in a park. b. Joe walked in a park.

dog
th

park

λ

lo

in

x v y

Joe

ag

walk

th

park

λ

lo

in

x v1 v2 z

Possessive of can be rendered as introducing a state of owning:

(2.10) A dog of Joe.

vx

λ

th
own

dog y

Joe
ag

One may change the lexical or thematic labels here for possessives not necessarily indicating

an ownership (e.g. oracles of Delphi).

2.1.3 Co-reference

Co-reference can be represented as equality between anaphors (including pronouns and

reflexives) and their antecedents, following Kamp and Reyle (1993) and Liang (2012). Whereas
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Liang explicitly puts equality as an edge from an anaphor to its antecedent, we turn it the

other way around. This is shown by the example below, where himself refers to Joe while x

points to y:

(2.11) Joe washed himself.

ag

th
=

wash Joe
v x

y

Possessive pronouns then combines co-reference and the owning state also appearing in

(2.10):

(2.12) Joe walked his dog.

Joe

= λ

dogag th

walk th

ag
own

vx y

zt

While equality is a symmetric relation, the equality edge is directed as above to deal with

split anaphors as in the following example, where = Ð→x1z and = Ð→x2z are contributed by the

anaphor (see Section 3.2.1).

(2.13) Joe washed and Ben shaved himself. (Alex Warstadt p.c.)
Joe

=

=

ag

th

wash

⊃

⊃

th

agshave

=

=

Ben

z

x2v2

y2

x1v1

y1

s

The coordination structure will be introduced in Section 2.1.7. When interpreting (2.13), we

split it into the subgraph reachable from v1 (2.14a) and the subgraph reachable from v2 (2.14b)

and read them separately, so valuation of z in each may differ.
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(2.14) a. Joe

=

=

ag

th

wash

⊃

⊃

th

agshave

=

=

Ben

z

x2v2

y2

x1v1

y1

s

b. Joe

=

=

ag

th

wash

⊃

⊃

th

agshave

=

=

Ben

z

x2v2

y2

x1v1

y1

s

(2.14a&b) thus mean “Joe washed himself ” and “Ben shaved himself ” respectively. Were the

equality edges contributed by the anaphor reversed, however, we would get these subgraphs

by following the direction of the edges:

(2.15) a. Joe

=

=

ag

th

wash

⊃

⊃

th

agshave

=

=

Ben

z

x2v2

y2

x1v1

y1

s

b. Joe

=

=

ag

th

wash

⊃

⊃

th

agshave

=

=

Ben

z

x2v2

y2

x1v1

y1

s

(2.15a&b) have the problem of forcing z to equal Joe and Ben simultaneously.

A conceptual way to understand the equality edge’s direction is to note that anaphors

depend on their antecedents for values. As far as event participants depend on events (so

phrased in dependency grammars; see Mel’cuk, 1988), and it is the dependent that is being

pointed to (thematic relations direct from events to participants), then analogously, anaphora

equality should direct from antecedents to anaphors.

2.1.4 Kappa edge

We introduce κ-labeled edges or κ-edges (κ for “content”) to represent intensionality, including

modalities and attitudes. Being non-thematic, a κ-edge relates an intensional state (e.g. a

possibility, a necessity, a belief, a promise, etc.) to a content as a subgraph in such a way that

the latter is to be evaluated over the set of state-of-affairs or possible worlds compatible with

that intensional state (see Section 2.2.3). (2.16) gives an example.
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(2.16) Joe can walk a dog.

Joe

ag th

walk

κ

can

dog

x v2 y

v1

We evaluate the content, i.e. the subgraph reachable from v2 (“Joe walked a dog”), at pos-

sible worlds compatible with the possibility v1; its satisfaction at some world verifies (2.16).

This quantificational view of intensionality expresses the logical tradition of possible world

semantics (Carnap, 1946; Hintikka, 1961; Kripke, 1963).

The representation (2.16) also serves intensionality encoded with a nominal, adjectival,

and adverbial syntax. The following examples roughly share a representation with (2.16).

(2.17) a. A possibility that Joe walked a dog.

b. It is possible that Joe walked a dog.

c. Joe possibly walked a dog.

Intentional states like attitudes can take additional thematic dependents. A thought in

(2.18a) has its holder, that is, an agent in a sense.

(2.18) a. Ben thought that Joe walked a dog. b. Ben saw Joe walk a dog.

Joe

ag th

walk

κ

think

dog

x2 v2 y

v1 x1
ag

Ben

Joe

ag th

walk

th

see

dog

x2 v2 y

v1 x1
ag

Ben

A perception report made with a small clause is usually distinguished from an attitude (see

Higginbotham, 1983; Parsons, 1990). So, structurally identical to (2.18a), (2.18b) has v2 related

to v1 as a theme, not a content.
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2.1.5 Cardinality

Plurality can be explicitly marked by cardinality. In the following example, the cardinality

edge adapted from AMR’s quantity relation relates a set of boys to a (singleton of a) number.

(2.19) Two boys sailed.

#

boy 2

ag

sail

v x n

Numerals therefore pattern with the indefinite article a in that existence is still implicitly

indicated; a number merely counts a plurality. To be precise, we might want to represent the

cardinality constraints of indefinites and plurals of an indefinite number; they are omitted

for the sake of presentation.

The class of determiners implicitly expressible are upward monotone in their generalized

quantifier characterization. Their truth conditions take the form of a constraint that the

intersection of the noun’s and the predicate’s denotations has a cardinality bounded from

below by a constant:

(2.20) a/some N VP iff ∣JNK ∩ JVPK∣ ≥ 1

two N VP iff ∣JNK ∩ JVPK∣ ≥ 2

But for downward monotone determiners (in either N or VP), that constraint refers to an

unknown or an upper bound:

(2.21) every N VP iff ∣JNK ∩ JVPK∣ = ∣JNK∣

no N VP iff ∣JNK ∩ JVPK∣ ≤ 0

It is easy to see that none of these suits a representation like (2.19). We thus consider them to

be genuine quantification that will be discussed in the next section.

2.1.6 Quantification

There seems no implicit representation for genuine quantification as there is for existence.

However, we may think of quantification as iteration over a plurality. This iterative view
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underlies van Benthem’s (1986) application of automata theory to generalized quantifiers and

is comparable with for-loops in programming languages. A Python example:

for x in X:

statements about x

As x iterates over the objects in X, the statements about x mark the scope in which x’s value

varies.

Similarly in (2.22), for example, y iterates over a set of boys and states that each (or none)

of them sailed.

(2.22) a. Every boy sailed. b. No boy sailed.

boy

agsail

∈

ρ

σ
ι

∀ q

y

x

v

boy

agsail

∈

ρ

σ
ι

¬ q

y

x

v

To render iteration structurally, we use a dummy variable q whose unary out-edge labels the

force of quantification (∀ or ¬). The set to be iterated over is called the restrictor x, heading

the ρ-edge from q. From the restrictor we draw each element as a singleton (y ∈ x abbreviates

y ⊂ x and ∣y∣ = 1), the iterator y, heading the ι-edge from q. A statement about y is given by

the scope v, heading the σ-edge from q. Thus we may read the semgraph as follows: for a

contextually salient (maximized by default; see Section 2.2.4) set of boys x, each (or no) y in

x is the agent of some sailing v.

In quantification structures illustrated by (2.22), the dummy variable’s valuation does not

matter; with ρ-, ι- and σ- edges it serves to distinguish the restrictor, the iterator, and the scope

from each other. The subgraph reachable from the restrictor is called the restrictor subgraph

(2.23a). Less the out-edges of the restrictor, the subgraph reachable from the iterator is called

the iterator subgraph (2.23b). Less the out-edges of the iterator, the subgraph reachable from

the scope is called the scope subgraph (2.23c).
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(2.23)

a. boy

agsail

∈

ρ

σ
ι

∀ q

y

x

v

b. boy

agsail

∈

ρ

σ
ι

∀ q

y

x

v

c. boy

agsail

∈

ρ

σ
ι

∀ q

y

x

v

In fact, the iterative evaluation described above is equivalent to this: fixing a value for x that

satisfies (2.23a), for each (or no) value of y satisfying (2.23b), there is some value for v that

satisfies (2.23c).

Quantification structures are used also for verbal negation and implication (we limit

ourselves to “indicative conditionals”, whose antecedents can be hypothetically true, and

following DRT, treat them as material implication, without reference to possible worlds; see

Kamp and Reyle, 1993, pp. 160ff for discussion and von Fintel, 2011 for a general review of

conditionals). An example of each kind is shown in (2.24).1 Being anonymous and thus

unconstrained in both cases, z is maximized to the set of all entities of the situation modeled,

so we assume z ≠ ∅.

(2.24) a. Joe didn’t sail. b. If a boy walks a dog, he feeds it.

Joe ag sail

∈

ρ

σ
ι

¬ q

y

z

vx v1 q v2

z

x1

y1

x2

y2

th

ag ag

th

=

=

σ

ρ∈

ι

boy

walk

dog

feed

∀

Then we read (2.24a) after (2.22b): for no y drawn from z, there is some sailing whose agent

is Joe. That simply means there is no sailing whose agent is Joe. And we read (2.24b) after

(2.22a): whenever from z we draw a walking v1 whose agent is a boy x1 = x2 and whose

theme is a dog y1 = y2, there is a feeding v2 of the theme y2 by the agent x2. Dropping the

assumption that z ≠ ∅, readers can verify that what we said still holds.
1Example (2.24b) illustrates what is known as donkey anaphora in linguistic literature (Geach, 1962).
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In the examples above, we see that a quantification structure explicitly refers to a plurality,

i.e. the restrictor set to be iterated over. Such a representation will make more sense as it is

applied to the semantics of distributivity in Chapter 4.

2.1.7 Coordination

By coordination we mean overt conjunction (and) and disjunction (or) in natural language,

which convey but do not necessarily equal logical conjunction and disjunction.

2.1.7.1 Conjunction So far logical conjunction, like existence, is implicitly indicated in

semgraphs. Given our earlier hypothesis that what can be implicitly indicated need not, or

perhaps should not, be made explicit, natural language conjunction might better receive a

non-Boolean treatment.

A natural proposal is for and to create plurality by denoting summation or set union

(Chaves, 2007;Heycock andZamparelli, 2005;Hoeksema, 1983; Lasersohn, 1995; Schwarzschild,

1996), which we label with set inclusion for the following example of nominal conjunction.

(2.25) Joe and Ben sailed.

Joe

⊃

⊃

Ben

ag

sail

x1

x2

x0 v

Semgraph (2.25) represents an underspecified reading of the sentence, one or more sailing

that has Joe and Ben as the agent(s). We read the plural agent x0 as the least set that includes

x1 and x2, x1 ∪ x2, and then evaluate the subgraph corresponding to each conjunct separately.

The subgraph reachable from x1 is shaded, declaring x1 as Joe.

Verbal conjunction can be seen as set union of events. For example, v0 in (2.26) sums up

v1 and v2, each of which roots a subgraph to be evaluated separately.

(2.26) Joe sailed and Ben surfed.
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Ben

ag

sail ⊃⊃

ag

surf

Joe

v0v1

x1

v2

x2

One of these subgraphs is shaded, representing the proposition “Joe sailed”. The logical aspect

of conjunction arises as a side effect as we interpret both conjunct subgraphs. There is actually

a logical aspect to conjunction in (2.25), too. The existential proposition represented by each

conjunct (e.g. “Joe”) happens to be made of a nominal as in (2.3a) (recall that we conflate

proper and common nouns).

Verbal conjunction beneath the sentence level involves argument sharing in representa-

tion, for which we have met an example (2.13). Here we consider another example.

(2.27) Joe rented and Ben sank a boat.

ag

rent ⊃⊃

ag

sinkv0v1

x1

v2

x2

y1 y0 y2

boat
thth

= =

Joe Ben

In (2.27) a boat is the theme of a renting and a sinking. This is represented by the equality

between y1 and y0 and between y2 and y0.

We emphasize that argument sharing does not fix a value for the shared argument and

distribute it among the conjuncts. Indeed, the subgraph reachable from v1 (the shaded area)

contains = ÐÐ→y1y0 but not = ÐÐ→y2y0, and the dual holds for the subgraph reachable from v2.

Separate evaluation of the conjunct subgraphs gives (2.27) the following reading.

(2.28) Joe rented a boat and Ben sank a boat.

So the boat rented and the boat sank can be at variance as desired. To be sure, the mechanism

just explained also generates the reading (2.29b) for a shared indefinite subject as illustrated

by (2.29a).
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(2.29) a. A boy sailed and surfed.

b. A boy sailed and a boy surfed.

There seems a strong preference for the sailor to coincide with the surfer (see Moltmann, 1994,

p. 113), though this preference might relate to a more general pattern for subject indefinites

to take wide scope (see Section 4.2.2 for discussion).

In Section 3.3.2, we will attribute the equality edges used by argument sharing to the

semantics of coordination; it turns out that their presence is conditioned on conjunct cat-

egories. For now one may wonder if they are redundant, since (2.27) can be contracted as

follows while preserving its semantics.

(2.30)

ag

rent ⊃⊃

ag

sinkv0v1

x1

v2

x2

y0

boat
thth

Joe Ben

Justification for equality edges comes from coordination of quantifiers. (2.31) gives an example

and its intended reading. Compare argument sharing with equality (2.31a) and without it

(2.31b):

(2.31) Every dog and no cat barked (= every dog barked and no cat barked).

a.

y0

x1 q1

v0

q2x2

q0barkag

dog

cat ρ

∈

∈

ρ

σ

σ

⊃

⊃

∀

¬

y2

y1

v2

v1
=

=

ι

ι

=

=

b.

y0

x1 q1

v0

q2x2

q0barkag

dog

cat ρ

∈

∈

ρ

σ

σ

⊃

⊃

∀

¬

ι

ι

Dummy variables q1 and q2 and their union q0 are not subject to any constraint, but q1 and q2

each roots a quantification structure to be evaluated. For example, the subgraphs reachable

from q1 in (2.31a&b) are shaded.
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Whereas in (2.31a) y1 iterates over a set of dogs, in (2.31b) y0 incorrectly iterates over the

intersection of a set of dogs and a set of cats. The ill-delimited subgraph in (2.31b) is similar to

(2.15), but follows from directly sharing the iterator of quantification structures. A symmetric

remark goes to the subgraph reachable from q2. Thus (2.31a) alone represents the intended

reading.

2.1.7.2 Disjunction It would be curious, Winter (2001) remarks, if conjunction is the only

natural language coordinator befitting a non-Boolean semantics. We thus introduce a rep-

resentation of disjunction whose structure is isomorphic to that of conjunction, but whose

interpretation differs.

The basic idea is this: where conjunction sums up its operands, disjunction chooses one of

them. We label this special relation with ⊒ as if it is an “optional inclusion”. For the following

example of nominal disjunction, we read x0 as a choice between x1 and x2, and then evaluate

only the subgraph corresponding to the chosen disjunct.

(2.32) A boy or a dog swam.

boy

⊒

⊒

dog

ag

swim

x1

x2

x0 v

The reason for a single choice (x0 = x1 or x0 = x2) but not a multiple choice (x0 = x1 ∪ x2) is

that plural predicates do not take disjunction of singulars:

(2.33) *A boy or a dog hugged.

Verbal disjunction is likewise represented. For example, v0 in (2.34) is chosen from v1 and v2,

one of which roots a subgraph to be evaluated.
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(2.34) Joe sailed or Ben surfed.

Ben

ag

sail ⊒⊒

ag

surf

Joe

v0v1

x1

v2

x2

The logical aspect of disjunction arises as a side effect as we choose one of the disjunct

subgraphs to verify while ignoring whether the other can be satisfied.

Since argument sharing works the same way for disjunction as for conjunction, we omit

further illustration.

2.2 Model-theoretical semantics

In this section, we build a model-theoretical interpreter for the semgraphs we have been

reading informally so far. The interpreter evaluates semgraphs with respect to models of

state-of-affairs and returns a truth value.

2.2.1 Plural values

In Chapter 1, we motivated the monadic second-order restriction on computational com-

plexity grounds. Before defining models, we take a further look at why sets of entities can

be a reasonable choice for plural values. For a thorough background, one is referred to the

literature on plural semantics (Lasersohn, 1995; Link, 1983; Scha, 1981; Schwarzschild, 1996;

Simons, 1982; Winter, 2001).

2.2.1.1 Flat vs. nested Sets of first-order objects represent a flat view of plurality, as opposed

to a nested view where such sets can be contained in other sets (see Winter, 2001, pp. 38ff).

The difference can be illustrated with an example adapted from Hoeksema (1983, p. 75).

(2.35) Blücher and Wellington and Napoleon fought each other.

a. [Blücher and Wellington] and Napoleon fought each other.

b. Blücher and [Wellington and Napoleon] fought each other.
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The subject of (2.35) denotes a set of three entities, say {b,w , n} under the flat view, but may

denote either {{b,w}, n} or {b, {w , n}} under the nested view, mirroring the two syntactic

parses.

Examples like (2.35) involving reciprocal predicates are sometimes cited in favor of nested

plurality. The argument proceeds as follows. If each other refers only to the subject’s flat

denotation {b,w , n}, drawing each element thereof, and pairing the draw with the rest in a

fight (see Heim et al., 1991), we obtain a truth condition the world history does not satisfy.

Since (2.35) can describe a historical truth, something like {{b,w}, n} should be referable by

each other.

However, flat plurality is maintainable if we work with a different set of assumptions.

For example, what each other does can be generalized; it may iterate over a partition of

{b,w , n} like {{b,w}, {n}} and pair each draw with the rest. The idea involves non-atomic

distribution (Schwarzschild, 1996), assumed in the previous argument anyway. Alternatively,

we may construct a set of two “group entities” for each other to iterate over, such that one of

them would bear a comprise relation with {b,w} and the other with {n} (see Section 2.2.2).

In either case, the subject retains a flat denotation while each other operates on a two-

element collection. We will not delve into the semantics of reciprocity, but it does not seem

to compel enrichment of the structure of plurality. See Winter (2001, secs. 2.2.3, 6.2) for more

discussion.

2.2.1.2 Set theory vs. mereology When modeling the ontology of state-of-affairs, if besides

entities one introduces also sets as “plural entities”, there arises a type distinction between

singulars’ and plurals’ denotations. Those who find this distinction suspect but replacing

entities with singletons counterintuitive (Link, 1983) turn to mereology (originally proposed

as an alternative to set theory to be the foundation of mathematics; see Gruszczynski and

Varzi, 2015 for a historical note), which is quite popular in semantic literature. Following

Link, we present its basics in terms of lattice theory.
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Recall that a set X is partially ordered if some pairs of its elements are comparable under

a relation ≤, such that

i) (reflexivity) x ≤ x for all x ∈ X;

ii) (antisymmetry) if x ≤ y and y ≤ x then x = y for all x , y ∈ X;

iii) (transitivity) if x ≤ y and y ≤ z then x ≤ z for all x , y, z ∈ X.

Suppose a partially ordered set X further has a property: every pair x , y ∈ X has a least upper

bound z ∈ X, that is, x ≤ z, y ≤ z, and whenever u ∈ X satisfies x ≤ u, y ≤ u we have z ≤ u.

Then X is called an upper semilattice (henceforth “semilattice”); z is called the sum or the join

of x and y, and we write z = x + y = ∑{x , y}.

Thus in a mereological narrative, singular and “plural entities” constitute a semilattice,

where the order ≤ is understood as a part-whole relation, and “plural entities” sum up singular

ones. For such a semilattice to be linguistically useful, it is often assumed to be complete and

free (Landman, 1991; Kamp and Reyle, 1993).

A semilattice X is complete if each of its nonempty subset has a least upper bound,

generalizing the sum of a pair from above. (It is common to define the sum over ∅ as the

least element, which is typically removed from linguistic applications, however.) A finite

semilattice is obviously complete.

Suppose we have a trivial partially ordered set P, that is, its order contains all and only

pairs of the form x ≤ x. A complete semilattice X is generated by P if X is the smallest

complete semilattice including P. Then X is free if it satisfies the so-called universal property:

for any complete semilattice L, every map φ ∶ P → L can be extended to a homomor-

phism ψ ∶ X → L (that is, φ(x) = ψ(x) for all x ∈ P, and for each nonempty A ⊆ X,

ψ(∑A) = ∑{ψ(a) ∣ a ∈ A}).

In this case we also say X is freely generated by P, and the elements of P are called generators

or atoms. The universal property holds exactly when X does not imposes nontrivial relations
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x + y + z

x + y x + z y + z

zyx

x + y + z + u

x y uz

x + y + z + u

z x + y u

yx
a. b. c.

Figure 2.1: Examples of finite semilattices visualized in Hasse diagrams.

on its elements; otherwise not every L would ensure the extendability of φ to ψ (see Grätzer,

2011, p. 81 for a precise formulation).

As Landman (1991, pp. 256ff) explains, freeness rules out mereological structures with

weird semantic implications. For example, one may check that (a) alone is free in Figure 2.1.

In (b) x + y coincides with z + u even if {x , y} and {z, u} are disjoint (but an object should

be uniquely decomposed into atomic parts). In (c) z has only x < z and u has only y < u (but

an object cannot only have one part smaller than itself).

From the definition of freeness it follows immediately that

Corollary. If X1 is freely generated by P1 and X2 is freely generated by P2 and ∣P1∣ = ∣P2∣, then

X1 and X2 are isomorphic (that is, there is a homomorphism from X1 to X2 that is also a

one-to-one correspondence (bijection)).

A proof can be gleaned from any formal text on lattice theory (e.g. Freese et al., 1995; Grätzer,

2011). We are interested in this since it establishes that to each complete semilattice X1 freely

generated by P1, there corresponds an isomorphic semilattice built on the power set of P1 less

∅, complete and free.

Let P2 = {{x} ∣ x ∈ P1}, which is of the same cardinality as P1. Consider X2 = ℘(P1)− {∅}

ordered by set inclusion. We can show that X2 is a complete semilattice freely generated by

P2. If so, the above corollary guarantees that X1 and X2 are isomorphic.

Indeed, the sumof any nonemptyA ⊆ X2 is given by⋃A. Thus X2 is a complete semilattice,
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since the union of subsets of P1 is again a subset of P1. By construction P2 is a subset of X2.

To show P2 generates X2, we show that any Y ⊂ X2 including P2 is incomplete. Let y ∈ X2 −Y

and B = {{x} ∣ x ∈ y}. Hence B ⊆ P2 but y = ⋃B is not in Y . Finally, for any complete

semilattice L and any map φ ∶ P2 → L, we define ψ ∶ X2 → L by ψ(z) = ∑{φ({x}) ∣ x ∈ z} for

each z ∈ X2. It is easy to verify that ψ is a homomorphism as required.

Thus mereology-based plurality is essentially the same as one based on sets. Champollion

(2017, p. 18) mentions another concern: when modeling “mass entities” presumably denoted

by mass nouns like water, we might need an infinite decreasing part-whole sequence x1 >

x2 > ⋯ of such entities (see Kamp and Reyle, 1993, p. 400 for comments). Yet we see that a

power set semilattice X less ∅ (or any free complete semilattice) generated by P is bounded

from below by the atoms; for each x ∈ P no y ∈ X satisfies y ⊂ x. This would be a problem,

however, only if we limit P to finite sets. If we were to accept an ontology where “mass

entities” can be infinitely decomposed, an infinite P would generate X from which an infinite

sequence x1 ⊃ x2 ⊃ ⋯ can be formed (e.g. taking P = N the set of natural numbers, we get

N ⊃ N − {0} ⊃ N − {0, 1} ⊃ ⋯).

Our discussion so far should have justified using sets for plural values. Doing so does

not necessarily commit oneself to an ontology where sets replace entities, however. As we

will see below, we do not have to introduce “plural entities” into the domain of a model of

state-of-affairs.

2.2.2 Models

Now we may define models with respect to which semgraphs are interpreted. In the current

context, a model consists of three components familiar from model theory.

In the first place, we have a domain or universe, that is, a nonempty set D of first-order

entities, including individuals, events, and natural numbers (since we take into account

numeral expressions for a finite cardinality). No order is assumed on this set.

Then there is a setW of worlds, each of which is an interpretation of how things can be,
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by mapping predicate symbols to objects built of the values in D and entities in D to worlds

inW .

In specific, a lexical unary predicate (e.g. dog, walk, ...) is interpreted as a set of entities

that instantiate that predicate. We assume that predicates for proper names (e.g. Joe, Ben,

...) have a unique instance. In particular, a numeral has a unique instance that equals its

face value. We also take the simplistic view that restricts the subject of instantiation to

entities, which means that nominals like group, band, ... known as “group denoting”, are

nonetheless instantiated by entities, not sets (see Link, 1983; Landman, 1989). Group entities

help to distinguish distinct groups made of the same members or track the same group as its

membership changes. The contingency of the relation between a group and its members can

be captured by a constituting (or comprising) event for which a set of those members is the

agent (or theme) and a singleton of that group is the the theme (or agent).

A thematic binary predicate (e.g. ag, th, ...) is interpreted as a set of pairs relating an

event to a nonempty set of entities. With Carlson (1984); Dowty (1989), we assume that

events have at most one participant for each thematic relation, so a binary predicate defines a

partial function on D. We treat event participants as plural values, i.e. sets, to model joint

participation, which can be distinguished from individual participation (Scha, 1981). For

example, a joint invitation by or of two people is not equivalent to two individual invitations

by or of each, so in that case, we pair one invitation event with a set of two entities in an agent

or theme relation. Some eventsmaymake sense only with joint participation or non-singleton

participants, like meeting or hugging. Such are the idiosyncrasies of lexical semantics (see

Winter, 2001, sec. 2.3.1). (We are not in a position to discuss an alternative ontological setup:

abandoning the assumption of thematic uniqueness, one can keep event participants singular

and model joint participation by pairing an event with each individual involved, so a joint

invitation by two people makes each one an agent; see Schein, 1993.)

To model intensionality, we also want to interpret an intensional state (e.g. a possibility,

a belief, ...) as a set of worlds. This way an intensional state defines an accessibility relation
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betweenworlds (see Kripke, 1963): w′ is accessible fromw according to, say, a belief, whenever

w′ is among the worlds assigned to that belief by w. Metaphorically we say w′ is among the

worlds compatible with that belief at w. There is no point, but again, no harm, in likewise

interpreting all entities in D, so we need not explicitly divide D into all intensional states and

the rest.

Therefore, a world w maps

i) a unary predicate P to Pw ⊆ D,

ii) a binary predicate R to Rw ⊆ D × (℘(D) − {∅}),

iii) an entity a ∈ D to aw ⊆W .

At last, there is a valuation g. Whereas worlds interpret lexically or thematically labeled

edges (edges with special labels have a world-independent semantics to be discussed later), a

valuation is a partial function interpreting variables, that is, semgraph vertices, as possibly

empty sets of entities. Thus x g ⊆ D, where x g denotes the value of x assigned by g.

Hence the following definition.

Definition 2.1. A modelM is a triple (D,W , g) where

i) D is a domain of entities;

ii) W is a set of worlds;

iii) g is a valuation.

Whenever necessary anyM-specific construct can be indexed, e.g. (DM,WM, gM).

The models we just defined contrast with most models used in the plural semantics litera-

ture (a.o. Link, 1983). We have not added “plural entities” to the domain, nor have we closed

the interpretation of any predicate under summation. (Otherwise, this would mean that if

x1, ..., xn ∈ Pw , then {x1, ..., xn} ∈ Pw ; if (v1, X1), ..., (vn , Xn) ∈ Rw ,then ({v1, ..., vn},⋃i=1,...,n Xi) ∈

Rw .) The reason is that instead of pluralizing models more than we have done, we can plural-

ize the interpreter, which we discuss below (cf. Brasoveanu, 2013, sec. 4.1; Chaves, 2007, chap.

4).
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2.2.3 Basics

Given a modelM, we may evaluate a semgraph G by checking whether the valuation of

vertices satisfy the constraints of edges according to some world. Evaluation happens as

we traverse G, whose unique root becomes the entrance of traversal. We track the vertices

deemed visited so that the scope of variables may arise from the order of their valuation (see

Section 2.2.6).

We now define a relationM,w ⊧η G with w ∈WM, or simply w , g ⊧η G when the model

in question is clear. This relation is read as “given the (vertex) visiting history η,M satisfies

G at w”, or “G is true at w inM”, or simply “g satisfies G at w”. In a family of all models

differing only in valuations, if w , g ⊧∅ G for some g, we write w ⊧ G and say G is true or

satisfied at w.

Let x be the root of G. x roots a quantification structure introduced in Section 2.1.6 if it

has an out-edge labeled as ρ; it roots a coordination structure introduced in Section 2.1.7 if it

has an out-edge labeled as ⊃ or ⊒. In both cases, the out-edges of x shall be considered jointly

to define the operations involved in quantification and coordination, which we will discuss

in Sections 2.2.4 and 2.2.5. But if x does not root a special structure of those kinds, each of

its out-edges, that is, each member of T(x) can be considered independently. The following

definition starts with this case, implementing graph traversal by induction on the structure

of G.

Definition 2.2. LetM = (D,W , g) be a model, w ∈W and G a semgraph rooted at x.

i) If x does not root a special structure then w , g ⊧η G iff

i.a) when PÐ→x ∈ T(x),

w , g ⊧η PÐ→x ;

i.b) when RÐ→xy ∈ T(x) and R ≠ κ,

w , g ⊧η RÐ→xy and w , g ⊧η∪[x] G − T(x)/y;
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v2

Joe walk dog smile

agthag
λ

x v1 y v2

dog smile

ag
λ

y

a. b.

Joe

x v2

smile

agy

c. d.

Figure 2.2: An example of semgraph interpretation by traversal/induction, glossing over
edge constraint evaluation. Out-edges to be evaluated in each subgraph are shaded. (a)
Rooted at v1. Evaluate edges walkÐ→v1 , agÐ→v1x, thÐ→v1y. (b) Subgraph of (a) reachable from y less
out-edges of v1, rooted at y. Evaluate edges dogÐ→y , λÐ→yv2. (c) Subgraph of (a) reachable from
x less out-edges of v1, rooted at x. Evaluate edge JoeÐ→x . (d) Subgraph of (b) reachable from v2
less out-edges of y. Evaluate edges smileÐ→v1 , agÐ→v2y.

i.c) when κÐ→xy ∈ T(x) and a ∈ x g ,

for all/some w′ ∈ aw there is h ⊇ g s.t. w′, h ⊧η∪[x] G − T(x)/y.

Given G rooted at x, (i) evaluates each out-edge of x and then, with η updated by [x]—

containing x and any vertex in G reachable from x via a path free of ρ, ι, σ and ending in λ

or equality — the subgraphs reachable from each of its successors. Note how we remove all

out-edges of x when inducing the subgraph reachable from a successor (see Section 1.6.2).

This way each edge is interpreted only once, and the interpreter thereby avoids an infinite

loop when x is in a cycle. To give a worked example, Figure 2.2 shows how the semgraph of

the following sentence is broken down into edge constraints in the process.

(2.36) Joe walked a dog which smiled.

In the above definition (i.a) and (i.b) depend on the following rules for evaluating con-

straints given by edges.

Definition 2.3. (Continuing Definition 2.2).

ii) w , g ⊧η λÐ→xy;
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iii) w , g ⊧η=Ð→xy iff yg = x g ;

iv) w , g ⊧η #Ð→xy iff yg = {∣x g ∣};

v) w , g ⊧η∈Ð→xy iff x g ⊆ yg and ∣x g ∣ = 1;

vi) w , g ⊧η PÐ→x iff x g ⊆ Pw and x g ≠ ∅;

vii) w , g ⊧η RÐ→xy iff yg = ⋃a∈x g Rw(a).

Here (ii)–(vii) each handles an edge constraint. (ii) shows that a λ-edge is trivially satisfied;

it does not constrain its endpoints. (iii)–(v) give the self-explanatory constraints for equality,

cardinality, and membership. These four rules show that edges with a special label have a

world-independent semantics.

(vi) and (vii) show how evaluation of predicates takes plurality into account. (vi) says

that for x g to instantiate a lexical predicate P (e.g. dog, walk, ...), each element of x g should

instantiate P. The rule expresses the intuition that predicative plural nouns are typically

distributive (Link, 1983). As we allow the empty set ∅ in vertex valuation (see Sections 2.2.4

and 2.2.5), however, it needs to be explicitly stated that ∅ does not instantiate a predicate (a

price for omitting the cardinality constraints of indefinites, which also deprives us of Bylinina

and Nouwen’s (2018) treatment of the semantics of zero); otherwise, for example, a dog would

be satisfied in a situation where there is no dog, since ∅ is a subset of any set.

To specify what it takes for x g to bear a thematic relation R (e.g. ag, th, ...) with yg , (vii)

uses the function notation that exploits the assumption of thematic uniqueness: with Rw(a)

denoting the unique R-participant of a atw, if defined, (vii) asserts that yg is the union of the

family of the R-participants of the events in x g . The rule expresses the intuition that thematic

relations are cumulative (Krifka, 1992; Landman, 2000).

Onemay apply these definitions to the constraints of edges in Figure 2.2. Here we consider

another example that highlights the distributivity of (vi) and cumulativity of (vii).
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(2.37) Five boys adopted six dogs.

x v y

mn

ag th

65

##

boy

adopt

dog

Through a similar process as illustrated in Figure 2.2, the truth condition of (2.37) at some

world can be gathered as follows, with cardinality constraints simplified on the assumption

that numeral predicates are always interpreted according to their face values (e.g. 5w = {5}).

(2.38) There is some g such that

a. v g ⊆ adoptw , x g ⊆ boyw , yg ⊆ dogw ;

b. ∣x g ∣ = 5, ∣yg ∣ = 6;

c. x g = ⋃a∈v g agw(a), yg = ⋃a∈v g thw(a).

In other words, we have a set x g of five boys, a set yg of six dogs, and a set v g of adoptions;

the agents of these adoptions sum up to x g , and their themes to yg . (2.38) can be satisfied by

a variety of situations, from four boys each adopting a dog and the fifth boy adopting two, to

five boys jointly adopting a litter of six. The number of adoptions does not matter, as far as

each of the five boys engaged in an adoption by himself or with others, and each of the six

dogs was adopted by itself or with others.

What we illustrate is the so-called cumulative reading of the sentence, an example of

underspecification of plural predication (Scha, 1981). A special case of this reading, where

there is only a single adoption, is sometimes identified as a distinct reading called the collective

reading. There might be arguments for not reducing cumulativity to collectivity (Landman,

2000, sec. 5.4.3), but the evidence against the opposite is less clear. Following (Link, 1998, p.

180), we do not make such a distinction but use “cumulative reading” as subsuming “collective

reading”.

But there is a distinctive class of readings of (2.37) that can be paraphrased as follows.

(2.39) a. Five boys each adopted six dogs. (≥ 5 adoptions)
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b. Six dogs were each adopted by five boys. (6 adoptions)

These are known as distributive readings. The desired semantics of such examples does

not follow from semgraphs like (2.37) but requires quantification structures to perform

distribution, as we will see in Section 2.3.2.

The last clause (i.c) of Definition 2.2 handles the interpretation of intensionality. Recall

that an intensional state at some world w is linked to a set of worlds accessible from w. For

each intensional state in x g , (i.c) says the subgraph reachable from the head of a κ-edge is

true at all or some of its accessible worlds. The force of quantification depends on the lexical

semantics of the intensional state in question: for all if a necessity (or an attitude of the same

nature, like a belief), for some if a possibility (or an attitude of the same nature, like a doubt),

as commonly treated in modal logic.

In the following example, the shaded area shows the subgraph to be evaluated over the

worlds compatible with a possibility. For (2.40) to be true, it should be satisfied at one of

those worlds at least.

(2.40) Joe can walk a dog. (2.16)

Joe

ag th

walk

κ

can

dog

x v2 y

v1

According to (i.c), at each accessible world we are looking for some valuation h extending

the valuation g (an extension h ⊇ g satisfies the condition xh = x g for all x g defined). Therefore

valuations considered at different accessible worlds are independent from each other, but all

preserve the assignments of g. This is desired, since interpretations of lexical and thematic

predicates may vary across worlds and satisfactory valuations thus need not stay the same.

On the other hand, as we will see later, assignment preservation is what accounts for de re

readings of attitudes.
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2.2.4 Quantification

To develop the subgraph induction story, we now consider how to proceed if the root x of a

semgraph G is the dummy variable of a quantification structure, schematized as follows.

(2.41) x r

is

ρ

ισ ∈

⋯ ⋯

⋯⋯

As a convention of this section, we write r, i, and s for the restrictor, the iterator, and the

scope (see Section 2.1.6). We understand quantification as iteratively making statements for

an amount of entities in the restrictor, a contextually salient plurality.

As an approximation, we may think of contextual salience as maximality. With every boy,

for example, we would normally want to go over the set of all boys in the domain.

Definition 2.4. x g is maximal at w w.r.t. η if x ∈ η or given G reachable from x, x g /⊂ xh

whenever w , h ⊧η G.

This definition takes the value of x to be maximal if x has been visited, or it cannot be

enlarged and still satisfies G at w. It follows that x g can be empty while maximal at w if no h

satisfies G at w.

We may then iterate over the elements in a salient restrictor, stating constraints for x-

many, by which we mean the quantification force given by the unary out-edge of x. For the

universal and the negative quantifiers, the membership edge ∈Ð→ir allows this to be done by

iterating over valuations satisfying the iterator subgraph and checking their extendability.

The idea is comparable with DRT’s treatment of quantification (see Section 2.3.3).

Definition 2.5. (Continuing Definition 2.2).

viii) If x roots a quantification structure then w , g ⊧η G iff

viii.a) rg is maximal at w w.r.t. η and rg ≠ ∅⇒ w , g ⊧η G/r;
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viii.b) g is undefined on VG−T(r)/i ∪ VG−T(i)/s − η − [r];

viii.c) for x-many minimal h ⊇ g s.t. w , h ⊧η∪[r] G − T(r)/i,

there is k ⊇ h s.t. w , k ⊧η∪[i] G − T(i)/s.

Here (viii.a) fixes a salient value for r, that is, a maximum constrained by the restrictor

subgraph. As (2.23a) shows, what constitutes a restrictor graph can be as simple as a unary

edge contributed by nouns. Further constraints, often referencing a representation of contexts

(von Fintel, 1994; Stanley and Szabó, 2000), can be incorporated to limit the elements to be

iterated over. We will meet examples of such kind in Section 2.3.2.

We then iterate overminimal extensions of g that satisfy the iterator subgraph, counting

x-many extendable to satisfy the scope subgraph. (viii.b) requires g be undefined on any

vertex of the iterator subgraph or of the scope subgraph if it is neither in the visiting history

nor in what the restrictor subgraph will add to that. Otherwise iteration would be nullified;

were g defined on i, for example, we would have ih = i g for any h extending g.

Similarly, (viii.c) counts only h minimally extending g to satisfy the iterator subgraph

(that is, no proper subset of h extends g while satisfying the iterator subgraph). Otherwise

extendability could be falsely denied. For example, suppose h satisfies the iterator subgraph

and is defined on s. If h cannot be extended to satisfy the scope subgraph, but if h′ ⊂ h

undefined on s can, then it would be wrong to say that the valuation of the iterator subgraph

by h cannot be extended to satisfy the scope subgraph.

We show how (viii) works with two earlier examples, gathering their truth conditions at

some world in (2.43). One can verify that they are equivalent to our informal description in

Section 2.1.6.
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(2.42) a. Every boy sailed. b. If a boy walks a dog, he feeds it.

boy

agsail

∈

ρ

σ
ι

∀ x

i

r

s i q v

r

x1

y1

x2

y2

th

ag ag

th

=

=

σ

ρ∈

ι

boy

walk

dog

feed

∀

(2.43) a. There is some g such that

i. rg = boyw ;

ii. i g is undefined;

iii. for each h ⊇ g s.t. ∣ih∣ = 1 and sh is undefined,

there is k ⊇ h s.t. sk ⊆ sailw , ik = ⋃a∈sk agw(a).

b. There is some g such that

i. rg = the domain D;

ii. i g , x g
1 , y

g
1 , x

g
2 , y

g
2 are undefined;

iii. for each h ⊇ g s.t. ∣ih∣ = 1, vh is undefined,

ih ⊆ walkw , agw(ih) = xh
1 = xh

2 ⊆ boyw , thw(ih) = yh1 = yh2 ⊆ dogw ,

there is k ⊇ h s.t. vk ⊆ feedw , xk
2 = ⋃a∈vk agw(a), yk2 = ⋃a∈vk thw(a).

On the other hand, proportional determiners likemost need a more sophisticated treat-

ment than iterating over valuations. It turns out that in such cases, counting valuations is

not exactly the same as counting elements in the restrictor. The so-called proportion problem

(Kadmon, 1987) can be illustrated with a concrete example:

(2.44) Most boys who gazed-at a star sailed.

x

is v

yr
ρ

ag

ι

sail ag gaze

starboy

λσ th

%

∈

Imagine that there were a hundred boys; one of them gazed at a thousand stars and sailed,

and the rest gazed at one star but never sailed. Here the sentence sounds false, but most
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valuations of i , v , y that satisfy the iterator subgraph, precisely those assigning i the sailing

boy, do find some extension that satisfies the scope subgraph.

To actually count star-gazing boys, we may rather iterate over classes of all valuations

satisfying the iterator subgraph, such that two valuations belong to the same class if they

agree on i. For the situation above, valuations frommost classes cannot be extended to satisfy

the scope subgraph. Generalizing this scenario, we can revise Definition 2.5 as follows.

Definition 2.6. (Revising Definition 2.5).

viii) If x roots a quantification structure then w , g ⊧η G iff

viii.a) rg is maximal at w w.r.t. η and rg ≠ ∅⇒ w , g ⊧η G/r;

viii.b) g is undefined on VG−T(r)/i ∪ VG−T(i)/s − η − [r];

viii.c) classify minimal h ⊇ g s.t. w , h ⊧η∪[r] G − T(r)/i

according to the value of i,

for all/some h from x-many classes, there is k ⊇ h s.t. w , k ⊧η∪[i] G − T(i)/s.

This revision changes only (viii.c). Relevant valuations are divided into classes according

to their assignment to the root of the iterator subgraph, which conveniently coincides with

the iterator itself.

We leave it open, for a class to count, whether we want to verify the extendability of all or

some of its valuations. Consider the following example that illustrates the difference.

(2.45) Most boys who gazed-at a star named it. (% boy > ∃ star)

x

is v

y1

r
ρ

ag

ι

name ag gaze

star

boy

λσ

th

%

∈

y2

th

=

Each valuation class checked by (viii.c) now corresponds to a star-gazing boy with a list of

stars he gazed at. For such a boy to count, should he name all listed stars or just some? The
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reading of (2.45) that requires all and the one that requires some are respectively known as

the strong and weak readings of donkey sentences (Chierchia, 1992; Heim, 1990; Kanazawa,

1994).

Whether we face a genuine ambiguity here turns out to be debatable. When the iterator

of a quantificational structure is constrained only by a membership edge as in (2.42), the two

readings coincide. Sometimes one of them vanishes: even if the semantics of (2.45) might

not be clear, the following example seems to have only the weak reading, which requires that

no boy name any star he gazed at and happens to be the reading given by Definition 2.5.

(2.46) No boy who gazed-at a star named it.

Note, in examples like (2.44) and (2.45), that the subgraph contributed by a relative clause

is imposed as a constraint on the iterator, not the restrictor. The reason is that the constraint

in question seems strictly distributive over the elements of the restrictor. To see what this

means, let us compare what happens when the iterator and the restrictor are constrained,

respectively as in (2.47a&b).

(2.47) Every boy who washed a dog sighed.

a. x

is v

yr
ρ

ag

ι

sigh ag wash

dogboy

λσ th

∀

∈

b. x

is

v

y

r
ρ

ag

ι

sigh

ag wash

dog

boy

λ

σ th

∀

∈

(2.47a) iterates over the maximal set of boys and then verifies that each one that washed a

dog sighed. By contrast, (2.47b) iterates over the maximal set of boys that washed a dog and

then verifies that each one sighed. Thus the relative clause applies distributively in the former,

but as plural predication in the latter.

Now consider a situation where among five boys, one washed a dog and sighed, while the

other four jointly washed that dog but none sighed. Here (2.47b) is not satisfiable but (2.47a)

is, agreeing with our intuition that (2.47) holds in this situation. If the relative clause were to

constrain the restrictor, we should expect otherwise.
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Under a quantifier, modifiers like relative clauses are often treated as a predicate on par

with the noun they modify (e.g. Heim and Kratzer, 1998), and thereby are said to be explicit

domain restriction. The above discussion suggests they might be better treated as constraints

on the iterator, not the restrictor. For this reason, we might call these modifiers iterator filters.

2.2.5 Coordination

To complete the subgraph induction story, below we consider what if the root x of a semgraph

G roots a coordination structure.

A coordination structure can specifically be a conjunction structure, which represents a

semantics of summation; or a disjunction structure, which represents a semantics of choice.

Writing y, z for the successors of x, the two cases can be implemented as follows.

Definition 2.7. (Continuing Definition 2.2).

ix) If x roots a conjunction structure then w , g ⊧η G iff

ix.a) x g = yg ∪ zg ;

ix.b) there are h, k ⊇ g s.t. w , h ⊧η∪[x] G − T(x)/y and w , k ⊧η∪[x] G − T(x)/z.

x) If x roots a disjunction structure then w , g ⊧η G iff

x.a) x g = yg and w , g ⊧η∪[x] G − T(x)/y;

x.b) or x g = zg and w , g ⊧η∪[x] G − T(x)/z.

The summation aspect of conjunction is given by (ix.a) and its logical aspect by (ix.b),

where the conjunct subgraphs reachable from y and z are evaluated by independent extensions

h, k of g. On the other hand, in (x) the logical aspect of disjunction is implied by the semantics

of choice: one of the successors is chosen and the disjunct subgraph therefrom is evaluated,

irrespective of however the evaluation of the other would be. Actually, the successor left not

chosen can even be valuated as an empty set.

To see (ix) and (x) in action, consider these examples:
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(2.48) Joe rented and/or Ben sank a boat.

a.

ag

rent ⊃⊃

ag

sinkv0v1

x1

v2

x2

y1 y0 y2

boat
thth

= =

Joe Ben

b.

ag

rent ⊒⊒

ag

sinkv0v1

x1

v2

x2

y1 y0 y2

boat
thth

= =

Joe Ben

(2.48a&b) share the same subgraphs reachable from v1 and v2:

(2.49) a. Joe rented a boat. b. Ben sank a boat.

ag

rent ⋯⋯

ag

sinkv0v1

x1

v2

x2

y1 y0 y2

boat
thth

= =

Joe Ben

ag

rent ⋯⋯

ag

sinkv0v1

x1

v2

x2

y1 y0 y2

boat
thth

= =

Joe Ben

The truth condition of (2.48a) is then gathered as follows.

(2.50) There are h, k such that

a. h, k agree on v0, v1, v2;

b. vh0 = vh1 ∪ vh2 ;

c. h satisfies (2.49a);

d. k satisfies (2.49b).

Since h and k may or may not agree on y0, the boat Ben sank may or may not be the same

boat Joe rented.

The truth condition of (2.48b) is given as follows.

(2.51) There is g such that

a. v g0 = v
g
1 and g satisfies (2.49a);

b. or v g0 = v
g
2 and g satisfies (2.49b).
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The semantics of choice thus evaluates a part of the semgraph and ignores the rest. When

(2.51) holds because of (2.51a), for example, (2.51b) may or may not hold; g may assign the

empty set to v2 or even be undefined on v2.

2.2.6 Order of Valuation

The semantics of intensionality, quantification, and coordination introduces dependencies

between valuations as one extends another. When evaluating a semgraph, a chain of valuations

g1 ⊆ ⋯ ⊆ gn induces an order on valuation of vertices. For any two vertices x and y, if both

are in the domain of gn, we may find in the chain the first valuation gi that must be defined

on x and the first valuation g j that must be defined on y: we say that x is valuated before y if

i < j. (The relations valuated-simultaneously and valuated-after can be analogously defined.)

Here are a few examples.

(2.52) a. Ben thought that Joe walked a dog. (think > ∃ dog)

Joe

ag th

walk

κ

think

dog

x2 v2 y

v1 x1
ag

Ben

b. Every boy walked a dog. (∀ boy > ∃ dog)

boy

ag

walk

∈

ρ

σ
ι

∀ x

i

r

sy thdog
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c. Joe walked and Ben fed a dog. (and > ∃ dog)

ag

walk ⊃⊃

ag

feedv0v1

x1

v2

x2

z1 y z2

dog
thth

= =

Joe Ben

According to the interpretation rules discussed so far, we can find v1 valuated before y in

(2.52a); r before i and i before y in (2.52b); v0 before y in (2.52c).

This order of valuation reflects precisely how one variable varies in relation to another.

Having v1 fixed in (2.52a), y can vary as the subgraph reachable from v2 is verified at each

world compatible with the thought in v1. Having a set r of boys fixed in (2.52b), the dog in y

can vary across each i drawn from r (by the same token, walking events s can vary with i

as well). Having v0 fixed in (2.52c), the two conjunct subgraphs can be satisfied by different

values of y.

But that one variable’s variation depends on the other is but another way of saying that the

former takes scope under the latter. The relative scope of variables thus arises from the order

of their valuation. Now that this order is determined by semgraph structure, for variables to

take scope we can shift their order of valuation with a λ-edge, which does the job by shifting

rootship.

Take the examples from above. Pointing to the original roots in (2.52), below the λ-edges

make the referents y of the indefinites the new roots, according to Definition 1.3.

(2.53) a. Ben thought that Joe walked a dog. (∃ dog > think)

Joe

ag th

walk

κ

think

dog

x2 v2 y

v1 x1
ag

Benλ



53

b. Every boy walked a dog. (∃ dog > ∀ boy)

boy

ag

walk

∈

ρ

σ
ι

∀ x

i

r

sy thdog

λ

c. Joe walked and Ben fed a dog. (∃ dog > and)

ag

walk ⊃⊃

ag

feedv0v1

x1

v2

x2

z1 y z2
dog

thth

= =

Joe Ben

λ

One may verify that y is valuated at the same time with v1 in (2.53a); before i and s in (2.53b);

at the same time with v0 in (2.53c).

Therefore, in (2.53a) the value of y stays constant as we evaluate the subgraph reachable

from v2 (the shaded area) at different worlds compatible with Ben’s thought. Particularly,

when inducing the subgraph in question dogÐ→y is excluded by Definition 2.2; it is a constraint

checked once at the reference world. Since the fixed y may or may not be a dog at all those

accessible worlds, that is, in Ben’s thought, we get the so-called de re reading of the indefinite,

as opposed to its de dicto reading shown by (2.52a).

Similarly, in (2.53b) the value of y is fixed in the valuation g satisfying the restrictor

subgraph, and stays constant across the valuations h ⊇ g satisfying the iterator subgraph and

the valuations k ⊇ h satisfying the scope subgraph. As y is the root, the subgraph reachable

from x (the shaded area) is evaluated with respect to a visiting history η that contains y. So

the requirements on the domains of g and h by (viii) in Definition 2.5/2.6 are met.

We can likewise scope a variable in the iterator subgraph. Compare the following example,

which is about a specific star, with (2.45):



54

(2.54) Most boys who gazed-at a star named it. (∃ star > % boy)

x

is v

y1

r
ρ

ag

ι

name ag gaze

star

boy

λσ

th

%

∈

y2

th

=λ

(viii) in Definition 2.5/2.6 requires evaluating the subgraph reachable from x (the shaded

area) with respect to η that contains y1 and y2. That is why Definition 2.2 updates η with

more than the local root.

A variable in the iterator subgraph can become the latter’s root by taking “local scope”.

Since in proportional quantification, it is precisely the root of the iterator subgraph that

gives the criterion for classifying valuations (see Definition 2.6), we can use scope taking to

handle a subtlety in adverbial proportional quantification. Kadmon (1987) mentions that

sentences like (2.55) have three readings, describing a tendency of general state-of-affairs, of

dog-walking boys, and of boy-walked dogs. They will arise, respectively, when v1 stays the

root of the iterator subgraph in (2.55a), when x1 takes over rootship in (2.55b), when y1 does

so in (2.55c).

(2.55) Mostly if a boy walked a dog, he fed it.

a.

v1 q v2

z

x1

y1

x2

y2

th

ag ag

th

=

=

σ

ρ∈

ι

boy

walk

dog

feed

%

(count walks)
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b.

v1 q v2

z

x1

y1

x2

y2

th

ag ag

th

=

=

σ

ρ

∈

ι

boy

walk

dog

feed

%

λ

(count boys)

c.

v1 q v2

z

y1

x1

y2

x2

th

ag ag

th

=

=

σ
ρ

∈

ι

boy

walk

dog

feed
%

λ

(count dogs)

We notice that local-scope taking as such does not alter the semantics of a local environment;

the iterator subgraphs of (2.55a-c) indeed share the same truth condition.

Turning to (2.53c), the value of y is fixed along with v0 and thereby preserved in evaluation

of either conjunct subgraph. Scope taking also ensures co-reference between coordinate

subgraphs. For example, x1 being the root in (2.56a), the disjunction structure is evaluated

with the edge constraint =ÐÐ→x1x2 already satisfied.

(2.56) Joe sailed or he surfed.

a.

ag

sail ⊒⊒

ag

surf

Joe

v0v1

x1

v2

x2
=

λ

b.

ag

sail ⊒⊒

ag

surf

Joe

v0v1

x1

v2

x2
=

In (2.56b), however, the disjunction structure is satisfiable when the shaded disjunct subgraph

alone is satisfied, which means that x2 may or may not be Joe.

Scoping a disjunct is worth special attention. When z takes scope in (2.57), the existence

of a dog is asserted before y chooses between z and s. In other words, the (shaded) subgraph

off z must be satisfied, whether z is later chosen or not. This differs from the non-scoping

case; were λÐ→zv removed, the subgraph off z need not be satisfied when y chooses s.
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(2.57) Joe saw a dog or a cat.

x v

sy

z
ag

⊒

⊒
th

see

dog

cat

Joe

λ

There seems no reason to satisfy an unchosen disjunct subgraph merely for the reason of

scoping, so we need to suspend the evaluation of the subgraph off a scoping disjunct (e.g. z),

until it is later chosen by disjunction (e.g. y).

To this end, we need to revise (i) of Definition 2.2, which so far evaluates all the out-edges

of a root. When a root is a scoping disjunct, all its out-edges can be ignored but for the λ-edge

by which it takes scope. We define

T(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

{e ∈ T(x) ∣ f encycles e} if x heads some ⊒-edge f ,

T(x) otherwise,

and replace T(x) in (i) of Definition 2.2 with T(x). We will see in Section 5.2.3 how this

consideration allows us to approximate exceptionally scoped disjunction, while not over-

generating exceptionally scoped conjunction.

To conclude this section, we collect all pieces of the semgraph interpreter in one place.

Definition 2.8. LetM = (D,W , g) be a model, w ∈W and G a semgraph rooted at x.

i) If x does not root a special structure then w , g ⊧η G iff

i.a) when PÐ→x ∈ T(x),

w , g ⊧η PÐ→x ;

i.b) when RÐ→xy ∈ T(x) and R ≠ κ,

w , g ⊧η RÐ→xy and w , g ⊧η∪[x] G − T(x)/y;

i.c) when κÐ→xy ∈ T(x) and a ∈ x g ,

for all/some w′ ∈ aw there is h ⊇ g s.t. w′, h ⊧η∪[x] G − T(x)/y.
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ii) w , g ⊧η λÐ→xy;

iii) w , g ⊧η=Ð→xy iff yg = x g ;

iv) w , g ⊧η #Ð→xy iff yg = {∣x g ∣};

v) w , g ⊧η∈Ð→xy iff x g ⊆ yg and ∣x g ∣ = 1;

vi) w , g ⊧η PÐ→x iff x g ⊆ Pw and x g ≠ ∅;

vii) w , g ⊧η RÐ→xy iff yg = ⋃a∈x g Rw(a).

viii) If x roots a quantification structure then w , g ⊧η G iff

viii.a) rg is maximal at w w.r.t. η and rg ≠ ∅⇒ w , g ⊧η G/r;

viii.b) g is undefined on VG−T(r)/i ∪ VG−T(i)/s − η − [r];

viii.c) classify minimal h ⊇ g s.t. w , h ⊧η∪[r] G − T(r)/i

according to the value of i,

for all/some h from x-many classes, there is k ⊇ h s.t. w , k ⊧η∪[i] G − T(i)/s.

ix) If x roots a conjunction structure then w , g ⊧η G iff

ix.a) x g = yg ∪ zg ;

ix.b) there are h, k ⊇ g s.t. w , h ⊧η∪[x] G − T(x)/y and w , k ⊧η∪[x] G − T(x)/z.

x) If x roots a disjunction structure then w , g ⊧η G iff

x.a) x g = yg and w , g ⊧η∪[x] G − T(x)/y;

x.b) or x g = zg and w , g ⊧η∪[x] G − T(x)/z.

2.3 Related work

Having semgraphs and their interpreter in place, this section reviews the previous graph(-

like) formalisms from which the current work draws its inspirations. The aim is not to be

comprehensive, but to provide comparisons that further illustrate some distinctive features

of our semgraphs.
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2.3.1 Abstract Meaning Representation

Our graph language is built on Abstract Meaning Representation (AMR; Banarescu et al.,

2013; Bonial et al., 2018), a semantic annotation scheme proposed to facilitate machine

learning-based natural language understanding and generation.

AMR aims to cover a wide range of phenomena found in engineering applications, but

not always with enough linguistic adequacy to serve theoretical investigations. It does not

concern itself with their model-theoretical semantics, and it is agnostic about how they can

be constructed from natural language sentences. Full documentation of AMR is given in its

annotation guideline.2 Below we sketch the basics of this language at a high level.

Adopting neo-Davidsonian semantics, AMR renders linguistic expressions as uniquely

rooted directed acyclic graphs (here a root is a vertex with no in-edges), with vertex labels

indicating concepts and edge labels semantic relations. For example, (2.58a) gives an AMR

graph, where we replace PropBank (Palmer et al., 2005) relation labels used by AMR (e.g.

arg0, arg1, ...) in keeping with the conventions of this thesis (e.g. ag, th, ...). (2.58b) gives

the induced tree encoding of (2.58a), which is more prevalent in the literature (“v / walk”

means v is an instance of walk; “v ... :ag (x ...)” indicates the ag relation between v and x).

(2.58) A boy walked a dog.

a. v

walk

x

boy dog

yag th

instance

instance

instance

b. (v / walk

:ag (x / boy)

:th (y / dog))

One may compare (2.58) with (1.3b). In AMR graphs, vertices can denote either variables

(x , v , ...) or concepts (boy, walk, ...) while edges are consistently binary. By contrast, we use

vertices consistently for variables and labeled unary edges for instantiation of concepts (i.e.

unary predicates). These are merely notational variants, but we do find our choice making the

structure of semgraphs simpler and description of semgraph semantics easier. For one thing,
2https://github.com/amrisi/amr-guidelines/blob/master/amr.md.

https://github.com/amrisi/amr-guidelines/blob/master/amr.md
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in Section 2.2.2, worlds interpret lexical and thematic edges on the one hand and valuations

handle all vertices on the other. With the original notation of AMR we would not have this

clear division.

Thus far AMR graphs and ours are not different in essentials. Wemay consider a few cases

where they are. To begin with, AMRuses inverse relations like th-of to avoidmulti-rootedness,

a problem that would otherwise come with modification and we solve with λ-edges (see

Section 2.1.2). Compare (2.59a&b):

(2.59) Ben saw a dog that Joe walked.

a. v1

see

x1

Ben dog

yag th

instance

instance

instance

v2

walk Joe

x2th-of ag

instance

instance

b.
Ben dog

λ
ag th

see
th

ag

walk Joe

y v2 x2v1x1 (2.6)

The th-of edge in (2.59a) can be seen as the result of compressing the λ-cycle in (2.59b).

This simple solution may work for the majority of practical data, but does not lend to long-

distance dependencies. As the following example shows, there is no one-edge substitute for a

λ-cycle of length 3 or above.

(2.60) A dog that Ben thought Joe walked. (2.53a)

Joe

ag th

walk

κ

think

dog

x2 v2 y

v1 x1
ag

Benλ

Inverse relations are also incompatible with the principle of compositionality. Suppose that

walk contributes its th edge in (2.59) much as it does in (2.58). Its presence in a relative clause

in (2.59) should not alter that contribution.
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AMR and its recent reforms represent scope-related phenomena, if ever, in a syntactic

style where relative scope is ignored. Banarescu et al. (2013) did not cover intensionality and

quantification. Bos (2016) proposes a representation for quantification like this:

(2.61) Every boy walked most dogs.

x v

boy walk

∀

instance

instance

agquant y

dog

%

quant

instance

th

As (2.61) shows, the variables for boy and dog is each connected to a determiner by a quantity

relation. The structure captures the syntactic dependency between a noun and a determiner

along the tradition of dependency grammars (e.g. Mel’cuk, 1988), but leaves the scope ambi-

guity unresolved.

To interpret such representations, Bos proposed a non-deterministic translation from tree

encodings of AMR to first-order logic (an extension seems possible if higher-order logic is

the preferred target language). The result can give any scope permutation in case of multiple

quantifiers. Alternatively, Stabler (2018) translates normalized tree encodings of AMR to

higher-order logic deterministically to derive the surface scope, and then generates other

permutations using a non-deterministic finite state mechanism.

But if the scope ambiguity is indeed a case of ambiguity rather than underspecification,

as often assumed by theorists (but cf. Poesio, 1996), it might be better to pair each scope

permutationwith its own semantic representation. For the previous example wewill construct

in Chapter 5 the following, where one quantificational structure nests under the scope

subgraph of another:

(2.62) a. q1

q2

r1

i1s

r2 i2

∀

%

dog

walk

boyρ

agσ

∈

∈

th
ιρ

σ ι

b. q1

q2

r1

i1s

r2 i2

%

∀

boy

walk

dogρ

thσ

∈

∈

agιρ

σ ι
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Section 2.2.6 derives scope from the order of valuation. Following the same principle, one

can verify that (2.62a&b) represent the surface and the inverse scope readings of (2.61),

respectively: since the values of r2, i2, s may vary with the value of i1, in (2.62a) we consider

an independent majority of dogs for each boy, and in (2.62b) we go through each boy for

each one of a fixed majority of dogs.

2.3.2 Hybrid Logic Dependency Semantics

The λ-cycles and quantificational structures of our graph language are adapted from Hybrid

Logic Dependency Semantics (HLDS; Baldridge and Kruijff, 2002; Kruijff, 2001;White, 2006),

a representation formalism based on hybrid modal logic (Blackburn, 2000).

Modal logic originates in discussion of temporality and intensionality, how propositions

hold under different modalities; it talks about the “(possible) worlds” at which a proposition

holds andmodelsmodalitieswith accessibility relations between “worlds”. Butmodal logicians

recommend a more general perspective: if we think of “worlds” as entities, then propositions

and accessibility relations become unary and binary predicates of first-order logic. In a sense,

modal logic would be a natural means for describing relational structures, if it had variables

for explicitly referencing “worlds”, or rather, entities. This extension is fulfilled in hybrid

(modal) logic by introducing nominals.

Above is the background in which Kruijff (2001) develops HLDS for sentential and

discourse meaning. At its basics HLDS expresses semantic dependencies or relations just like

AMR. For example, (2.63a&b) show a HLDS formula and its underlying graph, omitting the

tense. Here we replace the dependency labels used by HLDS with familiar ones:

(2.63) A boy walked a dog.

a. v ∧walk

∧ ⟨ag⟩ (x ∧ boy)

∧ ⟨th⟩ (y ∧ dog)

b. x v y
boy walk dog

⟨th⟩⟨ag⟩

Technically, v, x, y are nominals; walk, boy, dog propositional symbols; and ⟨ag⟩, ⟨th⟩
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existential modals. Despite the terminology (2.63a) simply means this: there are a walking

event v, a boy x, and a dog y such that v has x as its agent and y as its theme. The formula

can be readily seen as a notational variant of (2.58b). Likewise (2.63b) is a notational variant

of (1.3b), with unary predicates indicated by vertex labels as in White (2006).

A contribution of White (2006) is the introduction of a cyclic structure for modification

and a quantification structure. Kruijff represents adjectival modification with the general

relation ⟨gr⟩ as in (2.64a), which resembles inverse thematic relations of AMR. Extending its

use to relative clauses, White places ⟨gr⟩ in a cycle as in (2.64b):

(2.64) a. A long book. b. A book Joe read.

x v⟨gr⟩

book long
x v⟨gr⟩

book read

y
Joe

⟨ag⟩
⟨th⟩

In appearance the cycle here differs from λ-cycles only by a label. Interpretation-wise, whereas

White keeps Kruijff’s treatment of ⟨gr⟩ as a thematic relation, in Sections 2.2.3 and 2.2.6,

we saw that other than potentially shifting the order of valuation λ-edges are semantically

vacuous. This allows them to serve as a device for scoping indefinites.

The quantification structure proposed by White is quite similar to ours. The example

below illustrates both of them side by side:

(2.65) Every boy sailed.

a. q

v z

every

sail boy

⟨scope
⟩

⟨restr⟩

⟨ag⟩

b. boy

agsail

∈

ρ

σ
ι

∀ q

y

x

v

(2.65a) relates a dummy nominal q to a ⟨scope⟩ dependent v and a ⟨restr⟩ dependent z, the

latter of which actually corresponds to the iterator y of (2.65b). The intended semantics of

(2.65a) can be given in an iterative style: for each z, if z is a boy then there is some sailing v

for which z is the agent. Without an explicit restrictor, the domain of quantification in (2.65a)

is set to the domain of all entities. Thus the effect is the same as (2.65b) when contextual

salience maximizes x to the set of all boys.
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We do find evidence, however, in favor of representing the restrictor explicitly. For one

thing, it may serve as the antecedent of a pronoun:

(2.66) Every boy sailed and they returned.

Here it is most natural to have they co-refer with a plurality of boys, the domain of quantifica-

tion.

An explicit restrictor can also be helpful if we need maximization subject to further

constraints. For example, consider (2.67) in a context that gives salience to all the boys who

jointly washed a dog. The restrictor subgraph off r may include the shaded constraint, so r is

maximized to the relevant set of boys.

(2.67) Every boy sighed.

x

is

v

y

r
ρ

ag

ι

sigh

ag wash

dog

boy

λ

σ th

∀

∈ n

#
1

The same cannot be reproduced for the quantification structure of White, for its ⟨restr⟩

dependent plays the role of our iterator, but according to the discussion of (2.47), a constraint

on the iterator applies to each single element in the domain of quantification. So if we were

to incorporate the shaded constraint into a structure like (2.65a), we would obtain this truth

condition: for each z in the domain, if z is a boy who washed a dog then z sighed. In a

situation where all the boys who jointly washed a dog did sigh and another boy washed a

dog without sighing, the latter condition will be falsified, but (2.67) stays true.

As the restrictor opens up a slot to be filled by a plurality, we can reuse the quantification

structure for distributive predication. In Section 2.2.3 we mentioned that (2.68) has a reading

where a property of “adopting six dogs” is asserted of each boy. Just as in the case of a

quantificational determiner, the restrictor is specified by a common noun, in the case of

distributive predication, it can be specified by the plural nominal five boys:
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(2.68) Five boys (each) adopted six dogs.

q r

is

ρ

ισ ∈

∀ n#

5
boy

adopt

x
dog

ag

th

n#

6

This reading cannot be expressed without a restrictor. We will make more use of our quantifi-

cation structure when discussing distributivity of various forms in Chapter 4.

Another benefit of an explicit restrictor comes with the distinction of the so-called

“existential scope” vs. “distributive scope”, a terminology due to Szabolcsi (2010, chap. 7) that

describes how an existentially quantified plurality can take wider scope than its distributive

quantificational force. We have to defer examples and discussion until Section 5.1.3, but we

already have sufficient empirical grounds for adapting the quantification structure of HLDS.

2.3.3 Discourse RepresentationTheory

Discourse Representation Theory (DRT; Kamp, 1981; see also Heim, 1982) is a representation

formalism designed to address issues in semantics of anaphora and tense, and more broadly,

in how interpretation of linguistic expressions affects and is affected by contexts. Well-

established in theoretical and computational linguistics communities, DRT covers a wide

range of linguistic phenomena in depth. For a detailed documentation one may refer to

Kamp and Reyle (1993); Kamp et al. (2011). In what follows we will focus on the structural

properties of this graph-like language and their implications.

The basic units of DRT are discourse representation structures (DRSs), which comprise a

declaration of variables, that is, the universe, and a series of conditions. As an example (2.69)

shows a DRS in the iconic box notation:
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(2.69) A boy walked a dog.

x , y, v

boy(x) walk(v)

dog(y) ag(v , x)

th(v , y)

A simple DRS begins with a set of variables (possibly empty) followed by simple conditions,

that is, unary and binary relations holding thereof. An insight of DRT is that existence and

logical conjunction can be implicitly indicated. While this example is self-explanatory, its

model-theoretical interpretation consists in finding a valuation of the universe to satisfy the

conditions.

One can immediately see that a simple DRS describes a directed graph, with the universe

being the vertex set and the conditions being the labeled edges, although the graph can be

multi-rooted as in (2.70a) (as both v1 and v2 have no in-edges), or even disconnected as in

(2.70b) (as y is isolated from x and v).

(2.70) a. Joe walked a dog that barked. b. A dog barked and there was a cat.

x , y, v1, v2

Joe(x) walk(v1) bark(v2)

dog(y) ag(v1, x) ag(v2, y)

th(v1, y)

x , y, v

dog(x) bark(v)

cat(y) ag(v , x)

If K1,K2 are DRSs, then ¬K1, K1 ∨ K2, K1 ⇒ K2 make complex conditions that can be

embedded in complex DRSs to represent negation, disjunction, and implication or universal

quantification. For the sake of illustration, the outer DRSs below contain no variables or

simple conditions of their own.

(2.71)

a. There was no dog. b. There was a dog or a cat. c. Every boy sailed.

¬
x

dog(x)
K1 K0

x

dog(x)
K1

∨
y

cat(y)
K2 K0

x

boy(x)
K1

⇒

v

sail(v)

ag(v , x)
K2 K0
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To read these, (2.71a) holds whenever there is no x satisfying K1; (2.71b) holds whenever

some x satisfies K1 or some y satisfies K2; (2.71c) holds whenever each x satisfying K1 finds

some v to satisfy K2 together.

Complex DRSs are not exactly graphs; through nesting they form trees whose vertices

are graphs. (A simple DRS is also a tree of graphs, that is, a tree of a single vertex.) For a

complex condition in K0, we take its first operand K1 as a child of K0 and its second operand

K2, if any, as a child of K1. Meanwhile, a unary operator labels the edge from K0 to K1, and a

binary operator labels the edge from K1 to K2. For example, (2.71) can be recast as follows:

(2.72) a.
K0

x

dog(x)
K1

¬ b.
K0

x

dog(x)
K1

y

cat(y)
K2

∨

c.
K0

x

boy(x)
K1

v

sail(v)

ag(v , x)
K2

⇒

Note that a graph may inherit vertices from its ancestors (e.g. K2 refers to x in (2.72c)), if its

valuation depends on theirs in the sense given below.

Viewing theDRT language this way facilitates comparing it with a semantic representation

made homogeneously of graphs like ours. A DRS essentially rolls out a decomposition of an

underlying graph into subgraphs, structuring their valuation dependency as a tree. When Ki

has a descendant K j in a DRS tree and K j is not a child of Ki through disjunction, valuation of

K j depends on valuation of Ki . This can be illustrated with a previous example (2.52/2.53b):

(2.73) Every boy walked a dog.

Consider the narrow scope reading of the indefinite for the moment. In DRT we may also put

a restrictor variable that makes the domain of quantification explicit (maximized by default),

as shown in (2.74). We may think of the variables as ranging over sets and interpret the edges

(i.e. predicates) the way we did in Section 2.2.3. To verify (2.74b), find a valuation g defined
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on r that satisfies K0, such that whenever h ⊇ g defined on r, i satisfies K1, there is k ⊇ h

defined on r, i , s, y that satisfies K2.

(2.74) a. r

boy(r)

i

i ∈ r
K1

⇒

s, y

walk(s) ag(s, i)

dog(y) th(s, y)
K2 K0

b. r

boy(r)
K0

i

i ∈ r
K1

s, y

walk(s) ag(s, i)

dog(y) th(s, y)
K2

⇒

Thus (2.74) is nothing but a tree decomposition of the semgraph (2.75a) less x and its out-

edges, with K0,K1,K2 being the restrictor subgraph, the iterator subgraph, and the scope

subgraph.3 The tree structure encodes the intention that valuation of K2 depends on that

of K1, which in turn depends on that of K0. Because such subgraphs and their valuation

dependency arise automatically as semgraphs are traversed and interpreted, a DRS, in a sense,

is a transcription of that process.

(2.75) a. boy

ag

walk

∈

ρ

σ
ι

∀ x

i

r

sy thdog

b. boy

ag

walk

∈

ρ

σ
ι

∀ x

i

r

sy thdog

λ

As a consequence, variables’ order of valuation cannot be shifted in a DRS the way it

can be in its underlying graph. With a λ-edge (2.75b) gets the wide scoping indefinite of

(2.73). But (2.74) imposes a top-down order that requires moving the declaration of y and

the condition dog(y) from K2 to K0 to have y valuated before i.

3We use “tree decomposition” loosely, though (2.74b) qualifies for the technical sense (see Courcelle and
Engelfriet, 2012, p. 122).
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(2.76) a. r, y

boy(r)

dog(y)

i

i ∈ r
K1

⇒

s

walk(s) ag(s, i)

th(s, y)
K2 K0

b. r, y

boy(r)

dog(y)
K0

i

i ∈ r
K1

s

walk(s) ag(s, i)

th(s, y)
K2

⇒

Note that K0 in (2.76b) is no longer a connected subgraph of (2.75b). Whereas (2.75a&b)

can be constructed from the same syntax in roughly the same way, as we will discuss later,

to construct (2.76) one needs to make adjustments to either the syntax (e.g. via quantifier

raising; Muskens, 1996) or the semantic construction mechanism (Kamp and Reyle, 1993, pp.

282ff) assumed for (2.74).

Specifying variables’ order of valuation along DRS trees also avoids the need to refer

to graph rootedness. The graphs in a DRS tree can, as we have seen, be multi-rooted and

disconnected. But rootship is nonetheless a useful property of vertices: in dealing with the

proportion problem in Section 2.2.4, the root of an iterator subgraph gives the criterion for

classifying valuations. (2.55a-c) show that the three readings of (2.77) (i.e. about state-of-

affairs in general, about dog-walking boys, about boy-walked dogs) are a matter of which

variable becomes the root of an iterator subgraph by taking “local scope”.

(2.77) Mostly if a boy walked a dog, he fed it.

By contrast, to mark criterion variables DRT introduces duplex conditions, where a variable-

bounding quantifier in a diamond box generalizes the arrow in implicative conditions (K1⇒

K2). For example, (2.78) represents the reading of (2.77) about dog-walking boys, by marking

x1 ranging over boys as the target of counting.
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(2.78) v1, x1, y1

walk(v1) ag(v1, x1)

boy(x1) th(v1, y1)

dog(y1)

most
x1

v2, x2, y2

feed(v2) ag(v2, x2)

x2 = x1 th(v2, y2)

y2 = y1

This is actually the sole purpose duplex conditions serve. If we are to distinguish certain

vertices in graphs, however, it seems a natural choice to do so with rootship, which is inherent

in graph structure, and a rootship shifting device whose use can be justified elsewhere.

Finally, discussion of (2.74) shows how growth of valuation domains is explicitly managed

in DRS interpretation. More precisely, in a DRS tree the rootK0 is to be satisfied by a valuation

whose domain equals the universe of K0; with Ki being the first ancestor of K j that is not a

parent of K j through disjunction, the valuation of K j extends the domain of the valuation

of Ki by the universe of K j. Since an edge of any graph K j can only have ends on which the

valuation of K j is defined, it follows that an edge of K j always finds its ends in the universe

of K j or the universe of any Ki that K j depends on in valuation. For (2.74), that means K2

may refer to r, i but neither K0 nor K1 may refer to s, y. Valuation dependency thus defines a

relation that characterizes when one graph may reference the variables declared in another.

This relation is known as DRS accessibility and is used to account for co-reference constraints.

For example, as K0 in (2.79) has no access to x declared in K1, he cannot be resolved to co-vary

with every boy.

(2.79) Every boy sailed and he returned.

⋯

x

boy(x)
K1

⇒

v

sail(v)

ag(v , x)
K2 K0

However, the motivation for managing growth of valuation domains, which induces

DRS accessibility, is to ensure a correct semantics of quantification. Take (2.74) for example.

A valuation g satisfying K0 can only be defined on r; were g be allowed to valuate i, in a
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situation where among a few boys only Joe walked a dog, g could satisfy K0 by assigning Joe

to i. Similarly, any valuation h ⊇ g enumerated to satisfy K1 can only be defined on r, i; were

h be allowed to valuate y, in a situation where every boy did walk a dog, the extendability of

h could be denied for not assigning y a dog walked by the boy i.

It is these considerations that have led our semgraph interpreter (see Definitions 2.5/2.6)

to similar requirements on the domains of valuations. The difference is that where we specify

what should be excluded from them, DRT specifies what should be admitted to them. The

two approaches then differ in how they deal with interaction between co-reference resolution

and scope taking.

A relevant example concerns the scope cap of indefinites (see Brasoveanu and Farkas,

2011; Schwarz, 2001). Below even as he is resolved to boy (the two co-vary), a dog cannot take

wide scope over every boy, that is, (2.80) does not have a reading that requires there be a dog

that every boy walked and fed.

(2.80) Every boy walked a dog (that) he fed.

Now the task for DRT lies in semantic construction or syntax-semantics interface, namely, to

explain why a DRS cannot be constructed to the effect of moving the declaration of y and

the condition dog(y) from K2 to K0 in (2.81), while (2.76) is fine.

(2.81)

x

boy(x)
K1

⇒

v1, v2, y, z

dog(y) walk(v1) feed(v2)

z = x ag(v1, x) ag(v2, z)

th(v1, y) th(v2, y)
K2 K0

By contrast, as we will see later, there is no difficulty for our semantic constructionmechanism

to scope x with a λ-edge as follows:
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(2.82) q r

is

ρ

ι
σ

∀ boy

∈

agwalk

xdog

th

v y

=

agth

λ

λ

feed

The task for us is rather to explain why the dashed addition is problematic for the semgraph

interpreter developed here. We will revisit this example in Section 5.2.4.
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Chapter 3

Syntax-Semantics Interface

In this chapter, we provide a unification-based semantic construction mechanism that builds

semgraphs from smaller ones at the syntax-semantics interface. Graph unification, imple-

mented as parallel composition, amounts to gluing disjoint graphs by fusing equivalent

vertices, or rather, equivalent discourse referents. The task of the syntax-semantics interface

is therefore to decide equivalence among referents introduced by linguistic tokens, through

syntax and non-syntactic resolutions. While there are two sources of information, the outputs

we expect from them are nonetheless of the same format — pairs of equivalent vertices. This

allows for a simple presentation of syntax and an easy combination of the information needed

for semantic construction.

3.1 Bigger picture

To clarify our expectation for the syntax-semantics interface, consider a concrete example:

(3.1) Joe saw himself.

ag

th

see

=

Joe

Here we have three tokens whose semantics is given in Figure 3.1. Recall from Section 1.6.3

that semgraph vertices that are assigned an integer label are called sources. In the context of
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ag

th

see

=

Joe

see himself Joe

0
2

1 0

−1
0

Figure 3.1: Fusing equivalence for Joe saw himself.

semantic construction, we will see, it is convenient to refer to vertices by their source labels

instead of their names, which are usually omitted.

To compose the semgraph in (3.1), we need to find the fusing equivalence given by coloring

in Figure 3.1. Once the latter is in place, the rest is simply to so rename sources before parallel

composition, that vertices shall bear the same label if and only if they are equivalent (of the

same color). The question is how that equivalence arises.

We take both syntax and non-syntactic resolutions as responsible for the desired equiva-

lence. We expect syntax to produce (3.2a), that is, the 1-source of see equals the 0-source of

himself, and the 2-source of see equals the 0-source of Joe. We expect co-reference resolution

to decide, as in (3.2b), that the −1-source of himself equals the 0-source of Joe.

(3.2) a. (1see, 0himself ), (2see, 0Joe)

b. (−1himself , 0Joe)

Together (3.2a&b) yield the equivalence in Figure 3.1. Strictly speaking, these pairs are not

yet an equivalence relation, which should rather be reflexive (x ≡ x for all x), transitive (x ≡ y

and y ≡ z imply x ≡ z), and symmetric (x ≡ y implies y ≡ x). But they uniquely generate one

— the smallest of all equivalence relations including them. The partitions corresponding to

this equivalence can be computed thus: processing one vertex pair at a time, we either unite

it and all existing partitions it overlaps with, or make it a new partition if it overlaps with

none (we omit the proof of correctness and refer readers to Cormen et al. (2009, chap. 21) for

efficient implementations).
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This is how syntax and non-syntactic resolutions work in tandem. Separating the two

sources of referent equivalence keeps syntax simple and clean, and in principle, allows their

respective computations to proceed in parallel. In the following sections, we will describe how

syntax as a deterministic process comes to its outputs, and where non-syntactic resolutions

as non-deterministic processes can be useful. We start with the latter.

3.2 Non-syntactic resolutions

By non-syntactic resolutions we mean any non-deterministic computations, though not

necessarily unconstrained, that feed semantic construction. For the purpose of this thesis, we

will discuss co-reference resolution, an established process for identifying the antecedent of

an anaphor, and precedence resolution, a novel process we propose for scoping indefinites.

3.2.1 Co-reference resolution

Anaphor tokens (including pronouns and reflexives) co-refer with other linguistic tokens

when the referents they introduce coincide. This relation is often indicated with co-indexation.

Take the previous example:

(3.3) Joei saw himself i .

In the linguistic literature, the anaphoric relation of the following kind is often called “variable-

binding” (in that himself serves as a variable bound by the quantifier every boy) instead of

co-referential.

(3.4) Every boyi saw himself i .

ag

th

see

=

∀ ρ boy

∈
ι

σ
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We nonetheless consider this an instance of co-reference, since its semgraph features the

same equality edge as in (3.1). The only difference is that the co-reference in (3.1)/(3.3) is in a

sense static, whereas that in (3.4) is fluid, living in co-variation.

Co-reference resolution is then the task of identifying the antecedent of an anaphor. As a

convention, we use negative sources to indicate equivalence to be resolved non-syntactically.

With the following entries for anaphors and possessive pronouns (note that the latter’s entry

contains an owning event),

(3.5) a. it/itself b. its

=

0

−1
=

λ
th

ag

own
0

−1

we may more precisely say that co-reference resolution finds in another linguistic token the

equivalent of a negative source that tails an equality edge. Here is an example apart from

(3.3). Given the semgraph

(3.6) every boy

ρ

ισ ∈

∀ boy0

21

co-reference resolution in (3.4) yields (−1himself , 2every boy), that is, the −1-source of himself

equals the iterator of the quantification structure.

Our approach becomes quite handy as we deal with split and donkey anaphora later

in this chapter. The reason we put co-reference resolution outside syntax is that it is non-

deterministic, as his can mean Joe’s or Ben’s or someone else’s in (3.7a), and may work across

sentences, as he does in (3.7b).

(3.7) a. Joei saw Ben j walk hisi/ j dog.

b. Joei sailed. Later hei returned.
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We are agnostic about how co-reference resolution is carried out (see Jurafsky and Martin,

2020, chap. 21 for a computational introduction), but we know what kind of outputs to expect.

At any rate, resolved co-reference is usually taken alongside syntax as input to semantic

interpretation (e.g. Heim and Kratzer, 1998) or construction (e.g. Groenendijk and Stokhof,

1991; Jacobson, 1999; Jäger, 2005; Muskens, 1996). This is also the approach taken here; see

Beaver (2002); Muskens (2011) for a different view.

Remark. Co-reference does not account for Karttunen’s (1969) “paycheck pronouns”, e.g. Joe

deposited his paycheck, but Ben spent it, where it refers to Ben’s paycheck. Comparing (3.8a)

and (3.8b), we obtain desired semantics if it makes a copy of the shaded subgraph in (3.8a)

and anchors that to the thematic dependents of spent.

(3.8)

a. Joe deposited his paycheck. b. Ben spent it.

th ag

deposit =

ag

thλ

Joe

own

paycheck th ag

spend =

ag

thλ

Ben

own

paycheck

Thus, it is natural to say that the semantics of paycheck pronouns consists in (structural) an-

tecedent resolution, which relies on the discourse to complete ongoing semantic construction.

In this regard our formulation does not differ much from that of Jacobson (1999). Antecedent

resolution arguably also happens in verbal ellipsis (e.g. Joe spent his paycheck, and Ben did

too) and in anaphors bearing a discourse dependency:

(3.9)

a. Every boy walked a dog. b. Most boys fed it (= a dog he walked).

boy

ag

walk

∈

ρ

σ
ι

∀

thdog

boy

ag

feed

∈

ρ

σ
ι

%

x thdog

ag

walkv

th
λ
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Again we may copy the shaded subgraph in (3.9a) into (3.9b), though λÐ→xv has to be somehow

added to ensure the correct semantics.

3.2.2 Constraints on co-reference resolution

We now turn to constraints on co-reference resolution, some of which are preferable and

others inviolable. Examples of the first kind include recency (a more recently mentioned

antecedent is preferred), grammatical function parallelism (e.g. a subject antecedent is

preferred for a subject anaphor), and reasoning based on lexical semantics and common

sense. The complexity and diversity of such factors again justify the non-determinism of

co-reference resolution.

Examples of the second kind, on the other hand, include agreement morphology, accessi-

bility in dynamic semantic theories (e.g. Groenendijk and Stokhof, 1991; Kamp and Reyle,

1993), and locality in binding theory (Chomsky, 1981). Of these our graph formalism is able to

say something interesting about the latter two. Accessibility was mentioned towards the end

of Section 2.3.3 and will be explored more in Section 5.2.4. Binding theory constraints, origi-

nally stated with reference to syntax, can be recovered with reference to semgraph structure

in a nontrivial way.

A classic observation is that reflexives are resolved in a “local domain” that pronoun

resolution avoids. The locality in question may refer to clausal boundaries as in (3.10a&b),

or something more restrictive as in (3.10c&d) (see Lasnik and Uriagereka, 1988 for an exact

characterization).

(3.10) a. Joei saw *himi/himself i .

b. Joei thought Ben saw himi/*himself i .

c. Joei saw hisi/*himself i ’s dog.

d. A dog of Joei saw himi/*himself i .

The valid co-references in (3.10a-d) are represented in that order as follows:
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(3.11) a. v → y → x ∥ v → x b. v1 → y → x ∥ v1 → v2 → x

ag

th
=

see Joe
v y

x

Ben

ag th

see

κ

think

v2 x

v1 y
ag Joe

=

c. v1 → y → x ∥ v1 → z → v2 → x d. v1 → z → v2 → y → x ∥ v1 → x

Joe

=λ

dog agth

seeth

agown

v1 yz

v2 x z

v2 y

v1 x

ag

ag th

seeλ =th

own

dog

Joe

Crucially, co-reference creates such a pair of parallel paths: exactly one of them ends in

equality (= Ð→yx above) introduced by anaphors, and they have no subpaths forming a pair

of parallel paths with the latter property. Let Pe be the path ending in equality, Pf the one

without, u the starting point, and v the ending point. We notice that

i) (locality) Pe ∥ Pf created by reflexives contains at most one event distinct from v;

ii) (antilocality) Pe ∥ Pf created by pronouns contains at least two events distinct from v;

iii) (obliqueness) the first edge of Pe is less oblique (see below) than the first edge of Pf ,

provided u is not an individual.

Statements (i) and (ii) express the requirements for local and nonlocal antecedents by reflex-

ives and pronouns, with locality measured by the lengths of the parallel paths. Put differently,

when retracing from the head of the equality edge v via different paths, it takes shorter

distance for them to reunite in the case of reflexives than it does in the case of pronouns.

Statement (iii) applies to reflexives and pronouns alike. Relative obliqueness of semantic

dependents typically reflects the order in which a functor receives its syntactic arguments

(e.g. the agent combines later with the verb than the theme and is thus less oblique than the

latter; see Section 3.3.2), as discussed in Bach and Partee (1980); Chierchia (1988); Dowty

(1992); Hepple (1990); Pollard and Sag (1987). The obliqueness statement plays a role similar
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to that of the c-command constraint in binding theory, but not exactly the same. For example,

the parallel paths in (3.11d) satisfy (iii), but Joe does not c-command him in (3.10d).

A main effect of statement (iii) is to avoid cataphora in examples like these:

(3.12) a. *Himself i saw Joei .

b. *Hei thought Ben saw Joei .

(3.11a&b) can be easily modified to illustrate the problem. The pattern of cataphora avoidance

also generalizes to the well-known crossover phenomenon (Postal, 1971; see Safir, 2004, chap.

3 for a review), if the gap in a relative clause can be seen as an antecedent besides the actual

one, i.e. the noun phrase modified by that relative clause:

(3.13) a. A boyi who __i thought hei saw Ben.

b. *A boyi who hei thought __i saw Ben.

The semgraphs of (3.13a&b) are given by (3.14a&b), respectively:

(3.14) a.

Ben

th ag

see

κ

think

v2 x

v1 yag boy

=

λ

b.

Ben

th ag

see

κ

think

v2 y

v1 x
ag

=λ

boy

While co-reference creates multiple pairs of parallel paths in (3.14a), we can see that for any of

them, the equality-free path (Pf ) satisfies antilocality and the equality-ended path (Pe) ensures

relative obliqueness (e.g. one such pair also appears in (3.11b); y → x ∥ y → v1 → v2 → x

gives another pair, as y is not an event). In (3.14b), however, we have y → x ∥ y → v1 → x

against antilocality and v1 → v2 → y → x ∥ v1 → x against the obliqueness statement.

A special class of crossover examples, known as weak crossover, differs from strong

crossover by having an embedded cataphor that does not c-command the co-referring gap.

Compare (3.15b) with (3.13b):
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(3.15) a. A boyi who __i saw hisi dog.

b. *A boyi who hisi dog saw __i .

Inspecting the semgraphs of (3.15a&b), again, we find in (3.16a) any pair of parallel paths of

interest satisfying antilocality and relative obliqueness. But unlike (3.14b), (3.16b) only has

parallel paths that violate relative obliqueness (e.g. v1 → y → x ∥ v1 → z → v2 → x). The lack

of antilocality violation in weak crossover examples might be responsible for their sometimes

reported lesser ungrammaticality (Lasnik and Stowell, 1991).

(3.16) a. boy

=λ

dog
ag

th

seeth

agown

v1 yz

v2 x

λ

b.

z

v2 x

v1 y

ag

ag
th

seeλ =th

own

dog boy
λ

We should add that discussion of (weak) crossover includes examples where the surface

syntax bears no gaps:

(3.17) a. Every boyi saw hisi dog.

b. *Hisi dog saw every boyi .

These yield the following semgraphs, to which the comment on (3.16) also applies.

(3.18) a. boy

agsee

∈

ρ

σ
ι

∀

yv1

z thdog

=

v2

x
ag

own

λth

b. boy

thsee

∈

ρ

σ
ι

∀

yv1

z thdog

=

v2

x
ag

own

λag

The discussion above has shown how co-reference resolution may be sensitive to the

properties of the semantic representation it implies. From the perspective of perception and

semantic parsing, at the very least, we may think of statements (i)-(iii) as lexical requirements

that limit the number of resolution candidates to be checked against other constraints (e.g.

common sense), whose evaluation cost could be expensive.
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3.2.3 Precedence resolution

With the discussion of the order of valuation in mind (Section 2.2.6), we say that a linguistic

token precedes another if some referents of the former are valuated before some of the latter.

The task of determining certain linguistic tokens’ precedence over others is called precedence

resolution. We are again agnostic about how this process is carried out, but will use its outputs

to scope indefinites.

Consider the following example. The narrow- and wide-scope readings of a dog, shown

by (3.19a&b), arise respectively from having x valuated after and before each boy i (ignore

λÐ→xy in (3.19a) for a moment).

(3.19) Every boy saw a dog.

a. ∀ boy > ∃ dog b. ∃ dog > ∀ boy

boy

ag

see

∈

ρ

σ
ι

∀

ix thdog

y

λ

boy

ag

see

∈

ρ

σ
ι

∀

ix
thdog

λ

Omitting the cardinality, we introduce the entry for the indefinite article a as a λ-edge:

(3.20) a

λ

0

−1

Precedence resolution then determines an indefinite’s precedence by finding the equivalent of

the negative source in its article. With the semgraph (3.6) for every boy, precedence resolution

finds no equivalent for the −1- source of a in (3.19a), but yields (−1a, 0every boy) in (3.19b), that

is, the −1- source of a equals the dummy of the quantification structure.

The “unresolved precedence” in (3.19a) leaves a λ-edge, like λÐ→xy in (3.19a), out of any

cycle. Such an edge can be dropped without affecting anything, for it is semantically vacuous
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and does not shift the order of valuation. Thus the indefinite article can be treated as lexically

ambiguous between (3.20) and (3.21),

(3.21) a

0

and we can have (3.22) in place of (3.19a).

(3.22) boy

ag

see

∈

ρ

σ
ι

∀

ix thdog

This simpler representation is exactly what we have been using for non-scoping variables. The

lexical ambiguity around an optional λ-edge pending resolution extends to proper names:

(3.23) Joe

a. 0 Joe b.

λ

0

−1

Joe

This is because they may also take scope via a λ-edge, as discussed in Section 2.2.6.

We treat precedence resolution as a non-syntactic process because of its non-determinism,

well exemplified by the almost unrestricted scoping ability of indefinites (see Section 5.2 for

discussion and citations). For example, even as embedded in a relative clause, usually a scope

island, a toymay take scope in all three following ways (see Farkas, 1981):

(3.24) Every boy fed every dog which caught a toy.

a. ∀ boy > ∀ dog > ∃ toy

b. ∀ boy > ∃ toy > ∀ dog

c. ∃ toy > ∀ boy > ∀ dog
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The same consideration leads Jäger (2005, chap. 6) to attribute essentially equal semantics

to anaphors and indefinites. Comparing (3.5a) with (3.20), we can say that for us, the

commonality between anaphors and indefinites lies not in semantics, but in the way they

participate in semantic construction.

That said, precedence resolution is constrained in how it may interact with co-reference

resolution, a topic we mentioned in Section 2.3.3 and will revisit in Section 5.2.4. There might

also be (language-specific) lexical requirements on where the negative head of a λ-edge may

find its equivalent, possibly of a similar nature to the locality and antilocality requirements of

anaphors discussed in Section 3.2.2. In a Tibeto-Burman language Tiwa, Dawson (2020, pp.

148ff) reported, indefinites marked by a particular particle must take widest scope to within

the immediate finite clause that contains them.

Remark. We will see later that the semantics of relativizers like that, which, and who also con-

sists of a λ-edge. That they and the indefinite article share the same semantics is motivated by

the fact that cross-linguistically, it is quite common for wh-interrogatives to morphologically

relate to indefinites. The two differ in how they participate in semantic construction: it is

through syntax that both ends of a relativizer’s λ-edge find their equivalents.

3.3 Syntactic type reduction

As seen from Section 3.1, syntax is essentially a function that sends sequences of tokens to

valid equivalence relations, i.e. partitions on the referents thereof introduced.

We treat this function as a rule-based procedure because at least how arguments bind

into thematic roles is pretty deterministic. Consider a familiar example.

(3.25) A boy walked a dog.

wx ythag

boy walk dog
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x w y

p q

u v

boy dog

thag
0 12

0 0

00
a

boy

walk

dog

a

walk

Figure 3.2: Fusing equivalence for a boy walked a dog.

The desired fusing equivalence is shown in Figure 3.2 as coloring: the 0-source of boymust

equal the agent of walk, and the 0-source of dog its theme. English syntax rejects swapping

the thematic roles of a boy and a dog.

The function of syntax as we think of it finds a natural implementation in categorial

grammars (CGs; Ajdukiewicz, 1935; Bar-Hillel, 1953). CGs manipulate a kind of syntactic

resources known as syntactic types or categories, and syntactic derivations in CGs, known

as type reductions, boil down to matching and canceling identical atomic types or atoms.

If we can establish a proper correspondence between syntactic resources and semantic

resources, that is, between atoms and vertices, then atom matches computed by syntax

translate immediately to desired pairs of equivalent vertices.

The idea of coupling CGs and unification-based semantic construction goes back to

Calder et al. (1988); Zeevat (1988), and finds use particularly in HLDS in Baldridge and

Kruijff (2002); White (2006). The present work sets itself apart in two ways:

i) showing that a semgraph relates to its syntactic type in a non-arbitrary way, which

allows us to partly infer one from the other;

ii) formulating syntax as a partition function, which allows us to abstract away from

derivation details and to some extent, stay neutral to syntactic theories.

We can add that having uniformed outputs of syntax and non-syntactic resolutions enables

their easy combination. In semantic construction, one may wonder where lies the fine line
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between the two. On the one hand, one can push all decision of equivalence to co-reference

resolution and like mechanisms (see Bittner, 2001), if they plausibly explain how word salad

can be made sense of at all, but at the cost of losing much observable determinism; on the

other, syntax can be made to absorb the work of co-reference resolution (e.g. Jacobson, 1999;

Jäger, 2005) and of precedence resolution (e.g. Charlow, 2019), but at the cost of increasing

the intricacy of a rule-based system. It is not our purpose to evaluate the trade-offs, so we

proceed to describe how syntax plays its assigned part.

3.3.1 Syntactic type

The counterparts of parts of speech and phrase structure labels in CGs are syntactic types,

built of arbitrarily chosen atomic types, or simply atoms, and arbitrarily chosen connectives.

We define the set T of types as follows:

T ∶∶= A ∣ T/T ∣ T/T ∣ T↓T ∣ T↑T

That is, T is the least set that includes a set A of atoms and is closed under the binary

connectives /, /, ↓, and ↑. As a notional convention, the letters p, q, ... range over atoms,

the capitals A, B, ... range over types, and all connectives associate to the left (e.g. A/B/C

means (A/B)/C). In this thesis we use three atoms, s (sentence), np (noun phrase), and n

(common noun). Non-atomic types are also called fractions, and therefore A is said to be the

denominator and B the numerator in A/B, B/A, A↓B, and B↑A.

We assign syntactic types to linguistic tokens, and by reducing a sequence of types to a

single one (see Section 3.3.4), we find the types of linguistic expressions of multiple tokens.

It is important to recognize that syntactic types are an encoding of syntactic distribution,

not only because they are distributionally definable (a.o. Clark, 2013) and their assignment

distributionally learnable (e.g. Buszkowski and Penn, 1990; Bisk and Hockenmaier, 2012),

but also because they are thus interpreted.
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In CGs following Lambek (1958), an atomic type is assigned to all linguistic expressions

that share the same distribution. Thus besides noun phrases, proper names and pronouns

are also assigned np by occurring in all contexts noun phrases do.

An expression is of type A/B (resp. B/A) if and only if it yields an expression of type B

when concatenated with an expression of type A on its left (resp. right). For example, see

has type np/s/np, since it takes an object noun phrase on the right and then a subject noun

phrase on the left to yield a sentence. Forward and backward slashes used this way belong to

the so-called Lambek’s notation. Readers familiar with Steedman’s (1996) notation may recall

that B/Ameans the same thing, but B/A replaces Lambek’s A/B, so the type of a transitive

verb is written as s/np/np.

On the other hand, an expression is of type A↓B (resp. B↑A) if and only if it yields an

expression of type B when filling a distinguished gap in (resp. having a distinguished gap

filled by) an expression of type A. For example, the expression in (3.26a) has type s↑np, since

filling its gap with a noun phrase yields a sentence. In (3.26b), every dog has type s↑np↓s,

since it fills the gap of an expression of type s↑np to yield a sentence.

(3.26) a. A boy saw __ in a park.

b. A boy saw every dog in a park.

Thus, in addition to slashes for concatenation, vertical arrows situate a filler in a context, or

as Barker and Shan (2014) put it in terms of programming languages, a continuation. CGs

using such connectives are developed by Barker (2019); Barker and Shan (2014); Morrill

(2011); Morrill et al. (2010) to deal with scope-taking, displacement, and other discontinuity

phenomena in natural language. Here we adopt Morrill et al.’s notation as downward and

upward arrows signify respectively insertion and extraction. The equivalents in Barker and

Shan’s notation are B(A for A↓B and A)B for B↑A. For readability, later we will often write

a type of the form B↑A↓C in Barker and Shan’s “tower notation” as

C ∣ B
A

.
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One can think of the horizontal and vertical bars as the upward and downward arrows,

respectively.

3.3.2 Atom-vertex correspondence

CGs output atom matches in the process of inferring the type of a linguistic expression as a

sequence of typed tokens. To translate atom matches to pairs of equivalent vertices as seen in

Section 3.1, we need to know how atom occurrences correspond to vertices.

We propose a partly deterministic way to set up desired atom-vertex correspondence,

with the deterministic part being this: for any two atoms in a type, whether or not they

correspond to the same vertex is determined by a lexical property of the typed expression in

question. We encode this lexical property with three possible tones of type connectives: the

applicative tone (unmarked), themodificative tone (marked by $), and the coordinative tone

(marked by &). Connective tonality as such elaborates on the casual distinction in the CG

literature between functor and modifier types.

Let us explain what this would mean for the following tokens (with atoms numbered for

ease of reference).

(3.27) a. sail → np1 / s2

b. big → np3 /$ np4
c. and → s5 /& s6 /& s7

For reasons that will later become apparent, we want np1 and s2 in (3.27a) to correspond to

different vertices, np3 and np4 in (3.27b) to correspond to the same vertex, and all three of s5,

s6, s7 in (3.27c) to correspond to different vertices. According to our plan, these should result

from the fact that the connective of (3.27a) is applicative, that of (3.27b) modificative, and

those of (3.27c) coordinative.

We will capture the effect of tones with depth calculation, a deterministic procedure that

assigns each atom of a type a non-negative integer called its depth, so two atoms will have the

same correspondent if and only if they have the same depth. Atom-vertex correspondence
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can then be obtained by putting certain vertices of a token in one-to-one correspondence

with the depths in its type. This is exactly the purpose served by the source label assignment.

We will shortly provide the details and examples for depth calculation in each tone.

The idea of atom-vertex correspondence, though formulated differently, is due to Calder

et al. (1988); Zeevat (1988) and has been applied in Baldridge and Kruijff (2002); White

(2006) to construction of HLDS formulas. In these works, the correspondence between

atoms and “vertices” is entirely arbitrary, directly specified for each linguistic token. So

why do we introduce the determinism of depth calculation and limit lexical arbitrariness to

connective tonality and the source label assignment? The reason is primarily methodological.

The account above implies that a token should have (at least) as many non-negative sources

as there are depths in its type. Since, tonality aside, types encode syntactic distribution, depth

calculation effectively allows us to go back and forth between the syntactic distribution and

semantics of a linguistics expression, partly inferring one based on independent knowledge

about the other.

The success of distributional semantics demonstrated by modern language models (see

Section 1.1) should have convinced us of a strong connection between syntactic distribution

and semantics. Expressing it in symbolic terms, depth calculation narrows down the hy-

pothesis space for aligning syntactic and semantic resources and makes testable predictions.

For example, consider the following type of every (which we will replace with a continuized

analogy, but that does not matter here).

(3.28) every→ s1 / np2 / s3 / n4

a. every

⟨scope
⟩

⟨restr⟩

b. ρ

ισ ∈

2 3

0 1∀

HLDS (White, 2006) pairs with this type a quantification structure (3.28a) of three vertices by

associating np2 and n4 with the same vertex. According to depth calculation, however, all four

atoms will correspond to distinct vertices, so we expect a quantification structure containing
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at least four vertices as in (3.28b). Section 2.3.2 has gathered the empirical considerations in

favor of the latter.

3.3.3 Depth calculation

We introduce a parameterized function di , j that tags each atom of a type with a superscript.

The depths in a type A are given by d0,0(A). Readers may jump to Section 3.3.4 if they wish

to see established atom-vertex correspondence in use, and return to this section when they

want to work out the details for themselves.

3.3.3.1 Applicative tone Let ∣ stands for any applicative connective, B the numerator, and A

the denominator. Define

di , j(p) = pi ,

di , j(B ∣A) = di , j+1(B) ∣ di+ j+1,0(A).

We show how this works with the types of a transitive and a quantificational determiner:

(3.29) a. d0,0(np/s/np) = d0,1(np/s) / d1,0(np)

= d2,0(np) / d0,2(s) / d1,0(np)

= np2 / s0 / np1

b. d0,0(s↑np↓s/n) = d0,1(s↑np↓s) / d1,0(n)

= d2,0(s↑np) ↓ d0,2(s) / d1,0(n)

= d2,1(s) ↑ d3,0(np) ↓ d0,2(s) / d1,0(n)

= s2 ↑ np3 ↓ s0 / n1

(Check the source labels of walk in Figure 3.2 and every in (3.28b) for the corresponding

vertices of these atoms.)

The intuition behind this calculation is that in the applicative tone, depths indicate the

order in which arguments are received by a functor. Since that order is usually a reflection of
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relative obliqueness, depth calculation generalizes the latter to cases where a comparison of

edge labels is not conventionally defined. For example, from the depths in (3.29b) we find

that the ι-edge is less oblique than the σ-edge and thus count donkey cataphora (see Barker

and Shan, 2014, p. 94) among the weak crossover examples in Section 3.2.2:

(3.30) *If hei walks it j, a boyi feeds a dog j.

v1qv2

x1

y1

x2

y2

th

agag

th

=

=

ι

ρ∈

σ

boy

feed

dog

walk

∀

(The problematic parallel paths are q → v1 → x1 → x2 ∥ q → v2 → x2 and q → v1 → y1 → y2 ∥

q → v2 → y2.)

3.3.3.2 Modificative tone The action of di , j on a modificative connective ∣$ is as follows,

where B denotes the numerator and A the denominator as before:

di , j(B ∣$ A) = di , j(B) ∣$ di , j(A)

In particular, the modificative tone produces duplicate depths for the numerator and denom-

inator when they are identical, as shown by the lexical entry of an adjective:

(3.31) lucky→ n0 /$ n0

λ

th
lucky

0

Having the numerator and denominator of a modifier share corresponding vertices ensures

the same atom matches for a modifiable type, regardless of the presence of that modifier (see

(3.41) for example).
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We give the lexical entries of another two tokens closely related to modification. Whereas

in (3.31) an adjective carries a λ-cycle of its own, a relativizer contributes a λ-edge to be

contained in a cycle once its ends find equivalents through type reductions:

(3.32) which→ np01 /$ np02 / (s13 ↑ np04)

λ

0

1

Here it is crucial for the gapped noun phrase, so to speak, to be identified with the noun

phrase being modified, hence np1, np2, np4 all correspond to the tail of the λ-edge. But depth

calculation yields instead

d0,0(np1 /$ np2 / (s3 ↑ np4)) = np
0
1 /$ np

0
2 / (s

1
3 ↑ np24),

where np4 refers to a vertex not existing. A fix we use is to take modulo by the sort of the

semgraph (the number of non-negative sources it actually has). Such a post-processing might

seem a setback for using depth calculation to predict the sorts of semgraphs from their types,

though fortunately (3.32) is the only case known where it is needed. In case one wonders,

a relativizer usually gets typed as n/$n/(s↑np) or so (e.g. Morrill, 2011, pp. 110ff) on the

assumption that relative clauses are noun modifiers. But if we want to treat them as iterator

filters following the remark of Section 2.2.4, they should serve as noun phrase modifiers in

accordance with (3.32). The two views can also be differentiated by plural predication:

(3.33) [Every boy and every dog] who hugged sailed.

Given the semantics of hug, the relative clause above has to sit external to either conjunct

(see Section 4.2.3.4 for discussion).

As for the gap in a relative clause, a somewhat traditional view treats it as a silent linguistic

token to be typed as usual. The following lexical entry uses the type given in Barker and Shan

(2014, p. 39):
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(3.34) __→ (s0 ↑ np1) ↓$ (s0 ↑ np1)

0 1

A gap is so typed because when it fills the gap in a sentence missing a noun phrase (e.g.

(3.26a)), the latter remains unchanged. On the other hand, its semgraph has no edge but two

vertices that are both sources. It is easy to see that an all-source edgeless graph is an identity

element with respect to parallel composition, provided all its source labels are also found in

the other graph. Actually we have already encountered an example of this kind, the indefinite

article (3.21).

3.3.3.3 Coordinative tone Coordinators can assume any type of the form A/& A/& A in

CGs (e.g. Steedman, 2011, p. 91), so as to capture the fact that coordination is polymorphic,

able to join any expressions identically typed to yield one typed alike. Depth calculation in

the coordinative tone is tailored specifically to such types:

di , j(A/& A/& A) = di+ j+2,∣A∣−1(A) /& di , j+2∣A∣(A) /& di+ j+1,1(A),

where ∣A∣, called the size of A, is the number of distinct depths given by d0,0(A).

The effect is for the left and right denominators and the last numerator to each retain

a disjoint set of depths, with those of the left denominator greater than those of the right

denominator, as shown by the following examples:

(3.35) a. d0,0(s /& s /& s)

= d2,0(s) /& d0,2(s) /& d1,1(s)

= s2 /& s0 /& s1

b. d0,0((np/s) /& (np/s) /& (np/s))

= d2,1(np/s) /& d0,4(np/s) /& d1,1(np/s)

= (np4/s2) /& (np5/s0) /& (np3/s1)
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c. d0,0((np/s/np) /& (np/s/np) /& (np/s/np))

= d2,2(np/s/np) /& d0,6(np/s/np) /& d1,1(np/s/np)

= (np6/s2/np5) /& (np7/s0/np8) /& (np4/s1/np3)

To justify this calculation, below we provide a lexical entry of each type alongside an example

of its use. As a matter of notation, we abbreviate np/s and np/s/np by vp and vt.

(3.36) a. and→ s2 /& s0 /& s1 Joe surfed and Ben sailed.

⊃⊃

2 0 1

Ben

ag

surf ⊃⊃

ag

sail

Joe

b. and→ vp /& vp /& vp Joe surfed and sailed.

⊃⊃

2 0 1

==

4 5 3

=

ag

surf ⊃⊃

ag

sail

Joe

=

c. and→ vt /& vt /& vt Joe rented and sank a boat.

⊃⊃

2 0 1

==

6 8 4

==

5 7 3

=

ag

rent ⊃⊃

ag

sink

Joe

=

boat
thth

= =

Now one can easily relate depth calculation in the coordinative tone to the way we represent

coordination in semgraphs. As shown in (3.36a-c), to each coordinator type A/& A/& A there

corresponds a token whose semgraph consists of

i) a unique triple of the form ●2 ← ●0 → ●1 for the semantics of coordination (a union if a

conjunction, a choice if a disjunction),

ii) and as many as ∣A∣ − 1 triples of the form ●i → ●i+∣A∣−1 ← ●i−∣A∣+1 for argument sharing.
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How these triples are divided evenly among the left and right denominators and the last

numerator should be clear from a comparison of (3.35a-c) with (3.36a-c).

A nice consequence of the depths we found is that one coordinate of the coordination

structure is made less oblique than the other. For example, v1 is less oblique than v2 in (3.36)

by being associated with a greater depth. We can thus follow up on the discussion of Section

3.3.3.1 with cataphora in coordination, as illustrated by the following example:

(3.37) *Hei sailed and a boyi returned.

ag

sail ⊃⊃

ag

return

boy

v0

x2
=

(v0 → v2 → x2 → x1 ∥ v0 → v1 → x1)

(Also, the returning boy need not be the sailor unless x2 take scope over v0, as discussed in

Section 2.2.6.)

In conclusion, it should be mentioned that connective tonality as discussed here is to be

distinguished from connective modality as discussed in Baldridge and Kruijff (2003); Hepple

(1990); Jacobson (1990); Moortgat (1997). Whereas modes refer to different strategies for

grammatical composition and relate to type reductions (e.g. slashes for concatenation vs.

arrows for continuation), tones play no roles beyond those in atom-vertex correspondence.

3.3.4 Type reduction

We now turn to type reductions to compute atom matches from a sequence of typed tokens.

With atom-vertex correspondence in place, such matches immediately translate to pairs of

equivalent vertices.

3.3.4.1 Rules A type reduction Γ → A relates a finite sequence Γ of types, denoted by capital

Greek letters, to a single type A. A type reduction is also called a sequent, where Γ is said to be

the antecedent and A the succedent. We read it as a statement that an antecedent is reducible

to a succedent, or conversely, the latter is provable from the former.
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CGs specify rules for deriving valid type reductions. There are mainly two ways to do

this and present derivations correspondingly. In the first place, one can curate a system of

n-ary reduction rules (i.e. templates) and apply them successively to reduce a sequence. This

approach leads to combinatory CGs (CCGs; e.g. Steedman, 1992, 1996, 2011; Szabolcsi, 1992),

an immediate extension of the original works by Ajdukiewicz (1935); Bar-Hillel (1953). The

bulk of this thesis takes the combinatory approach for its simplicity: it organizes syntactic

derivations in tree structures that mirror the phrase structures familiar from constituency

grammars. Thus combining types can be thought of asmerging constituents, where reductions

rules serve as a phrase labeling method in the sense of Chomsky (2013).

Alternatively there is the perspective of logical calculi. Following Lambek (1958), type

logical grammars (TLGs) are the branch of CGs where rules of inference operate directly with

sequents, forwarding premises to a conclusion at each step (e.g. Barker and Shan, 2014; Kubota

and Levine, 2020; Moortgat, 2011; Morrill, 2011; Moot and Retoré, 2012). In Appendix 3.A we

present a TLG implementation of type reductions that produces atom matches nonetheless.

This is to demonstrate that our view of syntax-semantics interface detaches one from the

details of syntactic theories, as far as semantic construction is informed of clues to unification.

Now we introduce a CCG based on Barker and Shan (2014, sec. 12.2) and White et al.

(2017) with the reduction rules given below (recall that connective tonality is irrelevant here).

Definition 3.1. Continuized CCG.
Base rules

function application: A, A/B → B B/A, A→ B

switched application: A, A/B/C → B/C C/(B/A), A→ C/B

Tower rules

lowering: B ∣ A
A
→ B

lifted lowering: E ∣ D
B
→ E ∣ D

C
where B → C is a (lifted) lowering

lifted application: B, F ∣ E
C
→ F ∣ E

D
F ∣ E
B

, C → F ∣ E
D

where B, C → D is an application



96

Of these unary rules are conventionally called type-shifters and binary rules combinators. Let

us walk through them in action.

All CGs evolve from function application, which, like all other combinators, comes

in a pair. The first rule applies A/B to A on its left, and the second B/A to A on its right,

both resulting in type B. The following derivation of a familiar sentence illustrates function

application in both directions.

(3.38)
a

np1/$n2
boy
n3

np1

walked
np4/s5/np6

a
np7/$n8

dog
n9

np7
np4/s5

s5
In CCG derivations, each rule instance is indicated by a horizontal bar, separating the

antecedent on the top and the succedent on the bottom. In (3.38), indefinite articles apply to

nouns on the right. The transitive applies to the object on the right, resulting in a verb phrase

that applies to the subject on the left.

By function application A/B/C would combine with C on its right, and A/(B/C) with A

on its left. Switched application, however, allows the former to combine with A on its left to

yield B/C and the latter to combine with C on its right to yield A/B. This is useful in handling

improper constituents, as illustrated by the following example:

(3.39)
Joe
np1

washed
np2/s3/np4

s3/np4

and
(s5/np6)/&(s7/np8)/&(s9/np10)

Ben
np11

shaved
np12/s13/np14

s13/np14
(s5/np6)/&(s7/np8)

s7/np8
himself
np15

s7
Here Joe washed and Ben shaved, though conjoined, are traditionally not considered con-

stituents. Switched application allows a subject to combine with a transitive to yield a conjunct

of type s/np.

Remark. Switched application is a composite of function application and the so-called switch-

ing rule

switching: A/B/C ⇌ A/(B/C).
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It should be distinguished from function composition, a combinator used together with type-

raising in commonly known CCGs (e.g. Steedman, 1996) to serve improper constituents,

scope ambiguity, and displacement:

function composition: C/A, A/B → C/B B/A, A/C → B/C ,

type-raising: B → A/B/A B → A/(B/A).

We are not using these partly because continuation provides a better coverage for scope-

taking and displacement (see Barker and Shan, 2014, chap. 11), partly because type-raising

is unbounded in applicability, introducing atoms that would break existing atom-vertex

correspondence. Following Dowty (1988); Steedman (1991), our take is to allow certain

tokens to be lexically ambiguous between plain and raised types (including their continuation

analogy, A↑B↓A). This not only facilitates proof search automation, but also saves the need

of graph editing (e.g. by adding vertices) to maintain atom-vertex correspondence.

The tower rules are devised by Barker and Shan (2014) for reasoning about continuations,

a grammatical composition mode that relates an expression to its wrapping context. In the

base case, lowering shifts A↑A↓B down to B (think of A↑A as a gap left by extracting an

expression of type A away from itself: a filler of gap yielding B is by definition of type A↑A↓B,

but it should also have type B). The derivation of a relative clause illustrates its use.

(3.40)

who
np6/$np7/(s8↑np9)

—
s12↑np13 ∣ s10

np11

walked a dog

np14/s15/np16 np17/$n18 n19

⋮ ⋮ ⋮

np14/s15

s12↑np13 ∣ s10
s15
⇓

s12↑np13
np6/$np7

For readability ⇓ replaces a horizontal bar to indicate lowering. After combining walked a
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dog with a gap by lifted application (see below), reducing the gapped clause’s type to s↑np (i.e.

a sentence missing a noun phrase) allows it to combine with the relativizer who.

Lifted lowering is defined recursively: if B shifts to C by lowering, lifted or not, then

D↑B↓E shifts to D↑C↓E. While the use of this rule is best seen in our treatment of quantifier

scope in Section 5.1, the intuition behind is that the local behavior of an expression (as

encoded by a tower’s lower part) is independent of its continuation (as encoded by a tower’s

top layer).

The same intuition carries over to lifted application. If combining B and C through plain,

switched, or lifted application yields D, then putting either B or C under a continuation layer

F ∣ E merely passes it on to D. Using this rule, the following example extends (3.40) to a full

sentence.

(3.41)
every boy

s3 ∣ s1
np2
/n4 n5

s3 ∣ s1
np2

who — walked a dog

np6/$np7/(s8↑np9)
s12↑np13 ∣ s10

np11
np14/s15/np16 np17/$n18 n19

⋮ ⋮ ⋮ ⋮ ⋮

np6/$np7

s3 ∣ s1
np7

fed it

np20/s21/np22 np23
np20/s21

s3 ∣ s1
s21
⇓

s3

Lifted application happens twice in this derivation, first when the relative clause applies

to every boy, then when fed it applies to its subject. The continuation layer introduced by

every persists until the tower s↑s↓s is finally lowered. Note the role played by the modifier

here, that is, the relative clause. On the one hand, np6 is canceled by np2, which corresponds

to the iterator of the quantifier over boys, and on the other, np7 is canceled by np20, which

corresponds to the agent of feeding. Thus by assigning np6 and np7 the same vertex, np2 and

np20 are related as they would be were the relative clause not there.



99

3.3.4.2 Atommatches From a derivation or proof tree like (3.38) we can gather the reduction

np1/$n2, n3, np4/s5/np6, np7/$n8, n9 → s5,

where the antecedent comprises all the terminals, and the succedent equals the root. We

can also gather the atom matches that derive this reduction, if we notice that all rules in

Definition 3.1 eventually match and cancel a pair of some A occurrences.

Define the setm(A,A) of atom matches produced by a rule as the set of atom pairs (order

irrelevant) identically situated therein. That is,

m(A,A) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

{(p, p)} for any atom A = p,

m(B, B) ∪m(C ,C) for any fraction A = B ∣C .

The union of such sets from all derivation steps gives us the atom matches produced by a

derivation or proof. Given atom-vertex correspondence established in Section 3.3.3, such atom

matches translate immediately into equivalence among vertices (more precisely, sources).

For example, (3.38) produces the matches in (3.42a). Using the depths calculated earlier,

we obtain (3.42b), which yields exactly the equivalence relation illustrated in Figure 3.2.

(3.42) a
np01 /$n02

boy
n03

walked
np24/s05/np16

a
np07/$n08

dog
n09 → s05

a. (np01 , np24), (n02 , n03), (np16, np07), (n08 , n09)

b. (0a, 2walk), (0a, 0boy), (1walk, 0a), (0a, 0dog)

We have arrived at a rather simple presentation of syntax. By listing the ways of matching

atoms in a type reduction, we abstract away from the details of syntactic derivations while

preserving their essentials. This idea is formally articulated in the studies on proof nets (for

Lambek calculus, de Groote, 1999; Lamarche and Retoré, 1996; Pentus, 1998, 2010, a.o.; for

continuized TLGs, Moot, 2016, 2020), which show that atom matches characterize what
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⊃

⊃

=

=

ag

th

wash

th

agshave

=

=

Joe

Ben

0 2

1

1

0 2

2

0

1

−1

0

−2

5
4

3

0

0
Joewash

and

shave Ben

himself

Figure 3.3: Fusing equivalence for Joe washed and Ben shaved himself.

meaningfully distinguishes derivations apart. The point can be intuitively made here as

different sets of atom matches imply different partitions of discourse referents.

Now it is easy to combine fusing equivalence decided by syntactic and non-syntactic

means. For example, whereas (3.39) produces the matches in (3.43a) and therefore the

equivalence in (3.43b), co-reference resolution is responsible for the equivalence in (3.43c).

Together, (3.43b&c) yield the partition in Figure 3.3. See (3.36) for the lexical entries for

coordinators. The semantics of a split anaphor contains multiple equality edges tailed by

negative sources; cf. (3.5a).

(3.43) Joe
np01

washed
np22/s03/np14

and
(s25/np46)/&(s07/np58)/&(s19/np310)

Ben
np011

shaved
np212/s013/np114

himself
np015

→ s07

a. (np01 , np22), (s03 , s25), (np14, np46), (np58, np015),

(s19, s013), (np310, np114), (np011, np212)

b. (0Joe, 2wash), (0wash, 2and), (1wash, 4and), (5and , 0himself ),

(1and , 0shave), (3and , 1shave), (0Ben, 2shave)

c. (−1himself , 0Joe), (−2himself , 0Ben)

To see another example, consider the wide-scope-indefinite reading of (3.44), where



101

ρ

ι
σ

∀

∈

boy

ag walk

th

=

agfeed

th

λ
dog

λ
0 1

32

−1

0
0

1

02

01

10

0

0

1

2

0 −1

boy

every

feed

it

dog

walk

—

who

a

Figure 3.4: Fusing equivalence for every boy who walked a dog fed it.

we talk about a specific dog always fed by its walkers. The equivalence in Figure 3.4 is due

to (3.41) producing (3.44a) and its translation (3.44b), and (3.44c) from co-reference and

precedence resolution. Note how the λ-edges contributed by a and who find the equivalents

of their heads differently, and how donkey anaphora is treated as usual co-reference. See

(3.32) and (3.34) for the lexical entries of relativizers and gaps.

(3.44) every
s21↑np32↓s03/n14

boy
n05

who
np06/$np07/(s18↑np09)

—
(s010↑np111)↓$(s012↑np113)

walked
np214/s015/np116

a
np017/$n018

dog
n019

fed
np220/s021/np122

it
np023 → s03

a. (s21 , s021), (np32, np06), (n14, n05), (np07 , np220),

(s18, s012), (np09, np113), (s010, s015), (np111, np214),

(np116, np017), (n018, n019), (np122, np023)

b. (2every, 0feed), (3every, 0who), (1every, 0boy), (0who, 2feed),

(1who, 0−), (0who, 1−), (0−, 0walk), (1−, 2walk),

(1walk, 0a), (0a, 0dog), (1feed , 0it)

c. (−1it , 0dog), (−1a, 0every)

Obviously, if one inspects the subtrees of a syntactic derivation, one obtains the type
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reductions pertinent to semantic construction up to certain stages. Take the following

examples from (3.41) or (3.44), with the source labels adapted to the new depths:

(3.45) a. every
s21↑np32↓s03/n14

boy
n05 → s11↑np22↓s03

b. a
np017/$n018

dog
n019 → np017

q r

is

ρ

ισ ∈

∀ boy0

21

�1

�3�2

y

x

λ

dog

−1

0

For phrases as such that appear frequently enough, we will often use them as if they were

tokens.

We have described all the machinery for constructing semgraphs at the syntax-semantics

interface. Upon reflection, recall that syntactic types encode distribution. Given their crucial

roles in determining atommatches in type reductions, onemay conceive a symbolic argument,

if ever so vague, for the learnability of semantic compositionality from distributional cues.

3.4 Automation

To facilitate future exploration, we provided a Python implementation of the present syntax-

semantics interface, accessible and documented at https://git.io/JtUTm.

The automated process of semantic parsing consists of the following steps:

i) take as input a string of tokens with part-of-speech (POS) tags, which are used to

look up typed semgraph templates in a JSON lexicon, and a reduction goal (i.e. the

succedent type);

ii) search all valid sets of atom matches deriving the type reduction via a specified CG

calculus;

iii) perform graph unification based on fusing equivalence given by atom matches as well

as non-syntactic resolution.

One can then visualize the composed semgraphs, inspect the underlying atom matches with

their proofs, and export these outcomes to LATEX formats.

https://git.io/JtUTm
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Noticeably, our syntax-semantics interface renders semantic construction separable in

time from syntactic derivation, even if they can proceed in parallel. This design allows us

to pass syntax as a function argument: where we implemented a continuized CCG with

the Cocke-Kasami-Younger algorithm (well-known for constituency parsing; see Jurafsky

and Martin, 2020, chap. 13), a continuized TLG fragment with naive search and caching

(practically efficient), and a product-free Lambek calculus with proof nets in Pentus (2010),

users are welcome to substitute in their own CG recipes.

3.A Type logical alternative

This appendix demonstrates a logical approach to producing atom matches from type re-

ductions. We present a (product-free associative) continuized TLG based on Barker (2019);

Barker and Shan (2014, chap. 13) and Morrill et al. (2010); Morrill (2011, chap. 6) in terms of

sequent calculi. To this end, we generalize Γ in sequents of the form Γ → A to “structures”.

Let ○ denote a constant (that is, a zero-place structural connective) called a hole. Define

the set B of terms and the set S of structures as follows:

B ∶∶= T ∣ ○ ∣ SS

S ∶∶= Λ ∣ BS

That is, a term is either a type, a hole, or a power, whose base and exponent are structures,

while a structure is a finite sequence of terms (Λ stands for the empty sequence). We write

Γ[∆] for a structure where ∆ occurs as a substructure. Our continuized TLG has the following

axioms and rules of inference.

Definition 3.A.1. Continuized TLG.
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Axiom A→ A

Logical rules Structural rules

AΦ → B
Φ → A/B

(\R)
Φ → A Γ[B]→ C
Γ[ΦA/B]→ C

(\L)
Γ[(Φ ○Ψ)∆]→ A
Γ[Φ∆Ψ]→ A

(∨)

ΦA→ B
Φ → B/A

(/R)
Φ → A Γ[B]→ C
Γ[B/AΦ]→ C

(/L)
Γ[Φ∆Ψ]→ A

Γ[(Φ ○Ψ)∆]→ A
(∧)

AΦ → B
Φ → A↓B

(↓R)
Φ → A Γ[B]→ C

Γ[ΦA↓B]→ C
(↓L)

ΦA → B
Φ → B↑A

(↑R)
Φ → A Γ[B]→ C

Γ[B↑AΦ]→ C
(↑L)

Starting with axioms, a type reduction is derived by forwarding premises to conclusions

using one of these inference rules at each step. Here is a TLG proof of (3.38).

(3.A.1)
s5 → s5

np1 → np4 n3 → n2
(/L)

np1/$n2 n3 → np4 (\L)
np1/$n2 n3 np4/s5 → s5 np7 → np6 (/L)

np1/$n2 n3 np4/s5/np6 np7 → s5 n9 → n8
(/L)

np1/$n2 n3 np4/s5/np6 np7/$n8 n9 → s5

a boy walked a dog

It is easy to see that any non-atomic axiom is derivable from atomic ones as such. Thus we

define the atom matches produced by a TLG proof as the set of atom pairs (order irrelevant)

given by its axioms and consider two proofs equivalent if they produce the same matches.

Clearly, then, (3.A.1) yields the same matches as in (3.42).

The following theorem establishes that if we cap the number of holes anywhere, we can

compute all valid sets (if any) of atom matches that derive a type reduction.

Theorem 3.A.1. The TLG is decidable if at most m ≥ 0 holes are allowed in any sequent.

Proof. Consider any sequentN0 = Γ → A. IfN0 has no (type) connective, then it is derivable

if and only if it is an axiom.

SupposeN0 has connectives. Its finite proof trees (if any) can be built thus: we start with

the set of partial proof trees of height 2 obtained by deriving N0 via some inference rule.



105

Repeatedly, whenever a tree T of height n has a connective-free terminal that is not an axiom,

T is discarded; otherwise given a terminalNi with connectives, we replace T with trees of

height n + 1 generated by derivingNi . This process continues until our working set becomes

empty or all remaining trees have only axiom terminals. The number of partial proof trees of

a finite height is obviously finite, so for the described process to terminate, it suffices to show

that trees of an infinite height can be avoided. This in turn follows if we only allow paths

fromN0 terminating in finite steps.

Consider a pathN0, r1,N1, r2,N2, ... where ri derivesNi−1 fromNi . If ri is a logical rule,

Ni has less connectives than Ni−1. But if ri is a structural rule, Ni−1 and Ni have an equal

number of connectives. Given finitely many connectives inN0, the number of logical rules is

bounded. The path will be finite if the number of structural rules is also be bounded. We

show this is the case.

Let ri1 , ri2 , ... (i1 < i2 < ...) be the structural rules in the path. Since any sequent has at

mostm holes, after at mostm consecutive rules of the same direction, the reverse must follow.

Whenever a reversal from ri j = (∨) to ri j+1 = (∧) occurs, ri j+1 must target a hole in N0 or

one created by some rik = (∨) (k ≤ j). In the latter case, we can assume i j + 1 < i j+1 (since if

i j + 1 = i j+1, the path can be contracted by removing rik ,Nik and ri j+1,Ni j+1), which means

that ri j+1 is a logical rule.

But we know that the number of logical rules is bounded andN0 has finitely many holes.

Therefore the sequence ri1 , ri2 , ... of structural rules must terminate.

In practice, it is much more convenient to use a fragment of the present TLG, where the

following composites replace the structural rules and the logical rules involving continuation

arrows (for the first column, cf. Barker and Shan, 2014, chap. 17).

Definition 3.A.2. Fragment of TLG.
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ΦAΨ → B
Φ ○Ψ → B↑A

(∧↑R)
Φ → A B → C
Φ → B↑A↓C

(↑L↓R)
A→ C D → B
C↓D → A↓B

(↓L↓R)

Φ ○Ψ → A Γ[B]→ C
Γ[ΦA↓BΨ]→ C

(↓L∨)
Φ → A B → C
Φ → C↑(A↓B)

(↓L↑R)
A→ C D → B
D↑C → B↑A

(↑L↑R)

It is with this fragment that we illustrate the role of holes in the TLG. In the relative clause

taken from (3.40), we replace the silent token (3.34) with a hole.

(3.A.2)

np6 → np6 np7 → np7 (\L)
np6 np6/$np7 → np7 (\R)
np6/$np7 → np6/$np7

s15 → s8 np9 → np14 np17 → s16 n19 → n18

⋮ ⋮ ⋮ ⋮

np9 np14/s15/s16 np17/$n18 n19 → s8
(∧↑R)

○ np14/s15/s16 np17/$n18 n19 → s8↑np9 (/L)

np6/$np7/(s8↑np9) ○ np14/s15/s16 np17/$n18 n19 → np6/$np7
who __ walked a dog

The hole serves not so much as a typed token as a “punctuation”; it makes virtually no

semantic contribution since there is no atom to correspond to graph vertices. But compare

the produce of (3.A.2) and the matches found in (3.44) (which can be reproduced using the

TLG):

(3.A.3) a. np6/$np7/(s8↑np9),
s012↑np113 ∣$ s010

np111
, np14/s15/np16, np17/$n18, n19 → np6/$np7

b. (s8, s012), (s010, s15), (np9, np113), (np111, np14),(np16, np17), (n18, n19)

With s012 coinciding with s010 and np113 with np111, (3.A.3b) eventually equates s8 with s15 and np9

with np14. Thus holes and typed gap tokens are equivalent for the purpose of deciding fusing

equivalence.

Holes can be justified to replace types of the following general form. From (∧↑R) it

immediately follows that

○→ A ↑ A

holds for any A. The so-called cut theorem then allows us to substitute ∆ into Γ[A] → B

whenever ∆ → A. Given its special status in TLGs and more generally in logical calculi,
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we show this theorem holds for Definition 3.A.1, simplifying Lambek’s (1958) presentation

somewhat.

Lemma 3.A.1. (Normalization) For any proof of Γ → Awhere A is non-atomic, an equivalent

proof that ends with some R-rule exists.

Proof. By induction on the length of derivation.

Theorem 3.A.2. (Cut)
∆ → A Γ[A]→ B

Γ[∆]→ B

Proof. We proceed by induction on the degree of cuts, defined as follows:

the degree #(⋅) of a term, structure, sequent is the number of type connectives it contains;

the degree of a cut as above is #(∆) + #(Γ[A]→ B).

Consider the proof tree of Γ[A]→ B. If A is atomic, we can replace the axiom A→ Awith

the proof tree of ∆ → A and continue the derivation as before.

But if A is non-atomic, we can find the step at which its main connective is introduced by

some L-rule. With A = C/D (the cases of other connectives are similar), we have

Φ → C Π[D]→ E
Π[ΦC/D]→ E

(\L)

By the normalization lemma, ∆ → C/D is derivable from C∆ → D. Thus the induction

hypothesis implies

Φ → C
C∆ → D Π[D]→ E

(Cut)
Π[C∆]→ E

(Cut)
Π[Φ∆]→ E

It can be shown that both cuts are of a smaller degree than the original one. Henceforth we

continue the derivation as before.
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Chapter 4

Topics in Plurality

We are in a position to consider the empirical applications of the graph formalism developed

so far. In this chapter, we discuss a few selected topics in plurality, with a focus on various

ways of distributing predication over a plurality and creating a plurality with conjunction.

As we will see, distributivity in various forms can be expressed in terms of subtle variants

of quantification structures. The fact that they all share more or less the same syntactic type

attests to the convenience of having partial determinism in atom-vertex correspondence. Our

syntax-semantics interface allows us to easily capture the long-existing intuition that con-

junctions across categories all create a plurality of some kind, while offering new perspectives

on some well-known compositional challenges.

4.1 Distributivity

We have seen in Section 2.2.3 that plural predication relates events and participants in

plurality in an underspecified way (Scha, 1981). Thus the following example describes a

variety situations, where a number of adoptions come down to five boys being the agents and

six dogs the themes; see (2.37).

(4.1) Five boys adopted six dogs.

This is the so-called cumulative reading of (4.1), of which the collective reading (where there

is only one adoption) is a special case.
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On the other hand, the distributive readings distribute predication over a plurality (see

Nouwen, 2016;Winter and Scha, 2015 for a review). For (4.1), thismeans attributing a property

of “adopting six dogs” to each boy, or a property of “being adopted by five boys” to each dog:

(4.2) a. Five boys each adopted six dogs. (≥ 5 adoptions)

b. Six dogs were each adopted by five boys. (6 adoptions)

Although for sentences like (4.1), distributive predication over a plural subject as in (4.2a)

is traditionally considered a more accessible reading than that over a plural object as in

(4.2b) (see Reinhart, 2006, sec. 2.7.3), an experimental study by Križ and Maldonado (2018)

nonetheless reports the marginal availability of the latter. Since the adopted dogs may vary

across the boys (resp. the adopting boys may vary across the dogs), we can be sure that

distributive readings are distinct from cumulative ones.

Treating numerals like (4.3) as indefinite articles specified for cardinality, we can easily

construct semgraphs for plural predication or cumulativity, in a manner similar to (3.38) and

(3.42).

(4.3) five→ np0/$n0

a.

#

5

0

b.

#

5

0−1 λ

The question we deal with in this section is how distributive predication should be represented

and constructed.

4.1.1 Via quantification

The characterization of distributivity makes clear its iterative or quantificational nature. To

implement distributivity, we can naturally introduce a quantification structure with a silent

linguistic token, called the distributor or dist, that takes a plural nominal to specify the

restrictor. This is essentially the idea proposed in Kroch (1974); Link (1983).
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Starting with the distributivity over subjects, we give the following the lexical entry for

dist:

(4.4) dist→ np1/(s0/(np3/s2))

ρ

ισ ∈

∀
0 1

2 3

The similarity between (4.4) and the lexical entry (3.27b) for every is obvious. In fact, s/(np/s)

is a concatenation analogy of s↑np↓s commonly used to type subject quantifiers in CCGs (e.g.

Steedman, 2011, p. 110).

How dist works can be illustrated with the following reduction.

(4.5) five boys dist adopted six dogs

np01 np12/(s03/(np34/s25)) np16/s07 → s03
#

5
boy

0
adopt

6

#dog

ag

th

0 1

According to (4.4) dist first combines with a subject and then with a predicate, and the

switched application rule (see Definition 3.1) allows that order to be reversed. In either case,

we find the same atom matches in (4.6a) and construct (4.6b) as desired.

(4.6) a. (np01 , np12), (np34, np16), (s25 , s07)

b. ρ

ισ ∈

∀ #

5
boy

adopt

6

#dog

ag

th

It is convenient for dist to be able to associate to either side, especially when the syntactic

or semantic context seems to favor one way over the other. For example, in (4.7a), dist sits
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within one verbal conjunct; we do not want to broadcast the effect of distributivity to the

other as in (4.7b), assuming it makes little sense for each single boy to meet.

(4.7) Five boys met and adopted six dogs.

a. Five boys [met and dist adopted six dogs].

b. *Five boys dist [met and adopted six dogs].

Similarly, dist should be confined to one nominal conjunct as in (4.8a), if we are to derive

the reading of (4.8) where each dog hugged each boy (see Section 4.2.3.3).

(4.8) Six dogs and every boy hugged.

a. [Six dogs dist and every boy] hugged.

b. *[Six dogs and every boy] dist hugged.

In the literature examples of verbal conjunction like (4.7) are often cited to locate dist

exclusively in predicates (a.o. Dowty, 1987; Lasersohn, 1995, chap. 7). Less frequently are

examples of nominal conjunction like (4.8)mentioned tomotivate the need for a nominaldist

in addition (Winter, 2001, sec. 6.3). Yet it seems equally reasonable to take both as arguing

for dist’s versatility, made possible by our unification-based syntax-semantics interface (in

the functional paradigm, a nominal decorator has to be of a different semantic type and thus

different semantics from a verbal decorator).

Now, to also take distributivity over objects into account, we can continuize the quantifier

part of the type of dist, while leaving the semantics unchanged (it is easy to see that the type

in (4.4) would not work here):

(4.9) dist→ np1/s
0 ∣ s2
np3

We omit illustrating how this can be used to derive both readings in (4.2) for (4.1), but notice

that it also handles distributive predication in ditransitive sentences as such:
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(4.10) Five boys gave six dogs dist a treat.

np3/s0/np2/np1

ag

thgo

0 3

1 2

give

A complication of (4.9), though, is that the CCG in Definition 3.1 does not let it combine

with a predicate. To obtain (4.11b) from (4.11a), one may want to employ a “lifted” function

composition rule, or consider a continuized TLG instead (see Appendix 3.A).

(4.11) a. np1/
s4 ∣ s2
np3

, np5/s6 → np1/s4

b. (s2, s6), (np3, np5)

The distributivity in its present form is said to be atomic in that the underlying quantifica-

tion iterates through singletons. There are three kinds of examples sometimes discussed in

support of a non-atomic distributivity (a.o. Gillon, 1987; Schwarzschild, 1996). (4.12) gives

one of each kind followed by a situation it is meant to describe.

(4.12) a. These eggs cost $4. (Nouwen, 2016, p. 276)

(Each dozen costs this much.)

b. Joe, Ben, and Ed collaborated.

(Joe and Ben collaborated, so did Ben and Ed.)

c. Two dogs and two cats met.

(Two dogs met and two cats met.)

Hence the argument: quantification over something larger than singletons is needed so as to

assert a price of each twelve instead of one in (4.12a), or two collaboration of pairs instead of

one of a triple in (4.12b), or two meetings of likes instead one of four animals in (4.12c).

However, each of these cases can be rethought differently. Examples like (4.12a) might

illustrate metonymy, Winter and Scha (2015) suspect, for the names of the entities grouped by
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convention can apply loosely to such groups (a tag that reads “eggs $4 ea” might as well price

each carton). We have already seen that examples like (4.12b) can be interpreted as plural

predication. As we will see in Section 4.2.3, examples like (4.12c) can result from distributive

coordination. For further discussion, see Winter and Scha (2015) and references therein.

4.1.2 Non-scoping distributivity

The distributivity above noticeably takes under its scope the referents inside the material

being distributed. Usually this may be what we want, but we also find “distributivity” that

appears to have this effect of scoping waived.

Here is an example of the kind discussed by Roberts (1987); Schein (1993):

(4.13) Two boys gave ten dogs a treat.

One reading of (4.13) requires giving of ten treats, one per dog, by two boys. This reading

differs from the usual distributive ones by limiting the agents to two boys fixed across the dogs.

It is not exactly cumulative either, since each dog got its own treat. Such readings, sometimes

described as a mix of distributivity and cumulativity, are better seen with ditransitives (just

as in Section 4.1, transitives, not intransitives, distinguish distributivity from cumulativity),

but it is both reasonable and helpful to extend our discussion to transitives. That means a

reading for (4.14) that requires ten adoptions, one per dog, by two boys:

(4.14) Two boys adopted ten dogs.

To make a similar point, following Schein and Kratzer (2002, chap. 2) we can use explicit

quantifiers:

(4.15) Two boys adopted every dog.

The relevant reading of (4.15) not only scopes two boys, but allows each dog to be adopted by

one of them, as far as both get involved eventually.
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We can capture the non-scoping distributivity (NSD) in (4.14) and (4.15) with a semanti-

cally more sophisticated distributor or quantificational determiner, whose syntax remains as

before:

(4.16) dist→ np1/s
0 ∣ s2
np3

every→ s0 ∣ s2
np3
/n1

r

i

s

ρ

ι

σ

∈

∀
0 1

2

3
x

=

v∈

th

λ

A quantification structure is still recognizable; besides, (4.16) adds v and x that assume the

roles of the 2-source and 3-source previously served by s and i (we will addressÐ→si soon). By

making v the root, the built-in λ-cycle accounts for the non-scoping effect.

Let us clarify how this is so with (4.15), whose semgraph would be as follows:

(4.17) r

i

s

ρ

ι

σ

∈

∀ x
=

v∈

th

λ y

boy
#

2

th

ag

dog

adopt

The cumulativity comes from the fact that v , y, x , r are valuated simultaneously: v contains

a number of adoptions whose agents sum up to a set y of two boys, whose themes to x,

while r = x is maximized to the set of all dogs. When these constraints are satisfied, the

quantificational structure yields the distributivity: each i ∈ r is the theme of some s ∈ v (here,

too, ∈ abbreviates “being a singleton subset of ”).

From the the label ofÐ→si one can see that (4.16) specializes in the NSD over themes, but it

should be generalized to other thematic roles, like goals:
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(4.18) Two boys taught every dog a trick.

r

i

s

ρ

ι

σ

∈

∀ x
=

v∈

go

λ y #

2

go

ag

dog

teach

z

boy

trick

th

Thus a better solution is for Ð→si to “copy” the label from Ð→vx — a parallelism characteristic

of the NSD sentences. What might be the most natural implementation of “edge-copying”,

however, would require our graph formalism be extended with hyperedge replacement (see

Courcelle, 1993; Drewes et al., 1997), which we will not discuss in this thesis.

Note that a trick is not distributed over every dog in (4.18), since z is valued along with

x (all dogs) and y (two boys). While this is a plausible reading of (4.18), it differs from the

reading of (4.13) mentioned above, which should rather be rendered as follows:

(4.19) r

i

ρ

ι

σ

∈

∀ x
=

v∈

go

λ

y #

2

go

ag

dog

give boy

s

ztreat

th

#
10

Here v contains a number of givings by y (two boys) to x = r (ten dogs). Since the th-

dependent (a treat) docks at s instead of v, each dog i ∈ r receives some z (a treat) through

some s ∈ v. However, (4.19) breaks the entry for ditransitive verbs given in (4.10). To compose

(4.19), one might need a special syntax for introducing thematic roles (see Champollion, 2017,

sec. 9.5).

Actually, (4.13) makes sense only if a treat is distributed over every dog, assuming a treat

can be given and consumed only once, whereas in (4.18), one trick can be taught many times

to different dogs. This contrast illustrates an inference associated with the NSD: when there

are more events than there are non-distributed entities, some of them must participate in



116

multiple events — we just rephrased the famous pigeonhole principle (originally stated as

packing less holes with more pigeons). This inference can be explicit, as in (4.14) (at least one

boy adopted more than one dog), and even if that is not the case, its possibility cannot be

denied, as in (4.15) (one boy should be able to adopt more than one dog). Now the question is,

whether this multi-participation fits the lexical semantics of the events and entities involved.

One can therefore reason that the NSD over subjects is difficult in (4.20) but obtainable

in (4.21).

(4.20) Every copy editor caught 500 mistakes in the manuscript. (Kratzer, 2002, chap. 2)

(4.21) a. [In 1916,] 17,667,827 Americans voted for two leading presidential candidates.

(Jim Hargrove,The Story of Presidential Elections, p. 17)

b. Yet not everyone made these mistakes.

(Nancy Langston,Where Land and Water Meet, p. 10)

The sheer number of mistakes in (4.20) suggests a division of labor, where the editors worked

only on their shares, and no mistake could be caught twice. On the other hand, it is only

natural for a candidate to receive many votes, or a mistake to be made by many people.

Based on examples like (4.20) alone, there have been generalizations that the NSD with

non-distributed themes is impossible (e.g. Kratzer, 2002) or the NSD over subjects is so (e.g.

Champollion, 2017), and analyses laid accordingly. Our discussion suggests those examples

show more of a problem of clashing inferences than one of grammaticality.

4.1.3 Distributivity undone

Downward monotone quantifiers that set a upper bound on counting introduce genuine

quantification (see Section 2.1.5), and are thus associated with distributivity automatically.

The following example derives from a lexical entry of less-than-three almost identical with

that of every.

(4.22) Less-than-three dogs swam.
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σ

ι

∈

ρ

< 3

dog

ag

swim

But with plural predication as in (4.23), such quantifiers are known to be able to undo that

distributivity (see Winter and Scha, 2015, sec. 5 for a review):

(4.23) Less-than-three boys met.

For (4.23) a semgraph like (4.22) would not represent what it seems to convey: the negation of

all statements of the form “n boys met” with n ≥ 3 made via plural predication. Put differently,

(4.23) requires all meetings of boys involve less than three boys in total.

One way to capture this cumulativity with an upper bound is through another variant

(4.24a) of quantification structures, which exploits the maximality requirement associated

with the restrictor by placing the 2-source and 3-source in the restrictor subgraph:

(4.24) a. less-than-three→ s0 ∣ s2
np3
/n1 b. meet→ np1/s0

ri

s σ

ι

∈

ρ

< 3

x

v

=

0 2

3 1

λ ag

meet

1

0

This along with (4.24b) allows us to construct (4.25) for (4.23).

(4.25) ri

s σ

ι

∈

ρ

< 3

x

v

ag

=
boy

λ

meet

To verify (4.25), r is maximized to the union of all sets of boys that met. The quantificational

structure is then satisfied if and only if that union contains less than three elements, as the

scope subgraph is always satisfiable for being unconstrained.

The entry (4.24a) has a problem with transitive sentences containing two such quantifiers,

neither of which takes scope over the other:
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(4.26) Less-than-three boys adopted less-than-three dogs.

The reading under consideration, sometimes known as the branching reading (see Barwise,

1979; van Benthem, 1991; Keenan, 1992; Sher, 1990; Westerståhl, 1987), requires all adoptions

of dogs by boys jointly involve less than three of either. But (4.24a) leads to (4.27), which

subjects the maximization of r1 to the cardinality constraint on r2.

(4.27) r1

σ

ι

∈

ρ

< 3

x1

λ

=
boy

r2

σ

ι

∈

ρ

< 3

x2

v

th

=
dog

λ

adopt

ag

As a consequence, the semgraph can be satisfied with r1 = ∅ when any nonempty value of

r1 would falsify the restrictor subgraph off r1 (see Definitions 2.4, 2.5/2.6), so it incorrectly

holds in a situation, say, where a number of boys each walked three dogs.

Depending on the representation formalism one works with, composing from syntax the

branching reading of (4.26) can be a challenge. Since the reading is irreducible to quantifier

nesting (which would scope one over another), quantification over tuples (see Westerståhl,

2015, sec. 11 for a review) and dynamic-semantic accounts (Brasoveanu, 2013; Charlow, 2018)

have been proposed in the literature. However, the way we align syntactic and semantic

resources allows us to approximate a different solution with some tweaking of (4.24).

In (4.28) we only change the tone of the downward arrow, so s1 and s3 correspond to the

same vertex:

(4.28) less-than-three→ s01 ↑np22↓$s03/n14

ri

s σ

ι

∈

ρ

< 3

x

v

=

0

2 1

λ
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Using this entry we can then construct the following semgraph for (4.26), which is almost

what we want, except that it is not yet interpretable due to multi-rootedness.

(4.29) r1

q1σ

ι

∈

ρ

< 3

x1

ag

=
boy

q2 σ

ι

∈

ρ

< 3

x2

th

=
dog

λ

λ

adopt

In (4.29) both q1 and q2 are roots, and in the restrictor subgraphs of q1 and q2 (the shaded

area), both x1 and x2 are roots. That said, if (4.29) is evaluated with entrance through q1 and

then, independently, with entrance through q2, each time taking, say, x1 as the root of the

respective restrictor subgraph, we obtain both branches of the required truth condition: less

than three boys, and then less than three dogs are involved in all adoptions of dogs by boys.

To restore the unique rootedness of (4.29) and ensure the interpretation described above,

one can add ⊃Ð→zq1, ⊃Ð→zq2 to join q1, q2 in a conjunction structure and break the tie between

x1, x2 by adding λÐÐ→x1x2. The question then is how these can be done in a principled way. We

will not dwell here, but our discussion has shown that amajor challenge of branching readings

can be reformulated as dealing with multi-rootedness.

4.2 Conjunction

Cross-linguistically conjunction might be the most available means for creating plurality.

While treating it as set union may be a simple idea (see Section 2.1.7), many research efforts

have gone into composing desired semantic representations for conjunction across categories.

Using the coordinator entries introduced earlier (Section 3.3.3.3), in this section we will

discuss examples in both nominal and verbal domains.
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4.2.1 Simple union

Recall that for conjuncts of atomic types, or more generally types of size one, the conjunction

token consists of only a triple for union. Primary examples of this kind are np- and s-

conjunctions.

(4.30) and→ p2/&p0/&p1

⊃⊃

2 0 1

With (4.30) it is fairly easy to conjoin simple noun phrases and sentences in the following

examples.

(4.31) a. Joe and Ben

np01 np22/&np03/&np14 np05 → np03

Joe

0

Ben

0

b. Joe sailed and Ben surfed

s01 s22/&s03/&s14 s05 → s03
sail

ag

Joe

0

Ben

ag

surf0

Matching the atoms by (np01 , np22), (np14, np05) in (4.31a) and by (s01 , s22), (s14, s05) in (4.31b) leads

to these:

(4.32) a. Joe and Ben. b. Joe sailed and Ben surfed.

⊃

⊃

Joe

Ben Ben

ag

sail ⊃⊃

ag

surf

Joe

Remark. Giving copulas a non-thematic semantics with the following entry,
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(4.33) be→ np2/s0/np1

==

2 0 1

we can maintain that conjoining predicate nominals creates a plurality nonetheless:

(4.34)

a. Joe is a sailor and a surfer. b. Joe and Ben are a sailor and a surfer.

=

=x y

z

⊃

⊃

sailor

surfer

Joe =

= y

z

⊃

⊃

sailor

surferJoew x Ben

⊃
⊃

Suffice it to note that (4.34a) holds exactly when x = y = z contains Joe the sailor and surfer.

(4.34b) holds exactly when the set w ∪ x containing Joe and Ben coincides with a set y ∪ z

containing a sailor and surfer (the sentence can be followed by I don’t know who is which).

A nominal plurality created this way functions just like those introduced by numerals. Thus

to (4.32) both plural and distributive predications apply, as shown by the following examples,

where dist in (4.35b) is the atomic distributor from Section 4.1.1.

(4.35) a. Joe and Ben sailed. b. [Joe and Ben] dist walked a dog.

⊃

⊃

Joe

Ben

ag

sail

ρ

ισ ∈

∀

walk

dog

ag

th

⊃

⊃

Ben

Joe

When conjuncts are themselves plural, however, we observe both the atomic distributivity

over their union, as in (4.36a), and the non-atomic distributivity over such conjuncts, as in

(4.36b). It is clear that the distributor above works for the former but not the latter.

(4.36) a. Two dogs and two cats ate (= each of the four animals ate).

b. Two dogs and two cats met (= two dogs met and two cats met).
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The intended reading of (4.36b) as two meetings of likes certainly falls into the situations

described by plural predication (as does one meeting of four animals), but it also seems

a special case that merits a separate treatment, since distributive coordination is seen in

examples that has nothing to do with plural predication:

(4.37) Every dog and no cat swam (= every dog swam and no cat swam).

We will discuss such examples in Section 4.2.3, where (4.36) is likened to (4.37) in a sense.

Not all seemingly distributive predication needs decoration. With one conjunct being

a disjunction, the paraphrased distributivity in (4.38) follows simply from combining the

semantics of union and choice. Since the subgraph reachable from x is satisfiable with x

being (a singleton of) either Ben or Ed, (4.38) accepts either a meeting of Joe and Ben or one

of Joe and Ed.

(4.38) Joe and [Ben or Ed] met (= Joe and Ben met or Joe and Ed met).

⊃

⊃

x

Joe
Ben

Ed

⊒

⊒ag

meet

The effect is similar to the distributivity of conjunction over disjunction in Boolean algebra,

that is, p ∧ (q ∨ r) = (p ∧ q) ∨ (p ∧ r). This is how or takes scope over and in examples like

(4.38), though not literally.

4.2.2 Argument sharing

The idea of sharing unfilled arguments underlies generalized conjunction in Partee and Rooth

(1983), according to which the conjunction h of Boolean functions f and g is defined as

h(x1, ..., xn) = f (x1, ..., xn) ∧ g(x1, ..., xn), where f and g share the arguments passed to h.

Likewise, for conjunct types of size greater than one, the conjunction token includes triples

for argument sharing via equality (Section 3.3.3.3). Such is the case of verbal conjunction

beneath the sentence level, where earlier works on non-Boolean conjunction often skip the
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question of compositionality, particularly how arguments are bound to the thematic roles

of events (e.g. Lasersohn, 1995; Schein, 1993; but see Chaves, 2007 for a treatment using a

constraint-satisfaction grammar).

In Section 3.3.4, we showed in detail how examples like (4.39b) can be constructed with

the entry (4.39a).

(4.39)

a. and→ (s2/np4)/&(s0/np5)/&(s1/np3) b. Joe rented and Ben sank a boat.

⊃⊃

2 0 1

==

4 5 3

ag

rent ⊃⊃

ag

sinkv1 v2

x

boat
thth

= =

Joe Ben

While the shaded area is shared between the conjunct subgraphs off v1 and v2, by evaluating

them independently the value of x, a boat, need not be shared (see Section 2.2.5). Thus

(4.39b) can be paraphrased with a boat distributed as follows.

(4.40) Joe rented a boat and Ben sank a boat.

This is what we mean by distributive coordination, a consequence of argument sharing and

the way we interpret the conjunction structure. It does not follow from conjunction reduction,

a syntactic analysis that derives non-sentential conjunctions from sentential ones (Lakoff

and Stanley, 1969), nor is it a result of scoping and in any sense.

We may rather say that x is not taking scope in (4.39b), but this could be a problem for

indefinites in subject position. Changing the type in (4.39a) to (4.41a), one can easily construct

(4.41b), which represents a reading often considered near impossible in the literature (e.g.

Moltmann, 1994, p. 113).

(4.41) a. and→ (np4/s2)/&(np5/s0)/&(np3/s1)
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b. A boy surfed and sailed (= a boy surfed and a boy sailed).

=

ag

surf ⊃⊃

ag

sail

boy

v0

x =

It is not clear whether this judgment is entirely grammatical in nature (see Kubota and Levine,

2020, pp. 79ff), since a narrow-scope-indefinite reading can be explicitly coerced (Simon

Charlow p.c.):

(4.42) A different boy surfed and sailed.

Thus, if construction of (4.41b) is not itself undesirable, we can ask why it is almost obligatory

for a boy to take wide scope, while keeping in mind that this amounts to its precedence over

conjunction by λÐ→xv0:

(4.43)

=

ag

surf ⊃⊃

ag

sail

boy

v0

x =

λ

An answer to this question, which we do not have, should take into account the long-known

pattern for subject indefinites to outscope subsequent scope-takers, especially if the latter are

not quantifiers. For the following example, the first reading is much more accessible than the

next.

(4.44) A boy didn’t surf.

a. There is a boy who didn’t surf. (∃ boy > ¬)

b. No boy surfed. (¬ > ∃ boy)

It is useful to mention that argument sharing under coordination is flexible in allowing

sharing of dissimilar thematic dependents (and even non-thematic dependents; see Section

4.2.3.1). A relative clause, for example, can conjoin a sentence with a gapped object and

another with a gapped subject, both of type s↑np. Thus in (4.45), the theme of Joe likes is to

be aligned with the agent of likes Joe.
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(4.45) a boy
np01

who
np02/$np03/(s14↑np05)

Joe likes
s06/np17

—
s010↑np111 ∣$ s08

np19
and
(s212↑np413)/&(s014↑np515)/&(s116↑np317)

—
s020↑np121 ∣$ s018

np119

likes Joe
np122/s023 → np03

From (4.45) we find the equivalence in (4.46a), collapsing atom matches to shorten presenta-

tion, and thereby construct (4.46b).

(4.46) a. {np01 , np02 , np03 , np05 , np515},{s14, s014},{s06, s08 , s010, s212},

{np17, np19, np111, np413},{s116, s018, s020, s023},{np317, np119, np121, np122}

b.

th

like ⊃⊃

ag

like

x
boy

agth

= =

Joe Joe

λ

Note how np7, the theme of Joe likes, equates with np13, the 4-source of (4.39a), and similarly

how np22, the agent of likes Joe, equates with np17, the 3-source of (4.39a). Note also that a

boy x takes scope, so to speak, over the conjunction by virtue of relativization.

Remark. Kubota and Levine (2020, chap. 4) discuss extensively the examples above and the

likes, using a TLG in the natural-deduction style (apparently similar to CCGs but essentially

equivalent to TLGs in the sequent-calculus style; see Appendix 3.A) and generalized conjunc-

tion for subsentential conjunction. The latter differs from our conjunction structure in how

arguments are shared.

When two verbs share an argument in our representation, the referent and description

it introduces do not duplicate. In (4.41b), for example, there is only one copy of x and of

boyÐ→x . By contrast, generalized conjunction has arguments “shared” through duplication,

as applying h = λx1, ..., xn f (x1, ..., xn) ∧ g(x1, ..., xn) to its arguments x1, ..., xn makes two

copies of each.
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More generally, givenmulti-occurrence abstraction, the usual λ-calculus allows β-reduction

to copy an argument as many times. By contrast, our semantic construction mechanism is

resource-sensitive in that no lexical resource can be implicitly copied (see the comment on

(4.18)). When and how resource-sensitivity plays a role in syntactic and semantic computation

is itself a topic of interest; see Barker (2010); Jäger (2005); Oehrle (2003) for discussion.

4.2.3 Many facets of quantifiers

Some of the most interesting discussion about conjunction concerns quantifiers, and for

that matter, nominals decorated by distributors (see Westerståhl, 2015; Winter, 2001, chap. 2;

Zamparelli, 2011 for a review). Among other things, they can be conjoined at two levels due

to their continuized typing.

4.2.3.1 Quantifier level Quantifiers can be conjoined at the quantifier level with the entry

(4.47), along the argument sharing scheme discussed in Section 4.2.2.

(4.47) and→ s2 ∣ s5
np6
/&

s0 ∣ s7
np8
/&

s1 ∣ s3
np4

⊃

⊃

2

0

1

=

=

6

8

4

=

=

5

7

3

In this case, what is to be shared will no longer be thematic dependents.

For example, in (4.48a) every dog and no cat share their 1-sources (scopes) and 2-sources

(iterators), which will respectively equal some swimming events and their agents, as shown

in (4.48b).
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(4.48) a. Every dog and no cat swam.
s0 ∣ s1
np2

s0 ∣ s1
np2

ρ

ι σ∈

∀dog 0

2 1 ρ

ι σ∈

¬cat 0

2 1

b. q1

q2

q0
swimag

dog

cat ρ

∈

∈

ρ

σ

σ

⊃

⊃

∀

¬

=

=

ι

ι

=

=

Quantifiers that undo distributivity can be similarly conjoined (see Section 4.1.3).

(4.49) Less-than-three dogs and less-than-three cats met

q1

q2

q0
ag

=

=

⊃

⊃

dog

cat

ρ

ρ

=

=

λ

λ

=

=

meet

∈

∈ < 3
σ

σ
< 3

ι

ι

In these examples, the two quantification structures end up sharing the verb (the shaded

area). By evaluating them independently, we arrive at the intended readings “every dog swam

and no cat swam” for (4.48), and “less than three dogs met and less than three cats met” for

(4.49). The effect of distributive coordination here is the same as what one would obtain

from Partee and Rooth’s (1983) generalized conjunction (the end remark of Section 4.2.2 still

applies).
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Our representation of argument sharing clearly gives quantifier-level conjunction a

Boolean character, but as shown above, it nonetheless creates a plurality q0, the union of the

two quantification structures’ dummies q1 and q2, except that the value of this “dummy union”

was of no use. This is where our approach differs from previous non-Boolean approaches to

quantifier conjunction (Heycock and Zamparelli, 2005; Hoeksema, 1983), which bear little

resemblance to generalized conjunction in terms of argument sharing, and create “mean-

ingful” plural objects in a way sensitive to conjuncts’ monotonicity. Consequently, for such

approaches downward monotone conjuncts have been noted as a difficulty; see Champollion

(2015, sec. 7.1) and Winter (2001, sec. 2.2.2) for discussion.

4.2.3.2 Noun phrase level Continuized typing also allows quantifiers to conjoin at the np

level with the entry (4.30), that is, without argument sharing. This is useful for dealing with

branching quantification, including both cases reducible and those irreducible to quantifier

nesting (see Section 4.1.3).

Consider the following example, where the semantics of huggedmakes it clear that the

intended reading of (4.50) is not one of distributive coordination. Rather, it means that every

boy hugged every dog.

(4.50) a. Every boy
s0 ∣ s1
np2

and
np2/&np0/&np1

every dog
s0 ∣ s1
np2

hugged.

b.

i1

i2

∀

∀

dog

hug

boyρ

ag

σ

∈

∈

ιρ

σ ι

i0
⊃

⊃

It is easy to work out the atom matches here, which should show that given the usual entry

for quantifiers, np-conjunction sums up the iterators i1 and i2 while nesting quantifiers (the

relative scope of every boy, every dog is irrelevant here). The effect is as if the quantifiers take
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scope out of conjunction by means of quantifier-raising (May, 1985), leaving their “traces”

to conjoin each other. Actually we can paraphrase (4.50) this way (every dog not raised for

readability):

(4.51) For every boy x, x and every dog hugged.

Thus (4.50) expresses an idea deployable independently of graph formalisms; see Hoeksema

(1988) for example, despite its oft-criticized scoping technique (see Winter, 2001, sec. 2.2.2).

This is not the case, however, for branching readings of downward monotone quantifiers

under conjunction. For example, (4.52) can be read as (4.52a) or (4.52b) but not (4.52c), with

(4.52a) itself being ambiguous between (4.52b) and (4.52c).

(4.52) No dog and no cat hugged.

a. No dog hugged no cat.

b. No dog hugged any cat.

c. For no dog x, x and no cat hugged (= every dog hugged some cat).

Now that a treatment like (4.50) would derive exactly (4.52c), let us consider the entry (4.28)

used for branching readings with transitives:

(4.53) no→ s0 ∣$ s0
np2

/n1

ri

s σ

ι

∈

ρ

¬

x

v

=

0

2 1

λ

In (4.53) np corresponds to the restrictor, so that performing np-conjunction here has the

effect of summing restrictors. Using the same atom matches from (4.50) we obtain what

follows:
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(4.54) r1

q1σ

ι

∈

ρ

¬

x1

ag

=
dog

r2

q2 σ

ι

∈

ρ

¬

x2 =
cat

λ

λ

hug

⊃

⊃

The earlier remark on (4.29) about multi-rootedness applies to (4.54) as well. That aside,

the latter would represent a reading that requires zero dogs and zero cats be involved in all

hugs of dogs and cats, which entails (4.52b), but wrongly excludes hugs among dogs (or cats)

themselves.

The same problem would arise in any analysis of (4.52) that requires r1, r2 be empty when

maximized subject to the constraint “r1 is a set of dogs; r2 is a set of cats; r1 and r2 hugged” (e.g.

Brasoveanu, 2013; Charlow, 2018). To push any further, one has to answer deeper questions

in lexical semantics: should we distinguish between the agent and theme of hugging (or any

reciprocation)? If no, how can we restrict the result of conjunction to cat-hugging dogs and

dog-hugging cats? There also remains the question why downward monotone quantifiers

have to undo distributivity under np-conjunction: why is a quantifier-nesting readingmissing

here? We leave these for the future.

4.2.3.3 Reconciliation There is a potential type mismatch when conjoining a noun phrase

and a quantifier, and there are mainly two ways to reconcile.

The easiest way is to directly conjoin them at the np level according to the discussion in

the last section. For example, (4.55) illustrates a context where this is useful. The sentence

has a reading paraphrased as (4.55a), where the valuation of a dog depends on the boy, a

situation that can be made explicit with a dog he walked. Alternatively the indefinite can take

wide scope. The two options follow from the precedence of y with respect to quantification

in (4.55b).
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(4.55) Every boy and a dog hugged.

a. For every boy x, x and a dog hugged.

b.

y

∀

dog

hug

boyρ

ag

∈σ ι

⊃

⊃

λ

Another way is to perform the quantifier- or np-level conjunction after decorating the

noun phrase with a distributor. Consider the following example, which is at least three-way

ambiguous (assuming dogs can sail on their own):

(4.56) Six dogs dist and every boy sailed.

a. Six dogs each sailed and every boy sailed.(quantifier-level, distributive predication)

b. Six dogs sailed and every boy sailed. (quantifier-level, plural predication)

c. Six dogs each sailed with each boy. (np-level)

Quantifier-level conjunction yields distributive coordination, in which case sailed can be

applied to six dogs either distributively, as in (4.56a), or by plural predication, as in (4.56b).

This distinction is not necessary for np-level conjunction; we are only interested in (4.56c),

the reading that relates each dog to each boy in sailing. The reading that relates six dogs to

each boy is derivable from direct np-conjunction, as in (4.55).

Now, we already know how to derive (4.56a) and (4.56c). With the distributor token

(4.4) and its continuized typing, they can be treated in a similar manner to (4.48) and (4.50).

But none of the distributors (or for that matter, quantificational determiners) discussed in

Section 4.1 represents (4.56b) properly. Thus, we can introduce another entry (4.57a), and

construct (4.57b) after (4.48):
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(4.57) a. dist→ np1/s
0 ∣ s2
np3

b. Six dogs dist and every boy sailed.

r

i

ρ

ισ =

∀
0 1

2 3
sailag

dog

boy ρ

∈

=

ρ

σ

σ

⊃

⊃

∀

∀

=

=

ι

ι

=

=

6
#

(4.57a) replaces membership with equality (=Ð→ir ) , so in valuation i duplicates r instead of

drawing singletons therefrom. In this connection, recall that interpretation of quantification

structures does not refer to any specific label ofÐ→ir .

The possibilities discussed above may be strongly affected by lexical semantics. For

example, if we are to perform quantifier-level conjunction in (4.58),met would require plural

predication.

(4.58) Six dogs and less-than-three boys met.

On the other hand, np-conjunction, direct or indirect, might make no sense in this case.

Barwise (1979, p.65) actually questions whether branching quantification with quantifiers of

mixed monotonicity, say, one upward and the other downward, is interpretable at all (see

Westerståhl, 1987, pp. 296ff for discussion).

Finally, we add that devices for reconciliation can also be useful in conjoining simple

noun phrases. Converting one of them to a quantifier by means of a distributor, we reduce

the situation to that of conjoining a noun phrase with a quantifier. For example, we can apply

dist in (4.57) to both conjuncts in (4.59), conjoin them at the quantifier level, and derive the

intended reading.

(4.59) Two dogs and two cats met (= two dogs met and two cats met).

Thus it is fair to say non-atomic distributivity may result from distributive coordination (see

Winter, 2001, sec. 6.4).
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Remark. Conjoining two quantifiers at the np level effects raising of both, as noted from (4.50),

and conjoining a quantifier and an indefinite as in (4.55) amounts to moving the former

alone — both violating the coordinate structure constraint (CSC; Ross, 1967), which considers

impossible both extraction of conjuncts and nonparallel subtraction from within conjuncts.

Such examples and others illustrating an ambiguous scope relation between conjuncts lead

Chaves (2007, secs. 3.2, 3.6) to question the relevance of the CSC to scoping (but cf. Fox, 2003,

sec. 2.3.1). Even the nature of the CSC in describing overt movement like wh-displacement is

not without debate. Kubota and Levine (2020, sec. 10.1.3) and citations therein contend that

it might as well reflect the interaction of non-syntactic factors.

The standard CG account of the CSC rests on the simple requirement that conjuncts be of

the same type (see Section 3.3.3.3). Should it have any merit, “conjunct extraction” in (4.50)

and (4.55) (also (5.51) and (5.56) later) illustrate np-conjunction no less than (4.31) does.

With continuized typing, “nonparallel subtraction” in (4.45) is made possible by innocent

s↑np-conjunction.

4.2.3.4 Plural modification and pair-making By plural modification we mean plural predica-

tion conveyed through the syntax of modification. For example, the underspecified way of

relating five boys to six dogs in adoptions is the same in both (4.60a&b), and both semgraphs

can be constructed equally with ease.

(4.60) a. Five boys adopted six dogs. b. Five boys who adopted six dogs.

ag th

65

##

boy

adopt

dog ag th

65

##

boy

adopt

dog

λ

(It might be difficult to get a strictly cumulative reading of (4.60b)’s relative clause, where

there are more than one adoption, but a collective reading can be readily coerced: five boys

who adopted six dogs together.)

The question becomes interesting when plural modification meets branching quantifica-
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tion, as illustrated by the following example.

(4.61) Every boy and every dog who met hugged.

np21 /&np02/&np13 np04/$np05

To reduce branching to quantifier nesting, we conjoin the quantifiers at the np level as before.

Note that the relative clause constrains the union of iterators, since np4 matches np2 in (4.61).

The result of unification is shown in (4.62a).

(4.62)

a.

i1

i2

∀

∀

boyρ

σ

∈

ιρ

σ ι

∈

s2

i0
dog

hug

⊃

ag

ag

λ
meet⊃

b.

i1

i2

∀

∀

boyρ

σ

∈

ιρ

σ ι

∈ i0
dog

hug

⊃

ag

ag

λ
meet⊃

λ

(4.62a) almost succeeds except for one problem: precisely because the shaded constraint is

imposed on i0 (the union of iterators), it was never reachable from either i1 or i2 but only

from s2; what is supposed to be an iterator filter becomes a scope constraint. This amounts

to saying that each boy met and hugged each dog. What we want would rather be (4.62b),

where the additional λÐ→i2i0 ensures that the filter on i2 selects a pair of a boy and dog only if

they met.

We may attribute this addition to conjunction by introducing the following entry:

(4.63) and→ np2/&np0/&np1

⊃⊃

2 0 1

λ

We can think of this entry as making one of the conjunct take local scope over the union, but

motivating it elsewhere goes beyond the purpose of this thesis.

Examples like (4.61) came to be known as “hydras” since Link (1983, 1998, chap. 3),

named after the polycephalous way a relative clause takes on conjoined tokens. They present a



135

tension between the tradition of treating modifiers as internal to nominals (that is, a modifier

combines with a noun before a determiner joins them) and the need of plural modification to

stay external to conjunction. While this tension can be mitigated by continuation in syntax

and separation of iterators from restrictor in quantification, (4.61) manifests a difficulty

branching quantification again poses to graph traversal, besides multi-rootedness earlier.

Under the name “hydra” there is another kind of example discussed by Link (1983), one

featuring noun-conjuncts sharing a determiner:

(4.64) Every boy and dog who met hugged.

n0 n2/&n0/&n1 n0

(4.64) illustrates a problem independent of plural modification; with or without the relative

clause, the atomic distributivity built into quantifiers raises the same question, what is being

iterated over here, of which we assert meeting or hugging? As (4.64) is semantically equiva-

lent to (4.61), a natural answer would be (unordered) boy-dog pairs, which are clearly not

singletons.

Such is the problem of pair-making. Here we may attempt a solution that lies in the way

we model semantics. Recall from Section 2.2.2 that while the domain of a model contains

only first-order entities, some of them denote groups and relate to their members in events

like comprisings or constitutings. Now suppose, as an ontological postulate, that for any

finite set x of entities, there exist a disjoint singleton y and a comprising event v such that v

has y as its agent and x its theme. Then we can use the entry (4.65a) to maximize r to the set

where each y ∈ r (meaning y is a singleton subset of r) comprises x, a union of singletons z

and w. Specifying z as containing boys and w as containing dogs, (4.65b) allows i to draw

from boy-dog pairs.
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(4.65)

a. and→ n2/&n0/&n1 b. Every boy and dog hugged.

r

y v

x

z w

∀

λ
ρ

ι
σ

∈

comprise

1 1

# #⊃ ⊃

ag

th

0

2 1

#

1
r

z w

∀

λ
ρ

ι
σ

∈

comprise

1 1

# #⊃ ⊃

ag

th

boy dog

i

ρ

∈
ισ

∀

hug ag

1

#

Of course, noun-conjunction can use simple union (4.30) as well. For example, (4.66)

can assert enjoyment of each animal.

(4.66) Every dog and cat enjoys a good meal.

And on the other hand, with different ontological assumptions, there are other ways ofmaking

pairs. For example, if we allow for variables over sets of higher-order objects (and in that

regard, non-atomic distributivity), pair-making is simply a matter of unordered Cartesian

product. This is essentially the idea of Link (1983) and many subsequent works. For a recent

formulation in the form of Boolean conjunction, see Champollion (2015).
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Chapter 5

Topics in Scope

Relative scope arises as the valuation of one variable depends on that of another, and in this

sense, we speak of the order of valuation that comes with quantification, intensionality, and

coordination (see Section 2.2.6). Despite this unifying description, what concerns us now

is how certain linguistic expressions (more precisely, the referents introduced) attain their

scope from the syntax-semantics interface.

In this chapter, we discuss classic issues associated with (genuine) quantifiers and indefi-

nites as they take scope. Central to our discussion is the proposal that the former does so

through syntax but the latter through precedence resolution. The unification-based semantic

construction provides a precise and concise language for studying interactions among quan-

tificational expressions. Precedence resolution separate from syntax further simplifies the

treatment of exceptional scoping behaviors of indefinites.

5.1 Scoping quantifiers

Let us start with multiple quantifiers taking scope over each other.

5.1.1 Scope permutation

A simple sentence like (5.1) can be verified in twoways. We can iterate through a population of

boys and see if each walked most dogs, or we can find a majority of dogs (out of a population)
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and see if each was walked by every boy.

(5.1) Every boy walked most dogs.

The situations accepted by these two procedures then fall into two classes, respectively known

as the surface-scope reading (every boy overmost dogs) and the non-surface- or inverse-scope

reading (most dogs over every boy) of the sentence. If this classification is taken seriously due

to the procedural difference, then, as theorists often assume, scope ambiguity is indeed a case

of ambiguity, contra underspecification in plural predication, where various situations are

verified by the same procedure.

Various techniques have been developed to disambiguate scope by constructing logic

formulas with nested quantifiers. Some of the textbook examples include quantifying-in

(Montague, 1973), quantifier-raising (May, 1985), Cooper storage (Cooper, 1983), flexible

typing (Hendriks, 1993), surface constituency (Steedman, 2011), and continuations (Barker

and Shan, 2014).

In the context of semgraphs, we have a similar goal of construction, that is, nested

quantification structures. Thus the surface- and inverse-scope readings of (5.1) are given by

(5.2a&b), with the valuation of i2 depending on that of i1 (see Section 2.3.1):

(5.2) a.

i1

i2

∀

%

dog

walk

boyρ

agσ

∈

∈

th
ιρ

σ ι

b.

i1

i2

%

∀

boy

walk

dogρ

thσ

∈

∈

agιρ

σ ι

We have already constructed a similar structure in (4.50). The fact is we can use a continuized

syntax like that of Barker and Shan (2014) to derive both semgraphs above, while not resorting

to higher-order semantics.

To see this, consider the two ways to reduce (5.1) to the type of a sentence.
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(5.3) a. every boy
s03 ∣ s

1
1

np22

walked
np24/s05/np16

most dogs
s08 ∣ s17
np29

→ s03
(∀ boy > % dogs)

(s11 , s
0
8), (s

0
5 , s

1
7), (np

2
2, np24), (np16, np29)

b. every boy
s03 ∣ s11
np22

walked
np24/s05/np16

most dogs
s08 ∣ s

1
7

np29

→ s08
(% dogs > ∀ boy)

(s11 , s
0
5), (s

0
3 , s

1
7), (np

2
2, np24), (np16, np29)

Although in both cases the npmatches are identical (so the iterators of every boy andmost

dogs assume the same thematic roles), (5.3a) yields narrow scope formost dogs by matching

its root (s08) with the scope of every boy (s11), whereas (5.3b) yields narrow scope for every boy

by matching its root (s03) with the scope ofmost dogs (s17). The variation in smatches follows

from the lifted application rule in Definition 3.1, which may identify either the subject (every

boy) or the verb phrase (walked most dogs) as the tower when combining them:

(5.4) a.
s03 ∣ s

1
1

np22
,
s08 ∣ s17
np24/s05

→
s03 ∣ s

1
1

s08 ∣ s17
s05

b.
s03 ∣ s11
np22

,
s08 ∣ s

1
7

np24/s05
→

s08 ∣ s
1
7

s03 ∣ s11
s05

Successive lowering of the towers on the right produces the smatches in (5.3a&b). We can

see that each permutation of scope corresponds to a distinct arrangement of the continuation

layers of quantifiers (e.g. s03 ∣ s11 of every boy).

Remark. Nested quantification structures are similar to nested for-loops in programming

languages: the iteration of an inner structure is performed within that of an outer structure.

This is why quantifier scope cannot be reversed by changing the order of valuation. Take

(5.2a) and add λÐÐ→q2q1 to shift rootship from q1 to q2:
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(5.5)

q2

q1

i1s2

r2 i2

∀

%

dog

walk

boyρ

agσ

∈

∈

th
ιρ

σ ιλ

According to Definition 2.8 our semgraph interpreter ignores any out-edge of q2 other than

%Ð→q2 , ρÐÐ→q2r2, ι
Ð→
q2i2, σÐÐ→q2s2. Even if we delayed evaluating the quantification structure at q2 and

processed λÐÐ→q2q1, the latter would bring us back to (5.2a), except with the value of q2 fixed

across boys.

5.1.1.1 Factorial Without further constraints, the method described above shall generate

n! scope permutations for a sentence with n > 1 quantifiers. One can reason by induction:

suppose in a syntactic derivation we can stack the continuation layers of n − 1 quantifiers in

(n − 1)! ways. Adding one more quantifier, we can distinguish n positions in any of those

(n − 1)! arrangements to insert another continuation layer.

We derived a classic generalization predicted by a classic scoping technique like quantifier-

raising: the number of distinct scope permutations of a sentence equals the factorial of the

number of the scope-takers it contains, provided they are each independently scopable. For

the following example of Hobbs (1983), one would expect 5! = 120 readings:

(5.6) In most democratic countries most politicians can fool most of the people on almost

every issue most of the time.

There are, however, discussions that the classic generalization might have ignored id-

iosyncrasies among what are collectively known as “generalized quantifiers” (see Szabolcsi,

2010, chap. 11 for a review). In particular, downward monotone quantifiers and compound

numerals are mentioned as resisting inverse scope.

For example, it is frequently cited that downward monotone quantifiers must take narrow

scope under an indefinite or simple numeral subject:
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(5.7) a. A boy has missed no meal. (Szabolcsi, 2010, p. 178)

b. Three referees read few abstracts. (Szabolcsi, 1997, p. 110)

But if a quantifier substitutes into the subject position, one’s findings can vary:

(5.8) a. Everyone loves no one. (Barker and Shan, 2014, p. 110)

b. Every farmer owns few donkeys. (Steedman, 2011, p. 129)

According to the sources indicated, both surface- and inverse-scope readings exist in (5.8a),

and in (5.8b) the inverse scope is even more accessible.

Compound numerals might make a better case. Absence of inverse scope has been

reported for sentences with indefinite and quantifier subjects:

(5.9) a. Some student readmore-than-five books. (Beghelli, 1995, p. 48)

b. Every student readmore-than-one paper. (Szabolcsi, 2010, p. 186)

Takahashi (2006) takes these as arguing for a compositional analysis of compound numerals,

a move independently motivated in Hackl (2000); Krifka (1999) among others. We will not

study the scoping pattern of compound numerals along this direction, although a serious

treatment of comparatives and measures in the context of semgraphs is worth future research

(see Liang et al., 2013).

5.1.1.2 Inverse linking In the scope literature, inverse linking refers to the inverse scope taken

by a quantifier from a post-nominal modifier. Such examples are first discussed by May (1978,

1985) and differ from usual inverse scope for having one scope taker syntactically dependent

on the other, as shown by (5.10):

(5.10) Every boy from most islands sailed.
s0 ∣ s1
np2

s0 ∣ s1
np2
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Here the intended reading amounts to saying “every boy islander sailed” holds for most

islands.

Given this reading, it is fairly easy to construct (5.11b) with the preposition entry (5.11a),

which serves as a filter on i2, selecting a boy if he was from some island i1. To obtain the

desired scoping, we only need to make sure that the continuation layer ofmost islands tops

the resultant tower when every boy combines with the prepositional modifier.

(5.11) a. from→ np0/$np0/np1 b. Every boy from most islands sailed.

fromth

lo

λ
0

1

i1

i2

%

∀

boy

sail

islandρ

σ

∈

∈

agιρ

σ ι

fromth

lo

λ

It is interesting to consider “surface linking”, or the surface scope in such examples:

(5.12) Every graduate with most skills applied.

Most naturally (5.12) talks about each graduate who had most skills. This reading, however,

cannot be constructed similarly to (5.11b). With (5.13a), merely placing the continuation

layer of every graduate above that of most skills leads to (5.13b), which, when interpreted,

turns out to be a model-independent contradiction: a valuation h satisfying the iterator

subgraph at i1 must be defined on i2, but a valuation k ⊇ h satisfying the scope subgraph at

q2 must be undefined on i2 (both subgraphs are evaluated without i2 in the visiting history;

see Definitions 2.5/2.6).

(5.13) a. with→ np0/$np0/np1 b. (Naught)

withag

th

λ
0

1

q2 i1

i2

∀

%

skill

apply

graduateρ

σ

∈

∈

ag

ιρ

σ ι

withth

ag λ
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While this contradiction is akin to those which account for anaphoric accessibility in Section

5.2.4, its fundamental cause is simply that as an iterator filter, (5.13a) tries to select a graduate

based on his or her relation with an individual skill instead of many.

The desired reading of (5.12) is given by (5.14b), which puts the whole narrow-scope

quantifier into the iterator subgraph of the wide-scope quantifier. This structure is constructed

using (5.14a).

(5.14) a. with→ np0/$np0/
s1 ∣ s2
np3

b. Every graduate with most skills applied.

withag

thλ

0

3

2

1

i1

∀

apply

graduateρ

∈σ ι

with

ag

λ

i2

%
skillρ

th

∈
ι

σ

ag

Comparing (5.13a) with (5.14a), we may say that the latter has its right denominator raised

to the type of a quantifier. But a comparison of the semantics of the two entries suggests a

deeper connection, since they minimally differ in how a λ-edge is positioned, or equivalently,

whether a λ-cycle is lexically ready or to be formed in syntax.

To make sense of this connection, we may try to build (5.13a) and (5.14a) out of relativiza-

tion, with an imaginary transitive verbwith as follows.

(5.15) that — with

np01 /$np02/(s13↑np04)
s07↑np18 ∣$ s05

np16
np29/s010/np111

λ

0

1

1

0

withag

th

2

1

0

There are two ways to reduce (5.15), depending on whether or not s5 cancels s10. Though it

is more convenient to validate the following matches by using a TLG (see Appendix 3.A)

than by extending the CCG we have, one can nonetheless verify that (5.16a) and (5.16b) yield

(5.13a) and (5.14a), respectively.
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(5.16) a. → np01 /$np02/np011

(s13, s07), (np04, np18), (np16, np29), (s05 , s
0
10)

b. → np01 /$np02/
s15 ∣ s

2
10

np311
(s13, s07), (np04, np18), (np16, np29)

Thus in a concrete sense, a post-nominal preposition is like a lexicalized relative clausemissing

an object. If we replace prepositions with incomplete relative clauses like (5.15), then surface

and inverse linking will both derive from the same sequence of tokens.

Following May’s (1978, sec. 2.5) suggestion, Heim and Kratzer (1998, sec. 8.5) describe

a relativization technique similar to ours for deriving surface linking. In the context of a

type-logical grammar, Carpenter (1997, sec. 7.5) achieves the same by raising prepositions’

argument type syntactically and semantically. Our discussion above shows that the two

approaches are intrinsically related. Further, if type-raising in syntax can be mirrored either

by type-raising in logic or by graph editing (e.g. what transforms (5.13a) into (5.14a)), there

might be an unifying theme underlying these semantic operations seemingly different in

nature.

5.1.1.3 The immobile A continuation-based scoping method also works for quantificational

expressions that are typically considered immobile in terms of quantifier raising, such as

verbal negation and modals.

In the following example, negation can take scope either under or over the subject

quantifier. We can be sure that (5.17a&b) represent the indicated readings by delimiting the

scope subgraph of the negative quantifier in each case.

(5.17) Every cat didn’t meow.
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a. (∀ cat > ¬) b. (¬ > ∀ cat)

ρ

∈
ι

σ

¬ ρ

cat ∀

∈
ι

σ

meow

ag

ρ

∈
ι

σ

∀ ρ cat

¬

∈
ι

σ

meow ag

To construct these, we give the following entries for negation, a plain type for its narrow

scope and a raised type for its wide scope:

(5.18) a. didn’t→ np22/s03/(np24/s15) b. didn’t→
s06 ∣ s11

np32/s23/$(np34/s25)
¬ρ

∈
ι

σ

0

1 2

¬ρ

∈
ι

σ

0

1 2

3

The reason that (5.18b) cannot be used to construct narrow-scope negation is that doing

so ends up matching s1 with s3, which means fusing distinct vertices of the same graph,

an operation undefined in HR algebra (recall from Section 1.6.3 that distinct sources have

distinct labels). Note also that due to a tonal difference, np4/s5 replicates the depths of np2/s3

in (5.18b) but not in (5.18a).

Depending on their flavors, modals can bear a likewise ambiguous scope relation to

quantifiers (a.o. Fintel and Iatridou, 2003). Thus (5.19) utters either a deontic necessity per

adopter, or one that involves all adopters.

(5.19) Every adopter must sign.

a. (∀ adopter >must) b. (must > ∀ adopter)

ρ

∈
ι

σ

must

adopter ∀

κ

sign

ag

κ

∀ ρ adopter

must

∈
ι

σ

sign ag
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Here we can put (5.20a&b) in parallel with (5.18a&b).

(5.20) a. must→ np2/s0/(np2/s1) b. must→ s0 ∣ s1
np3/s2/$(np3/s2)

must

κ

0

1 2

must

κ

0

1 2

3

This is somewhat simplifying the matter, as the scoping options for epistemic modals, for ex-

ample, are found to be more varied, sometimes subject to constraints not entirely understood.

See Swanson (2010); Tancredi (2007) for discussion and Hacquard and Wellwood (2012) for

a survey of epistemics embeddability in general.

A drawback of type-raised (5.18&5.20b) is that they may generate unattested wide scope

for negation and modals. Take negation for example; (5.21) is not a denial that every cat

promised to meow, but such wide-scope negation will arise from using (5.18b) for not-to.

(5.21) Every cat promised not-to meow.

np2/s0/(np2/s1)

κ

promise

ag

0

2 1

The situation is reminiscent of lexicalized scope islands discussed in Section 5.1.2: just as the

finite clause introduced by certain tokens can trap certain quantifiers, the infinitive clause

introduced by promise can trap negation. To anticipate the upcoming discussion, we can

somehow mark promise and (5.18b), so as to block the following combination unless the

tower of not-to meow, carrying (5.18b)’s continuation layer, is lowered:

(5.22) promised not-to meow
s ∣ s
np/s

But that is impossible, leaving only the option of deriving (5.21) with (5.18a) and confining

negation to a promise.
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Remark. A common practice in the linguistic literature treats the limited inverse scope taken

by negation or modals via reconstruction (see Fox, 1999; Sternefeld, 2001 a.o.), which “returns”

a subject quantifier to a nearby gap within the surface scope of negation or modals by either

interpreting the subject at the gap or giving the gap a higher-order semantics. With semgraphs

the former can be more easily reproduced; to compose (5.17b), for example, we can add a gap

next to didn’t in (5.17), give it the type and semantics of every cat before making the latter a

single-source identity element of type s0/$s0, and retype (5.18a) as s0/s1 while dropping its

2-source.

5.1.2 Scope islands

The concept of scope islands serves to describe the syntactic domain up to which a quantifier

may take scope. Traditionally, this domain is identified by the boundary of a finite clause (e.g.

May, 1978), like the complement of an attitude in (5.23a), a relative clause in (5.23b), and

the antecedent clause of a conditional in (5.23c). Each of these is followed by a nonexistent

reading that illustrates the island constraint.

(5.23) a. Joe believed [that every dog swam].

(≠ For every dog x, Joe believed that x swam.)

b. Joe saw a dog [that every boy walked].

(≠ For every boy x, Joe saw a dog that x walked.)

c. If [every star shines], Joe sails.

(≠ For every star x, Joe sails if x shines.)

With our continuized CCG, the scope of a quantifier is fixed when the tower containing

its continuation layer is lowered. Take the main verb phrase of (5.23a), where complementizer

that is treated as an identity element.
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(5.24) believed that every dog swam

np21 /s02/s13 s04/$s05
s08 ∣ s16
np27

κ

believe ag0 2

1

0
ρ

ι σ∈

∀dog 0

2 1

It is easy to verify that if the embedded clause is reduced to

s08 ∣ s16
s04

and combined with the main verb as is, every dog gets matrix scope, since the root (s02) of

believed is to equate with the scope (s16) of the quantifier as in (5.25a). But if the tower above

is lowered before it combines further, the scope of every dog is confined to the embedded

clause, since its own root (s08) is to equate with the κ-dependent (s13) of believed as in (5.25b).

(5.25) a. (∀ dog > believe) b. (believe > ∀ dog)

swim

ρ∀ dog

∈
ι

σ

κ

believe

ag

Joe

ag

swim

ρ∀

κ

believe

dog

ag Joe

∈
ι

ag

σ

Therefore we can trap a quantifier within clausal boundaries by lowering a tower “early

enough”. In the case of relative clauses, we may also want to restrict the lifted application rule.

This is because were the following reduction carried out, every boy would escape the island

in (5.23b) for the reason just explained.
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(5.26)

that

np1/$np2/(s3↑np4)

every boy walked —
s7 ∣ s5
np6

np8/s9/np10
s13↑np14 ∣ s11

np12
⋮ ⋮ ⋮

s7 ∣ s5
s13↑np14 ∣ s11

s9
⇓

s7 ∣ s5
s13↑np14

* s7 ∣ s5
np1/$np2

Thus we want to avoid matching relativizers with the non-tower occurrence in lifted applica-

tion.

These intuitions can be captured if we set certain tokens as island selectors that prompt

tower lowering. Specifically, we put a unary connective δ over the part of a selector type to

be matched with an island:

(5.27) a. believe → np/s/ δs

b. that → np/$np/ δ(s↑np)

c. if → s/ δs/ δs

Then by blocking lifted application

H, F ∣ E
G
→ F ∣ E

D
F ∣ E
G

, H → F ∣ E
D

when H, G → D matches a pair of some A occurrences, the one from H marked by δ, while

discarding δ anywhere outside lifted application, the needed early lowering is enforced in

(5.24) and the last step of (5.26) is prevented; one can verify (δs3, s4) as the blocking match

for the former, and (δ(s3↑np4), s13↑np14) as that for the latter.

Hence we arrive at a lexicalized treatment of scope islands. The idea of specifying island-

hoodwith unary connectives is due toMorrill (1992). An in-depth application to scope islands
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of delimited continuations (Danvy and Filinski, 1990; Felleisen, 1988), the programming-

language concept behind prompted lowering, can be found in Charlow (2014). In the context

of practical parsing, White et al. (2017) showed that a careful timing of lowering curbs spu-

rious ambiguity (i.e. structural ambiguity of no semantic consequence) and thus improves

efficiency. This result gives us a concrete measure of the computation cost that a locality

constraint can save.

Most recently, Barker (2021) affirmed a suspicion that has been circulating in the literature:

scope islands are much more lexical than previously recognized, since certain island selectors

only trap certain scope takers. In contrast with (5.23a), every dog can be scoped out of the

complement to ensured (see Farkas and Giannakidou, 1996 a.o.):

(5.28) Joe ensured [that every dog swam].

To take such lexical agreement into account, we can mark the scope atom of a quantifier with

a key k (another unary connective to be discarded outside lifted application), reify δ above

as a lookup set, and block lifted application only when δ in H contains k:

H, F ∣
kE

G
→ F ∣ kE

D
F ∣ kE
G

, H → F ∣ kE
D

Thus, again taking (5.26) as an example, we may say that the sequence

np1/$np2/
δ(s3↑np4),

s7 ∣ ks5
s13↑np14

is irreducible on the grounds that k ∈ δ, where k and δ are lexically given by that and every.

(Barker coded δ and k numerically, based on his generalization that lookup sets are totally

ordered by inclusion.)

One last question to ask is how quantifiers escape infinitive clauses. For (5.29), the

paraphrased reading does exist, contra (5.23a):

(5.29) Joe believed every dog to swim.
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(= For every dog x, Joe believed x to swim.)

A lexicalized generalization about scope islands leads to the conjecture that believed in (5.23a)

and (5.29) differ in selection properties, or rather, types. This conjecture is supported by the

following examples of co-reference:

(5.30) a. Joei believed that hei/*himself i saw a dog.

b. Joei believed *hei/himself i to see a dog.

Suppose to is an identity element (see below), as semanticists often do. Then given our

discussion in Section 3.2.2, there has to be a structural difference, which we proceed to show,

between the semantic contribution of believed in (5.23a) and that in (5.29) to result in “longer”

parallel paths in the former but “shorter” ones in the latter. From atom-vertex correspondence

we expect the structural difference to be somehow echoed in types.

Here we give an entry for believed in (5.29) that is consistent with our expectations.

(5.31) a. believe→ np2/(s0/(np4/s3))/np1 b. to→ np1/s0/$(np1/s0)

κ

believe

ag

λ =0 1 4

2 3 1

0

Now that no part in the type of (5.31a) is to match an island, one can easily construct (5.32)

for (5.29). We leave it to the readers to verify that (5.32) represents the desired semantics.

(5.32)

swim

ρ∀ dog

∈
ι

σ

κ

believe

ag

Joe

ag

λ =

By way of digression let us consider (5.30a&b), which also motivate (5.31).
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(5.33) a. Joei believed that hei saw a dog. b. Joei believed himself i to see a dog.

see

κ

believe

v2

v1 x
ag Joe

y

=

ag

th

dog

see

κ

believe

v2 y

v1 x
ag Joe

z

λ =

=
ag

th

dog

Whereas = Ð→yz in (5.33b) comes with (5.31a), = Ð→xy is contributed by the anaphor in either

case. We have the relevant pair of parallel paths (v1 → v2 → y ∥ v1 → x → y) obeying the

antilocality scheme in (5.33a) and the one (v1 → y ∥ v1 → x → y) obeying the locality scheme

in (5.33b). As the depths in the entries for believe suggest, ag is less oblique than either κ or λ.

Still, (5.31a) disallows an object reflexive to refer beyond an infinitive clause. One can be

convinced by checking the parallel paths indicated as follows.

(5.34) a. Joe believed Beni to see himself i . b. *Joei believed Ben to see himself i .

see

κ

believe

v2 z2

v1 z1
ag Joe

y

λ

=
ag

x

th

Ben

=

see

κ

believe

v2 z2

v1 z1
ag Joe

y

λ

=
ag

x

th

Ben

=

Note that in (5.34a), the tail of the equality edge introduced by himself equates with the

4-source of (5.31a). It is semantically equivalent for it to equate directly with the referent

introduced by Ben (z2), but as one can verify, doing so would create a pair of parallel paths vi-

olating the locality requirement. Thus himself is technically resolved to (a referent introduced

by) believed.

One might have realized that (5.31a) conforms to the syntax of control, with the 4-source

playing the role of PRO (see Chomsky, 1981). Yet it is neither subject- nor object-control in

the traditional sense, since the 1-source, corresponding to the direct object like Ben in (5.34),

is not a thematic dependent of the verb.
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5.1.3 Existential vs. distributive scope

The distinction between “existential scope” and “distributive scope”, a terminology due to

Szabolcsi (2010, chap. 7), describes the fact that an existentially quantified plurality can take

wider scope than its distributive quantificational force (see Reinhart, 1997, 2006, a.o.).

Consider the following example. In verifying its truth, there are some nuances about in

what situations we expect Joe to feed dogs. First, Joe may take care of any three dogs, say, on

a farm he owns, or just three specific dogs entrusted to him. Then, Joe may reward the dogs

for jointly pulling a work sled that harnesses three, or he may reward them for each pulling

a toy sled that harnesses one; that is, the conditional’s antecedent can be interpreted either

collectively or distributively (see Section 4.1).

(5.35) If three dogs pulled a sled, Joe fed them.

Thus we can distinguish at least four readings for (5.35), of which we are now interested in

the two concerning the situations where each dog pulled a (toy) sled: three dogsmay take

existential scope either under or over the conditional, but in either case its distributive scope

stays within the antecedent clause, which means (5.35) never requires Joe to feed three dogs

when only one of them pulled a sled.

These two readings can be constructed as (5.36b) using (5.36a) (which is for the sake

of simplicity; to justify the relative obliqueness of ι and σ and in view of postposed if -

clauses, type if as (s2/s1)↑$(s2/(s1/s3))↓(s0/s2) and keep the source label assignment for

quantificational determiners).
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(5.36)

a. if→ s0/s2/s1 b. If three dogs dist pulled a sled, Joe fed them.
ρ

ισ ∈

2 1

0∀ q1

σ

ag

σ

ρ

∈
ι

∀

th

feed

∀

r2

dog

ρ

∈ι

ag
pullsled

Joe

#

3

th

λ

=

The absence and presence of λÐ→r2q1 respectively indicate the narrow and wide existential scope

of three dogs. Without λÐ→r2q1 the semgraph is rooted by q1, and r2 can assume any set of three

dogs; but if r2 is resolved to precede q1 (see (4.3) for the entry of numerals), then being the

new root, r2 is fixed to some set of three dogs before we check through iteration whether Joe

fed them whenever they each pulled a sled.

Our discussion above suggests a way to treat the so-called “third reading” of quantifiers

embedded in intensional contexts (von Fintel and Heim, 2011, chap. 8; Fodor, 1970). As noted

in Section 5.1.2, a proposition attitude typically traps a quantifier within its complement, so

the most natural reading of (5.37) attributes to Joe the belief “most huskies howled” (at each

world w compatible with Joe’s belief, most huskies there howled).

(5.37) Joe believed that most huskies howled.

With X denoting the set of huskies at the reference world, a reading (5.37) does not have

attributes to Joe the belief “x howled” for most x in X (this reading differs from the previous

one as Joe’s belief worlds may identify a different set of huskies from X). However, a subtle

third reading (5.37) does have attributes to Joe the belief “most x in X howled” (conceivable

in a context where Joe saw a group of huskies howling, but his opinion about their species is

unknown).

Remark. To see that the third reading differs from the nonexistent one, consider a model

where there are two worlds compatible with Joe’s belief and three huskies at the reference
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world. The matrix ⎡⎢⎢⎢⎢⎢⎢⎣

0 1 1

1 0 1

⎤⎥⎥⎥⎥⎥⎥⎦
puts 1 in its i’th row and j’th column when the j’th husky howled at the i’th world. Since at

both worlds two out of three huskies howled, the third reading is true; but since one out of

three huskies howled at both worlds, the nonexistent reading is false.

We may say that in the third reading of (5.37),most huskies takes wide existential scope

but narrow distributive scope. If we keep quantificational determiners’ type but also allow for

the semantics in (5.38a), which adds to the restrictor a λ-edge pending precedence resolution,

we can approximate the third reading in (5.38b) by resolving r to precede v.

(5.38) a. ρ

ισ ∈

2 3

0 1 xλ
−1 b.

howl

ρ%

κ

believe

husky
r

v
ag Joe

∈
ι

ag

σ

λ

The shaded area delimits the content of Joe’s belief, properly containing the iteration but

excluding any out-edge of r. This gives most huskies narrow distributive scope but wide

existential scope.

We are faced with two problems in this treatment. One is that r might not be maximized

with respect to its descriptive content as it takes scope. Recall the interpretation of a quantifica-

tion structure requires the restrictor be maximal subject to satisfying the restrictor subgraph,

unless it has been visited (see Definition 2.4). This is desirable for (5.36b) (otherwise r2

would not be fixed), but it also means that for (5.38b), we can take any set r of huskies at

the reference world and verify that most of its members howled at Joe’s belief worlds; in a

context where five out of twenty huskies howled at every belief world of Joe’s, (5.38b) can

be wrongly satisfied by assigning r small enough a set of huskies containing those five. To

address this problem, we need to factor the maximality requirement on the restrictor out of
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the interpretation of quantification. We leave the implementation of this idea for the future.

The next problem is that, as a quantifier’s modifier serves as its iterator filter, the latter

will not trail the restrictor in scope taking. For example, the relative clause below does not

take scope with r, but contributes to the content of Joe’s belief.

(5.39) Joe believed that most huskies [who pulled a sled] howled.

howl

ρ%

κ

believe

husky
r

v
ag Joe

∈
ι

ag

σ

λ
sled

th
λ
ag pull

With X denoting the set of huskies at the reference world, the semgraph attributes to Joe the

belief “most x in X who pulled a sled howled”. This is subtly different from attributing to Joe

the belief “most x in X′ howled”, where X′ ⊆ X denotes the set of huskies who pulled a sled

at the reference world. The second attribution might describe a possible reading of (5.39) (we

can scope a sled by precedence resolution), but, unfortunately, it is hard to judge clearly if the

first does too (but see Keshet, 2008, chap. 2; Romoli and Sudo, 2009).

In any case, for indefinites, the judgment seems robust that their modifiers form part of

their descriptive contents and trail their scope. We will see how this happens in Section 5.2.1.

5.2 Scoping indefinites

We have encountered examples of scope-taking indefinites since Section 2.2.6. In Section

3.2.3 we introduced precedence resolution for scoping indefinites, not only because they

receive a representation different from that of quantifiers, but also in view of their ability to

escape almost every scope island that would trap the latter (see Brasoveanu and Farkas, 2011;

Charlow, 2019; Farkas, 1981; Fodor and Sag, 1982; Reinhart, 1997, a.o.).
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5.2.1 General remarks

Before taking up more specific questions, we remark on a simple property of the current

scoping mechanism: by shifting the order of valuation, a referent is always scoped together

with its descriptive constraint (with the only exception of empty disjuncts; see Section 5.2.3).

This property follows directly from the definition of the semgraph interpreter, and steers us

clear of a few commonly known pitfalls discussed below.

We begin with the so-called “Donald Duck problem” (a.o. Reinhart, 1997), as illustrated

by the following example:

(5.40) If a star shines, Joe sails (∃ star > if )

(≠ for some x, if x is a star and shines, Joe sails).

The incorrect paraphrase, by raising the existential only, holds in a situation where there was,

say, a duck but no star at all, whereas the wide-scope-indefinite reading of (5.40) actually

requires the existence of a specific star. The correct paraphrase is thus given below with a

synonymous semgraph.

(5.41) a. For some star x , if x shines, Joe sails.

b. q

xth

ag

σρ

∈
ι

shine star

sail

∀

Joe

λ

Preceding q and being the root, x has to be stars to satisfy (5.41b). Similarly, given the graph

structure of modification, when a dog takes scope in (5.42), it is automatically accompanied

by the relative clause and the indefinite inside, as can be seen from their absence in the

content of Joe’s belief (the shaded area).
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(5.42) Joe believed that a dog which saw a duck swam. (∃ dog, duck > believe)

see

agswim

κ

believe

dog

ag Joe

λ

th duck

ag

λ

Indeed, (5.42) does not have a reading where Joe had a belief about a specific dog but no

specific duck at the reference world.

Closely related to the preceding is the “empty set problem”. To illustrate with (5.40) again,

(5.41) is false, much as (5.43) would be, when there was no star, that is, when the predicate

star is assigned the empty set by the reference world. This is because the rule for interpreting

unary edges is so stated that x be nonempty (see Definition 2.3), which is implied if we liken

the article a to the numeral one.

(5.43) A star shines.

starxthshine

Geurts (2000) among others noted that an empty-set situation poses a problem for choice-

function approaches to indefinites as presented in Reinhart (1997); Winter (1997). Roughly

speaking, since the way those approaches avoid the Donald Duck problem still leaves in situ

the descriptive constraints of indefinites, it is difficult for them to falsify both (5.40) and

(5.43) as requried.

Finally, the descriptive constraint of a scoping indefinite may carry a pronoun bound by

an outscoping quantifier. As an example, consider (5.44) (adapted from Abusch, 1994, p. 90)

and a reading where the toy and its throw depend on the boy but not the dog.
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(5.44) Every boyi fed every dog which caught a toy hei threw. (∀ boy > ∃ toy > ∀ dog)

a.

q2

q1

i1

r2 i2

∀

∀

dog

feed

boyρ

agσ

∈

∈

th
ιρ

σ ι

xcatch

ag

th toy

λ

λ

y

throw

=

ag

thλ

b.

q2

q1

i1

r2 i2

∀

∀

dog

feed

boyρ

agσ

∈

∈

th
ιρ

σ ι

xcatch

ag

th toy

λ

λ

y

throw

=

ag

thλ

In (5.44a) we use the entry (5.38a) and resolve r2 to “precede” x; the purpose is not to ensure

r2 be valuated before x (it already is), but to admit x into the restrictor subgraph off r2 without

committing x to any concrete semantic dependency on r2 (by virtue of λ-edges), so that the

value of x can be fixed across each (singleton of) dog i2. But since x remains valuated after

each (singleton of) boy i1, we obtain the desired scope relation. (Note that scoping the shaded

descriptive constraint by λÐ→r2x does not give y wider scope than what it would otherwise

have.) Onemaywonder why taking this route when themore intuitive alternative is to directly

resolve x to precede q2, as in (5.44b). This is because doing so results in multi-rootedness.

Readers may check that λÐ→xq2 makes x a root without canceling the rootship of q1.

Examples like (5.44) and many of its variants present the “bound pronoun problem”,

leading almost every description-in-situ account of indefinites to unexpected predictions of

various kinds (see Abusch, 1994; Charlow, 2019; Geurts, 2000; Jäger, 2007; Kratzer, 1998). Due

to its relevance to the interaction between co-reference resolution and precedence resolution

in general, a special case of the bound pronoun problem, concerning how far indefinites

carrying a bound pronoun can take scope (see Brasoveanu and Farkas, 2011; Schwarz, 2001),

will be discussed in Section 5.2.4.
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5.2.2 Exceptional scope

Indefinites are said to take exceptional scope, a term that goes back to Fodor and Sag (1982),

when they seem to escape scope islands discussed in Section 5.1.2. Previously we saw that

neither a relative clause, nor the complement of an attitude, nor the antecedent of a conditional

traps an indefinite:

(5.45) a. Every boy fed every dog [which caught a toy he threw]. (∃ toy > ∀ dog)

b. Joe believed [that a dog which saw a duck swam]. (∃ dog > believe)

c. If [a star shines], Joe sails. (∃ star > if )

Constructing semgraphs for such indefinites, as demonstrated in Section 3.3.4, is mostly a

matter of resolving their precedence over the other scope-sensitive expression. This allows us

to easily capture the oft-observed non-determinism in exceptional scope.

On the one hand, how wide or narrow an indefinite may stretch its scope is in principle

unlimited. Without interaction with anaphora as in (5.44)/(5.45a) (see Section 5.2.4), the

indefinite in examples like (5.46) can take either intermediate or matrix scope, as noted by

Farkas (1981).

(5.46) Every boy fed every dog which caught a toy.

a. (∀ boy > ∃ toy > ∀ dog) b. (∃ toy > ∀ boy > ∀ dog)

q1

i1

r2 i2

∀

∀

dog

feed

boyρ

agσ

∈

∈

th
ιρ

σ ι

xcatch

ag

th toy

λ

λ

q1

i1

r2 i2

∀

∀

dog

feed

boyρ

agσ

∈

∈

th
ιρ

σ ι

xcatch

ag

th toy

λ

λ
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The indefinite is valuated after the iterator of every boy in (5.46a), but before that in (5.46b).

On the other hand, whereas modification forces one indefinite to accompany the other to

take scope in (5.42)/(5.45b), Charlow (2019) showed that syntactically independent islanders

can be scoped independently. In the following example, we may associate Joe’s sail with a

specific comet but no specific star, with no specific comet but a specific star, or with a specific

comet and a specific star.

(5.47) If a comet passes a star, Joe sails.

Thus we can scope either indefinite by making it precede if :

(5.48) a. (∃ comet > if > ∃ star) b. (∃ star > if > ∃ comet)

qx

ag

σ

ρ

∈

ι

pass

star

sail

∀

Joe

λ

y

ag

th

comet qx

ag

σ

ρ

∈

ι

pass

star

sail∀

Joe

λ

y

ag

th

comet

Making the other indefinite precede the one scoped as above then yields wide scope for both:

(5.49) (∃ comet, star > if )

qx

ag

σ

ρ

∈

ι

pass

star

sail

∀

Joe

λ

y

ag

th

comet

λ

(Obviously, matrix-scope indefinites taking scope over one another make no semantic differ-

ence.)

We may even find one indefinite taking matrix scope and the other, from the same island,

intermediate scope, as shown by an example adapted from Charlow (2019, p. 453).
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(5.50) Every boyi smiled if a dog caught a toy hei threw. (∃ dog > ∀ boy > ∃ toy > if )

q1

i1

r2 i2

∀

∀

catch

smile

boyρ

agσ

∈

∈

ιρ

σ ι

y xdog

ag th

toyλ

throw

=

ag

th λ

λ

Precedence resolution here combines the patterns of (5.46a&b). As for the postposed if, we

type it as s2/s0/s1 while keeping the semgraph in (5.36a).

5.2.3 Wide-scope disjunct

Towards the end of Section 2.2.6, we mentioned that there is no reason to satisfy an unchosen

disjunct subgraph merely because an indefinite disjunct takes scope. Our semgraph inter-

preter therefore explicitly suspends processing all the out-edges of a scoping disjunct except

for the λ-edge by which it takes scope. From this suspension derives what might be called

“wide-scope-disjunct” readings, which differ in an interesting way from the “wide-scope-

disjunction” readings discussed by Brasoveanu and Farkas (2011); Charlow (2014, 2020);

Rooth and Partee (1982); Schlenker (2006).

The difference can be illustrated with the following example (adapted from Schlenker,

2006, p. 306). With the disjunction taking narrow scope, (5.51) is to be verified by checking

on any pet walker.

(5.51) Every boy who walked a dog ori a cat fed iti .

The wide-scope-disjunction reading, on the other hand, can be paraphrased as follows:

(5.52) Every boy who walked a dogi fed iti ,

or every boy who walked a cat j fed it j.
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This reading allows us to skip checking on, say, cat walkers if all dog walkers fed their dogs.

It is unclear how this reading can even be represented without duplicating the semantic

resources introduced by the boldfaced tokens in (5.51) (no wonder existing accounts all build

on Partee and Rooth’s (1983) argument sharing technique; see the end remark of Section

4.2.2). Naturally, it will not be what we get from scoping either disjunct. Consider what

happens when a dog takes wide scope:

(5.53)

i

∀ boyρ

ag

∈

th

σ ι

x

ag

λ

zy ⊒ ⊒ catdog

feed

=

λ walk

th

As y becomes the root, the evaluation of dogÐ→y is suspended. Later, to satisfy the shaded

subgraph contained in the iterator filter on i (see Definition 2.8), the choices open to x

depend on how y is valuated earlier: if y settles on a value that satisfies dogÐ→y , x can choose

between y can z; otherwise, x can only choose z.

As a consequence, to verify (5.53), we may need to check on all boys who walked a specific

dog y and all those who walked a cat (when dogÐ→y is satisfied), or we may only need to check

on all those who walked a cat (when dogÐ→y is unsatisfied). That means (5.53) represents a

wide-scope-disjunct reading that can be paraphrased thus:

(5.54) For some dog y, every boy who walked y ori a cat fed iti ,

or every boy who walked a cat j fed it j.

A symmetric wide-scope-disjunct reading then derives from scoping a cat:

(5.55) For some cat z, every boy who walked a dog ori z fed iti ,

or every boy who walked a dog j fed it j.

(5.54) and (5.55) each share one line with (5.52), while the situations satisfying their other

lines arguably satisfy (5.51). Thus we have constructed not the wide-scope-disjunction reading

proper, but two wide-scope-disjunct readings that jointly cover the latter.



164

We may similarly consider the “wide-scope-conjunct” and “wide-scope-conjunction”

readings of the following sentence.

(5.56) Every boy who walked a dog andi a cat fed themi .

The wide-scope-conjunction reading, generally considered impossible in the literature, can

be paraphrased as follows.

(5.57) Every boy who walked a dogi fed iti ,

and every boy who walked a cat j fed it j.

Following the construction of (5.53) and the interpretation rule of conjunction structures,

readers should be able to verify that the two wide-scope-conjunct readings of (5.56), resulting

from scoping a dog and a cat, can be paraphrased as follows.

(5.58) a. For some dog y, every boy who walked y andi a cat fed themi .

b. For some cat z, every boy who walked a dog andi z fed themi .

What distinguishes (5.58a) from (5.54), or (5.58b) from (5.55), is that the former always

requires the existence of some dog, or some cat. This is because unlike the semantics of

choice, the semantics of summation requires both conjunct subgraphs be satisfied, whether

either conjunct takes scope or not. One can see that wide-scope-conjunct readings do not

relate to wide-scope-conjunction readings in any way nearly as interesting as do wide-scope-

disjunct readings to wide-scope-disjunction readings.

5.2.4 Interaction with co-reference

The interaction of co-reference and precedence resolutions leads to constraints on both sides.

Taking the perspective of anaphors, we may find their co-reference options constrained

by the scope of indefinite antecedents. This is the subject of anaphoric accessibility dealt with

in dynamic semantic theories (see Geurts, 2011 for a review), of which DRT is an example. As

mentioned in Section 2.3.3, the essence of thematter consists in the way valuation dependency

is managed to ensure that quantification works out as desired (see Definitions 2.5/2.6).



165

As a classic example, consider how a narrow-scope indefinite is inaccessible to a quantifier-

external anaphor. In both (5.59a&b) it cannot pick up and covary with a dog when no specific

dog is intended.

(5.59) a. Every boy who walked *a dogi swam and *iti barked. (∀ boy > ∃ dog)

b. Joe didn’t walked a dogi and *iti barked. (¬ > ∃ dog)

Let us check the semgraphs implied by these invalid co-references:

(5.60) a. q

i

y

v1

z
ρ

∈

⊃

⊃σ
ι

swim

∀

bark

ag

boy

v2

x

ag

=
walk

λ ag

th dog

b. q

s v

z
ρ

∈

⊃

⊃σ
ι

walk

¬

bark

y

x

ag

ag th

dogJoe =

A valuation g satisfying (5.60a) must be undefined on x, since x remains an unvisited vertex

of the iterator subgraph when the conjunct at q is evaluated with respect to any h ⊇ g. Any

k ⊇ g satisfying the conjunct at v can thus assign x (the barker) any value, independently of

any extension l ⊇ h used for iterating over dog-walking boys. In other words, it in (5.59a) is

interpreted as a free pronoun despite being resolved to a dog. A similar reasoning applies to

(5.59b)/(5.60b).

One can easily verify that the co-references above would make sense if the indefinites in

question take wide scope.

(5.61) a. (∃ dog > ∀ boy) b. (∃ dog > ¬)

q

i

y

v

z
ρ

∈

⊃

⊃σ
ι

swim

∀

bark

ag

boy

v2

x

ag

=
walk

λ ag

th dog

λ

q

s v

z
ρ

∈

⊃

⊃σ
ι

walk

¬

bark

y

x

ag

ag th

dogJoe =

λ
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It suffices to note that by scoping y over the conjunction, each conjunct is to be satisfied by a

valuation defined on x.

Remark. We just attributed anaphoric accessibility to the local semantic context of a co-

reference antecedent, at the cost of ignoring the fact that an anaphor may reference into, say,

double negation, e.g. it’s not the case that Joe didn’t sink a boat — it’s over there. But there is

the possibility that the anaphor in question relies on the discourse to specify its reference,

according to the end remark of Section 3.2.1. Such anaphors gain wider accessibility: it picks

up the indefinite in we don’t have a decisive answer to that question; even if we had it ...

Now, turning to the perspective of indefinites, we may also find their scoping options

constrained by the resolution of anaphors syntactically depending on them (if any). While

relevant examples bear on the bound pronoun problem introduced in Section 5.2.1, we are

interested here in a specific observation discussed by Brasoveanu and Farkas (2011) among

others under the name “binder roof constraint”, namely, an outscoping quantifier caps the

scope of an indefinite when it binds into the latter’s description:

(5.62) a. Every boyi who walked a dog hei fed swam. (∀ boy > ∃ dog)

b. Every boyi walked a dog hei fed. (∀ boy > ∃ dog)

In both (5.62a&b), a dog cannot take scope over the quantifier as he picks up each boy; (5.62b),

for example, does not mean that there was a dog that every boy walked and fed.

Let us again look at the semgraphs implied by invalid scoping. Recall that for an indefinite

to get wide scope, we can either resolve the precedence of its referent, or reach it from the

restrictor of the outscoped quantifier. Since both work for (5.62a&b), (5.63) illustrates one

for each.
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(5.63) a. q r

i

ρ

ι
σ

∀
boy

∈

agswim

x dogv

y

th

ag

=
th

λ

λ

ag

feed

walk

λ

b. q

i

ρ

ι
σ

∀ boy

∈

agwalk

xdog

th

v y

=

agth

λ

λ

feed

Take (5.63a). Given λÐ→rx, a valuation g satisfying the semgraph (rooted at q) must satisfy the

restrictor subgraph and thus be defined on y. But g must be undefined on y, since y remains

unvisited in the iterator subgraph and lies outside the visiting history update by r. Hence

a contradiction. One can similarly derive the contradiction in (5.63b), and in (5.44), if its

indefinite were to take matrix scope.

We note that such contradictions are independent of any model or world of reference.

This means that no situation satisfies the respective semgraphs, and therefore no wide-scope-

indefinite reading is over-generated for the corresponding sentences. Also, since such con-

tradictions are even independent of choice of lexical tokens (or of unary edge labels, so to

speak), they seem to qualify as what Chierchia (2013, pp. 49ff) calls “grammatical triviality”,

an idea attributed to Gajewski (2002) for explaining ungrammaticality.

It is clear that our accounts of anaphoric inaccessibility and the binder roof constraint

proceed in roughly the same way. That (5.59) and (5.62) have similar problems with valuation

dependency is reflected in a shared feature of (5.60) and (5.63): a pair of parallel paths where

the one ending in the co-reference equality passes a quantification structure, but the other

does not (e.g. x → q → i → y ∥ x → v → y in (5.63b)). Thus we can understand the

binder roof constraint in terms of anaphoric inaccessibility caused by scoping the descriptive

constraint of indefinites.
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Conclusion

Semantic representations based on directed graphs are emerging in the computational lin-

guistics community for their expressivity and computational tractability. When equipped

with a construction mechanism that composes semgraphs at the syntax-semantics interface

and an interpreter that defines semgraphs’ model-theoretical semantics, graph formalisms

can prove a powerful tool for research in theoretical semantics.

In this thesis, we developed a graph formalism and explored its empirical applications to

issues in plurality and quantification. We began in Chapter 2 by presenting a graph language

that uses only monadic second-order variables but covers thematic relations; improves

on previous representations of modification, co-reference, plurality, and quantification (as

iteration); and introduces to semgraphs intensionality, conjunction (as summation), and

disjunction (as choice). By structural induction, we defined for the first time the model-

theoretical semantics of semgraphs in terms of graph traversal, where the relative scope of

variables arises from their order of valuation.

In Chapter 3 we provided a unification-based mechanism for constructing semgraphs

at the syntax-semantics interface. We showed that the presentation of syntax can be greatly

simplified if formulated as a function, on par with non-syntactic resolutions, that computes

equivalence among referents introduced by linguistic tokens. When implementing this

function in categorial grammars, we proposed a partly deterministic alignment between the

semgraph and syntactic type of linguistic expressions, allowing us to partly infer one from

the other. We automated our syntax-semantics interface for future exploration.
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We applied our graph formalism to topics in plurality and quantification in Chapters

4-5. We traced distributivity of various forms and even cumulativity with an upper bound to

variants of a quantification structure that explicitly represents the domain of quantification.

By representing argument sharing via equality, we addressed compositional challenges in

cross-categorial conjunction while capturing the long-existing intuition that all conjunctions

create some plurality. We studied the scope permutation of quantificational expressions with

a continuized syntax, but, by virtue of our syntax-semantics interface, without resorting

to higher-order semantics. With the non-determinism of non-syntactic resolutions, we

simplified the treatment of indefinites’ exceptional scoping behavior.

Future work This thesis leaves much work to be done and raises many questions to be

answered. To start with, our graph language covers the semantic essentials usually found

in textbook language fragments. The hope is that this language will remain a useful basis

as one addresses the issues in plurality and quantification we left untreated or treated only

with partial success, or as one extends it to explore new applications in empirical domains

other than plurality and quantification. For example, we noted comparatives and measures

as a domain that is of theoretical and practical interest. To express semantics pertinent to

this domain, one may wonder what semantic dependencies and graph motifs need to be

introduced, besides those that can be reused.

Efforts can also be invested in reinventing the infrastructure of our graph formalism. For

example, the present semgraph interpreter is only defined on uniquely rooted graphs. But

one may wonder in a multi-rooted semgraph, whether there is a meaningful way to deal

with the different truth-conditions resulting from interpreting the graph through entering

different roots; branching quantification gives an example where we want to conjoin them

(Section 4.1.3), but in what situations might they illustrate underspecification?

On the other hand, the present semantic construction mechanism only builds semgraphs

for linguistic expressions up to sentences, but we can surely consider how sentence semgraphs



170

can be further merged to represent a discourse (cf. Kamp et al., 2011; Kruijff, 2003). Even

for sentence-level semantic construction, at times there arises the need to not only combine

semgraphs introduced by linguistic tokens, but to incorporate subgraphs copied from those

tokens or from the discourse (Sections 3.2.1, 4.1.2). While graph copying itself can be im-

plemented without difficulty as hyperedge replacement (see Courcelle, 1993; Drewes et al.,

1997), the question is whether we can generally predict when to copy what, or it has to be

determined case by case.

Finally, besides noticing the correlation between the binding theory constraints and the

features of parallel paths created by co-reference (Section 3.2.2), we have not drawn many

empirical implications from the formal properties of semgraphs. Judging from our graph

language as is, however, we may ask what are the general characteristics of “well-formed”

semgraphs. For example, all but few rare semgraphs in this thesis (can) have a planar layout,

that is, they can be drawn in a plane with no two edges crossing each other. For a simple

connected graph to be planar, a necessary condition is that its number m of edges be linear

to its number n of vertices (see Diestel, 2016, sec. 4.2 for a precise formulation), whereas

maximally m can be quadratic to n. Therefore, if planarity indeed plays a role in semgraph

well-formedness, we may say that natural language semantics is sparse: it places a certain

number of referents in only so many semantic relations, whose number is of the same order

as that of the referents; we may wonder what causes this sparsity and what predictions can be

made of it.

More abstractly, we can approach semgraph well-formedness from a language-theoretical

point of view. Consider the set of all the token semgraphs in some lexicon and all the

semgraphs composable out of them according to syntax and non-syntactic resolutions. One

may wonder how to specify a graph grammar that generates this set of semgraphs and how

to characterize the complexity properties of such grammars (see Courcelle and Engelfriet,

2012). In comparison with higher-order logic, what does a representation formalism more

restrictive in expressivity have to say about the limitation of natural language semantics?



171

Bibliography

Dorit Abusch. 1994. The scope of indefinites. Natural Language Semantics, 2(2):83–135.

Kazimierz Ajdukiewicz. 1935. Die syntaktische konnexitat. Studia philosophica, pages 1–27.
English translation in McCall, 207–231 (1967).

Yoav Artzi, Kenton Lee, and Luke Zettlemoyer. 2015. Broad-coverage CCG semantic parsing
with AMR. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language
Processing, pages 1699–1710, Lisbon, Portugal. Association for Computational Linguistics.

Emmon Bach and Barbara Partee. 1980. Anaphora and semantic structure. In Papers from
the Parasession on Language and Behavior at the 17th Regional Meeting of the Chicago
Linguistics Society, pages 1–28.

Jason Baldridge and Geert-Jan M Kruijff. 2002. Coupling CCG and hybrid logic dependency
semantics. In Proceedings of the 40th annual meeting on association for computational
linguistics, pages 319–326. Association for Computational Linguistics.

Jason Baldridge and Geert-Jan M. Kruijff. 2003. Multi-Modal Combinatory Categorial
Grammar. In 10th Conference of the European Chapter of the Association for Computational
Linguistics, Budapest, Hungary. Association for Computational Linguistics.

Laura Banarescu, Claire Bonial, Shu Cai, Madalina Georgescu, Kira Griffitt, Ulf Hermjakob,
Kevin Knight, Philipp Koehn, Martha Palmer, and Nathan Schneider. 2013. Abstract
Meaning Representation for sembanking. In Proceedings of the 7th Linguistic Annotation
Workshop and Interoperability with Discourse, pages 178–186.

Yehoshua Bar-Hillel. 1953. A quasi-arithmetical notation for syntactic description. Language,
29(1):47–58.

Chris Barker. 2010. Free choice permission as resource-sensitive reasoning. Semantics and
Pragmatics, 3(10):1–38.

Chris Barker. 2019. NLλ as the logic of scope and movement. Journal of Logic, Language and
Information, 28(2):217–237.

Chris Barker. 2021. Rethinking scope islands. Linguistic Inquiry, 0(just accepted):1–55.

Chris Barker and Chung-chieh Shan. 2014. Continuations and natural language, volume 53.
Oxford studies in theoretical linguistics.

https://doi.org/10.1007/BF01250400
https://doi.org/10.18653/v1/D15-1198
https://doi.org/10.18653/v1/D15-1198
https://doi.org/10.1002/9780470751305.ch6
https://doi.org/10.3115/1073083.1073137
https://doi.org/10.3115/1073083.1073137
https://doi.org/10.3115/1067807.1067836
https://doi.org/10.3115/1067807.1067836
https://aclanthology.org/W13-2322
https://aclanthology.org/W13-2322
https://doi.org/10.2307/410452
https://doi.org/10.3765/sp.3.10
https://doi.org/10.1007/s10849-019-09288-1
https://doi.org/10.1162/ling_a_00419


172

Jon Barwise. 1979. On branching quantifiers in English. Journal of Philosophical Logic,
8(1):47–80.

Jon Barwise and Robin Cooper. 1981. Generalized quantifiers and natural language. Linguistics
and Philosophy, 4:159–219.

David I. Beaver. 2002. Pragmatics, and that’s an order. In Dave Barker-Plummer, David I.
Beaver, Johan van Benthem, and Patrick Scotto di Luzio, editors, Words, Proofs, and
Diagrams, pages 191–215. CSLI Publications.

Filippo Beghelli. 1995. The phrase structure of quantifier scope. phdthesis, UCLA.

Emily M. Bender and Alexander Koller. 2020. Climbing towards NLU: On meaning, form,
and understanding in the age of data. In Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, page 5185–5198.

Johan van Benthem. 1986. Semantic automata. In Essays in Logical Semantics, pages 151–176.
Springer Netherlands, Dordrecht.

Johan van Benthem. 1991. Language in Action: categories, lambdas and dynamic logic. North-
Holland.

Martin Berglund, Henrik Björklund, and Frank Drewes. 2017. Single-rooted DAGs in regular
DAG languages: Parikh image and path languages. In Proceedings of the 13th International
Workshop on Tree Adjoining Grammars and Related Formalisms, pages 94–101.

Yonatan Bisk and Julia Hockenmaier. 2012. Simple robust grammar induction with combina-
tory categorial grammars. In Twenty-Sixth AAAI Conference on Artificial Intelligence.

Maria Bittner. 2001. Surface composition as bridging. Journal of Semantics, 18(2):127–177.

Patrick Blackburn. 2000. Representation, reasoning, and relational structures: a hybrid logic
manifesto. Logic Journal of the IGPL, 8(3):339–365.

Claire Bonial, Bianca Badarau, Kira Griffitt, Ulf Hermjakob, Kevin Knight, Tim O’Gorman,
Martha Palmer, andNathan Schneider. 2018. AbstractMeaning Representation of construc-
tions: The more we include, the better the representation. In Proceedings of the Eleventh
International Conference on Language Resources and Evaluation (LREC 2018), Miyazaki,
Japan. European Language Resources Association (ELRA).

Claire Bonial, Lucia Donatelli, Mitchell Abrams, Stephanie M. Lukin, Stephen Tratz, Matthew
Marge, Ron Artstein, David Traum, and Clare Voss. 2020. Dialogue-AMR: Abstract
Meaning Representation for dialogue. In Proceedings of the 12th Language Resources and
Evaluation Conference, pages 684–695, Marseille, France. European Language Resources
Association.

George Boolos. 1984. To be is to be a value of a variable (or to be some values of some
variables). The Journal of Philosophy, 81(8):430–449.

Johan Bos. 2016. Expressive power of Abstract Meaning Representations. Computational
Linguistics, 42(3):527–535.

https://doi.org/10.1007/bf00258419
https://doi.org/10.18653/v1/2020.acl-main.463
https://doi.org/10.18653/v1/2020.acl-main.463
https://doi.org/10.1007/978-94-009-4540-1_8
https://aclanthology.org/W17-6210
https://aclanthology.org/W17-6210
https://dl.acm.org/doi/10.5555/2900929.2900961
https://dl.acm.org/doi/10.5555/2900929.2900961
https://doi.org/10.1093/jos/18.2.127
https://doi.org/10.1093/jigpal/8.3.339
https://doi.org/10.1093/jigpal/8.3.339
https://aclanthology.org/L18-1266
https://aclanthology.org/L18-1266
https://aclanthology.org/2020.lrec-1.86
https://aclanthology.org/2020.lrec-1.86
https://doi.org/10.2307/2026308
https://doi.org/10.2307/2026308
https://doi.org/10.1162/coli_a_00257


173

Johan Bos, Valerio Basile, Kilian Evang, Noortje J Venhuizen, and Johannes Bjerva. 2017. The
Groningen meaning bank. In Handbook of linguistic annotation, pages 463–496. Springer.

Samuel Ryan Bowman. 2016. Modeling natural language semantics in learned representations.
Ph.D. thesis, Stanford University, Stanford USA.

Adrian Brasoveanu. 2013. Modified Numerals as Post-Suppositions. Journal of Semantics,
30(2):155–209.

Adrian Brasoveanu and Donka F Farkas. 2011. How indefinites choose their scope. Linguistics
and philosophy, 34(1):1.

Marius Buliga. 2013. Graphic lambda calculus. Complex Systems, 22(4):311–360.

Wojciech Buszkowski and Gerald Penn. 1990. Categorial grammars determined from lin-
guistic data by unification. Studia Logica: An International Journal for Symbolic Logic,
49(4):431–454.

Lisa Bylinina and Rick Nouwen. 2018. On “zero” and semantic plurality. Glossa: a journal of
general linguistics, 3(1):98.

Jonathan Calder, Ewan Klein, and Henk Zeevat. 1988. Unification categorial grammar:
A concise, extendable grammar for natural language processing. In Proceedings of the
12th Conference on Computational Linguistics - Volume 1, page 83–86. Association for
Computational Linguistics.

Greg N. Carlson. 1984. Thematic roles and their role in semantic interpretation. Linguistics,
22(3):259–280.

Rudolf Carnap. 1946. Modalities and quantification. The Journal of Symbolic Logic, 11(2):33–
64.

Bob Carpenter. 1997. Type-logical semantics. The MIT press.

Lucas Champollion. 2015. Ten men and women got married today: Noun coordination and
the intersective theory of conjunction. Journal of Semantics, 33(3):561–622.

Lucas Champollion. 2017. Parts of a Whole: Distributivity as a Bridge Between Aspect and
Measurement. Oxford University Press.

SimonCharlow. 2014. On the semantics of exceptional scope. Ph.D. thesis, NewYorkUniversity.

Simon Charlow. 2018. Post-suppositions and semantic theory. Ms. Accepted with revisions
at Journal of Semantics.

Simon Charlow. 2019. The scope of alternatives: Indefiniteness and islands. Linguistics and
Philosophy, 43(4):427–472.

Simon Charlow. 2020. Static and dynamic exceptional scope. Ms. Accepted at Journal of
Semantics.

Rui Pedro Chaves. 2007. Coordinate structures: Constraint-based syntax-semantics processing.
Ph.D. thesis, Universidade de Lisboa (Portugal).

https://doi.org/10.1007/978-94-024-0881-2_18
https://doi.org/10.1007/978-94-024-0881-2_18
https://doi.org/10.1093/jos/ffs003
https://doi.org/10.1007/s10988-011-9092-7
https://doi.org/10.25088/complexsystems.22.4.311
https://doi.org/10.1007/bf00370157
https://doi.org/10.1007/bf00370157
https://doi.org/10.5334/gjgl.441
https://doi.org/10.3115/991635.991653
https://doi.org/10.3115/991635.991653
https://doi.org/https://doi.org/10.1515/ling.1984.22.3.259
https://doi.org/10.2307/2268610
https://doi.org/10.1093/jos/ffv008
https://doi.org/10.1093/jos/ffv008
https://doi.org/10.1093/oso/9780198755128.001.0001
https://doi.org/10.1093/oso/9780198755128.001.0001
https://doi.org/10.1007/s10988-019-09278-3


174

Gennaro Chierchia. 1988. Aspects of a categorial theory of binding. In Richard T. Oehrle,
Emmon Bach, and Deirdre Wheeler, editors, Categorial Grammars and Natural Language
Structures, pages 125–151. Springer Netherlands.

Gennaro Chierchia. 1992. Anaphora and dynamic binding. Linguistics and Philosophy,
15(2):111–183.

Gennaro Chierchia. 2013. Logic in grammar: Polarity, free choice, and intervention. Oxford
Studies in Semantics and Pragmatics. Oxford University Press.

Noam Chomsky. 1956. Three models for the description of language. IRE Transactions on
information theory, 2(3):113–124.

Noam Chomsky. 1959. On certain formal properties of grammars. Information and control,
2(2):137–167.

Noam Chomsky. 1981. Lectures on government and binding. Foris Publications.

Noam Chomsky. 2013. Problems of projection. Lingua, 130:33–49.

Alexander Clark. 2013. The syntactic concept lattice: Another algebraic theory of the context-
free languages? Journal of Logic and Computation, 25(5):1203–1229.

Robin Cooper. 1983. Quantification and syntactic theory, volume 21. Springer Science &
Business Media.

Ann Copestake, Alex Lascarides, and Dan Flickinger. 2001. An algebra for semantic con-
struction in constraint-based grammars. In Proceedings of the 39th Annual Meeting of the
Association for Computational Linguistics, pages 140–147, Toulouse, France. Association for
Computational Linguistics.

Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. 2009. Intro-
duction to Algorithms, 3rd edition. Cambridge, MA: MIT Press.

Bruno Courcelle. 1993. Graph grammars, monadic second-order logic and the theory of
graph minors. In Graph StructureTheory, volume 147 of Contemporary Mathematics, pages
565–590. AMS.

Bruno Courcelle and Joost Engelfriet. 2012. Graph structure and monadic second-order logic:
a language-theoretic approach, volume 138. Cambridge University Press.

Mary Dalrymple, Stuart M. Shieber, and Fernando C. N. Pereira. 1991. Ellipsis and higher-
order unification. Linguistics and Philosophy, 14:399–452.

Olivier Danvy and Andrzej Filinski. 1990. Abstracting control. In Proceedings of the 1990
ACM conference on LISP and functional programming - LFP '90. ACM Press.

Donald Davidson. 1967. The logical form of action sentences. In Nicholas Rescher, editor,
The logic of decision and action, pages 81–95. University of Pittsburgh Press.

Virginia Ellen Dawson. 2020. Existential quantification in Tiwa: disjunction and indefinites.
Ph.D. thesis, University of California, Berkeley.

https://doi.org/10.1007/978-94-015-6878-4_6
https://doi.org/10.1007/bf00635805
https://doi.org/10.1093/acprof:oso/9780199697977.001.0001
https://doi.org/10.1109/tit.1956.1056813
https://doi.org/10.1016/s0019-9958(59)90362-6
https://doi.org/10.1016/j.lingua.2012.12.003
https://doi.org/10.1093/logcom/ext037
https://doi.org/10.1093/logcom/ext037
https://doi.org/10.1007/978-94-015-6932-3
https://doi.org/10.3115/1073012.1073031
https://doi.org/10.3115/1073012.1073031
https://doi.org/10.1090/conm/147/01200
https://doi.org/10.1090/conm/147/01200
https://doi.org/10.1017/CBO9780511977619
https://doi.org/10.1017/CBO9780511977619
https://doi.org/10.1007/bf00630923
https://doi.org/10.1007/bf00630923
https://doi.org/10.1145/91556.91622
https://doi.org/10.1093/0199246270.003.0006


175

Aniello De Santo and Thomas Graf. 2019. Structure sensitive tier projection: Applications
and formal properties. In International Conference on Formal Grammar, pages 35–50.
Springer.

Scott Deerwester, Susan T Dumais, George W Furnas, Thomas K Landauer, and Richard
Harshman. 1990. Indexing by latent semantic analysis. Journal of the American society for
information science, 41(6):391–407.

Paul Dekker. 2011. Dynamic semantics. In Klaus von Heusinger, Claudia Maienborn, and
Paul Portner, editors, Semantics: An international handbook of natural language meaning,
volume 1 of HSK 33, pages 923–945. De Gruyter Mouton.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-
training of deep bidirectional transformers for language understanding. In Proceedings of
the 2019 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 4171–
4186, Minneapolis, Minnesota. Association for Computational Linguistics.

Reinhard Diestel. 2016. GraphTheory, 5ht edition, volume 173 of GTM. Springer.

David Dowty. 1987. Collective predicates, distributive predicates, and all. In Proceedings of the
3rd Eastern States Conference on Linguistics (ESCOL), pages 97–115. Ohio State University.

David Dowty. 1988. Type raising, functional composition, and non-constituent conjunction.
In Richard T. Oehrle, Emmon Bach, and Deirdre Wheeler, editors, Categorial Grammars
and Natural Language Structures, pages 153–197. Springer Netherlands, Dordrecht.

David Dowty. 1989. On the semantic content of the notion of ‘thematic role’. In Gennaro
Chierchia, Barbara H. Partee, and Raymond Turner, editors, Properties, Types andMeaning,
volume II, pages 69–129. Kluwer Academic Publishers.

David Dowty. 1992. ‘Variable-free’ syntax, variable-binding syntax, the natural deduction
Lambek calculus, and the crossover constraint. In Proceedings of the 11th West Coast
Conference on Formal Linguistics, pages 161–176. Center for the Study of Language (CSLI).

Frank Drewes, H-J Kreowski, and Annegret Habel. 1997. Hyperedge replacement graph
grammars. In Grzegorz Rozenberg, editor,Handbook Of Graph Grammars And Computing
By Graph Transformation: Volume 1: Foundations, pages 95–162. World Scientific.

Jeffrey L. Elman. 1991. Distributed representations, simple recurrent networks, and grammat-
ical structure. Machine learning, 7(2-3):195–225.

Donka Farkas. 1981. Quantifier scope and syntactic islands. In Papers from the Regional
Meeting of the Chicago Linguistic Society 17, pages 59–66, Chicago, IL. Chicago Linguistic
Society.

Donka F. Farkas and Anastasia Giannakidou. 1996. How clause-bounded is the scope of
universals? In Proceedings of Semantics and LinguisticTheory 6, pages 35–52, Ithaca, NY.
Cornell University.

https://doi.org/10.1007/978-3-662-59648-7_3
https://doi.org/10.1007/978-3-662-59648-7_3
https://doi.org/10.1002/(SICI)1097-4571(199009)41:6%3C391::AID-ASI1%3E3.0.CO;2-9
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.1007/978-94-015-6878-4_7
https://doi.org/10.1007/978-94-009-2723-0_3
https://doi.org/10.1142/9789812384720_0002
https://doi.org/10.1142/9789812384720_0002
https://doi.org/10.1023/A:1022699029236
https://doi.org/10.1023/A:1022699029236


176

Matthias Felleisen. 1988. The theory and practice of first-class prompts. In Proceedings of the
15th ACM SIGPLAN-SIGACT symposium on Principles of programming languages - POPL
'88. ACM Press.

Kai von Fintel. 1994. Restrictions on quantifier domains. Ph.D. thesis, University of Mas-
sachusetts at Amherst Amherst, MA.

Kai von Fintel. 2011. Conditionals. In Klaus von Heusinger, Claudia Maienborn, and
Paul Portner, editors, Semantics: An international handbook of natural language meaning,
volume 2 of HSK 33, pages 1515–1538. De Gruyter Mouton.

Kai von Fintel and Irene Heim. 2011. Intensional semantics. Lecture notes. MIT.

Kai von Fintel and Sabine Iatridou. 2003. Epistemic containment. Linguistic Inquiry, 34(2):173–
198.

John Rupert Firth. 1968. Asynopsis of linguistic theory 1930–1955. In F. R. Palmer, editor,
Selected Papers of J. R. Firth 1952-59, pages 168–205. Longman.

Janet Dean Fodor. 1970. The linguistic description of opaque contents. Ph.D. thesis, Mas-
sachusetts Institute of Technology.

Janet Dean Fodor and IvanA Sag. 1982. Referential and quantificational indefinites. Linguistics
and philosophy, 5(3):355–398.

Danny Fox. 1999. Reconstruction, binding theory, and the interpretation of chains. Linguistic
Inquiry, 30:157–196.

Danny Fox. 2003. On logical form. In Randall Hendrick, editor,Minimalist Syntax, chapter 2,
pages 82–123. Blackwell Publishing.

Ralph Freese, Jaroslav Ježek, and James Bryant Nation. 1995. Free lattices, volume 42. Ameri-
can Mathematical Society.

Jon Gajewski. 2002. L-analyticity and natural language. Ms. University of Connecticut.

Peter T. Geach. 1962. Reference and Generality. New York: Cornell University Press.

Bart Geurts. 2000. Indefinites and Choice Functions. Linguistic Inquiry, 31(4):731–738.

Bart Geurts. 2011. Accessibility and anaphora. In Klaus von Heusinger, Claudia Maien-
born, and Paul Portner, editors, Semantics: An international handbook of natural language
meaning, volume 2 of HSK 33, pages 1988–2011. De Gruyter Mouton.

Brendan S. Gillon. 1987. The readings of plural noun phrases in English. Linguistics and
philosophy, 10(2):199–219.

SorchaGilroy andAdamLopez. 2018. Graph formalisms formeaning representations. Lecture
slides at NASSLLI 2018.

Warren D. Goldfarb. 1981. The undecidability of the second-order unification problem.
Theoretical Computer Science, 13(2):225–230.

https://doi.org/10.1145/73560.73576
https://doi.org/10.1162/002438903321663370
https://doi.org/10.1007/bf00351459
https://doi.org/10.1162/002438999554020
https://doi.org/10.1162/002438900554550
https://doi.org/10.1515/9783110255072.1988
https://doi.org/10.1007/bf00584318
https://doi.org/10.1016/0304-3975(81)90040-2


177

George Grätzer. 2011. Lattice theory: foundation. Springer Science & Business Media.

Jeroen Groenendijk and Martin Stokhof. 1991. Dynamic predicate logic. Linguistics and
philosophy, 14(1):39–100.

Philippe de Groote. 1999. A dynamic programming approach to categorial deduction. In
International Conference on Automated Deduction, pages 1–15. Springer.

Rafał Gruszczynski and Achille Varzi. 2015. Mereology then and now. Logic and Logical
Philosophy, 24(4):409–427.

Martin Hackl. 2000. Comparative quantifiers. Ph.D. thesis, Massachusetts Institute of
Technology.

Valentine Hacquard and Alexis Wellwood. 2012. Embedding epistemic modals in English: A
corpus-based study. Semantics and Pragmatics, 5(4):1–29.

Zellig Harris. 1954. Distributional structure. Word, 10(2-3):146–162.

Irene Heim. 1982. The semantics of definite and indefinite noun phrases. PhD dissertation,
University of Massachusetts Amherst.

Irene Heim. 1990. E-type pronouns and donkey anaphora. Linguistics and philosophy,
13(2):137–177.

Irene Heim and Angelika Kratzer. 1998. Semantics in generative grammar. Oxford: Blackwell.

Irene Heim, Howard Lasnik, and Robert May. 1991. Reciprocity and plurality. Linguistic
inquiry, 22(1):63–101.

Jeffrey Heinz. 2010. Learning long-distance phonotactics. Linguistic Inquiry, 41(4):623–661.

Jeffrey Heinz and William Idsardi. 2013. What complexity differences reveal about domains
in language. Topics in cognitive science, 5(1):111–131.

Herman Hendriks. 1993. Studied flexibility. Ph.D. thesis, Institute for Logic, Language and
Computation, University of Amsterdam, Amsterdam.

Mark Hepple. 1990. The grammar and processing of order and dependency: A categorial
approach. Ph.D. thesis, University of Edinburgh.

Caroline Heycock and Roberto Zamparelli. 2005. Friends and colleagues: Plurality, coordina-
tion, and the structure of dp. Natural language semantics, 13(3):201–270.

James Higginbotham. 1983. The logic of perceptual reports: An extensional alternative to
situation semantics. The Journal of Philosophy, 80(2):100–127.

Jaakko Hintikka. 1961. Modality and quantification. Theoria, 27(3):119–128.

Jerry R. Hobbs. 1983. An improper treatment of quantification in ordinary English. In
Proceedings of the 21st Annual Meeting on Association for Computational Linguistics, ACL
’83, page 57–63, USA. Association for Computational Linguistics.

Jack Hoeksema. 1983. Plurality and conjunction. In A. ter Meulen, editor, Studies in Model-

https://doi.org/10.1007/978-3-0348-0018-1
https://doi.org/10.1007/BF00628304
https://doi.org/10.1007/3-540-48660-7_1
https://doi.org/10.12775/LLP.2015.024
https://doi.org/10.3765/sp.5.4
https://doi.org/10.3765/sp.5.4
https://doi.org/10.1080/00437956.1954.11659520
https://doi.org/10.1007/bf00630732
https://doi.org/10.1162/ling_a_00015
https://doi.org/10.1111/tops.12000
https://doi.org/10.1111/tops.12000
https://doi.org/10.1007/s11050-004-2442-z
https://doi.org/10.1007/s11050-004-2442-z
https://doi.org/10.2307/2026237
https://doi.org/10.2307/2026237
https://doi.org/10.1111/j.1755-2567.1961.tb00020.x
https://doi.org/10.3115/981311.981322
https://doi.org/10.1515/9783112420768-005


178

theoretic Semantics, pages 63–83. Foris, Dordrecht.

Jack Hoeksema. 1988. The semantics of non-Boolean and. Journal of Semantics, 6(1):19–40.

Gérard P. Huet. 1973. The undecidability of unification in third order logic. Information and
Control, 22(3):257–267.

Pauline Jacobson. 1990. Raising as function composition. Linguistics andPhilosophy, 13(4):423–
475.

Pauline Jacobson. 1999. Towards a variable-free semantics. Linguistics and philosophy,
22(2):117–185.

Gerhard Jäger. 2005. Anaphora and type logical grammar, volume 24. Springer Science &
Business Media.

Gerhard Jäger. 2007. Partial variables and specificity. In Uli Sauerland and Penka Stateva,
editors, Presupposition and Implicature in Compositional Semantics, pages 121–162. Palgrave
Macmillan UK, London.

Daniel Jurafsky and James HMartin. 2020. Speech and language processing: An introduction
to natural language processing, computational linguistics, and speech recognition. Third
Edition draft of December 30, 2020.

Nirit Kadmon. 1987. On unique and non-unique reference and asymmetric quantification.
Ph.D. thesis, University of Massachusetts Amherst.

Aikaterini-Lida Kalouli and Richard Crouch. 2018. GKR: the graphical knowledge represen-
tation for semantic parsing. In Proceedings of the Workshop on Computational Semantics
beyond Events and Roles, pages 27–37, New Orleans, Louisiana. Association for Computa-
tional Linguistics.

Hans Kamp. 1981. A theory of truth and semantic representation. In J. A. G. Groenendijk,
T. M. V. Janssen, and M. B. J. Stokhof, editors, Formal methods in the Study of Language,
pages 277–322. Amsterdam: Mathematisch Centrum.

Hans Kamp and Uwe Reyle. 1993. From discourse to logic: Introduction to modeltheoretic
semantics of natural language, formal logic and discourse representation. Kluwer, Dordrecht.

Hans Kamp, Josef Van Genabith, and Uwe Reyle. 2011. Discourse representation theory. In
Handbook of philosophical logic, volume 15, pages 125–394. Springer.

Makoto Kanazawa. 1994. Weak vs. strong readings of donkey sentences and monotonicity
inference in a dynamic setting. Linguistics and Philosophy, 17(2):109–158.

Lauri Karttunen. 1969. Pronouns and variables. In Papers from the Fifth Regional Meeting of
the Chicago Linguistic Society, volume 5, pages 108–116. Chicago Linguistic Society.

Edward L. Keenan. 1992. Beyond the Frege boundary. Linguistics and Philosophy, 15(2):199–
221.

Ezra Keshet. 2008. Good Intensions: Paving Two Roads to a Theory of the De re/De dicto

https://doi.org/10.1093/jos/6.1.19
https://doi.org/10.1016/s0019-9958(73)90301-x
https://doi.org/10.1007/bf00630750
https://doi.org/10.1023/A:1005464228727
https://doi.org/10.1007/1-4020-3905-0
https://doi.org/10.1057/9780230210752_5
https://doi.org/10.18653/v1/W18-1304
https://doi.org/10.18653/v1/W18-1304
https://doi.org/10.1002/9780470758335.ch8
https://doi.org/10.1007/978-94-017-1616-1
https://doi.org/10.1007/978-94-017-1616-1
https://doi.org/10.1007/978-94-007-0485-5_3
https://doi.org/10.1007/bf00635807


179

Distinction. PhD dissertation, Massachusetts Institute of Technology.

Ryan Kiros, Yukun Zhu, Ruslan R Salakhutdinov, Richard Zemel, Raquel Urtasun, Antonio
Torralba, and Sanja Fidler. 2015. Skip-thought vectors. In Advances in neural information
processing systems, pages 3294–3302.

Angelika Kratzer. 1998. Scope or pseudoscope? Are there wide-scope indefinites? In Susan
Rothstein, editor, Events and Grammar, pages 163–196. Springer Netherlands, Dordrecht.

Angelika Kratzer. 2002. The event argument and the semantics of verbs. Ms. University of
Massachusetts, Amherst.

Manfred Krifka. 1992. Thematic relations as links between nominal reference and temporal
constitution. In Ivan Sag and Anna Szabolcsi, editors, Lexical Matters, pages 29–53. CSLI
Publications.

Manfred Krifka. 1999. At least some determiners aren’t determiners. In Ken Turner, editor,
The Semantics/Pragmatics Interface from Different Points of View, volume 1, pages 257–291.
Elsevier Science B.V.

Saul A. Kripke. 1963. Semantical analysis of modal logic I normal modal propositional calculi.
Mathematical Logic Quarterly, 9(5-6):67–96.

Manuel Križ and Mora Maldonado. 2018. An experimental note on distributivity and scope.
Ms. ENS, EHESS, CNRS, PSL ResearchUniversity.

Anthony S. Kroch. 1974. The semantics of scope in English. Ph.D. thesis, Massachusetts
Institute of Technology.

Geert-Jan Kruijff. 2001. A categorial-modal logical architecture of informativity. Ph.D. thesis,
Charles University, Prague.

Geert-JanM. Kruijff. 2003. Binding across boundaries. In Geert-JanM. Kruijff and Richard T.
Oehrle, editors, Resource-Sensitivity, Binding and Anaphora, pages 123–157. Springer.

Yusuke Kubota and Robert D. Levine. 2020. Type-Logical Syntax. The MIT Press.

Marco Kuhlmann and Stephan Oepen. 2016. Towards a catalogue of linguistic graph banks.
Computational Linguistics, 42(4):819–827.

TomKwiatkowski, Luke Zettlemoyer, Sharon Goldwater, andMark Steedman. 2010. Inducing
probabilistic CCG grammars from logical form with higher-order unification. In Pro-
ceedings of the 2010 conference on empirical methods in natural language processing, pages
1223–1233. Association for Computational Linguistics.

Kenneth Lai, Lucia Donatelli, and James Pustejovsky. 2020. A continuation semantics for
Abstract Meaning Representation. In Proceedings of the Second International Workshop on
Designing Meaning Representations, pages 1–12, Barcelona Spain (online). Association for
Computational Linguistics.

George Lakoff and Peters Stanley. 1969. Phrasal conjunction and symmetric predicate. In

https://dl.acm.org/doi/10.5555/2969442.2969607
https://doi.org/10.1007/978-94-011-3969-4_8
https://works.bepress.com/angelika_kratzer/5/download/
https://doi.org/10.1002/malq.19630090502
https://semanticsarchive.net/Archive/DI5NTAzZ/KrizMaldonado2018_paper.pdf
https://doi.org/10.1007/978-94-010-0037-6_5
https://doi.org/10.7551/mitpress/11866.001.0001
https://doi.org/10.1162/COLI_a_00268
https://aclanthology.org/D10-1
https://aclanthology.org/D10-1
https://aclanthology.org/2020.dmr-1.1
https://aclanthology.org/2020.dmr-1.1


180

David A. Reibel and Sanford A. Schane, editors,Modern Studies in English: Readingsin
Transformational Grammar, pages 113–142. Prentice-Hall, Inc.

François Lamarche and Christian Retoré. 1996. Proof nets for the Lambek calculus — an
overview. In Proceedings 1996 Roma Workshop. Proofs and Linguistic Categories, pages
241–262.

Joachim Lambek. 1958. The mathematics of sentence structure. The American Mathematical
Monthly, 65(3):154–170.

Fred Landman. 1989. Groups I & II. linguistics and philosophy, 12(5):559–605.

Fred Landman. 1991. Structures for semantics, volume 45. Springer Netherlands.

Fred Landman. 2000. Events and Plurality. Springer Netherlands.

Peter Lasersohn. 1995. Plurality, conjunction and events, volume 55. Springer Netherlands.

Howard Lasnik and Tim Stowell. 1991. Weakest crossover. Linguistic Inquiry, 22(4):687–720.

Howard Lasnik and Juan Uriagereka. 1988. A course in GB syntax: Lectures on binding and
empty categories. The MIT Press.

Jordi Levy, Manfred Schmidt-Schauß, and Mateu Villaret. 2004. Monadic second-order
unification is NP-complete. In International Conference on Rewriting Techniques and
Applications, pages 55–69. Springer.

Percy Liang. 2012. Semantic parsing for mathematical writing. Ms. Stanford University.

Percy Liang, Michael I Jordan, and Dan Klein. 2013. Learning dependency-based composi-
tional semantics. Computational Linguistics, 39(2):389–446.

Godehard Link. 1983. The logical analysis of plurals and mass terms: A lattice-theoretical
approach. In Reiner Bauerle, Christoph Schwarze, and Arnim von Stechow, editors,
Meaning, use and interpretation of language, pages 303–323. De Gruyter.

Godehard Link. 1998. Algebraic semantics in language and philosophy. CSLI Publications.

Bill MacCartney and Christopher D. Manning. 2009. An extended model of natural logic.
In Proceedings of the Eight International Conference on Computational Semantics, pages
140–156.

Robert May. 1978. The grammar of quantification. Ph.D. thesis, Massachusetts Institute of
Technology.

Robert May. 1985. Logical form: Its structure and derivation, volume 12. The MIT Press.

Igor Aleksandrovic Mel’cuk. 1988. Dependency syntax: theory and practice. SUNY press.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. 2013. Distributed
representations of words and phrases and their compositionality. In Advances in neural
information processing systems, pages 3111–3119.

Friederike Moltmann. 1994. Coordination and comparatives. PhD dissertation, Massachusetts

https://doi.org/10.1080/00029890.1958.11989160
https://doi.org/10.1007/978-94-011-4359-2
https://doi.org/10.1007/978-94-015-8581-1
https://doi.org/10.2307/4178746
https://doi.org/10.1007/978-3-540-25979-4_4
https://doi.org/10.1007/978-3-540-25979-4_4
https://doi.org/10.1162/coli_a_00127
https://doi.org/10.1162/coli_a_00127
https://doi.org/10.1515/9783110852820.302
https://doi.org/10.1515/9783110852820.302
https://doi.org/10.3115/1693756.1693772
https://dl.acm.org/doi/10.5555/2999792.2999959
https://dl.acm.org/doi/10.5555/2999792.2999959


181

Institute of Technology.

Richard Montague. 1973. The proper treatment of quantification in ordinary English. In
K. J. J. Hintikka, J. M. E. Moravcsik, and P. Suppes, editors, Approaches to Natural Language,
pages 221–242. Dordrecht.

Robert C. Moore. 1989. Unification-based semantic interpretation. In 27th Annual Meeting
of the Association for Computational Linguistics, pages 33–41, Vancouver, British Columbia,
Canada. Association for Computational Linguistics.

Michael Moortgat. 1997. Categorial type logics. In Johan van Benthem and Alice ter Meulen,
editors, Handbook of Logic and Language, pages 93–177. North Holland / Elsevier.

Michael Moortgat. 2011. Categorial type logics. In Johan van Benthem and Alice ter Meulen,
editors, Handbook of Logic and Language, 2nd edition, pages 95–179. Elsevier.

Richard Moot. 2016. Proof nets for the displacement calculus. In Formal Grammar, pages
273–289, Berlin, Heidelberg. Springer Berlin Heidelberg.

Richard Moot. 2020. Proof-theoretic aspects of NLλ. arXiv preprint arXiv:2010.12223.

Richard Moot and Christian Retoré. 2012. The logic of categorial grammars: a deductive
account of natural language syntax and semantics, volume 6850. Springer.

Glyn Morrill. 1992. Categorial formalisation of relativisation: pied piping, islands, and
extraction sites. Technical Report LSI-92-23-R, Departament de Llenguatges i Sistemes
Informàtics, Universitat Politècnica de Catalunya.

Glyn Morrill. 2011. Categorial Grammar: Logical Syntax, Semantics, and Processing. Oxford.

Glyn Morrill, Oriol Valentín, and Mario Fadda. 2010. The displacement calculus. Journal of
Logic, Language and Information, 20(1):1–48.

Andrzej Mostowski. 1957. On a generalization of quantifiers. Fundamenta Mathematicae,
44(1):12–36.

Reinhard Muskens. 1996. Combining Montague semantics and discourse representation.
Linguistics and philosophy, 19(2):143–186.

Reinhard Muskens. 2011. A squib on anaphora and coindexing. Linguistics and Philosophy,
34(1):85.

Rick Nouwen. 2016. Plurality. In Maria Aloni and Paul Dekker, editors, The Cambridge
Handbookof Formal Semantics, pages 267–284. Cambridge University Press.

Richard T. Oehrle. 2003. Resource sensitivity: A brief guide. In Geert-Jan M. Kruijff and
Richard T. Oehrle, editors, Resource-Sensitivity, Binding and Anaphora, pages 231–255.
Springer.

Aditya Paliwal, Sarah Loos, Markus Rabe, Kshitij Bansal, and Christian Szegedy. 2020. Graph
representations for higher-order logic and theorem proving. Proceedings of the AAAI
Conference on Artificial Intelligence, 34(03):2967–2974.

https://doi.org/10.1007/978-94-010-2506-5_10
https://doi.org/10.3115/981623.981628
https://doi.org/10.1016/b978-044481714-3/50005-9
https://doi.org/10.1016/B978-0-444-53726-3.00002-5
https://doi.org/10.1007/978-3-662-53042-9_16
https://doi.org/10.1007/978-3-642-31555-8
https://doi.org/10.1007/978-3-642-31555-8
https://doi.org/10.1007/s10849-010-9129-2
https://doi.org/10.4064/fm-44-1-12-36
https://doi.org/10.1007/bf00635836
https://doi.org/10.1017/CBO9781139236157.010
https://doi.org/10.1007/978-94-010-0037-6_9
https://doi.org/10.1609/aaai.v34i03.5689
https://doi.org/10.1609/aaai.v34i03.5689


182

Martha Palmer, DanielGildea, andPaulKingsbury. 2005. The proposition bank: An annotated
corpus of semantic roles. Computational Linguistics, 31(1):71–106.

Terence Parsons. 1990. Events in the Semantics of English: A Study in Subatomic Semantics.
Cambridge: MIT Press.

Barbara Partee and Mats Rooth. 1983. Generalized conjunction and type ambiguity. In
Rainer Bäuerle, Christoph Schwarze, Arnim von Stechow, and Arnim von Stechow, editors,
Meaning, Use, and Interpretation of Language, pages 361–383. De Gruyter.

Mati Pentus. 1998. Freemonoid completeness of the lambek calculus allowing empty premises.
In Logic Colloquium ’96: Proceedings of the Colloquium held in San Sebastián, Spain, July
9–15, 1996, page 171–210. Cambridge University Press.

Mati Pentus. 2010. A polynomial-time algorithm for Lambek grammars of bounded order.
Linguistic Analysis, 36(1):441–471.

Matthew E. Peters, Mark Neumann, Mohit Iyyer, Matt Gardner, Christopher Clark, Kenton
Lee, and Luke Zettlemoyer. 2018. Deep contextualized word representations. In Proceedings
of the 2018 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long Papers), pages 2227–2237, New
Orleans, Louisiana. Association for Computational Linguistics.

Massimo Poesio. 1996. Semantic ambiguity and perceived ambiguity. In Kees van Deemter
and Stanley Peters, editors, Semantic Ambiguity and Underspecification, number 55 in CSLI
Lecture Notes, pages 159–201. CSLI Publications, Stanford.

Carl Pollard and Ivan A Sag. 1987. Information-based Syntax and Semantics. CSLI Publications.

Paul Martin Postal. 1971. Cross-over phenomena. Holt, Rinehart and Winston.

James Pustejovsky, Ken Lai, and Nianwen Xue. 2019. Modeling quantification and scope
in Abstract Meaning Representations. In Proceedings of the First International Work-
shop on Designing Meaning Representations, pages 28–33, Florence, Italy. Association for
Computational Linguistics.

Tanya Reinhart. 1997. Quantifier scope: How labor is divided between QR and choice
functions. Linguistics and Philosophy, 20(4):335–397.

Tanya Reinhart. 2006. Interface Strategies: Optimal and Costly Computations. The MIT Press.

Craige Roberts. 1987. Modal subordination, anaphora, and distributivity. Ph.D. thesis, Univer-
sity of Massachusetts, Amherst.

Jacopo Romoli and Yasutada Sudo. 2009. De De/De Dicto ambiguity and presupposition
projection. In Proceedings of Sinn und Bedeutung, volume 13, pages 425–438.

Mats Rooth and Barbara Partee. 1982. Conjunction, type ambiguity and wide scope or. In
Proceedings of the first west coast conference on formal linguistics, volume 1. Linguistics
Dept., Stanford University.

https://doi.org/10.1162/0891201053630264
https://doi.org/10.1162/0891201053630264
https://doi.org/doi:10.1515/9783110852820.361
https://doi.org/10.1017/9781316716816.008
https://doi.org/10.18653/v1/N18-1202
https://doi.org/10.18653/v1/W19-3303
https://doi.org/10.18653/v1/W19-3303
https://doi.org/10.1023/A:1005349801431
https://doi.org/10.1023/A:1005349801431
https://doi.org/10.7551/mitpress/3846.001.0001


183

John Robert Ross. 1967. Constraints on variables in syntax. PhD dissertation, Massachusetts
Institute of Technology.

David ERumelhart, Geoffrey EHinton, andRonald JWilliams. 1986. Learning representations
by back-propagating errors. Nature, 323(6088):533–536.

Kenneth J. Safir. 2004. The syntax of (in)dependence, volume 44. The MIT Press.

Remko Scha. 1981. Distributive, collective and cumulative quantification. In Forma Methods
in the Study of Language, pages 483–512. Amsterdam: Mathematisch Centrum.

Barry Schein. 1993. Plurals and events, volume 23. The MIT Press.

Philippe Schlenker. 2006. Scopal Independence: A Note on Branching and Wide Scope
Readings of Indefinites and Disjunctions. Journal of Semantics, 23(3):281–314.

William Schuler and AdamWheeler. 2014. Cognitive compositional semantics using contin-
uation dependencies. In Proceedings of theThird Joint Conference on Lexical and Computa-
tional Semantics (*SEM 2014), pages 141–150, Dublin, Ireland. Association for Computa-
tional Linguistics and Dublin City University.

Bernhard Schwarz. 2001. Two kinds of long-distance indefinites. In Proceedings of the
thirteenth Amsterdam Colloquium, pages 192–197. Amsterdam University.

Roger Schwarzschild. 1996. Pluralities, volume 61. Springer Science & Business Media.

Gila Sher. 1990. Ways of branching quantifers. Linguistics and Philosophy, 13(4):393–422.

Stuart M. Shieber. 1986. An introduction to unification-based approaches to grammar. CSLI
Publications.

Peter Simons. 1982. Plural reference and set theory. In Barry Smith, editor, Logic and Formal
Ontology, pages 199–260. Munich: Philosophia Verlag.

Edward Stabler. 2018. Reforming AMR. In Formal Grammar, pages 72–87, Berlin, Heidelberg.
Springer.

Jason Stanley and Zoltan Gendler Szabó. 2000. On quantifier domain restriction. Mind &
Language, 15(2-3):219–261.

Mark Steedman. 1991. Structure and intonation. Language, 67(2):260–296.

Mark Steedman. 1992. Categorial grammar. Technical Report MS-CIS-92-52, Computer and
Information Science Department, Universitv of Pennsylvania.

Mark Steedman. 1996. Surface Structure and Interpretation. The MIT Press, Cambdridge,
MA.

Mark Steedman. 2011. Taking scope: The Natural Semantics of Quantifiers. The MIT Press.

Wolfgang Sternefeld. 2001. Semantic vs. syntactic reconstruction. In Hans Kamp, Antje
Rossdeutscher, and Christian Rohrer, editors, Linguistic form and its computation, pages
145–182. CSLI Publications.

https://doi.org/10.1038/323533a0
https://doi.org/10.1038/323533a0
https://doi.org/10.7551/mitpress/6595.001.0001
https://doi.org/10.1515/9783110867602.131
https://doi.org/10.1093/jos/ffl005
https://doi.org/10.1093/jos/ffl005
https://doi.org/10.3115/v1/S14-1018
https://doi.org/10.3115/v1/S14-1018
https://doi.org/10.1007/bf00630749
https://doi.org/10.1007/978-3-662-56343-4_5
https://doi.org/10.1111/1468-0017.00130
https://doi.org/10.7551/mitpress/9780262017077.003.0006


184

Eric Swanson. 2010. On Scope Relations between Quantifiers and Epistemic Modals. Journal
of Semantics, 27(4):529–540.

Anna Szabolcsi. 1992. Combinatory grammar and projection from the lexicon. In Ivan Sag
and Anna Szabolcsi, editors, Lexical Matters, pages 241–268. CSLI Publications.

Anna Szabolcsi. 1997. Strategies for scope taking. In Anna Szabolcsi, editor,Ways of Scope
Taking, pages 109–154. Springer Netherlands, Dordrecht.

Anna Szabolcsi. 2010. Quantification. Cambridge University Press.

Shoichi Takahashi. 2006. More than two quantifiers. Natural Language Semantics, 14:57–101.

Christopher Tancredi. 2007. A multi-model modal theory of I-semantics. Ms. The University
of Tokyo.

Dag Westerståhl. 1987. Branching generalized quantifiers and natural language. In Peter
Gärdenfors, editor, Generalized Quantifiers: Linguistic and Logical Approaches, pages
269–298. Springer Netherlands, Dordrecht.

Dag Westerståhl. 2015. Generalized quantifiers in natural language semantics. In Shalom
Lappin and Chris Fox, editors,The Handbook of Contemporary SemanticTheory, chapter 1,
pages 7–39. John Wiley & Sons, Ltd.

Michael White. 2006. Efficient realization of coordinate structures in combinatory categorial
grammar. Research on Language and Computation, 4(1):39–75.

Michael White, Simon Charlow, Jordan Needle, and Dylan Bumford. 2017. Parsing with
dynamic continuized CCG. In Proceedings of the 13th International Workshop on Tree
Adjoining Grammars and Related Formalisms, pages 71–83.

Yoad Winter. 1997. Choice functions and the scopal semantics of indefinites. Linguistics and
Philosophy, 20(4):399–467.

Yoad Winter. 2001. Flexibility principles in Boolean semantics: The interpretation of coordina-
tion, plurality, and scope in natural language, volume 37. The MIT Press.

Yoad Winter and Remko Scha. 2015. Plurals. In Shalom Lappin and Chris Fox, editors,The
Handbook of Contemporary SemanticTheory, chapter 3, pages 77–113. John Wiley & Sons,
Ltd.

Roberto Zamparelli. 2011. Coordination. In Klaus von Heusinger, Claudia Maienborn, and
Paul Portner, editors, Semantics: An international handbook of natural language meaning,
volume 2 of HSK 33, pages 1713–1741. De Gruyter Mouton.

Henk Zeevat. 1988. Combining categorial grammar and unification. In Uwe Reyle and
Christian Rohrer, editors, Natural language parsing and linguistic theories, pages 202–229.
Springer.

https://doi.org/10.1093/jos/ffq010
https://doi.org/10.1007/978-94-011-5814-5_4
https://doi.org/10.1017/CBO9780511781681
https://doi.org/10.1007/s11050-005-4534-9
https://doi.org/10.1007/978-94-009-3381-1_10
https://doi.org/10.1002/9781118882139.ch1
https://doi.org/10.1007/s11168-006-9010-2
https://doi.org/10.1007/s11168-006-9010-2
https://aclanthology.org/W17-6208
https://aclanthology.org/W17-6208
https://doi.org/10.1023/A:1005354323136
https://doi.org/10.1002/9781118882139.ch3
https://doi.org/10.1007/978-94-009-1337-0_8

	Abstract
	Acknowledgments
	Contents
	Epigraph
	Introduction
	Representation matters
	Why graphs
	Empirical domain
	Interpretation
	Construction
	Graph theory background
	Semgraphs
	For interpretation
	For construction


	Semgraphs
	Elements of semgraphs
	Thematic relation
	Lambda edge
	Co-reference
	Kappa edge
	Cardinality
	Quantification
	Coordination
	Conjunction
	Disjunction


	Model-theoretical semantics
	Plural values
	Flat vs. nested
	Set theory vs. mereology

	Models
	Basics
	Quantification
	Coordination
	Order of Valuation

	Related work
	Abstract Meaning Representation
	Hybrid Logic Dependency Semantics
	Discourse Representation Theory


	Syntax-Semantics Interface
	Bigger picture
	Non-syntactic resolutions
	Co-reference resolution
	Constraints on co-reference resolution
	Precedence resolution

	Syntactic type reduction
	Syntactic type
	Atom-vertex correspondence
	Depth calculation
	Applicative tone
	Modificative tone
	Coordinative tone

	Type reduction
	Rules
	Atom matches


	Automation
	Type logical alternative

	Topics in Plurality
	Distributivity
	Via quantification
	Non-scoping distributivity
	Distributivity undone

	Conjunction
	Simple union
	Argument sharing
	Many facets of quantifiers
	Quantifier level
	Noun phrase level
	Reconciliation
	Plural modification and pair-making



	Topics in Scope
	Scoping quantifiers
	Scope permutation
	Factorial
	Inverse linking
	The immobile

	Scope islands
	Existential vs. distributive scope

	Scoping indefinites
	General remarks
	Exceptional scope
	Wide-scope disjunct
	Interaction with co-reference


	Conclusion
	Bibliography

