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In this thesis, we will investigate the convergence of discrete conformal metrics to the

classical uniformization metric on Riemannian surfaces. We prove that for a reasonable

geodesic triangle mesh on a smooth closed orientable surface, there exists a discrete

conformal factor to achieve a surface of constant curvature. And the difference between

this discrete conformal factor and the classical uniformization factor is controlled by the

maximal edge length of the triangulation. The estimates rely on collections of discrete

elliptic estimates and isoperimetric inequalities for triangle meshes. The case for genus

h ≥ 1 is a joint work with Tianqi Wu, the case for genus h = 0 is a joint work with

Tianqi Wu and Yanwen Luo.
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Chapter 1

Introduction

In this chapter, we will state the main results and outline the structure of the thesis.

For a connected surface M , two Riemannian metric g1 and g2 on M are conformally

equivalent if g2 = e2ug1 for some smooth function u on M. The celebrated uniformization

theorem proved by Poincaré and Köebe in 1907 , states the following.

Theorem 1 (Uniformization Theorem). Any Riemannian metric g on a connected

surface M is conformally equivalent to a complete Riemannian metric ḡ of constant

curvature ±1 or 0.

Remark 1.1. A Riemannianm metric ḡ is called flat, hyperbolic or spherical if its

Gaussian curvature is 0, −1, or 1 resepectively. For the complete metric ḡ = e2ūg in

the uniformization theorem, we call ū the smooth uniformization factor of (M, g).

The discrete analogy of Riemannian metric is the piecewise polyhedral metric. Given

a closed surface S and a finite non-empty set V ⊂ S, we call (S, V ) a marked surface.

A flat (hyperbolic or spherical) piecewise linear (or PL) metric on (S, V ) is a flat

(hyperbolic or spherical) cone metric on S whose cone points are in V . A triangulation

T of S with vertex set V is called a triangulation of (S, V ). T is always assumed to be

a simplicial complex. We use E(T ), V (T ) and F (T ) to denote the set of edges, set of

vertices and set of triangles of T . Furthermore, let |V |, |E| be the number of vertices

and edges respectively. Furthermore denote Vi(T ) as the sets of interior vertices of T ,

and Vb(T ) as the set of boundary vertices of T .

For a triangulation T and a PL metric d, the edge length of an edge ij ∈ E(T ) is

defined as the length of geodesic in d that homotopic to ij relative to endpoints i and

j. Therefore d is uniquely determined by its length of edges l : E(T ) → R>0. More

discussions about PL metric will be given in Section 2.1.
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Suppose M is a compact surface, possibly with boudary and T is a triangulation

of M . If M is equipped with a smooth Riemannian metric g, we call T a geodesic

triangulation if any edge in T is a shortest geodesic arc in (M, g).

For a triangulation T of (S, V ), an admissible edge length function of T is a function

l : E(T ) → R>0, l(ij) = lij , for any edge ij ∈ E(T )

such that for every triangle 4ijk ∈ F (T ) the triangle inequalities hold, i.e.

lij + ljk > lik, ljk + lki > lij , lki + lij > ljk.

For a geodesic triangulation T on a Riemannian surface (M, g), we can naturally define

an edge length function l by using the geodesic lengths of the edges. Given an admissible

edge length function l of a triangulation T , we can construct a flat PL metric (T, l)E

by isometrically gluing the Euclidean triangles with the edge lengths defined by l along

pairs of edges. Similarly, a spherical PL metric (T, l)S can be constructed by replacing

Euclidean triangles with spherical triangles of the same edge lengths, provided that

lij + ljk + lki < 2π for any triangle 4ijk in F (T ). A hyperbolic PL metric (T, l)H can

also be constructed in a similar way.

For a given (T, l)E ((T, l)H or (T, l)S), we use θijk to denote the inner angle at a

vertex i in the triangle 4ijk. The discrete curvature Ki at a vertex i ∈ V (T ) is

defined as

Ki =

 2π −
∑

jk∈E:ijk∈F θ
i
jk, if i ∈ Vi(T ),

π −
∑

jk∈E:ijk∈F θ
i
jk, if i ∈ Vb(T ).

A flat (hyperbolic or spherical) PL metric is globally flat (resp. globally hyperbolic or

spherical) if and only if Ki = 0 for any vertex i ∈ Vi(T ).

Definition 1.1. Given a triangulation T , a discrete conformal factor u is a real-

valued function on V (T ). For the Euclidean case, (T, l)E and (T, l′)E are discrete

conformally equivalent if for some discrete conformal factor u,

l′ij = e
1
2
(ui+uj)lij (1.1)
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for any edge ij ∈ E(T ). For the hyperbolic case, (T, l)H and (T, l′)H are discrete

conformally equivalent if for some discrete conformal factor u,

sinh
l′ij
2

= e
1
2
(ui+uj) sinh

lij
2

(1.2)

for any edge ij ∈ E(T ). For the spherical case, (T, l)S and (T, l′)S are discrete

conformally equivalent if for some discrete conformal factor u,

sin
l′ij
2

= e
1
2
(ui+uj) sin

lij
2

(1.3)

for any edge ij ∈ E(T ).

Remark 1.2. The discrete conformally equivalence defined above requires the fixed

triangluation condition. The Euclidean notion was first introduced by Luo [1]. The

hyperbolic and spherical notion was first introduced by Bobenko et.al [2].

We denote l′ = u ∗ l if equation (1.1) holds, l′ = u ∗h l if equation (1.2) holds and

l′ = u ∗s l if equation (1.3) holds. Given a PL metric (T, l)E ((T, l)H or (T, l)S), let

θijk(u) and Ki(u) denote the corresponding inner angle at vertex i in triangle 4ijk and

the discrete curvature at i respectively in (T, u ∗ l)E ((T, u ∗h l)H or (T, u ∗s l)S). For a

PL flat metric (T, l)E , the area of (T, l)E is defined as

Area(T, l)E =
∑

△ijk∈F (T )

|4ijk|E ,

where |4ijk|E is the area of Euclidean triangle 4ijk with edge length l.

If (T, l)E is a topological torus, u is called the discrete uniformization factor for

(T, l)E if (T, u∗ l)E is isometric to the flat torus of unit area, which is equivalent to that

the discrete curvature K(u) := [Ki(u)]i∈V (T ) is zero and Area(T, u ∗ l)E = 1. If (T, l)H

is topologically a closed surface of genus g > 1, u is called the discrete uniformization

factor for (T, l)H , if (T, u ∗h l)H is isometric to the closed surface of hyperbolic metric

with genus g, which is equivalent to that the discrete curvature K(u) := [Ki(u)]i∈V (T )

is zero. If (T, l)S is a topological sphere, u is called the discrete uniformization factor

for (T, l)S , if (T, u ∗s l)S is isometric to the unit sphere, which is equivalent to that the

discrete curvature K(u) := [Ki(u)]i∈V (T ) is zero.
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Definition 1.2. A PL metric (T, l)E ((T, l)H or (T, l)S) is called strictly Delaunay if

for any edge ij of T , two adjacent triangles 4ijk,4ijk′ sharing edge ij satisfy

θkij + θk
′

ij < θijk + θijk′ + θjik + θjik′ . (1.4)

Remark 1.3. This is an equivalent definition for the traditional Delaunay triangulation

and first discovered by Leibon [3]. We will discuss more about Delaunay triangulation

in Section 2.1.

For our convergence result, we introduce the ϵ−regularity to quantify the extent of

uniformity of a Delaunay triangulation.

Definition 1.3. A PL metric (T, l)E((T, l)H or (T, l)S) is called ϵ-regular if

(a) any inner angle θijk ≥ ϵ, and

(b) for any adjacent triangles 4ijk and 4ijl, θkij + θlij ≤ π − ϵ.

Condition (a) requires that any triangle is away from degenerating, and condition

(b) requires a PL metric with sufficiently small edge length to be uniformly strictly

Delaunay.

Let ||x|| = maxi∈I |xi| denote the maximal norm of a vector x ∈ RI in a finite

dimensional vector space.

In the work by Colin de Verdiére [4], a family of strictly acute triangulations on

any closed Riemannian surface with explicit lower bounds on angles were constructed,

and the maximal edge lengths of these acute triangulations approach zero. This implies

the existence of ϵ-regular geodesic triangulations on any closed Riemannian surface for

some ϵ.

Our main results prove the existence of discrete uniformization factor for a rea-

sonable PL metric on a closed surface. And also the difference between the discrete

uniformization factor and the classical uniformization function is controlled by the ||l||

of T . More precisely,

Theorem 2. Suppose (M, g) is a closed orientable smooth Riemannian surface with

genus > 1, and ū = ūM,g ∈ C∞(M) is the unique uniformization factor of (M, g).
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Assume T is a geodesic triangulation of (M, g) of geodesic edge length l. Then for any

ϵ > 0, there exist constants δ = δ(M, g, ϵ) > 0 and C = C(M, g, ϵ) > 0 such that if

(T, l)H is ϵ-regular with ||l|| < δ, then

(a) there exists a discrete uniformization factor u ∈ RV (T ) for (T, l)H , and

(b) ||u− ū|V (T )|| ≤ C||l||.

Theorem 3. Suppose (M, g) is a closed orientable smooth Riemannian surface of genus

1, and ū = ūM,g ∈ C∞(M) is the unique smooth uniformization factor of (M, g) with

Area(M, e2ūg) = 1. Assume T is a geodesic triangulation of (M, g) of geodesic edge

length function l. Then for any ϵ > 0, there exist constants δ = δ(M, g, ϵ) > 0 and

C = C(M, g, ϵ) such that if (T, l)E is ϵ-regular and ||l|| < δ, then

(a) there exists a discrete uniformization factor u ∈ RV (T ) for (T, l)E, and

(b) ||u− ū|V (T )|| ≤ C||l||.

Let Ĉ be the standard Riemann sphere, which can be identified with the unit sphere

S2 in R3 by the stereographic projection, the theorem for spherical PL metric is

Theorem 4. Suppose (M, g) is a closed smooth Riemannian surface of genus zero with

three marked points X,Y, Z, and ū ∈ C∞(M) is the unique uniformization conformal

factor such that (M, e2ūg) is isometric to the unit sphere S2 ∼= Ĉ via isometric map

ϕ, where ϕ(Z) = 0, ϕ(Y ) = 1, ϕ(X) = ∞. Assume T is a geodesic triangulation

of (M, g) of geodesic edge length l such that its one-skeleton is a 4-vertex-connected

graph. Then for any ϵ > 0, there exist constants δ = δ(M, g,X, Y, Z, ϵ) > 0 and

C = C(M, g,X, Y, Z, ϵ) > 0 such that if (T, l)S is ϵ-regular and ||l|| ≤ δ, then

(a) there exists a unique discrete conformal factor u on V (T ), such that (T, u ∗s l)S

is strictly Delaunay and isometric to the unit sphere via an isometric map ψ such

that ψ(Z) = 0, ψ(Y ) = 1, and ψ(X) = ∞, and

(b) ||u− ū|V (T )|| ≤ C||l||.
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Remark 1.4. The uniqueness part of the theorem is already known as a consequence

of Springborn’s Theorem 10.5 in [5], which is equivalent to Rivin’s earlier result on

hyperbolic polyhedral realization in [6].

The organization of the thesis is as follows.

In chapter 2, we will briefly introduce basic background for this dissertation.

In chapter 3, we will cover the key ingredients for the proof of our main theorems.

The C-isoperimetric condition and discrete elliptic esimates will be introduced.

In chapters 4,5,6, we will prove convergence results for flat, hyperbolic and spherical

PL metric.
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Chapter 2

Preliminaries

2.1 Some conventions and Delaunay triangulations

The following is a more detailed explanation for the definition of PL metric in the

Chapter 1.

Take a finite disjoint union I of triangles and identify its edges in pairs by homeo-

morphisms. The quotient space S is a compact surface with a triangulation T whose

simplices are the quotients of the simplices in the disjoint union I. We call T a tri-

angulation of the marked surface (S, V ). If each triangle in the disjoint union I is

Euclidean and the identification maps are isometries, then the quotient metric d on

(S, V ) is called a flat piecewise linear (or PL) metric. The hyperbolic PL metric and

spherical PL metric are defined in a similar way. Let (S, V, d) denote this polyhedral

surface, i.e. the marked surface (S, V ) equipped with the PL metric d. Given a flat

(hyperbolic or spherical) PL metric d and a triangulation T on (S, V ), if each triangle

in T (in metric d) is isometric to a Euclidean(hyperbolic or spherical) triangle, we say

T is geodesic in d.

Suppose e is an edge in T adjacent to two distinct triangles t1, t2. Then the diagonal

switch on T is a new triangulation T ′ obtained from T by replaces an edge e by the

other diagonal in the quadrilateral t1∪e t2. See Figure 2.1. The diagonal switch changes

the set of edges and faces of T but preserves the set of vertices.

A geodesic triangulation T of a (S, V, d) is called Delaunay if for each edge e in T

with two adjacent triangle t1 and t2 the interior of the circumscribled circle of t1 does

not contain the vertices of t2 after we lift t1 and t2 to the universal cover. In [3], Leibon

gave an algebraic description for the Delaunay condition for hyperbolic PL surface as
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Figure 2.1: Diagonal switch - replace the diagonal ij by the other diagonal kl

in Definition 1.2. The criterion (1.4) also applies for flat PL surface and spherical PL

surface. We say an edge ij in T is a Delaunay edge if the inequality 1.4 holds. Therefore

we can operate a diagonal switch on T to make a non-Delaunay edge to be Delaunay.

We present two related results for Delaunay triangulations on PL surfaces. See

Bobenko-Springborn [7] and Gu et.al. [8] for proof.

Proposition 1. [7]

(a) Each flat PL metric on (S, V ) has a Delaunay triangulation.

(b) If T and T ′ are Delaunay triangulations of a flat PL metric d, then there exists a

sequence of Delaunay triangulations T1 = T, T2, · · · , Tk = T ′ of d so that Ti+1 is

obtained from Ti by a diagonal switch.

Proposition 2. [8]

(a) Each hyperbolic PL metric on (S, V ) has a Delaunay triangulation.

(b) If T and T ′ are Delaunay triangulations of a hyperbolic polyhedral metric d on a

closed marked surface (S, V ), then there exists a sequence of Delaunay triangulations

T1 = T, T2, · · · , Tk = T ′ of d so that Ti+1 is obtained from Ti by a diagonal switch.

(c) Suppose T is a Delaunay triangulation of a compact hyperbolic polyhedral surface

(S, V, d) whose diameter is D. Then the length of each edge e in T is at most

2D. In particular, there exists an algorithm to find all Delaunay triangulations of

a hyperbolic polyhedral surface.
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2.2 Discrete Uniformization Theorems

2.2.1 Related works

The smooth unifomization theorem shows that there exists a complete uniformization

metric of the constant curvature conformally equivalent to a given Riemannian metric.

The natural analogy of this theorem in discrete setting is for a prescribled discrete

curvature condition K∗ and given polyhedral metric d on a marked surface (S, V ),

can we find a PL metric d∗ realizes the prescribled curvature condition in the discrete

conformal class of the given polyhedral metric d? Unfortunately, the solution to the

prescribled curvature problem in the discrete conformal class defined in Definition 1.1

is not guaranteed to solve the precribled curvature problem. But this problem can

be fixed by requiring diagonal switch for the triangulation in the definition of discrete

conformal class.

The precise definition of the discrete conformal class mentioned above, introduced

by Gu et.al.[9], is as follows.

Definition 2.1. Let (T, l) and (T ′, l′) be two piecewise flat (hyperbolic or spherical)

polyhedral metrics on marked surface (S, V ). We call (T, l) and (T ′, l′) are discrete

conformal if there exists a sequence of PL metrics l1 = d1, d2, · · · , dm = l′ and triangu-

lations T = T1, T2, · · · , Tm = T ′ on (S, V ) satisfying

(1) (Delaunay condition) each Ti is Delaunay in li

(2) (Vertex scaling condition) if Ti = Ti+1, then for any edge e ∈ E(T )

li+1(e) = e
ui+uj

2 li(e) for flat PL metric

sinh(li+1(e)/2) = e
ui+uj

2 sinh(li(e)/2) for hyperbolic PL metric

sin(li+1(e)/2) = e
ui+uj

2 sin(li(e)/2) for spherical PL metric

for some vertex function u : V → R.

(3) If Ti 6= Ti+1, then (Ti, li) is isometric to (Ti+1, li+1) by an isometry homotopic to

an identity in (S, V ).
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Under this definition, Gu et.al [9] solved the prescribled curvature problem for piece-

wise flat polyhedral metric on closed surfaces. Specifically, their theorem (Thorem 1.2

in [9]) is as in the following.

Theorem 5. Suppose (S, V ) is a closed connected marked surface and d is any PL

metric on (S,V). Then for any K∗ : V → (−∞, 2π) with
∑

v∈V K
∗(v) = 2πχ(S), there

exists a PL metric d0 ,unique up to scaling,on (S, V )so that d0 is discrete conformal to

d and the discrete curvature of d0 is K∗.

The prescribled curvature problem for piecewise hyperbolic metric was solved by

Gu et.al in [8].

Theorem 6. Suppose (S, V ) is a closed connected marked surface and d is any PL

hyperbolic metric on (S,V). Then for any K∗ : V → (−∞, 2π) with
∑

v∈V K
∗(v) >

2πχ(S), there exists an unique PL metric d0 ,on (S, V )so that d0 is discrete conformal

to d and the discrete curvature of d0 is K∗.

Remark 2.1. The case K∗ ≡ 0 was first proved by Fillastre [10].

Remark 2.2. In our convergence theorems, the discrete conformality between PL met-

rics requires the fixed triangulation without diagonal switch.

The discrete uniformization for spherical PL metric is derived from the following

theorem by Rivin [6].

Theorem 7 ([6]). Every complete hyperbolic surface S of finite area that is homeo-

morphic to a punctured sphere can be realized as a convex ideal polyhedron in three-

dimensional hyperbolic space H3. The realization is unique up to isometries of H3.

In [5], Springborn gave an equivalent description to Theorem 7.

Theorem 8. (discrete uniformization of spheres). For every piecewise euclidean metric

d on the marked 2-sphere (S0, V ), there is a realization of (S0, V ) as a convex euclidean

polyhedron P with vertex set V, such that all vertices lie on the unit sphere and the

induced piecewise euclidean metric is discretely conformally equivalent to d. The poly-

hedron P is unique up to projective transformations of RP 3 ⊃ R3 mapping the unit

sphere to itself.
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Remark 2.3. The global spherical metric we achieved in theorem 4 actually induces

the polyhedral metric in this theorem.

2.2.2 Relation to hyperbolic geometry

In [2], Bobenko et.al introduced a nice way to connect discrete conformality between

flat PL metrics with the hyperbolic geometry.

Figure 2.2: Discrete conformality in terms of hyperbolic geometry

For a flat PL metric (T, l)E of (S, V ), and for each τ = 4ijk in F (T ), replace τ by

an ideal hyperbolic triangle τ∗ in the hyperbolic 3−space H3 such that τ∗ and τ has the

same set of vertices {i, j, k} in the complex plane C. Here we consider H3 as C× R>0.

If two triangles τ and σ are glued along their sharing edge e by a Euclidean isometry f ,

then we glue two ideal hyperbolic triangles τ∗ and σ∗ along the correponding edges e∗

by the same isometry f , where f is being considered as a rigid motion in H3. Therefore

we can construct a hyperbolic metric d∗ on S\V . See Figure 2.2.

Their definition for the discrete conformal class of flat polyhedral metric with same

combinatorics is as follows.

Definition 2.2. Two flat PL metric (T, l)E and (T, l̄)E with the same combinatorics

are discretely conformally equivalent if and only if the hyperbolic metrics with cusps

induced by the circumcircles are isometric.

From Proposition 1, every flat PL metric d on (S, V ) has an associated Delaunay

triangulation. For a given flat PL metric d, we can take a Delaunay triangulation T

of d and construct a hyperbolic metric d∗ on S\V as the process shown in Figure 2.2.
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The d∗ is independent of the choice of triangulation. In [9], Gu et.al. proved that two

flat PL metrics d1 and d2 on (S, V ) are discrete conformal if d∗1 is isometric to d∗2 by an

isometry homotopic to the identity on (S, V ).
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Chapter 3

Estimates on polyhedral surfaces

Our main purpose in this chapter is to prove the C-isoperimetric condition for graphs

on closed surfaces and the discrete elliptic estimate (theorem 9). In the section 3.2, we

will also prove several geometric lemmas that will be used in the proof of convergence

theorems.

3.1 Calculus on Graph

In this section, we will introduce some basic operators and lemmas about the graph.

Assume G = (V,E) is an undirected connected graph. Let ij denote an edge e ∈ E

with endpoints i and j and i ∼ j denote i are connected by an edge ij ∈ E. Let RE

and RE
A be vector spaces of dimension |E| such that

(a) a vector x ∈ RE is represented symmetrically, i.e., xij = xji, and

(b) a vector x ∈ RE
A is represented anti-symmetrically, i.e., xij = −xji, which can also

be called a flow on G.

An edge weight η onG is a vector in RE . Given an edge weight η, the gradient ∇f = ∇ηf

of a vector f ∈ RV is a flow in RE
A defined as:

(∇f)ij = ηij(fj − fi).

Given a flow x ∈ RE
A, its divergence div(x) is a vector in RV such that

div(x)i =
∑
j∼i

xij .

Given an edge weight η, the associated Laplacian ∆ = ∆η : RV → RV is defined as
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∆f = div(∇ηf), i.e.,

(∆f)i =
∑
j∼i

ηij(fj − fi).

Similar to the Green’s identity in PDE, we have a discrete Green’s identity on graphs.

Proposition 3. (Green’s identity) Given x, y ∈ RV ,

∑
i∈V

xi(∆y)i =
∑
i∈V

yi(∆x)i.

Proof.

∑
i∈V

xi(∆y)i =
∑
i∈V

xi
∑
j∼i

ηij(yj − yi) =
∑
ij∈E

ηijxiyj −
∑
i∈V

xiyi
∑
j∼i

ηij .

Then Green’s identity holds by symmetry.

A Laplacian ∆η is a linear transformation on RV , and can be identified as a |V |×|V |

symmetric matrix. By definition, ∆1 = 0 where 1 = (1, 1, ..., 1) ∈ RV . On the other

hand, for a nonegative edge weight η ∈ RE
>0, ker(∆) = R1 by the connectedness of the

graph G.

In the rest of this section, we always assume η ∈ RE
>0. In this case, ∆ is invertible

on the subspace 1⊥ = {x ∈ RV :
∑

i∈V xi = 0} . We denote ∆−1 by the inverse of ∆

on 1⊥. The following regularity property is necessary in the proof of our convergence

theorem.

Lemma 3.1. (η, y) 7→ ∆−1
η y is a smooth map from RV

>0 × 1⊥ to 1⊥.

Proof. It is equivalent to show that Φ(η, y) = (η,∆−1
η y) is a smooth mapping from

RV
>0×1⊥ to itself. By the inverse function theorem, it suffices to show that Φ−1(η, x) =

(η,∆ηx) is smooth and D(Φ−1) is non-degenerate. The smoothness is obvious, and

D(Φ−1) =

 id ∂η/∂x

∂(∆ηx)/∂η ∂(∆ηx)/∂x

 =

 id 0

∂(∆ηx)/∂η ∆η


is indeed nondegenerate, since ∆η is invertible on 1⊥.

Analogous to the isoperimetric condition on a Riemannian surface, we introduce the

notion of C-isoperimetric conditions for a graph G = (V,E) with edge length l ∈ RE
>0.
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Given V0 ⊂ V , we denote

∂V0 = {ij ∈ E : i ∈ V0, and j /∈ V0}

(See Figure 3.1 below), and define the l-perimeter of V0 and the l-area of V0 as

|∂V0|l =
∑

ij∈∂V0

lij , and |V0|l =
∑

ij∈E:i,j∈V0

l2ij .

Given a constant C > 0, a pair (G, l) is called C-isoperimetric if for any V0 ⊂ V ,

min{|V0|l, |V |l − |V0|l} ≤ C|∂V0|2l .

Figure 3.1: The C-isoperimetric condition on graphs.

For a triangulation T of a marked surface (S, V ), let T 1 be its one skeleton. For a

given edge length function l on E(T ), (T 1, l) can be seen as a graph with edge length l.

We say a PL metric (T, l)E((T, l)H) is C− isoperimetric if (T 1, l) is C−isoperimetric.

We will see, from part (b) of Theorem 10, that a uniform C-isoperimetric condition

is satisfied by regular polyhedral surfaces approximating a closed smooth surface.

Also, the following discrete elliptic estimate plays an important role in proving our

main theorems. The proof will be covered in Chapter 3.

Theorem 9. Assume (G, l) is C1-isoperimetric, and x ∈ RE
A, η ∈ RE

>0, C2 > 0, C3 > 0

such that

1. |xij | ≤ C2l
2
ij for any ij ∈ E, and

2. ηij ≥ C3 for any ij ∈ E.
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Then

||∆−1
η ◦ div(x))|| ≤ 4C2

√
C1 + 1

C3
||l|| · |V |1/2l .

Furthermore if y ∈ RV , C4 > 0 and a diagonal matrix D ∈ RV×V satisfying

|yi| < C4Dii||l|| · |V |1/2l

for any i ∈ V , then

||(D −∆η)
−1(div(x) + y)|| ≤

(
C4 +

8C2

√
C1 + 1

C3

)
||l|| · |V |1/2l .

3.2 Geometric lemmas

For a triangle 4ABC, we will use A to represent the vertex A or the angle ∠A. Fur-

thermore, ∠EA,∠HA and ∠SA represents the angle at vertex A in a flat, hyperbolic

and spherical geodesic triangle respectively. Also, let |4ABC| be the area of 4ABC.

Lemma 3.2. Suppose 4EABC, 4HABC and 4SABC are Euclidean, hyperbolic and

spherical triangles respectively, with the same edge lengths a, b, c < 0.1.

(a) If all the inner angles in 4EABC are at least ϵ > 0, then for any P ∈ {E,H, S},

ϵ

8
a2 ≤ |4PABC| ≤

1

ϵ
a2.

Figure 3.2: Triangles in Lemma 3.2

(b) Assume Ma is the middle point of BC, and Mb is the middle point of AC, and

4PCMaMb is the geodesic triangle in 4PABC with vertiecs C,Ma,Mb, where

P ∈ {E,H, S}. Then

|4PCMaMb| ≥
1

5
|4PABC|

for any P ∈ {E,H, S}.
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Remark 3.1. By the well-known Toponogov comparison theorem (see Lemma 3.4), the

assumption in part (a) of Lemma 3.2 can be replaced by that all the inner angles in

4HABC are at least ϵ > 0.

Proof of (a). We begin with three well-known Heron’s formulae for Euclidean, hyper-

bolic and spherical triangles.

|4EABC|2 = s(s− a)(s− b)(s− c),

tan2
|4HABC|

4
= tanh

s

2
tanh

s− a

2
tanh

s− b

2
tanh

s− c

2
, (3.1)

tan2
|4SABC|

4
= tan

s

2
tan

s− a

2
tan

s− b

2
tan

s− c

2
, (3.2)

where s = a+b+c
2 .

The hyperbolic Heron’s formula can be found in Theorem 1.1 in [12], The spherical

one is also called L’Huilier’s Theorem and can be found in Section 4.19.2 in [13].

Notice that |4EABC| ≤ a2 + b2 + c2 ≤ 0.03, and for x ∈ [0, 0.1],

tanhx

x
∈ (0.99, 1) and tanx

x
∈ (1, 1.01).

So by the three parallel Heron’s formulae and simple approximation estimates, we only

need to show the following stronger estimates (3.3) and (3.4) for the Euclidean case.

By the law of sines in the Euclidean triangle 4EABC,

b =
a sin∠EB

sin∠EA
≤ a

sin ϵ
≤ π

2ϵ
a.

So

|4EABC| =
1

2
ab sinC ≤ 1

2
a · π

2ϵ
a =

π

4

a2

ϵ
. (3.3)

By the triangle inequality, we may assume b ≥ a/2 without loss of generality, and then

|4EABC| =
1

2
ab sinC ≥ 1

2
a · a

2
· sin ϵ ≥ ϵ

2π
a2. (3.4)

Proof of (b). The Euclidean case is obvious. To prove the hyperbolic and spherical

cases, we use the following two formulae

cot
|4HABC|

2
=

coth a
2 coth

b
2 − cos∠HC

sin∠HC
, (3.5)
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cot
|4SABC|

2
=

cot a
2 cot

b
2 + cos∠SC

sin∠SC
, (3.6)

where equation (3.5) was developed in Theorem 6 of [14]. The equation (3.6) can be

obtained by

cot
|4SABC|

2
= cot

∠SA+ ∠SB + ∠SC − π

2
= − tan(

∠SA+ ∠SB

2
+

∠SC

2
)

and the well-known Napier’s analogies

tan
∠SA+ ∠SB

2
= cot

C

2
·
cos a−b

2

cos a+b
2

.

Here we only prove the hyperbolic case using equation (5.4) and the proof for the

spherical case is very similar. Firstly we apply the formula (3.5) to 4HCMaMb and

get

cot
|4HCMaMb|

2
=

coth a
4 coth

b
4 − cos∠HC

sin∠HC
.

Then

tan △HCMaMb
2

tan △HABC
2

=
coth a

2 coth
b
2 − cos∠HC

coth a
4 coth

b
4 − cos∠HC

≥ (2/a)(2/b)− 1

(4/a)(4/b)/0.992 + 1
=

4− ab

16/0.992 + ab
≥ 1

5
.

Since |4HCMaMb| ≤ |4HABC| and tanx
x is increasing on (0,∞),

|4HCMaMb|
|4HABC|

≥
tan △HCMaMb

2

tan △HABC
2

≥ 1

5
.

The following Lemma 3.3, first proved by Gu-Luo-Wu (see Proposition 5.2 in [15]),

indicates that the discrete conformal change l′ij = e(ui+uj)/2lij is close to the continuous

conformal change with the error of cubic terms. For a Riemannian surface (M, g), we

use dg(x, y) to denote the geodesic distance between x and y under metric g.

Lemma 3.3. Suppose (M, g) is a closed Riemannian surface, an u ∈ C∞(M) is a

conformal factor. Then there exists C = C(M, g, u) > 0 such that for any x, y ∈M ,

|de2ug(x, y)− e
1
2
(u(x)+u(y))dg(x, y)| ≤ Cdg(x, y)

3.

The following lemma states the angle of a geodesic triangle with bounded curvature

can be bounded by the angle of triangle in the model space with same edge length.
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Lemma 3.4. Assume 4ABC,4A′B′C ′,4A′′B′′C ′′ are geodesic Riemannian triangles

with the same edge lengths a, b, c such that 4A′B′C ′ has negative constant curvature

−K and 4A′′B′′C ′′ has positive constant curvature K and the curvature of 4ABC is

always in [−K,K]. If

max{a, b, c} < π

2
√
K
,

then

A′ ≤ A ≤ A′′.

This lemma is a combination of the well-known Toponogov comparison theorem

and the CAT(K) Theorem. See Theorem 79 on page 339 in [16] for the Toponogov

comparison theorem, and Characterization Theorem on page 704 in [17] or Theorem

1A.6 on page 173 in [18] for the CAT(K) Theorem.

The following Lemma gives an explicit bound for the difference between the corre-

sponding angles for two geodesic triangles with same edge length and same curvature

bound.

Lemma 3.5. Assume 4ABC and 4A′B′C ′ are two geodesic Riemannian triangles with

the same edge lengths a, b, c such that Gaussian curvature on 4ABC and 4A′B′C ′ are

both bounded in (−K,K). If max{a, b, c} < π
3
√
K

, then

|A′ −A| ≤ 2(a+ b+ c)2K.

Proof. By Lemma 3.4, without loss of generality, we may assume that 4ABC has

constant curvature −K and 4A′B′C ′ has constant curvature K. Then

A′ −A > 0, B′ −B > 0, C ′ − C > 0,

and by the Gauss-Bonnet theorem

0 < A′ −A ≤ (A′ +B′ + C ′)− (A+B + C) = K ·
(
|4A′B′C ′|+ |4ABC|

)
.

By a simple scaling, the Heron’s formulae can be generalized to the following

tan2
|4ABC| ·K

4
= tanh

s
√
K

2
tanh

(s− a)
√
K

2
tanh

(s− b)
√
K

2
tanh

(s− c)
√
K

2
,
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tan2
|4A′B′C ′| ·K

4
= tan

s
√
K

2
tan

(s− a)
√
K

2
tan

(s− b)
√
K

2
tan

(s− c)
√
K

2
≤ s4K2,

where s = (a+ b+ c)/2. So

|4ABC| ≤ |4A′B′C ′| ≤ 4

K
tan

|4A′B′C ′| ·K
4

≤ 4

K
· s2K = (a+ b+ c)2

and we are done.

3.3 C-isoperimetric condition

In this section, we will prove the following theorem.

Theorem 10. Suppose (M, g) is a closed Riemannian surface, and T is a geodesic

triangulation of (M, g) with geodesic edge length l. Assume (T, l)E or (T, l)H is ϵ-regular.

Given a conformal factor u ∈ C∞(M), there exist constants δ = δ(M, g, u, ϵ) > 0 and

C = C(M, g, ϵ), such that if ||l|| < δ, then

(a) there exists a geodesic triangulation T ′ in (M, e2ug) such that V (T ′) = V (T ), and T ′

is homotopic to T relative to V (T ). Further (T, l̄)E and (T, l̄)H are 1
2ϵ-regular where

l̄ ∈ RE(T ) ∼= RE(T ′) denotes the geodesic lengths of the edges of T ′ in (M, e2ug).

(b) (T, l) is C-isoperimetric.

First, we will prove the existence of geodesic representative of T in (M, e2ug), which

is included in the following lemma.

Lemma 3.6. Suppose (M, g) is a closed Riemannian surface, and u ∈ C∞(M) is a

conformal factor, then for any ϵ > 0, there exists δ = δ(M, g, u) > 0 such that for any

x, y ∈M with dg(x, y) < δ,

(a) there exists a unique shortest geodesic segment l in (M, g), and l′ in (M, e2ug),

connecting x and y, and

(b) the angle between l and l′ at x, measured in (M, g), is less or equal to ϵ.

Proof. AssumeK(x) is the Gaussian curvature of (M, g) at x, and ‖K‖∞ = maxx∈M |K(x)|.

Let Bg(x, δ) := {y ∈ M |dg(x, y) ≤ δ} and |Bg(x, δ)|g be its area under metric g. It is
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Figure 3.3: Geodesics in the proof of Lemma 3.6

easy to find a sufficiently small δ such that (a) is satisfied, and for any x ∈M ,

|Bg(x, δ)|g · ‖K‖∞ < ϵ/2.

For the unit circle bundle

A = {(x, a⃗) ∈ TM : x ∈M, ‖a⃗‖e2ug = 1},

under the local coordinates (v1, v2), let Γi
jk and Γ̃i

jk are Christoffel symbols for g ande2ug

respectively. Then for any geodesic γ(t) = (v1(t), v2(t)) in (M, e2ug) with γ(0) = x and

γ′(0) = a⃗, the geodesic curvature kg of γ in (M, g) at point x is

−
√
g11g22 − g212(−Γ2

11v̇
3
1 + Γ1

22v̇
3
2 − (2Γ2

11 − Γ1
11)v̇

2
1 v̇2 + (2Γ1

12 − Γ2
22)v̇1v̇

2
2 + v̈1v̇2 − v̈2v̇1)

‖a⃗‖3g

(see Theorem 17.19 in [19] for a proof). Here (v̇1, v̇2) = a⃗, and v̈1, v̈2 are determined by

(v̇1, v̇2) through the geodesic equations

v̈i +
∑
j,k

Γ̃i
jkv̇j v̇k = 0.

By this way kg can be viewed as a smooth function of (x, a⃗) defined on the compact

manifold A, and thus is bounded by [−C,C] for some constant C = C(M, g, u).

As shown in Figure 3.3, assume l and l′ start at x and first meet at a point z. Let l0

(resp. l′0) be the part of l (resp. l′) between x and z, and then by the Jordan-Schoenflies

theorem l0∪ l′0 bounds a small closed disk D. Let θx (resp. θz) be the intersecting angle

of l0 and l′0 at x (resp. at z). Then by the Gauss-Bonnet theorem∫
D
KdAg +

∫
l0

kgdsg +

∫
l′0

kgdsg + (π − θx) + (π − θz) = 2π

and

θx ≤ θx + θz =

∫
D
KdAg +

∫
l′0

kgdsg ≤ ‖K‖∞ · |D|g + C · sg(l′) ≤
ϵ

2
+ C · sg(l′)
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where

sg(l
′) ≤ e∥u∥∞ · se2ug(l′) ≤ e∥u∥∞ · se2ug(l) ≤ e2∥u∥∞ · sg(l) ≤ e2∥u∥∞ · δ.

So θx ≤ ϵ if δ ≤ ϵ/(2Ce2∥u∥∞).

3.3.1 Proof of Part (a) of C-isoperimetric Condition Theorem

Recall that

Theorem (Part (a) of Theorem 10). Suppose (M, g) is a closed Riemannian surface,

and T is a geodesic triangulation of (M, g) with geodesic edge length l, such that (T, l)E

or (T, l)H is ϵ-regular. Given a conformal factor u ∈ C∞(M), there exist constants

δ = δ(M, g, u, ϵ) > 0 and C = C(M, g, ϵ), such that if ||l|| < δ, then

(a) there exists a geodesic triangulation T ′ in (M, e2ug) such that V (T ′) = V (T ), and T ′

is homotopic to T relative to V (T ). Further (T, l̄)E and (T, l̄)H are 1
2ϵ-regular where

l̄ ∈ RE(T ) ∼= RE(T ′) denotes the geodesic lengths of the edges of T ′ in (M, e2ug).

Proof of Part (a) of Theorem 10. Denote

(a) θijk(M) as the inner angle of the geodesic triangle in F (T ) in (M, g),

(b) θijk(E) as the inner angle in (T, l)E

(c) θijk(H) as the inner angle in (T, l)H

(d) θ̄ijk(M) as the inner angle of the geodesic triangle in F (T ′) in (M, e2ug)

(e) θ̄ijk(E) as the inner angle in (T, l̄)E

(f) θ̄ijk(H) as the inner angle in (T, l̄)H .

By Lemma 3.5 and 3.6, if δ(M, g, u, ϵ) is sufficiently small, then

(a) |θijk(M)− θijk(E)| ≤ ϵ/12 and |θijk(M)− θijk(H)| ≤ ϵ/12

(b) for any edge ij ∈ E(T ) there exists a unique shortest geodesic eij in (M, e2ug)

connecting i, j
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(c) for each 4ijk ∈ F (T ), eij , eik, ejk bounds a geodesic triangle Fijk in (M, e2ug)

(d) |θ̄ijk(M) − θijk(M)| ≤ ϵ/12, |θ̄ijk(E) − θ̄ijk(M)| ≤ ϵ/12, |θ̄ijk(H) − θ̄ijk(M)| ≤ ϵ/12,

and therefore both (T, l̄)E and (T, l̄)H are ϵ/2-regular,

(e) for any vertex i ∈ V (T ) = V (T ′), its adjacent edges {ij}j∼i in T are placed in the

same order as the adjacent edges {eij}j∼i in T ′, i.e., there are no folding triangles

in T ′.

We can define a continuous map f :M →M such that

(1) f(i) = i for any i ∈ V

(2) for any edge ij ∈ E(T ), f is a homeomorphism from ij to eij

(3) for any 4ijk ∈ F (T ), f is a homeomorphism from 4ijk to Fijk.

Then by the property (e) above, f is a local homeomorphism. Furthermore if δ is

sufficiently small, f is homotopic to the identity. Therefore f is a global homeomorphism

and T ′ = (V, {eij}, {Fijk}) is a triangulation of M .

3.3.2 Proof of Part (b) of C-isoperimetric Condition Theorem

Recall that

Theorem (Part (b) of Theorem 10). Suppose (M, g) is a closed Riemannian surface,

and T is a geodesic triangulation of (M, g) with geodesic edge length l such that (T, l)E

or (T, l)H is ϵ-regular. Then there exist constants δ = δ(M, g, ϵ) and C = C(M, g, ϵ)

such that if ||l|| < δ, then

(b) (T, l) is C-isoperimetric.

For a finite union of curves γ, we denote its length measured in g as s(γ), or sg(γ).

We first prove a continuous version.

Lemma 3.7. Suppose (M, g) is a closed Riemannian surface, and Ω ⊂ M is an open

subset with ∂Ω being a finite disjoint union of piecewise smooth Jordan curves, then

there exists a constant C = C(M, g) > 0 such that

min{|Ω|, |M − Ω|} ≤ CL2
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where L = s(∂Ω) denotes the length of ∂Ω in (M, g).

Proof. If Ω is simply connected, then it is well known (See Theorem 4.3 in [20]) that

L2 ≥ |Ω|(4π − 2

∫
Ω
K+)

where K+(p) = max{0,K(p)}.

For a point x on the Riemannian surface (M, g) and a r > 0, let B(x, r) = Bg(x, r) =

{y ∈M : dg(x, y) < r} and |B(x, r)| be its area measured in metric g.

Pick r = r(M, g) > 0 to be smaller than the injectivity radius of (M, g), such that

|B(p, r)| · ‖K‖∞ ≤ π

for any p ∈M .

Now we pick our constant

C(M, g) = max{ 2
π
,
|M |
r2

}.

If L ≥ r, then CL2 ≥ |M | and we are done. If Ω ⊂ B(p, r) for some p ∈ M and is

connected, then without loss of generality we may assume Ω is simply connected by

filling up the holes. Therefore we have

CL2 ≥ 2

π
· |Ω|(4π − 2

∫
Ω
K+) ≥ |Ω|

(
8− 4

π
· |B(p, r)| · ‖K‖∞

)
≥ 4|Ω| (3.7)

and we are done.

If Ω has multiple connected components Ω1, ...,Ωn with the boundary lengths L1, ..., Ln

respectively, such that each Ωi is in some Riemannian disk B(p, r), then L ≥ (L1+ ...+

Ln)/2 since any component of ∂Ω is in at most two ∂Ωi’s. So by equation (3.7)

CL2 ≥ 1

4

n∑
i=1

CL2
i ≥

n∑
i=1

|Ωi| = |Ω| (3.8)

and we are done.

Now we assume L < r and ∂Ω consists of Jordan curves γ1, ..., γn with lengths

L1, ..., Ln respectively. Since Li ≤ r, γi is in some Riemannian disk B(p, r). By the

Jordan-Schoenflies theorem, γi separates M into a smaller domain Ui ⊂ B(p, r) and a
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Figure 3.4: Decomposition of a triangulated surface

larger domain Vi =M − Ūi, and Ūi is a topological closed disk. For any i 6= j, since γi

and γj are disjoint, Ūi ⊂ Ūj or Ūj ⊂ Ūi or Ūi ∩ Ūj = ∅. So ∪n
i=1Ūi is a finite disjoint

union of topological disks, and thus M − ∪n
i=1Ūi is connected. If Ω ⊂ ∪n

i=1Ui, then by

equation (3.8) we are done. Otherwise, M − ∪n
i=1Ūi ⊂ Ω and M − Ω̄ ⊂ ∪n

i=1Ui, and

again by equation (3.8) CL2 ≥ |M − Ω̄| and we are done.

Now we prove part (b) of Lemma 10 for the special cases that (M, g) has constant

curvature 0 or ±1.

Proof of Part (b) of theorem 10 for the cases of constant curvature 0 or ±1. In this proof

each triangle 4ijk ∈ F (T ) is identified as a geodesic triangle in (M, g). Assume δ < 0.1,

V0 ⊂ V , and V1 = V − V0. Let

E0 = {ij ∈ E : i, j ∈ V0}, E1 = {ij ∈ E : i, j ∈ V1}.

Notice that ∂V0 = ∂V1 and E = E0 ∪ E1 ∪ ∂V0 is a disjoint union.

For any triangle 4ijk ∈ F (T ), 0 or 2 of its edges are in ∂V0. So F (T ) = F0 ∪ F2

where

F0 ={4ijk ∈ F (T ) : 4ijk has 0 edges in ∂V0}, and

F2 ={4ijk ∈ F (T ) : 4ijk has 2 edges in ∂V0}.

If 4ijk ∈ F2 and ij, ik ∈ ∂V0, let γijk be the geodesic segment in 4ijk connecting

the middle points mij of ij, and mik of ik. Then by the triangle inequality 1
2(lij +

lik) ≥ s(γijk). γijk cut 4ijk into two relative open domains P 0
ijk and P 1

ijk such that

P 0
ijk ∩ V0 6= ∅ and P 1

ijk ∩ V1 6= ∅. Given 4ijk ∈ F0,

(1) if i, j, k ∈ V0, denote P 0
ijk = 4ijk and P 1

ijk = ∅, and
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(2) if i, j, k ∈ V1, denote P 1
ijk = 4ijk and P 0

ijk = ∅.

The union

Γ =
⋃

△ijk∈F2

γijk

is a finite disjoint union of piecewise smooth Jordan curves in (M, g), and

P 0 =
⋃

△ijk∈F (T )

P 0
ijk, and P 1 =

⋃
△ijk∈F (T )

P 1
ijk

are two open domains of (M, g) such that ∂P 0 = Γ and P 1 = M − P̄ 0. The above

notations are shown in Figure 3.4. By Lemma 3.7, it suffices to prove that if δ < 0.1,

|P 1| ≥ ϵ

60
(|V |l − |V0|l), (3.9)

and

|P 0| ≥ ϵ

60
|V0|l, (3.10)

and

s(Γ) ≤ |∂V0|l. (3.11)

By part (b) of Lemma 3.2 and Remark 3.1, we have that

|V |l − |V0|l =
∑

ij∈E1∪∂V0

l2ij ≤
4

ϵ

∑
ij∈E1∪∂V0

(|4ijk|+ |4ijk′|) ≤ 12

ϵ

∑
△ijk∈F :△ijk∩P 1 ̸=∅

|4ijk|

≤60

ϵ

∑
△ijk∈F

|P 1
ijk| =

60

ϵ
|P 1|,

and

|V0|l =
∑
ij∈E0

l2ij ≤
∑

ij∈E0∪∂V0

l2ij ≤
60

ϵ
|P 0|,

and

|∂V0|l =
∑

ij∈∂V0

lij =
∑

△ijk∈F2:jk/∈∂V0

1

2
(lij + lik) ≥

∑
△ijk∈F2

s(γijk) = s(Γ).

Now let us prove part (b) of Theorem 10 for general smooth surfaces.

Proof of Part (b) of Theorem 10. By the Uniformization theorem, there exists u =

uM,g ∈ C∞(M) such that e2ug has constant curvature ±1 or 0. By part (a) of Theo-

rem 10, if δ is sufficiently small, we can find a geodesic triangulation T ′ in (M, e2ug)
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such that V (T ) = V (T ′), and T, T ′ are homotopic relative to V . Furthermore by the

inequalities in (a) and (d) in the proof of Theorem 10 (a), if δ is sufficiently small,

any inner angle of T ′ in (M, e2ug) is at least ϵ/2. Let l̄ ∈ RE(T ) ∼= RE(T ′) denote the

geodesic edge lengths in (M, e2ug). Then by our result on surfaces of constant curva-

ture ±1 or 0, if δ = δ(M, e2ug) is sufficiently small, (T, l̄) is C-isoperimetric for some

constant C = C(M, e2ug) > 0. Since e−∥u∥∞ ≤ l̄ij/lij ≤ e∥u∥∞ , (T, l) is (e4∥u∥∞C)-

isoperimetric.

3.4 Discrete Elliptic Estimate

Recall that

Theorem 11. Assume (G, l) is C1-isoperimetric, and x ∈ RE
A, η ∈ RE

>0, C2 > 0, C3 > 0

are such that

(1) |xij | ≤ C2l
2
ij for any ij ∈ E, and

(2) ηij ≥ C3 for any ij ∈ E.

Then

||∆−1
η ◦ div(x))|| ≤ 4C2

√
C1 + 1

C3
||l|| · |V |1/2l .

Furthermore if y ∈ RV and C4 > 0 and D ∈ RV×V is a diagonal matrix such that

|yi| < C4Dii||l|| · |V |1/2l

for any i ∈ V , then

||(D −∆η)
−1(div(x) + y)|| ≤

(
C4 +

8C2

√
C1 + 1

C3

)
||l|| · |V |1/2l .

We will first prove Lemma 9 assuming Lemma 3.8, and then prove Lemma 3.8.

Proof. Assume

(1) z = ∆−1(div(x)), and

(2) a, b ∈ V are such that za = maxi zi ≥ 0 and zb = mini zi ≤ 0, and a 6= b, and
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(3) u ∈ RV is such that

(∆u)a = 1, and (∆u)b = −1, and (∆u)i = 0 ∀i 6= a, b.

By the Green’s identity Lemma 3 and Lemma 3.8,

||z|| ≤ za − zb =
∑
i

zi(∆u)i =
∑
i

ui(∆z)i =
∑
i

ui · div(x)i

=
∑
i

ui
∑
j:j∼i

xij =
∑
ij∈E

(ui − uj) · xij ≤ C2

∑
ij∈E

|ui − uj | · l2ij ≤
4C2

√
C1 + 1

C3
||l|| · |V |1/2l .

Let

w = (D −∆)−1(div(x) + y) + z,

and then

(D −∆)w = div(x) + y + (D −∆)z = y +Dz. (3.12)

Assume wi = maxk wk, and then by comparing the i-th component in (3.12) we

have

Diiwi ≤ ((D −∆)w)i = yi +Diizi ≤ yi +Dii||z||.

So

max
k

wk = wi ≤ ||z||+ yi/Dii ≤ ||z||+max
k

(yk/Dkk)

and similarly we also have that

min
k
wk ≥ −||z||+min

k
(yk/Dkk).

So

||(D −∆)−1(div(x) + y)|| ≤ ||w||+ ||z|| ≤ 2||z||+max
k

(|yk|/Dkk)

and we are done.

Lemma 3.8. Assume (G, l) is C1-isoperimetric, and the weight η ∈ RE
>0 satisfies that

ηij ≥ C2 for some constant C2 > 0. Assume u ∈ RV satisfies that

(∆u)a = 1, and (∆u)b = −1, and (∆u)i = 0 ∀i 6= a, b.
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Then ∑
ij∈E

l2ij |ui − uj | ≤
4
√
C1 + 1

C2
||l|| · |V |1/2l .

Proof. We consider the 1-skeletonX of the graphG with edge length l. More specifically

X can be constructed as follows. Let X̃ be a disjoint union of line segments {eij : ij ∈

E} where each eij has length lij and two endpoints viij , v
j
ij . Then we obtain a connected

quotient space X by identifying the points in vi := {viij : ij ∈ E} for any i ∈ V .

Assume µ is the standard 1-dimensional Lebesgue measure on X such that µ(eij) =

lij . Let ν be another measure on X such that dν/dµ ≡ lij on edge eij . Then we have

that ν(eij) = l2ij and ν(X) = |V |l.

Assume u : V → R is linearly extended to the 1-skeleton X, and then by maximum

principle, ua = min(u) and ub = max(u). Let ū ∈ (ua, ub) be such that

ν(x ∈ X : u(x) < ū) ≤ |V |l/2,

ν(x ∈ X : u(x) > ū) ≤ |V |l/2.

Let f(x) = lij |ui − uj | for x ∈ eij , and then f is well-defined almost everywhere on

X, and

∑
ij∈E

l2ij |ui − uj | =
∫
X
f(x)dµ ≤

∫
ua≤u(x)≤ū

f(x)dµ+

∫
ū≤u(x)≤ub

f(x)dµ.

We will prove∫
ua≤u(x)≤ū

f(x)dµ ≤ 2
√
C1 + 1

C2
||l|| ·

√
ν(u(x) < ū) ≤ 2

√
C1 + 1

C2
||l|| · |V |1/2l

and then by the symmetry
∫
ū≤u(x)≤ub

f(x)dµ has the same upper bound and we are

done.

Let ua = p0 < p1 < · · · < ps = ū such that {p0 · · · ps−1} = {ui : i ∈ V, ui < ū}.

Noticing that
∫
u(x)=p f(x)dµ = 0 for any p ∈ R, it suffices to prove that for any

k ∈ {1, ..., s}∫
pk−1<u(x)<pk

f(x)dµ ≤ 2
√
C1 + 1

C2
||l|| ·

(√
ν(u(x) < pk)−

√
ν(u(x) < pk−1)

)
.
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In the remaining of the proof, we fix a k ∈ {1, ..., s} and let Vk = {i ∈ V : u(i) ≤ pk−1}.

Then for any i ∈ Vk and ij ∈ ∂Vk, uj ≥ ui and then

0 =
∑

i∈Vk−{a}

(∆u)i =
∑

i∈Vk−{a}

∑
j∼i

ηij(uj − ui)

=
∑
i:i∼a

ηia(ua − ui) +
∑

ij∈∂Vk:i∈Vk

ηij(uj − ui)

≥ −(∆u)a + C2

∑
ij∈∂Vk

|uj − ui|.

Therefore,

C2

∑
ij∈∂Vk

|uj − ui| ≤ (∆u)a = 1. (3.13)

Let e′ij = {x : pk−1 < u(x) < pk} ∩ eij , and l′ij = µ(e′ij). Then l′ij = 0 if ij /∈ ∂Vk. If

ij ∈ ∂Vk, let i′ and j′ be the two endpoints of e′ij . Then {u(i′), u(j′)} = {pk−1, pk}, and

l′ij
lij

=
|u(j′)− u(i′)|

|uj − ui|
=
pk − pk−1

|uj − ui|
.

So∫
pk−1<u(x)<pk

f(x)dµ =
∑

ij∈∂Vk

l′ijlij |ui−uj | = (pk−pk−1)
∑

ij∈∂Vk

l2ij ≤ (pk−pk−1)||l||·|∂Vk|l.

(3.14)

On the other hand, by inequality (3.13) and Cauchy’s inequality,

ν(pk−1 < u(x) < pk) =
∑

ij∈∂Vk

l′ijlij = (pk − pk−1)
∑

ij∈∂Vk

l2ij
|uj − ui|

≥(pk − pk−1)

 ∑
ij∈∂Vk

l2ij
|uj − ui|

 ·

 ∑
ij∈∂Vk

|uj − ui|

 · C2

≥C2(pk − pk−1)(
∑

ij∈∂Vk

lij)
2 = C2(pk − pk−1)|∂Vk|2l .

(3.15)

Since (G, l) is C1-isoperimetric, we have that

ν(u(x) < pk) ≤ |Vk|l +
∑

ij∈∂Vk

l2ij ≤ C1|∂Vk|2l + |∂Vk|2l = (C1 + 1)|∂Vk|2l . (3.16)

Divide(3.15) by
√

(3.16) and then we have

ν(pk−1 < u(x) < pk)√
ν(u(x) < pk)

≥ C2√
C1 + 1

(pk − pk−1)|∂Vk|l. (3.17)
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Combining equations (3.14) and (3.17) and then∫
pk−1<u(x)<pk

f(x)dµ ≤
√
C1 + 1

C2
· ||l|| · ν(pk−1 < u(x) < pk)√

ν(u(x) < pk)

≤
√
C1 + 1

C2
· ||l|| · ν(u(x) < pk)− ν(u(x) < pk−1)√

ν(u(x) < pk)

≤2
√
C1 + 1

C2
· ||l|| · ν(u(x) < pk)− ν(u(x) < pk−1)√

ν(u(x) < pk) +
√
ν(u(x) < pk−1)

=
2
√
C1 + 1

C2
· ||l|| ·

(√
ν(u(x) < pk)−

√
ν(u(x) < pk−1)

)
and we are done.
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Chapter 4

Proof for the case of genus g = 1

4.1 Differential of discrete curvatures for discrete flat metric

First, we will derive the differential for discrete curvature of PL flat metric under a

discrete conformal change.

Lemma 4.1. Given a Euclidean triangle 4ABC, if we view A,B,C as functions of

the edge lengths a, b, c, then

∂A

∂b
= −cotC

b
,

∂A

∂a
=

cotB + cotC

a
=

1

b sinC
.

Furthermore if (uA, uB, uC) ∈ R3 is a discrete conformal factor, and

a = e
1
2
(uB+uC)a0, b = e

1
2
(uA+uC)b0, c = e

1
2
(uA+uB)c0

for some constants a0, b0, c0 ∈ R>0, then

∂A

∂uB
=

1

2
cotC,

∂A

∂uA
= −1

2
(cotB + cotC). (4.1)

Proof. Take the partial derivative on

cosA =
b2 + c2 − a2

2bc

and we have

− sinA
∂A

∂b
=

2b

2bc
− b2 + c2 − a2

2b2c
=
b2 + a2 − c2

2b2c
=
a cosC

bc
,

and
∂A

∂b
= − a cosC

bc sinA
= − cosC

b sinC
= −cotC

b
.

Similarly

− sinA
∂A

∂a
= − a

bc
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and

∂A

∂a
=

a

bc sinA
=

1

b sinC
=

sinA

a sinB sinC
=

sinB cosC + sinC cosB

a sinB sinC
=

cotB + cotC

a
.

Then equation (4.1) can be computed easily.

Now we are in the position to get the following proposition, which was first discov-

ered by Luo [1].

Proposition 4. Given (T, l)E and u ∈ RV (T ) such that u ∗ l satisfies the triangle

inequalities, define the cotangent weight η ∈ RE as

ηij(u) =
1

2
cot θkij(u) +

1

2
cot θk

′
ij (u)

where 4ijk and 4ijk′ are adjacent triangles in F (T ). Then

∂K

∂u
(u) = −∆η(u).

Before giving the sketch the proof, we need an estimate for the angle difference

between two Euclidean triangles.

Lemma 4.2. Given a Euclidean triangle 4ABC with all the angles are at least ϵ > 0.

If

|ã− a| ≤ δa, |b̃− b| ≤ δa, |c̃− c| ≤ δc,

where δ < ϵ2/48, then ã, b̃, c̃ can be the edges lengths of a Euclidean triangle with

opposite inner angles Ã, B̃, C̃ respectively. Furthermore, we have

|Ã−A| ≤ 24

ϵ
δ,

and ∣∣∣∣|4ÃB̃C̃| − |4ABC|
∣∣∣∣ ≤ 576

ϵ2
δ · |4ABC|.

Proof. Let

uA(t) = t · (log b̃
b
+ log

b̃

c
− log

ã

a
)

and uB(t), uC(t) be defined similarly. Then |u′i| ≤ −3 log(1− δ) ≤ 6δ for i ∈ {A,B,C},

since

δ ≤ ϵ2

48
≤ (π/3)2

48
≤ 0.1.
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Assume

a(t) = e
1
2
(uB(t)+uC(t))a, b(t) = e

1
2
(uA(t)+uC(t))b, c(t) = e

1
2
(uA(t)+uB(t))c,

and then a(1) = ã, b(1) = b̃, c(1) = c̃. Let A(t), B(t), C(t) be the inner angles of the

triangle with edge lengths a(t), b(t), c(t), if well-defined.

Let T0 ∈ [0,∞] be the maximum real number such that for any t ∈ [0, T0), all

A(t), B(t), C(t) > ϵ/2. Then T0 > 0 and for any t ∈ [0, T0), by Lemma 4.1

|A′(t)| =
∣∣∣∣ ∂A∂uAu′A +

∂A

∂uB
u′B +

∂A

∂uC
u′C

∣∣∣∣ ≤ 2 cot
ϵ

2
·max(|u′A|, |u′B|, |u′C |) ≤ 12δ cot

ϵ

2
≤ 24

ϵ
δ,

and similarly |B′(t)|, |C ′(t)| ≤ 24δ/ϵ. So T0 ≥ (ϵ/2)/(24δ/ϵ) = ϵ2/(48δ) > 1, and

|Ã−A| ≤ 24δ/ϵ.

By Lemma 4.1 for t ∈ (0, 1)

∂|4ABC|
∂a

=
∂(12bc sinA)

∂A
· ∂A
∂a

=
1

2
bc cosA · a

bc sinA
=

a(t)

2 tanA(t)

and then by the chain rule∣∣∣∣d|4ABC(t)|dt

∣∣∣∣ ≤ |u′| ·
(∣∣∣∣ a2

2 tanA

∣∣∣∣+ ∣∣∣∣ b2

2 tanB

∣∣∣∣+ ∣∣∣∣ c2

2 tanC

∣∣∣∣) ≤ 6δ · a(t)
2 + b(t)2 + c(t)2

ϵ
,

where a(t) ≤ e|u(t)|a ≤ e6δta ≤ 2a and b(t) ≤ 2b and c(t) ≤ 2c.

Then by Lemma 3.2,∣∣|4ÃB̃C̃| − |4ABC|
∣∣ ≤ 24δ

ϵ
(a2 + b2 + c2) ≤ 24δ

ϵ
· 3 · 8

ϵ
· |4ABC| = 576

ϵ2
δ|4ABC|.

4.2 Sketch of the proof for the case of genus g = 1

By Theorem 10, if δ is sufficiently small then there exists a geodesic triangulation T ′

of (M, e2ūg) homotopic to T relative to V (T ) = V (T ′). Let l̄ ∈ RE(T ) ∼= RE(T ′) denote

the geodesic lengths of the edges of T ′ in (M, e2ūg), and then (T, l̄)E is isometric to

(M, e2ūg) and globally flat.

For simplicity, we will frequently use the notion a = O(b) to denote that if δ =

δ(M, g, ϵ) is sufficiently small, then |a| ≤ C · b for some constant C = C(M, g, ϵ). For

example, lij = O(ljk) for any 4ijk ∈ F (T ), and (ū∗ l)ij = O(lij), and l̄ij = O(lij). The

remaining of the proof is divided into three steps.
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(1) Firstly we show that (T, ū∗l)E is close to the globally flat polyhedral metric (T, l̄)E ,

in the sense that

(ū ∗ l)ij − l̄ij = O(l3ij)

and

K(ū) = div(x)

for some flow x ∈ RE
A satisfying xij = O(l2ij).

(2) Secondly, we construct a smooth path u(t) : [0, 1] → RV with u(0) = ū such that

the identity holds

K(u(t)) = (1− t)K(ū).

Furthermore we show that ||u′(t)|| = O(||l||), and then (T, u(1) ∗ l)E is globally flat

and ||u(1)− ū|V (T )|| = O(||l||).

(3) Lastly we show that Area((T, u(1) ∗ l)E) − 1 = O(||l||), so the area normalization

condition can be satisfied by slightly scaling (T, u(1) ∗ l)E .

The uniqueness of the discrete uniformization conformal factor is proved by Bobenko-

Pinkall-Springborn (see Theorem 3.1.4 in [2]).

4.3 Proof of the torus case

4.3.1 Step 1: Deviation of angle and discrete curvature of PL Eu-

clidean angle

By Theorem 10, (T, l̄)E is 1
2ϵ-regular if δ is sufficiently small. For simplicity we denote

ū|V (T ) as ū. By lemma 3.3,

|l̄ij − (ū ∗ l)ij | = O(l3ij),

and then by Lemma 4.2

αi
jk := θ̄ijk − θijk(ū) = O(l2ij)

where θ̄ijk denotes the inner angle in (T, l̄)E . So (T, ū∗l)E is 1
3ϵ-regular if δ is sufficiently

small. Let x ∈ RE
A be such that

xij =
αi
jk − αj

ik

3
+
αi
jk′ − αj

ik′

3
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where 4ijk and 4ijk′ are adjacent triangles sharing edge ij. From αi
jk +α

j
ik +α

k
ij = 0

and
∑

jk:△ijk∈F (T ) θ̄
i
jk = 2π, we have

div(x)i =
∑
j:j∼i

xij =
∑

jk:△ijk∈F (T )

(
αi
jk − αj

ik

3
+
αi
jk − αk

ij

3

)
=

∑
jk:△ijk∈F (T )

αi
jk = Ki(ū),

which implies

xij = O(l2ij). (4.2)

4.3.2 Step 2: Construction of the path

Let

Ω̃ = {u ∈ 1⊥ : u ∗ l satisfies the triangle inequalities and (T, u ∗ l)E is ϵ
5

-regular}

and

Ω = {u ∈ Ω̃ : ||u− ū|| ≤ 1, (T, u ∗ l)E is ϵ
4

-regular}.

Since (T, ū∗ l)E is 1
3ϵ-regular, ū is in the interior of Ω. Now consider the following ODE

on int(Ω̃),  u′(t) = ∆−1
η(u)K(ū) = ∆−1

η(u) ◦ div(x)

u(0) = ū
, (4.3)

where

ηij(u) =
cot θkij(u) + cot θk

′
ij (u)

2
=

sin(θkij(u) + θk
′

ij (u))

2 sin θkij(u) sin θ
k′
ij (u)

≥ 1

2
sin(θkij(u)+θ

k′
ij (u)) ≥

1

2
sin

ϵ

5
,

(4.4)

where 4ijk,4ijk′ are adjacent triangles sharing edge ij. According to lemma 3.1,

the right-hand side of (4.3) is a smooth function of u. By Proposition 4, this ODE (4.3)

has a unique solution u(t) satisfying

dK(u(t))

dt
=
∂K

∂u
u′(t) = K(ū)

. Therefore

K(u(t)) = (1− t)K(ū)

Assume the maximum existing open interval of u(t) in int(Ω) is [0, T0) where T0 ∈

(0,∞]. By Theorem 10, (T, l) is C-isoperimetric for some constant C = C(M, g, ϵ).
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Then for any u ∈ Ω, (T, u ∗ l) is (e4(|ū|+1)C)-isoperimetric by the fact that |u| ≤ |ū|+ 1

at any vertex. Then by Lemma 9 and equations (6.7),(4.3),(4.4), for any t ∈ [0, T0)

||u′(t)|| = O(||l|| · |V |1/2l ). (4.5)

By Lemma 3.2 and the fact that (T, l̄)E is 1
2ϵ-regular,

|V |l =
∑
ij∈E

l2ij = O(
∑
ij∈E

l̄ 2
ij ) = O(

∑
△ijk∈F

(l̄ 2
ij + l̄ 2

jk + l̄ 2
ik )) (4.6)

=O(
∑

△ijk∈F
|(4ijk, l̄)E |) = O(|(T, l̄)E |) = O(1).

Here recall that |(4ijk, l̄)E | denotes the area of the Euclidean triangle, and |(T, l̄)E |

denotes the area of the piecewise flat surface.

Combining the estimates (4.5) and (4.6), we have that for any t ∈ [0, T0)

||u′(t)|| = O(||l||).

If T0 < 1, by Lemma 4.2

||u(T0)− ū|| = O(||l||) and |θijk(u(T0))− θijk(ū)| = O(||l||),∀4ijk ∈ F (T ).

and thus u(T0) ∈ int(Ω) if δ is sufficiently small. But this contradicts with the maxi-

mality of T0. So T0 ≥ 1 and (T, u(1))E is globally flat and ||u(1)− ū||| = O(||l||).

4.3.3 Step 3: Normalization of area

To prove part (a) of the theorem, we only need to scale the polyhedral metric (T, u(1)∗

l)E to make its area equal to 1. To get the estimate in part (b), it remains to show

log |(T, u(1) ∗ l)E | = O(||l||).

Since

|(u(1) ∗ l)ij − l̄ij | = |(u(1) ∗ l)ij − (ū ∗ l)ij |+ |(ū ∗ l)ij − l̄ij |

≤(e|u(1)−ū| − 1)(ū ∗ l)ij +O(l3ij) = O(||l|| · l̄ij).

Since (T, l̄)E is 1
2ϵ-regular, by Lemma 4.2 if δ is sufficiently small then for any 4ijk ∈ F

log
|(4ijk, u(1) ∗ l)E |

|(4ijk, l̄)E |
= O(||l||)
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and

log |(T, u(1) ∗ l)E | = log

∑
△ijk∈F |(4ijk, u(1) ∗ l)E |∑

△ijk∈F |(4ijk, l̄)E |
= O(||l||).
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Chapter 5

Proof for the case of genus g > 1

5.1 Differential for PL hyperbolic metric

Parallel to the case for PL flat metric, we have the differential formulae for the PL

hyperbolic metric under the discrete conformal change.

Lemma 5.1. Given a hyperbolic triangle 4ABC, if we view A,B,C as functions of

the edge lengths a, b, c, then

∂A

∂b
= − cotC

sinh b
,

∂A

∂a
=

1

sinh b sinC
.

Furthermore if (uA, uB, uC) ∈ R3 is a discrete conformal factor, and

sinh
a

2
= e

1
2
(uB+uC) sinh

a0
2
, sinh

b

2
= e

1
2
(uA+uC) sinh

b0
2
, sinh

c

2
= e

1
2
(uA+uB) sinh

c0
2

for some constants a0, b0, c0 ∈ R>0, then

∂A

∂uB
=

1

2
cot C̃(1− tanh2

c

2
), (5.1)

and
∂A

∂uA
= −1

2
cot B̃(1 + tanh2

b

2
)− 1

2
cot C̃(1 + tanh2

c

2
), (5.2)

where B̃ = 1
2(π +B −A− C) and C̃ = 1

2(π + C −A−B).

Proof. Take the partial derivative on

cosA =
cosh b cosh c− cosh a

sinh b sinh c

and we have

− sinA
∂A

∂b
=
sinh b cosh c

sinh b sinh c
− cosh2 b cosh c− cosh a cosh b

sinh2 b sinh c

=
cosh a cosh b− cosh c

sinh2 b sinh c
=

sinh a

sinh b sinh c
cosC,



40

and then by the hyperbolic law of sines,

∂A

∂b
= − cosC

sinh b sinC
= − cotC

sinh b
.

Similarly

− sinA
∂A

∂a
= − sinh a

sinh b sinh c

and then again by the hyperbolic law of sines

∂A

∂a
=

1

sinh b sinhC
.

To prove (5.1) and (5.2) we need to compute

∂c

∂uA
=
∂ sinh(c/2)

∂uA

/
∂ sinh(c/2)

∂c
=

1

2
sinh

c

2

/(
1

2
cosh

c

2

)
= tanh

c

2
,

and other similar formulae hold.

Since

tanh
x

2
=

sinh x
2

cosh x
2

=
sinh x

2 cosh
x
2

cosh2 x
2

=
sinhx

coshx+ 1

and

cosh b+ 1 =
cosA cosC + cosB

sinA sinC
+ 1 =

cos(A− C) + cosB

sinA sinC
, (5.3)

we have

tanh b
2

tanh c
2

=
sinh b

sinh c
· cosh c+ 1

cosh b+ 1

=
sinB

sinC
· cos(A−B) + cosC

sinA sinB
· sinA sinC

cos(A− C) + cosB

=
cos(A−B) + cosC

cos(A− C) + cosB
,
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and then

− cosA+
tanh b

2

tanh c
2

=
cos(A−B) + cosC − cos(A− C) cosA− cosB cosA

cos(A− C) + cosB

=
(cos(A−B)− cosB cosA) + (cosC − cos(A− C) cosA)

cos(A− C) + cosB

=
sinA sinB + sinA sin(A− C)

cos(A− C) + cosB

=sinA · sinB + sin(A− C)

cos(A− C) + cosB

=sinA ·
sin B+A−C

2 cos B−A+C
2

cos A+B−C
2 cos A−B−C

2

=sinA · tan A+B − C

2

= sinA cot C̃,

and then

∂B

∂uA
=
∂B

∂c

∂c

∂uA
+
∂B

∂b

∂b

∂uA

=− cotA

sinh c
tanh

c

2
+

1

sinA sinh c
tanh

b

2

=
1

2 cosh2 c
2

(−cosA

sinA
+

1

sinA

tanh b
2

tanh c
2

)

=
1

2
(1− tanh2

c

2
)

1

sinA
(− cosA+

tanh b
2

tanh c
2

)

=
1

2
(1− tanh2

c

2
) cot C̃.

By the symmetry equation (5.1) is true, and for the equation (5.2), we have that

∂A

∂uA
=
∂A

∂c

∂c

∂uA
+
∂A

∂b

∂b

∂uA
= − cotB

sinh c
tanh

c

2
− cotC

sinh b
tanh

b

2
.

So we need to show

− cotB

sinh c
tanh

c

2
− cotC

sinh b
tanh

b

2
= −1

2
cot C̃(1 + tanh2

c

2
)− 1

2
cot B̃(1 + tanh2

b

2
).

Since
tanh x

2

sinhx
=

sinh x
2

2 sinh x
2 cosh

2 x
2

=
1

cosh2 x
2

=
2

coshx+ 1

and

1 + tanh2
x

2
=

cosh2 x
2 + sinh2 x

2

cosh2 x
2

=
2 coshx

coshx+ 1
,
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we only need to show

cotB

cosh c+ 1
+

cotC

cosh b+ 1
= cot C̃

cosh c

cosh c+ 1
+ cot B̃

cosh b

cosh b+ 1
.

We will show that

cot B̃
cosh b

cosh b+ 1
− cotB

cosh c+ 1

is anti-symmetric with respect to B and C. Recall equation (5.3) and we have that

cosh b+ 1 =
cos(A− C) + cosB

sinA sinC
=

2 cos A+B−C
2 cos B+C−A

2

sinA sinC
,

and
cosh b

cosh b+ 1
=

cosA cosC + cosB

cos(A− C) + cosB
=

cosA cosC + cosB

2 cos A+B−C
2 cos B+C−A

2

and

cot B̃ = tan(
π

2
− B̃) = tan

A+ C −B

2
.

So

cot B̃
cosh b

cosh b+ 1
− cotB

cosh c+ 1

= tan
A+ C −B

2
· cosA cosC + cosB

2 cos A+B−C
2 cos B+C−A

2

− cotB
sinA sinB

2 cos A+C−B
2 cos B+C−A

2

=
sin A+C−B

2 (cosA cosC + cosB)− sinA cosB cos A+B−C
2

2 cos A+C−B
2 cos B+C−A

2 cos A+B−C
2

.

The denominator in the above fraction is symmetric, so we only need to show the

numerator is anti-symmetric with respect to B,C.

sin
A+ C −B

2
(cosA cosC + cosB)− sinA cosB cos

A+B − C

2

=(sin
A

2
cos

C −B

2
+ sin

C −B

2
cos

A

2
)(cosA cosC + cosB)

− sinA cosB(cos
A

2
cos

C −B

2
+ sin

A

2
sin

C −B

2
)

= sin
C −B

2
(cos

A

2
cosA cosC + cos

A

2
cosB − sinA cosB sin

A

2
)

+ cos
C −B

2
(sin

A

2
cosA cosC + sin

A

2
cosB − sinA cosB cos

A

2
)

= sin
C −B

2
(cos

A

2
cosA cosC + cosA cosB cos

A

2
)

+ cos
C −B

2
(sin

A

2
cosA cosC − cosA cosB sin

A

2
)

= sin
C −B

2
cosA cos

A

2
(cosC + cosB) + cos

C −B

2
sin

A

2
cosA(cosC − cosB)

is indeed anti-symmetric with respect to B,C.
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Now we are in the position to get the following proposition, which was first discov-

ered by Bobenko et.al [2].

Proposition 5 (Proposition 6.1.7 in [2]). Given (T, l)H and u ∈ RV (T ) such that u ∗h l

satisfies the triangle inequalities, denote

θ̃ijk(u) =
1

2
(π + θijk(u)− θjik(u)− θkij(u))

and

wij(u) =
1

2
cot θ̃kij(u) +

1

2
cot θ̃k

′
ij (u)

where 4ijk and 4ijk′ are adjacent triangles in F (T ). Then

∂K

∂u
(u) = D(u)−∆η(u)

where

ηij(u) = wij(u)(1− tanh2
(u ∗h l)ij

2
),

and D = D(u) is a diagonal matrix such that

Dii(u) = 2
∑

j:ij∈E
wij(u) tanh

2 (u ∗h l)ij
2

.

We also need an estimate for the angle difference between two hyperbolic triangles.

Lemma 5.2. Given a hyperbolic triangle 4ABC with all angles are at least ϵ > 0. If

positive numbers ã, b̃, c̃ satisfy

a ≤ 0.1, b ≤ 0.1, c ≤ 0.1,

and

|ã− a| ≤ δa, |b̃− b| ≤ δa, |c̃− c| ≤ δc,

where δ < ϵ3/60, then ã, b̃, c̃ can be edge lengths of a hyperbolic triangle 4ÃB̃C̃ with

opposite inner angles Ã, B̃, C̃ respectively, such that

|Ã−A| ≤ 30

ϵ2
δ,

and ∣∣∣∣|4ÃB̃C̃| − |4ABC|
∣∣∣∣ ≤ 120

ϵ2
δ · |4ABC|.
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Proof. Let

a(t) = tã+ (1− t)a, b(t) = tb̃+ (1− t)b, c(t) = tc̃+ (1− t)c,

and A(t), B(t), C(t) be the inner angles of the triangle with edge lengths a(t), b(t), c(t),

if well-defined.

Let T0 ∈ [0,∞] be the maximum real number such that for any t ∈ [0, T0), all

A(t), B(t), C(t) > ϵ/2. Notice that δ < ϵ3/60 < 0.1 and then sinh a(t) ∈ [a, 2a] for any

t ∈ [0, T0). Therefore by Lemma 5.1,

|Ȧ(t)| =
∣∣∣∣∂A∂a ȧ+ ∂A

∂b
ḃ+

∂A

∂c
ċ

∣∣∣∣
≤ |ã− a|
sinh b(t) sin(ϵ/2)

+
cot(ϵ/2)|b̃− b|

sinh b(t)
+

cot(ϵ/2)|c̃− c|
sinh c(t)

≤ |ã− a|
sinh a(t) sin2(ϵ/2)

+
cot(ϵ/2)|b̃− b|

sinh b(t)
+

cot(ϵ/2)|c̃− c|
sinh c(t)

≤2δ

(
1

sin2(ϵ/2)
+ 2 cot(ϵ/2)

)
≤2(

π2

ϵ2
+

4

ϵ
)δ ≤ 30

ϵ2
δ.

Similary, we can get |Ḃ(t)|, |Ċ(t)| ≤ 30δ/ϵ2. So T0 ≥ (ϵ/2)/(30δ/ϵ2) = ϵ3/(60δ) > 1,

and

|Ã−A| ≤ 30δ/ϵ2, |B̃ −B| ≤ 30δ/ϵ2, |C̃ − C| ≤ 30δ/ϵ2.

By Lemma 5.1, we have∣∣∣∣∂(A+B + C)

∂a

∣∣∣∣ = ∣∣∣∣ 1

sinh b sinC
− cotC

sinh a
− cotB

sinh a

∣∣∣∣ = ∣∣∣∣ 1

sinh a

sinA− sin(B + C)

sinB sinC

∣∣∣∣
≤ 1

sinh a

| sin(π −A)− sin(B + C)|
sin2(ϵ/2)

≤ π2(π −A(t)−B(t)− C(t))

ϵ2 sinh a(t)
≤ 2π2

ϵ2
|4ABC(t)|

a
,

for t ∈ [0, 1]. Therefore∣∣∣∣d|4ABC|dt

∣∣∣∣ = |Ȧ+ Ḃ + Ċ| ≤ 2π2

ϵ2
|4ABC(t)|

(
|ã− a|
a

+
|b̃− b|
b

+
|c̃− c|
c

)

≤6π2δ

ϵ2
|4ABC(t)|.

So
|4ÃB̃C̃|
|4ABC|

∈ [e−6π2δ/ϵ2 , e6π
2δ/ϵ2 ] ∈ [1− 6π2δ/ϵ2, 1 + 120δ/ϵ2]
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and ∣∣|4ÃB̃C̃| − |4ABC|
∣∣ ≤ 120

ϵ2
· δ · |4ABC|.

5.2 Sketch of the proof for the case of genus g > 1

By Theorem 10, there exists a geodesic triangulation T ′ of (M, e2ūg) homotopic to T

relative to V (T ) = V (T ′) if δ is sufficiently small. Let l̄ ∈ RE(T ) ∼= RE(T ′) be the

geodesic edge lengths of T ′ in (M, e2ūg), then (T, l̄)H is isometric to (M, e2ūg) and

globally hyperbolic.

For simplicity, we will frequently use the notion a = O(b) to denote that if δ =

δ(M, g, ϵ) is sufficiently small, then |a| ≤ C · b for some constant C = C(M, g, ϵ). For

example, we have that

(a) lij = O(ljk) for any 4ijk ∈ F (T ), and

(b) (ū ∗h l)ij = O(lij), and

(c) l̄ij = O(lij), and

(d) sinh(lij/2) = O(lij).

The remaining of the proof is divided into two steps.

(1) Firstly we show that (T, ū ∗h l)H is very close to the globally hyperbolic PL metric

(T, l̄)H , in the sense that

(ū ∗h l)ij − l̄ij = O(l3ij)

and

K(ū) = div(x) + y

for some x ∈ RE
A and y ∈ RV such that xij = O(l2ij) and yi = O(l4ij).

(2) Secondly, we construct a smooth path u(t) : [0, 1] → RV with u(0) = ū such that

the following identity

K(u(t)) = (1− t)K(ū)
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holds. Furthermore we will show that ||u′(t)|| = O(||l||), and (T, u(1) ∗h l)H is

globally hyperbolic with ||u(1)− ū|| = O(||l||).

The uniqueness of the discrete uniformization conformal factor is also proved by

Bobenko-Pinkall-Springborn (see Theorem 6.1.6 in [2]), so we omit its proof here.

5.3 Proof of the hyperbolic case

5.3.1 Step 1: Deviation of angles of curvatures of PL hyperbolic met-

ric

By Theorem 10, (T, l̄)H is 1
2ϵ-regular if δ is sufficiently small. For simplicity we denote

ū|V (T ) as ū. By lemma 3.3, we get

l̄ij − (ū ∗ l)ij = O(l3ij).

Using the fact that |2 sinh(x2 )− x| ≤ |x|3 for |x| ≤ 1, we have

l̄ij − (ū ∗h l)ij = O(l3ij).

Denote θ̄ijk as the inner angle in (T, l̄)H , and then by Lemmas 5.2, 3.2 and Remark 3.1,

we have

αi
jk := θ̄ijk − θijk(ū) = O(l2ij)

and

αi
jk + αj

ik + αk
ij = |(4ijk, ū ∗h l)H | − |(4ijk, l̄)H | = O(l2ij) · |(4ijk, l̄)H | = O(l4ij).

So (T, ū ∗h l)H is 1
3ϵ-regular if δ is sufficiently small. Let x ∈ RE

A and y ∈ RV such that

xij =
αi
jk − αj

ik

3
+
αi
jk′ − αj

ik′

3
and yi =

1

3

∑
jk:△ijk∈F (T )

(αi
jk + αj

ik + αk
ij)

where 4ijk and 4ijk′ are adjacent triangles sharing edge ij. Then simliar to the

Euclidean case,

div(x)i + yi = Ki(ū),

and

xij = O(l2ij), (5.4)
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By the fact that any vertex i ∈ V (T ′) has at most b2π/(ϵ/2)c = O(1) neighboring

vertices, we have

yi = O(l4ij) (5.5)

5.3.2 Step 2: Construction of the smooth path

Let

Ω̃H = {u ∈ 1⊥ : u ∗h l satisfies the triangle inequalities and (T, u ∗h l)H is ϵ
5

-regular}

and

ΩH = {u ∈ Ω̃ : ||u− ū|| ≤ 1, (T, u ∗h l)H is ϵ
4

-regular}.

Since (T, ū∗h l)H is 1
3ϵ-regular, ū is in the interior of ΩH . Now consider the following

ODE on int(Ω̃H), u′(t) = (D(u)−∆η(u))
−1K(ū) = (D(u)−∆η(u))

−1(div(x) + y)

u(0) = ū
, (5.6)

where D(u) and η(u) are defined as in Proposition 5. For any triangle 4ijk and

u ∈ int(Ω̃H), by Lemma 3.2 and Remark 3.1 we have

|(4ijk, u ∗h l)H | = O(l2ij)

and

1

2
(π+θkij(u)−θ

j
ik(u)−θ

i
jk(u)) = θkij(u)+

1

2
(π−θkij(u)−θ

j
ik(u)−θ

i
jk(u)) = θkij(u)+O(l2ij).

Now let w(u) be defined as in Proposition 5. Then by the formula

cotA+ cotB =
sin(A+B)

sinA sinB
≥ sin(A+B) for any A,B ∈ (0, π),

we can derive the following inequality if δ is sufficiently small and u ∈ int(Ω̃H).

wij(u) ≥
1

2
sin(θkij + θk

′
ij +O(l2ij)) ≥

1

2
sin

ϵ

5
+O(l2ij) ≥

1

4
sin

ϵ

5
,

and

Dii(u) ≥ 2wij tanh
2 (u ∗h l)ij

2
≥ ϵ′l2ij , and ηij(u) ≥

1

8
sin

ϵ

5
(5.7)
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for some constant ϵ′ = ϵ′(M, g, ϵ) > 0.

The right-hand side of equation (5.6) is a smooth function of u, so the ODE (5.6)

has a unique solution u(t) satisfying

dK(u(t))

dt
=
∂K

∂u
u′(t) = K(ū).

Therefore

K(u(t)) = (1− t)K(ū).

Assume the maximum existence open interval of u(t) ∈ int(ΩH) is (0, T0) where T0 ∈

(0,∞]. By Theorem 10, when δ is sufficiently small, (T, l) is C-isoperimetric for some

constant C = C(M, g, ϵ). Then for any u ∈ ΩH , (T, u ∗h l) is (e4(|ū|+1)C)-isoperimetric

by the fact that |u| ≤ |ū|+ 1 at any vertex and

sinh a

a
≥ sinh b

b
, ∀a ≥ b > 0.

By Lemma 3.2 and Remark 3.1, it is not difficult to see

|V |l = O(|V |l̄) = O(|(T, l̄)H |) = O(1) and 1 = O(|(T, l̄)H |) = O(|V |l̄) = O(|V |l).

Then by Lemma 9 and equation (5.4)(5.5)(5.7), for any t ∈ [0, T0)

||u′(t)|| = O(||l|| · |V |1/2l ) = O(||l||). (5.8)

By Lemma 5.2, we have

||u(T0)− ū|| = O(||l||) and θijk(u(T0))− θijk(ū) = O(||l||), ∀4ijk ∈ F (T ) (5.9)

if T0 < 1. Therefore u(T0) ∈ int(ΩH) if δ is sufficiently small, which contradicts with

the maximality of T0. So T0 ≥ 1 and (T, u(1))H is hyperbolic and ||u(1)− ū|| = O(||l||).
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Chapter 6

Proof for the case of genus g = 0

In this chapter, we will state the proof for the case of surfaces of genus zero.

6.1 An equivalent formulation for spherical uniformization

Springborn [21][5] and Bobenko et al. [2] proposed an another notion of discrete uni-

formization, which is for flat PL metric that are homeomorphic to a sphere. We adapt

their definitions as follows.

Let P be the set of the compact convex polyhedral surfaces P , satisfying that

(a) P is the boundary of the convex hull of a finite subset of S2, and

(b) 0 is strictly inside P , and

(c) each face of P is a triangle.

Given P ∈ P, denote V (P ) as the set of its vertices, and TP as the natural trian-

gulation of P where each triangle is a face of P , and lP ∈ RE(TP ) as the edge length

of TP on P . For a flat PL metric (T, l)E , which is a topological sphere, we say that u

is a discrete uniformization factor of (T, l)E if (T, u ∗ l)E is isometric to some P ∈ P,

through a map φ such that φ(T ) = TP .

We call a geodesic triangulation of the unit sphere strictly Delaunay if the circum-

ference circle of each triangle contains no other vertex. The spherical empty circle

condition is equivalent to the condition that if for any edge ij in T , two adjacent

triangles 4ijk,4ijk′ containing ij satisfies

θkij + θk
′

ij < θijk + θijk′ + θjik + θjik′ . (6.1)

If we consider this geodesic triangulation as a sphercial PL metric (T, l)S where l(e) is

the geodesic arc length of edge e, then the above condition is just condition (1.4).
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The central projection p : (x, y, z) 7→ (x, y, z)/
√
x2 + y2 + z2 naturally gives rise to

a bijection between P and the set of strictly Delaunay triangulations of the unit sphere.

Here we always assume that a triangulation of S2 is a geodesic triangulation and each

triangle is a proper subset of a hemisphere. For a vector x ∈ RI , we denote sinx as the

vector in RI such that (sinx)i = sin(xi).

Proposition 6. Let P 7→ p(TP ) be a bijection from P to the set of strictly Delaunay

triangulations of S2. Furthermore we have that lP = 2 sin l
2 where l denotes the geodesic

edge lengths of p(TP ) on S2.

Proof. Given P ∈ P, for any triangle 4ijk, other vertices are on one side of the

plane 4ijk lies in by the convexity of P . Therefore other vertices lies outside the

circumference circle of spherical triangle p(4ijk). So p(TP ) is a strictly Delaunay

triangulation of S2. See Figure 6.1 for illustrations.

If T is a strictly Delaunay triangulation of S2, we construct a polyhedral surface P

as the union of all flat triangles 4ijk where i, j, k are the three vertices of a triangle

in T . Then p|P is a homeomorphism from P to S2. Since T satisfies the empty circle

property, we conclude that the dihedral angle on any edge ij ∈ E(T ) is less than π by

the similar argument in the above paragraph. So P is a convex polyhedral surface (See

Lemma 6.1 in [22] for example).

Since all the vertices of P is on the unit sphere, therefore P satisfies the condition

(a) of set P. It is not hard to see that P satisfies condition (b) and (c). The condition

lP = 2 sin l
2 follows easily from the construction of P .

As a consequence, we obtain an equivalence between the two notions of discrete

uniformizations.

Corollary. Assume T is topologically a sphere, then u is a discrete uniformization

factor of (T, 2 sin l
2)E if and only if u is a discrete uniformization factor of (T, l)S and

(T, u ∗s l)S is strictly Delaunay.

By such an equivalence, we can reformulate our theorem 4 as follows.
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Figure 6.1: Equivalence between local Delaunay condition and local convexity.

Theorem 12. Suppose (M, g) is a closed smooth Riemannian surface of genus zero

with three marked points X,Y, Z, and ū ∈ C∞(M) is the unique uniformization con-

formal factor such that (M, e2ūg) is isometric to the unit sphere S2 ∼= Ĉ through map

ϕ, and ϕ(Z) = 0, ϕ(Y ) = 1, ϕ(X) = ∞. Assume T is a geodesic triangulation

of (M, g) of geodesic edge length l such that its one-skeleton is a 4-vertex-connected

graph. Then for any ϵ > 0, there exist constants δ = δ(M, g,X, Y, Z, ϵ) > 0 and

C = C(M, g,X, Y, Z, ϵ) > 0 such that if (T, l)S is ϵ-regular and ||l|| ≤ δ, then

(a) there exists a unique discrete conformal factor u on V (T ), such that (T, u∗(2 sin l
2))E

is isometric to some P ∈ P through a map ψ such that ψ(Z) = 0, ψ(Y ) = 1, and

ψ(X) = ∞, and

(b) ||u− ū|V (T )|| ≤ C||l||.

We will prove this new version of our theorem. By the stereographic projection,

we can consider triangulations of a flat polygon, instead of the polyhedrons inscribed

in the unit sphere. To obtain a satisfactory flat PL metric, we construct a smooth

path of conformal factor. The estimate in part (b) essentially follows from a discrete

elliptic estimate on the this path. In Section 6.2, we will discuss the isoperimetric

condition theorem for the PL metric with boudary and the corresponding version of

discrete elliptic esimate. In Section 6.3, we will discuss the stereographic projection and

the one-to-one correspondence between the convex polyhedral surfaces inscribed in the

unit sphere and the the Delaunay triangulations of convex polygons. The proof of the
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theorem 12 will be given in Section 6.5.

6.2 Isoperimetric conditions and discrete elliptic estimates for spher-

ical case

What we really need for the spherical case is the following modified version of Theorem

10.

Theorem 13. Suppose (M, g) is a closed Riemannian surface, and T is a geodesic

triangulation of (M, g) with geodesic length l such that (T, l)E is ϵ-regular. Assume

v ∈ V and star(v) ⊂ V contains v and its neighbors in T , and let V̂ = V − star(v)

and G = (V̂ , Ê) be the subgraph of (V (T ), E(T )) generated by V̂ . Then there exists

a constant δ = δ(M, g, ϵ) such that if ||l|| < δ, (T̂ , l|Ê) is C-isoperimetric for some

constant C = C(M, g, ϵ) > 0.

Proof. By Theorem 10, we can find constants δ(M, g, ϵ) > 0 and C(M, g, ϵ) > 0 such

that (T, l) is C-isoperimetric if ||l|| < δ. Now assume B = {i ∈ V̂ : ∃j ∈ V − V̂ s.t. ij ∈

E} is the set of boundary vertices of G in T , and V0 ⊂ V̂ , and ∂̂V0 (resp. ∂V ) is the

boundary of V0 in G (resp. T ). We consider the following three cases:

Case 1: V0 ∩B = ∅. Then |∂̂V0|l = |∂V0|l and |V |l − |V0|l ≥ |V̂ |l − |V0|l. Since (T, l)

is C-isoperimetric, we have

C|∂̂V0|2l ≥ min{|V0|l, |V̂ |l − |V0|l}.

Case 2: B ⊂ V0. In this case, ∂̂V0 = ∂(V0∪ star(v)). Since (T, l) is C-isoperimetric,

we have

C|∂̂V0|2l = C|∂(V0 ∪ star(v))|2l ≥ min{|V0 ∪ star(v)|l, |V |l − |V0 ∪ star(v)|l}

Clearly, |V0 ∪ star(v)|l ≥ |V0|l, and |V |l − |V0 ∪ star(v)|l = |V̂ |l − |V0|l. Then

C|∂̂V0|2l ≥ min{|V0|l, |V̂ |l − |V0|l}.

Case 3: V0 ∩ B 6= ∅ and B 6⊂ V0. It is not difficult to show that B is connected

in V since the 1-skeleton of T is 4-vertex-connected, so there is an edge ij ∈ ∂̂V0 such
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that i ∈ B ∩ V0 and j ∈ B − V0. By the ϵ-regularity, the degree of each vertex in T

is bounded by b2π/ϵc if δ(M, g, ϵ) is sufficiently small, and the ratio of the two edge

lengths in a triangle of T is at least sin ϵ. So there is a constant C1(M, g, ϵ) > 0 such

that

C1lij ≥
∑

xy∈E(T )−Ê

lxy ≥ |∂V0|l − |∂̂V0|l.

Then

C(1 + C1)
2|∂̂V0|2l ≥ C|∂V0|2l ≥ min{|V0|l, |V̂ |l − |V0|l}.

The following discrete elliptic estimate is a key tool to prove the convergence theorem

for the spherical case, which is reformulated from theorem 9.

Lemma 6.1. Given a constant C > 0 and a C-isoperimetric pair (G, l), consider the

equation

(D −∆η)u = div(x) + y (6.2)

on G where

(i) η ∈ RE is an edge weight such that for any ij ∈ E

ηij ≥
1

C
,

and

(ii) x ∈ RE
A is a flow such that for any ij ∈ E

|xij | ≤ Cl2ij ,

and

(iii) D ∈ RV×V is a nonzero nonnegative diagonal matrix, and

(iv) y ∈ RV satisfies that for any i ∈ V

|yi| ≤ C ·Dii||l|| · |V |
1
2
l .
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Then the solution u ∈ RV of equation (6.2) satisfies that

||u|| ≤ C ′||l|| · |V |
1
2
l .

for some constant C ′ = C ′(C) > 0.

6.3 Stereographic Projections of polyhedral surfaces

We will use the stereographic projection to connect convex polyhedral surfaces inscribed

in the unit spheres with triangulations of planar convex polygons. Denote N as the

north pole (0, 0, 1) of the unit sphere S2. The stereographic projection pN is a map

from R3\{z = 1} to the xy-plane, which is identified as R2 or C. The map pN is defined

as

pN (x, y, z) =
x

1− z
+ i

y

1− z
.

It is well-known that the restriction of pN on S2\{N} is a conformal diffeomorphism

to R2, and maps any circle to a circle or a straight line. Given a convex polyhedral

surface P in P such that N is a vertex of P , denote T̊P as the subtriangulation of TP

with the open 1-star neighborhood of N in TP being removed. In this case, P̊ denotes

the carrier of T̊P and is a topological closed disk. We use | · |2 to denote the standard

l2-norm.

Lemma 6.2. (a) Assume P ∈ P and P contains N as a vertex, then pN is injective on

P̊ , and Q = pN (P̊ ) is a convex polygon, and TQ = pN (T̊P ) is a geodesic triangulation

of Q. Furthermore, if we naturally identify T̊P and TQ, and denote lP (resp. lQ) as its

edge length on P (resp. Q), then

lQ = w ∗ lP where wi = log
2

|i−N |22
= log

|pN (i)|22 + 1

2
, ∀i ∈ V (T̊P ). (6.3)

(b) Assume Q is a convex polygon in R2, and TQ is a strictly Delaunay triangulation

of Q such that 0 is an interior vertex and Ki > 0 for any boundary vertex i in V (TQ).

Then there exists a convex polyhedral surface P ∈ P such that N ∈ P and pN (P̊ ) = Q

and pN (T̊P ) = TQ.
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Proof. (a) Let us first prove the injectivity by contradiction. Suppose x, y are two

different points on P̊ such that pN (x) = pN (y). Then N, x, y are co-linear and pairwise

different. Without loss of generality, assume y is between x and N . Then it is not

difficult to show that the line segment xN ⊂ P . Suppose 4ijk is a face of P containing

the line segment xN . Then N has to be one of the vertex of 4ijk, and x, y are

contained in the edge in 4ijk opposite to N . But this implies that N, x, y are not

co-linear, which leads to a contradiction.

So Q is a polygon, and TQ is a geodesic triangulation of Q. Any inner angle of the

polygon Q is less than π, since the dihedral angle on any edge Ni ∈ E(TP ) is less than

π. Equation (6.3) can be proved by a standard computation.

(b) We will first construct a polyhedron P and then show that it is satisfactory.

The set of vertices of P is given by VP = (pN |S2)−1(V (TQ))∪ {N}, and the set of faces

of P is given by a set of flat triangles in R3 with vertices in VP . The 4ijk is a triangle

in P if and only if pN (4ijk) is a triangle in TQ, or {i, j, k} = {N, x, y} where pN (xy)

is a boundary edge of TQ.

It is ordinary to verify that the union P of such triangles is a topological sphere,

and these flat triangles naturally give a triangulation TP of P . It remains to show that

P ∈ P, or indeed that any dihedral angle in TP is less than π.

Assume ij is an edge in TP . If i = N , the dihedral angle at ij is less than π because

the discrete curvature at pN (j) in TQ is greater than 0. If pN (ij) is a boundary edge in

TQ, assume 4ijk ∈ F (TP ) and k 6= N , and then the dihedral angle at ij is less than π

because pN (k) and 0 are in the same half plane divided by pN (ij). Now we can assume

that pN (ij) is an inner edge in TQ, and pN (4ijk), pN (4ijk′) are two triangles in TQ.

Since TQ is strictly Delaunay, pN (k′) is strictly outside of the circumcircle of pN (4ijk).

Since pN |S2 preserves circles, k′ is strictly outside of the spherical circumcircle of {i, j, k}

on S2. So the dihedral angle at ij is less than π.

In the following lemma we prove that the stereographic projection preserves the

ϵ-regularity.

Lemma 6.3. Assume P ∈ P, and N ∈ P , and T = p(TP ) is a geodesic triangulation
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of S2, and Q = pN (P̊ ), and TQ = pN (T̊P ), and l (resp. lQ) denotes the edge length of T

(resp. TQ) on S2 (resp. Q). Then for any ϵ > 0, there exists constants ϵ′ = ϵ′(ϵ) > 0 and

δ = δ(ϵ) > 0 such that if (T, l)S is ϵ-regular and ||l|| < δ, then (TQ, lQ)E is ϵ′-regular,

and Ki ≥ ϵ′ for any boundary vertex i in TQ.

Proof. Let θkij denote the inner angles in (T, l)S , and ϕkij denote the inner angles in

(TQ, lQ)E . We need to prove following three statements: (a) ϕkij are bounded below by

ϵ′ > 0, and (b) TQ is strictly Delaunay with angle sums ϕkij + ϕk
′

ij bounded above by

π − ϵ′, and (c) Ki ≥ ϵ′ for any boundary vertex i in TQ.

Consider a pair of triangles 4ijk and 4ijk′ in (T, l)S , and by assumption θkij+θk
′

ij ≤

π − ϵ. Let Θij be the intersecting angle of the circumcircles of two triangles 4ijk and

4ijk′ on S2. It is elementary to show that

Θij = θijk + θjik + θijk′ + θjik′ − (θkij + θk
′

ij ) > 2π − 2(θkij + θk
′

ij ) ≥ 2ϵ.

The stereographic projection preserves angles and circles, so the intersecting angle of

the circumcircles of pN (4ijk) and pN (4ijk′) in TQ is also Θij , if N is not contained

in 4ijk ∪4ijk′. Then it is also ordinary to show that this intersecting angle is

Θij = ϕijk + ϕjik + ϕijk′ + ϕjik′ − (ϕkij + ϕk
′

ij ) = 2π − 2(ϕkij + ϕk
′

ij ).

Therefore part (b) is true by

ϕkij + ϕk
′

ij = π − Θij

2
≤ π − ϵ.

If i = N , then the circumcircles of 4ijk and 4ijk′ are mapped to straight lines pN (jk)

and pN (jk′). So the angle between pN (jk) and pN (jk′), or the inner angle of the

polygon Q at pN (j), is equal to π −Θij ≤ π − 2ϵ. So part (c) is true.

Now we prove part (a). Assume 4ijk is a triangle in T not containing N , and

C is the circumcircle of 4ijk on S2, and C ′ is the circle on S2 containing {j, k,N}.

Then pN (C) is the circumcircle of pN (4ijk) and pN (C ′) is the straight line pN (jk),

and the intersecting angle of them is equal to the intersecting angle of C and C ′. It

is elementary to show that ϕijk is equal to an intersecting angle of pN (C) and pN (C ′),

i.e., an intersecting angle of C and C ′. See Figure 6.2 for illustration. We only need to
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Figure 6.2: Projection of angles under stereographic projection.

show that the intersecting angle of C and C ′ are at least ϵ′ for some constant ϵ′(ϵ) > 0,

when ||l|| < δ for some constant δ(ϵ) > 0.

Denote R as the spherical radius of the cirlce C. Since (T, l)S is ϵ-regular and

||l|| < δ, the degree (valence) of any vertex in T is at most b2π/ϵc, and lij , lik, ljk are

at least r1R for some constant r1 = r1(ϵ). Furthermore it is not difficult to show that

there exists a constant r2(ϵ) > 0 such that the 1-star neighborhood of i in T contains

the open spherical disk Ui centered at i with radius r2R. So N /∈ Ui. We define Uj and

Uk similarly.

Assume Ck is the circumcircle of the triangle in T that is adjacent to 4ijk along

the edge ij. Then the intersecting angle between C and Ck is Θij ≥ 2ϵ. Assume C ′
k

is the circle on S2 such that i, j ∈ C ′
k and the intersecting angle between C and C ′

k

is equal to 2ϵ. Denote Dk (resp. D′
k, D) as the open spherical disk bounded by Ck

(resp. C ′
k, C). Then D′

k ⊂ D ∪Dk and has a diameter less than r3R for some constant

r3(ϵ) > 0. Then N /∈ Dk and N /∈ D by the convexity of P , and so N /∈ D′
k. Define D′

i

and D′
j similarly.

Without loss of generality, assume j′ is the opposite point of j on S2, and j′ 6= N .

Denote X as the tangent plane of S2 at j in R3, and p′ as the projection map centered

at j′ and mapping S2\{j′} to X. Since p′ preserves the angles and disks, p′(D), p′(D′
i),

p′(D′
j), p′(D′

k), p′(Ui), p′(Uj), p′(Uk) are all disks on X, and the intersecting angle

between p′(D) and p′(Di) (resp. p(Dj), p′(Dk)) is 2ϵ, and we only need to show that

the intersecting angle between p′(C) and p′(C ′) is at least ϵ′ for some constant ϵ′(ϵ) > 0.
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The projection p′ is very close to an isometry near the point j, so if δ = δ(ϵ) > 0 is

sufficiently small,
1

2
d(x, y) ≤ d(p′(x), p′(y)) ≤ 2d(x, y)

for any x, y ∈ D∪D′
i∪D′

j ∪D′
k∪Ui∪Uj ∪Uk. Assume R′ is the radius of p′(D) and it is

not difficult to show that the radii of p′(Ui) and p′(Uj) and p′(Uk) are at least r2R′/4,

and d(p′(a), p′(b)) ≥ r1R
′/4 for any two different vertices a, b in {i, j, k}.

Figure 6.3: Seven circles.

By a scaling, it suffices to prove the following claim. Assume 4xyz is a triangle

inscribed in the unit circle S in the plane, and all the edge lengths are at least r1/4, and

Cx is the circle such that y, z ∈ Cx and x is not inside Cx and the intersecting angle

between C and Cx is 2ϵ, and Cy and Cz are defined similarly, and Ux is the open disk

centered at x with radius r2/4, and Uy and Uz are defined similarly, and N ′ is a point

that is not strictly inside of the unit circle or Cx or Cy or Cz or Ux or Uy or Uz, and

CN ′ is the circle (or the straight line) passing through y, z,N ′, then the intersecting

angle θ between C and CN ′ is at least ϵ′ for some constant ϵ′(ϵ) > 0. See Figure 6.3 for

illustration.

If the above claim is not true, for some ϵ > 0, one can pick a sequence (xn, yn, zn, N ′
n) ∈

(R2)4 such that the resulted intersecting angle θn goes to 0. By picking a subsequence,

we may assume xn → x ∈ S and yn → y ∈ S and zn → z ∈ S and N ′
n → N ′ ∈ R2∪{∞},

and then by the continuity (x, y, z,N ′) satisfies the conditions in the claim, and the

resulted intersecting angle is θ = 0. This means that N ′ is on the unit circle. However
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this is impossible because by the continuity

N ′ /∈ Dx ∪Dy ∪Dz ∪ Ux ∪ Uy ∪ Uz ⊃ S

where Dx (resp. Dy, Dz) is the open disk bounded by Cx (resp. Cy, Cz).

6.4 Estimate of linear map between Euclidean triangles

Before proceeding to the proof of Theorem 12, we need the following lemma showing

that a linear map between two Euclidean triangles is close to isometry if their corre-

sponding edge lengths are close.

Lemma 6.4. Assume 4ABC (4ÃB̃C̃) is a Euclidean triangle with edge lengths a, b, c

(resp. ã, b̃, c̃). We require that all the angles in 4ABC are at least ϵ > 0, δ < ϵ2/576,

and

|ã− a| ≤ δa, |b̃− b| ≤ δa, |c̃− c| ≤ δc,

If λ1, λ2 are the two singular values of the unique linear map sending 4ABC to 4ÃB̃C̃

preserving the correspondence of the vertices, then

1− 104

ϵ4
δ ≤ λi ≤ 1 +

104

ϵ4
δ, i = 1, 2.

Proof. By Lemma 3.5, |A − Ã|, |B − B′|, |C − C ′| are all less or equal to 24δ/ϵ < ϵ/2,

and thus Ã, B′, C ′ are all at least ϵ/2. Then again by Lemma 3.5 it is easy to show that

Ã2 ≤ 2|4ÃB̃C̃|
sin2(ϵ/2)

≤ 64|4ABC|
ϵ2

.

It is well known that

λ1λ2 =
|4ÃB̃C̃|
|4ABC|

and thus by Lemma 4.2

|λ1λ2 − 1| < 576

ϵ2
δ. (6.4)

In [23] we can find the formula

λ21 + λ22 =
ã2 cotA+ b̃2 cotB + c̃2 cotC

2|4ABC|
.
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Applying this formula to the special case 4ÃB̃C̃ = 4ABC, we get

2 =
ã2 cot Ã+ b̃2 cot B̃ + c̃2 cot C̃

2|4ÃB̃C̃|
,

, which implies

λ21 + λ22 − 2λ1λ2 =
ã2(cotA− cot Ã) + b̃2(cotB − cot B̃) + c̃2(cotC − cot C̃)

2|4ABC|
. (6.5)

Denote f(x) = cotx, then f ′(x) = −1/ sin2 x and f ′′(x) = 2 cosx/ sin3 x. By Taylor’s

expansion, there exists ξA between A and Ã such that

ã2(cotA− cot Ã) = ã2[f ′(Ã)(A− Ã) +
1

2
f ′′(ξA)(A− Ã)2]

= − ã2

sin2 Ã
(A− Ã) +

ã2

2
f ′′(ξA)(A− Ã)2 = −(2R)2(A− Ã) +

ã2

2
f ′′(ξA)(A− Ã)2

where R is the radius of the cicumcircle of 4ÃB̃C̃, and∣∣∣∣ ã22 f ′′(ξA)(A− Ã)2
∣∣∣∣ ≤ 64|4ABC|

ϵ2
· 2

sin3(ϵ/2)
·
(
24δ

ϵ

)2

≤ |4ABC| · 10
6 · δ2

ϵ7
.

Combining the similar computation for B and C, we get that the right hand side of

equation (6.5) is less or equal to 3 × 106δ2/ϵ7, and thus |λ1 − λ2| ≤
√

3× 106δ2/ϵ7 ≤

104δ/ϵ4. Then by equation (6.4) and the fact that 104δ/ϵ4 ≥ 576δ/ϵ2, it is easy to prove

that

1− 104

ϵ4
δ ≤ λi ≤ 1 +

104

ϵ4
δ.

6.5 Sketch of the proof for the case of genus g > 1

Assume ϵ > 0 is a fixed constant and (T, l)S is ϵ-regular and ||l|| < δ where

δ = δ(M, g,X, Y, Z, ϵ) > 0

is a sufficiently small constant to be determined. By Lemma 3.3 we may assume that

(T, l)E is (ϵ/2)-regular. By Theorem 10, we may assume that there exists a geodesic

triangulation T ′ of (M, e2ūg) such that T ′ is homotopic to T relative to V (T ) = V (T ′).

Denote l̄ ∈ RE(T ) ∼= RE(T ′) as the geodesic edge length of T ′ in (M, e2ūg), and then
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(T, l̄)S is isometric to the unit sphere (M, e2ūg) and has zero discrete curvatures. Again

by Lemma 10 we may assume that (T, l̄)E is (ϵ/4)-regular. Then by Lemma 3.3 we may

assume (T, l̄)S is (ϵ/5)-regular, and thus is strictly Delaunay, and then by Proposition 6

p(TP ) = ϕ(T ′) where P ∈ P is the boundary of the convex hull of ϕ(V (T )). By Lemma

6.2, Q = pN (P̊ ) is a convex polygon, and TQ = pN (T̊P ) is a geodesic triangulation

of Q. Denote lQ ∈ RE(TQ) as the edge lengths in Q, and then by Lemma 6.3 there

exists a constant ϵ′(M, g,X, Y, Z, ϵ) > 0 such that (TQ, lQ)E is ϵ′-regular and Ki ≥ ϵ′

for any boundary vertex in (TQ, lQ)E . The combinatorial structures of T , T ′, TP and

p(TP ) = ϕ(T ′) are naturally identified. We also identify the combinatorial structures of

T̊P and TQ and just denote it as T̊ . Denote lP = 2 sin(l̄/2) ∈ RE(T ) as the edge length

of TP on P , and then by equation (6.3) on T̊ we have

lQ = w ∗ lP where wi = log
2

|ϕ(i)−N |22
= log

|pN (ϕ(i))|22 + 1

2
, ∀i ∈ V (T̊ ).

Denote l′P = ū ∗ 2 sin(l/2) ∈ RE(T ) and l′Q = w ∗ l′P = (ū+ w) ∗ 2 sin(l/2) ∈ RE(T̊ ), and

K(u) ∈ RV (T̊ ) as the discrete curvature in (T̊ , u ∗ 2 sin(l/2))E .

In the following proof, for simplicity we will use the notation a = O(b) to repre-

sent that if δ(M, g,X, Y, Z, ϵ) is sufficiently small, then |a| ≤ Cb for some constant

C(M, g,X, Y, Z, ϵ) > 0. We summarize the remaining part of the proof in three steps:

(a) Estimate the curvature K(ū+ w) of (T̊ , l′Q)E for interior vertices.

(b) Construct a smooth path u(t) : [0, 1] → RV (T̊ ) with u(0) = ū + w such that the

equality

Ki(u(t)) = (1− t)Ki(ū+ w)

holds for any interior vertex i of T̊ . Furthermore, we will also show that |u′(t)| =

O(||l||), and (T̊ , u(1) ∗ 2 sin(l/2))E is isometric to a convex polygon in the plane.

(c) After a proper normalization, which is a small perturbation, we use the inverse of

the stereographic projection to construct the desired polyhedral surface P ∈ P.
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6.6 Proof of the spherical case

6.6.1 Step 1: Estimate of curvatures

By Lemma 3.3,

|l̄ij − (ū ∗ l)ij | = O(l3ij).

Notice the fact that |x− 2 sin(x/2)| ≤ 10x3 if |x| < 0.01, so

|(lP )ij − (l′P )ij | = O(l3ij),

and ∣∣∣∣∣(l′Q)ij − (lQ)ij

(lQ)ij

∣∣∣∣∣ =
∣∣∣∣∣(l′P )ij − (lP )ij

(lP )ij

∣∣∣∣∣ = O(l2ij). (6.6)

Given a triangle 4ijk ∈ F (T̊ ), denote θijk(u) (resp. θ̄ijk) as the inner angle at i in 4ijk

in (T̊ , u ∗ 2 sin(l/2))E (resp. (T̊ , lQ)E), and Ki(u) as the discrete curvature at i in 4ijk

in (T̊ , u ∗ 2 sin(l/2))E .

Since (T̊ , lQ)E is ϵ′-regular, by equation (6.6) and Lemma 4.2,

αi
jk := θ̄ijk − θijk(ū+ w) = O(l2ij).

So for sufficiently small δ(M, g, ϵ), we have

|αi
jk| ≤

ϵ′

4
.

Then (T̊ , l′Q)E is (ϵ′/2)-regular. Since (T̊ , lQ)E is globally flat, for any i ∈ int(T̊ ),∑
ijk∈F

θ̄ijk = 2π.

So

Ki(ū+w) = 2π−
∑
ijk∈F

θijk(ū+w) =
∑
ijk∈F

(θ̄ijk − θijk(ū+w)) =
∑
ijk∈F

αi
jk if i ∈ int(T̊ ).

Set x ∈ RE(T̊ )
A be such that if ij is an interior edge of T̊

xij =
αi
jk − αj

ik

3
+
αi
jk′ − αj

ik′

3
,

where 4ijk and 4ijk′ are adjacent triangles in T̊ , and if ij is a boundary edge of T̊

xij =
αi
jk − αj

ik

3
,
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where 4ijk is a triangle in T̊ . Then

xij = O(l2ij), (6.7)

and it is straightforward to verify that for any i ∈ int(T̊ )

div(x)i =
∑
j:j∼i

xij =
∑
ijk∈F

αi
jk = Ki(ū+ w)

using αi
jk + αj

ik + αk
ij = 0.

6.6.2 Step 2: Construction of the path

Consider the sets defined by

Ω̃ = {u ∈ RV (T̊ ) : (T̊ , u ∗ 2 sin l
2
)E satisfies the triangle inequality and is strictly Delaunay},

and

Ω = {u ∈ Ω̃ : (T̊ , u ∗ 2 sin l
2
)E is ϵ

′

4
-regular, ||u− (ū+ w)|| ≤ 1}.

Notice that Ω̃ is an open domain in RV (T̊ ) and Ω is a compact subset of Ω̃. By the

construction, (ū+w) is in the interior of Ω, since (T̊ , l′Q)E is (ϵ′/2)-regular. Given u ∈ Ω̃

and an interior edge ij in T̊ , denote

ηij(u) =
1

2
(cot θkij(u) + cot θk

′
ij (u))

where 4ijk and 4ijk′ are adjacent triangles in T̊ . Then for u ∈ Ω,

2ηij(u) = cot θkij(u) + cot θk
′

ij (u) =
sin(θkij(u) + θk

′
ij (u))

sin θkij(u) sin θ
k′
ij (u)

≥ sin(θkij(u) + θk
′

ij (u)) ≥ sin
ϵ′

4

(6.8)

for any interior edge ij in T̊ .

Consider the following system of differential equations on Ω̃,

∂Ki

∂u

du

dt
= −Ki(ū+ w) = −div(x)i, i ∈ int(T̊ ), (6.9)

dui
dt

= (log 2− 2 log(2 sin
liX
2

)− ūX)− (ūi + wi), i ∈ bdy(T̊ ),

u(0) = ū+ w,
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where ūX is the value of ū at the marked point X sent to the north pole, and liX is

the length of the edge iX given by l. We want to show that the solution u(t) exists on

[0, 1], then it is easy to see that Ki(u(1)) = 0 for an interior vertex i of T̊ , and

ui(1) = log 2− 2 log(2 sin
liX
2

)− ūX

for a boundary vertex i of T̊ .

For a boundary vertex i of T̊ , ui(t) can be easily solved as

ui(t) = t(log 2− 2 log(2 sin
liX
2

)− ūX) + (1− t)(ūi + wi),

and

dui
dt

=(log 2− 2 log(2 sin
liX
2

)− ūX)− (ūi + wi)

= log 2− 2 log(2 sin
liX
2

)− ūX − ūi − log
2

(lP )2iX

=− 2 log(2 sin
liX
2

)− ūX − ūi + 2 log (lP )iX

=− 2 log(l′P )iX + 2 log(lP )iX

=O(l2iX).

Now let us focus on solving ui(t) for all the interior vertices of T̊ . Let V̂ be the set

of interior vertices of T̊ , and G = (V̂ , Ê) be the subgraph of (V (T̊ ), E(T̊ )) generated by

V̂ . It is easy to show that G is nonempty and connected. Let û ∈ RV̂ and x̂ ∈ RÊ
A and

η̂ ∈ RÊ be the restrictions of u and x and η respectively on G = (V̂ , Ê), and ∆̂ = ∆η̂

be the associated discrete Laplacian on G. Then by Proposition 4, it is straightforward

to verify that Equation (6.9) can be rewritten as

(D − ∆̂)
dû

dt
= −div(x̂) + y, (6.10)

where

(a) D ∈ RV̂×V̂ is a nonzero diagonal matrix and

Dii =
∑

j∼i:j /∈V̂

ηij ≥ 0,

and
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(b)

yi =
∑

j∼i:j /∈V̂

ηij
duj
dt

−
∑

j∼i:j /∈V̂

xij .

For u ∈ Ω̃, it is easy to show that (D − ∆̂) is positive definite, by the fact that G is

connected, ηij > 0 for any ij ∈ Ê, and D is nonzero and non-negative. So equation

(6.10) locally has a unique solution in Ω̃.

Assume the maximum existence open interval for the solution û(t) ∈ Ω is (0, T0)

where 0 < T0 ≤ +∞. For t ∈ [0, T0), we have

dû

dt
(t) = O(||l|| · |V̂ |1/2l )

by Lemma 6.1, and Theorem 13, and equation (6.8) and (6.7), and the fact that

yi =
∑

j∼i:j /∈V̂

(ηij
duj
dt

−xij) = O

 ∑
j∼i:j /∈V̂

(ηijl
2
jX + l2ij)

 = O(Dii||l||2) = O(Dii||l||·|V̂ |1/2l ).

Furthermore

|V̂ |l ≤ |V |l =
∑
ij∈E

l2ij = O(
∑
ij∈E

l̄2ij) = O(
∑
ijk∈F

(l̄2ij + l̄2jk + l̄2ik))

=O(
∑
ijk∈F

Area(4ijk, l̄)S) = O(Area((T, l̄)S)) = O(Area(S2)) = O(1),

and thus (du/dt)(t) = O(||l||) for t ∈ [0, T0).

If T0 ≤ 1, combining Lemma 6.1, we have

||u(T0)− (ū+ w)|| = O(||l||), and |θijk(u(T0))− θijk(ū+ w)| = O(||l||).

This implies that u(T0) ∈ int(Ω) if δ is sufficiently small, which contradicts to the

maximality of T0. Thus, T0 > 1 and u(1) is well-defined. Furthermore we have that

(a) Ki(u(1)) = 0 for any interior vertex i of T̊ , and

(b) ui(1) = log 2− 2 log(2 sin liX
2 )− ūX for any boundary vertex i of T̊ , and

(c) u(1)− (ū+ w) = O(||l||), and

(d) (T̊ , u(1) ∗ 2 sin l
2)E is strictly Delaunay, and

(e) Ki(u(1)) > 0 for any boundary vertex i in T̊ .
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6.6.3 Step 3: Normalization and the inverse of the stereographic pro-

jection

We know that (T̊ , u(1) ∗ 2 sin l
2)E is isometric to a closed convex polygon in C. Let

f be the piecewise linear map from (T̊ , u(1) ∗ 2 sin l
2)E to (T̊ , lQ)E that preserves the

triangulation and is linear on each triangle. From equation (6.6) and the fact that

u(1)− (ū+ w) = O(||l||), we can deduce that∣∣∣(u(1) ∗ 2 sin l
2)ij − (lQ)ij

(lQ)ij

∣∣∣ = ∣∣∣(u(1) ∗ 2 sin l
2)ij − ((ū+ w) ∗ 2 sin l

2)ij

(lQ)ij

∣∣∣+O(||l||2) = O(||l||).

Then by Lemma 6.4, ‖Df‖2 and ‖Df−1‖2 are both (1 + C||l||)-Lipschitz for some

constant C(M, g,X, Y, Z, ϵ) > 0. So the distance dY Z between Y and Z in (T̊ , u(1) ∗

2 sin(l/2))E lies in [1−C||l||, 1+C||l||]. So we can scale (T̊ , u(1)∗2 sin(l/2))E by letting

ũ = u(1)− log dY Z , and then (T̊ , ũ ∗ 2 sin(l/2))E is still isometric to a convex polygon

and the distance between Y and Z is 1, and∣∣∣ ũ ∗ 2 sin l
2 − (lQ)ij

(lQ)ij

∣∣∣ = ∣∣∣ ũ ∗ 2 sin l
2 − u(1) ∗ 2 sin l

2

(lQ)ij

∣∣∣+O(||l||) = O(||l||).

Let g be the isometry from (T̊ , ũ ∗ 2 sin l
2)E to a closed convex polygon Q1 in C such

that g(Z) = 0 and g(Y ) = 1. Then for any i ∈ V̊ , the above bi-Lipschitz property of f

implies that ∣∣∣∣log |g(i)|2
|pN (ϕ(i))|2

∣∣∣∣ = O(||l||).

Now we are ready to project the points in the plane back to the sphere. Let

V1 = (pN |S2)−1(g(V (T̊ ))) ∪ {N}

and P1 be the convex hull of V1. Then by part (b) of Lemma 6.2, P1 ∈ P and pN (P̊1) =

Q1 and pN (T̊P1) = g(T̊ ). Naturally identify the combinatorial structures of T and TP1 ,

and denote lP1 ∈ RE(T ) as the edge length on P1. We will verify that

lP1 = u ∗ 2 sin l
2

where uX = ūX + log dY Z and

ui = ũi − w′
i, where w′

i = log
|g(i)|2 + 1

2
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if i ∈ V (T̊ ). If ij ∈ E(T̊ ),

(lP1)ij = (u ∗ 2 sin l
2
)ij

by implementing Lemma 6.2 on lP1 and lQ1 . For edge iX ∈ E(T ), we have that

log(u ∗ 2 sin l
2
)iX

= log(2 sin
liX
2

) +
1

2
(ūX + log dY Z + log 2− 2 log(2 sin

liX
2

)− ūX − log dY Z − w′
i)

=
1

2
(log 2− w′

i) =
1

2
log

4

|g(i)|2 + 1
=

1

2
log(lP1)

2
iX = log(lP1)iX .

So u is our desired discrete conformal factor. As we mentioned in Remark 1.4, such u

is known to be unique. It remains to show ui − ūi = O(||l||) for any i ∈ V . Notice that

|w′
i − wi| =

∣∣∣ log |g(i)|22 + 1

2
− log

|pN (ϕ(i))|22 + 1

2

∣∣∣ = ∣∣∣ log |g(i)|22 + 1

|pN (ϕ(i)|22 + 1

∣∣∣ = O(||l||).

So restricted on V (T̊ ), we have that

u−ū = (ũ−w′)−ū = u(1)−log dY Z−w′−ū = (u(1)−ū−w)+(w−w′)−log dY Z = O(||l||).

On vertex X we have that uX − ūX = log dY Z = O(||l||).
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