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The dissertation provides an insight on the mathematical modeling of two complex sys-

tems. Chapter 1-4 are about the biophysical model we developed for enzyme evolution.

The model predicts the reaction rates as a function of the enzyme sequence. The free

energies in Michaelis-Menten kinetics are represented as a function of one amino-acid

contribution and two amino-acid pairs of the enzyme sequence. Our model predicts

reaction-rates with high accuracy and relatively few coupling terms. The sparseness

in coupling terms results in highly interpretable Michaelis-Menten energy landscapes

which exhibit little non-linearity. Chapter 5-9 talk about modeling first-passage proper-

ties of random-walks on a community-structured network. The properties are exploited

in developing an algorithm to partition the network into communities. On testing our

algorithm on multiple artificial and real-world networks, we find that it performs better

or as well as the other competitive algorithms.
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Chapter 1

Introduction to Enzyme Evolution

Understanding evolution is critical for understanding biology. For millions of years

plants and animals have adapted themselves to suit the environment around them.

Many of these adaptations involved production of highly specific compounds through

mutation and selection of enzymes.

Our study involves the enzymes that catalyze the production of a type of complex

hydrocarbons known as terpenes. This family of enzymes called terpene synthases

(TPSs) is a major family of enzymes found in a variety of plants and insects ([3],[4]).

Terpenes play a significant role for many organisms; they are involved in pollination,

plant and insect predator defense mechanisms, and symbiotic relations. They are also

widely used as flavors, fragrances and medicines; a well-known example of the latter is

artemisinin, a naturally occurring anti-malarial drug extracted from Artemisia annua.

Terpenes and terpenoids are the primary constituents of many essential oils in medicinal

plants and flowers; examples include α-bisabolol, a monocyclic sesquiterpene alcohol

which forms the basis of a colorless viscous oil from German chamomile (Matricaria

recutita) and Myoporum crassifolium, and zingiberene, a monocyclic sesquiterpene that

is the predominant constituent of ginger oil.

Enzymes in the TPS family are capable of converting several universal substrates

into a diverse variety of terpene products. Amorpha-4,11-diene synthase (ADS) cat-

alyzes the reaction to the production of amorpha-4,11-diene, the bicyclic hydrocarbon

precursor of artemisinin, from farnesyl pyrophosphate (FPP), a linear substrate in the

plant Artemisia annua. In the same plant, (E)-β-farnesene, a linear hydrocarbon is also

produced from the same substrate FPP, the only difference being that it is catalyzed

by a different enzyme (E)-β-farnesene synthase (BFS).
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Thus, in order to analyze the molecular mechanisms of emergence of terpene cy-

clization, our experimental collaborators led by Dr. Paul O’Maille carried out in-depth

examination of mutational space around (E)-β-farnesene synthase using structure-based

combinatorial protein engineering (SCOPE). They employed multiple rounds of muta-

tion and selection to map out the ensemble of mutational pathways and identify se-

quence variants with novel enzymatic functions. Functional assays, carried out for

more than a hundred sequence variants, involve enzyme characterization by mass-

spectroscopy and kinetic measurements.

To characterize the biophysical landscape of our mutant libraries, we have developed

a model to predict the reaction rates as a function of the enzyme sequence. The model

represents free energies in Michaelis-Menten kinetics as a function of one amino-acid

contribution and two amino-acid pairs of the enzyme sequence. Our model predicts

reaction-rates with high accuracy and relatively few coupling terms. The sparseness

in coupling terms results in highly interpretable Michaelis-Menten energy landscapes

which exhibit little epistasis.

We have used our spin-glass-like models of Michaelis-Menten landscapes to develop a

hierarchy of biophysical models of enzyme fitness, interpreting the latter in terms of the

protein’s ability to catalyze reactions beneficial to the cell while minimizing production

of deleterious or unwanted by-products. We have found that, compared to the free

energy landscapes, biophysical fitness landscapes are more epistatic.

The experiments performed by Dr. Paul O’Maille and his team are mentioned in

chapter 2. Chapter 3 talks about the biophysical model and models for fitness of an

enzyme.
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Chapter 2

Experiments

In order to investigate TPS evolution in A. annua systematically, Dr. O’Maille and his

team used structural analysis to identify 24 variable positions within 6 Å of the (E)-β-

farnesene synthase (BFS) active site center that differed between BFS and amorpha-

4,11-diene synthase (ADS). Using structure-based combinatorial protein engineering

(SCOPE) ([5]) they introduced ADS mutations into the BFS sequence at the 24 posi-

tions, thus constructing a mutant library. After the initial screening step where enzymes

in the library were tested for solubility and biochemical activity, it was found that the

ADS mutation at position 474 produced an inactive enzyme (all residue numbers are

relative to the A. annua BFS sequence). In addition, A395G and G431A mutations

which do not correspond to the ADS sequence were inadvertently introduced into the

library, resulting in biochemically active enzymes. In-depth characterization of ∼100

variants of biochemically active enzymes which had one or more mutations at the 25

positions (including 395 and 431 but excluding 474) were carried out. Although a sig-

nificant amorpha-4,11-diene production was not observed in any of the mutants, Dr.

O’Maille and his team identified several TPSs which produce sizable quantities of α-

bisabolol – a major product of TPS enzymes in A. annua and Asteracea plants. This

made them focus on a highly specific α-bisabolol-producing mutant which contains 5

mutations with respect to the A. annua BFS.

To identify which residues were responsible for the α-bisabolol activity, Dr. O’Maille

and his team designed a library, M5, that consisted of all combinations of the 5 amino

acid mutations (25 = 32 sequences in total) bridging BFS and previously discovered

α-bisabolol -producing BFS variant (Fig. 2.1,2.2). Using SCOPE, the M5 library was

synthesized and the clones were verified by sequencing. Next, all recombinant enzymes
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Figure 2.1: A phylogenetic tree of BFS variants from Salmon et al. ([6]) was created
using ClustalW ([7]). The resulting tree was annotated using the Interactive Tree of
Life ([8] ) according to the percentage of α-bisabolol products produced (orange bars).
The M5 mutant is labeled.
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Figure 2.2: Structural positions of residue substitutions in the M5 mutant used for the
M5 library synthesis and characterization
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Figure 2.3: GC chromatograms of select members of characterized mutants, with major
products indicated
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were characterized for product specificity by GC-MS ([9], [10]) and their kinetic prop-

erties were measured using MGA ([11]). Consistent with the observations based on the

A. annua BFS 6 Å library discussed above ([6]), the Y402L substitution was essential

for product cyclization: in the absence of Y402L, all mutants produced linear terpene

products. Of the cyclic-producing variants, two product profiles were evident, either

a multiple product profile (as seen with the Y402L single mutant) or α-bisabolol as

the dominant product in the profile (Fig. 2.3). It was observed that α-bisabolol prod-

uct specificity was primarily attributable to a single additional mutation T429G in the

Y402L background (Fig. 2.3), whereas the presence of additional mutations (T319A,

H555R and E557G) had weaker effects on product specificity. However, kinetic analysis

revealed that the total kinetic rate kcat was affected significantly by the additional muta-

tions in the T429G/Y402L background. In particular, the C-terminal H555R mutation

was very detrimental to catalytic activity. Alone, H555R resulted in a 66% reduction

in enzyme activity compared to the BFS wild-type (BFS-WT) enzyme; and in com-

bination with the other mutations, enzyme activity was further reduced to between 1

and 6% of BFS-WT activity. In comparison, the α-bisabolol -producing Y402L/T429G

mutant (69% of the total output is α-bisabolol ) has moderate catalytic activity (26%

of BFS-WT activity) comparable to other native and specific TPS enzymes.
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Chapter 3

Biophysical Model

3.1 Quantitative description of enzyme libraries

We consider two libraries of mutant enzymes. Each enzyme in the library can have

mutations at up to L variable positions compared to the wild-type sequence, with the

amino acid alphabet at each position allowed to be in one of the two states: wild type

(W ) or mutant (M). Thus, each enzyme sequence Sj can be represented by

Sj = A
(j)
1 A

(j)
2 . . . A

(j)
L , j = 1, . . . , N, (3.1)

where A
(j)
k = [W,M ] is the amino acid at position k in sequence j and N is the

total number of sequences in a given library. Note that k numbers variable positions

rather than absolute amino acid positions within a sequence, and that the rest of the

sequence outside of the L positions is invariant. For each enzyme in both libraries,

reaction rates for n = 11 distinct products (kcat,i, i = 1, . . . , n) have been inferred using

GC-MS and MGA (several other products had negligibly low rates and are therefore

excluded from this study). The first library, the A. annua BFS 6 Å library which we

shall refer to as M25, contains kcat,i values for 93 distinct sequences, including the wild-

type, with mutations at up to 25 variable positions ([6]). The second library, which was

described above as the M5 library, contains 25 = 32 sequences, including the wild-type,

for all possible combinations of mutations at 5 positions (319, 402, 429, 555, 557) which

separate BFS from the novel α-bisabolol producing enzyme originally found in the M25

library. The combined library contains N = 122 distinct sequences, including BFS-WT,

with mutations at one or more among 25 variable positions.
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3.2 Enzyme kinetics

We have modeled enzymatic reaction rates using the Michaelis-Menten model of enzyme

kinetics ([12], [13]). According to this model, enzymes catalyze chemical reactions in

a two-step process. The first step is a reversible reaction where a substrate molecule

binds the enzyme’s active site. In the second reaction, assumed to be irreversible,

substrate is transformed into product and released from the enzyme. In general, terpene

synthases in our libraries catalyze multiple reactions simultaneously starting from the

same substrate. We assume that the first step is the same in all these reactions since it

involves just the substrate and the enzyme:

Here, S is the substrate, E is the enzyme, Pi’s are the products, and kcat,i denotes

the reaction rate for product i. Each reaction rate kcat,i of an enzyme with sequence

Sj depends on the Gibbs free energies G3 and G4,i (Fig. 3.1):

kcat,i (Sj) = Bi exp

(
−G4,i (Sj)−G3 (Sj)

kBT

)
, (3.2)

where Bi is the reaction rate for product i in the absence of the free energy barrier, kB

is the Boltzmann constant, and T is the temperature. As discussed above, we assume

that G3 is independent of the product for a given enzyme, while G4,i is product-specific.

Note that the total reaction rate is given by kcat (Sj) =
∑

i kcat,i (Sj) and that the

probability ciof producing product i is therefore ci (Sj) = kcat,i (Sj) /kcat (Sj). Thus,

the observed reaction rates are given by kobscat,i (Sj) = ci (Sj) kcat (Sj), where ci (Sj) are

relative abundances inferred from GC-MS data and kcat (Sj) are measured using MGA.

In the MGA assay, the kcat (Sj) values were predicted using a linear fit to enzyme ve-

locities at a fixed substrate concentration and a series of enzyme concentrations. These

experiments were carried out in triplicate but due to non-linearities and/or noise in the
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Figure 3.1: Michaelis-Menten model of enzyme kinetics: Shown are free energy
profiles for converting substrate S into products P1 . . . Pn, catalyzed by the enzyme E.
G1, G2, G3 and G4,ik are free energies at the various stages of the enzymatic reactions,
and k−1, k1, kcat,ik are the corresponding reaction rates as shown in the inset (product
indices i1 . . . in are sorted in the decreasing order of G4,ik in the panel). Each reaction
rate kcat,ik depends on the difference between free energies G4,i and G3 (Eq. (2)). Inset
shows the corresponding kinetic rates of the Michaelis-Menten reaction.

data not all measurement series could be reliably fit to extract the kcat values, resulting

in 1-3 independent kcat (Sj) measurements that were subsequently averaged to compute

kobscat,i (Sj). Likewise, the GC-MS experiments were carried out in triplicate, with the

relative abundances ci (Sj) averaged prior to being employed in the computation of

product-specific kinetic rates.

We find that the enzymes in the combined library are characterized by a wide range

of kinetic rates depending on the product type (Fig. 3.2).

3.3 Pairwise model of enzyme energetics

To model enzyme kinetics and energetics, we have employed a pairwise model inspired

by spin-glass models in statistical physics ([14]; [15]). Such models have been extensively

used to study protein stability and protein-protein interactions ([16], [17], [18], [19]).



11

Figure 3.2: Each panel shows a 20-bin histogram of and k̃obscat,i(Sj)values for each product

i. Vertical dashed lines indicate mean values of each k̃obscat,i distribution

Unlike these previous approaches, which typically use protein sequence alignments as

input to generating novel sequences and scoring the existing ones, our model is designed

to predict reaction rates kcat,i as a function of the enzyme’s sequence. For a given

enzyme, we represent the Gibbs free energies G3 and G4,i for each product i as a sum

over single-amino-acid (aa) terms and two-amino-acid coupling terms:

G3 (Sj) =
L∑
k=1

Hk

(
A

(j)
k

)
+
∑
(k,l)

Ekl

(
A

(j)
k , A

(j)
l

)
, (3.3)

G4,i (Sj) =

L∑
k=1

h
(i)
k

(
A

(j)
k

)
+
∑
(k,l)

ε
(i)
kl

(
A

(j)
k , A

(j)
l

)
, (3.4)

where Hk/h
(i)
k and Ekl/ε

(i)
kl are the one-aa and two-aa contributions to G3 and G4,i,

respectively, and the (k, l) sum in the second term on the right-hand side runs over

all pairs of variable amino acids in each sequence. This is a set of N (n+ 1) = 1464

equations for the combined dataset. To reduce the number of parameters, we set all

terms containing one or two wild-type amino acids to zero: Hk (W ) = h
(i)
k (W ) = 0,

Ekl (W,W ) = Ekl (W,M) = Ekl (M,W ) = 0, ε
(i)
kl (W,W ) = ε

(i)
kl (W,M) = ε

(i)
kl (M,W ) =

0 ([18]). This guarantees that all G3 and G4,i values are zero automatically for wild-type
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sequences, while leaving enough degrees of freedom to model one-aa effects (through

the Hk(M)/h
(i)
k (M) terms) and two-aa couplings (through the Ekl(M,M)/ε

(i)
kl (M,M)

terms). For the combined library and for all Gibbs free energies G3 and G4,i, this

procedure yields up to (n+ 1) = 12 non-zero one-aa terms at each of L = 25variable

positions and, similarly, up to 12 non-zero two-aa coupling terms at each of Lp = 138

pairs of variable positions. Note that, by construction, only two-aa couplings for pairs

of positions at which all four aa combinations are available: (W,W ), (W,M), (M,W )

and (M,M) are included into the model.

3.3.1 Model Selection

Using Eqs. (3.2), (3.3) and (3.4), we obtain a set of Nn = 1342equations for predicting

relative reaction rates:

k̃cat,i (Sj) = exp

− 1

kBT

∑
k

h
(i)
k

(
A

(j)
k

)
+
∑
(k,l)

ε
(i)
kl

(
A

(j)
k , A

(j)
l

)

−
∑
k

Hk

(
A

(j)
k

)
−
∑
(k,l)

Ekl

(
A

(j)
k , A

(j)
l

)
− Ci

 ,

(3.5)

where k̃cat,i (Sj) = kcat,i (Sj) /k
obs
cat (WT ) is the predicted relative reaction rate for

product i (kobscat (WT ) is the observed total reaction rate of the wild-type sequence),

and the sequence-independent offsets Ci are defined by eCi/kBT = Bi/k
obs
cat (WT ) (Bi

is the reaction rate for product i of the wild-type sequence, Eq. (3.2)). This set of

equations has (n+ 1) (L+ Lp) + n = 1967 fitting parameters since there are L one-

body terms, Lp coupling terms for each G4,i and G3, and one additional term per

product for the sequence-independent offset Ci. The predicted relative reaction rates

are fitted to k̃obscat,i (Sj) = kobscat,i (Sj) /k
obs
cat (WT ), the relative reaction rates observed for

each enzyme in the combined library.

Since the total number of fitting variables is greater than the number of measure-

ments, we employ the LASSO (Least Absolute Shrinkage and Selection Operator) algo-

rithm ([20], [21]), which reduces the number of non-zero fitting parameters by imposing

a penalty proportional to their L1 norm. We impose different penalties on one-body
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terms and two-body couplings, while the Ci offsets are left unconstrained. The problem

therefore reduces to finding a set of fitting parameters which minimize the following

expression:

min
h
(i)
k ,Hk,ε

(i)
kl ,Ekl,Ci

 1

Nn

n∑
i=1

N∑
j=1

∣∣∣k̃cat,i (Sj)− k̃obscat,i (Sj)
∣∣∣2

+λ

(
n∑
i=1

L∑
k=1

∣∣∣h(i)k ∣∣∣+
L∑
k=1

|Hk|

)

+βλ

 n∑
i=1

∑
(k,l)

∣∣∣ε(i)kl ∣∣∣+
∑
(k,l)

|Ekl|

 ,

(3.6)

where λ and βλ are the regularization coefficients which determine the relative

importance of the L1 penalty terms. We have determined the penalty parameters λ

and β by 4-fold cross validation. All enzyme sequences Sj were randomly partitioned

into 4 equal-sized samples. One sample was assigned as the test set and the other 3 as

the training set on which the model was fitted. This procedure was repeated 4 times,

with each sample used exactly once as the test set. We varied λfrom 10−2.8 to 10−1.4

and β from 1 to 10. For each pair of λ and β, we calculated the mean-square error in

predicting the test set (the first term in Eq. (3.6)) and averaged it over all 4 cross-

validation runs (Fig. 3.3). The error was minimized for λ = 0.0079 and β = 2.7384;

these values were subsequently used to fit the model on the entire data set.

3.3.2 Checking validity of the model by synthetic data

Since the total number of potentially non-zero fitting parameters is larger than the

number of reaction rate measurements in the combined library, we have additionally

checked the consistency of the LASSO procedure by fitting our model to artificially

generated data. To generate the artificial data, we randomly chose 7 non-zero one-body

terms and 4 non-zero couplings for each G4,i and G3 landscape and for each enzyme

sequence (all other terms were assumed to be zero). These parameters were assigned

random values based on two Gaussian distributions which were obtained by computing

the mean m and the standard deviation σ of the one-body terms (m = 0.24, σ = 0.85)



14

Figure 3.3: Mean-square error as a function of the LASSO penalty parameters
λ and β: Shown are mean-square errors on the test set obtained via four-fold cross
validation. The square with the minimum mean-square error, highlighted in red, was
used to choose the optimal LASSO parameters.
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Figure 3.4: Pairwise model predictions on synthetic data: A set of artificial
reaction rates k′cat,i(Sj) was generated using a pairwise model with randomly sampled
parameters. A LASSO fit with cross-validation analogous to that used with real data
was employed to recover the parameters of the model. Shown are the comparison
between synthetically generated and predicted one- and two-aa model parameters (A)
and the corresponding free energy values (B).

and the couplings (m = −0.09, σ = 0.63) inferred from the combined library. The

sequence-independent offsets Ci were likewise sampled from a Gaussian distribution

with m = −5.52 and σ = 1.96, where the Gaussian was fit to the set of Ci’s obtained

after fitting the model to the reaction rate data in the combined library. We have

generated artificial k̃′cat,i values using these randomly chosen parameters:

k̃
′
cat,i (Sj) = exp

− 1

kBT

∑
k

h
(i)
k

(
A

(j)
k

)
+
∑
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kl

(
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k , A

(j)
l

)

−
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Hk

(
A

(j)
k

)
−
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Ekl

(
A

(j)
k , A

(j)
l

)
− Ci

+ r,

(3.7)

where r was randomly sampled from a Gaussian distribution with mε = 0.0 and

σε = 0.003 (σε is the mean-square error obtained after fitting the model to the reaction

rate data in the combined dataset). This artificial data set was treated as reaction

rate measurements, and the parameters of the model as well as free energy values were

subsequently inferred using LASSO as described above with a high accuracy(Fig. 3.4).

3.3.3 Results

We find that our fitting procedure yields sparse solutions for Michaelis-Menten free en-

ergy landscapes. Indeed, our collection of models for G3 and G4,i fitted to the combined
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Figure 3.5: Michaelis-Menten reaction rates predicted using the pairwise model with
cross-validation

data set with optimal one-body and two-body penalties contains a total of 113 out of

(n+ 1)L=300 possible one-body terms and just 54 out of (n + 1)Lp = 1656 possible

two-body couplings, that is, on average, 9.4 out of 25 possible one-body terms and 4.5

out of 138 possible two-body couplings per free energy landscape. Thus, the observed

kcat,i values of 11 products for 122 different sequences (1342 kcat,i values in total) are de-

scribed using just 178 parameters: 113 one-body terms, 54 two-body couplings, and 11

sequence-independent offsets Ci. The model fits the reaction rate data with R2 = 0.99

(Fig. 3.5). Note that we typically report reaction rates relative to kobscat (WT ), the ob-

served total reaction rate of the wild-type sequence: k̃cat,i (Sj) = kcat,i (Sj) /k
obs
cat (WT )

and k̃obscat,i (Sj) = kobscat,i (Sj) /k
obs
cat (WT ) are the predicted and observed relative reaction

rates for product i.

Since the range and the average of product-specific reaction rates vary widely de-

pending on the product type (Fig. 3.2), we expect that, for a particular product, the

complexity of the model and, correspondingly, the number of non-zero one-body terms

and two-body couplings will be correlated with the number of enzyme variants capable
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of making that product. Indeed, we find that the model complexity is the highest for

the original BFS product, (E)-β-farnesene, which is produced at non-zero rate by most

enzymes. This is not surprising since free energy landscapes for a given product that

are based on just a few enzyme variants with detectable output should be easier to

model and require fewer fitting parameters.

We observe that at 24 out of 25 positions under consideration (position 559 being

the sole exception), mutating a residue results in a change in one or, more typically,

several single-aa contributions to product-specific free energy landscapes (Fig. 3.6).

Interestingly, changes in G3 are predominantly negative, meaning that the mutations

tend to have adverse effects on the overall values of reaction rates (Eq. (3.2)). The

only exception to this rule is position 402. A Y402L mutation at this position does

not just increase the total reaction rate due to the product-independent lowering of

the free energy barrier, it also rebalances the enzyme specificity towards the cyclic

products, by lowering the relative reaction rates for linear products (E)-β-farnesene

(the original BFS product) and nerolidol and increasing the relative reaction rates for

cyclic products zingiberene, α-bisabolene, and α-bisabolol (Fig. 3.6). Thus 402 plays a

role of a ”gateway” cyclization-unlocking mutation between enzymes producing linear

and cyclic products. Other key positions which promote production of cyclic products

are 324 and 429. Finally, note that mutations at 10 out of 25 positions result in single-aa

terms that suppress (E)-β-farnesene production.

In addition to single-aa terms, the structure of the free energy landscapes is shaped

by 54 non-zero coupling terms between pairs of aa positions, 48 of which affect G4,i

values and the other 6 correspond to G3 (Fig. 3.7A). Interestingly, most of the G4,i

non-zero couplings contribute to a single free energy landscape corresponding to (E)-

β-farnesene – the original linear product of the wild-type BFS enzyme. Out of the

48 two-aa G4,i terms which determine enzyme specificity, 10 increase reaction rates for

cyclic products and only 2 decrease those rates; for linear products, 21 terms contribute

to a rate increase and 15 to a rate decrease. Overall, the values tend to be more negative

for cyclic products (Fig. 3.7B), meaning that, as a rule, two-body terms tend to promote

cyclization. As shown in Fig. 3.7C, only 8 aa pairs affect more than one free energy
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Figure 3.6: One-aa contributions to Michaelis-Menten free energies. Fitted

values of one-aa model parameters Hk(M) (G3) and h
(i)
k (M) (G4,i)

landscape: for example, the 398-429 coupling simultaneously increases the reaction

rates of cyclic products α-exo-bergamotene and zingiberene. Correspondingly, 37 aa

pairs have a single non-zero coupling term and therefore mutations at these positions

affect only one free energy landscape. The remaining 93 pairs of positions do not

contribute to the free energies at all.

Finally, we have demonstrated the predictive power of the pairwise model by testing

its ability to predict reaction rates of novel enzyme sequences, after training the model

on only a part of the available data. Specifically, we have randomly chosen 82 enzyme

sequences and trained the model with the LASSO constraint and cross-validation as

described above, using the k̃obscat,i values corresponding to those sequences as input. The

model was subsequently used to predict the k̃cat,i values for the remaining 40 enzyme

sequences which were not used in training the model, with R2 = 0.92 (Fig. 3.8A). Since

the prediction is dominated by several datapoints with larger values of kinetic rates, we

have also examined the distribution of the differences between predicted and observed

kinetic rate values (Fig. 3.8B) and the R2 values of partial datasets obtained by sorting

the set of observed kinetic rates by magnitude (Fig. 3.8C). We find that the prediction
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Figure 3.7: Two-aa contributions to Michaelis-Menten free energies. (A) Fit-

ted values of two-aa model parameters Ekl(M,M) (G3) and ε
(i)
kl (M,M) (G4,i). (B)

Box-and-whiskers plots (created using the boxplot function with default parameters in
MATLAB) for the distributions of two-aa model parameters for linear and cyclic en-

zyme products. (C) Two-aa model parameters Ekl(M,M) (G3) and ε
(i)
kl (M,M) (G4,i)

at 8 pairs of positions where two or more two-aa contributions adopt non-zero values.
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errors are in fact higher for the outliers. However, as expected, for very low kinetic

rates the errors become comparable to the predicted values themselves. As a result, the

R2 values are low until some of the large-value outliers are included into the dataset.

3.4 Significance of Biophysical Model

3.4.1 Structure of Michaelis-Menten free energy landscapes

The sparseness of the free energy models described above translates into Michaelis-

Menten free energy landscapes with simple and interpretable structure. To illustrate

this point, we first focus on the G4 landscape for the cyclic product -bisabolol (Fig.

3.9,3.10,3.11). In the combined library, this landscape is controlled by 14 one-aa and 3

two-aa model parameters; among one-aa parameters, 5 are above 1kBT , and 3 of those,

at positions 324, 402, and 429, enhance relative reaction rates for -bisabolol by lowering

the G4 barrier (Fig. 3.9). In comparison to these leading one-aa contributions, two-aa

terms play a secondary role. Consequently, in the M5 library, where the amino acid

mutations are restricted to positions 319, 402, 429, 555, and 557, the structure of the

free energy landscape is largely determined by the states of amino acids at positions

402 and 429 (a third position, 555, plays a secondary role) (red bars in Fig. 3.9). Thus,

the G4 landscape is divided into 4 distinct sectors, with the wild-type BFS sequence

(TYTHE at the 5 variable positions) being ≈ 3.2kBT less favorable for α-bisabolol

production than the 5-point mutant, ALGRG (Fig. 3.10). However, other sequences

in the same cluster, such as ALGHG and TLGHG, are characterized by even lower G4

barriers. In fact, as noted above, it is sufficient to carry out just two mutations, Y402L

and T429G, in order to obtain an α-bisabolol producing enzyme.

Although the specificity of a given enzyme is controlled by the relative heights of

the G4 barriers for each product, its overall output also depends on the height of the

G3 barrier which we have assumed to be independent of the product type. Similar

to the G4 landscape for α-bisabolol , the G3 free energy landscape in the combined

library is a function of just 20 one-aa and 5 two-aa model parameters, with only 4

one-aa parameters, at positions 320, 322, 555, and 402, above 1kBT (Fig. 3.12). Two



21

Figure 3.8: Prediction of novel reaction rates. (A) Comparison of predicted and
observed reaction rates kcat,i for 40 enzyme sequences which were not used in training
the model. The parameters of the model were obtained by LASSO with cross-validation,
using reaction rates for the other 82 enzyme sequences as input data. (B) Root-mean-
square error between predicted and observed product-specific kinetic rates. All k̃obscat,i(Sj)

values in the 40-sequence test set were divided into 102 bins of width 0.01. For k̃obscat,i(Sj)
values in each non-empty bin, shown is the root-mean-square error with respect to
predicted rates k̃obscat,i(Sj). (C) Shown are partial R2 values for the 40-sequence test set

in which all data points were sorted by the magnitude of the k̃obscat,i(Sj) values. Blue:

partial R2 values vs. fraction of all data points in the test set, starting from the lowest
values. Red: partial R2 values vs. fraction of all data points in the test set, starting
from the highest values.
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Figure 3.9: The values of all one-aa and two-aa non-zero parameters in the G4 pairwise
expansion for α-bisabolol fitted to the combined library data. Positions and position
pairs that occur in the M5 library are highlighted in red

of these positions, 402 and 555, are variable in the M5 library and hence the amino

acid states at these positions largely determine the structure of the G3 free energy

landscape (red bars in Fig. 3.12 and Fig. 3.13; positions 429 and 319 play a secondary

role). Interestingly, although positions 319 and 557 are characterized by small (319)

and zero (557) one-aa contributions, they shape the free energy landscape through a

two-aa term. We observe that the 5-point mutant, ALGRG, is lower in the overall

output than the wild-type sequence, TYTHE: the corresponding G3 value is lower by

≈ 1.2kBT , which makes the kinetic barrier higher overall. The Y402L mutation is the

only major contributor to lowering the free energy barrier (Fig. 3.12); consequently,

the TLGHE double mutant discussed above (Y402L/T429G) favors both α-bisabolol

production and high overall output.

To investigate the effect of these mutations on other products, we have considered

G4 free energy landscapes for the wild-type linear product, (E)-β-farnesene (Fig. 3.15,

3.16, 3.17), and another cyclic product of practical importance, zingiberene (Fig. 3.18,
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Figure 3.10: The free energy landscape for α-bisabolol G4 values on the M5 library,
which contains all combinations of mutant and wild-type amino acids at positions 319,
402, 429, 555 and 557. Each node on the landscape is labeled by a string of amino
acids at the 5 positions. Nodes that differ by a single amino acid substitution are
connected by an edge. The arrows and circles above the landscape indicate the number
of mutations away from the wild-type A. annua BFS sequence TYTHE. Each node is
colored according to the G4 value for α-bisabolol. In each column, sequences are sorted
according to the values of one-aa contributions at positions 402, 429 and 555, which
are the 3 largest among the 5 positions considered (Fig. 3.6). From top to bottom, the
sequences with a given number of mutations with respect to the wild-type sequence are
sorted in the following order: WWW, WWM, WMW, WMM, MWW, MWM, MMW,
MMM. Sequences which differ only at positions 319 and 557 (if any) appear in the order
W. . .W, W. . .M, M. . .W, M. . .M. All nodes are sorted into 4 clusters on the basis of
amino acids at positions 402 and 429 which have the largest one-aa contributions (red
bars in Fig 3.9). These positions are highlighted in bold in each sequence; all sequences
are color-coded according to their cluster assignments.
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Figure 3.11: Predictions of G4 for α-bisabolol on the combined library. All nodes
are arranged in circles according to the number of mutations away from the wild-
type A. annua BFS sequence. Nodes are clustered on the basis of positions 402, 429
and 555 in the order WWW, WWM, WMW, WMM, MWW, MWM, MMW, MMM
for clusters I-VIII, respectively. These three positions were chosen since they have

the highest position score: Pi =
∣∣∣hα−bisabololi

∣∣∣ +
∑

j 6=i |ε
α−bisabolol
ij | + |Hi| +

∑
j 6=i |Eij |,

which represents the sum of the absolute magnitudes of all one-aa and two-aa model
parameters associated with position i. Nodes in the same cluster are connected by
an edge if their sequences differ by a single amino acid substitution. Within each
cluster and each circular shell, nodes are sorted so as to minimize the number of edges
crossing each other. Large circles denote sequences in the combined dataset, whereas
small circles show sequences for which G4 values were predicted. Each node is colored
according to the G4 value for α-bisabolol.
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Figure 3.12: The values of all one-aa and two-aa non-zero parameters in the G3 pairwise
expansion fitted to the combined library data. Positions and position pairs that occur
in the M5 library are highlighted in red

Figure 3.13: The G3 free energy landscape values on the M5 library same as Fig. 3.10
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Figure 3.14: Predictions of G3 free energy landscape on the combined library same as
Fig. 3.11
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Figure 3.15: The values of all one-aa and two-aa non-zero parameters in the G4 pairwise
expansion for E-β-farnesene fitted to the combined library data. Positions and position
pairs that occur in the M5 library are highlighted in red

3.19, 3.20). Interestingly, the (E)-β-farnesene landscape is characterized by 17 one-

aa and 28 two-aa terms and thus can be expected to be more epistatic (Fig. 3.15),

although its projection onto M5 sequences is fairly sparse, being mainly determined

by aa states at positions 402 and 429 (Fig. 3.16). As expected, the TLGHE double

mutant (Y402L/T429G) and especially the 5-point mutant, ALGRG, are characterized

by sharply decreased levels of (E)-β-farnesene production. Correspondingly, the best

(E)-β-farnesene producing enzymes are those with aa at positions 402 and 429 left in

the wild-type state. The G4 free energy landscape for zingiberene is determined almost

exclusively by one-aa contributions (Fig. 3.18), of which aa states at positions 402,

429, and 555 structure the landscape’s projection onto M5 sequences. Since the Y402L

mutation is the only one favorable for zingiberene production, sequences in the ”LT”

cluster (shown in red in Fig. 3.19), which includes a single mutant TLTHE, are best

zingiberene producers.

It is also informative to consider the free energy landscapes on all sequences from

the combined library. In Fig. 3.11, nodes are arranged radially around the wild-

type sequence according to the number of mutations. Sequences are clustered into 8

sectors on the basis of aa states at positions 402, 429 and 555, which contribute the

most when both one-aa and two-aa terms are taken into account. In addition to 122
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Figure 3.16: The free energy landscape for E-β-farnesene G4 same as Fig. 3.10

sequences in the combined dataset, we have made predictions for 69 additional sequences

which were chosen to fill in the gaps in mutational pathways connecting experimentally

characterized sequences. Clusters VII and VIII, which have both Y402L and T429G

mutations (cluster VII has H whereas cluster VIII has R at position 555), are enriched

the most in α-bisabolol producing enzymes (Fig. 3.11). These clusters, along with

clusters V and VI, tend to contain sequences that are least favorable for (E)-β-farnesene

production due to the Y402L mutation (Fig. 3.17). For zingiberene, the most favorable

sequences are concentrated in cluster V, although the G4 free energy barrier is rarely

lowered by more than 1kBT (Fig. 3.20). Finally, sequences with higher values of G3

(which is beneficial for the overall output) tend to be found in clusters V and VII (Fig.

3.14). In summary, sequences in cluster VII (Fig. 3.11,3.14) are the best candidates for

α-bisabolol production in the combined library; specific candidates can be chosen based

on how critical it is to produce α-bisabolol specifically (as opposed e.g. to a mixture of

α-bisabolol , zingiberene, and other cyclic products).
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Figure 3.17: Predictions of G4 for E-β-farnesene same as Fig. 3.11
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Figure 3.18: The values of all one-aa and two-aa non-zero parameters in the G4 pairwise
expansion for zingiberene fitted to the combined library data. Positions and position
pairs that occur in the M5 library are highlighted in red
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Figure 3.19: The free energy landscape for zingiberene G4 same as Fig. 3.10

3.4.2 Epistasis on free energy landscapes

The notion of epistasis is closely related to the extent of non-linearity and ruggedness

observed in fitness or energy landscapes ([22], [23], [24]). In its most basic form, epistasis

involves aa states at two distinct positions in the sequence. In the case of two aa states

(such as the W and M states), epistatic interactions allow for a simple geometric

interpretation (Fig. 3.21). Note that the no-epistasis scenario implies the absence of

an energetic or a fitness coupling between the two sites, while the other three scenarios

(magnitude, sign or reciprocal sign epistasis) are controlled by the magnitude and the

sign of the relevant coupling terms. In our case, only the MM coupling can be non-

zero by construction; however, the two aa sites in question are embedded into longer

sequences and therefore the amount and the type of epistasis may also be affected by

the two-aa terms in which one of the partners is outside of the current pair.

Since the magnitude and the sign of epistasis between two aa sites depend on the rest
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Figure 3.20: Predictions of G4 for zingiberene same as Fig. 3.11

Figure 3.21: The four types of epistasis in a two-site system. The aa at each site
can be in either W or M state. Panel I: no epistasis, with each mutation contributing
the same amount to the total free energy (or fitness) regardless of the aa state at the
other site. Panel II: magnitude epistasis, where the magnitude (but not the sign) of the
aa free energy (or fitness) contribution depends on the aa state at the other site. Panel
III: sign epistasis, where for one of the sites, the sign (and, in general, the magnitude)
of the aa free energy (or fitness) contribution depends on the aa state at the other site.
Panel IV: reciprocal sign epistasis, where the aa free energy (or fitness) contribution at
both sites depends on the aa state at the other site.
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of sequence, we have focused our attention on the subsets of sequences which are identi-

cal outside of the two positions i and j for which epistatic interactions are computed. At

these positions, data has to be available for all 4 aa states: (W,W ),(W,M),(M,W ) and

(M,M). These requirements result in 4 sequence subsets of the same size: Tij (W,W ) =

[S
(1)
1 , S

(1)
2 , . . . , S

(1)
n ], Tij (W,M) = [S

(2)
1 , S

(2)
2 , . . . , S

(2)
n ], Tij (M,W ) = [S

(3)
1 , S

(3)
2 , . . . , S

(3)
n ],

and Tij (M,M) = [S
(4)
1 , S

(4)
2 , . . . , S

(4)
n ] (Fig. 3.22). Next, we compute the free energies

Gij (W,W ), Gij (M,W ), Gij (W,M), and Gij (M,M) which are simply the G3 or G4

free energy values averaged over all sequences in the corresponding Tij subset. Finally,

we define the differences of the averaged free energies along each edge in the geometric

shapes of Fig. 3.21: ∆1 = Gij (W,M) − Gij (W,W ), ∆2 = Gij (M,W ) − Gij (W,W ),

∆3 = Gij (M,M) − Gij (M,W ), and ∆4 = Gij (M,M) − Gij (W,M). Then the four

epistasis types can be succinctly summarized as follows: ∆1 = ∆3 and ∆2 = ∆4 cor-

respond to the absence of epistasis, otherwise sgn(∆1) = sgn(∆3) and sgn(∆2) =

sgn(∆4) represent magnitude epistasis, sgn(∆1) 6= sgn(∆3), sgn(∆2) = sgn(∆4) or

sgn(∆1) = sgn(∆3), sgn(∆2) 6= sgn(∆4) represent sign epistasis (the two cases corre-

spond to two opposite pairs of edges in Fig. 3.21, panel III), and sgn(∆1) 6= sgn(∆3),

sgn(∆2) 6= sgn(∆4) correspond to the reciprocal sign epistasis. Note that on fitness

landscapes, sign epistasis can significantly affect genotype accessibility by making some

evolutionary trajectories unavailable or unlikely ([22]), whereas reciprocal sign epistasis

is a necessary condition for the existence of multiple local maxima ([25]).

Next, we define an epistatic score ESij as the absolute magnitude of the difference

between the ∆ values on the two pairs of opposite edges in the geometric shapes shown

in Fig. 3.21:

ESij = |∆4 −∆2| = |∆3 −∆1| , (3.8)

such that ESij = 0.0 in the case of no epistasis, and positive otherwise.

Consistent with the above discussion of Michaelis-Menten landscape structure and

appearance, all free energy landscapes are characterized by a limited amount of epis-

tasis. Indeed, in our combined dataset we find only 16 pairs of positions i and j for

which the above analysis of epistatic interactions can be carried out:
(
5
2

)
= 10 pairs
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Figure 3.22: Schematic representation of a set of sequences S
(a)
k divided into

4 subsets Tij(A,B) of equal size, where A,B = [W,M ]. The sequence subsets are
used to calculate the epistasis score ESij for aa positions i and j, as described in the
text. Note that outside of the positions i and j, sequences in each subset are exactly the
same. (C) Plot of the free energy epistasis scores ESij vs. the Cα−Cα spatial distances
(in ) between aa positions i and j. All epistasis scores with magnitudes < 0.01 were
excluded from the plot. A vertical dashed grey line at 15.8 shows the average Cα−Cα
distance for all 138 aa pairs.
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come from the M5 library, with 23 = 8 sequences in each Tij subset, 1 pair (402-

430) has 3 sequences in each Tij subset, and 5 more pairs occur on the background

of a single sequence. Since there are 12 distinct free energy landscapes, we have 192

potentially epistatic instances in our dataset. Out of those, only 15 pairs are char-

acterized by ESij > 0.01kBT , with 13 exhibiting magnitude epistasis, 1 showing sign

epistasis (positions 430-467 on the G3 landscape, with ES430-467 = 0.03kBT ), and 1

more demonstrating reciprocal sign epistasis (positions 430-467 on the G4 landscape

for cis–bergamotene, with ES430-467 = 0.44kBT ). Interestingly, 10 out of 13 pairs with

magnitude epistasis occur on the (E)-β-farnesene landscape, and 2 other instances oc-

cur on the G3 landscape. Thus, (E)-β-farnesene production mediated by a wild-type

enzyme is characterized by significantly more pronounced epistatic interactions than

production of cyclic terpenes by the enzymes in our mutant library.

To investigate whether higher levels of free energy epistasis occur in pairs of residues

that are close to each other in 3.12 space, we have plotted the 15 pairs of residues with

non-zero ESij scores vs. the corresponding Cα−Cα distances in Fig. 3.23. Although the

two residues in pairs with top 3 ESij values do tend to be closer to each other than 15.8

, the average distance between all 138 pairs under consideration (cf. the vertical dashed

line in Fig. 3.23), the overall trend is rather weak, especially if all pairs that are close to

each other in the linear sequence, such as 555-557, are excluded from the consideration.

For example, the 319-555 pair on the (E)-β-farnesene landscape exhibits significant

magnitude epistasis, despite the fact that these residues are separated by more than 20

Å. Remarkably, the 430-467 pair appears as epistatic on 3 free energy landscapes, with

the corresponding ESij scores ranked 1, 3, and 15 by absolute magnitude (out of 15

pairs with ESij > 0.01kBT .

Strong epistasis between positions 430 and 467 can be readily rationalized by their

spatial proximity in the BFS structural model (Fig. 3.24A). The residues in the 430-467

pair are within van der Waals distance (< 3Å) from each other and are located at the

bottom of the active site, making direct contacts with the isopropenyl tail of the sub-

strate FPP. As such, substitutions at these positions are expected to be interdependent,

with hydrophobic contacts likely accounting for the physical interactions between the
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Figure 3.23: Plot of the free energy epistasis scores ESij vs. the Cα − Cα spatial
distances (in ) between aa positions i and j. All epistasis scores with magnitudes
< 0.01 were excluded from the plot. A vertical dashed grey line at 15.8 shows the
average Cα − Cα distance for all 138 aa pairs.
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Figure 3.24: Structural basis of epistasis on free energy landscapes. Shown are
ribbon diagram cut-outs of the BFS structural homology model (created in I-TASSER
([26], [27]) with docked FPP substrate (mesh) ([6]). Magnesium ions (purple spheres)
coordinate the pyrophosphate moiety at the top of the active site. (A) Amino acids
at positions 430 and 467 interact with each other and with the isopropenyl tail of the
substrate at the bottom of the active site. (B) Amino acids at positions 402 and 429
are in spatial proximity with each other and with the isopropenyl tail of the substrate.

two residues, at least in the wild-type.

3.5 Fitness models

We have developed a class of biophysical fitness landscapes based on the Michaelis-

Menten theory of enzyme kinetics and energetics. We start with an assumption that

all products produced by a given enzyme can be classified into correct and incorrect.

Making a correct product results in a fitness gain while making an incorrect product

results in a fitness loss due to the necessity of its removal or degradation. In a biotech-

nology setting, products are classified into correct and incorrect by the researcher in a

context of a specific project, whereas in a cellular setting the needs of the cell and the

associated fitness gains and losses may be time- or environment-dependent. Thus, in

general a single enzyme’s fitness F is given by a weighted sum over fitness gains and

losses associated with each product:
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F =
∑

i∈correct
αini −

∑
i∈incorrect

βini, (3.9)

where ni is the number of product molecules of type i produced per unit time

and αi, βi are the corresponding fitness gains and losses per product molecule. Note

that αi = α
′
i − γ, βi = β

′
i + γ, where γ > 0 is the fitness cost of making or acquiring a

substrate molecule (for example, γ is expected to be close to 0 if the substrate molecules

are abundant in the environment). We assume that αi > 0,∀i or, in other words, that

benefits of making the correct products outweigh all the associated costs (products that

are less valuable than substrates can be accounted for in the second term on the right-

hand side). In the absence of information on product-specific rewards and penalties,

we set all fitness gains and losses to be product-independent, which makes the fitness a

weighted difference between the total number of correct and incorrect product molecules

produced per unit time:

F = α
∑

i∈correct
ni − β

∑
i∈incorrect

ni. (3.10)

Note that in a cellular setting, fitness gains and losses may depend on the number of

produced molecules: αi = αi(ni), βi = βi(ni). For example, fitness may be maximized

only if a given molecule’s production rate is close to optimal; overproduction may

lead to diminished returns and even sign reversal. Although such extensions are easy

to model within our framework, here we focus on the product type- and product rate-

independent scenario (Eq. (3.10)). For simplicity, we label all cyclic products as correct

and all non-cyclic products as incorrect; alternative scenarios such as a single correct

product (favoring specific enzymes typically found in nature) can be easily considered.

Within the Michaelis-Menten framework, ni is given by the reaction velocity per

enzyme molecule:

ni = kcat,i
c

KM,i + c
, (3.11)

where KM,i is the Michaelis constant and c is the substrate concentration. Thus,
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F (c) = α
∑

i∈cyclic
kcat,i

c

KM,i + c
− β

∑
i∈non−cyclic

kcat,i
c

KM,i + c
. (3.12)

In the high substrate-concentration limit (c� KM,i, ∀i), the enzyme velocity reaches

its maximum value and the expression for fitness becomes

F (c) = α
∑

i∈cyclic
kcat,i − β

∑
i∈non−cyclic

kcat,i. (3.13)

In this limit, fitness is simply a function of the enzyme’s reaction rates and is inde-

pendent of substrate concentration. In the low substrate-concentration limit (KM,i �

c,∀i),

F (c) = c[α
∑

i∈cyclic

kcat,i
KM,i

− β
∑

i∈non−cyclic

kcat,i
KM,i

]. (3.14)

In this case, fitness is proportional to the substrate concentration c and depends on

both reaction rates and Michaelis constants. Moreover, if the height of all the G3-G4,i

barriers is low, such that kcat,i � k−1,∀i, fitness becomes approximately independent

of the reaction rates and the product type:
kcat,i
KM,i

≈ k1, and the overall enzyme velocity

is determined by the height of the G1-G2 free energy barrier (Fig. 3.1).

Note that if we do not know anything about substrate concentration a priori, we

can assume that it is uniformly distributed in the [cmin, cmax] range. Then the expected

value of F is given by

F =
1

cmax − cmin

∫ cmax

cmin

dcF (c). (3.15)

If cmax � KM,i, ∀i, the integral in Eq. (3.15) is dominated by the high substrate-

concentration limit and we again recover Eq. (3.13). Therefore, we focus on the high

substrate-concentration case (Eq. (3.13)) in the subsequent analysis.

3.5.1 Structure of the fitness landscape and epistatic interactions.

We have computed fitness values for each sequence in the combined library using Eq.

(3.13). Since the overall scale of each term and therefore the absolute magnitude of the
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Figure 3.25: Fitness landscape for the M5 library. All fitness values were computed
using Eq. (3.13) with α = 1, β = 1 and predicted (rather than observed) reaction rates
kcat,i. The landscape is presented as in Fig. 3.10, with the nodes sorted in the same
order to facilitate visual comparisons. Each node is colored according to its fitness
value.

fitness contribution cannot be determined from our analysis alone, we have set α = 1,

β = 1 and have all shifted fitness values such that the fitness of the wild-type BFS

sequence, TYTHE, is exactly zero (see Fig. 3.25 for the fitness landscape on the M5

library). We have chosen to use predicted rather than observed reaction rates in Eq.

(3.13); switching to the experimentally observed rates would have made little difference

since our model predicts reaction rates kcat,i with high accuracy (Fig. 3.5).

Similar to the free energy landscapes discussed above, the fitness landscape exhibits

simple structure: creation of cyclic products is enabled by a single gateway mutation,

Y402L, so that a single-point mutant, TLTHE, exhibits a significant jump in fitness. In

fact, sequences with L at position 402 and G or T at position 429 are the best producers

of cyclic products; however, the 5-point mutant, ALGRG, has somewhat lower fitness,

largely because its overall reaction rate is lower (Fig. 3.13). The relatively simple

structure of the fitness landscape is somewhat expected since the reaction rates in Eq.
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(3.13) depend on the G3 and G4 free energy values, which are determined by just a few

non-zero two-aa terms. On the other hand, fitness is a non-linear function of the free

energies, which can lead to epistasis even if the underlying free energy model has no

two-aa terms at all ([28], [29]).

To study the amount of epistasis on our fitness landscape, we have computed

epistatic scores ESij using Eq. (3.8) for the 16 pairs of positions identified earlier

in the epistatic analysis of free energy landscapes (Fig. 3.26). The only difference with

the previous analysis is that fitness values rather than free energy values were averaged

in each Tij subset. We have categorized all pairs with ESij < 0.05 as exhibiting no epis-

tasis. Out of the remaining 9 pairs, 8 show sign epistasis and 1 exhibits reciprocal sign

epistasis, indicating that the fitness landscape is indeed rougher than the free energy

landscapes considered earlier and, as a consequence, single-point mutation evolutionary

trajectories are expected to be constrained.We do not observe a prominent correlation

between fitness epistatic scores and the corresponding Cα − Cα distances (Fig. 3.26):

although the 430-467 and 402-429 pairs ranked first and third by the absolute mag-

nitude of the epistatic score are separated by less than the average distance between

all aa pairs, the residues in the 402-555 pair, which is ranked second, are nearly 25

apart. Strikingly, the 402-555 pair does not contribute to epistasis on any of the free

energy landscapes (Fig. 3.23). Thus, considerable long-range couplings can be created

purely through non-linearities in the Michaelis-Menten fitness function. In contrast,

the 430-467 pair is the most significant contributor to epistatic interactions on the free

energy landscapes and its residues are in direct contact with one another (Fig. 3.23,

Fig. 3.24A).

Similar to the 403-467 pair, residues 402 and 429 are within 5 of one another and

make direct contacts with the FPP substrate (Fig. 3.24B). Given their shared role

in forming one side of the active site, the residues in the 402-429 pair are positioned

to influence substrate folding and guide product formation. The role of residue 402

in activating cyclization stems from its interaction with the first isoprene unit of the

substrate, which enables an initial isomerization reaction. Residue 429 resides deeper

in the binding pocket and therefore more likely influences substrate folding. Together,
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Figure 3.26: Plot of the fitness epistasis scores ESij vs. the Cα − Cα spatial distances
(in ) between aa positions i and j. A horizontal solid black line indicates the 0.05 cutoff
separating residue pairs considered non-epistatic from the rest. A vertical dashed grey
line at 15.8 shows the average Cα − Cα distance for all 138 aa pairs considered.
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the 402-429 pair enables cyclization of a substrate conformation that readily undergoes

1,6 cyclization while the reaction is terminated by water capture, likely associated with

magnesium ions positioned near the mouth of the active site. In sum, the fact that the

402-429 pair shows strong epistasis in cyclic product formation is entirely consistent

with its structural role in the active site.

Given the large distance between residues at positions 402 and 555 (≈ 25), we

thought to rationalize the potential physical basis for interactions in the 402-555 pair

through a network analysis of the BFS protein structure, whose purpose is to delineate

the intervening interactions (Fig. 3.27). The network analysis identified 3 shortest

pathways with 4 edges, likely not mutually exclusive, that connect residues 402 and

555 (Fig. 3.27B). Pathway 1 involves interactions exclusively between aa in the pro-

tein structure, while pathways 2 and 3 depend on intervening connections through the

isopropenyl chain of the FPP substrate. Interestingly, pathway 2 transits through 429,

the gateway residue that controls cyclic product synthesis. Pathway 3 transits through

position 327, a conserved catalytic aspartic acid of the DDxxD motif. Subtle mis-

alignment of the pyrophosphate-magnesium complex coordinated by the DDxxD motif,

propagated through this interaction network, may provide an explanation for reduced

catalytic efficiency observed upon aa substitution at position 555.
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Figure 3.27: Network analysis of structurally distant interactions in the 402-
555 pair. (A) Residues 402 and 555 are highlighted on the BFS structural homol-
ogy model (created in I-TASSER ([26], [27]) with docked FPP substrate (mesh) ([6]).
Residues involved in interaction networks are labeled. Magnesium ions are shown as
purple spheres. (B) Shortest interactions paths between residues 402 and 555 were an-
alyzed in Cytoscape ([30]). A network model was constructed from the BFS structural
homology model using RINerator ([31]). Three shortest interaction paths of identi-
cal length were found, as indicated by color. Network edges that are not part of the
shortest paths are shown in light grey. Nodes are labeled by aa type and position, by
the substrate isoprene unit number (ISP-1,2,3), or as the pyrophosphate moiety (PPi).
Contacts with magnesium ions are not shown.
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Chapter 4

Discussion and Conclusion

We have described each enzyme in our library using the Michaelis-Menten model of

enzyme kinetics ([12], [13]). The Michaelis-Menten framework allows us express enzy-

matic reaction rates and the overall reaction velocity in terms of free energies assigned

to various enzymatic states (Fig. 3.1). These free energies are closely related to the

free energies of protein folding and binding which have been extensively explored using

protein engineering methods ([32], [33], [34]), with ∆∆G data available for multiple pro-

teins ([35]). These studies reveal that effects of multiple mutations on protein energetics

are nearly additive, especially if the mutations are distant from each other in the linear

sequence ([36]). Consequently, the assumption of independent energetic contributions

of residues at different sites has been extensively used in biophysical models of pro-

tein evolution that express organismal fitness in terms of protein energetics ([37], [38],

[39],[29], [40]). In the light of these previous findings, we expected Michaelis-Menten

free energies to be approximately additive as well, with two-aa coupling terms playing a

secondary role. To check this hypothesis, we have represented the free energies as a sum

of one- and two-aa contributions which we treated as fitting parameters. The resulting

model, supplemented with a LASSO constraint which is designed to minimize the num-

ber of non-zero fitting parameters ([21]), was fit to the reaction rate data, reproducing

it with a high degree of accuracy (Fig. 3.5).

As expected, the model has very few non-zero two-aa terms: on average, just 4.5

out of 138 coupling parameters contribute to a given free energy landscape. For ex-

ample, the α-bisabolol G4 landscape is controlled by 3 coupling parameters (Fig. 3.9).

Interestingly, the (E)-β-farnesene G4 landscape is by far the most non-additive as it

is characterized by 32 non-zero coupling terms, followed by the G3 landscape with 6
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couplings (Fig. 3.7A). Since both of these landscapes affect reaction rates of the lin-

ear product of BFS, a wild-type enzyme, it is conceivable that the corresponding free

energies have been evolutionarily fine-tuned, resulting in a more coupled, non-linear

landscape. This implies that novel enzymatic functions can evolve quickly through

pathways that do not require establishment of intricate networks of aa interactions

right away. However, these networks start to play an increasingly prominent role as the

novel enzyme is further optimized by evolution for efficiency and specificity.

We have sought to quantify the extent of ruggedness on the Michaelis-Menten free

energy landscapes by considering epistatic interactions between various aa pairs. The

notion of epistasis, including higher-order epistasis, has been extensively studied in the

context of fitness landscapes ([41], [16], [42], [43]). Epistasis can profoundly alter evo-

lutionary dynamics on fitness landscapes by restricting the availability of evolutionary

trajectories ([22]) and by creating local maxima that can trap or slow down evolving

populations ([25]). We have extended the idea of epistasis to the free energy landscapes;

as with fitness, aa pairs have been classified into no-epistasis, magnitude epistasis, sign

epistasis, and reciprocal sign epistasis categories (Fig. 3.21) ([24]). We have also in-

troduced an epistatic score ESij which is zero in the case of no epistasis and positive

otherwise (Eq. (3.8)). Note that in general this score depends not only on the mag-

nitude of the two-aa term between residues i and j, but also on the coupling to the

residues outside of the i, j pair. Consistent with the previous observations in the liter-

ature described above and the simple, easily interpretable structure of the free energy

landscapes constructed in this work , we find free-energy epistasis to be of relatively

limited importance, with only 15 out of 192 pairs considered exhibiting any epistasis

at all, 13 of which in the magnitude epistasis category. These findings appear to be at

variance with a recent report in which significant epistasis was observed in antibody-

antigen binding free energies ([44]). However, we note that our analysis is effectively

limited to the 2-letter alphabet and therefore our observations may change once the

full spectrum of mutations is included. Furthermore, enzyme evolution, and specialized

metabolic enzymes in particular, may be subject to different constraints than evolu-

tion in the adaptive immune system. Finally, our analysis is likely affected by the fact
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that, by design, we explore sequence space around a naturally occurring enzyme, BFS.

Thus, our findings reflect ”micro” rather than ”macro” evolution which can be studied

e.g. on the basis of protein sequence alignments involving multiple protein families and

multiple organisms. Analysis of such alignments tends to yield much less interpretable

models characterized by numerous non-zero coupling terms ([16], [17], [18], [45], [46];

[47], [48]). Interestingly, although there is a certain degree of enrichment for spatial

proximity in strongly epistatic pairs, many of such pairs are separated by > 15 Å (Fig.

3.23), conceivably as a result of long-range allosteric interactions mediated by networks

of intervening amino acids.

Even if the underlying free energy model is purely additive, the corresponding bio-

physical fitness function may be characterized by epistasis and local maxima if it is

a non-linear function of the free energies, as observed in models that include protein

folding stability and binding affinity as explicit fitness determinants ([37], [29]). We

have significantly extended this prior work by constructing a biophysical fitness land-

scape in terms of free energies of the Michaelis-Menten model. Each enzyme’s fitness

is assumed to be proportional to its total reaction velocity for the ‘correct’ product(s)

as dictated by a given biological or biotechnological context. Production of incorrect

products is penalized in a similar way. Thus, highly tuned enzymes that produce the

maximum number of correct molecules and the minimum number of incorrect molecules

per unit time would be characterized by high fitness values. Extensions to fitness func-

tions in which e.g. the optimal rates of production of correct products are enforced are

straightforward but are not the main focus here.

As expected, the fitness landscape is more epistatic than the free energy landscapes

due to its non-linear nature, with 9 out of 16 aa pairs under consideration characterized

by significant epistatic scores (8 of these are in the sign epistasis and 1 in the reciprocal

sign epistasis category). Thus, the fitness landscape is rougher than its underlying free

energy components, which, depending on the balance between selection, mutation, and

genetic drift in evolving populations, may render some of the evolutionary pathways

inaccessible. Nonetheless, projecting the fitness function onto the M5 library results in a

global maximum, TLTHE, and no local maxima (Fig. 3.25). Weak correlation between
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epistatic scores and spatial distances (Fig. 3.26) is less surprising in this case since

fitness values may depend on the states of residues that are not necessarily energetically

coupled, due to compensatory mutations, as for example occurs in biophysical fitness

models that depend on the total free energy of protein folding and binding ([37], [49],

[29]).

In conclusion, we have constructed Michaelis-Menten free energy landscapes for each

enzyme of the library, study their structure quantitatively, and use them as input to

a simple biophysical model of enzyme fitness. Our analysis highlights a fundamental

evolutionary mechanism of creating epistatic interactions through non-linearities in the

fitness function and underscores the surprising simplicity and interpretability of enzyme

energetics. In the future, we intend to investigate the universality of our findings by

employing additional synthetic libraries (in particular, going beyond the 2-letter alpha-

bet), and by exploring sequence space around wild-type enzymes from other protein

families.
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Chapter 5

Introduction to Community Detection

Many complex systems in real life such as social media, web linkage and biological in-

teractions can be represented as a network. All these networks contain subgroups of

nodes that more densely connected to themselves than the rest of the network. These

sets of nodes are called communities. Detecting these communities gives us impor-

tant information about the network. For example, in Wikipedia network a community

represents a set of pages of similar topics; in gene co-expression network a commu-

nity represents a set of genes which have the same functionality; in social network a

community represents a community of people.

Despite the intuition behind the concept, a clear definition of communities does not

exist. The most strict definition of a community is a clique but it is too strict to include

communities in most of the real world networks. The most widely accepted quantitative

definition of a community structure in a network is the modularity score ([50]) defined

by Newman as

M =
∑
i

(
eii − a2i

)
, (5.1)

where eii is the fraction of edges that fall within community i and ai is the fraction of

all ends of edges that are attached to vertices in community i.

Optimizing the modularity score is the basis behind several methods. Multilevel

method ([51]) greedily clusters a network in several rounds to optimizing modularity

score. Leading eigenvector ([52]) method uses the largest eigenvector of the modularity

matrix to cluster a network. Algorithms such as Walktrap ([53]) use random-walks

to extract tight-knit communities while Label Propagation ([54]) uses labels randomly

propagated through the network to identify communities.
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In our method, we assume that a community is a set of nodes such that random-

walks restricted in a community reach steady state in a few steps. Based on this

assumption we calculate properties of random-walks on community structured networks.

These properties are exploited to find the marginal probability of community identity of

each node of the network, hence partitioning the network into communities. On testing

our algorithm on multiple artificial and real-world networks, we find that it performs

better or as good as other competitive algorithms.

Chapter 6 talks about properties of random-walks on complex and community struc-

tured networks. This formalism is used in proposing a community detection algorithm

in Chapter 7. We validate the performance of our algorithm on several artificial and

real-world networks in Chapter 8. Finally, Chapter 9 talks about the conclusion and

other ideas derived from this project.

The main motivation behind this particular method for community detection came

through our former project aimed at finding community statistics of a network by

random-walks, mentioned in the appendix of the thesis. This was a continuation to

a previous work of the group ([55]). The project was aimed at finding statistics of

network community structure such as the number of communities and the size of each

community and asymptotically cluster the whole network into communities. Although

this method of community detection was successful in its aim, it was neither competitive

in speed nor in accuracy to other community detection methods, making the method

redundant. Despite these severe shortcomings, the method provided all the necessary

tools and ideas for development of the current method for community detection.
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Chapter 6

Random-Walks on complex networks

Consider a network with symmetric edge weights: wij = wji where wij is weight of edge

joining node j to node i (Fig. 6.1). Consider discreet random-walks on this network

such that the probability of transition from node i to node j in one step is given by

P (i→ j) =
wij∑

k∈nn(i)wik
, (6.1)

where nn(i) refers to the nearest neighbors of the node i. In this type of random-walks

the steady state probability of the node i (Pst(i)) is proportional to the sum of weights

of the edges (wi) contained by the node

Pst(i) =
wi∑

j∈Networkwj
, (6.2)

where wi =
∑

j wij .

Now, consider a continuous time random-walk on the same network. At each quanta

of time δt, the random-walker leaves the node on which it is currently with probability

P = δt/τ (6.3)

where τ is the mean waiting time on each node. Thus, the probability of staying on

the same node for time t is e−t/τ . Similarly the probability of making `th jump at time

t is given by

P (k, t) =
1

(`− 1)!
(`− 1)te−t/τ (6.4)

After the random-walker jumps away from node i, it goes to j with the same probability

as in discreet time random-walks. Many properties of this type of random-walks, like
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Figure 6.1: Random-walks on a complex network

the steady state probability are the same as that of the discreet random-walks. We

shall use the continuous-time random-walks to calculate some first-passage properties

and then convert these values for discreet time random-walks.

6.1 Mean Return Time

Consider a continuous time random walk with mean waiting time τ = 1. Now, if the

random-walker was on node n at time t = 0 and is at the same node after time t, the

possibilities are that the random-walker did not jump till time t, or stayed there for

some time t′ < t and returned in rest of the time. Thus for P (n, t): probability that

random-walker is at the same node n at time t and F (n, t) : probability to return to

the node n for the first time at time t

P (n, t) = e−t +

∫ t

0
e−t

′
F (n, t− t′)dt′ +

∫ t

0

∫ t2

0
e−t1F (n, t2 − t1)F (n, t− t2)dt1dt2 + .....

(6.5)
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Taking Laplace transform we get

P̃ (n, s) =
1

1 + s

( ∞∑
i=0

(F̃ (n, s))i

)
=

1

(1 + s)(1− F̃ (n, s))
, (6.6)

where P̃ (n, s) =
∫∞
0 P (n, t)e−stdt and F̃ (s) =

∫∞
0 F (t)e−stdt. Thus,

F̃ (n, s) = 1− 1

(1 + s)P̃ (n, s)
(6.7)

Let S0(n, t) = 1−
∫ t
0 F (n, t′)dt′ be survival probability. Thus,

S̃0(n, s) =
1

s
(1− F̃ (n, s)) =

1

s(1 + s)(P̃ (n, s))
(6.8)

LetH(n, s) =
∫∞
0 (P (n, t)−Pst(n))e−stdt where Pst(n) is the steady state probability

of the node n. Note that H(n, 0) is finite but P̃ (n, 0) is infinite. So, our equation

becomes

S̃0(n, s) =
1

(1 + s)(Pst(n) + sH(n, s))
(6.9)

But the mean return time 〈T (n)〉 to the node n is
∫∞
0 tF (t)dt =

∫∞
0 S(t)dt. Thus

〈T (n)〉 = lim
s→0

S̃0(n, s) =
1

Pst(n)
=
W
wn

, (6.10)

where W =
∑

n∈networkwn.

Now, let Fc(n, t) refer to the return time probability for continuous time random-

walks and Fd(n, `) refer to the probability to return to the node n for the first time at

`th step in discreet time random-walks. From equation 6.4 we get

Fc(t) =

∞∑
`=0

1

(`− 1)!
(`− 1)te−tFd(`) (6.11)

But since 〈T (n)〉d =
∑∞

`=0 `Fd(n, `) and 〈T (n)〉c =
∫∞
0 tFc(n, t)dt we get

〈T (n)〉c =

∫ ∞
0

∞∑
`=0

(`− 1)t

(`− 1)!
e−tFd(`)dt =

∞∑
`=0

`Fd(n, `) = 〈T (n)〉d (6.12)

Thus, the mean return time is exactly same in continuous and discreet time random-

walks.
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6.2 Mean Return Time to a multiple nodes

Consider random-walks starting from a set of nodes S = {n1, n2, ..., nNp}. The initial

condition of the random-walks is

P (ni, t = 0) =
wni

WS
. (6.13)

where WS =
∑

ni∈S wni . To find the return time to this set, we tweak the network by

replacing all the nodes of the set S by a single node ns as shown in Fig 6.2. Thus,

the new network has a total of N − Np + 1 where N is the number of nodes in the

original network. The new network contains edges connecting node i to node j with

edge weights w′ij in the following way

• w′ij = wij for i, j 6∈ S

• w′is =
∑

j∈S wij for i 6∈ S

• w′ss =
∑

i∈S
∑

j∈S wij

Thus, for the node ns, w
′
ns

=
∑

ni∈S wni . This keep the sum of the weights of all the

links in the new network same as before, resulting in

P ′st(s) =
∑
ni∈S

Pst(ni) (6.14)

where P ′st(ns) refers to the steady state probability of node ns in the new network.

Further, the probability to step away from the node ns is same as the probability to

step away from all the nodes of the set S and so is the random-walks on rest of the

network without visiting the set of the nodes S. Thus, the return time process on the

set of nodes S is exactly same as that in this modified node ns. Hence,

〈T (S)〉 =
W
WS

, (6.15)

6.3 Higher moments and Return Time distribution

In this subsection we attempt to make approximations to the return time distribution

by finding higher order moments of return time. Let, S1(n, t) =
∫∞
t S0(n, t

′)dt′. Thus,

S̃1(n, s) =
1

s
(S̃0(n, 0)− S̃0(n, s)) =

H(n, s) + Pst(n) + sH(n, s)

(1 + s)(Pst(n) + sH(n, s))Pst(n)
(6.16)
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Figure 6.2: Modifying network by merging multiple nodes

Thus,

〈T 2(n)〉 = 2!S̃1(n, 0) = 2

(
1

Pst(n)

)2

(H(n, 0) + Pst(n)) (6.17)

Using similar approach, in the assumption N >> 0 we get,

〈T k〉 ≈ k!

(
1

Pst

)k
(H(n, 0) + Pst(n))k−1 (6.18)

Thus, we can approximate the survival probability as

S(n, t) =
1

G(n)
e
−Pst(n)

G(n)
t
, (6.19)

for G(n) =
∫∞
0 (P (n, t)− Pst(n))dt+ Pst(n).

Converting from continuous time to discreet random walks we get

〈T k(n)〉c =
∞∑
`=0

(`+ k − 1)!

(k − 1)!
Fd(n, `) (6.20)

Assuming that N >> k, we get 〈T (n)k〉c ≈ 〈T (n)k〉d. Thus, equation 6.19 can be used

for discreet random-walks as well.

6.4 Random-walks on community-structured networks

Note that the quantity G(n) in equation 6.19 is always greater than 1. The more

connected the network is the closer it is to 1. We assume that a community is such a

highly connected subunit of a network such that if the community C is disconnected

from the rest of the network, G(S) ≈ 1 if S ∈ C. Thus, the probability to return to the
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set S for the first time after ` steps, given that the random-walks is restricted to the

community is

P (`) =
Np〈w〉p
NC〈w〉C

e−(Np〈w〉p/NC〈w〉C)` (6.21)

where Np is the number of nodes in the set S, 〈w〉p is their average connectivity, NC

is the number of nodes in community C and 〈w〉C is their average connectivity. We

shall refer to the sum of connectivity of a set of nodes as the weighted size of the nodes

denoted by Wp = Np〈w〉p and WC = NC〈w〉C . It then follows that the probability to

not make a return for ` steps (i.e. the survival probability) given no transition outside

the community

S(`) = e−(Wp/WC)` (6.22)

Thus, the probability of making K returns to the nodes of set S in `C steps in the

community C is given by a poisson distribution

P (K|WC , `C) = Pois

(
K,Wp`C
WC

)
=

1

K!

(
Wp

WC
`C

)K
e−(Wp/Wc)`C (6.23)

Given K and Wp, and assuming uniform prior the we can obtain an estimate of the

quantity XC = `C/WC

X̂C =
K
Wp

(6.24)

The quantity XC can be used in finding community identity of unknown nodes in the

following way. Consider the events where a node i is visited kj times in random-walks

{RWj}nj=1 on a network with m communities {Cs}ms=1. Assume that in the random-

walks RWj , the random-walker takes `jC′ on each community C ′ of weighted size WC′ .

Now, if the node i ∈ C, then the probability of visiting the node i, kj times in random-

walks RWj is given by

P ({kj}|i ∈ C, {`jC ,WC}) = Πn
j=1Pois(kj , wiXjC) (6.25)

where XjC = `jC/WC and wi is the connectivity of the node i. Thus, if the community

of the node i is not known, using Bayes’ theorem, we can invert this probability to find

the probability that the node i ∈ C
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P (i ∈ C|{kj}, {XjC}) =
Πn
j=1Pois(kj , wiXjC)∑

{C′}

(
Πn
j=1Pois(kj , wiXjC′)

) (6.26)
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Chapter 7

Community Detection Algorithm

Consider a network with N nodes {ni}Ni=1 and m communities {Ci}mi=1. Let AN×N be

the transition matrix of the community where An′n = wn′n/wn is the probability to

jump from node n to node n′ in 1 step. We consider a matrix UN×m: the belief of

the partition of the network such that each element Unc is the belief that the node n

belongs to the community c. Consider V such that

V =

lmax∑
l=1

AlŨ (7.1)

where Ũ is a matrix such that Ũnc = wnUnc∑N
i=1 wnUnc

. Vnc is the expected number of

times the node n is visited in lmax step random-walks started from nodes of community

c. Assume that there are Gc such lmax step random-walks which started from nodes

of community c and let Xnc be the random variable which represents the cumulative

visits to the node n in these Gc random-walks starting from community c. Note that

the mean of the random variable Xnc is GcVnc. Now, if Gc = tgc then for t → ∞,

P (Xnc = tgcVnc) → 1. Thus, in thelimit t → ∞ we use tgcVnc as an observation for

the random variable Xnc. Assuming that the community identity of the node n is not

known, we get the probability that node n belongs to community c using equation 6.26.

P (n ∈ c|{tgc′Vnc′}, {Xc′c}) = lim
t→∞

Π{c′}Pois(tgc′Vnc′ ,Xc′cwn)∑
{c′′}

(
Π{c′}Pois(tgc′Vnc′ ,Xc′c′′wn)

) (7.2)

where Xc′c is the number of steps of random-walks c′ in community c per the weighted

size of community c. Using equation 6.24, we get Xcc′ = tgc(V
TU)cc′/

∑
{n} Unc′wn as

tgc(V
TU)cc′ is the number of visits from random-walks c to marked nodes of community

c′ and
∑
{n} Unc′wn is the weighted size of the marked nodes of each community. In the
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limit t→∞, equation 8 simplifies to

P (n ∈ c) = δc̃c for c̃ = argmaxc′′

∑
{c′}

(Vnc′ log(Qc′c′′)−Qc′c′′wn)gc′

 (7.3)

where Qcc′ = (V TU)cc′/
∑
{n} Unc′wn. Thus, we can assign community identities to

each node n. These community identities serve as the matrix U for the next iteration

(Unc = P (n ∈ c)).

Choice of gauge parameters gc: The gauge parameter gc determines the relative

weights of poisson distributions associated with random-walks which start from com-

munity c. To ensure uniformity we set gc such that the mean visits to a node n ∈ c from

random-walks starting from community c is independent of the parameters associated

with community c. Since the mean visits to the node n is gcQccwn, we get gc = 1/Qcc.

Choice of lmax: lmax should be big enough so that the random-walker diffuses

well in the starting community but not big enough to diffuse throughout the network.

Therefore, the best choice of lmax is the diameter of the network.

7.1 Walk-likelihood function

Thus, using the idea mentioned above we define the walk-likelihood function which

inputs U : the belief of the partition of the network and A: the transition matrix and

outputs U (o): the optimized partition of the network that has the same number of

communities as U . The algorithm is loop over the following 3 steps

1. Perform lmax steps random walks from each community:

Vnc ←
∑lmax

l=1

(∑
n′(Al)nn′wn′Un′c

)
2. Compute the rate of transition between communities:

Qcc′ ←
(V TU)cc′∑
n wnUnc′

3. Based on marginal probabilities, for each node n reassign Unc ← δc̃nc where

c̃n = argmaxc′′
(∑

c′
1

Qc′c′
(Vnc′ log(Qc′c′′)−Qc′c′′wn)

)
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Halting Criteria: To determine if the algorithm has converged we find the similar-

ity partitions in subsequent iteration normalized mutual information. The normalized

mutual information (NMI) between partitions U and U ′ is defined as

NMI(U,U ′) =
2
(∑m

c=1

∑m′

c′=1 PUU ′(c, c′)(logPUU ′(c, c′)− logPU (c)PU ′(c′))
)

∑m
c=1 PU (c) logPU +

∑m′

c=1 PU ′(c) logPU ′(c))
, (7.4)

where PU (c) =
∑

i Uic/N , PUU ′(c, c′) =
∑

i UicU
′
ic′/N , m and m′ refer to the number

of communities of the partition U and U ′ respectively, and N is the total number of

nodes in the network. Note that in this case m = m′. NMI is always between 0 and 1.

If NMI(U,U ′) = 1, the partitions U and U ′ are exactly same. Thus, we halt the process

if NMI between partitions obtained in subsequent iterations of the algorithm is greater

than the given threshold.

7.2 Initializing belief

Since the algorithm clusters the data in the assumption that the properties of the

belief of the partition of the network reflect the properties of the true partition of the

network, we require the belief of the network to be at least partially accurate. We use

the following methods for initializing the belief.

7.2.1 Non-negative Matrix Factorization

Non negative matrix factorization is a method of decomposing a non-negative matrix

XN1×N2 into two non-negative matrices LN1×m and Rm×N2 ([56],[57],[58]).

X = LR (7.5)

For clustering a graph into m communities using this method, the adjacency matrix of

the graph X is factorized into two non negative matrices L and R. We define U such

that Uic = argmaxiLic to obtain the partition of the graph into m communities. We

use sklearn package of python for NMF.
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7.2.2 Non-negative Double Single Value Decomposition

Non-negative Double Single Value Decomposition (NNDSVD) is a method to convert

the singular value decomposition (SVD) of a non negative matrix X to obtain an

approximate factorization X into two non negative matrices L and R ([59]). NNDSVD

is typically used as an initialization for NMF. We use the same method to obtain the

partition of the network from the matrix L as mentioned above for NMF. Note that

the partition obtained from NNDSVD often contain nodes which haven’t been assigned

to any community. NNDSVD provides a fast initialization whereas NMF provides a

slower but more accurate one.

7.3 Walk-likelihood bifurcation algorithm

Based on the ideas mentioned above, we define the Walk-likelihood bifurcation (WL

bifurcation) algorithm to partition a network into communities when the number of

communities in the network is unknown. We start this algorithm by assuming that the

whole network is a single community. The algorithm is a loop over the following two

steps

1. In this step, we initialize the belief for the walk-likelihood function by bifurcating

each community into two more communities using either SVD or NMF. Note that

at the start of the algorithm, this step bifurcates a network into two communities.

2. Applying the walk-likelihood algorithm, a more accurate division of the network

is formed. In order to check if the division of the communities is optimal, for

all pairs of communities, we check if combining any pair increases the modularity

score of the partition ([50]). The change in modularity after merging communities

c and c′ is given by

∆Mcc′ = 2(ecc′ − acac′) (7.6)

where ecc′ = (UTAU)cc′/
∑

nwn and ac =
∑

n Uncwn/
∑

nwn.If there exists at

least one pair of communities such that ∆Qcc′ > 0, we merge the pair of com-

munities c and c′ for which the increase in modularity score is maximum. After
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merging the two communities, we run the walk likelihood algorithm again with the

belief of the partition being the current partition of the network. This process

of merging communities and running the walk-likelihood function is continued

till there is no pair of communities left that increases the modularity score on

merging.

Halting Criteria: Similar to the walk-likelihood function, we halt this process

if the NMI between partitions obtained in subsequent iterations of the algorithm is

greater than the given threshold and the number of communities in two partitions

remain constant. The algorithm is also halted in case the number of communities

decreases in subsequent iterations.

In case a community cannot be further bifurcated, we avoid the attempt to bifurcate

it twice by checking if there is any match between communities of the current partition

and those of the previous partition. This is done by calculating the score

Ecc′ = 1−
2
∑

i U
(t)
ic U

(t−1)
ic′∑

i(U
(t)
ic + U

(t−1)
ic′ )

(7.7)

between the communities c and c′ of current iteration (U (t)) and previous iteration

(U (t−1)) respectively. If Ecc′ < ε for the threshold ε, we assume that communities c and

c′ are the same and are not bifurcated again in step 1.

Fig 7.1 illustrates the functioning of this algorithm on a network having a true

partition of 3 communities C1, C2 and C3. Step 1 of the first iteration of the algorithm

bifurcates the network into two communities using either NMF or SVD. Notice that

division is not completely accurate. In Step 2, walk-likelihood function is used on the

network which results in a more accurate division of the network into two communities.

In Step 1 of iteration 2, each community is further divided into two, resulting in a

total of 4 communities. In Step 2, the walk-likelihood function gives a more accurate

division of the yellow and blue communities. The two communities inside C1 in the Step

1 are merged, since the modularity of the partition increases on their merging. In Step

1 of the third iteration each community other than the red community is bifurcated.

This is because there was an unsuccessful attempt to bifurcate the red community in

the previous iteration. In Step 2 of iteration 3, the communities inside C2 merge and
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Figure 7.1: Functioning of walk-likelihood algorithm on a network with three commu-
nities

so do the communities inside C3, resulting in the same partition at the end of the

second iteration. Since, the partitions over subsequent iterations remain the same, the

algorithm is halted.
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Chapter 8

Experiments

We have done thorough experiments on both artificial and real world networks to check

the performance of our algorithm. For each network we have compared the performance

of our algorithm against 4 other community detection algorithms; multilevel, leading

eigenvector, label propagation and non-negative matrix factorization.

8.1 Algorithms

8.1.1 Non-negative matrix factorization bifurcation

This is the algorithm as walk-likelihood bifurcation with NMF initialization but without

using the walk-likelihood function. Thus, this algorithm bifurcates each community

using NMF till no bifurcations are possible. The NMF bifurcation serves as a null

model of the WL bifurcation algorithm.

8.1.2 Leading Eigenvector

The next community detection algorithm we compare to is the Leading Eigenvector

proposed in [52] based on the concept of ”modularity” by the same author. First the

modularity matrix of the network is constructed and the leading eigenvector computed.

The network is then split into two segments based on this eigenvector such that the

modularity is maximized. This process is repeated on the subdivisions of the network

until no further contribution to the modularity is found. The time complexity of this

algorithm is known to be O(N(E +N)) or O(N2) if the network is sparse [60].
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8.1.3 Multilevel

This algorithm was originally proposed as both a simple, yet very competitive method

for community detection, and is also based on the concept of network modularity [54].

The algorithm is as follows: first each node in the network is randomly assigned to a

unique community. Then each node is assigned to the same community as one of its

nearest neighbors, chosen such that the assignment results in the greatest increase in

modularity. Nodes of the same community are then considered single nodes, and this

process of reassignment is repeated until either no single node remains, or there is no

reassignment which will further increase the modularity. The time complexity of such

a process is necessarily O(N logN) [60].

8.1.4 Label Propogation

The final algorithm we consider for comparison is that of Label Propogation ([51]).

Once nodes are assigned to an initial random community, a random list of all nodes

is sequentially traversed. Each node in the list is assigned to the community of the

majority of its nearest neighbors. This process is repeated until no new assignments

can be made. This algorithm inherently makes the assumption that each node should

belong to the same community as the majority of its nearest neighbors leading to a

near linear time complexity of O(E) per list traversal [60].

8.2 Artificial Networks

To test the performance of our algorithm in a controlled setting on a realistic syn-

thetic network with tunable properties, we have chosen the Lancichinetti, Fortunato

and Radicchi network (LFR) [61] network. The LFR benchmark network replicates

some behaviour of the real world networks with a power law distribution of degree

and community size with exponents β and γ respectively. The LFR networks are also

characterized by the mixing parameter, µ, defined as

µ =

∑
i k

ext
i∑

i k
tot
i

(8.1)
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Parameter Value

Number of nodes N 233-100,000

Maximum degree 0.1N

Maximum community size 0.1N

Average degree 20

Degree distribution exponent −2

Community size distribution exponent −1

Mixing coefficient µ 0.03− 0.75

Table 8.1: Parameters of LFR Benchmark Networks

where kexti is the number of links between node i and nodes in other communities,

ktoti is the total links of node i, and the sum runs over all nodes in the network [60].

This parameter is defined in the interval from 0 (strong community structure) to 1 (no

community structure). The closer µ is to 1, the more challenging the task of community

detection becomes. We have generated networks of sizes varying from 233 to 100, 000.

For each size, we have 25 different mixing parameters ranging from 0.03 to 0.75. To deal

with possible discrepancies in the network properties, we have randomly generated 100

network for every set of parameters for N < 10, 000. Due to increase in time complexity

with size we generated 20 network for every set of parameters for N > 10, 000. Other

parameters used in generation of these networks are listed in Table 8.1.

Figure 8.1 shows comparison of five different methods applied to the LFR networks.

As expected all the algorithms perform almost perfectly on lower values of mixing pa-

rameter µ and perform poorly on higher values of µ. The performance of the algorithms

for the same value of µ also decrease as the size of the network increases. We notice that

our algorithms: WL bifurcation method with NMF initialization and WL bifurcation

method with SVD initialization outperform every other algorithm for LFR networks of

all sizes. The difference is performance is highlighted the most for N = 100, 000 where

the NMI score of our algorithms better the second best NMI score by more than 15%

for µ between 0.1 and 0.5. For networks of other sizes, the difference in performance is

specially evident at higher value of mixing parameter µ.

We also notice that the NMF initialization gives a better performance for our al-

gorithm than SVD initialization, although the difference is marginal in most cases.
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Figure 8.1: Comparison of five different community detection algorithms on the LFR
benchmark for distinct values of N . The parameters for generating the LFR benchmark
networks are mentioned in Table 8.1

Comparing WL bifurcation to it’s null model NMF bifurcation, we notice a huge dif-

ference between their NMI values, highlighting the role of walk-likelihood function in

our algorithm.

8.3 Real-World Networks

For real world networks, we have applied our algorithm to eight well known networks

described below:

• Bottlenose dolphins network: A network of group of dolphins of Doubtful

Sound, New Zealand observed by David Lusseau, a researcher at the University

of Aberdeen ([62]). Every time a school of dolphins was encountered, each dolphin

of the group was identified using from natural markings on the dorsal fin. This
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information was utilised to form a social network where each node represents

dolphins and edges representing their preferred companionship.

• Les Miserables network: A network of co-appearance characters in the novel

Les Miserables ([63]). Each node represents a character and the edge represents

their co-occurrence.

• American college football teams network: A network of all Division IA

college football games during the regular season in Fall 2000 with each node indi-

cating a team’s respective conference and the edge weight indicating the number

of games between teams ([64]).

• Jazz musicians network: This is the collaboration network between Jazz musi-

cians ([65]). Each node is a Jazz musician and an edge denotes that two musicians

have played together in a band.

• C. elegans neural network: Each node represents a neuron and each edge

represents its connection with other neurons ([66]).

• Erdős coaouthorship network: A network of Paul Erdos, his co-authors and

their co-authors. Each node represents an author and there is an each edge

between two authors if they have co-authored a paper ([67],[68]).

• Edinburgh Associative Thesaurus network: A network of word association

norms showing the counts of word association as collected from British university

students around 1970. Nodes are English words, and a link exists between A and

B denotes if the word B was given as a response to the stimulus word A in user

experiments [69].

• High-energy physics theory citation network: A citation network of High-

energy physics theorists. Each node represents an author and there is an each

edge between two authors if they have cited each other in a paper ([70]).
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Network N 〈w〉 WL bifur-
cation

Multilevel Leading
Eigenvector

Label Prop-
agation

Dolphin 62 5.13 0.5277(5) 0.5188(5) 0.4912(5) 0.4648(3)
Lesmis 77 6.60 0.5519(6) 0.5555(6) 0.5323(8) 0.5242(5)
Football 115 10.66 0.6044(10) 0.6043(10) 0.4926(8) 0.5804(8)
Jazz 198 27.70 0.4428(3) 0.4447(4) 0.3936(3) 0.2813(3)
C. elegans 297 15.80 0.4023(5) 0.3983(6) 0.3415(5) 0.2152(2)
Erdos02 6927 3.42 0.6962(24) 0.6925(31) 0.5979(27) 0.5937(326)
EAT-RS 23219 67.95 0.4793(17) 0.4283(4) 0.3123(4) 0.0(1)
HEP-th-new 27770 25.41 0.6524(18) 0.6560(171) 0.5010(152) 0.3361(498)

Table 8.2: Comparison of the modularity and number of groups (inside paren-
thesis) for different community detection algorithms applied in some real-
world networks.

Results of Table 8.2 show that walk-likelihood bifurcation method is able to produce

a good community structure in each network. The modularity score of our method is

the highest for five networks: Dolphins, Football, C. Elegans, Erdos02 and EAT-RS

and is very close to the highest modularity score (produced by Multilevel) for the

other three networks. We also observe that despite producing a good modularity score,

walk-likelihood bifurcation provides less number of communities compared to the other

algorithms. This indicates that the communities formed using our algorithm are well

separated.
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Chapter 9

Conclusion and Future work

In conclusion we have developed an efficient and accurate algorithm for community

detection using random-walks. The algorithm is useful in clustering both artificial and

real-world networks of all range of sizes. Experiments on LFR benchmark networks

show that our algorithm gives a better NMI score than all the other competing algo-

rithms. Our algorithm also performs well on real world networks with a high value for

modularity score. Although the in silico time of our algorithm is not more than 80

seconds for any of the tested networks, the time complexity of our algorithm needs to

be investigated.

The future work includes three main ideas.

9.1 Community Detection for overlapping communities

Many real-world networks contain communities that can overlap. The idea is extremely

natural in case of social networks where a person can belong to more than one commu-

nity. They can belong to the community of their family as well as to the community of

their colleagues from work. Another example is of a genes-coexpression network where

a single gene can express together with more than one sets of genes.

In order to include overlapping communities, we need to modify the walk-likelihood

function to also include marginal probabilities for intersections of communities (P (n ∈

C1 ∩ C2)) in addition to marginal probabilities for single communities (P (n ∈ C1) and

P (n ∈ C2)).
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9.2 Community Detection in a supervised learning approach

There are networks where labels of a few nodes are already known. For finding the labels

of the unknown nodes, we can modify our algorithm in a simple way. The number of

communities is preassigned as the number of known labels. The nodes with known labels

serve as the initial belief of the algorithm. After the first step of random-walks we can

fit the gauge parameter gc mentioned in chapter 7, such that the error in labeling the

known nodes is minimized. After fitting the gauge parameters, the community identity

of each unknown node can be found.

9.3 Cheap method for finding number of communities in a network

using Localized Random-Walks

This idea is derived from the original algorithm for community detection mentioned in

appendix. We define a process called localized random-walks where the `th step is as

follows

1. The random walker randomly teleports to a node ni with probability P (ni) =

K(ni, ` − 1)/` where K(ni, `) is the number of times node ni has been visited

after ` steps. Since, this process starts from node ns, K(nj , 0) = δsj .

2. One step random-walks from node ni. If node nj is visited in this step, now

K(nj , `) = K(nj , `− 1) + 1.

We observe that the localized random-walks diffuses on a community faster than

the rest of the network. The diffusion on a community is of the same order as that

of a normal random walk. The diffusion on the rest of the network takes log(`) steps

when compared to ` steps of a normal random-walk. Thus, for a small number of steps

the localized random-walks visits nodes of just one community. This property can be

used in coarse-graining a large network and clustering this meta-network instead of the

original large network.
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Appendix A

A.1 Random Walk on a community

Consider a discrete random walk on a network with weighted edges: {wninj}, where

{wninj} is the rate of transmission from node ni to nj . At each step the random-

walker jump to its nearest neighbor with probability P (ni → nj) = wnj/wni where

wni =
∑

k∈nn(ni)
wk. Assume that the network has a community C of Nc nodes and

an average outward rate of 〈w〉c, and a a set nodes S = {n1, n2, ..., nNp} with average

connectivity 〈w〉p, such that S ⊂ C. The return time to the set S given there is

no transition outside the community is approximately Nc〈w〉c/Np〈w〉p. Assuming the

exponential ansatz for the return-time distribution, the probability to return to a set

of nodes S = {n1, n2, ..., nNp} after exactly ` steps, given there is no transition outside

the community is

P (`) =
W(S)

W(C)
e
−W(S)

W(C)
`

(A.1)

where W(S) is
∑

n∈S wn. Thus, W(S) = Np〈w〉p and W(C) = Nc〈w〉c. We shall refer

to the sum of connectivity of a set of nodes as the weighted size of the nodes. We refer

to the marked nodes ni ∈ Ps as pseudo-targets. It then follows that the probability to

not make a return for ` steps (i.e. the survival probability) given no transition outside

the community

S(`) = e
−W(S)

W(C)
`

(A.2)

We label the above-mentioned random-walks as a multiset (RW,K) where RW is the

set of all nodes that were visited in the random-walks and KRW (n) is the number of

times the node n was visited in the random-walks. Let be Lbe a function of the multiset

RW and a set of nodes T such that
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L(RW,T ) =
∑

n∈(T∩RW )

KRW (n) (A.3)

Thus, L(RW,RW ) =
∑

n∈RW KRW (n) is the total number of steps in the random-

walks. Thus the random-walker makes L(RW,S) returns to the pseudo-target set S. If

the number of steps in community C (S ⊂ C) is known, the likelihood of the event is

given by

P (L(RW,S)|W(C),L(RW,C)) =
1

L(RW,S)!

(
W(S)

W(C)
L(RW,C)

)L(RW,S)
e−(W(S)/W(C))L(RW,C)

(A.4)

where L(RW,C) is the number of steps in community C (S ⊂ C). Thus, given

L(RW,S), L(RW,C) and W(S), and assuming uniform prior the likelihood can be

maximized to obtain estimate of W(C)

Ŵ(C) =
W(S)L(RW,C)

L(RW,S)
(A.5)

But if the identity of all nodes which belong of the community C is not known, the

quantity L(RW,C) is unknown. We define X , a function of the multiset RW and

community C such that X (RW,C) = L(RW,C)
W(C) . Thus, given the random-walk multiset

RW and a pseudo-target set Ssuch that S ⊂ CS for community CS , we get

X̂ (RW,CS) =
L(RW,S)

W(S)
(A.6)

Consider a network with m communities. Consider M: a set of m pseudo-target sets.

Each pseudo-target set S ∈ M is on a separate community CS . The communities

CS for S ∈ M cover the whole network. Consider m separate random-walks on the

network. The starting node of each random-walks is a node randomly selected from

a different pseudo-target. We refer to each of these random-walks as RWS . For each

random-walks RWS , we have X̂ (RWS , CS′) = L(RW,S)
W(S) for each set S′ ∈ M. We also

have the constraint
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∑
S′

L(RWS , CS′) = L(RWS) (A.7)

where L(RWS) is the total steps of random-walks from pseudo-target set Sis known.

Thus, we have a set of m equations with m variables where m is the total number of

pseudo-target sets

∑
S′

X̂ (RWS , CS′)W(CS′) = L(RWS) (A.8)

Solving these we get

W(CS) =
∑
S′

L(RWS′)X−1SS′ (A.9)

where X−1is the inverse of the matrix X, such that XSS′ = X̂ (RWS , CS′).

A.2 Algorithm

The algorithm can be described in short as follows

1. Set up multiple sets of pseudo-targets such that for each set of pseudo-targets, a

large portion of the pseudo-targets lie within the same community.

2. Perform random-walks process through each pseudo-target set. This process is

essential in obtaining community statistics for each pseudo-target set.

3. Perform a p-value test to check whether each community of the network is cov-

ered with pseudo-targets. If yes proceed to step 4, otherwise go back to step 1.

Once, the p-value test is passed, there is no need to check it again in subsequent

iterations. Note that the p-value test requires results from random-walks, which

is why this step is done after the random-walks process.

4. For each pair of pseudo-target sets, perform a p-value test, based on statistics of

the two sets to check if they belong to the same community. If they belong to

the same community combine the statistics of the two sets and merge the two as

a single set.
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5. Assign community identity to each node visited through random-walks process.

For each community, nodes with highest confidence levels are reassigned as pseudo-

targets. Go back to step 2.

The algorithm is terminated after desired accuracy is achieved. After each stage, the

statistics of each pseudo-target sets are updated. Because of the structure of the algo-

rithm, the number of communities are overestimated at the start of the algorithm. As

the algorithm proceeds, the number of communities remain constant.

A.2.1 Setting up initial batch of pseudo-targets

Since the statistics of each community are based on the assumption that the cluster

identity of each pseudo-target is correct, we require the initial set of pseudo-targets

such that for each set of pseudo-targets, a large portion of the pseudo-targets lie within

the same community. We generate a set of pseudo-targets from a random starting node

ns using the following method which we call localized random-walks (LRW). The `th

step of localized random walk is as follows

1. The random walker randomly teleports to a node ni randomly with probability

P (ni) = K(ni, ` − 1)/` where K(ni, `) is the number of times node ni has been

visited after ` steps. Since, this process starts from node ns, K(nj , 0) = δsj .

2. One step random-walks from node ni. If node nj is visited in this step, now

K(nj , `) = K(nj , `− 1) + 1.

Note that teleportation to a node is not counted as a visit to the node. The LRW is

halted after `max steps where `max depends on our the definition of community. Each

node visited through LRW is marked as a pseudo-target.We do this process many times

to get multiple sets of pseudo-targets. Each time the starting node ns is randomly

chosen from all nodes that have not been visited through any of the previous LRW.

We refer to the set of all such pseudo-target sets asM, The community represented by

each pseudo-target set Sfor S ∈M is referred to as CS .
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A.2.2 Random-Walks Process

The Random-walks process is performed from each pseudo-targets set sequentially. The

random-walks process within a pseudo-target set S is as follows.

1. Randomly choose a pseudo-target n from the set S with probability proportional

to its outward rate (P (n) = wn/W(S)) and start random-walks from the node n.

2. If the random-walker returns to a pseudo-target of the set S, halt the random-

walks and go back to step 1

3. If ∆`max steps are recorded without a single return to the set S, halt the random-

walks and go back to step 1

The restriction of random-walks to ∆`max steps ensures that the random-walks is largely

localized to the community of the pseudo-target set. The random-walks process is halted

if the total number of visits to any pseudo-targets is greater than Kmax. Since each

pseudo-target set changes with iteration, we refer to the pseudo-target set S in ith

iteration as S(i). Although, the random-walk process on a pseudo-target set consists of

several random-walks terminated at either step 2 or step 3, we record all these random-

walks together in multisetRW
(i)
S where istands for iteration and Sis the starting pseudo-

target set. All the random-walks from pseudo-target set Sover all iterations are stored

in RWS (RWS =
∑

iRW
(i)
S ). Let Sr be the set of all nodes visited by random-walks

process from the set S(RWS) when the random-walks were terminated by returning

to pseudo-targets (step 2 of the Random-Walk Process). This quantity is of particular

importance because the random-walks which return to the pseudo-target set S are less

likely to visit nodes outside the starting community compared to the random-walks

which are terminated after ∆`max steps (step 3 of the Random-Walk Process).

A.2.3 Checking if pseudo-targets cover every community of a network

We assume that if each community of a network is covered with pseudo-targets, every

node of the network should be accessible through short the random-walks of ∆`max
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steps. If a community does not contain even a single pseudo-target set, then the proba-

bility to reach the nodes of that community through random-walks of ∆`max is very low.

Thus, we get the probability distribution of size of the network covered by random-walks

P (N |Kp) =
N−Kp exp

(
−Np〈w〉p

N〈w〉 `
)

∑∞
Ñ=Np

Ñ−Kp exp
(
−Np〈w〉p

Ñ〈w〉 `
) (A.10)

where N is size of the network that is covered through random-walks from all the

pseudo-targets, 〈w〉 is its average connectivity, Np is total number of pseudo-targets

across all sets,〈w〉p their average connectivity and Kp is the total visits to all these

pseudo-targets. If the size of this random-walk visited network is equal to the size of

the whole network, then it means that each community of the network has at least

one pseudo-target set. Since, we know the total size of the network (Ntot), we device

a p-value test for the hypothesis that each community of the network is covered with

pseudo-targets.

P (N ≥ Ntot) =
∞∑

N=Ntot

P (N |Kp) (A.11)

We reject the hypothesis if P (N ≥ Ntot) < p.

A.2.4 Merging sets of pseudo-targets belonging to the same commu-

nity

Consider two pseudo-target sets S and S′. The pseudo-target set S′ is visited by all

random-walks starting from S, L(RWS , S
′) times. If pseudo-target set S′ ∈ CS then

the probability of visiting them a total of K times in all random-walks from the set S

is given by

P (K|L(RWS , CS),W(S′),W(CS)) =
1

K!

(
W(S′)

L(RWS , CS)

W(CS)

)K
e−W(S′)L(RWS ,CS)/W(CS)

(A.12)

where L(RWS , CS) is the number of steps taken of random-walks from the set S in the

community CS . Recall that the quantity X (RWS , CS) = L(RWS , CS)/W(CS), can be

estimated if the multiset RWS and the pseudo-target set S are known (mentioned in

detail in Section 4.7). Thus we can rewrite equation 12
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P (K|X̂ (RWS , CS),W(S′)) =
1

K!

(
W(S′)X̂ (RWS , CS)

)K
e−W(S′)X̂ (RWS ,CS) (A.13)

We device a p-value test for the hypothesis that the pseudo-target set S′ belong to the

community CS . (H(S′ ∈ CS)).

P (K ≤ L(RWS , S
′)) =

L(RWS ,S
′))∑

K=0

P (K′|X̂ (RWS , CS),W(S′)) (A.14)

We reject the hypothesis H(S′ ∈ CS) if P (K′ ≤ K(S, S′)) < p. For each pair S and S′

we test both H(S′ ∈ CS) and H(S ∈ CS′). If both these hypothesis are true it means

that CS and CS′ indicate the same community (Ci = Cj). If H(S′ ∈ CS) is true but

not H(S ∈ CS′) then it indicates that CS′ ⊂ CS . If both the hypothesis are rejected

then CS and CS′ are separate communities. If either condition hold true we merge the

pseudo-target sets S and S′ as a single pseudo-target set and combine their statistics

of all iterations. (S̃(i) = S(i) ∪ S′(i) for S̃ = S ∪ S′). This test is done in loop over all

pairs of sets till the hypothesis is rejected by each pair.

A.2.5 Assigning each visited node to a community

Since the random-walks from each pseudo-target set S are not perfectly restricted to the

community CS , it is very likely that a node is visited by random-walks from multiple

sets. If a node is visited in random-walks through only 1 pseudo-target S set then it is

assigned the community CS . Consider all pseudo-target sets S′ such that the node n

is visited at least once in random-walks from set S′ (KRWS′ (n) > 0). Let the set of all

such pseudo-target sets be T . The possible community assignments the node n are all

communities CS′ such that S′ ∈ T . Now, if for at least one pseudo-target set S ∈ T ,

the node n is visited through random-walks from S which return to pseudo-targets

(n ∈ Sr), the probability that the node n /∈ CS is very low. Hence if such a set S exists,

we remove all sets S′ from T if n 6∈ Sr. Now, if the node n ∈ CS̃ then the node is visited

from the random-walks from all other sets S only after transitioning into community

CS̃ . Thus, if the node n ∈ CS̃ the probability of it is visited k(n, S) in random-walks
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from each set S is given by

P ({KRWS
(n)}|n ∈ CS̃) =

S∈T∏
S

1

KRWS
(n)!

(
wnX̂ (RWS , CS̃)

)−KRWS
(n)
e−wnX̂ (RWS ,CS̃)

(A.15)

where q(S, S̃) = `SS̃/W(CS̃) where `SS̃ is the number of steps of random-walks starting

from the set S in community `SS̃ . But since ˆ̀
SS̃ =

W(CS̃)

W(S) K(S, S̃) as mentioned in

equation 8, q(S, S̃) = K(S, S̃)/W(S). Note that this is not applicable for S = S̃ the

choice of the nodes which the pseudo-target set S̃ is not independent of previous the

random-walks from S̃. Hence, for S = S̃ we use q(S̃, S̃) =
∑

i
K(i)(S̃,S̃)

W(S)(S̃(i))
as mentioned

before. Thus, assuming a uniform prior to each community, by Bayes’ theorem we have

P (n ∈ CS̃ |{k(n, S)}) =
P ({k(n, S)})|n ∈ CS̃∑S′∈T

S′ P ({k(n, S)})|n ∈ CS′
(A.16)

The node n is assigned to the community CS̃ for the probability P (n ∈ CS̃ |{k(n, S)})

is the highest. Since the accuracy of pseudo-targets is essential in estimating community

statistics, only the nodes with high confidence levels are reassigned as pseudo-targets.

Thus, each node n is reassigned as a pseudo-target of the set S̃ if n ∈ S̃r, P (n ∈

CS̃ |{k(n, S)}) > P (n ∈ CS′ |{k(n, S)}) for all S′ 6= S̃ and P (n ∈ CS̃ |{k(n, S)}) > p for

a threshold p.

The pseudo-target sets S(i) in previous iterations are also important in finding cer-

tain statistics. Therefore, we purify them retroactively.

S(i) = S(i)
o ∩ S (A.17)

where S
(i)
o is the first version of S(i).

A.2.6 Halting Criteria

We halt the algorithm if there is no merging of communities for tmax straight iterations.

This ensures that each community obtained is well separated.

A.2.7 Statistics

Estimating X (RWS , CS′): Recall that X̂ (RWS , CS′) = L(RWS ,S
′)

W(S′) as mentioned before.

This estimate is unbiased if the random-walks RWS and the sampling of pseudo-targets
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for the set S′ are independent. But since the choice of pseudo-targets in a community CS

is based on the nodes that were visited in the random-walks RWS , this is not applicable

for S = S′. The random-walks in ith iteration are independent of the random-walks in

previous iterations. Thus, X̂ (RW
(i)
S , CS) =

L(RW (i)
S ,CS)

W(S(i))
. Also, the nodes visited in the

random-walks RW
(i)
S which belong to community CS can serve as pseudo-targets for

the random-walks in the previous iterations. Hence we can estimate for the quantity

X ( ˜RW
(i)
S , CS) where ˜RW

(i)
S =

∑i
j=1RW

(j)
S refers to all the random-walks starting from

pseudo-target S till iteration i.

X̂ ( ˜RW
(i−1)
S , CS) =

L( ˜RW
(i−1)
S , ˜S(i))

W( ˜S(i))
(A.18)

where ˜S(i) = S ∩ RW (i)
S is the set of all nodes visited in RW

(i)
S which are assigned

as the nodes of the community CS with high confidence. Since L( ˜RW
(i)
S , CS) =

L( ˜RW
(i−1)
S , CS)+L(RW

(i)
S , CS), we assume X̂ ( ˜RW

(i)
S , CS) = X̂ ( ˜RW

(i−1)
S , CS)+X̂ (RW

(i)
S , CS).

After Random-Walks process, the community identity of all nodes visited is the latest

random-walks is unknown till step 4 of the algorithm which is essential in finding the

set ˜S(i). Hence after the random-walk process we use

X̂ ( ˜RW
(t)
S , CS) = X̂ ( ˜RW

(t−2)
S , CS) + X̂ (RW

(t−1)
S , CS) + X̂ (RW

(t)
S , CS) (A.19)

where t is the latest iteration. After each node visited in the random-walks RW
(t)
S is

assigned to a community we use

X̂ ( ˜RW
(t)
S , CS) = X̂ ( ˜RW

(t−1)
S , CS) + X̂ (RW

(t)
S , CS) (A.20)

Thus, we have the estimate for X̂ (RWS , CS′) for all sets S and S′. Using equation 9,

we can estimate the weighted size of each community CS

W(CS) =
∑
S′

L(RWS′)X−1SS′ (A.21)

where XSS′=X̂ (RWS , CS′). To find the number of nodes in each community we estimate

〈w〉: the average connectivity of each community as W(C) = NC〈w〉C . Consider a
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set Twi ⊂ C which contains all nodes with outward rate wi in community C. The

probability that the random walker visits the set Kwi times in `steps in the community

C is given by

P (Kwi , `|pwi) =
1

Kwi !

(
`pwi

wi
〈w〉

)Kwi

e−`pwiwi/〈w〉 (A.22)

where pwi = Nwi/Nc and Nwi is the number of nodes in the set Twi . Note that ` =∑
iKwi . The maximum likelihood estimate of pwi is

Kwi/wi

`/〈w〉 . But
∑

i pwi = 1, where

the summation is over all such sets Twi . This gives us

〈w〉 =

∑
iKwi∑

iKwi/wi
(A.23)

For a community C, we calculate Kwi from all set of nodes of the network which have

outward rate wi and have been assigned the community C.

A.3 Biased Random Walks

The `th step of biased random walk is as follows

1. The random walker randomly teleports to a node ni randomly with probability

P (ni) = Ki(`− 1)/` where Ki(`) is the number of times node ni has been visited

in after ` step.

2. One step random walk from node ni. If node nj is visited in this step, now

Kj(`) = Kj(`− 1) + 1.

Note that teleportation to a node is not counted as a visit to the node. The initial

state of this process is kept to be a single node ns: Kj(0) = δsj . Thus, the probability

of visiting node ni on `th step is given by

P (ni, `|K) =
∑

j∈nn(i)

Kj(`− 1)

`

wji
wj

(A.24)

where nn(i) refers to the nearest neighbors of node ni. Thus,

P̄ (ni, `|K(`− 1)) =
∑

j∈nn(i)

K̄j(`− 1)

`

wji
wj

(A.25)
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where P̄ (ni, `|K(`− 1)) and K̄j(`− 1) are the expectation values. But

P̄ (ni, `|K(`− 1)) =
∑

{K′(`−1)}

P (ni, `|K ′(`− 1))P (K ′(`− 1)|ns) = P (ni, `|ns) (A.26)

Here, {K ′(`− 1)} refers to all possible configurations of the listK(`−1). P (K ′(`−1)|ns)

is the probability to get the list {Kj(` − 1)} = {K ′j(` − 1)} after ` − 1 steps if the

biased random walk started from node ns at ` = 0 (Kj(0) = δsj) and P (ni, `|ns)

is the probability to visit node ni at step ` with the same initial condition. Since

K̄j(`) is the expectation of the total number of times node nj has been visited till

` steps, it is just the sum of probability of visiting the node in each step till step `

(K̄j(`) =
∑`

l′=0 P (nj , l
′|ns)). This gives us a forward equation for P

P (ni, `+ 1|ns) =
`P (ni, `|ns)

`+ 1
+

∑
j∈nn(i)

P (nj , `|ns)
`+ 1

wji
wj

(A.27)

Thus, the steady state is the same as that of normal random walks P (ni|ns) = wi∑′
j w

′
j
.

Consider a network with comprising of a multiple communities with the random walker

initially in community C (ns ∈ C). Let Pout(`) =
∑ni 6∈C

i P (ni, `|ns) and Pin(`) =∑ni∈C
i P (ni, `|ns). From equation 10 we get

Pout(`+ 1) =
`Pout(`)

`+ 1
+

ni 6∈C∑
i

∑
j∈nn(i)

P (nj , `|ns)
`+ 1

wji
wj

=
`Pout(`)

`+ 1
+
∑
j

ni 6∈C∑
i

P (nj , `|ns)
`+ 1

wji
wj

=
`Pout(`)

`+ 1
+

nj∈C∑
j

ni 6∈C∑
i

P (nj , `|ns)
`+ 1

wji
wj

+

nj 6∈C∑
j

ni 6∈C∑
i

P (nj , `|ns)
`+ 1

wji
wj

(A.28)

Note that if j 6∈ nn(i) wij = 0. Assuming that P (ni, `|ns) ≈ wiPin(`)∑nj∈C

j wj

for ni ∈ C and

P (ni, `|ns) ≈ wiPout(`)∑nj 6∈C

j wj

for ni 6∈ C, we get

Pout(`+ 1) =
1

`+ 1

`Pout(`) +

nj∈C∑
j

ni 6∈C∑
i

Pin(`)wji∑nk∈C
k wk

+

nj 6∈C∑
j

ni 6∈C∑
i

Pout(`)wji∑nk 6∈C
k wk

 (A.29)
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Let Q =
∑nj∈C

j

∑ni 6∈C
i

wji∑nk∈C

k wk

and QB =
∑nj 6∈C

j

∑ni∈C
i

wji∑nk 6∈C

k wk

. Thus, we get

Pout(`+ 1) =
1

`+ 1
(`Pout(`) +QPin(`) + (1−QB)Pout(`))

=
1

`+ 1
(`Pout(`) +Q(1− Pout(`)) + (1−QB)Pout(`))

Pout(`+ 1)− Pout(`) = − 1

`+ 1
(Q+QB)Pout(`) +

Q

`+ 1

(A.30)

Solving this in continuous time we get

PBRWout (`) =
Q

Q+QB

(
1− e−(Q+QB) log(`)

)
(A.31)

For a normal random walk the forward equation is

PNRW (ni, `+ 1|ns)− PNRW (ni, `|ns) =
∑

j∈nn(i)

wji
wj

PNRW (nj , `|ns)− PNRW (ni, `|ns)

(A.32)

where PNRW (ni, `|ns) is the probability of visiting node ni at step ` in normal random

walk, if the random walker started from ns at ` = 0. Applying equation 16 to the

network with multiple communities as discussed above, we get

PNRWout (`+ 1)− PNRWout (`) = −(Q+QB)PNRWout (`) +Q (A.33)

where PNRWout (`) =
∑ni 6∈C

i PNRW (ni, `|ns) and PNRWin (`) =
∑ni∈C

i PNRW (ni, `|ns). In

continuous time limit we get

PNRWout (`) =
Q

Q+QB

(
1− e−(Q+QB)`

)
(A.34)

This equation is same as equation 16 with ` instead of log(`). Thus, biased random

walk slows time of diffusing outside the starting community to logarithmic scale.

Alternate Method for logarithmic behavior: The forward equation for biased

random walks is

PB(ni, `+ 1|ns)− PB(ni, `|ns) =
1

`+ 1

 ∑
j∈nn(i)

wji
wj

PB(nj , `|ns)− PB(ni, `|ns)


(A.35)

In case of normal random walk the forward equation is

PN (ni, `+ 1|ns)− PN (ni, `|ns) =
∑

j∈nn(i)

wji
wj

PN (nj , `|ns)− PN (ni, `|ns) (A.36)
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which can be written in continuous time limit as

d

d`
PN (ni, `|ns) =

∑
j∈nn(i)

wji
wj

PN (nj , `|ns)− PN (ni, `|ns) (A.37)

Assume that PB(ni, `|ns) = PN (ni, log(`+1)|ns)+ε(ni, `|ns). Note that ε(ni, 0|ns) =

0 as PB and PN have the same initial conditions. Thus,

PB(ni, `+ 1|ns)− PB(ni, `|ns) = ε(ni, `+ 1|ns)− ε(ni, `|ns)

+ log

(
`+ 2

`+ 1

)PN (ni, log(`+ 2)|ns)− PN (ni, log(`+ 1)|ns)

log
(
`+2
`+1

)


≈ ε(ni, `+ 1|ns)− ε(ni, `|ns) + log

(
`+ 2

`+ 1

)
d

dl′
PN (ni, l

′|ns)
∣∣∣∣
l′=log(`+1)

(A.38)

Substituting this in equation 19 and substituting d
dl′P

N (ni, l
′|ns) with RHS of equa-

tion 21, we get

ε(ni, `+ 1|ns)− ε(ni, `|ns) = g(`)H(PN )(ni, log(`+ 1)|ns) +H(ε)(ni, `|ns) (A.39)

where H(f)(ni, `|ns) =
∑

j∈nn(i)
wji

wj
f(nj , `|ns)− f(ni, `|ns) and

g(`) =
(

1
`+1 − log

(
1 + 1

`+1

))
. If ns and ni are in different communities the flux to-

wards ni at lower ` is small which makes H(PN )(ni, log(` + 1)|ns) negligible at small

`. At larger `, g(`) becomes small. Thus the term ε(ni, `|ns) ≈ 0 and PB(ni, `|ns) ≈

PN (ni, log(`+1)|ns). Thus, PBout(`) = PNout(log(`+1)) where Pout(`) =
∑nj 6∈C

j P (nj , `|ns)

and C is the community of ns.

If ni and ns are in the same community H(PN )(ni, log(` + 1)|ns) is considerable.

When, g(`) becomes negligible the diffusion within the starting community has already

taken place. Thus PB(ni, `|ns) > PN (ni, log(` + 1)|ns) if ni and ns are in the same

community.
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