
AUTOMATED FEEDBACK GENERATION FOR
PROGRAMMING ASSIGNMENTS

by

GEORGIANA HALDEMAN

A dissertation submitted to the

School of Graduate Studies

Rutgers, The State University of New Jersey

In partial fulfillment of the requirements

For the degree of

Doctor of Philosophy

Graduate Program in Computer Science

Written under the direction of

Thu D. Nguyen and He Zhu

and approved by

New Brunswick, New Jersey

October, 2021

ABSTRACT OF THE DISSERTATION

Automated Feedback Generation for Programming

Assignments

By Georgiana Haldeman

Dissertation Directors:

Thu D. Nguyen and He Zhu

Autograding systems are being increasingly deployed to meet the challenges of teaching

programming at scale. Studies show that formative feedback can greatly help novices

learn programming. This work explores techniques for extending an autograder to

provide corrective and formative feedback on programming assignment submissions

using a mixed approach.

The dissertation first introduces a framework to help instructors identify common

student errors for a programming assignment and write hints that the autograder can

provide automatically for these errors. This approach starts with the design of a knowl-

edge map, which is the set of concepts and skills that are necessary to complete an

assignment, followed by the design of the assignment and that of a comprehensive test

suite for identifying logical errors in the submitted code. Test cases are used to test the

student submissions and learn classes of common errors. For each assignment, the in-

structor trains a classifier that automatically categorizes errors in a submission based on

the outcome of the test suite. The instructor maps the errors to corresponding concepts

and skills and writes hints to help students find their misconceptions and mistakes.

ii

I apply this methodology to two assignments in the Introduction to Computer Sci-

ence course and find that the automatic error categorization has a 90% average accuracy.

I report and compare data from two semesters, one semester when hints are given for the

two assignments and one when hints are not given. Results show that the percentage

of students who complete the assignments after an initial erroneous submission is three

times greater when hints are given compared to when hints are not given. However, on

average, even when hints are provided, almost half of the students fail to correct their

code so that it passes all the test cases.

While the first approach gave promising results as a first step towards providing

formative feedback during autograding, it has its limitations, in particular, that it is

labor-intensive. Thus, the second part of the dissertation explore an algorithmic ap-

proach that is much less labor-intensive. Using insights about student errors gained

through applying the first approach, the second approach was designed to repair stu-

dent programs and provide feedback on how to correct the program and on associated

misconceptions. I start by compiling a set of programming repairs that are commonly

needed to repair student programs across assignments. The repair set consists of modifi-

cations to both the statements and the program structure. These repairs fix errors that

point to misconceptions about program structuring and other programming concepts.

Each repair is used to modify the behavior of the student program until it matches the

expected behavior, measured using a similar test suite as the first approach. Addition-

ally, I provide a search procedure for finding a set of repairs that correct the behavior

of a student program.

I apply this approach to multiple assignments from the Introduction to Computer

Science course and report a higher success (i.e. fully correcting the program) rate than

with previous approaches, an increase of 20% of the attempted student programs for

specific assignments. Manual analysis of the repaired programs reveals that the repairs

do not introduce stylistic issues such as dead code. However, for some assignments

this approach is successful for less than half of the attempted student programs. More

research is needed to understand how to provide accurate automated feedback to all

student programs and for all types of assignments, and how this type of feedback

iii

specifically impacts learning and teaching.

iv

Acknowledgements

I am grateful to my advisors and my collaborators for their knowledge and support.

v

Dedication

I dedicate this dissertation to my loved ones.

vi

Table of Contents

Abstract . ii

Acknowledgements . v

Dedication . vi

1. Introduction . 1

1.1. CSF2 and PR-CSF2: A Mixed-Approach Framework for Providing Teacher’s

Feedback . 3

1.2. Evaluation Case Studies and Metrics . 5

1.2.1. Usefulness to teachers . 5

1.2.2. Accuracy . 5

1.2.3. Usefulness to students . 6

1.3. Contributions and Outline . 6

2. Background and Related work . 8

2.1. Why Do We Need to Provide Automated Feedback to Programming

Assignments? . 8

2.2. Types of Automated Feedback to Student Programs for Students 9

2.2.1. Automated Correctness Feedback 9

2.2.2. Automated Code Quality or Style Feedback 10

2.2.3. Automated Program-Repair Feedback 10

2.2.4. Automated Next-step Hints . 11

2.2.5. Automated Example Feedback 12

2.2.6. Automated Error-Specific Feedback 12

2.2.7. Automated Peer Feedback . 13

2.2.8. Automated Teacher Feedback . 13

vii

2.2.9. Discussion: Desired Automated Feedback vs the State-of-the-Art 14

2.3. Program Repair Outside Automated Feedback Generation 15

2.4. Automated Feedback about Student Programs for Teachers 16

2.5. How Does the Automated Feedback Impact Students’ Learning and Be-

havior? . 17

2.6. Compiling Programming Knowledge for Automated Feedback Generation 18

3. Concept and Skills based Feedback Generation Framework (CSF2) 20

3.1. Overview of CSF2’s Design . 20

3.2. CSF2 step-by-step . 22

3.3. Discussion: Modifications to CSF2 . 24

4. Application of CSF2 to Two Programming Assignments 26

4.1. Steps 1 and 2: Compiling the Concepts and Skills List 26

4.2. Step 3: Designing the Test Suites . 27

4.3. Step 4: Collecting Student Submissions 28

4.4. Steps 5–7: Refining Tests and Partitioning Submissions 29

4.5. Steps 8 and 9: Combining Buckets and Writing Hints 29

4.6. Examples of Common Errors and Hints 30

5. How can Teaching Benefit from Using CSF2? 33

5.1. Creating Assignments that Map to the Course Material 33

5.2. Reviewing and Improving Courses . 34

5.3. Designing Alternate Grading Schemes 35

5.3.1. Progress signal . 37

5.3.2. Scheme used for calculating scores 38

6. How Accurate is CSF2 in Classifying Errors? 40

6.1. Human Evaluation Approach . 40

6.2. Findings . 41

viii

7. How does the Automated Feedback Impact Students? 44

7.1. Datasets and Significance Tests . 44

7.2. Usefulness of the hints . 45

7.2.1. Empirical usefulness of the hints 45

Efficacy of the hints . 47

Efficiency of the hints . 50

7.2.2. Perceived usefulness of the hints 53

Survey Results . 56

Students’ comments on hints . 58

Anecdotal information from instructors 59

8. PR-CSF2: An Extension to CSF2 Using Program Repair 60

8.1. Overview of PR-CSF2’s Design . 61

8.2. Motivating Examples . 64

8.3. Program Repair Approach . 67

8.3.1. Why Use a Search Algorithm? 67

8.3.2. What is a Valid Repair? . 69

8.3.3. Problem Statement . 69

8.3.4. Program Representation . 70

8.3.5. Fault localization and Fitness Function 71

8.3.6. Generating Modifications to Student Programs 73

8.3.7. Search Algorithm for Fixing Student Programs 77

8.4. Implementation . 79

8.5. Discussion: Modifications to PR-CSF2 80

9. How does PR-CSF2 Fare Compared to Equivalent Program Repair

Techniques? . 82

9.1. Benchmarks . 82

9.2. Methodology . 84

9.3. Results . 84

ix

9.3.1. Success Rates and Runtimes Statistics 85

9.3.2. Repairs Distribution Across Different Assignments 87

9.3.3. Repairs Quality Comparison . 89

10.Conclusions . 91

10.1. Summary . 91

10.2. Impact and Future Work . 92

References . 94

Appendix A. Complete Description of Select Assignments 102

Appendix B. Complete Statics for the Hints Efficiency Study 104

Appendix C. Copy of the TAM Survey . 108

x

1

Chapter 1

Introduction

As the global economy is moving more and more towards the use of computers [1],

the need for computer science (CS)-trained professionals is on the rise [2]. This trend

fuels “the surge in CS undergraduate degree production and course enrollment which

is already straining program resources and causing further concern among faculty and

administrators regarding how to best respond to the rapidly growing demand” [3].

Given the average teacher-to-students ratio in CS undergraduate courses can be as

low as 1 to 73 [4], both learning and teaching computer science become challenging as

students don’t get enough feedback from instructors and instructors get unstructured

and sporadic feedback from students about their learning progress.

Repeated revision is central to mastery learning and depends crucially on

rapid formative assessment and applying corrective feedback [5].

One example is the case of automatic grading of programming assignments. Pro-

gramming assignments are tools of choice in many computing classes, giving students

hands-on coding practice. However, as autograding systems are deployed to scale the

grading of programming assignments in increasingly large classes, such as introductory

courses CS1 and CS2 with hundreds to over a thousand students, providing meaningful

feedback remains an open problem. Many autograding systems do not provide feedback

besides a grade by default. Even when feedback is available, it often does not assist

students in correcting errors and it does not address underlying misconceptions [6].

As a result, students receive minimal individual help with thinking about their assign-

ments and on how to structure their programs. Meanwhile, by using autograders for

grading student programs teachers fail to learn about the concepts and skills students

2

are struggling with. This information can serve as the feedback loop in the process of

teaching and it can guide teachers on how to adjust teaching to better serve students’

needs.

This situation motivates a need for automatic solutions that mimic the process of

hand-grading student programs [7]. We therefore seek an automated feedback genera-

tion solution that displays several properties:

1. Accuracy. A technique for automated feedback generation should provide feed-

back that correctly identifies and addresses the issues in students’ programs.

2. Usefulness to students. A technique for automated feedback generation should

help students with fixing their programs as well as help them with addressing the

misconceptions corresponding to their errors.

3. Usefulness to teachers. A technique for automated feedback generation should

provide teachers with information about students’ programs, for example, an

understanding of the concepts and skills that students are struggling with in

order for them to design interventions to support their learning.

Concerns around the quality of CS education have motivated considerable previous

research. Such previous research serves to inform students if their solution is correct

or not (correctness feedback) [8, 9, 10], to point out what might be wrong with parts

of their program (error-specific feedback) [10], to guide students on what to do next in

order to make progress or fix their programs (next-step hints) [11, 12, 13, 14, 15, 16],

to inform students on how to repair their programs (student program repair feedback)

[17, 18, 19], and to propagate teacher’s feedback to students with similar program

structure or needing similar syntactic changes (propagated teacher feedback) [20, 21].

While this previous work serves a variety of useful purposes, it all, in one way or

another, fails to possess one or more of the desired properties of a viable automatic

feedback generation; most often they fail to provide teachers with an understanding

of the concepts and skills that students are struggling with. Correctness feedback

auto-generators lack in usefulness to students or teachers due to their summative as-

sessment nature and lack of expressiveness. Auto-generated error-specific feedback and

3

auto-generated next-step hints are centered around error-localization and providing re-

pair hints, and they don’t specifically address underlying misconceptions or link these

repairs to their corresponding concepts and skills. Auto-generated student program

repair feedback does not stimulate students to think abstractly about their program

errors and sometimes the corrections are stylistically undesirable. Propagated teacher’s

feedback may be limited in terms of being useful to teachers, and even students because

they organize the feedback in terms of program embeddings or syntactic transforma-

tions which are limiting, problem-dependent and not necessarily reflecting the domain

knowledge of CS education. Moreover, students often have errors and misconceptions

regarding program structuring and control flow, which many of the prior solutions don’t

specifically address.

To summarize, formative assessment of student programs and providing feedback are

integral parts of CS education, but as the number of students increases, it can become

time-consuming and challenging. The root cause of the challenge is the cognitive load

on the educator to sift through students’ code which may widely differ in strategy and

implementation, as well as be riddled with misconceptions and errors. This situation

motivates an automatic solution to alleviate at least some portion of the burden of

student program assessment and feedback provision at scale; this dissertation explores

different approach solutions to this problem.

1.1 CSF2 and PR-CSF2: A Mixed-Approach Framework for Providing

Teacher’s Feedback

This dissertation presents and evaluates the Concepts and Skills based Feedback Gen-

eration Framework (CSF2) with two complementary methodologies for generating au-

tomated meaningful feedback to student programs. The second methodology which I

refer to as Progam Repair - CSF2 (PR-CSF2) was developed as an extension based on

knowledge gathered from applying the first methodology. The overarching framework

is designed to be straightforward and to leverage existing practices such as code testing.

These are two key features that enable teachers to easily adapt the framework to their

4

needs[22, 6]. Both methodologies require a testcase set that describes the expected be-

havior from programs submitted for an assignment. Additionally, an inherent benefit

of these approaches is that they provide information to the teachers about the concepts

and skills that students are struggling with. Lastly, they can be used to design new

grading schemes that grade student programs based on the demonstrated concepts and

skills instead of passed testcases alone.

CSF2’s methodology focuses on linking errors in student programs to concepts and

skills required for solving a programming assignment. It is data-driven and it relies

on collecting and analyzing assignment submissions to generate hints that can be used

during future semesters. It leverages the fact that student programs with similar is-

sues fail similar testcases. PR-CSF2’s methodology concentrates on linking repairs

in student programs to misconceptions students have about program structuring and

other programming concepts. It leverages the fact the student programs with similar

misconceptions require similar changes to the program syntax and structure.

My research is similar in spirit to other research efforts that support instructor

feedback at scale. One important benefit of my approach is that it explicitly tries to

bridge the teaching of abstract concepts with hands-on programming practice. This is

accomplished by linking student programming errors to the concepts and skills taught

in the class and program repairs to misconceptions about them. Furthermore, I provide

a systematic way to tease out both concepts and skills and learn about error patterns

in student programs. Additionally, I provide a program repair approach specifically

designed for student programs in which repairs are mapped to misconceptions.

To summarize, the first approach is highly effective in providing feedback, but it

is not always accurate, it requires substantial teacher support and a large data-set of

previous student submissions for each assignment. Conversely, the second methodology

necessitates less teacher support, it provides accurate feedback and it is generalizable - it

can be used across multiple assignments, but it is not able to cover all the assignment-

specific cases, in particular those student programs with design flaws. Finally, the

two proposed methodologies are complementary. For new assignments, the second

methodology can alleviate the cold-start downside of the other data-driven technique,

5

and the first approach can be used to provide feedback to more student programs.

1.2 Evaluation Case Studies and Metrics

The case studies, benchmarks, and evaluation metrics were designed with the compar-

ison to how teachers manually grade programming assignments and provide feedback

in mind.

1.2.1 Usefulness to teachers

CSF2 was designed specifically to assist teachers with understanding the concepts and

skills students are struggling with, along with generating automated meaningful feed-

back to student programs. To demonstrate how teachers can use CSF2 to identify

concepts and skills students struggle with the most and how errors in student programs

relate to those concepts and skills, I ran a case study in which I applied it to two pro-

gramming assignments. Then I generated feedback for student programs submitted to

these assignments and compiled a summary of the concepts and skills that the feed-

back maps to. Using the error patterns observed in student programs, I compiled a

set of repairs that map to misconceptions and implemented PR-CSF2. Similar to the

previous case studies, I applied PR-CSF2 to multiple assignments, and for the repaired

programs set I show the distribution of repairs and explain the misconceptions they

point to. This information can be used by the teachers to understand and further ex-

plore the relationship between the lecture material and student programming practice

errors. For example, the instructors can easily tailor their teaching of concepts and

skills based on the students’ performance on the programming assignments.

1.2.2 Accuracy

To substantiate the claim that CSF2 can be used to provide accurate feedback, I asked

three undergraduate students who had previously taken our Introduction to Computer

Science course to carefully review the submissions and automatically generated feed-

back, and assess its accuracy. I believe that having done the assignments themselves

6

while taking the course gave these students a good perspective in the evaluation of the

feedback. The feedback was rated accurate for 91.5% of the cases for one assignment

and 87.5% of the cases for the other, with an inter-rater reliability score of 93%.

Additionally, I manually analyzed a subset of the repaired programs using PR-CSF2,

and observed that the programs repaired using program structure modification along

with statement edits are more stylistically appropriate than those repaired only using

statement edits.

1.2.3 Usefulness to students

To assess CSF2usefulness to students, I used two approaches:

• Empirical usefulness aims to measure the usefulness of the feedback by analyz-

ing differences in students’ performance with the two programming assignments

between semesters with and without feedback. We use two different measures:

– Efficacy measure as the overall progress students made between their first

and last submission measured as a difference in score.

– Efficiency measure as the progress with each resubmission measured also as

a difference in score.

• Perceived usefulness aims to assess the usefulness of the feedback as self-reported

by the students using a survey.

1.3 Contributions and Outline

The primary contributions of this dissertation are:

• CSF2 and PR-CSF2, a mixed-approach framework for generating automated mean-

ingful feedback to student programs as described in Chapters 3 and 8.

• I demonstrate how the framework can be used by teachers to learn which concepts

and skills students are struggling with and to design alternate grading schemes

in Chapter 5. I also report on the overall impact using CSF2 has had on the CS1

course development at a state public university.

7

• Empirical evidence showing the feedback generated automatically using the frame-

work is accurate in Chapter 6.

• Empirical evidence suggesting that the feedback helps students with correcting

their programs in Chapter 7.

• Empirical evidence substantiating the claim that students find the feedback useful

in Chapter 7.

• A program repair method that allows for program structure modification in ad-

dition to statement level edits described in Section 8.3.

• Empirical evidence showing that PR-CSF2’s repair method can repair more pro-

grams and that in some cases the repaired programs are more stylistically appro-

priate than equivalent tools that only perform statement-level repairs in Chap-

ter 9.

In addition to the chapters and sections corresponding to each of the contributions

listed above, Chapter 2 discusses related work and Chapter 10 concludes the disserta-

tion.

8

Chapter 2

Background and Related work

Providing feedback for improving student’s learning, and understanding obstacles to

students’ learning are dominant concerns of the CS education community. These con-

cerns motivate the work presented in this dissertation. In this chapter, I describe some

background and related work required to understand my work and its place in the

context.

2.1 Why Do We Need to Provide Automated Feedback to Program-

ming Assignments?

Giving feedback to students is such a universally adopted practice that one may find the

question surprising. After reviewing the body of research on feedback in educational

contexts, Shute [23] concludes that feedback is generally considered crucial to improving

knowledge and skill acquisition in educational contexts, in particular, formative feed-

back which Shute further defines as “information communicated to the learner that is

intended to modify his or her thinking or behavior to improve learning.” Furthermore,

according to Ambrose et al. [24], “goal-directed practice coupled with targeted feedback

are critical to learning” is one of the core seven research-based principles for smart

teaching. One study [25] shows that students use feedback for multiple purposes, such

as decomposing the problem in smaller chunks, arriving at the correct answer, verifying

their answers, and comparing their solution with an expert solution.

The need for computational thinking skills is ubiquitous [26]. As a result, enroll-

ments in computer science courses have skyrocketed among majors and nonmajors [27].

Consequently, teachers need systems to assist them with their teaching. Programming

assignments are tools of choice in many computing classes, giving students hands-on

9

coding practice. Enabling teachers to provide feedback to students’ code presents the

opportunity to improve students’ learning. For example, CodeOpticon [28] enables in-

structors to monitor multiple students simultaneously as they code and to assist them

online.

Since feedback given immediately is most useful [29], for the rest of the related work

I will primarily focus on those that fit this criterion. Generally, feedback provided by

automated systems ranges from correctness feedback to peer or teacher feedback. Next,

I summarize related work in each of these categories. For an in-depth and comprehensive

comparison of various types of tools for automated programming hint generation, I

recommend a recent survey on the subject [30].

2.2 Types of Automated Feedback to Student Programs for Students

2.2.1 Automated Correctness Feedback

The most basic form of automated feedback to programming measures whether the

behavior of students’ code is as expected. Most commonly this is done using a testcase

set [9]. These tools are often referred to as autograders because they return a grade

based on the student’s code performance during testing. The most recently developed

autograders take advantage of contemporary web-based technologies. In our Introduc-

tion to Computer Science course we have adopted Web-CAT [8] and Autolab [10], two

web-based autograders. To employ these tools, the instructor provides a grading scheme

and an executable file which the systems use to grade the students’ code. Grades are

generally calculated as a weighted sum of the passed testcases. In some cases, students

are provided with feedback on the test results as well. Although grading is important,

the instant binary passed-or-failed feedback has been correlated to the reduction in

student engagement and increase in cheating [31]. Our experience with providing bi-

nary feedback to individual testcases has been that students try to game the system

individually or collectively to figure out the testcases used for testing their code.

Moreover, using testcases results to grade students’ code may not be the best solu-

tion. For example, a simple mistake may result in not passing any testcases. Singh et

10

al. [17] offer an alternate assignment-independent approach to grading by introducing

a problem-independent grammar of features. They use supervised learning to train a

classifier on teacher-graded examples. The classifier maps new student code submis-

sions to grades. Similarly, my work explores the extension of an autograding system

to design alternate grading schemes by using testcases results patterns to identify the

concepts and skills students are struggling with, and grade based on these concepts and

skills rather than based on the testing outcomes.

2.2.2 Automated Code Quality or Style Feedback

Code quality or programming style refers to good programming practices that expert

programmers agree on. One such practice is to write simple code. AutoStyle [32] clus-

ters correct submissions using the ABC software metric and propagates hints to each

cluster focused on writing simpler code. Adhering to good programming practices is

a concern of the broader programming community, and many tools have been devel-

oped for analyzing code and detecting violations to these universally accepted good

programming practices [33]. Most of the issues that these tools report on have to do

with meta-aspects of programming such as formatting, documentation, and readabil-

ity. However, some poor programming practices can lead to bugs [34, 35]. Using two of

these static analysis tools to provide feedback to students, Edwards et al. [36] found that

the most common feedback generated this way was on formatting and documentation

which lead students to think that all the issues reported were cosmetic.

2.2.3 Automated Program-Repair Feedback

Program-repair feedback points where and how to change students’ code so that it

passes all the testcases. Autograder [37] requires a reference solution and an error

model consisting of possible corrections to errors that students might make. Then, it

tries to find the smallest possible number of corrections to the students’ code using

a constraint solving program synthesis approach. Qlose [19] is similar to Autograder,

except it does not require an error model. Instead, it tries to find the best correction by

minimizing both the syntactic and semantic distances to the reference solution. Sarfgen

11

[18] is a data-driven program repair framework that takes advantage of a large number

of available student submissions and tries to find minimal fixes by aligning incorrect

programs with similar programs that are correct. Rafazer [38] is an approach for learn-

ing syntactic transformations from examples of statements or expressions before and

after the change. It then uses these transformations to automatically repair programs.

One extension to Rafazer generates hints based on the synthesized correct program

automatically [39]. Although such systems have shown great potential in generating

the program repair closest to what a programmer would suggest, this kind of feedback

does not cause students to think abstractly about their solutions.

2.2.4 Automated Next-step Hints

Systems that generate next-step hints use a step-by-step approach to guiding the stu-

dents towards the correct solution. Hint Factory [13] uses a data-driven approach for

hint generation that first learns from successful solutions paths from previous students

and uses this information to guide new students in similar states. A problem with this

approach is that there is no guarantee that new students are going to end up in the

same states as previous students. In other words, the space of states extracted from

previous students is discrete and future student states may not hit any of the states in

that discrete space. A follow-up approach, the Continuous Hint Factory [14] tries to

solve this problem by using the weighted sum of previous edits to select the best next

step. A similar approach, ITAP [40] deals with this problem of reducing the variability

of program states by using canonicalization [41]. During canonicalization, students’

code is repetitively transformed until it reaches a standard form. Gerdes et al. [15]

define a strategy language that specifies how parts of a solution may be built up from

others and uses it to generate the next steps rather than using existing steps from peer

data. Step-by-step approaches have the inherent benefit of suggesting student-inspired

fixes, but require sequences of student programs with incremental repairs to learn the

fixes from. These techniques complement my research.

12

2.2.5 Automated Example Feedback

Gross et al. [42] and Zhi et al. [16] are two data-driven approaches for providing

examples to students as feedback. The feedback examples in the first approach are

complete student solutions closest (according to a distance metric) to the students’

current code. In the second approach, the feedback examples are partial solutions

focused on addressing students’ current programming goals. This type of feedback is

complementary to the kind of feedback I aim to provide in my research.

2.2.6 Automated Error-Specific Feedback

Error-specific feedback tells the students what might be wrong with their code. One

approach uses the reference solution as the problem model and provides feedback

on the root cause of the bug in students’ programs by comparing their execution

traces [43]. Other approaches leverage programming knowledge models or error models

and use testing to check for them in students’ code, for example, constraint-based tutor

(CBT) [44, 45, 46] and intelligent tutoring systems (ITS)[47, 48]. While very efficient

for certain programming assignments, these approaches assume that the solution space

for the assignment is small. However, it has been shown that programming assignment

problems may vary greatly in the number of solution strategies and implementations

they accept [49, 50, 51]. Additionally, assignment-dependent models like the ones used

by ITS require extensive expertise and time to develop for each assignment regardless

of its complexity, which does not scale well with the number of assignments [52].

One approach mentioned above, J-LATTE [45], a CBT for java, offers a concept

mode option that has a similar goal of providing conceptual feedback as CSF2, but it’s

limited by its design choices. In J-LATTE, concepts are mapped to statements and

blocks such as loops and if-blocks. This solution works only if students are constrained

to implementing a specific program structure. In the case of autograders, that is gen-

erally not the case. For so-called “open-ended programming problems” [53], students’

programs commonly vary in their structure and syntax [49].

13

2.2.7 Automated Peer Feedback

Providing peer feedback is a debatable and challenging solution. While some claim that

students learn best from each other because they share similar learning experiences by

taking the same course [54], others point out challenges such as the lack the motivation

to assess others’ work faithfully and fairly [55] and propagation of misconceptions and

misinformation among students. One approach [56] offers a solution to this last issue

by allowing students to rank the feedback. This research direction complements my

work.

2.2.8 Automated Teacher Feedback

Many approaches in this research space use clustering based on different program fea-

tures. Nguyen et al. [57] cluster functionally equivalent but syntactically distinct code

phrases using probabilistic semantic equivalence. Codewebs [57] leverage the statistical

properties of a large number of student submissions by extracting patterns that can

be used for refining the clustering and providing improved feedback. Piech et al. [20]

cluster submissions using neural networks to learn program embeddings. Kaleeswaran

et al. [58] cluster dynamic programming (DP) submissions according to their solution

strategy and map feedback to instructor-validated submissions for each cluster. Foobaz

[59] cluster student code and report common and uncommon student choices on syntax

and style. MistakeBrowser and FixPropagator [21] learn in real-time syntactic changes

teachers make to students’ code. The feedback associated with the change is then

propagated to future students with similar syntactic errors. MistakeBrowser learns

transformations from incorrect to correct code from teachers fixing bugs in incorrect

student submissions. When examples of fixes are not available, its counterpart Fix-

Propagator asks teachers to fix students’ code and write feedback which then gets fed

back into MistakeBrowser. Instead of clustering based on program features, HelpMe-

Out [60] clusters bug fixes by compiler error or runtime exceptions. My mixed approach

aims to provide automated feedback of this kind. However, there are some important

differences between my approaches and previously used approaches as I describe next.

14

While all these solutions have been proven to be very effective for specific bench-

marks, each approach falls short in some aspects. Some techniques work for only a

subset of the issues in students’ programs such a syntactical transformations [21] or

force students to write their programs in a certain way (for example use specific vari-

able) [20]. However, the main problem is that most approaches are not “discoverable”

or “expressive” by which I mean it’s not clear what those features represent in terms of

students’ learning and misconceptions. Furthermore, teachers are not able to easily get

a summary of students’ performance on demonstrating the knowledge required by the

programming assignment and what concepts and skills they are still struggling with.

One feature in Web-CAT can be configured to work similarly as CSF2, but only for

a limited subset of cases. It allows teachers to write feedback to each testcase that is

provided to students when their code fails that testcase [61]. However, writing feedback

per testcase is not straightforward for many programming assignments. For example,

for problems with complicated program structures, a single testcase does not offer much

information about the root cause of the issue. Combining information from multiple

testcases is a much more powerful technique for identifying issues in students’ programs.

For example, comparing faulty and successful executions is a major research direction

in fault localization [62, 63, 64]. My first approach leverages patterns of passed and

failed testcases similarly to identify issues in students’ code. My second approach uses

a fault localization technique [62] to prune the search space of modified versions of the

student program and to guide the search process.

2.2.9 Discussion: Desired Automated Feedback vs the State-of-the-

Art

Providing automatically generated feedback is a very attractive idea but also a very

challenging one. Commonly, the better the feedback, the more requirements the ap-

proach has. These requirements span from expertise, time, and effort from the teacher,

to data repositories containing student code.

Most approaches for providing automated feedback to programming assignments can

be classified as generic or assignment-independent and assignment-dependent. There

15

are some important trade-offs to consider between the two approaches. Generic models

may require less work per assignment, but they may not be able to identify problem-

dependent errors and lack the deep domain knowledge of the teacher. Assignment-

dependent models like the ones used by ITS require extensive expertise and time to

develop for each assignment regardless of its complexity, which does not scale well with

the number of assignments [52]. The two options lie at two extremes. One approach

maximizes coverage of the errors while the other minimizes the amount of effort and ex-

pertise. The quality of the feedback produced is commonly proportional to the amount

of effort and expertise each approach requires. Both sets of goals are important and

my research draws inspiration from both types of approaches. Through my work for

this dissertation, I seek to explore the space between these extremes and to design

approaches that explore the balance between them.

2.3 Program Repair Outside Automated Feedback Generation

Program repair is a well-established and active research area that intersects with other

areas such as debugging, program synthesis, program analysis, recommender systems

for code completion, code translation from one programming language to another, to

name a few. For a detailed analysis of all these research areas and how they relate to

each other, I recommend a survey by Allamanis et al. [65] for further reading. In this

section, I offer a brief overview of the existing approaches and explain how they relate

to my research.

Some program repair techniques take advantage of the fact that all code is trans-

formed into logical expressions that are executed by the computer. One approach

uses Boolean Satisfiability (SAT)-based techniques to represent and find a fix to buggy

code [66], while another uses model-based fault localization and then produces cor-

rections to the right-hand side of the faulty assignment statements using Satisfiability

Modulo Theories (SMT) reasoning [67]. Generally, these approaches perform only a

subset of all the possible corrections since they leave out a lot of the programs’ fea-

tures during their analysis. While such techniques are very effective in areas such as

16

compilers research, they are not as effective in other areas in which the result is com-

municated back to humans (in particular non-experts). Allamanis et al. [68] keenly

explains that this is due to code’s intrinsic quality of communicating with both humans

and machines, which he refers to as the “bimodal nature” of code written in high-level

languages such as Java.

Another class of program repair techniques uses probabilistic models learned from

code. For example, Prophet [69] first learns a probabilistic, application-independent

model of correct code from a set of successful human patches obtained from open-

source software repositories and then uses it to generate candidate patches to buggy

code. Moreover, there are many other machine learning techniques that work similarly,

many of them initially used in natural language processing (NLP). The main issue

with these approaches for automated feedback generation is that they are often not

“discoverable” by which I mean it is difficult to reason about how they arrived at one

solution. This ability of reasoning about one solution path vs another is a desirable

feature for automated feedback generation because it can be used to classify student

errors and understand the misconceptions attached to them.

Lastly, another class of program repair techniques leverages information about code

syntax to modify a buggy program until it’s correct. Each approach uses a model for

modifying the buggy program and a search procedure for the correct program in the

space of candidate programs. Genetic programming [70] and program mutation [71]

are two such approaches and they are similar to my program repair approach. How-

ever, there are some key differences between these approaches and my program repair

approach which I describe in more detail in Chapter 8.

2.4 Automated Feedback about Student Programs for Teachers

Hattie et al. [72] points out the dual nature of feedback in the education context and

describes it as an ongoing process of giving and receiving feedback between the teacher

and the student. Huang et al. [49] cluster student submissions using the abstract syntax

tree (AST) edit distance and generates a visual representation of the student programs

17

space. While the results of this approach are informative, they are not structured

enough for teachers to use them in developing interventions for supplementing students’

learning. OverCode [73] offers a web-based solution that aims to automatically provide

teachers with a structured view of the students’ code. While the graphical interface

makes it very easy to explore variations in student solutions, teachers still need to do

a considerable amount of work to understand the knowledge components that students

struggle with. By using CSF2, teachers automatically get a summary of the concepts

and skills that students struggle with at the end of each assignment.

2.5 How Does the Automated Feedback Impact Students’ Learning

and Behavior?

Generally, students find the automatically generated feedback to programming assign-

ments to be useful [60, 74, 75]. Some studies found that students submit fewer sub-

missions [75] and complete more problems when feedback is provided [76, 19]. In the

case studies that I conducted, students are allowed to submit up to three times without

penalty and after the third submission, the penalty is 5% of their grade with each new

submission. Consequently, I could not test this hypothesis. A study on Web-CAT’s

hints per failed testcase [77] reveals that providing feedback in this way appears to ad-

vance students’ learning behavior from trial-and-error to reflection-in-action in a junior-

level course. It is not clear that this result can be replicated for beginner CS1 and CS2

courses. Another study [78] reports a 10% increase in performance on open-ended pro-

gramming problems and an acceleration in performance on a multiple-choice quiz. My

overarching approach to automatically providing feedback to programming assignments

which I later describe in Chapter 3 is very similar to their proposed Misconceptions-

Driven Feedback (MDF) approach. The two approaches have been developed in parallel

independently. Marwan et al. [79] find that code hints with textual explanations signif-

icantly improved programming performance. Moreover, when these hints are combined

with self-explanation prompts they improve performance in a subsequent post-test task

with similar objectives. Hints with textual explanations are very similar to the kind of

feedback I aim to provide with CSF2. Therefore, these results build confidence in my

18

results and the mixed-approach framework I propose.

However, the combined body of research on the effects on students’ learning be-

haviors and overall learning is inconclusive [23]. Large gaps and questions remain, for

example, there is no consensus on whether students spend less time when hints are pro-

vided compared to when they are not [80, 81]. One study [82] observes that students

use feedback to game the system instead of attempting to learn from the feedback. One

reason for the conflicting findings may be because feedback does not work to improve

knowledge in isolation [72, 83], it builds on existing knowledge.

The improved performance metric and other similar metrics that prior studies report

on don’t necessarily measure improved learning. We need approaches and metrics

grounded in cognitive theories [84] to understand what are the basic units of knowledge

in programming, how to identify them during programming practice, and how to use

them in the learning assessment process. Being able to structure knowledge in this

fashion, and to refer back to it time and again throughout instruction gives students

a knowledge core to build on. Concomitantly, teachers can use it to assess students’

knowledge, plan programming assignments and organize instruction similar to how

learning plans and learning goals work. I designed CSF2 with these ideas in mind.

Preliminary results I report on in Chapters 5, 6 and 7 show promise. However, further

research is needed to substantiate the claims about the impact feedback generated in

this manner has on students’ actual learning.

2.6 Compiling Programming Knowledge for Automated Feedback Gen-

eration

The ability to reason about a specific domain is at the heart of teaching and learning.

The process of providing feedback starts with using a student’s program to build a

model of the students’ reasoning about a specific problem. Then that model is used

in the context of the course’s domain knowledge to generate and return a grade and,

potentially, feedback to students. Computer programming is a complex, ill-structured

design domain [85] and therefore building a generic all-encompassing domain model for

19

programming knowledge is challenging. My proposed mixed approach aims to build a

domain knowledge model that bridges instruction with programming practice and then

use it to provide meaningful feedback to students about their programs.

In the case studies that I report on later in my dissertation, I leverage knowledge

about errors and misconceptions in students’ programs acquired by carefully analyz-

ing vast datasets of student programs from large student groups. These large groups

of students share common errors and misconceptions as has been observed in prior

research [37, 57, 20, 56]. I also draw inspiration from a couple of studies. In partic-

ular, from Mayer et al.[86] I make use of the programming skills that they show are

connected to thinking skills used in problem-solving. From Brennan and Resnick [87],

I borrow from their three categories of computational thinking components: compu-

tational concepts, computational practices, and computational perspectives. Concept

inventories [88] can also be used for building domain knowledge models.

Knowledge maps for programming assignments are a way to abstract students’

knowledge and misconceptions as reflected by their programs. Programming assign-

ments vary in their complexity and the number of solution strategies they accept [50, 51].

Commonly, the more complex the assignment is, the larger the solution space is, and

with that, the more ways in which students can introduce errors in their programs.

CSF2 intends to reduce the space of errors signatures, by mapping them to the knowl-

edge required to complete the assignment. To demonstrate this, the assignments that I

use in my case studies accept multiple solution implementations and multiple solution

strategies which correspond to classes 2 and 3 [50, 51].

20

Chapter 3

Concept and Skills based Feedback Generation

Framework (CSF2)

3.1 Overview of CSF2’s Design

Many autograding systems, such as Web-CAT [8] and Autolab [10] do not provide

feedback by default. Even when feedback is available, it often does not assist students

in correcting errors and it does not address underlying misconceptions [6]. Through my

research with CSF2, I aim to answer these specific research questions:

1. Is it possible for instructors to identify patterns of passed and failed test cases

that point to logical errors in the students’ code? Furthermore, can I partition

the students’ code based on logical errors using these patterns of passed and failed

test cases? (Chapter 4)

2. How accurate are these patterns of passed and failed test cases for partitioning

the students’ code? (Chapter 6)

3. If it is possible to partition the students’ code, can instructors write hints for an

autograding system to give meaningful feedback that helps students identify their

errors and make progress? (Chapter 7)

4. How are the hints associated with each partition perceived by students and in-

structors? (Chapter 7)

I propose a methodology that is similar in spirit to a previous approach [21], but,

instead, focuses on linking errors to the concepts and skills required for solving a pro-

gramming assignment. My work leverages code testing, which is the most common

method for grading and assessment in programming. Since concepts and skills are

21

shared among assignments, my approach offers the potential for reusing some of the

work done in previous assignments.1 My approach relies on collecting and analyzing as-

signment submissions to generate hints that can be used during future semesters. More

specifically, when designing an assignment using my approach, the instructor explicitly

defines the set of concepts and skills that students need to master to complete the

assignment. After the assignment has been written, a comprehensive test suite is devel-

oped to tease out programming misconceptions and to test the correctness of the code

for grading. Next, the assignment is released and student submissions are collected.

The instructor runs the test suite against the submissions and manually inspects sets

of submissions with the same outcome pattern (which I call the signature) to identify

errors. In this process, the test suite can also be refined as needed or desired. Finally,

the instructor maps the errors to specific concepts and skills and writes hints that are

designed to guide the students toward correcting their code and improving their under-

standing of the corresponding concepts and skills. The obtained signatures can be used

to produce a classifier that automatically categorizes erroneous submissions, enabling

the autograding system to provide hints as feedback to the student code submissions.

The above methodology encapsulates two key ideas: (1) the instructor can identify

high-level logical errors by inspecting sets of submissions with the same error signature

if the error signatures are generated using a comprehensive and well-designed test suite,

and (2) the mapping of errors to concepts and skills can produce hints that encour-

age students to think about their code conceptually, as opposed to suggesting local,

code-specific changes that can lead to highly convoluted solutions, such as solutions

containing unnecessary nested conditional statements. Understanding common errors

in light of the concepts and skills they map to can also help the instructor adjust her

classroom teaching.

I applied our proposed methodology to two assignments in our Introduction to Com-

puter Science course and collected a large number of submissions for each assignment

during three semesters, Spring 2016, Spring 2017, and Spring 2018. I designed a test

1Supporting the evolution of assignments while still making use of the collected data is an important
extension that I intend to explore in the future.

22

suite for each assignment and used submissions from Spring 2016 to learn classes of

common errors, produce classifiers for the automatic error categorization of future sub-

missions, and writing hints. Then, I used the classifiers to attach hints to the erroneous

submissions from Spring 2017. Four researchers manually reviewed the results of the

classifiers and found that over 91% of the hints for the first assignment and over 87%

of the hints for the second assignment fully captured the errors in the corresponding

submissions. These percentages rose to over 96% for both assignments when I counted

hints that partially captured the errors. Based on these promising results, starting

with Fall 2017, I deployed the error categorization and corresponding hints for the two

assignments. I compared submissions from two semesters, one when hints were not

provided (Spring 2017) and one when hints were provided (Spring 2018), and found

that when hints were provided, students submitted more often, more students made

progress, and the overall progress toward completing the assignment was faster. For

example, the percentage of students who completed the assignments after an initial

erroneous submission was three times greater when hints were given compared to when

hints were not given.

Moreover, during Spring 2018, I asked students to complete a survey regarding the

usefulness of the hints. I report the students’ responses and their comments about the

hints in Section 7.2.2. Lastly, I asked the course instructors for feedback about the

hints. I found that students and instructors thought that the hints were helpful, but

also that they could be improved, in particular the information provided in the hints

as well as their wording. These are highly debatable subjects that go beyond the scope

of our current research.

3.2 CSF2 step-by-step

CSF2 aims to encourage teachers to design programming assignments based on the

concepts and skills that students are required to master having taken the class. These

concepts and skills are used to generate hints for assisting students in correcting errors.

The approach is described as a sequence of steps, but the ordering can be modified as

discussed in Section 3.3. The proposed steps are as follows.

23

1. Carefully list the set of concepts and skills that students need to master.

2. Write the assignment to evaluate these concepts and skills.

3. Design a test suite to assess student submissions. A full path coverage of a

reference solution is typically a good start (but will need expansion). To test a

submission, each test case should output a code representing the outcome of the

test.

4. Release the assignment and collect student submissions.

5. Automatically run the test suite against the collected submissions and group

submissions into “buckets” based on their outcome signatures, where a signature

is the concatenation of the code’s output by all the test cases in the test suite. Each

signature may indicate one or more logical errors. I hypothesize that submissions

with the same signature are likely to have similar logical errors.

6. Manually inspect each bucket of submissions to see whether subsets of submissions

have different logical errors. If this is the case, then add test cases to the test

suite to separate these subsets into different buckets. The list of concepts and

skills may also need to be refined (for example, to include a concept that has to

be mastered for the completion of the assignment but was accidentally omitted

in 1).

7. Repeat 5 and 6 until submissions in each bucket have the same logical errors.

8. Map the errors identified for each bucket to concepts and skills. Then, manually

inspect and combine buckets of submissions with the same errors or knowledge

deficiencies. I hypothesize that mapping errors to concepts and skills will help

instructors reduce the number of hints that will need to be written, as well as write

hints that provide conceptual guidance rather than very specific code changes.

9. Write a hint for each bucket. The outcome of Steps 8 and 9 is a classifier, manually

trained on past student submissions, that maps the outcome signatures of a well-

designed test suite to meaningful hints.

24

10. When the assignment is run again, the autograding system can use the classifier

to automatically categorize errors and provide hints for submissions that fail one

or more test cases.

While the work in this paper is focused on generating meaningful autograding feed-

back, the above process is also useful in gaining a better understanding of the students’

errors and misconceptions. The instructor can use this information to improve the qual-

ity of classroom teaching, for example, in identifying concepts and skills that should be

reinforced, as well as adjusting the teaching of more challenging concepts and skills.

As described above, CSF2 is most useful when an assignment is given during multiple

semesters, with previous submissions used to generate and improve hints for subsequent

semesters. Currently, CSF2 does not directly support the evolution of an assignment

over time (for example, changes to the assignment to discourage cheating or to improve

the assignment), although I have successfully experimented with changing one of the

assignments studied in this paper to an isomorphic assignment while still making use of

analysis results from previous submissions (Section 3.3). This is an important challenge

that I plan to address in the future.

3.3 Discussion: Modifications to CSF2

Top-down and bottom-up are two well-known strategies of information processing and

knowledge ordering, and our framework can be modified to employ either of them. The

top-down approach starts with the whole problem and decomposes it into individual

steps. The bottom-up approach pieces together individual parts into bigger parts.

The process described in Section 3.2 is meant to be a guideline for best practices. As

written, it describes a top-down approach to the design of assignments using specific sets

of concepts and skills. The advantage of this approach is that assignments are carefully

and systematically written to target specific course material. However, in practice, and

as I saw in our case studies, instructors may already have the assignments written and

used. In these situations, a bottom-up approach can be applied. This approach has a

few advantages: previously collected submissions can be used to guide the derivation

25

of the set of concepts and skills that map to the specific assignment, it provides a way

to design or improve the test suite, and it gives instructors a way to generate the error

classifiers and hints.

Much of the manual work done for this research was labor-intensive because I man-

ually reviewed all the erroneous submissions for PayFriend and TwoSmallest. As an

alternative to reviewing all the submissions, it may be sufficient to use random subsets

of varying sizes to determine how the error categorization and hint generation change

with sample size. I will consider this analysis in my future work.

Finally, while the manual inspection of assignments is labor intensive, it is possible

to get help from advanced undergraduate students when CSF2 is applied to early com-

puting classes. For example, three undergraduate upperclassmen helped with my case

studies.

26

Chapter 4

Application of CSF2 to Two Programming Assignments

In this chapter, I describe the application of CSF2 to two programming assignments in

the Introduction to Computer Science course at Rutgers University - New Brunswick.

Even though CSF2 proposes that an instructor starts with a list of concepts and skills

when designing an assignment, for this case study I start with existing assignments

because all assignments are built on an implicit list of concepts and skills and I already

had access to a large number of student submissions collected across several semesters

before the start of this research. In essence, I reversed the order of Steps 1 and 2 in

CSF2, and extracted the concepts and skills from existing assignments.

4.1 Steps 1 and 2: Compiling the Concepts and Skills List

I studied two assignments, PayFriend, a class 2 assignment [51], which means that it has

one solution strategy with multiple possible implementations and TwoSmallest, a class

3 assignment, which means that it has multiple solution strategies, as well as multiple

possible implementations for each strategy. PayFriend asks students to compute the fee

associated with making an e-payment when given a tiered fee structure, with different

fees for four payment ranges. TwoSmallest asks the students to read a sequence of

floating-point values that starts and ends with a sentinel value and output the two

smallest values in the sequence.

Each assignment requires that the solution be implemented as a method with a pre-

scribed signature. Students are also asked to submit code in a specific format, including

predefined file and class names and to omit all package and import statements. Failure

to follow any of these instructions results in compilation errors and a score of zero.

When I started this research, PayFriend and TwoSmallest had already been assigned

27

Table 4.1: The mapping of common errors to concepts and skills for two programming
assignments, PayFriend and TwoSmallest. The base score is used for calculating grades
as discussed in Section 5.3.

Code Error Base Score Concept or Skill

Both assignments

COMP has compilation errors 0 writing code that compiles

INS has errors regarding the re-
quired formatting, for exam-
ple, incorrect file name

5 following instructions

IO has IO errors, for example,
wrong types of inputs or out-
puts

10-30 data representation, fol-
lowing instructions

INF uses infinite loops 5-40 control flow

PayFriend

CF outputs only in some branches 50 control flow

COND uses incorrect conditional
statements

50 translating word prob-
lems into conditional
statements

FORM uses an incorrect calculation
inside an interval

50 translating word problems
into formulas

TwoSmallest

SEQ reads and processes incorrectly
a sequence of values

40 data representation, fol-
lowing instructions

INIT initializes min values incor-
rectly

40 algorithmic thinking

UPDT updates min values incorrectly 40 algorithmic thinking

during several semesters. I worked with the lead instructor to determine the concepts

and skills corresponding to these assignments. Some of these concepts and skills are

shown in the right column of Table 4.1.

4.2 Step 3: Designing the Test Suites

I developed a reference solution for each assignment and designed 13 test cases for

PayFriend and 20 for TwoSmallest that led to a full path coverage of the corresponding

reference solution. Next, I considered more challenging inputs, especially for novice

programmers. For example, it is well known that many programming bugs involve

incorrect handling of boundary values. Thus, for PayFriend, I designed test cases with

input values close to the tier boundaries, as well as values from the middle of the tiers.

The process of designing a test suite was iterative (as discussed in Steps 5–7 of CSF2).

28

Table 4.2: Summary of the data sets used in our study. During each semester, stu-
dents were allowed to submit each assignment without penalty up to five times during
Spring 2016 and up to three times during Spring 2017 and 2018. The penalty for each
subsequent submission was 5 points.

PayFriend TwoSmallest
Spring
2016

Spring
2017

Spring
2018

Spring
2016

Spring
2017

Spring
2018

Autograder used
Web-
CAT Autolab

Web-
CAT Autolab

Number of submissions 1152 719 936 1339 870 1071

Number of students who
submitted at least once

511 432 487 488 423 476

Average number of sub-
missions per student

2.3 1.7 1.9 2.7 2.1 2.3

% of students who submit-
ted at least twice

62.0% 36.4% 53.0% 72.3% 54.1% 60.1%

After all the refinements were made, the test suite for PayFriend contained 20 test cases

and the one for TwoSmallest contained 30. When these assignments were used during

previous semesters, PayFriend and TwoSmallest were graded using 10 and 7 test cases,

respectively.

4.3 Step 4: Collecting Student Submissions

Student submissions for the two assignments were collected during the Spring 2016

semester using Web-CAT [8] and during the Spring 2017 and 2018 semesters using Au-

tolab [10]. Table 4.2 shows information about our data sets. Each submission included

anonymized student information, a time stamp, and the student’s code. In this study,

I looked at the submitted code—all submissions were anonymized by removing all in-

formation, including comments, other than the actual code—and used the anonymized

student information to link submissions from each unique student in a semester (stu-

dents can submit each assignment multiple times). The submissions from Spring 2016

were used for Steps 5–9 of CSF2 to build an error classifier and generate a set of hints

for each assignment (as detailed below). The submissions from Spring 2017 and Spring

2018 were used to evaluate the accuracy of the classifiers and the effectiveness of the

hints as described in Chapter 7.

29

4.4 Steps 5–7: Refining Tests and Partitioning Submissions

I used the test suite developed in Step 3 to test and generate the outcome signature for

every code submission. Then, submissions with the same signature were grouped in the

same bucket. Each signature could indicate one or more logical errors. A bucket could

be mapped to two or more independent errors with their associated hints, but all the

submissions in the same bucket needed to have the same errors so that a meaningful

corresponding hint could be generated. If for any given bucket, some of the submis-

sions had one error while others had a different error, we added test cases to separate

submissions with different errors into different buckets.

I manually inspected the students’ code in each bucket to determine the main reason

why the code failed one or more test cases. For buckets containing submissions with

different knowledge deficiencies, I refined or extended the test suite to further partition

the buckets. I iterated through Steps 5–7 once for PayFriend and several times, mak-

ing small refinements each time, for TwoSmallest. I found that iterations with small

refinements were easier to think about. By the end of the process, I added 7 additional

test cases for PayFriend and 10 for TwoSmallest. The final test suites resulted in 109

non-empty buckets for PayFriend (using 20 test cases) and 137 non-empty buckets for

TwoSmallest (using 30 test cases).

4.5 Steps 8 and 9: Combining Buckets and Writing Hints

Next, I manually mapped the main reason for code failure in each bucket to a deficiency

in a concept or skill as shown in Table 4.1. As already mentioned, I found that many

of the buckets were different manifestations of similar knowledge deficiencies. I merged

buckets accordingly, leading to 8 “super-buckets” for PayFriend and 7 for TwoSmallest

(Table 4.3). Clustering student submissions for assignments in classes 2 and 3 [51] is

a particularly challenging task because their solution space can be large. Since unit

testing mostly focuses on the functionality of the code rather than its style, I was able

to cluster stylistically different student submissions in the same bucket.

I used the clustering of the student submissions from Spring 2016 and the signatures

30

Table 4.3: Final buckets (classes) of errors for PayFriend and TwoSmallest. The table
shows statistics for errors found in Spring 2017 submissions together with the accuracy
of the error classification and hints. The latter is discussed in Chapter 6.

Error Automatic Partially
Codes Classification Correct Correct

PayFriend

Total Count Count % of Total Count % of Total

COMP 34 34 100% 0 0%

INS 111 111 100% 0 0%

IO 119 114 95.8% 3 2.5%

INF 7 4 57.1% 3 42.9%

CF 38 26 68.4% 4 10.5%

COND 44 39 88.6% 4 9.1%

COND, FORM 91 82 90.1% 9 9.9%

FORM 83 72 86.7% 4 4.8%

Total 527 482 91.5% 27 5.1%

TwoSmallest

Total Count Count % of Total Count % of Total

COMP 39 39 100% 0 0%

INS 105 104 99% 1 1%

SEQ 51 47 92.2% 4 7.8%

INIT 67 56 91.8% 5 8.2%

UPDT 158 129 87.2% 19 12.8%

SEQ, INIT 157 137 91.9% 12 8.1%

SEQ, UPDT 176 145 85.8% 24 14.2%

Total 767 671 87.5% 65 8.5%

for each bucket to develop classifiers for every assignment. Then, I ran the classifiers

on the student submissions from Spring 2017 and manually evaluated their accuracy as

described in Chapter 6. Finally, I wrote a hint for each bucket. This hint was given to

students after every submission, based on the result of the assignment’s classifier. The

next section provides examples of common errors and the corresponding hints given to

students during the Spring 2018 semester.

4.6 Examples of Common Errors and Hints

Example 1. For PayFriend, common errors include incorrect conditional expressions

leading to incorrect answers for boundary values and incorrect formulas for one or more

fee tiers leading to incorrect answers for entire tiers. It is useful to differentiate between

31

the two errors when giving students hints. I was able to make this distinction using the

combined outputs of multiple test cases.

More specifically, if a submission fails test cases with input values inside one tier,

I, but passes test cases with input values in other tiers, it is likely that the code does

not correctly calculate the fee for tier I. This signature leads to the following hint for

tier ($100, $1000): “It seems that you are not correctly calculating the fee for payments

in the range (100, 1000). Review the assignment instructions, check that your formula

for computing the fee is correct, then follow the steps used in the calculation of the fee

in your code and make sure that they implement the correct formula.”

On the other hand, if the submission passes test cases with input values inside

I, but fails test cases with inputs near the upper or lower boundaries of I, the code

likely uses incorrect conditional expressions. This may arise from a misunderstanding

of conditional statements and expressions, or a misunderstanding of the assignment

instructions, or both, hence the mapping to the skill translating word problems into

conditional statements. For example, discriminating between ≥ and > in a conditional

expression requires understanding boundary values and how they differ among data

types. For integers, x < 100 is equivalent to x ≤ 99, but this is not true for real values.

Thus, I wrote the following hint for this class of errors: “It seems that you did not split

the input intervals correctly, where some values at the boundary between intervals may

have been included under the wrong formula/rule; that is, your conditional expressions

may be incorrect, for example, you may have ≥ 101 instead of > 100 which are not

equivalent expressions for double values.”

Example 2. For TwoSmallest, given the material that has been taught in class, most

students develop algorithms that have two major steps: (1) initialize two variables

for storing the two smallest values, and (2) read the input sequence and update the

variables correspondingly. Many students do not consider what values they should use

to initialize the variables and end up using improper initial values such as 0. By using

the results of several test cases with input values that are positive, negative, and mixed,

I can tell whether or not a submission has this mistake. I map this error to algorithmic

thinking, which reminds us to view the error in light of the student’s algorithmic design

32

effort. This leads to the hint: “It seems that you did not initialize the variables used

to hold the minimum and secondMinimum to reasonable values. Think about how the

starting values would affect your algorithm for finding the two smallest values. In

particular, what would happen if the input values in the sequence were greater, equal,

or less than the starting values for your minimum and secondMinimum.”

Updating the two variables in TwoSmallest requires algorithmic thinking, and can

be a challenge for students new to programming. Many students tend to think about

the update process in fragmented, poorly coordinated pieces. To assess if the update of

the variables is done correctly, we test input sequences that are permutations of two and

three given numbers. If the submitted code passes all the test cases with a valid input

of size two but fails the test cases where the third value is less than the minimum value,

then it is highly likely that the student is not updating the minimum value correctly.

The mapping of the error to “algorithmic thinking” leads us, again, to a hint designed

to steer students toward developing this skill: “It seems that you did not update the

variables holding the minimum and/or secondMinimum values correctly. Think carefully

about the algorithm that you are developing to update your variables. It may help to

think about what would happen if the sequence had the same number appearing multiple

times; for example, all possible permutations of 3 numbers with repetition.”

33

Chapter 5

How can Teaching Benefit from Using CSF2?

CSF2 was developed in the context of an introductory CS1 course. However, since

comparing faulty and successful executions is extensively used in fault localization, I

believe that its design is sufficiently flexible to be extended and adapted to serve the

needs of other programming courses that use autograding. It can assist instructors in

various tasks:

1. creating assignments that map to the course material to bridge classroom instruc-

tion with programming practice;

2. reviewing and improving the course to better fit students’ learning needs;

3. designing alternate grading schemes that focus on knowledge components rather

than tests results;

4. encouraging informal interactions between students and between students and

instructors through discussion of the hints.

In this section, I discuss in more detail each of these uses of the concepts and skills

maps.

5.1 Creating Assignments that Map to the Course Material

Traditionally, theory and programming practice are for the most part separated activ-

ities in computer science courses. For theory, we have brimming curricula. In compar-

ison, for programming practice, the focus is on the details of coding without proper

linkage to concepts and skills. In many cases, the resources for programming practice

comprise only tutorials of specific systems, environments, or programming languages

34

students are required to use in the course. The general expectation is that students

should be able to take concepts taught in lectures and apply them to programming

practice. However, most commonly that process does not happen as expected and the

deficiencies developed as a result only amplify over time. Since dropout and failure

rates are high, and often students demonstrate fragile learning of basic concepts [89],

we need solutions for supporting students’ learning. Bridging the gap between concepts

and high-level skills to the specific of programming throughout CS courses is one such

solution. CSF2 was designed with that goal in mind. One advantage of using a specific

set of concepts and skills which map to an assignment and an error classifier is the

ability to query which concepts and skills students are struggling with, similar to the

results shown in Table 4.3. With this information, instructors can design interventions

targeting specific knowledge deficiencies. These interventions can be used before the

administration of the assignment in future course offerings. Some of these proposed

interventions may include additional exercises, textbook references, expert examples,

or video lessons.

Moreover, the set of concepts and skills and buckets of common errors can aid in

the generation of isomorphic assignments while reusing the error classifier and hints.

For example, during the Fall 2017 semester, I modified TwoSmallest to TwoLargest,

an assignment that asked students to output the two largest values in a sequence. In

this instance, I was able to reuse the test suite, classifier, and hints with only small

changes. This can be a starting point for extending CSF2 to support the evolution of

assignments over time (for example, to circumvent cheating) while reusing the classifiers

and hints. By repeating the process for all the assignments, teachers can also accumulate

knowledge on how to redesign course curriculums to better integrate all the individual

activities and material as I describe in the next section.

5.2 Reviewing and Improving Courses

Concerns centered on the quality of education offered by higher education institutions

such as universities advocate for the integration of theory and practice [90]. This is a

prevalent trend across disciplines. In this section, I describe the effects of applying CSF2

35

to two programming assignments in an introductory CS1 course at Rutgers University.

The first step in the framework requires compiling the list of concepts and skills for

each programming assignment. Compiling these lists was strikingly challenging since

I could not find specific resources for them in the course curriculum. Both I and my

collaborators were surprised by this realization and the case study generated a wave

of changes to the course curriculum and material. For example, together with my

collaborators, I developed a core system of learning goals which is now used throughout

the course.

Rutgers University supplements instructor’s instruction with weekly recitations which

are conducted either by upperclassman students or graduate students commonly called

teaching assistants (TA). Generally, recitations focus on practice and revisiting course

material that was covered during the lecture. However, in large introductory courses

with over 1500 students, there could be more than 30 instructors and TAs teaching dif-

ferent sections. Consequently, coordination is a substantial issue. Having a core system

of learning goals is the first step towards a solution. In addition, instructors and TAs

could use to learn from each other’s experiences to improve their teachings. To enhance

coordination and shared knowledge about teaching experiences, my collaborators and

I developed Dynamic Recitation: A Student-Focused, Goal-Oriented Recitation Man-

agement Platform [91]. This platform has been used as an aid to teaching for CS1 at

Rutgers University since 2018. The platform was received with enthusiasm by instruc-

tors and TAs, however, further research is needed to understand its impact on teaching

and learning.

5.3 Designing Alternate Grading Schemes

Instructors can also take advantage of the set of concepts and skills when assigning

partial credit to autograded assignments. Traditionally, grading rules for autograders

have been very rigid, following the boundaries of unit testing and leading to grades

being calculated as the weighted sum of the outcome of the test cases. Relying on

test cases alone to grade submissions has resulted in some unexpected behaviors. For

example, instructors at Rutgers University reported that students at either end of the

36

scoring spectrum (that is, those who received no credit and those who earned nearly full

credit despite still having important misconceptions and mistakes), gave up working

on and completing their programming assignments. These observed behaviors may

be responsible for the dreaded “bimodal grade distributions commonly observed in CS

courses” [89]. With my proposed approach, instructors can assign scores based on the

importance they allot to each concept or skill. For example, for PayFriend I weighed

all the tested concepts. Students who understood the assignment but would have,

previously, received low grades due to failed test cases were assigned scores more fairly

and the scores better reflected their understanding of the problem and its solution.

Conversely, I found submissions that failed a few test cases covering core concepts and

would have previously received a nearly perfect score. The weighted scoring scheme

lowered the scores of these submissions because the test case failures showed important

misunderstandings and served as a motivation for students to improve their solutions.

Next, I report on designing and using an alternate grading scheme as part of the case

studies. Table 4.2 summarizes the data sets used in my evaluation, with submissions

for Spring 2016 collected using Web-CAT and submissions for Spring 2017 and Spring

2018 collected using Autolab. Web-CAT was configured to test the students’ code using

10 test cases. Students were allowed to submit each assignment multiple times - five

times without penalty, then with a 5 point penalty for each subsequent submission.

For each submission, Web-CAT provided the following feedback: a score, whether the

submission passed each test t in the test suite, and, in case of failure, a hint associated

with the specific test case.1 The instructor wrote the test cases and the hints at the

same time. Scores were calculated as a weighted sum of the passed test cases.

Instructors made a few observations during Spring 2016 which led to changes during

Spring 2017 and Spring 2018:

• when given feedback on which test cases passed and failed, students were guessing

what were the failed test cases and adjusted their code to correct for those specific

test cases rather than think about their overall solution.

1Students were not given information on the test cases themselves.

37

• some students who had gotten a good start but whose code did not compile or

whose code failed all the test cases would give up because of a low score.

• some students who had gotten a sufficiently high score would stop working on

their code because they were more motivated by getting a “good enough” score

than by arriving at a complete solution.

For both semesters when it was used, Autolab was configured to test the students’

code using 20 test cases for PayFriend and 30 test cases for TwoSmallest, generated as

described in Section 4.2. Again, the students were allowed to submit each assignment

three times without penalty, then with a 5 point penalty for each subsequent submission.

During Spring 2017, the only feedback that the students received for their submission

was a “progress signal” as described below. During Spring 2018, feedback for each

submission included a progress signal and hints generated as described in Chapter 4.

In my assessment of the usefulness of the hints in Chapter 7, I focused on comparing the

two most similar semesters, Spring 2017 and Spring 2018, although, for completeness,

I also include the data and results from Spring 2016.

The above observations lead to the following changes for the Spring 2017 and 2018

semesters:

1. After each submission, students were given a progress signal instead of a score.

Scores were revealed only after the assignment due date when students were not

allowed to submit anymore.

2. Scores were calculated using a scheme in which the weighted sum of the test

results was added to a base score (Table 4.1).

3. During Spring 2018, as part of the feedback, students also received hints associated

with the error class corresponding to the errors in their submission.

5.3.1 Progress signal

To discourage students from targeting their code to specific test cases, starting with

Spring 2017, instructors changed the feedback given to students to a signal indicating

38

overall progress instead of an actual score or information about the number of passed

and failed test cases. In this scheme, a submission would be tagged with a red “light”

for a score below 20, a yellow “light” for a score between 20 and 60 for PayFriend

and between 20 and 80 for TwoSmallest, and a green “light” for a score above 60 for

PayFriend and above 80 for TwoSmallest. Instructors explained to the students that

red meant that a submission was very far from a correct solution, yellow meant that

a submission was on the right track but was still giving the wrong answer for many

test cases, and green meant that the submission was definitely on the right track, but

there was no guarantee of a perfect score or that the submission had passed all the test

cases. The latter was used to encourage students to think about comprehensive test

plans rather than gaming the system to try to get a perfect score. The final scores were

released to the students after the assignment deadline.

5.3.2 Scheme used for calculating scores

For each error class, instructors assigned a base score, shown in Table 4.1. Scores for

each submission were calculated by adding the base score associated with the error class

to the weighted sum of the passed test cases. The weights used for each passed test

case were 1 for PayFriend and 1.5 for TwoSmallest. For example, if a code submission

for PayFriend was labeled with COND and it passed 15 test cases, its score became

50 + 15∗1 = 65. As shown in Figures 7.2 and 7.3, this grading scheme made the grades

approximately follow a normal distribution because it moved the scores on submissions

that did not pass any test cases from zero to some partial credit and submissions that

were near completion from a near-perfect score to a score that was less than 85 for

each assignment. This scheme increases the scores for early but significant efforts to

encourage students to keep trying and it also increases the value of “solving the few

remaining bugs” to encourage students who are doing well to keep trying.

Lastly, regardless of the type of feedback provided, students may still individually or

collectively resort to gaming the system to get full points [82]. Limiting the submission

count without penalty to three makes it nearly impossible for one student to game

the system since it considerably limits the number of data points coming from the

39

interaction with the autograder. Instructors using CSF2 classifiers to automatically

provide feedback have observed that students often discuss the hints on the online course

forums. Further research is needed to understand how the autogenerated feedback

affects students and their learning.

40

Chapter 6

How Accurate is CSF2 in Classifying Errors?

In this section, I detail the process used to assess the accuracy of the error classifiers

developed by applying CSF2 to two programming assignments and outline findings.

These classifiers were produced from submissions collected during Spring 2016 and run

on submissions from Spring 2017. After classifying Spring 2017 submissions, I asked

three undergraduate students who had previously taken the Introduction to Computer

Science course to carefully review the submissions and the errors produced by the

classifiers and assess the accuracy of the classifications and the potential efficacy of

the corresponding hints. At the time this paper was written, these students were

enrolled in the computer science program or had recently graduated with a computer

science degree. I believe that having done the assignments themselves while taking the

course gave these students a good perspective in the evaluation of the automatic error

classification.

6.1 Human Evaluation Approach

Human evaluation approaches can be subject to biases (e.g., knowing categories ahead

of time can lead to conformity bias). I took some measures to reduce or minimize such

biases. In particular, I asked the evaluators to assess the code and write an appropriate

hint before deciding if the “autogenerated” hint was suitable. The hints they wrote

were very similar to the autogenerated hints. For example, when a student got one of

the formulas wrong, one of the evaluators’ hints was “check your math.” Hints were

not given when the evaluators took the class, and so they were not biased that way.

Finally, the evaluation presented here only provides evidence for the accuracy of the

error classifiers. Ultimately, the impact of the error classification and the corresponding

41

hints on the students, reported in Chapter 7, is the most important.

To evaluate the classifiers, each erroneous submission and its corresponding error

class and hint was labeled either Correct, Partially Correct, or Incorrect. The Correct

label meant that the automatic diagnosis and corresponding hint fully captured the

logical errors in the submission, and so would potentially provide useful guidance to the

student. Note that I say “potentially” since the labeling was done by people other than

the owners of the submissions. The Partially Correct label meant that the diagnosis

and hint only partially captured the errors in the submission. Incorrect meant that the

errors were misdiagnosed and so the hint was misleading or would not have made sense.

Each submission was inspected and evaluated by at least two people. The results were

analyzed by me to resolve conflicts and to ensure consistency between evaluations. I

computed the inter-rater reliability score by assigning 1 to all the instances where the

reviewers agreed and 0 otherwise, summed for all the submissions and divided by the

total number of submissions. The inter-rater reliability score we obtained was 93%.

6.2 Findings

Table 4.3 summarizes the results of the manual evaluation of the accuracy of the error

classification. In particular, it shows that the classification was correct for 91.5% of the

code submissions for PayFriend and 87.5% of the code submissions for TwoSmallest.

Moreover, the manual inspection of the submissions and their classification for both

assignments revealed errors that would have been difficult to detect with the gray box

testing I used. I call it “gray box testing” because I had limited knowledge about each

student’s code at the time when the test cases were designed. Furthermore, the test

cases were designed for a full path coverage of the reference solution as described in

Section 4.2, which may or may not be close to the student solutions.

To demonstrate the inherent limitations of gray box testing for PayFriend, consider

the student code in Figure 6.1. This code passes only the test cases for inputs smaller

than 100. The classifier labels it as FORM (see Table 4.1), because it is using incorrect

calculations inside three out of the four intervals. The student seems to have a poor

42

1 public class PayFriend {

2 public static void main(String [] args) {

3 double payment=IO.readDouble ();

4 double fee =0;

5
6 if (payment >15000) {

7 fee +=(10000*0.01) +(5000*0.02)+

8 ((payment -15000) *0.03) +5;

9 }

10 if (payment >10000) {

11 fee +=(10000*0.01) +((payment -10000) *0.02);

12 }

13 if (payment >1000) {

14 if ((payment *0.01) >15) {

15 fee+= payment *0.01;

16 } else {

17 fee +=15;

18 }

19 }

20 if (payment >100) {

21 if ((payment *0.03) >6) {

22 fee+= payment *0.03;

23 } else {

24 fee +=6;

25 }

26 }

27 if (payment <100){

28 fee +=5;

29 }

30
31 IO.outputDoubleAnswer(fee);

32 }

33 }

Figure 6.1: Example of student code that was improperly labeled by my classifier.

43

understanding of control flow and of the difference between consecutive if s and if-

else. An accurate hint would tell the student that, for payments greater than 100, the

code may change the fee multiple times which would be considered incorrect behavior.

The simplest fix is to add an else after each if and to put the following conditional

expressions inside that else. The code example in Figure 6.1 shows that because of the

semantic and functional brittleness of code [65], slight deviations in the code’s block

structure can result in an error signature that the classifier is not able to properly label.

Using observations of this sort I developed an extension to CSF2 described in Chapter 8.

Despite the above limitations, the high accuracy of the error classification and corre-

sponding hints provides strong evidence that they are appropriate for the vast majority

of erroneous submissions. Thus, the classifiers and corresponding hints were deployed

in the introductory CS1 course starting with Spring 2018 semester. During Spring 2018

semester, student submissions were again collected and students were also asked to

complete a survey. These submissions and the survey were used in a subsequent study

which I relay in the next chapter.

44

Chapter 7

How does the Automated Feedback Impact Students?

In this section, I present findings based on comparing student submissions from one

semester without hints (Spring 2017) to one with hints (Spring 2018) and a survey

conducted in the semester with hints. Recall that the classifiers were developed using

the submissions collected during Spring 2016 as described in Chapter 4.

7.1 Datasets and Significance Tests

As mentioned before, Table 4.2 summarizes the data sets used throughout the case

studies, with submissions for Spring 2016 collected using Web-CAT and submissions

for Spring 2017 and Spring 2018 collected using Autolab.

I compare the data from Spring 2017 and Spring 2018 because these two semesters

are the most similar – they used the same autograder, the same progress signal (“light”

colors instead of scores), the same grading scheme, and the same number of submis-

sions allowed without penalty. The difference between the two semesters was in whether

students were given hints or not. I added data from Spring 2016 for interest, but do

not include it in the analysis of the usefulness of the hints because the two semesters

when students received hints (Spring 2016 and Spring 2018) were very different. As

explained above, during Spring 2016, a different autograding system was used that as-

sociated a hint to each test case, and a different formula was used to compute the score

for each submission. Note that the scores shown for Spring 2016 in this section are

not the actual scores that the students received, but rather the scores that students

would have received with the grading scheme from Spring 2017 and Spring 2018 (Sec-

tion 5.3). Overall, the data from Spring 2016 is consistent with observations from the

comparison between Spring 2017 and Spring 2018, that is, the performance of students

45

on programming assignments improves when they receive hints.

In my analysis, I use Pearson’s χ2 test to determine the significance of the difference

between two proportions and the Kolmogorov-Smirnov test to determine the significance

of the difference between two cumulative distributions (e.g., comparing numbers from

Spring 2017 and 2018). I use a significance level of 0.05.

7.2 Usefulness of the hints

I use two measures to evaluate the usefulness of the hints generated using my framework:

empirical usefulness and perceived usefulness. I say that hints are empirically useful

if there are statistically significant differences between the semester when students did

not receive hints (Spring 2017) and the semester when students received hints (Spring

2018) in terms of resubmission rate, final score, score difference between the first and last

submission, and score difference between consecutive submissions. I determine whether

hints are perceived as useful from the students’ responses to a survey completed at the

end of the Spring 2018 semester. I examine the distribution of student responses to

specific questions, their comments in response to the hints, and anecdotal information

from instructors.

7.2.1 Empirical usefulness of the hints

To assess the empirical usefulness of the hints, I analyzed the differences between Spring

2017 and Spring 2018 in terms of the cumulative percentage of students who resubmitted

their assignment, the final scores, the score differences between the students’ first and

final submission, and the score difference between consecutive submissions.

First, I observe an increase between Spring 2017 and Spring 2018 in the number of

assignment resubmissions, both in terms of the percentage of students who resubmitted

(shown in the last row of Table 4.2) and the cumulative distribution of the percent-

age of submissions that are the nth submission from a student out of all submissions

(shown in Figure 7.1). The last row in Table 4.2 shows that the percentage of students

who resubmitted increased between Spring 2017 and Spring 2018, but the difference is

46

Figure 7.1: Cumulative distributions and histograms showing the percentage of sub-
missions that are the nth submission from a student out of all submissions. A “lower”
CDF indicates higher percentages of later submissions, corresponding to students sub-
mitting more times. For Spring 2016, students were allowed to submit up to 5 times
without penalty, compared to 3 times for 2017 and 2018, which is likely the reason for
the observed highest rates of re-submissions in 2016.

statistically significant only for PayFriend. This increase is represented in a rightward

translation of the line, up to three submissions. Then, the lines converge because of

points being deducted after more than 3 submissions, that is 5 points of the student’s

grade were subtracted from the score for every submission after the third one. I believe

that the higher resubmission rate for Spring 2016 can be explained by the fact that

students were able to submit their code 5 times without a penalty instead of 3 times

during the other semesters.

The rate of resubmissions is important but it gives only one piece of evidence for

the usefulness of the hints. I further look at additional usefulness indicators.

I define two other measures which I believe point to the empirical usefulness of the

hints: the efficacy of the hints as the overall progress students made between their

first and last submission measured as a difference in score and the efficiency of the

hints as the progress with each resubmission measured, again, as a difference in score.

I hypothesize that the increase in overall score and the increase in score with each

resubmission are evidence of the usefulness of the hints.

47

Table 7.1: Percentages of students who completed (that is, received a prefect score for)
each assignment and the number or submissions it took (one or multiple). † marks a
statistically significant change between Spring 2017 and Spring 2018.

PayFriend TwoSmallest
Spring Spring Spring Spring Spring Spring

2016 2017 2018 2016 2017 2018

Students who successfully
completed the assignment
in one submission

26.8% 30.4% 22.5% 15.6% 14.4% 22.5%

Students who successfully
completed the assignment
after resubmitting

34.4% 11.6% 31.8%† 30.9% 9.2% 28.8%†

Total students who suc-
cessfully completed the as-
signment

61.2% 42.0% 54.3% 46.5% 23.6% 51.3%†

Total students who did not
complete the assignment

38.8% 58.0% 45.7% 53.5% 76.4% 48.7%†

Efficacy of the hints

I measure the efficacy of the hints by the progress students made toward completing

their assignments when they were given hints after each submission. I evaluated progress

by the percentage of students who completed the assignment and by the increase in score

between the initial and final submissions.

I notice a substantial difference between the percentages of students who completed

the assignment in one submission, the percentages of students who completed the as-

signment using multiple submissions, and the percentages of students who did not

complete the assignment (Table 7.1). Although I see some differences between the per-

centages of students who completed the assignments in one submission, analyzing them

goes beyond the scope of this study given that the two populations of students come

from two different semesters. These differences are also not statistically significant.

When hints were provided, the percentage of students who completed their assignment

after resubmitting almost tripled for both assignments compared to the semester during

which no hints were provided (these numbers are shown in the second row of Table 7.1),

and the difference is statistically significant.

48

Figure 7.2: The cumulative distribution of students’ final scores for each assignment
along with the histogram showing the distribution of grades in buckets of 10 points.
For example, at 60, the bars show the percentages of scores between 60 and 69. At 100,
the bars indicate the percentages of scores equal to 100.

Figure 7.3: The cumulative distribution of final scores for students who submitted
multiple times along with the histogram showing the distribution of grades in buckets
of 10 points. For example, at 60, the bars show the percentages of scores between 60
and 69. At 100, the bars indicate the percentages of scores equal to 100.

49

Figure 7.4: Cumulative distributions and histograms of differences in score between
the final and first submissions for all students who submitted multiple times. Numbers
are shown for 20 percentage point increments (for example, at 30, the bars show the
percentages of students with a difference in score between 20 and 40. The x-axis in-
dicates the score difference and the y-axis indicates the percentage of students whose
score difference matches x.

Figures 7.2 and 7.3 show the distributions of the students’ final scores. In particu-

lar, for students who submitted multiple times (Figure 7.3), for PayFriend, about 5%

more students received a final score between 20 and 55, and about 20% more students

received scores above 70 during Spring 2018 than during Spring 2017. This difference is

statistically significant. Interestingly, the CDFs for PayFriend show sharp rises around

20, 60 and 100. I believe that these sharp rises (and the relative flatness in between)

can be attributed to the fact that: (1) the assignment is simple, and so students tend to

earn points in large chunks, and (2) 20 and 60 are boundary scores when the progress

signal changes from red to yellow and from yellow to green for Spring 2017 and Spring

2018. Many of the students stopped working on their code when they received the green

light signal, even though the instructors explained that getting a green light did not

guarantee a perfect score. Students understood this guideline much better for TwoS-

mallest, which explains why more students received higher scores in the “green light”

range for the second assignment. For TwoSmallest, I see a similar trend with about

10-20% more students receiving final scores above 85 during Spring 2018 than during

Spring 2017. These differences in the cumulative distribution of the students’ final

scores suggest that the hints were useful.

Figure 7.4 shows, for each assignment, three cumulative distributions, one for each

50

Table 7.2: Percentages of students who were able to fix all their errors after one re-
submission (out of all the students who did not achieve a perfect score on their first
submission). † marks a statistically significant difference between Spring 2017 and
Spring 2018.

PayFriend † TwoSmallest

Spring 2016 27.34% 19.86%

Spring 2017 22.83% 21.00%

Spring 2018 37.62% 23.90%

semester of interest, of the differences in score between the final and first submissions.

During the semester when hints were given, a higher percentage of students made

moderate progress as reflected in an increase in their score between 30 and 45 for

PayFriend and between 20 and 40 for TwoSmallest.

Finally, I note that it appears that hints are most useful for students who are close to

getting a perfect score. In addition, for PayFriend, the hints seem to also help students

with a score between 20 and 30. These are students who do not use the IO module

properly; the IO module is an interface for receiving input and supplying output.

Efficiency of the hints

Intuitively, the efficiency of the hints has to do with how much quicker students make

progress toward completing the assignment when they receive hints compared to when

they do not receive hints. More specifically, for all the students who submitted multiple

times, I used their submission history to create pairs (i,i+1) of consecutive submissions.

Next, I counted all the pairs for which the first submission i and the following submis-

sion i+1 were labeled with the same error class. I show the results in Table 7.2 and

Figure 7.5.

Firstly, I observe an increase in the probability that a student will complete their

assignment (that is, their submitted code will pass all the test cases) with every resub-

mission as reflected by an increase in the percentage of students who fixed all their errors

in one resubmission for the semester when hints were provided, which is statistically

significant for PayFriend. In Table 7.2, for each assignment, we show the percentages

of students who fixed all their errors in one resubmission, by assignment. To calculate

51

Figure 7.5: Histograms showing the distribution of submissions stuck in an error class
from one submission to the next. The x-axis indicates the error class and the y-axis
indicates the percentage of students who were not able to make progress from the
previous submission. For Spring 2016, COMP column looks like it’s missing because of
the graph scale and the fact that it is only 1%.

these percentages, I counted all the pairs of consecutive submissions for which the first

submission i was labeled with an error class and the following submission i+1 had

no error. During the semester with hints, more students were able to complete their

assignment after one round of hints, but only for PayFriend was the difference between

semesters statistically significant.

Secondly, we see a decrease between Spring 2017 and Spring 2018 in the percentages

of submissions that were stuck in the same error class from one submission to the next

except for INS and COND for PayFriend and COMP and UPDT for TwoSmallest as

shown in Figure 7.5. I calculated the percentage of submissions stuck in each error

52

class by using the number of pairs of submissions that started and ended in that error

class and divided it by the number of all the pairs of submissions for which the first

submission was in that error class. For PayFriend, we see progress for all error classes,

except for INS, which is the error class in which the student’s code was saved under the

wrong filename, the class or method names were wrong, and COND, which is the error

class in which the student’s code failed one or multiple test cases for boundary values.

It is difficult to point out these errors without giving away the answer or revealing

the test cases, which I am trying to avoid. For TwoSmallest, we see smaller progress

for the majority of the error classes, with a slight increase for UPDT and a bigger

increase for COMP. I think the smaller progress is linked to the greater complexity

of the assignment. For TwoSmallest, the solution strategy comprises three main tasks:

differentiate valid entries from terminating values (SEQ), initialize the variables to store

the minimum values (INIT), and update these variables (UPDT). INIT and UPDT point

to parts of the strategy that are separate, that is INIT ends when the first two valid

values are read, and UPDT starts with the third valid value. SEQ points to the part of

the strategy that is interleaved with INIT and UPDT, but the behavior of SEQ changes

from INIT to UPDT as follows: during INIT, the terminating values are discarded and

new values are being read, whereas during UPDT, the read stops when the terminating

value is read. To test for errors in the class INIT, students need to test for all the

possible combinations of two numbers with repetition, that is 3 or 4 test cases; the

two numbers represent the first two valid entries in the sequence. For the error class

UPDT, in the least, students need to test for all the possible combinations of three

numbers with repetition (three or more, anything more than two), that is 12 or more

different test cases. Finally, an additional four or more test cases are required to test the

behavior of UPDT (incorrect update of min values, Table 4.1), using number sequences

with additional terminating values interleaved between the first input (the terminating

value), and the first valid input (different from the terminating value), and number

sequences with additional terminating values between the first two valid entries. This

analysis shows that TwoSmallest is far more complex than PayFriend. However, for

both assignments, we see that fewer submissions were stuck in the same error classes

53

Table 7.3: Assignment completion rates for all students and for students who completed
the TAM survey. “One submission” encompasses students who have submitted each
assignment only once; “multiple submissions” means that students submitted at least
one of the assignments multiple times.

Assignment completion
All Students

Survey
RespondentsPayFriend TwoSmallest

One Submission

yes yes 22 (4.8%) 15 (5.2%)
yes no 16 (3.5%) 9 (3.2%)
no yes 23 (5.0%) 13 (4.5%)
no no 34 (7.4%) 14 (4.9%)

Multiple
Submissions

yes yes 135 (29.4%) 99 (34.5%)
yes no 77 (16.8%) 43 (15.0%)
no yes 59 (12.9%) 41 (14.3%)
no no 93 (20.3%) 53 (18.3%)

during Spring 2018 than during Spring 2017.

Finally, I note that hints appear to be helping at least some of the students make

progress in addressing errors in their code. As shown above, for the semester with hints,

there was a decrease in the percentage of students who were stuck in the same error

class, and more students were able to complete their assignment after resubmitting just

once, compared to the semester without hints.

In conclusion, the hint system I implemented in Autolab as proof of concept for

my proposed framework appears to help students make progress from one submission

to the next, as well as improve their final grades. However, they do not seem to help

students equally: it appears to provide more help to students whose code is in certain

error classes and those who are near the completion of their assignment.

7.2.2 Perceived usefulness of the hints

To assess the perceived usefulness of the hints, I look at the distribution of the students’

responses to a survey completed at the end of the Spring 2018 semester, their comments

on the hints in Autolab, and the anecdotal information provided by the instructors of

the course.

54

Figure 7.6: The distribution of student answers to questions in the survey: Learn - The
hints provided by Autolab helped me learn, Learn Java - The hints provided by Autolab
were useful for learning to program in Java, Diff Assign - The hints provided by Autolab
were helpful when I was working on a difficult assignment, Autolab - Autolab improved
my abilities as a Java programmer, Correct Errs - The hints provided by Autolab helped
me correct my errors, Correct Sols - The hints provided by Autolab helped me write
correct assignment solutions, Overall - Overall, I found the hints provided by Autolab
very useful.

55

Figure 7.7: Perceived usefulness of Autolab and the hints, as reflected by the responses
to the TAM survey; The plot shows what Autolab features students thought could be
improved: 1 - Having more help when learning how to use Autolab, 2 - Having more
assistance when having difficulties with Autolab, 3 - Having more help when something
goes wrong in Autolab, 4 - Not having to use the IO module, 5 - The wording of the
hints, 6 - The information provided by the hints, 7 - other, typed by the student.

Table 7.4: Percentage of students who agreed with survey statements. “One Submis-
sion” means that students submitted each assignment once and “Multiple Assignments”
means that students submitted at least one assignment multiple times. Note that stu-
dents submitting just once would still have gotten hints unless they received a perfect
score.

One
Submission

Multiple Submissions

Neither
Completed

Completed
One or Both

Having more help when
learning how to use Autolab

35.3% 35.8% 21.3%

Having more assistance when
having difficulties with Autolab

45.1% 50.9% 39.3%

Having more help when some-
thing goes wrong in Autolab

47.1% 56.6% 44.8%

Not having to use the IO
module

29.4% 28.3% 30.1%

The wording of the hints 60.8% 67.9% 71.6%

The information provided
by the hints

60.8% 69.8% 82.0%

Other 5.9% 9.4% 3.3%

No Answer 0.0% 0.0% 1.1%

56

Survey Results

I built a survey using the Technology Assessment Model (TAM) [92] to assess the per-

ceived usefulness and ease of use of Autolab, with a focus on the hints. A copy of the

survey can be found in Appendix C. At the end of the Spring 2018 semester, I asked the

students to complete this survey for a small credit toward their final grade. Out of the

459 students who submitted at least one of the assignments in Autolab, 287 students

completed the survey, a 62.5% response rate. Table 7.3 shows assignment completion

rates for survey respondents and for all students. An assignment is considered com-

plete when it passes all of the test cases and receives a score of 100. Given that the

two distributions (“All Students” and “Survey Respondents”) are similar, I conclude

that the sample of survey respondents is representative of the student population who

submitted their assignments to Autolab during Spring 2018. Next, I present results

from the analysis of the students’ responses.

I start by using 7 of the survey questions, 6 of them asking about the hints and one

of them asking how much the students agreed that Autolab improved their abilities as

Java programmers (Figure 7.6). My first observation is that nearly two-thirds of the

students agreed that Autolab improved their abilities as Java programmers, whereas

only between about one-third and about one-half of the students agreed that the hints

were useful. Among questions about the usefulness of hints, a slightly higher number of

students (about 10% more) agreed that the hints were useful for correcting errors and

for writing correct assignment solutions. It is unclear whether students who did not

find the hints useful had that perception because they were looking for more detailed

and explicit feedback. Such feedback would be against the spirit of my approach: I

want to give hints that enable students to think about the problem and then make

progress, rather than follow detailed instructions on how to correct their code. It would

be interesting to obtain more information about the students’ thoughts on this matter

in the future.

Secondly, I observe that about two-thirds of the students thought that the wording

of the hints and the information provided by them needed improvement (Figure 7.7).

57

Figure 7.8: Distribution of survey responses by average grades and by average number of
submissions. The first column shows the distributions of the average score between the
final submissions for PayFriend and TwoSmallest from lowest (red) to highest (green)
by survey responses. The second column shows the distribution of the average number
of submissions by survey responses.

58

When combining the percentage of students who agreed with the survey statements

broken down by the number of submissions (one vs multiple) and the assignment com-

pletion rates shown in Table 7.4, we see that the most selected options for improvement

could be categorized as those regarding using the autograding system and those regard-

ing the hints. Students who submitted multiple times but did not complete any of the

assignments expressed more often that the autograding system needed improvement,

whereas students who completed at least one of the assignments more often expressed

that the language of the hints and the information provided by the hints needed im-

provement. Finally, fourteen students selected Other to answer the question of what

needed improvement and typed their suggestions: five students mentioned the way files

were uploaded in Autolab, five students mentioned the color “lights” shown instead of

scores, three students wrote that test cases would have been more useful feedback than

the color “lights”, and finally two students mentioned that Autolab was slow, especially

when approaching the assignment submission deadlines.

Thirdly, in Figure 7.8, we see that the likelihood that a student perceived the hints as

helpful increased with their score as shown in the graphs titled Learn and Correct Errs,

and that more students who obtained higher scores had neutral answers to the survey

questions as shown in the graph titled Neutral Answers. The score is shown as the light

color corresponding to the average between the student’s score on the final submission

for PayFriend and the score on the final submission for TwoSmallest. Moreover, we

see that, as the average number of submissions increased, students were more likely

to agree that the hints were useful in correcting their errors (second row, right side

graph in Figure 7.8), and that fewer of them had neutral answers (fourth row, right

side graph).

Students’ comments on hints

In Autolab, students had the option to write a comment or feedback every time they

received a hint. Students wrote 25 comments for PayFriend and 19 comments for

TwoSmallest. Most commonly, the students’ comments expressed disagreement with

or confusion about the hints. One student’s comment expressed that the error in the

59

code had been correctly identified by the hint. Most often, the students said that they

disagreed with the hints they received because their code had passed the test cases and

they often asked for the test cases that their code had failed. They also asked for more

details about their errors, such as what was the line number in their code containing

the error. Finally, many students thought that the assignment descriptions were not

clear.

Anecdotal information from instructors

Overall, the instructors communicated that they found the hints to be useful, but that

they were not enough to correct the students’ thinking. They offered suggestions for

improving the hints such as: changing the wording of the hints, improving the accuracy

of the hints, and improving the content of the hints. For example, they thought that

providing failed test cases along with the wording of the hint would be very useful for

the students. However, figuring out what is the best information and the best way to

present it to students is an open question beyond the scope of this research. I aimed to

write hints that gave students enough information to correct the logical errors in their

code without giving away the answers. Moreover, the hints were provided only for a

subset of the assignments and instructors reported that students were asking for hints

for assignments that did not provide hints, suggesting that students at least perceived

the hints to be useful (whether they were or not).

In conclusion, both students and instructors agreed that the hints were useful, but

that they could be improved, in particular the information provided in them as well as

their wording. I plan to explore these directions in my future work.

60

Chapter 8

PR-CSF2: An Extension to CSF2 Using Program Repair

In this chapter, I present Progam Repair - CSF2 which is an extension to the initial

framework [93] designed to handle some of the limitations of CSF2. These limitations

are:

1. The granularity of the feedback generated using CSF2 is too coarse

for some cases. For example, I observed errors in student programs involving

variable types, integer, and double division, control flow (including dead code)

that can not be caught using the testcase signatures alone.

2. The feedback generated using CSF2 is inaccurate at times. This issue is

related to the previous one and it happens because for some testcase signatures

there could be many reasons why the program is failing in that way. Having a

way to test different hypotheses about what may be wrong in students’ code is a

way to build confidence in the feedback and possibly to provide more information

to students.

3. Many students are unable to fully complete their programming assign-

ments by the time they are due. Often their programs need only minor

changes. However, because they do not understand what is wrong with their pro-

gram or think their program is correct, they become frustrated with not receiving

a perfect score. Other times student programs have issues with basic concepts

such as the difference between an integer and a double variable and how division

works when variables are of one type or the other. Being able to provide program

repair information along with a textual explanation of the error can alleviate

students’ frustration and teach them about concepts and skills.

61

4. The initial approach to CSF2 is data-driven and data-driven techniques

are known to suffer from the cold-start problem. That means assignments

need to be offered during multiple semesters which may promote cheating. In

addition, no feedback can be provided for new assignments or the first round of

student submissions. Having an approach that can provide some feedback for new

assignments complements the initial approach used by CSF2.

5. Generating feedback using CSF2 is labor-intensive because it is specific

for a class of assignments. Having an assignment-independent model for pro-

viding some feedback to new assignments offers a less labor-intensive alternative

to the primary approach.

Using information from the case studies conducted with CSF2 I report on in previous

chapters, I designed a student program repair model which focuses on addressing mis-

conceptions that students might have regarding their corresponding concepts and skills

along with the errors in their programs. Next, I discuss the reasons behind the design

choices I have made in developing PR-CSF2 in Section 8.1, provide working examples

to substantiate my reasoning in Section 8.2 and describe how PR-CSF2 approach works

in Section 8.3.

8.1 Overview of PR-CSF2’s Design

The goal of automatic program repair is to identify a set of changes that can turn

a program that is incorrect concerning a given specification into a correct one. The

problem of finding a fix to a faulty program is commonly treated as a purely compu-

tational problem, even in the context of automated feedback generation for student

programs [18]. Fixing student programs is generally considered much easier than fixing

complex programs written by experts to solve open-ended tasks primarily because the

assignment description or the dataset of prior student programs can be used to guide

the process of finding a repair. Additionally, the complexity of the analysis required to

find the fix commonly grows with the size and complexity of the code. These obser-

vations impel us to think that the problem of repairing student programs is an easier

62

version of the harder problem of repairing expert programs and, by extension, that the

type of repairs required by student programs are a subset of the larger set of program

repairs.

The types of errors students make in their programs are not necessarily a subset

of the errors experts make in their programs. In Section 8.2, I give examples of stu-

dent erroneous code to substantiate this claim. Due to their fragile knowledge about

the programming structures they just learned before the programming assignments,

students do not know how to properly use them yet. Program repair approaches for

automated feedback generation commonly leverage changes to the syntax of the pro-

gram [38, 21]. However, in many cases, the appropriate fix may involve changes to the

program structure.

The types of repairs required by student programs are not necessarily a subset of the

larger set of program repairs observed in expert programs. Student programs commonly

have structural issues which may or may not negatively impact the behavior of their

programs during testing. In the cases in which they impact the behavior of the program,

there may be alternative syntactical changes to the program that can make up for it.

However, the resulting program repair may be undesirable and may confuse students

even more. Moreover, even in the cases in which they do not impact the behavior of

the program, providing feedback on the structuring of their code to students is valuable

and can be used to correct their misconceptions.

Finally, to be effective in advancing students’ learning, feedback received by students

needs to contain at least textual explanations of the reason for the repair [79] and

preferably other conceptual hints that connect it to the material taught in the lecture.

Consequently, the specific question I try to answer throughout my research with PR-

CSF2 are:

1. Can I automatically identify program structure repairs to student programs in

addition to statement-level repairs?

2. Can I use the repair signatures to provide additional automated feedback to stu-

dents, such as feedback on the structuring of their programs?

63

3. How does the quality of the repairs compare to manual repairs by experts?

I propose a methodology for providing automated feedback to programming assign-

ments that focuses on linking program repairs to the concepts and skills required for

solving a programming assignment. This approach leverages the fact that student pro-

grams repairs can be broken up into smaller program repairs (which I refer to as program

repair units) which are common among student programs and across assignments. A

key benefit to this approach is that these program repair units can be mapped to spe-

cific misconceptions for a particular assignment. For example, casting an integer to a

double before the division is needed in java to ensure that floating-point division will

be computed and indicates that the student understands the difference between integer

division and floating-point division. Thus, the program repair unit that casts an integer

variable to a double variable before a division takes place signals that the student may

have misconceptions about variables, variable types, and how division works based on

the type of the variables. My proposed method first identifies the set of program repair

units that are needed to correct the student program, and then provides correction

feedback for each of the program repair units, along with textual information based on

their associated misconceptions.

By analyzing student programs, I identified a set of program repair units that are

common across student programs and assignments. These program repair units can be

simple, such as modifying a < operand to a <= operand, or more complex, such as

modifying the program structure. I then implemented a search algorithm for identifying

which set of program repair units is needed and where in the program they are needed.

The algorithm iteratively applies repairs to different parts of the program until it finds

the correct program. This kind of evolutionary algorithm is known to work well in

complex search spaces and with possibly many local optima [94] which apply to the

program repair problem. However, the efficacy of the algorithm depends on the search

procedure as I further discuss in Section 8.3.1.

Program Structure Edits. Student programs have program structure issues in

addition to other issues that can be fixed by modifying specific statements. A key

benefit to my approach over previous approaches is that it allows for a set of program

64

structure edits to be performed in addition to statement-level edits. The search al-

gorithm interleaves applying statement-level repairs and program structure repairs to

parts of the program that are presumed to contain the error. Based on the execution

trace information of passed and failed testcases, each statement receives a progress

score similarly to previous fault localization techniques. Statements are then ranked

based on the progress score, and the search algorithm applies repairs to parts of the

code in order of their rank. I apply this approach to multiple assignments from the

Introduction to Computer Science course and report a higher success rate than with

previous approaches, an increase of 20% of the attempted student programs for specific

assignments. Manual analysis of the repaired programs reveals that the repairs do not

introduce stylistic issues such as dead code.

Repair Coverage. Similar to prior approaches, PR-CSF2 does not attempt to

repair deep semantic issues in student programs. Student programs have syntactic

and semantic issues that make them behave differently than expected. My approach

attempts to repair those issues due to misuse of programming elements and structures.

It only performs edits within the same domain or by using elements within the program.

PR-CSF2 does not add external code structures. For that reason, if the student program

is missing part of the solution or has deep design flaws, PR-CSF2 fails to find a repair.

As assignments become more and more complex, student programs are more likely to

have these issues, and thus the success rate of PR-CSF2 drops for these assignments as

further shown in Section 9.3.

Next, I present examples of erroneous code from students which illustrate my ob-

servations and have motivated my research for PR-CSF2 followed by the description

of the program repair approach in Section 8.3, a summary of the implementation in

Section 8.4, and a discussion of possible modifications to PR-CSF2 in Section 8.5.

8.2 Motivating Examples

For some of their programming assignments, students must write code that executes

multiple tasks one after another or in parallel. One example is reading a sequence of

65

numbers inside of a loop while processing each number for a purpose; for instance,

finding the minimum value among the numbers. Soloway and Spohrer [95] report that

students have a hard time grasping loops and data reading separately and, in particular,

when the assignment requires them to perform data reading inside a loop, which is the

case with many assignments. If on top of that combination different rules for processing

the data read are used, then the challenge of the assignment becomes so great that

students produce a plethora of incomplete solutions.

In this section, I present examples of student erroneous code to substantiate my

claims behind the design choices for PR-CSF2. They are simplified code excerpts from

larger student incorrect programs. The task each student is trying to code is to read

a terminating value, and then read values until the terminating value is read again.

At the same time, the code needs to compare the values read and keep track of the

minimum value among the values read in between the terminating values. Figure 8.1

shows a reference solution for this task and Figures 8.2, 8.3, and 8.4 show erroneous

student implementations. Although to a non-programmer these student programs may

look very close to the reference solution, these programs demonstrate important errors

and misconceptions about data reading, statement order inside loops, and program

structure.

1 min = MAX_VALUE;

2 input = read();

3 while (input != terminator)

4 {

5 if (min > input)

6 {

7 min = input;

8 }

9 input = read();

10 }

11 return min;

Figure 8.1: Reference solution for calcu-
lating the minimum value in a stream of
numbers read from the console

1 min = 0;

2 input = read();

3 while (input != terminator)

4 {

5 if (min > input)

6 {

7 min = input;

8 }

9 input = read();

10 }

11 return min;

Figure 8.2: Example of student code for
which the correct fix entails changing the
initial value stored in min at line 1 using
statement-level edits

The student code shown in Figure 8.2 exhibits a bug that can be solved using

66

1 min = MAX_VALUE;

2 input = read();

3 while (input != terminator)

4 {

5 input = read();

6 if (min > input)

7 {

8 min = input;

9 }

10 }

11 return min;

Figure 8.3: Example of student code
for which the correct fix entails moving
statement 5 after the if block

1 min = 0;

2 input = 0;

3 if (input != terminator)

4 {

5 if (min > input)

6 {

7 min = input;

8 }

9 input = read();

10 }while(input != terminator);

11 return min;

Figure 8.4: Example of student code in
which the student seems to have basic
misconceptions about the structure of ifs
vs loops

expression-level editing rules. In this case, the student was able to implement the

loop correctly but did not realize how initializing min to 0 will impact the end result.

Consequently, the code only works for cases when the minimum value happens to be

0 or negative. The fix involves modifying the statement in line 1 which initializes the

variable used to store the minimum value.

Figure 8.3 shows student code in which the proper fix entails moving the statement in

line 5 after the if block and therefore it can not be autogenerated using only expression-

level edits. For this program, the proper repair requires statement-level reordering. This

type of error may be due to misconceptions about control flow, and in particular about

how reading input inside loops works, as pointed out by Soloway and Spohrer [95].

Lastly, Figure 8.4 shows student code with deep misconceptions, including about

the proper structure of loops. Mutating if structures to while structures and while

structures to if structures are common repairs in the datasets used in my research.

For this kind of student error, the fix entails both expression-level editing (statement 1

and 2), as well as program structure editing of the if statement into a while statement

(between statement 3 and the empty loop at line 10). Although the empty while loop in

line 10 does not impact the behavior of the program, it should be deleted and the student

should be informed about it being interpreted as an empty loop by the computer.

67

8.3 Program Repair Approach

The goal of the automatic program repair problem is to identify a set of changes that

can turn a program that is incorrect concerning a given specification into a correct

one. In the case of PR-CSF2, the incorrect program is a student submission and the

specification is the testcase set used to test the code.

In this section, I start by reasoning why autogenerating feedback to programming

assignments fits as a search problem. Then, I explain what constitutes a valid program

repair in Section 8.3.2. In Section 8.3.4, I describe the problem formally and in the

context of the datasets I used in my research, followed by a description of the core

of PR-CSF2. To better understand how the search algorithm at the core of PR-CSF2

works, I start by introducing its integral parts: how programs are represented in PR-

CSF2 in Section 8.3.4, how PR-CSF2 decides where to make modifications inside of a

program at each step and how it decides a modified program is a good candidate for

finding a fix int Section 8.3.5, and what type of modifications PR-CSF2 allows for in

Section 8.3.6. Lastly, in Section 8.3.7, I outline how the search algorithm combines all

these features to find repairs to student programs.

8.3.1 Why Use a Search Algorithm?

Providing Feedback as a Search Problem. Providing feedback to student pro-

grams has many characteristics of a search problem. The search objective is to identify

a set of changes that would change the behavior of the incorrect program to the de-

sired behavior, along with textual explanations that address students’ misconceptions.

Using their domain knowledge about specific programming artifacts coupled with their

teaching expertise about students’ misconceptions, teachers search through the space

of possible modifications to the program and misconceptions linked to these modifica-

tions when providing feedback to student programs. PR-CSF2 mimics this process by

searching through the space of modified programs that were changed based on knowl-

edge about the most common errors in student programs. These error patterns map to

concepts and skills and point to the related misconceptions students may have about

68

the assignment.

Search Method. The space of possible program modifications is infinite, but

immediate feedback is most effective. Teachers and experts do it efficiently. Therefore,

the search procedure must be efficient in finding the correct program as well. An

effective search algorithm needs to avoid areas in the search space that do not contain

a correct program and focus on search paths that are most likely to productively lead

to a correct program. With every iteration, the algorithm needs to decide whether

to exploit previously-evaluated good solutions or to explore new areas of the search

space. PR-CSF2’s search algorithm uses different search methods for simple program

modification versus complex modifications such as program structure modifications. For

simple repairs, it discards all the modifications that negatively impact the program’s

overall testcases score and only further explores modifications that impact it positively.

This hill-climbing search method provides exploitation of previously-evaluated good

solutions. For complex repairs, it keeps all of the modifications and further explores

them in order of their scores. The majority of the modified programs using complex

edits end up with a lower score than their precursor, so exploring different pools of

modified programs based on their modification history adds some randomness to the

search procedure. The resulting pseudo-random search method provides exploration of

the search space. This feature helps the search procedure move outside of the local

optima search areas.

Furthermore, not all the repairs appear equally across assignments. When designing

assignments, teachers select a subset of concepts and skills that are required for the

assignment. Consequently, the search algorithm accounts for the variability across

assignments by allowing the configuration of the program repair units to apply to a

specific assignment. Different program repair units can be enabled or disabled based on

the type of the assignment. By providing a configurable interface for combining simple

repairs with complex repairs, I provide a robust search mechanism that effectively trades

off exploration and exploitation and assignment-specific program repairs.

69

8.3.2 What is a Valid Repair?

PR-CSF2 uses testcases to establish correctness, a common approach used by software

engineers. I codify desired behavior by running the program on a given input, define

the expected output on that input, and determine correctness based on whether the

two match.

Correctness. Formally, a testcase t is a pair (in, out) where in is the input to the

program and out is the expected output. A program P satisfies a testcase t if for its

input in, the output of P matches the expected output out corresponding to the in of

the testcase t. Furthermore, P satisfies the entire testcase set T and is deemed correct

if it satisfies all the testcases t of the set T.

Thus, in addition to the student program, PR-CSF2 also takes as input a set of

testcases T which can be hand-written or automatically generated. In my research, all

of the testcase sets were compiled manually. A key desirable feature of the testcase set is

to closely describe the desired behavior of the program as I emphasize in Section 4.2. I

call the failing testcase subset as the negative testcases, and it encodes the defects under

repair. Conversely, I call the passing testcase subset as the positive testcases, and it

encodes functional and non-functional program requirements. Both types of testcases

are typically required to guide the search to an adequate repair, except for a few cases

which I discuss next.

8.3.3 Problem Statement

Formally, the problem of repairing student programs is as follows: given a student

program P and a testcase set T such that P does not satisfy T, let M(P) be the set

of all programs that can be obtained by modifying the program using a specific set of

rules which I describe in Section 8.3.4. The goal is to synthesize program S, such that

S satisfies T and S is in M(P).

However, not all student program repairs can be captured by the test score as

pointed out earlier. Therefore, PR-CSF2 can be configured for program repair mode

70

or feedback mode. The only difference between the two is that in feedback mode, PR-

CSF2 tries to further simplify students’ programs beyond functional correctness. For

example, even if a student’s program passes all the testcases, their program may still

have stylistic issues such as using a loop to check a condition once and then breaking out

of the loop at the end of the loop. While this does not impact the functional correctness

of the program, it is a bad coding practice that may be connected to misconceptions

and can negatively impact students’ programming in the future.

In program repair mode at least one negative testcase is needed. Moreover, for the

majority of the types of program repairs, except for input/output (IO) repairs, at least

one, and typically several positive testcases are needed. For the datasets I use in my

research, students were required to read input, output results, and signal bad input by

using an IO module provided to them by the teacher. Especially for earlier assignments,

many students had issues understanding how to properly use the IO module and for

that reason, their code was not able to pass any testcases. To address those cases, the

search algorithm first does a search phase focused on specifically repairing IO issues in

the student’s program. This search phase is guided by the number and type of expected

inputs, expected outputs, and expected bad input signals. At the end of this search

phase, if the student program passes at least one testcase, the search algorithm proceeds

to search for the other types of repairs, otherwise, it terminates.

8.3.4 Program Representation

Program Abstraction. Any programming language has an explicit context-free gram-

mar (CFG) that can be used to parse source code into an AST (abstract syntax tree).

The AST represents the abstract syntactic structure of source code. An AST is a tree

where each non-leaf node corresponds to a non-terminal in the CFG specifying struc-

tural information, for example, a while statement or an if statement. Each leaf node

corresponds to a terminal, for example, variable names and operators, in the CFG en-

coding of the program’s text. Figure 8.5 shows the AST corresponding to the reference

code shown in Figure 8.1.

In PR-CSF2, program edits are performed on the AST of the program as further

71

Figure 8.5: AST corresponding to the reference solution code shown in Figure 8.1

described in Section 8.3.6. Therefore, each program is represented as a tuple of:

• An AST including all of the statements and expressions in the program.

• A test score representing the weighted sum of the passed testcases.

• A progress score representing the sum of the progress scores for each statement.

The progress score for each statement is calculated using the formula from the

Tarantula fault localization system [62].

The test score is used to check if a candidate fix is correct as described in Section 8.3.2.

Both scores are used in deciding what is the best location to make modifications in

a program next, and in determining if a partially modified program is on the path of

finding the correct program as explained in the next section.

8.3.5 Fault localization and Fitness Function

The search space of modified versions of a program is very large. An effective search

algorithm needs to avoid areas in the search space that do not contain a correct program

and focus on search paths that are most likely to productively lead to a correct program.

PR-CSF2’s search algorithm prunes the search space by leveraging fault localization

techniques and a fitness function to decide if a modified program is on the path towards

a correct program.

Fault Localization. PR-CSF2’s search algorithm prioritizes search areas based

on information from the faulty and successful executions of the student program. For

72

each execution, it marks the statements on its path as successful or faulty based on

the outcome of the execution. Then, based on the successful and faulty score of each

statement, it calculates the progress score using the formula used by the Tarantula

fault localization system [62]. Similar to previous techniques [71], it uses the progress

score as an indicator for where the defect might be in the student program. Locations

with a lower progress score are considered most likely to be responsible for the defect.

Therefore, expressions and statements are picked for modification in order of their

progress score. The expressions and statements with lower progress scores are modified

first. However, prioritization alone does not reduce the amount of candidate modified

programs to search through. The search algorithm needs a way to decide which search

paths to ignore in the future, a process I describe next.

Fitness Function. PR-CSF2’s search algorithm focuses on paths that are more

likely to lead to a correct program by using a multi-tier fitness function. The fitness

function combines the type of the modification, the test score, and overall progress score

to decide whether to keep a modified program for further modifications. A modified

program is considered fit for further modifications if its test score is higher than the

score of the initial student program. Additionally, based on the type of modification,

the search algorithm decides whether to keep other modified programs. Modifications

that change the program structure are going to results in lower test scores in many cases.

The search algorithm keeps all of the programs modified using program structure edits.

Subsequent modified programs’ test scores are compared to the test score of the previous

program on which the last modification was performed. Lastly, some modifications may

not be reflected in the test score in the partially modified programs, but they may reflect

later on the search paths after other edits have been performed to the program. For

these cases, the search algorithm uses the overall progress score of the program to decide

whether to keep the modified program.

Next, I describe how PR-CSF2 generates modifications to student programs and

how it searches for the correct program in the space of modified versions of the start

program.

73

8.3.6 Generating Modifications to Student Programs

PR-CSF2 allows for two types of modifications, which I refer to as statement-level

modifications and program structure modification. Statement-level modifica-

tions are similar to the rule-based edits and syntax transformations that have been

explored by previous works [37, 21]. More specifically, the statement level edits that

PR-CSF2 explores are:

• IO read, output and bad input calls (inputMissing, inputBadType, out-

putMissing, outputBadType, addBadInput) can be replaced with method

calls of the same type, or added to the program.

• Integer and Double Variable Types can be interchanged. This change is

needed to accommodate the input and output type changes. For example, if the

student program reads an integer value and stores it into an integer variable,

changing it to read a double value and to store it in the same variable entails

changing the variable type to a double.

• Math.abs (absolute value) and Math.ceil (rounding) can be applied to

variables, literals, and expressions. I selected these methods because of their

expressive power.Math.abs transforms an integer into a natural number, and

Math.ceil transforms a decimal into a whole number.

• Algebraic, Logical and Comparison Operands (ops) can be replaced with

operands of the same type. Additionally, an expression with a division operand

can be modified to a double division by adding the double cast to one of its sides.

• Variables (vars) and Literals (literals) can be replaced with other variable,

literals or any expressions in the same domain from students’ program

• Expressions (exprs) can be replaced with any other expression in the same

domain from students’ program or with expressions auto-generated using expres-

sions from student’s program and operands in the same domain.

74

Figure 8.6: AST transformation corresponding to the if else if program structure edit.

Figure 8.7: AST transformation corresponding to the dead code program structure edit.

Statement-level edits ops, vars, literals, and exprs can be applied to the right-hand

side of assignment statements and conditional expressions. When edits are applied

to the right-hand side of the assignment statements, the correction is labeled as cor-

rect formula. When edits are applied to a conditional operand inside a conditional

expression, the correction is labeled as correct boundary. For all the other changes

to the literals, variables, and logical operands of a conditional expression, the correction

is labeled as correct condition.

Figure 8.8: AST transformation corresponding to the while to if and if to while pro-
gram structure edit.

75

Figure 8.9: AST transformation corresponding to the do while program structure edit.

Figure 8.10: AST transformation corresponding to the if else split program structure
edit.

Figure 8.11: AST transformation corresponding to the remove branching if program
structure edit.

Figure 8.12: AST transformation corresponding to the remove branching while program
structure edit.

76

Allowing for additional program structure edits is what differentiate PR-CSF2 from

previous program repair solutions. In PR-CSF2 any statement can be deleted or re-

ordered within the block that they are in. Delete iteratively picks a combination of

statements inside a block and removes them until it exhausts all combinations. Re-

order moves all the statements inside of a block by repetitively permuting their indexes

within the block. Additionally, the structure of the program can be further modified

using the following program structure edits:

• Successive if statements can be combined into an if-else-if structure

(if else if). This edit is an assignment-specific edit which points to misconcep-

tions about the control flow of the program. For this edit, sub-trees corresponding

to if branches to the right of an if branch node are moved to its else body in the

AST as shown in Figure 8.6.

• Dead code can be moved to other blocks in the program (dead code).

In some situations, parts of the code are placed in the program in such a way

that it never gets executed. Moving these parts outside of their parent block may

allow them to be executed and bring the program closer to being correct. This

edit takes the structure sub-tree containing the dead code (if or loop structure)

and moves it in all possible locations in the body of other structures in the AST.

An example of an AST transformation corresponding to this type of program edit

is shown in Figure 8.7.

• Loops can be transformed to ifs and vice versa (while to if and if to whi

-le). Often students use while loops and if statements interchangeably regardless

of the program descriptions which points to misconceptions about translating

word problems into code. In the AST, if and while structures are represented

similarly and so performing these edits entails only changing the type of the

branching node and the type of the body node as shown in Figure 8.8.

• Do-while statements can be transformed to while loops (do to while).

Some student programs use a do-while when a while loop structure is more appro-

priate which points to misconceptions regarding when the condition of the loop

77

gets checked. In the AST, this edit involves moving the condition sub-tree before

the loop’s body sub-tree as shown in Figure 8.9.

• If-else statements can be split into two ifs (if else split). This issue is

related to other control flow issues; the repair breaks the dependency between the

then and the else blocks. For this edit, a new sub-tree is added to the right of

the if branch node representing an if branch that has as condition the negated

condition of the former if branch and the else body sub-tree as its then body

sub-tree as shown in Figure 8.10.

• If statement conditions can be removed (remove branching if). This

issue is similar to the dead code issue. In some cases, additional unnecessary

checks, for example, checking if a value is positive, may hinder the functionality of

the code and point to misconceptions about the assignment. This edit necessitates

the removal of the branch parent node along with the condition sub-tree as shown

in Figure 8.11.

• Loop conditions with break statements can be removed (remove branch

-ing while). Many student programs use a loop, often with a true condition,

even when reading only one value from the IO. They also use a break at the end

of the loop to break out of the loop after one iteration. I believe this issue points

to misconceptions about reading input or about the assignment description. The

AST transformation corresponding to this program edit is shown in Figure 8.12.

Allowing for these kinds of edits can dramatically change the semantics of a program

and cause an explosion of the search space. Moreover, some of the edits are complements

of each other, and allowing for two complement repairs to be applied on the same

statement can cause a statement to be changed back and forth. To prevent it from

happening, PR-CSF2 does not apply a new edit to a statement or expression that was

previously edited as I further explain in the next section.

8.3.7 Search Algorithm for Fixing Student Programs

78

Algorithm 1: Student Program Repair Search Algorithm

Require: P , student program
Require: T , testcases set that describes the behavior of the expected program
Ensure: F , partially or completely repaired program
1: F = P
2: add P to C(P)
3: repeat
4: stmts = getNextMostSuspectStmts(P)
5: candidates = allCandWithStruct(C(P)) ∪maxCandWithStmt(C(P))
6: for candidate ∈ candidates do
7: for edit ∈ StructEdits = (delete, reorder, if else if, etc) do
8: apply edit to stmts in candidate
9: if correct(candidate′) then

10: return F = candidate′

11: end if
12: if fit(candidate′) then
13: add candidate′ to C(P)
14: end if
15: end for
16: end for
17: for candidate ∈ candidates do
18: for edit ∈ StmtEdits = (ops, vars, literals, exprs) do
19: for stmt ∈ stmts do
20: candidate′ apply edit to stmt in candidate
21: if correct(candidate′) then
22: return F = candidate′

23: end if
24: if fit(candidate′) then
25: add candidate′ to C(P)
26: end if
27: end for
28: end for
29: end for
30: F = candidateWithMaxScore(C(P))
31: until candidates is empty or stmts is empty
32: return F

79

The core algorithm for finding corrections to student programs is described in Fig-

ure 1. It uses a priority queue C(P) with the candidate fixes ordered based on their

type and their test score. The priority queue C(P) is seeded with the student program

P (Line 2), and then the algorithm iteratively applies edits to P or its previously gen-

erated variants (candidate fixes) until it finds a correct program or there are no more

candidate programs or no more suspect statements to edit (Lines 2 to 32).

At every iteration step, the search algorithm first picks the next most suspect lo-

cations in the program where to perform edits (Line 4). Then it selects the previously

generated variants that are the best candidates for identifying the corrections (Line 5).

From the set of programs with statement edits, only those with the maximum score

are allowed to be further explored as a way to prune the search space. All programs

with structure edits are allowed to be further explored because changing the program’s

structure generally does not immediately impact the test score positively, except for

delete and reorder edits.

Throughout the search, the algorithm checks programs with structure edits (Lines

6 to 17) interleaved with programs with statement edits (Lines 18 to 31). For every

new candidate program obtained by applying a specific edit rule, the algorithm first

checks if it’s correct by running the program with all the testcases (Lines 9 and 22). If

the candidate is correct the algorithm returns it and terminates. If the candidate is not

correct, the algorithm then checks if the program is fit for further exploration using the

fitness function described in Section 8.3.5 (Lines 13 and 26), and saves it if it’s deemed

fit.

8.4 Implementation

PR-CSF2 was implemented in Java. It uses the JavaParser library [96] to generate the

Abstract Syntax Tree (AST) of the program and to perform modifications to programs.

Each program repair edit is implemented using the “visitor pattern” in JavaParser

library. The visitor pattern is a design pattern commonly used in the parser of a

compiler. It provides a versatile way of traversing the AST and “visiting” each node in

80

the AST. When visiting a node, the code first decides if the node is a target node for

the program repair and then it performs the necessary modifications locally.

Lastly, PR-CSF2 uses the JUnit framework [97] for testing each program. JUnit

provides a RunListener class to monitor JUnit tests during runtime. PR-CSF2 extends

this class to capture information about the performance of the program during testing,

such as passed and failed testcases. This information is used to guide the search for the

correct program.

8.5 Discussion: Modifications to PR-CSF2

Additional Repair Patterns. Although PR-CSF2 can identify additional program

repairs and provide feedback about the structuring of student programs, the overall set

of repairs is not complete for all assignments. More research on different assignments

and datatsets of student programs is needed to compile all the program repairs patterns

and how to identify them in student programs.

Partial Correctness. After every search phase, the search algorithm saves the

program with the highest score. For student programs that are partial solutions or

have deep design flaws, PR-CSF2 may not be able to find a program that passes all of

the testcases. However, it may be able to find a repair to the partial solution and give

students repair feedback on it along with information about missing tasks. Additional

research is needed to assess if the partial feedback generated this way is accurate.

Search Technique. Hill-climbing procedures can get stuck in local optima and

PR-CSF2’s search procedure is hill climbing in the statement-level edits phases. As a

result, this search procedure can not capture program repairs that work together to

improve the modified program’s test score, when these repairs are not able to improve

the test score on their own. For example, if a program checks if the value stored in a

variable is in different ranges, changing the range boundary between two ranges involves

changing the comparison for both ranges on each side of the boundary. Changing only

one comparison at a time may not reflect a positive change in the test score for the

modified program and therefore be discarded. Adding some randomness to the search

81

procedure in these phases can improve the success rate of the search procedure.

Fitness Function. Related to the hill-climbing issue is the issue that using test

scores as part of the fitness function is too coarse to capture repairs that do not imme-

diately improve the test score. For that reason, PR-CSF2 uses the sum of the progress

score of each statement as a fitness function. However, it only works for modified

programs with the same program structure and as long as the program edits do not

negatively impact the test score. For the example in the previous paragraph, this means

that the repairs will only be done in a specific order. Suppose the boundary needs to be

moved slightly to the left by one. This repair may be achieved by changing the compar-

ison operands on both sides of the boundary. The search procedure will only find the

correct repair if it changes the comparison on the right in the first step which will have

an overlapping effect between the two ranges, and then change the comparison on the

left which will get rid of the range overlap and will correctly accomplish the boundary

change. However, if there is interdependence between the code blocks executed for each

range, then the overlapping effect may still negatively impact the test score and in turn

the overall progress score of the program. In this case, the search procedure will still fail

to find the fix. Using more continuous fitness functions such as the sigmoid function in

combination with a random search may improve the success rate of the search method.

Implementation. Lastly, PR-CSF2’s search algorithm is sequential, but it can be

easily configured to run in parallel. Different threads can search through various paths

in the search space in parallel and share information at the end of each phase, which

may reduce the time to find a correct program and increase the success rate of the

program repair. I plan to explore these research directions in my future work.

82

Chapter 9

How does PR-CSF2 Fare Compared to Equivalent

Program Repair Techniques?

In this chapter, I show how allowing for program structure repairs improves the success

rate of previous program repair approaches that only allowed for statement-level repairs

or rule-based repairs [37, 38]. Then, I show the distribution of repairs for a subset of

the assignments and explain what misconceptions the feedback should target for each

repair. Lastly, I provide examples for which using program structure repairs lead to

stylistically more desirable repairs.

I describe the benchmark set in the next section, the methodology in Section 9.2,

and I report on findings of the study in Section 9.3.

9.1 Benchmarks

The benchmarks set used for this study is comprised of problems taken from the Intro-

duction to Computer Science course (CS111) at Rutgers University offered over seven

semesters between Spring 2016 and Spring 2019 inclusively. It includes all the prob-

lems from the first six weeks of the course. Below, I provide a brief description of each

problem:

• Sum - read two integers from the Input-Output (IO) module provided by the

teacher and output their sum to the IO module.

• Multiply - read two integers from the IO module and output their product to the

IO module.

• BuyingApples and BuyingTomatoes - read two doubles from the IO module repre-

senting the cost per pound and weight in pounds and return the total cost to the

83

IO module. If either of the doubles is <= 0, signal bad input to the IO module.

• Gas - read two doubles from the IO module representing the cost per gallon, and

the quantity in gallons, as well as a boolean value signaling if the payment is made

with a credit card or not, and return the total cost to the IO module. Credit card

payments incur a 10% surcharge of the total cost. If either of the doubles is <= 0,

signal bad input to the IO module.

• TrainTicket - read two boolean values from the IO module to signal if the buyer

is a senior and if the ticket purchase is on board the train. Return the total cost

of the ticket after applying the appropriate discounts and surcharge - the discount

for being a senior and the surcharge for buying on board the train, and return it

to the IO module.

• Party - read two doubles from the IO module representing the cost of a pizza and

the cost of a case of soda, and five integers representing the number of people,

slices per person, sodas per person, number of slices in a pizza and number of soda

cans in a case. Return the total cost for the pizza and soda to the IO module.

• PayFee and PayFriend - read a double from the IO module representing a payment

and return the fee associated with the payment to the IO module. The fee needs

to be calculated using a multi-tier fee system provided to students.

• LuckySevens - read two integers from the IO module representing a range, and

for all the numbers in the range count the number of times digit 7 appears in each

number, and return the total count to the IO module.

• TwoSmallest - read a sequence of doubles from the IO module which starts and

ends with a terminating value and output the two smallest values to the IO

module. If a terminating value is read before two valid values, the code needs to

signal bad input to the IO module and continue reading.

84

9.2 Methodology

For this study, I ran PR-CSF2 on benchmarks containing code submitted by students

for multiple programming assignments in two modes:

• statement-level repair mode (SRM) in which I disabled all the program

structure repairs and only allowed for statement-level repairs described in Sec-

tion 8.3.6.

• program structure repair mode (PRM) in which I allowed for all the repairs

that applied to a specific assignment.

For each student program, I ran the search algorithm twice, once in each of the

modes. Experiments were performed on a 3.4GHz Intel® Core™ i7-6700 CPU with 8

cores and 16GB RAM. For each experiment, I recorded the number of lines of code

(LOC) of the student program, the total number of searches (NOS) the algorithm

performed, the total runtime (RT) and the subset of repairs used to correct the

program. After running all of the experiments for each assignment, I counted the

number of submissions successfully repaired, and averaged the LOC, NOS, and RT for

each mode. Then, for each type of repair, I counted how many times the repair was

used to repair a program for one semester, for a subset of the assignments. Additionally,

I manually analyzed a subset of the repaired programs (25 for each assignment), with

a focus on those programs that were repaired differently with and without program

structure repairs enabled. I present and discuss these statistics and findings of the

manual analysis in the next section.

9.3 Results

In this section, I compare the success rate and performance of PR-CSF2 configured in

the two modes discussed earlier I present the distribution of the repairs for one semester

for a subset of the assignments and conclude with observations about the quality of the

program repairs between the two modes. For each assignment, I enabled only the

program repairs specific to the code structure of the solution. For example, PayFriend

85

requires the use of multiple independent if structures. For this assignment, I enabled

the if else if program repair which transforms sequential if statements into an if-else-if

structure. Reorders and deletes were enabled for all assignments.

9.3.1 Success Rates and Runtimes Statistics

Total Attempted PRM SRM

Count % Count %

Sum 4541 1302 1245 95.6% 1226 94.2%

Multiply 4030 993 914 92.0% 705 71.0%

BuyingApples 1556 319 299 93.7% 253 79.3%

BuyingTomatoes 1141 237 213 89.9% 195 82.3%

Gas 1662 971 871 89.7% 827 85.2%

TrainTicket 869 506 469 92.7% 439 86.8%

Party 7516 3429 2699 78.7% 2576 75.1%

PayFee 2655 1550 1031 66.5% 975 62.9%

PayFriend 5484 3421 2444 71.4% 2117 61.9%

LuckySevens 6699 2576 1234 47.9% 1219 47.3%

TwoSmallest 7565 4057 955 23.5% 644 15.9%

Table 9.1: Table showing the total number of student programs, the number of programs
attempted to be repaired (must compile), and the number of programs repaired and
the percentage it represents from the total attempted for each mode

Success Rate. Table 9.1 shows the total number of student submissions, the num-

ber of student submissions attempted to be repaired (must at least compile), and the

count and percentages of student programs repaired in each mode for each assignment.

For some assignments, we see a significant increase when the program structure re-

pairs are enabled, in particular assignments with a complex program structure such

as PayFriend. PayFee was designed as an alternative to PayFriend to be offered in

different semesters. However, we do not see an equivalent increase with PayFee as with

PayFriend. Based on my manual investigation, I discovered that many of the PayFee

programs contain the exact or similar code as PayFriend, which points to plagiarism

across semesters. Correcting these programs would require deep problem-specific re-

pairs which are not covered by PR-CSF2’s technique.

The success rate drops for complex assignments such as LuckySevens and TwoS-

mallest that require multiple non-trivial tasks to be executed one after another or

86

in parallel. For example, TwoSmallest requires inspecting the numbers in a stream

of inputs, extract those that are not equal to the terminating value and find the two

smallest values among them. Many student programs do not attempt to implement all

the tasks or have deep design flaws. PR-CSF2 does not add functionality to student

programs and does not target deep design flaws. Thus, it can not find a repair for many

of the student programs submitted for these assignments.

Assignment Average LOC Average NOS RT (secs)

PRM SRM PRM SRM

Sum 11.6 7.7 7.4 1.9 1.9

Multiply 12.4 14.3 13.1 3.1 2.7

BuyingApples 16.6 13.6 13.0 3.0 2.9

BuyingTomatoes 16.2 8.0 8.1 1.9 1.9

Gas 23.3 31.1 29.7 7.2 6.8

TrainTicket 22.5 28.7 25.2 6.6 5.7

Party 32.1 487.9 480.3 85.6 86.1

PayFee 41.2 318.6 297.0 56.9 52.4

PayFriend 42.5 522.6 443.2 94.7 88.7

LuckySevens 18.0 17.3 17.5 4.0 3.9

TwoSmallest 46.1 533.0 352.2 96.7 72.3

Table 9.2: Table showing the average lines of code (LOC), the average number of
searches (NOS) and the average runtime (RT) in seconds for both configuration for
each assignment in the benchmark.

Runtime Stats. Table 9.2 shows the average number of lines of code, the average

number of trials, and the average run time for each of the modes. As expected, there is

an increase in the average number of trials and the average runtime from SRM mode

to PRM mode because in PRM mode more edits are allowed. Additionally, for most

assignments, the average number of trials increases with the number of lines of code.

However, these trends are not consistent because the search repair algorithm can take

different paths based on the mode configuration for the same program. Moreover, in

PRM mode the search space increases with the structural complexity of the program

which does not necessarily correlate to the number of lines of code.

87

9.3.2 Repairs Distribution Across Different Assignments

Tables 9.3, 9.4, 9.5, 9.6 and 9.7 show the distribution of different repairs described

in Section 8.3.6 for a subset of the assignments. Note that multiple repairs can be

used to correct one student program, and for that reason, their cumulative percentage

for each assignment is greater than 100% of the total repair programs. For many

assignments, a large percentage of the repairs are regarding reading, outputting results,

and signaling bad input to the IO module. Moreover, a large percentage of the repairs

across assignments are regarding correcting boundaries that are performed by modifying

the conditional expression inside loops and if statements. An example of this repair is

replacing a < operand to a <= operand. Lastly, these observations explain why the

success rates are not significantly greater when program structure repairs are enabled

since these repairs are counted as statement-level repairs.

Repair Programs Count %

inputMissing 9 1.9%

inputBadType 211 44.9%

outputMissing 404 86.0%

outputBadType 58 12.3%

remove branching if 4 0.9%

remove branching while 2 0.4%

Table 9.3: Table showing the distribution of repairs for one semester for Sum assign-
ment. A total of 470 student programs were repaired by PR-CSF2. Note that multiple
repairs can be applied to the same student program.

Repair Programs Count %

inputMissing 7 2.3%

inputBadType 60 20.1%

outputMissing 152 50.8%

outputBadType 43 14.4%

addBadInput 19 6.4%

correct formula 26 8.7%

correct boundary 35 11.7%

while to if 46 15.4%

Table 9.4: Table showing the distribution of repairs for one semester for BuyingApples
assignment. A total of 299 student programs were repaired by PR-CSF2. Note that
multiple repairs can be applied to the same student program.

For Sum, the two program structure repairs remove branch if and remove branch while

88

shown in Table 9.3 are needed in cases where the program does additional checks of the

input, for example, it checks if the input is greater than zero. These repairs point to

misconceptions about the scope of the assignment and potentially about data types.

For BuyingApples, the only program structure repair in Table 9.4 is while to if which

transforms a while loop into an if structure. For those cases, the buggy program reads

input until it reads a non-negative value, which is not the expected behavior. The

program is expected to read only one value, signal bad input if the value is negative, and

terminate. Similarly to Sum, this repair points to misconceptions about the problem

specification.

Repair Programs Count %

inputMissing 2 0.7%

inputBadType 161 58.8%

outputMissing 22 8.0%

outputBadType 52 19.0%

double vs int div 112 40.9%

rounding 86 31.4%

correct condition 3 1.1%

correct formula 9 3.3%

remove stmt while 5 1.8%

Table 9.5: Table showing the distribution of repairs for one semester for Party assign-
ment. A total of 274 student programs were repaired by PR-CSF2. Note that multiple
repairs can be applied to the same student program.

For Party, there is a variety of repairs used to correct student programs although the

majority of them are statement-level repairs as shown in Table 9.5. Besides IO repairs,

many of the repairs are computational and centered around rounding the result of

a division between integer values. The program structure repair remove stmt while,

removes while loops which perform additional checks that change the behavior of the

program. They point to misconceptions about the problem specification.

For PayFriend, the most common program structure repair is if else if shown in

Table 9.6. It transforms consecutive if statements into an if-else-if structure. This

modification points to misconceptions about control flow, lack of proper testing or

misconceptions about the problem specification. Corrective information provided as

feedback to students should also address all these misconceptions.

89

Repair Programs Count %

inputMissing 15 6.1%

inputBadType 81 32.8%

outputMissing 71 28.7%

outputBadType 133 53.8%

if else if 52 21.1%

change boundary 144 58.3%

correct condition 56 22.7%

correct formula 132 53.4%

remove stmt if 6 2.4%

reorder dead code 7 2.8%

remove branching while 33 13.4%

Table 9.6: Table showing the distribution of repairs for one semester for PayFriend
assignment. A total of 247 student programs were repaired by PR-CSF2. Note that
multiple repairs can be applied to the same student program.

Repair Programs Count %

outputMissing 7 5.8%

correct condition 68 56.7%

correct formula 4 3.3%

remove stmt if 5 4.2%

reorder read 6 5.0%

if to while 17 14.2%

do to while 14 11.7%

Table 9.7: Table showing the distribution of repairs for one semester for TwoSmallest
assignment. A total of 120 student programs were repaired by PR-CSF2. Note that
multiple repairs can be applied to the same student program.

For TwoSmallest, the most common program structure repairs are if to while which

transforms an if into a while loop and do to while which transforms a do-while loop into

a while loop, as shown in Table 9.7. These repairs point to misconceptions about loops,

in particular reading and control flow in loops, or misconceptions about the assignment

specification. Therefore, student feedback should contain textual information about

both.

9.3.3 Repairs Quality Comparison

Multiple program implementations can be functionally correct, but stylistically unde-

sirable as previously observed [21, 17]. The search algorithm of PR-CSF2 interleaves

90

program structure modifications with statement-level modifications as described in Sec-

tion 8.3.7. Therefore, when program structure repairs are enabled, the search algorithm

may take a different path than when they are disabled and consequently arrive at a dif-

ferent program implementation. For this reason, I have manually analyzed 25 student

programs from each assignment in the subset (a total of 125 student programs)

and compared the repaired programs generated when program structure repairs were

enabled and disabled.

The main difference between the repaired programs using the two different configu-

rations is that the programs repaired in SRM configuration are sometimes stylistically

undesirable compared to their counterparts repaired in PRM configuration. For exam-

ple, with the SRM configuration, a statement or a structure that needs to be removed

is changed so that it does not impact the program behavior negatively. For assign

statements this could mean assigning a variable to itself. For if statements or loops,

it could mean changing the condition to false. Similarly, if only the condition of an if

statement or a loop needs to be removed, the repair with the SRM configuration would

relax it to the point where it would not make sense, for example by changing it to true.

Both kinds of repairs are stylistically undesirable and in the least can confuse students

or even hinder their learning. Out of the 125 student programs I manually analyzed,

I identified 22 programs (17.6%) repaired using the SRM configuration that exhibit

this kind of stylistic undesirable features.

To summarize, allowing for program structure edits expands the search space for

finding corrections to student programs. Consequently, in some cases, the search pro-

cedure has to search through more program variants and spend more time looking for

the correct program. However, the search algorithm can find a correction to more stu-

dent programs and the repaired programs are stylistically more appropriate than their

counterparts repaired with statement edits only.

91

Chapter 10

Conclusions

10.1 Summary

In this dissertation, I present a mixed-approach methodology that bridges the gap

between autograding and the knowledge assessment of programming assignments to

provide meaningful feedback to students.

The first approach asks the instructor to systematically analyze programming assign-

ments with respect to knowledge maps to ensure course cohesion between the specific

challenges posed to students by the programming assignments and the material taught

in class. The methodology also outlines an approach for finding common errors in a

set of submissions for an assignment and generating an error classifier and hints that

can be used by an autograder to give feedback on future submissions. This process can

also give instructors insight into how to adjust class material to address knowledge defi-

ciencies. I have applied this methodology to two assignments and found some evidence

suggesting that the hints provide useful feedback for many students to make progress

after submitting incorrect programs.

The second approach offers a set of program repairs that map to misconceptions

students may have about the structuring of their code and other programming concepts.

Instructors can select the program repairs to apply to students’ buggy programs based

on the concepts and skills that apply to the assignment. This feature guides the repair

search algorithm towards more assignment-specific repairs. Additionally, they can write

feedback for each repair aimed at the misconceptions they point to. Thus, students

will receive both corrective feedback on how to correct their code as well as formative

feedback related to the misconceptions. Moreover, teachers will gain an understanding

of the misconceptions students may have about the material taught in the course. I have

92

applied this methodology to multiple assignments from a CS1 course and discovered

that this methodology is more successful at repairing student programs than previous

approaches. Through manual investigation of the programs, I also discovered situations

in which the repairs using my approach were more stylistically appropriate than with

previous approaches.

10.2 Impact and Future Work

The latest trend of high enrollments in CS programs and courses has generated a

plethora of solutions for providing automated feedback to student programs which I

summarize in Chapter 2. These solutions explore the trade-off between requirements

and the quality of the feedback provided. This dissertation presents a solution that is

similar to previous approaches. However, one important benefit of my approach is that

it explicitly tries to bridge the teaching of abstract concepts with hands-on programming

practice. Connecting concepts and skills with practice has been recognized for its

positive impact in deepening students’ understanding of the programming concepts [98].

Therefore, I believe this is a good research direction in this context, primarily because

it resembles the process instructors follow when providing feedback manually. However,

some challenges arise from my research which I discuss next, along with suggestions for

future work.

Firstly, there is limited support in CS education for connecting concepts and skills

with practice. By using my framework, teachers have a systematic way to fill in the gap

between lecture material and hands-on practice. However, the case studies I present in

my dissertation are intended as proof of concept and as a guide and are not meant to

provide a comprehensive solution. The assignments used in my analysis are relatively

simple assignments used in an introductory computer science course. Further research

is required to understand the mistakes students make in their programs, how to identify

them and what feedback works best in addressing the misconceptions associated with

them for assignments from different CS courses and levels.

Secondly, although the results of my analysis and evaluation of the feedback and

93

its impact on students and teachers suggest that it is useful for learning and teaching,

the evaluation has its limitations. Focused user studies along with using metrics that

measure the actual learning are required to further understand the impact the feedback

provided by my proposed mixed approach has on students’ learning. In parallel, a

related future work direction aims to understand how teachers use the framework and

the specific impact it has on their teaching.

94

References

[1] J. Haskel and S. Westlake, Capitalism without capital. Princeton University Press,
2017.

[2] National Center for Women & Information Technology, “Computing Education
and Future Jobs: A Look at National, State, and Congressional District Data.”
https://www.ncwit.org/edjobsmap.

[3] N. A. of Sciences Engineering, Medicine, et al., Assessing and responding to the
growth of computer science undergraduate enrollments. National Academies Press,
2018.

[4] C. P. for Computing and T. S. Development, “Low student engagement, manual
grading pose key challenges for cs instructors,” 2019.

[5] C. E. Kulkarni, M. S. Bernstein, and S. R. Klemmer, “Peerstudio: rapid peer
feedback emphasizes revision and improves performance,” in Proceedings of the
second (2015) ACM conference on learning@ scale, pp. 75–84, 2015.

[6] H. Keuning, J. Jeuring, and B. Heeren, “Towards a Systematic Review of Au-
tomated Feedback Generation for Programming Exercises,” in Proceedings of the
2016 Conference on Innovation and Technology in Computer Science Education,
2016.

[7] B. S. Bloom, “The 2 sigma problem: The search for methods of group instruction
as effective as one-to-one tutoring,” Educational researcher, vol. 13, no. 6, pp. 4–16,
1984.

[8] S. H. Edwards and M. A. Perez-Quinones, “Web-CAT: Automatically Grading
Programming Assignments,” in ACM SIGCSE Bulletin, vol. 40, 2008.

[9] C. Douce, D. Livingstone, and J. Orwell, “Automatic test-based assessment of pro-
gramming: A review,” Journal on Educational Resources in Computing (JERIC),
vol. 5, no. 3, pp. 4–es, 2005.

[10] D. Milojicic, “Autograding in the Cloud: Interview with David O’Hallaron,” IEEE
Internet Computing, 2011.

[11] K. Rivers, E. Harpstead, and K. Koedinger, “Learning curve analysis for program-
ming: Which concepts do students struggle with?,” in Proceedings of the 2016
ACM Conference on International Computing Education Research, pp. 143–151,
ACM, 2016.

[12] K. Rivers and K. R. Koedinger, “Data-Driven Hint Generation in Vast Solution
Spaces: A Self-Improving Python Programming Tutor,” International Journal of
Artificial Intelligence in Education, vol. 27, 2017.

95

[13] J. Stamper, T. Barnes, L. Lehmann, and M. J. Croy, “The hint factory: Automatic
generation of contextualized help for existing computer aided instruction,” 2008.

[14] B. Paaßen, B. Hammer, T. W. Price, T. Barnes, S. Gross, and N. Pinkwart,
“The continuous hint factory - providing hints in vast and sparsely populated edit
distance spaces,” CoRR, vol. abs/1708.06564, 2017.

[15] A. Gerdes, B. Heeren, J. Jeuring, and L. T. van Binsbergen, “Ask-elle: an adapt-
able programming tutor for haskell giving automated feedback,” International
Journal of Artificial Intelligence in Education, vol. 27, no. 1, pp. 65–100, 2017.

[16] R. Zhi, S. Marwan, Y. Dong, N. Lytle, T. W. Price, and T. Barnes, “Toward
data-driven example feedback for novice programming,” in EDM, 2019.

[17] G. Singh, S. Srikant, and V. Aggarwal, “Question Independent Grading Using
Machine Learning: The Case of Computer Program Grading,” in Proceedings of
the 2016 SIGKDD International Conference on Knowledge Discovery and Data
Mining, 2016.

[18] K. Wang, R. Singh, and Z. Su, “Search, align, and repair: Data-driven feedback
generation for introductory programming exercises,” in Proceedings of the 39th
ACM SIGPLAN Conference on Programming Language Design and Implementa-
tion, PLDI 2018, (New York, NY, USA), pp. 481–495, ACM, 2018.

[19] L. D’Antoni, R. Samanta, and R. Singh, “Qlose: Program repair with quantitative
objectives,” in International Conference on Computer Aided Verification, pp. 383–
401, Springer, 2016.

[20] C. Piech, J. Huang, A. Nguyen, M. Phulsuksombati, M. Sahami, and L. Guibas,
“Learning program embeddings to propagate feedback on student code,” arXiv
preprint arXiv:1505.05969, 2015.

[21] A. Head, E. Glassman, G. Soares, R. Suzuki, L. Figueredo, L. D’Antoni, and
B. Hartmann, “Writing Reusable Code Feedback at Scale with Mixed-Initiative
Program Synthesis,” in Proceedings of the 2017 Conference on Learning @ Scale,
ACM, 2017.

[22] P. Ihantola, T. Ahoniemi, V. Karavirta, and O. Seppälä, “Review of recent sys-
tems for automatic assessment of programming assignments,” in Proceedings of
the 10th Koli Calling International Conference on Computing Education Research,
Koli Calling ’10, (New York, NY, USA), p. 86–93, Association for Computing
Machinery, 2010.

[23] V. J. Shute, “Focus on formative feedback,” Review of Educational Research,
vol. 78, no. 1, pp. 153–189, 2008.

[24] S. A. Ambrose, M. W. Bridges, M. DiPietro, M. C. Lovett, and M. K. Norman, How
Learning Works: Seven Research-based Principles for Smart Teaching. Jossey-
Bass, 2010.

[25] S. Cummins, A. Stead, L. Jardine-Wright, I. Davies, A. R. Beresford, and A. Rice,
“Investigating the use of hints in online problem solving,” in Proceedings of the
Third (2016) ACM Conference on Learning@ Scale, pp. 105–108, 2016.

96

[26] J. M. Wing, “Computational thinking,” Commun. ACM, vol. 49, pp. 33–35, Mar.
2006.

[27] Computing Research Association, “Generation CS: Computer Science Undergrad-
uate Enrollments Surge Since 2006.” https://cra.org/data/Generation-CS/.

[28] P. J. Guo, “Codeopticon: Real-time, one-to-many human tutoring for computer
programming,” in Proceedings of the 28th Annual ACM Symposium on User Inter-
face Software & Technology, UIST ’15, (New York, NY, USA), pp. 599–608,
ACM, 2015.

[29] J. A. Kulik and C.-L. C. Kulik, “Timing of feedback and verbal learning,” Review
of educational research, vol. 58, no. 1, pp. 79–97, 1988.

[30] J. McBroom, I. Koprinska, and K. Yacef, “A survey of automated programming
hint generation - the hints framework,” ArXiv, vol. abs/1908.11566, 2019.

[31] A. Kyrilov and D. C. Noelle, “Binary instant feedback on programming exercises
can reduce student engagement and promote cheating,” in Proceedings of the 15th
Koli Calling Conference on Computing Education Research, pp. 122–126, 2015.

[32] J. B. Moghadam, R. R. Choudhury, H. Yin, and A. Fox, “Autostyle: Toward coding
style feedback at scale,” in Proceedings of the Second (2015) ACM Conference on
Learning @ Scale, L@S ’15, (New York, NY, USA), pp. 261–266, ACM, 2015.

[33] F. A. Fontana, E. Mariani, A. Mornioli, R. Sormani, and A. Tonello, “An ex-
perience report on using code smells detection tools,” in 2011 IEEE fourth in-
ternational conference on software testing, verification and validation workshops,
pp. 450–457, IEEE, 2011.

[34] N. Ayewah, W. Pugh, D. Hovemeyer, J. D. Morgenthaler, and J. Penix, “Using
static analysis to find bugs,” IEEE software, vol. 25, no. 5, pp. 22–29, 2008.

[35] C. W. Araújo, V. Zapalowski, and I. Nunes, “Using code quality features to pre-
dict bugs in procedural software systems,” in Proceedings of the XXXII Brazilian
Symposium on Software Engineering, pp. 122–131, 2018.

[36] S. H. Edwards, N. Kandru, and M. B. Rajagopal, “Investigating static analysis
errors in student java programs,” in Proceedings of the 2017 ACM Conference on
International Computing Education Research, ICER ’17, (New York, NY, USA),
pp. 65–73, ACM, 2017.

[37] R. Singh, S. Gulwani, and A. Solar-Lezama, “Automated feedback generation for
introductory programming assignments,” SIGPLAN Not., vol. 48, no. 6, 2013.

[38] R. Rolim, G. Soares, L. D’Antoni, O. Polozov, S. Gulwani, R. Gheyi, R. Suzuki, and
B. Hartmann, “Learning syntactic program transformations from examples,” in
2017 IEEE/ACM 39th International Conference on Software Engineering (ICSE),
pp. 404–415, IEEE, 2017.

[39] R. Suzuki, G. Soares, E. Glassman, A. Head, L. D’Antoni, and B. Hartmann,
“Exploring the design space of automatically synthesized hints for introductory

97

programming assignments,” in Proceedings of the 2017 CHI Conference Extended
Abstracts on Human Factors in Computing Systems, CHI EA ’17, (New York, NY,
USA), p. 2951–2958, Association for Computing Machinery, 2017.

[40] K. Rivers and K. R. Koedinger, “Automating hint generation with solution space
path construction,” in International Conference on Intelligent Tutoring Systems,
pp. 329–339, Springer, 2014.

[41] K. Rivers and K. R. Koedinger, “A canonicalizing model for building programming
tutors,” in International Conference on Intelligent Tutoring Systems, pp. 591–593,
Springer, 2012.

[42] S. Gross, B. Mokbel, B. Hammer, and N. Pinkwart, “How to select an example?
a comparison of selection strategies in example-based learning,” in International
Conference on Intelligent Tutoring Systems, pp. 340–347, Springer, 2014.

[43] D. Kim, Y. Kwon, P. Liu, I. L. Kim, D. M. Perry, X. Zhang, and G. Rodriguez-
Rivera, “Apex: automatic programming assignment error explanation,” ACM SIG-
PLAN Notices, vol. 51, no. 10, pp. 311–327, 2016.

[44] A. Mitrovic and S. Ohlsson, “Evaluation of a constraint-based tutor for a database
language,” 1999.

[45] J. Holland, A. Mitrovic, and B. Martin, “J-LATTE: a Constraint-based Tutor for
Java,” in The 2009 International Conference on Computers in Education, 2009.

[46] A. Mitrovic, “Fifteen years of constraint-based tutors: what we have achieved and
where we are going,” User modeling and user-adapted interaction, vol. 22, no. 1,
pp. 39–72, 2012.

[47] B. P. Woolf, Building Intelligent Interactive Tutors: Student-centered Strategies
for Revolutionizing e-Learning. San Francisco, CA, USA: Morgan Kaufmann Pub-
lishers Inc., 2007.

[48] A. T. Corbett and J. R. Anderson, “Locus of feedback control in computer-based
tutoring: Impact on learning rate, achievement and attitudes,” in Proceedings of
the SIGCHI conference on Human factors in computing systems, pp. 245–252,
2001.

[49] J. Huang, C. Piech, A. Nguyen, and L. Guibas, “Syntactic and Functional Variabil-
ity of a Million Code Submissions in a Machine Learning MOOC,” in Proceedings
of the 2013 Workshop on Massive Open Online Courses at the 16th Annual Con-
ference on Artificial Intelligence in Education, 2013.

[50] N. Le, F. Loll, and N. Pinkwart, “Operationalizing the continuum between well-
defined and ill-defined problems for educational technology,” IEEE Transactions
on Learning Technologies, vol. 6, no. 3, pp. 258–270, 2013.

[51] N.-T. Le and N. Pinkwart, “Towards a Classification for Programming Exercises,”
in Proceedings of the 2nd Workshop on AI-supported Education for Computer Sci-
ence, 2014.

98

[52] J. T. Folsom-Kovarik, S. Schatz, and D. Nicholson, “Plan ahead: Pricing its learner
models,” in Proceedings of the 19th Behavior Representation in Modeling & Sim-
ulation (BRIMS) Conference, pp. 47–54, 2010.

[53] T. W. Price and T. Barnes, “An exploration of data-driven hint generation in an
open-ended programming problem.,” in EDM (Workshops), Citeseer, 2015.

[54] R. H. Hwang, J. J. Wu, Z. Y. Tsai, P. T. Yu, and C.-F. Lai, “Enhancing the
programming skill in high school engineering education via flipped classroom and
peer assessment,” in 43rd SEFI Annual Conference 2015, SEFI 2015, European
Society for Engineering Education (SEFI), 2015.

[55] Y. Wang, W. Ai, Y. Liang, and Y. Liu, “Toward motivating participants to assess
peers’ work more fairly: Taking programing language learning as an example,”
Journal of Educational Computing Research, vol. 52, no. 2, pp. 180–198, 2015.

[56] E. L. Glassman, A. Lin, C. J. Cai, and R. C. Miller, “Learnersourcing personalized
hints,” in Proceedings of the 19th ACM Conference on Computer-Supported Coop-
erative Work & Social Computing, CSCW ’16, (New York, NY, USA), pp. 1626–
1636, ACM, 2016.

[57] A. Nguyen, C. Piech, J. Huang, and L. Guibas, “Codewebs: Scalable homework
search for massive open online programming courses,” in Proceedings of the 23rd
International Conference on World Wide Web, WWW ’14, (New York, NY, USA),
pp. 491–502, ACM, 2014.

[58] S. Kaleeswaran, A. Santhiar, A. Kanade, and S. Gulwani, “Semi-supervised ver-
ified feedback generation,” in Proceedings of the 2016 24th ACM SIGSOFT In-
ternational Symposium on Foundations of Software Engineering, FSE 2016, (New
York, NY, USA), pp. 739–750, ACM, 2016.

[59] E. L. Glassman, L. Fischer, J. Scott, and R. C. Miller, “Foobaz: Variable name
feedback for student code at scale,” in Proceedings of the 28th Annual ACM Sym-
posium on User Interface Software & Technology, UIST ’15, (New York, NY,
USA), pp. 609–617, ACM, 2015.

[60] B. Hartmann, D. MacDougall, J. Brandt, and S. R. Klemmer, “What would other
programmers do: Suggesting solutions to error messages,” in Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems, CHI ’10, (New
York, NY, USA), pp. 1019–1028, ACM, 2010.

[61] S. H. Edwards, “Using test-driven development in the classroom: Providing stu-
dents with automatic, concrete feedback on performance,” in Proceedings of the
international conference on education and information systems: technologies and
applications EISTA, vol. 3, Citeseer, 2003.

[62] J. A. Jones and M. J. Harrold, “Empirical evaluation of the tarantula automatic
fault-localization technique,” in Proceedings of the 20th IEEE/ACM international
Conference on Automated software engineering, pp. 273–282, 2005.

[63] T. Ball, M. Naik, and S. K. Rajamani, “From symptom to cause: localizing errors
in counterexample traces,” in Proceedings of the 30th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, pp. 97–105, 2003.

99

[64] A. Groce, S. Chaki, D. Kroening, and O. Strichman, “Error explanation with dis-
tance metrics,” International Journal on Software Tools for Technology Transfer,
vol. 8, no. 3, pp. 229–247, 2006.

[65] M. Allamanis, E. T. Barr, P. Devanbu, and C. Sutton, “A survey of machine
learning for big code and naturalness,” arXiv preprint arXiv:1709.06182, 2017.

[66] D. Gopinath, M. Z. Malik, and S. Khurshid, “Specification-based program repair
using sat,” in International Conference on Tools and Algorithms for the Construc-
tion and Analysis of Systems, pp. 173–188, Springer, 2011.

[67] R. Könighofer and R. Bloem, “Automated error localization and correction for
imperative programs,” in 2011 Formal Methods in Computer-Aided Design (FM-
CAD), pp. 91–100, IEEE, 2011.

[68] M. Allamanis, M. Brockschmidt, and M. Khademi, “Learning to represent pro-
grams with graphs,” arXiv preprint arXiv:1711.00740, 2017.

[69] F. Long and M. Rinard, “Automatic patch generation by learning correct code,”
in Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages, pp. 298–312, 2016.

[70] C. Le Goues, “Automatic program repair using genetic programming,” Univ. Vir-
ginia, Charlottesville, VA, USA, 2013.

[71] V. Debroy and W. E. Wong, “Using mutation to automatically suggest fixes for
faulty programs,” in 2010 Third International Conference on Software Testing,
Verification and Validation, pp. 65–74, IEEE, 2010.

[72] J. Hattie and H. Timperley, “The power of feedback,” Review of educational re-
search, vol. 77, no. 1, pp. 81–112, 2007.

[73] E. L. Glassman, J. Scott, R. Singh, P. J. Guo, and R. C. Miller, “Overcode:
Visualizing variation in student solutions to programming problems at scale,” ACM
Trans. Comput.-Hum. Interact., vol. 22, pp. 7:1–7:35, Mar. 2015.

[74] T. W. Price, Y. Dong, and D. Lipovac, “isnap: towards intelligent tutoring in
novice programming environments,” in Proceedings of the 2017 ACM SIGCSE
Technical Symposium on computer science education, pp. 483–488, 2017.

[75] P. M. Phothilimthana and S. Sridhara, “High-coverage hint generation for mas-
sive courses: Do automated hints help cs1 students?,” in Proceedings of the 2017
ACM Conference on Innovation and Technology in Computer Science Education,
pp. 182–187, 2017.

[76] T. Barnes and J. Stamper, “Toward automatic hint generation for logic proof
tutoring using historical student data,” in International conference on intelligent
tutoring systems, pp. 373–382, Springer, 2008.

[77] S. H. Edwards, “Using software testing to move students from trial-and-error to
reflection-in-action,” ACM SIGCSE Bulletin, vol. 36, no. 1, pp. 26–30, 2004.

100

[78] L. Gusukuma, A. C. Bart, D. Kafura, and J. Ernst, “Misconception-driven feed-
back: Results from an experimental study,” in Proceedings of the 2018 ACM Con-
ference on International Computing Education Research, pp. 160–168, 2018.

[79] S. Marwan, J. Jay Williams, and T. Price, “An evaluation of the impact of au-
tomated programming hints on performance and learning,” in Proceedings of the
2019 ACM Conference on International Computing Education Research, pp. 61–70,
ACM, 2019.

[80] M. Eagle and T. Barnes, “Evaluation of automatically generated hint feedback,”
in Educational Data Mining 2013, 2013.

[81] D. Lavbič, T. Matek, and A. Zrnec, “Recommender system for learning sql using
hints,” Interactive Learning Environments, vol. 25, no. 8, pp. 1048–1064, 2017.

[82] R. S. Baker, A. T. Corbett, K. R. Koedinger, and A. Z. Wagner, “Off-task behavior
in the cognitive tutor classroom: when students game the system,” in Proceedings
of the SIGCHI conference on Human factors in computing systems, pp. 383–390,
2004.

[83] B. Wisniewski, K. Zierer, and J. Hattie, “The power of feedback revisited: a meta-
analysis of educational feedback research,” Frontiers in Psychology, vol. 10, p. 3087,
2020.

[84] K. R. Koedinger, A. T. Corbett, and C. Perfetti, “The knowledge-learning-
instruction framework: Bridging the science-practice chasm to enhance robust
student learning,” Cognitive science, vol. 36, no. 5, pp. 757–798, 2012.

[85] C. F. Lynch, K. D. Ashley, V. Aleven, and N. Pinkwart, “Defining ill-defined do-
mains; a literature survey,” in Intelligent Tutoring Systems (ITS 2006): Workshop
on Intelligent Tutoring Systems for Ill-Defined Domains, 2006.

[86] R. E. Mayer, J. L. Dyck, and W. Vilberg, “Learning to program and learning to
think: What’s the connection?,” Commun. ACM, vol. 29, pp. 605–610, July 1986.

[87] K. Brennan and M. Resnick, “New frameworks for studying and assessing the
development of computational thinking,” in Proceedings of the 2012 annual meeting
of the American Educational Research Association, Vancouver, Canada, pp. 1–25,
2012.

[88] R. Caceffo, S. Wolfman, K. S. Booth, and R. Azevedo, “Developing a computer
science concept inventory for introductory programming,” in Proceedings of the
47th ACM Technical Symposium on Computing Science Education, pp. 364–369,
2016.

[89] S. A. Fincher and A. V. Robins, The Cambridge handbook of computing education
research. Cambridge University Press, 2019.

[90] H. Hubball and N. Gold, “The scholarship of curriculum practice and undergradu-
ate program reform: Integrating theory into practice,” New directions for teaching
and learning, vol. 2007, no. 112, pp. 5–14, 2007.

101

[91] J. A. Boyle, G. Haldeman, A. Tjang, M. Babes-Vroman, A. P. Centeno, and T. D.
Nguyen, “Dynamic recitation: A student-focused, goal-oriented recitation manage-
ment platform,” in Proceedings of the 50th ACM Technical Symposium on Com-
puter Science Education, pp. 1269–1269, 2019.

[92] F. D. Davis, “Perceived usefulness, perceived ease of use, and user acceptance of
information technology,” MIS Quarterly, vol. 13, no. 3, pp. 319–340, 1989.

[93] G. Haldeman, M. Babeş-Vroman, A. Tjang, and T. D. Nguyen, “Csf: Formative
feedback in autograding,” ACM Transactions on Computing Education (TOCE),
vol. 21, no. 3, pp. 1–30, 2021.

[94] T. Jones, S. Forrest, et al., “Fitness distance correlation as a measure of problem
difficulty for genetic algorithms.,” in ICGA, vol. 95, pp. 184–192, 1995.

[95] E. Soloway and J. C. Spohrer, Studying the novice programmer. Psychology Press,
2013.

[96] “Javaparser.org.” https://github.com/javaparser. Accessed: 2021-06-17.

[97] “Junit.org.” https://junit.org. Accessed: 2021-06-27.

[98] N. Giacaman and G. De Ruvo, “Bridging theory and practice in programming
lectures with active classroom programmer,” IEEE Transactions on Education,
vol. 61, no. 3, pp. 177–186, 2018.

https://github.com/javaparser
https://junit.org

102

Appendix A

Complete Description of Select Assignments

PayFriend and TwoSmallest are two assignments I use repeatedly in my studies. Thus,

in this section I include their descriptions as it was provided to the students.

Pay Friend

Write your code in the file PayFriend.java, your file has to have this exact name with

P and F capitalized. You must use the IO module to read the input and to output

your answer. Imagine that you work for a payment processing service called PayFriend.

PayFriend charges money receivers the following fees:

The first $100 has a flat fee of $5. Payments over $100 (but under $1000) have a fee

of 3% or $6, whichever is higher. Payments of $1,000 (but under $10,000) and over have

a fee of 1% or $15, whichever is higher. Payments of $10,000 and over are subject to

(fees as follows): The first $10,000 have a fee of 1% The next $5,000 have an additional

fee of 2% Anything more will demand an additional fee of 3% For example, an payment

of $40,000 would be subject to $950 fee: 1% on the first $10,000 ($100 fee), 2% on the

next $5,000 ($100 fee), and 3% on the last $25,000 ($750 tax).

Write a program that asks the user for the payment amount (real number) and

outputs the fee owned (real number).

Example: java PayFriend 450.0

RESULT: 13.5

Two Smallest

Write your code in the file TwoSmallest.java, your file has to have this exact name

with T and S capitalized. You must use the IO module to read inputs and to output

103

your answers. Write a program that takes a set of numbers and determines which are

the two smallest numbers. Ask the user for the following information, in this order: A

terminating value (real number). The user will enter this value again to indicate that

he or she is finished providing input. A sequence of real numbers. Keep asking for

numbers until the terminating value is entered. Compute and output the smallest and

second-smallest real number, in that order. It is possible for the smallest and second-

smallest numbers to be the same (if the sequence contains duplicate numbers). There

must be at least 2 (two) numbers in the list of numbers that is not the terminating

value. If the user enters less than 2 (two) numbers, consider an error. Report the error

input via IO.reportBadInput() and RE-ASK the user for the input until it is correctly

entered.

Example: java TwoSmallest 123 [this is the terminating value, not part of the set

of numbers] 17.0 23.5 10.0 15.2 30.0 8.0 16.0 123 [this is the terminating value again,

indicating that the user is done]

RESULTS TO OUTPUT (in this order): 8.0 10.0

104

Appendix B

Complete Statics for the Hints Efficiency Study

I previously discuss the most relevant results regarding the movement of student sub-

missions throughout the different classes of errors in Section 7.2.1. For completion, in

this section I include the percentages of all the possible pairs of submissions for each

of the two assignments, and for each of the three semesters. In each table, the row

label indicates the start error class and the column label indicates the end error class

for a pair of code submissions. We calculate each percentage by counting the number

of pairs and then diving it by the total number of pairs which started in the same error

class.

105

Table B.1: Movement between classes of error from one submission to another for
PayFriend in spring 2016; CM - does not compile, IN - failed to follow instructions,
DR - failed data representation, CF - failed control flow, FM - failed translating to
formulas, CN - failed translating to conditional statements, NM - both CN and FM,
NO - no concept failed/ passed all tests

CM IN DR CF CN FM NM NO

CM 33.3% 4.2% 8.3% 20.8% 8.3% 4.2% 4.2% 16.7%

IN 4.4% 36.8% 9.6% 10.5% 7.9% 2.6% 12.3% 14.9%

DR 0.8% 2.1% 57.3% 3.4% 2.9% 1.7% 9.2% 21.8%

CF 1.5% 3.1% 0.0% 44.6% 13.9% 4.6% 6.2% 24.6%

CN 0.0% 3.5% 6.9% 6.9% 37.9% 0.0% 6.9% 34.5%

FM 4.4% 0.0% 0.0% 2.2% 0.0% 28.9% 0.0% 2.2%

NM 0.9% 1.7% 2.7% 1.8% 5.3% 5.3% 46.9% 35.4%

Table B.2: Movement between classes of error from one submission to another for
PayFriend in spring 2017

CM IN DR CF CN FM NM NO

CM 45.6% 0.0% 5.1% 0.0% 10.1% 7.6% 13.9% 17.7%

IN 3.7% 7.4% 3.7% 3.7% 0.0% 33.3% 29.6% 11.1%

DR 3.8% 0.0% 59.0% 0.0% 10.3% 1.3% 3.8% 21.8%

CF 25.0% 0.0% 0.0% 75.0% 0.0% 0.0% 0.0% 0.0%

CN 9.1% 0.0% 0.0% 9.1% 18.2% 9.1% 18.2% 18.2%

FM 0.0% 0.0% 0.0% 0.0% 0.0% 33.3% 0.0% 66.7%

NM 1.7% 1.7% 0.0% 0.0% 3.4% 5.2% 65.5% 22.4%

Table B.3: Movement between classes of error from one submission to another for
PayFriend in spring 2018

CM IN DR CF CN FM NM NO

CM 33.7% 2.2% 4.3% 8.7% 7.6% 2.2% 18.5% 21.7%

IN 14.6% 7.3% 0.0% 7.3% 9.8% 2.4% 26.8% 31.7%

DR 5.3% 0.0% 28.9% 5.3% 18.4% 2.6% 15.8% 21.1%

CF 2.4% 0.0% 2.4% 38.1% 9.5% 4.8% 16.7% 26.2%

CN 1.7% 0.0% 1.7% 5.0% 33.3% 1.7% 5.0% 51.7%

FM 0.0% 0.0% 0.0% 0.0% 2.9% 20.6% 20.6% 55.9%

NM 0.0% 0.0% 0.0% 3.7% 12.1% 5.6% 29.0% 49.5%

106

Table B.4: Movement between classes of error from one submission to another for
TwoSmallest in spring 2016; CM - does not compile, IS - failed to follow instructions,
IL - infinite loop, SQ - failed to read sequence, IN - failed to initialize min variables,
UP - failed to update min variables, NO - no concept failed/ passed all tests

CM IS IL IN UP SQ SI SU NO

CM 0.0% 33.3% 13.3% 6.7% 0.0% 6.7% 0.0% 6.7% 33.3%

IS 2.4% 39.1% 17.8% 1.6% 5.1% 7.5% 12.7% 1.6% 12.3%

IL 0.0% 11.3% 58.6% 2.7% 4.1% 2.7% 6.8% 1.8% 12.2%

IN 0.0% 5.3% 5.3% 26.3% 21.1% 10.5% 0.0% 0.0% 31.6%

UP 0.0% 7.3% 19.5% 0.0% 29.3% 0.0% 0.0% 0.0% 43.9%

SQ 1.3% 14.1% 18.0% 1.3% 0.0% 21.8% 6.4% 0.0% 37.2%

SI 0.6% 10.7% 14.1% 2.8% 6.2% 9.0% 33.9% 4.5% 18.1%

SU 4.2% 8.3% 12.5% 0.0% 16.7% 0.0% 20.8% 16.7% 20.8%

Table B.5: Movement between classes of error from one submission to another for
TwoSmallest in spring 2017

CM IS IL IN UP SQ SI SU NO

CM 20.7% 0.0% 0.0% 3.4% 20.7% 13.8% 8.6% 1.7% 31.0%

IS 10.7% 25.0% 3.6% 0.0% 7.1% 28.6% 3.6% 3.6% 17.9%

IL 6.3% 0.0% 25.0% 6.3% 6.3% 31.3% 12.5% 0.0% 12.5%

IN 3.7% 0.0% 3.7% 44.4% 0.0% 3.7% 3.7% 3.7% 37.0%

UP 0.0% 0.0% 0.0% 8.7% 39.1% 4.3% 0.0% 0.0% 47.8%

SQ 6.1% 1.0% 3.0% 0.0% 4.0% 57.6% 14.1% 1.0% 13.1%

SI 2.8% 0.7% 0.7% 6.9% 5.5% 17.2% 42.1% 5.5% 18.6%

SU 2.7% 0.0% 0.0% 0.0% 16.2% 18.9% 10.8% 40.5% 10.8%

107

Table B.6: Movement between classes of error from one submission to another for
TwoSmallest in spring 2018

CM IS IL IN UP SQ SI SU NO

CM 28.6% 3.9% 3.9% 9.1% 6.5% 14.3% 9.1% 3.9% 20.8%

IS 8.6% 14.3% 5.7% 17.1% 5.7% 20.0% 17.1% 0.0% 11.4%

IL 20.0% 8.0% 20.0% 4.0% 4.0% 24.0% 8.0% 4.0% 8.0%

IN 4.0% 4.0% 0.0% 18.0% 16.0% 8.0% 12.0% 2.0% 36.0%

UP 2.7% 1.4% 0.0% 2.7% 41.1% 1.4% 2.7% 2.7% 45.2%

SQ 4.0% 0.6% 0.0% 4.0% 6.3% 52.6% 7.4% 1.7% 23.4%

SI 6.2% 1.8% 0.9% 8.8% 12.4% 13.3% 32.7% 5.3% 18.6%

SU 2.9% 0.0% 2.9% 5.7% 40.0% 22.9% 0.0% 20.0% 5.70%

108

Appendix C

Copy of the TAM Survey

109

110

111

112

113

114

115

	Abstract
	Acknowledgements
	Dedication
	Introduction
	CSF2 and PR-CSF2: A Mixed-Approach Framework for Providing Teacher's Feedback
	Evaluation Case Studies and Metrics
	Usefulness to teachers
	Accuracy
	Usefulness to students

	Contributions and Outline

	Background and Related work
	Why Do We Need to Provide Automated Feedback to Programming Assignments?
	Types of Automated Feedback to Student Programs for Students
	Automated Correctness Feedback
	Automated Code Quality or Style Feedback
	Automated Program-Repair Feedback
	Automated Next-step Hints
	Automated Example Feedback
	Automated Error-Specific Feedback
	Automated Peer Feedback
	Automated Teacher Feedback
	Discussion: Desired Automated Feedback vs the State-of-the-Art

	Program Repair Outside Automated Feedback Generation
	Automated Feedback about Student Programs for Teachers
	How Does the Automated Feedback Impact Students' Learning and Behavior?
	Compiling Programming Knowledge for Automated Feedback Generation

	Concept and Skills based Feedback Generation Framework (CSF2)
	Overview of CSF2's Design
	CSF2 step-by-step
	Discussion: Modifications to CSF2

	Application of CSF2 to Two Programming Assignments
	Steps 1 and 2: Compiling the Concepts and Skills List
	Step 3: Designing the Test Suites
	Step 4: Collecting Student Submissions
	Steps 5–7: Refining Tests and Partitioning Submissions
	Steps 8 and 9: Combining Buckets and Writing Hints
	Examples of Common Errors and Hints

	How can Teaching Benefit from Using CSF2?
	Creating Assignments that Map to the Course Material
	Reviewing and Improving Courses
	Designing Alternate Grading Schemes
	Progress signal
	Scheme used for calculating scores

	How Accurate is CSF2 in Classifying Errors?
	Human Evaluation Approach
	Findings

	How does the Automated Feedback Impact Students?
	Datasets and Significance Tests
	Usefulness of the hints
	Empirical usefulness of the hints
	Efficacy of the hints
	Efficiency of the hints

	Perceived usefulness of the hints
	Survey Results
	Students' comments on hints
	Anecdotal information from instructors

	PR-CSF2: An Extension to CSF2 Using Program Repair
	Overview of PR-CSF2's Design
	Motivating Examples
	Program Repair Approach
	Why Use a Search Algorithm?
	What is a Valid Repair?
	Problem Statement
	Program Representation
	Fault localization and Fitness Function
	Generating Modifications to Student Programs
	Search Algorithm for Fixing Student Programs

	Implementation
	Discussion: Modifications to PR-CSF2

	How does PR-CSF2 Fare Compared to Equivalent Program Repair Techniques?
	Benchmarks
	Methodology
	Results
	Success Rates and Runtimes Statistics
	Repairs Distribution Across Different Assignments
	Repairs Quality Comparison

	Conclusions
	Summary
	Impact and Future Work

	References
	Appendix A. Complete Description of Select Assignments
	Appendix B. Complete Statics for the Hints Efficiency Study
	Appendix C. Copy of the TAM Survey

