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The next radio generations of mobile networks, Fifth Generation (5G) and beyond, are

expected to speed up the transition from monolithic and inflexible networks to agile and

distributed networking elements that rely on “virtualization”, “softwarization”, openness,

intelligent and yet fully interoperable Radio Access Network (RAN) components. At the

same time, the increasing popularity of computation-intensive applications on mobile de-

vices has contributed to the overwhelming mobile traffic volume that is pushing against

the boundary of the current communication networks’ capacity. Besides, mobile platforms

are becoming the predominant medium of access to Internet services due to a tremendous

increase in their computation and communication capabilities.

In light of this, cloud-assisted wireless networks are promising solutions that unite wire-

less networks and cloud computing to deliver cloud services directly from the network

edges. The three emerging paradigms for cloud-assisted wireless networks are: Cloud Ra-

dio Access Network (C-RAN), in which the baseband resources are pooled at a Base Band

Unit (BBU) based on the fundamentals of centralization and virtualization; Mobile-Edge

Computing (MEC), which provides cloud computing and storage capabilities to enable

rich services and applications in close proximity to the end-users; and Next Generation

RAN (NG-RAN), in which the functional splitting technique is utilized to flexibly balance

the radio and computation processes at Central Units (CUs) and Distributed Units (DUs).

ii



These paradigms are complementary and have unique justifications within the 5G and be-

yond ecosystem. The centralized nature of C-RAN provides a higher degree of cooperation

in the network to address the capacity fluctuation and to increase the spectral and energy

efficiency, whereas the MEC paradigm is useful in reducing service latency and improv-

ing localized user experience; on the other hand, NG-RAN provides flexible distribution of

computation and radio capabilities at Base Stations (BSs).

The goal of this research is to leverage the emerging C-RAN, MEC, and NG-RAN

paradigms and to design disruptive innovations for wireless access networks in such a way

as to always make the best use of the resources available so as to satisfy the service re-

quests from the end-users. To this end, novel resource-allocation schemes and computation-

offloading policies are proposed in this thesis to minimize the service latency and to improve

the users’ Quality of Experience (QoE). The proposed innovative solutions include: (i) a

novel resource-allocation solution that aims at optimizing the energy consumption of a C-

RAN, (ii) a novel resource-allocation scheme that aims at maximizing the network energy

efficiency of a C-RAN subject to practical constraints including Quality of Service (QoS)

requirement, transmission power, and fronthaul capacity, (iii) a dynamic Video-streaming

QoE Maximization (VQM) that takes into account the video Distortion Rate (DR) and the

coordination among MEC server in order to enhance Adaptive Bitrate (ABR)-video stream-

ing in a MEC network, (iv) a joint task offloading, latency, and Quality Loss of Result (QLR)

framework, which helps improve users’ computation experience by offloading their computa-

tion tasks to the edge servers, and (v) a novel Deep Reinforcement Learning-based Resource

Allocation (ReLAX) framework to deal with the joint optimization of end-user association

and power allocation in NG-RAN systems. The proposed innovations in this research can

benefit a wide range of mobile applications and services such as video streaming, augmented

reality (AR)/virtual reality (VR), Internet-of-Things (IoTs), and public safety operations.
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Chapter 1

Introduction

1.1 5G and Beyond Systems: Key Features and Requirement

The explosive increase in demand for wireless broadband services, such as Internet of

Things (IoT), wireless health services, and smart city applications, has placed severe de-

mands on cloud infrastructure and wireless network that need for massive connectivity of

devices, and also ultra-low-latency connectivity over Internet Protocol (IP). At the same

time, mobile platforms are becoming the predominant medium of access to Internet ser-

vices due to a tremendous increase in their computation and communication capabilities.

To meet these performance criteria, there is ongoing work in many areas of the upcoming

Fifth Generation (5G) and beyond wireless systems to realize breakthroughs in the trans-

formation of Information and Communications Technology (ICT). 5G and beyond networks

are expected to be heterogeneous networks that involve multiple modes and a unified air

interface tailored to the needs of specific applications. Besides, enabling new techniques

such as network resource allocations and computing-intensive task offloading framework

are expected to be major features of a 5G and beyond network.

Requirements: The rapid growth in wireless data services driven by mobile Internet

and computation-intensive devices has triggered the study and consideration of the 5G and

beyond cellular network. It is expected that the next generation systems will have to sup-

port multimedia and real-time applications with a wide variety of requirements, including

user higher capacity and data rates, lower end-to-end latency, massive device connectivity,

enhanced Quality of Experience (QoE), and improved energy efficiency. These challenges

are briefly discussed as follows.

• Capacity and Data Rate: With increased mobile data traffic such as video consumption
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and real-time applications, system capacities data rates will be crucial requirements in

the 5G era. In general, mobile wireless communication would need a 1000-fold increase

in traffic capacity by 2020 relative to 2010 levels, and a 10- to 100-fold increase in

data rates specifically at high mobility and crowded areas, with extremely height peak

data rates of 10 Gbit/s [3].

• End-to-end Latency: With emerging several real-time applications such as Vehicle-

to-Vehicle (V2V) systems, and Augmented and Virtual Reality (AR and VR) appli-

cations, the system latency factor would be an important factor in designing such

latency-critical applications. For example, traffic safety applications for cars and hu-

mans, built around V2V and vehicle-to-Infrastructure (V2I) communication, require

very fast request-response and feedback control cycles with high availability and relia-

bility. In order to realize these applications, wireless networks are expected to support

a target of 1 ms end-to-end latency with high reliability [3].

• Connection Density: Providing the possibility for the massive number of connected

devices and sensors communicating with each other will be the key driver by upcoming

generation infrastructure. These will range from devices with limited resources that

require only intermittent connectivity for reporting (e.g., sensors) to devices that

require always-on connectivity for monitoring and/or tracking (e.g., traffic safety and

control, monitor and control of infrastructure). Hence, a challenge for 5G and beyond

wireless access is to support the diversity of devices and service requirements in a

scalable and efficient manner.

• QoE: Another significant metric required in the context of next generation is QoE,

which describes the subjective perception of the users as to how well applications or

services are working. For instance, the QoE of video streaming applications depends

on the quality of the encoded and delivered video in the context of the display on

which the video is shown. Delivering an application with low QoE leads to user

dissatisfaction, whereas high QoE unnecessarily drains resources on both the customer

(e.g., device battery, memory, CPU cycle) and operator (e.g., radio and transport

network resource, Base Station (BS) power) sides. Hence, a challenge for 5G and
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beyond is to support user services with a consistent level of QoE and optimal policy

for exploiting mobile device resources.

• Network Energy Efficiency: Another key demand required in the 5G and beyond

standardization is network energy efficiency. Increased network energy efficiency is

one critical factor to reduce the optional cost of a network. Therefore, 5G is expected

to significantly improve network energy efficiency by enabling and modifying new 5G

architectures and protocols.

Key Enabling Technologies: To maintain the sustainable development of the wireless

communication industry, novel solutions should be developed to meet the 5G and beyond

requirements. These necessitate disruptive solutions that could lead to both architecture

and hardware design changes, as listed in the following [4, 5].

• Cloud-based Wireless Networks: To deal with the high growth in cellular data, a large

number of small cells (e.g, microcell, picocell, femtocell, relay nodes, Wi-Fi access

points) are required to be installed indoors or outdoors, giving rise to Ultra-Dense

Networks (UDN), which pave the way for the development of 5G and beyond. With

such large-scale UDNs, network providers meet several major challenges in terms of

operation and management, network deployment, and inter-cell interference mitiga-

tion. To overcome those challenges, cloud-based platforms are emerged to optimize

the deployment, operation and management, and facilitate the network’s overall per-

formance.

• Millimeter Wave (mmWave): The requirement of the 5G wireless communication for

high throughput motivates the wireless industry to use the mmWave bands, ranging

from 3 to 300 GHz. Many bands therein seem promising, including most immediately

the local multipoint distribution service at 28 − 30 GHz, the license-free band at

60 GHz, and the E-band at 71 − 76 GHz, 81 − 86 GHz, and 92 − 95 GHz. The

mmWave are emerged to increase bandwidth, compensate the heavy path loss, and

improve the communications capacity. Considering the commercial requirements, 5G

mmWave large array systems should be implemented in an energy- and cost-efficient

way with a small form factor.
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• Massive Multiple-Input Multiple-Output (MIMO): Massive MIMO is typically com-

prised of a few hundred inexpensive antenna components, which can focus trans-

mission energy in certain directions and consequently increase throughput and save

energy significantly. Moreover, it can also facilitate concurrent transmissions to serve

multiple users at the same time. Massive MIMO may require major architecture

changes, practically in the design of macro BSs and it may also lead to new types of

deployments.

• Cognitive Radio (CR): Spectrum and energy scarcity are two main constraints of

wireless communication systems. CR has been presented as a powerful technique to

increase spectrum efficiency by enabling unlicensed users to access unused spectrum

opportunistically [6]. Two main paradigms to efficiently utilize spectra are spectrum

sensing and spectrum database. For the former, unlicensed users sense the spectrum

to detect the availability of channels before transmission and access the channels only

when idle. For the latter, unlicensed users can acquire the availability of channels

through spectrum databases before accessing the channels. Accordingly, work needs

to be done on a cross-layer view (e.g, Physical-layer (PHY) and Medium Access Con-

trol (MAC) layers) on designing CR networks.

• Device-to-device Communication (D2D): As a promising technique, D2D communica-

tion has attracted much attention in 5G and beyond systems. With D2D mode, the

communication paradigm enables devices in close proximity to communicate with each

other directly without sending data to the BS or the core network. Using D2D com-

munication, it can significantly improve spectral efficiency, save transmission power,

and reduce network latency.

1.2 Cloud-assisted Wireless Networks

Increasing demand for wireless data traffic and mitigating energy consumption in different

types of applications are inevitable for the 5G networks. Therefore, 5G and beyond systems
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will imply major developments in the implementation of networking infrastructure. Cloud-

assisted wireless networks, Software-Defined Networking (SDN) and Network Functions Vir-

tualization (NFV), are becoming promising solutions in today’s business due to the benefits

such as greater flexibility, increased security, scalability and low cost. The three emerging

paradigms for cloud-assisted wireless networks are Cloud Radio Access Network (C-RAN),

which aims at the centralization of the BSs functionalists (e.g, encoding, decoding) via

network virtualization and optical fronthaul technologies; Mobile-Edge Computing (MEC),

which provides cloud-computing capabilities at the edge of the mobile network, within the

RAN and in close proximity to mobile subscribers; and Next-Generation RAN (NG-RAN),

which aims to transition from inflexible and monolithic networks to agile and decentralized

elements.

1.2.1 Cloud Radio Access Network

The C-RAN is introduced as a cost-efficient potential solution to enhance spectrum effi-

ciency and energy efficiency of wireless networks. In addition, C-RAN has the potential

to decrease the cost of network operation, including capital expenditure (CAPEX) and

operating expenditure (OPEX), by reducing power and energy consumption in the net-

work. The centralized nature of processing within C-RAN enables flexible management of

the spectrum and computing resources as well as real-time collaborative communications

among the BBUs. These characteristics bring extra degrees of freedom and facilitate the

deployment of advanced cooperative technique as well as resource-allocation mechanisms

for improved energy efficiency for both the mobile devices and the cellular systems, and

increased spectrum efficiency for the overall systems.

C-RAN Architecture. As illustrated in Fig 1.1, a typical C-RAN is composed of:

(i) light-weight, distributed Radio Remote Heads (RRHs) plus antennae, which are located

at the remote site and are controlled by a centralized virtual base station pool, (ii) the

Base Band Unit (BBU) composed of high-speed programmable processors and real-time

virtualization technology to carry out the digital processing tasks, and (iii) low-latency high-

bandwidth optical fibers, which connect the RRHs to the BBU pool. Packet-level processing,

MAC, PHY baseband processing, and Radio Frequency (RF) functionalities may be split
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Figure 1.1: (a) Each BBU is assigned to one RRH; and (b) Consolidated BBU.

between the BBU and the RRHs depending on the specific C-RAN implementation [7].

Based on the network performance and system implementation complexity, each BBU can

be assigned to one RRH, as shown in Fig. 1.1(a), or the BBUs can be consolidated into

one entity, called BBU pool, that takes care of performing baseband PHY- and MAC-layer

processing, as depicted in Fig. 1.1(b).

Advantages of C-RAN. The centralized processing in C-RAN permits the imple-

mentation of efficient computation and resource allocation algorithms between the RRHs

and the BBU pool. It also enable the optimization of the radio access performance at

the traffic level, for instance, through joint multi-cell processing and intercell interference

coordination (ICIC). Resource allocation and ICIC techniques can significantly enhance

wireless network performance by mitigating interference between adjacent BSs. At the net-

work level, centralized processing is demanded to deal with ultra-dense networks (e.g., to

dynamically adapt to spatial and temporal fluctuations by turning on/off RRHs) by adding

spectrum resources and configuring the network to fine-tune user data traffic delivery. The

list of other benefits enabled by C-RAN can be listed as follows [8].

• Increasing energy efficiency: With C-RAN architecture, the number of cell sites can be

reduced several folds. Thus, the costs of onsite infrastructures, such as air conditioning

and other power-consuming equipment, can be significantly reduced. Besides, to

improve the overall network energy efficiency, it is much easier to deploy small cells
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with lower transmission power.

• Throughput Improvement: Because of the pooling of BBU resources in a C-RAN,

the mechanisms introduced for LTE-Advanced (LTE-A) to increase spectral efficiency

and throughput, such as coordinated Multi-Point (CoMP) and enhanced Inter-Cell

Interference Coordination (eICIC) schemes, are greatly facilitated. As signal process-

ing from many cells can be done over one BBU pool in C-RAN, the energy processing

and transmitting delays are also reducing by utilizing implementing load balancing

methods between the cells, such as adaptive resource allocation and beamforming.

• Adaptability to Nonuniform Traffic and Scalability: In each BS, daily traffic distribu-

tion generally fluctuates, and the peaks of traffic happen at various hours. In C-RAN,

the overall utilization rate can be improved since most baseband processes are exe-

cuted in the BBU pool. The required baseband processing capacity of the pool is

expected to be smaller than the sum of capacities of single base stations. In addition,

coverage upgrades demand the connection of extra RRHs to the already existing BBU

pool. Therefore, existing cells can then be split, or additional RRHs can be added to

the BBU pool to handle non-uniformly distributed traffic.

1.2.2 Mobile-Edge Computing

The recent advances in IoT have enabled a paramount of new applications (e.g., VR, AR,

and object tracking and recognition) to provide real-time machine-to-machine and machine-

to-human interactions. Such complex applications necessitate higher computing power,

memory and battery lifetime on mobile devices. However, due to physical size constraint,

mobile devices are generally resource-hungry; in fact, the limited energy supply from battery

has been one of the most challenging issues for mobile devices. At the same time, with the

development of wireless communication technologies such as Wi-Fi, 4G or even 5G, Mobile

Edge Computing (MEC) has emerged as a promising approach to address such a challenge.

Specifically, MEC servers are owned by the network operator and are implemented directly

at the cellular BSs or at the local wireless access points using a generic-computing plat-

form. With this position, MEC allows for the resource-limited mobile devices to offload
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their computation tasks to the BSs at which the offloaded tasks can be executed by the

co-located MEC servers. This substantially helps reduce the task completion delay and

release the burden on the backhaul networks [9]. Additionally, MEC has the potential to

empower the network with different benefits, including: (i) optimization of mobile resource

by running compute-intensive applications at the network edge, (ii) context awareness sup-

port with providing the RAN information such as cell load, user mobility and location, and

(iii) QoE’s user improvement by enabling various techniques at the network edge such as

video caching and high throughput browsing. Figure 1.2 represents a typical scenario of

applying MEC technique for mobile networks, in which the computation-intensive applica-

tions can be offloaded from mobile user devices to the MEC servers. Recently, several MEC

concepts with the purpose of smoothly integrating cloud capabilities into the mobile net-

work architecture have been proposed in the literature. Some of these network architectures

are; Small Cell Cloud Cloud (SCC) [10], Fast Moving Personal Cloud (MobiScud) [11], and

European Telecommunications Standards Institute (ETSI) MEC [12,13].

1.2.3 Next-Generation Radio Access Network

To support the diverse requirements of richer, more demanding applications, NG-RANs

will need to lever- age a novel architecture to transition from inflexible and monolithic

networks to agile and decentralized elements. This architecture will enable new networking

functionalities to: (i) provide on-demand virtual and RAN functional splitting network



9

options in terms of software and hardware environments; (ii) manage the network physical

infrastructure in near real time via open, intelligent, virtualized software interfaces; and (iii)

enable cloud services, including cloud computing and task offloading seamlessly intensive

computation tasks to nearby edge servers.

NG-RAN Concept and Architecture. The NG-RAN architecture, defined by

3GPP, comprises a Distributed Units (DUs) located in the close proximity to the Base

Station (BS) tower that able to communicate with a Central Unit (CU) via Next Gen-

eration Fronthaul Interface (NGFI) standard [14], in which the PHY/MAC layers of the

network flexibly splits between the CU and DU locations. In this way, the NGFI interface

brings enormous advantages to the fronthaul network in terms of the system flexibility and

the network latency.

Another key feature of NG-RAN design is to flexibly move the main signal process-

ing functions performed by the digital baseband (PHY/MAC) processing to the CU while

maintaining the radio access and low levels of communication functionalities at the cell sites

in the form of Distributed DUs. Cooperation between two main units in an efficient way

will open a path to enhance the overall network significant metrics, including architecture

planning, network operation, resource utilization, and back/mid/front-haul management.

Consequently, multiple wireless 5G and beyond services, such as massive Machine-Type

Communication (mMTC), enhanced Mobile Broadband (eMBB), and ultra-Reliable Low-

Latency communication (uRLLC), can dynamically deploy and manage to satisfy the emerg-

ing requirements of a variety of 5G and beyond applications. Figure 1.3 describes the main

components in NG-RAN system.

NG-RAN Functional Split Options. As a part of the NG-RAN study, 3GPP pro-

posed several functional splits between CUs and DUs. Accordingly, it has been proposed 8

possible options shown in Fig 1.4 [2]. The choice of how to split the NG-RAN architecture

depends on several factors related to radio network status, traffic size and network providers’

services, such as low latency, high throughput, UE density, and the geographical location of

DUs. By moving from Option 1 to Option 8, a tradeoff can be established between fronthaul

latency and processing complexity. Basically, by adding more baseband functions at the

DUs, the required fronthaul rate can be reduced, while the processing complexity will be
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increased, and the energy consumption at the DUs will be increased [15]. Specifically, com-

putationally costly operations like Fast Fourier Transformation (FFT), Inverse Fast Fourier

Transformation (IFFT), Rate Matching, and Turbo encoding/decoding are shifted to the

CU side, resulting in variation in energy consumption at the CU and the DU.

1.3 Research Objectives and Contributions

The goal of this research is to design disruptive innovations for the wireless access network

that always make the best use of the resources available to satisfy service requests from

the users. The innovations should also make use of intelligence harvested from users and

network context information such as the popular content being requested at a given time
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in a given location, the computing resources required to process baseband data and to exe-

cute computation tasks for each user. This additional information can enable the network

to make optimized control decisions both proactively and reactively so as to improve the

users’ communications and computation experiences. Fueled by the potential advantages of

C-RAN, MEC , and NG-RAN, we aim at designing novel cooperative frameworks that op-

timize the control decisions for data transmissions, content provisioning, and computation

in 5G systems. Specifically, our innovative solutions focus on improving downlink transmis-

sion throughput, reducing backhaul traffic load, and reducing end-to-end (e2e) latency for

content delivery and mobile computation offloading. Our contributions in this dissertation

are summarized in five specific topics as follows.

1. Bandwidth and Energy-Aware Resource Allocation for Cloud Radio Ac-

cess Networks [16–18]: In this work, a novel resource allocation solution that optimizes

the energy consumption of a C-RAN is proposed. First, an energy consumption model

that characterizes the computation energy of the BBU pool is introduced based on empir-

ical results collected from a programmable C-RAN testbed. Then, the resource allocation

problem is split into two subproblems—namely the Bandwidth Power Allocation (BPA)

and the BBU Energy-Aware Resource Allocation (EARA). The BPA, which is first cast

via Mixed-Integer Nonlinear Programming (MINLP) and then reformulated as a convex

problem, aims at assigning a feasible bandwidth and power to serve all users while meeting

their Quality of Service (QoS) requirements. The second subproblem, i.e., the BBU EARA,

is defined as a bin-packing problem that aims at minimizing the number of active VMs

in the BBU pool to save energy. Simulation results coupled with real-time experiments

on a small-scale C-RAN testbed show that the proposed resource allocation solution opti-

mizes the energy consumption of the network while meeting practical constraints and QoS

requirements, and outperforms competing algorithms such as Best Fit Decreasing (BFD),

RRH-Clustering (RC), and SINR-based.

2. Energy-efficient Resource Allocation in C-RANs with Capacity-limited

Fronthaul [18–20]: In this work, a novel resource allocation scheme that optimizes the

network energy efficiency of a C-RAN is designed. First, an energy consumption model

that characterizes the computation energy of the BBU is introduced based on empirical
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results collected from a programmable C-RAN testbed. Then, an optimization problem is

formulated to maximize the energy efficiency of the network, subject to practical constraints

including QoS requirement, radio remote head transmit power, and fronthaul capacity lim-

its. The formulated Network Energy Efficiency Maximization (NEEM) problem jointly

considers the tradeoff among the network accumulated data rate, BBU power consumption,

fronthaul cost, and beamforming design. To deal with the non-convexity and mixed-integer

nature of the problem, we utilize successive convex approximation methods to transform

the original problem into the equivalent Weighted Sum-Rate (WSR) maximization prob-

lem. We then propose a provably-convergent iterative method to solve the resulting WSR

problem. Extensive simulation results coupled with real-time experiments on a small-scale

C-RAN testbed show the effectiveness of our proposed resource allocation scheme and its

advantages over existing approaches.

3. On-demand Video-streaming in Mobile-Edge Computing [21, 22]: In this

work, we aim at optimizing the QoE for dynamic adaptive video streaming that takes into ac-

count the Distortion Rate (DR) characteristics of videos and the coordination among MEC

servers. Specifically, the Video-streaming QoE Maximization (VQM) problem is cast as a

Mixed-Integer Nonlinear Program (MINLP) that jointly determines the integer video reso-

lution levels and video transmission data rates. Due to the challenging combinatorial and

non-convex nature of this problem, the Dual-Decomposition Method (DDM) is employed to

decouple the original problem into two subproblems, which can be solved efficiently using

standard optimization solvers. Real-time experiments on a wireless video streaming testbed

have been performed on a FDD downlink LTE emulation system to characterize the perfor-

mance and computing resource consumption of the MEC server under various conditions.

Emulation results of the proposed strategy show significant improvement in terms of users’

QoE over traditional approaches.

4. Latency and Quality-Aware Task Offloading in Multi-Node Next Gen-

eration RANs [18, 23–25]: In this work, we propose a multi-edge node task offloading

system, i.e., QLRan, a novel optimization solution for latency and quality tradeoff task al-

location in Next-Generation Radio Access(NG-RANs). Considering constraints on service
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latency, quality loss, edge capacity, and task assignment, the problem of joint task offload-

ing, latency, and Quality Loss of Result (QLR) is formulated in order to minimize the User

Equipment (UEs) task offloading utility, which is measured by a weighted sum of reductions

in task completion time and QLR cost. The QLRan optimization problem is proved as a

Mixed Integer Nonlinear Program (MINLP) problem, which is a NP-hard problem. To effi-

ciently solve the QLRan optimization problem, we utilize Linear Programming (LP)-based

approach that can be later solved by using convex optimization techniques. Additionally,

a programmable NG-RAN testbed is presented where the Central Unit (CU), Distributed

Unit (DU), and UE are realized by USRP boards and fully container-based virtualization

approaches. Specifically, we use OpenAirInterface (OAI) and Docker software platforms to

deploy and perform the NG-RAN testbed for different functional split options. Then, we

characterize the performance in terms of data input, memory usage, and average process-

ing time with respect to QLR levels. Simulation results show that our algorithm performs

significantly improves the network latency over different configurations.

Deep Reinforcement Learning-based Resource Allocation for Next Genera-

tion Radio Access Networks: In this work, we introduce a novel Deep Reinforcement

Learning Based Resource Allocation (ReLAX) framework to deal with the joint optimiza-

tion of UE association and power allocation in NG-RAN systems. Considering the dynamic

nature of the NG-RAN environment, ReLAx problem has been formulated to maximize the

network EE under the constraints of QoS, fronthaul link, functional split configuration and

transmit power budget. The optimization problem is cast via a Mixed-Integer Non-Linear

Programming (MINLP), which is in general non-convex and NP-complete. A multi-task

Deep Deterministic Policy Gradient (DDPG) method is proposed to solve the NG-RAN

resource allocation optimization problem, in which two actors are trained to generate UE

association and power allocation, respectively. We introduce the soft multi-task learning

as a constraint during training so that one model would not drift too far away from the

other one. Our real-time experiments on a fully containerized NG-RAN testbed show the

effect of functional splits on CPU utilization and system latency. Besides, simulation re-

sults show that the proposed resource allocation solution outperforms competing traditional

algorithms.
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1.4 Dissertation Organization

The rest of this dissertation is organized as follows.

Chapter 2 describes our proposed efficient resource-allocation solution that aims at

minimizing the energy consumption of SDN-based C-RAN, including the power consump-

tion of the BBU pool and the RRHs. including. We also discuss the limitation and practical

considerations for realizing the virtualized BBU pool over a real-world implementation of

a small-scale C-RAN system. Numerical simulations show that our proposed algorithm

significantly improves the energy consumption of the network over traditional approaches.

Chapter 3 presents our proposed resource-allocation solution that optimizes the net-

work energy efficiency of a C-RAN subject to practical constraints including meeting the

users’ QoS requirements, RRH transmission power, and frounthaul capacity limits. The

performance of our proposed iterative algorithm is evaluated under different network con-

ditions. Extensive simulation results coupled with testbed experiments showed that the

proposed resource allocation solution optimizes C-RAN energy efficiency under practical

physical constraints while significantly outperforms existing approaches.

Chapter 4 describes our Video-streaming QoE Maximization problem which is cast as a

Mixed-Integer Nonlinear Program that jointly determines the integer video resolution levels

and video transmission data rates. Real-time experiments on a wireless video streaming

testbed have been performed on a FDD downlink LTE emulation system to characterize

the performance and computing resource consumption of the MEC server under various

conditions. Emulation results of the proposed strategy show significant improvement in

terms of users’ QoE over traditional approaches.

Chapter 5 presents a multi-edge node task offloading system, i.e., QLRan, a novel opti-

mization solution for latency and quality tradeoff task allocation in NG-RANs. Considering

constraints on service latency, quality loss, edge capacity, and task assignment, the problem

of joint task offloading, latency, and Quality Loss of Result (QLR) is formulated in order to

minimize the User Equipment (UEs) task offloading utility, which is measured by a weighted

sum of reductions in task completion time and QLR cost. The QLRan optimization problem

is proved as a Mixed Integer Nonlinear Program (MINLP) problem, which is a NP-hard
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problem. To efficiently solve the QLRan optimization problem, we utilize Linear Program-

ming (LP)-based approach that can be later solved by using convex optimization techniques.

Additionally, a programmable NG-RAN testbed is presented where the Central Unit (CU),

Distributed Unit (DU), and UE are realized by USRP boards and fully container-based vir-

tualization approaches. Specifically, we use OpenAirInterface (OAI) and Docker software

platforms to deploy and perform the NG-RAN testbed for different functional split options.

Then, we characterize the performance in terms of data input, memory usage, and average

processing time with respect to QLR levels. Simulation results show that our algorithm

performs significantly improves the network latency over different configurations.

Chapter 6 introduces our novel Deep Reinforcement Learning Based Resource Alloca-

tion (ReLAX) framework to deal with the joint optimization of UE association and power

allocation in NG-RAN systems. Considering the dynamic nature of the NG-RAN environ-

ment, ReLAx problem has been formulated to maximize the network Energy Efficiency (EE)

under the constraints of Quality of Service (QoS), fronthaul link, functional split configu-

ration and transmit power budget. The optimization problem is cast via a Mixed-Integer

Non-Linear Programming (MINLP), which is in general non-convex and NP-complete. A

multi-task Deep Deterministic Policy Gradient (DDPG) method is proposed to solve the

NG-RAN resource allocation optimization problem, in which two actors are trained to

generate UE association and power allocation, respectively. However, using two separate

models for two closely-related variables could be a waste of training time and resources. As

such, we introduce the soft multi-task learning as a constraint during training so that one

model would not drift too far away from the other one. Our real-time experiments on a

fully containerized NG-RAN testbed show the effect of functional splits on CPU utilization

and system latency. Besides, simulation results show that the proposed resource alloca-

tion solution outperforms competing traditional algorithms, such as ordinary DDPG and

Weighted Minimum Mean Square Error (WMMSE).

Chapter 7 summarizes our main contributions and provides suggestions on future re-

search directions that will push the state-of-the-art in cloud-assisted wireless networks.
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Chapter 2

Bandwidth and Energy-aware Resource Allocation for Cloud

Radio Access Networks

Cloud Radio Access Network (C-RAN) is emerging as a transformative paradigmatic ar-

chitecture for the next generation of cellular networks. In this article, a novel resource

allocation solution that optimizes the energy consumption of a C-RAN is proposed. First,

an energy consumption model that characterizes the computation energy of the Base Band

Unit (BBU) pool is introduced based on empirical results collected from a programmable

C-RAN testbed. Then, the resource allocation problem is split into two subproblems—

namely the Bandwidth Power Allocation (BPA) and the BBU Energy-Aware Resource

Allocation (EARA). The BPA, which is first cast via Mixed-Integer Nonlinear Program-

ming (MINLP) and then reformulated as a convex problem, aims at assigning a feasible

bandwidth and power to serve all users while meeting their Quality of Service (QoS) re-

quirements. The second subproblem, i.e., the BBU EARA, is defined as a bin-packing

problem that aims at minimizing the number of active Virtual Machines (VMs) in the

BBU pool to save energy. Simulation results coupled with real-time experiments on a

small-scale C-RAN testbed show that the proposed resource allocation solution optimizes

the energy consumption of the network while meeting practical constraints and QoS re-

quirements, and outperforms competing algorithms such as Best Fit Decreasing (BFD),

RRH-Clustering (RC), and SINR-based.

2.1 Introduction

Over the last few years, the proliferation of personal mobile-computing devices such as

tablets and smart phones, along with a plethora of data-intensive mobile applications, has

resulted in a tremendous increase in demand for ubiquitous and high data-rate wireless
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communications. To cope with this exponentially growing rate, it is expected that cel-

lular wireless systems would need 100× increase in Spectral Efficiency (SE) and 1000×

improvement in Energy Efficiency (EE) by 2020, which calls for a technological revolu-

tion. While the current cellular network architecture was not originally designed for such

capabilities, Cloud Radio Access Network (C-RAN) [26] has been introduced recently as

a revolutionary paradigmatic redesign of the cellular architecture to address the huge in-

crease in data traffic as well as to reduce the capital expenditure (CAPEX) and operating

expenditure (OPEX) [27]. In a centralized BBU pool, since all the information about the

network resides in a common place, the BBU can exchange control data at Gbps rate.

This centralized characteristic—along with virtualization technology and low-cost relay-like

RRHs—provides a higher degree of freedom to make optimized decisions, and has made C-

RAN a promising technology candidate to be incorporated into the Fifth Generation (5G)

wireless network, especially for urban/high-density areas. For instance, based on the global

view of the network condition and on the traffic demand information available at the BBU

pool, dynamic provisioning and allocation of spectrum, computing, and radio resources can

improve network performance [19, 28–32]. Furthermore, fueled by the strong computing

capabilities and storage resources at the BBU pool, C-RAN can provide a central port for

traffic offloading and content management via edge caching [33–35]. In some respect, C-

RAN paves the way for bridging the gap between two so-far disconnected worlds: wireless

cellular communications and cloud computing.

In a BBU pool, most of the communication functionalities are implemented in part or

fully in a virtualized environment hosted over general-purpose computing servers that are

housed in one or more racks in a nearby cloud datacenter. It is therefore crucial to design

and provision the virtualized environment properly in order to make it flexible and energy

efficient while also capable of handling intensive computations. Such a virtualized environ-

ment can be realized via the use of Virtual Machines (VMs). The flexible reconfigurability

of the virtualized BBU allows for it to be dynamically resized ‘on the fly’ in order to meet

the fluctuations in capacity demands. This elasticity will enable significant improvement

in user Quality of Service (QoS) as well as efficiency in energy and computing resource

utilization in C-RANs. However, determining the computational resources of a virtualized
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BBU that is capable of providing adequate processing capabilities with respect to the traffic

load presents non-trivial engineering challenges.

Our Vision: Although C-RAN offers many crucial updated features that make it possi-

ble to transform conventional Radio Access Networks (RAN) from hardware-defined infras-

tructures to a software-defined environment—such services are referred to as Infrastructure-

as-a-Service (IaaS), Platform-as-a-Service (PaaS), and Software-as-a-Service (SaaS) [36]—

there are several critical hardware challenges needed to be identified and addressed in order

to achieve the full benefits of using C-RAN in 5G systems. Obviously, the energy con-

sumption of a C-RAN can be significantly reduced if we optimize the computational BBU

resources such as the computation frequency (CPU cycles per second). On the other hand,

the communication resources depend on multiple parameters including radio signal band-

width and the Modulation and Coding Scheme (MCS) index.

In this article, we seek to design an efficient resource allocation solution, considering

the computational requirements of the virtualized BBU over a real-world implementation of

a small-scale C-RAN system. Software implementations and real hardware are essential

to understand the runtime complexity as well as the performance limits of the BBU in

terms of processing throughput and latency and how they translate to mobile-user QoS

metrics. The realization of the C-RAN emulation testbed on virtualized general-purpose

computing servers will allow for profiling of the computational complexity of the different

communication functionalities implemented in software. In particular, such profiling results

will provide a “mapping” from the number and combination of different types of user traffic

to VM computational capacity. Hence, we aim at establishing empirical models for the

estimation of processing time and CPU utilization with respect to different radio-resource

configurations and traffic loads. Our model will provide researchers and practitioners with

real-world insights and the necessary tool for designing advanced and efficient resource

provisioning and allocation strategies in C-RANs.



19

2.2 Related Work

There has been a considerable number of recent works studying the benefits of C-RAN

from the cooperative communications perspectives. For instance, the works in [37–40]

consider the power minimization problem by jointly optimizing the set of active RRHs

and precoding or beamforming design. The considered power models consist of the RRH

transmission power [37], and additionally the user transmission power in [39], transport

network power in [38], and power consumption at the BBU pool in [40]. In addition, the

tradeoff between transmission power and delay performance is investigated in [41–43] via

different approaches. Furthermore, the works in [19, 44–46] address the front-haul uplink

compression problem in C-RAN. While showing promising performance gains brought by

the centralization and optimization of C-RAN, these works often overlook the system issues

and mostly rely on simplified assumptions when modeling the computational resources of

the BBU. From the system perspectives, several LTE RAN prototypes have been imple-

mented over General-Purpose Platforms (GPPs) such as the Intel solutions based on hybrid

GPP-accelerator [47], Amarisoft solution [48] , and OpenAirInterface (OAI) platform [49].

Studies on these systems have demonstrated the preliminary potential benefits of C-RAN

in improving statistical multiplexing gains, energy efficiency, and computing resource uti-

lization. Field-trial results in [26, 50] show the feasibility of deploying C-RAN fronthaul

using Common Packet Radio Interface (CPRI) compression—which specifies the interface

between two LTE functional blocks, i.e., the baseband processing and the radio—single fiber

bidirection, and wavelength-division multiplexing. The authors in [51] focus on minimizing

computational and networking latencies by VMs or containers. Kong et al. [52] present

the architecture and implementation of a BBU cluster testbed to improve energy efficiency

in C-RAN. Wu [53] shows a high-level architecture for programmable RAN (PRAN) that

centralizes BSs’ L1/L2 processing of BBU pool onto cluster of commodity servers. This

approach shows the feasibility of fast data path control and efficiency of resource pooling.

The work in [8] presents the cross-layer resource allocation problem as a Mixed-Integer

Nonlinear Programming (MINLP), which considers elastic service scaling, RRH selection,

and beamforming. In [54], the authors propose a workload consolidation framework for
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minimizing energy consumption in C-RAN by reducing the number of baseband processing

servers used.

In summary, these works perform theoretical studies of resource allocation problems,

overall system architecture, feasibility of virtual software BS stacks, performance require-

ments, and analysis of optical links between the RRHs and the BBU cloud. However, most

of these systems are either proprietary or ad-hoc based, and do not provide a generalized

characterization that can be used for the design of new algorithms. In contrast, our work is

based on real-world C-RAN testbed experiments that allowed us to derive a realistic empir-

ical model for the processing power consumption at the BBU pool. Based on such models,

we formulated and solved two subproblems to achieve an optimized tradeoff between energy

consumption and user QoS.

Main Contributions: The objective of this chapter is to propose an efficient resource

allocation scheme that aims at minimizing the overall energy consumption of C-RAN, in-

cluding the power consumption of the BBU pool and the RRHs. In particular, using em-

pirical data collected from our real-time OAI testbed, we modeled the network energy

consumption in a C-RAN system, which consists of two main parts: the computation en-

ergy consumed in the BBU pool and the Radio Frequency (RF) energy transmitted by

RRHs. We established BBU computation model via testbed experiments and propose re-

source allocation techniques to optimize the number of active servers while ensuring QoS

requirements for the users in a downlink C-RAN system. Given the importance of designing

effective resource management solutions in C-RAN and the lack of experimental studies for

the computational performance and requirements of the BBU pool, we make the following

contributions,

• We design and implement a programmable C-RAN testbed comprising of a virtualized

BBU connected to multiple eNodeBs (eNBs). The BBU is implemented using an

open-source software platform that allows for simulation and emulation of the LTE

protocol stack. The eNBs are realized using programmable USRP Software Defined

Radio (SDR) boards.

• We perform extensive experiments with transmissions between the eNB and the UE
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under various configurations to identify the runtime complexity and performance lim-

its of the BBU in terms of processing time, throughput, and latency. It is shown that

the processing time and CPU utilization of the BBU increase with the Modulation

and Coding Scheme (MCS) index and with the number of allocated Physical Resource

Blocks (PRBs).

• Using empirical data from testbed experiments, we model the BBU processing time

as a function of the CPU frequency, MCS, and PRBs; and the BBU’s CPU utilization

as a linearly increasing function of the maximum downlink data rate. These models

provide insights and key inputs to formulate/design/evaluate resource-management

strategies in C-RAN.

• We split the resource allocation problem into two subproblems—namely the Band-

width Power Allocation (BPA) and the BBU Energy-Aware Resource Allocation (EARA).

The BPA, which is first cast via MINLP and then reformulated as a convex problem,

aims at assigning a feasible bandwidth and power to serve all users while meeting

their QoS requirements. The second subproblem, the BBU EARA, is defined as

a bin-packing problem that aims at minimizing the number of active Virtual Ma-

chines (VMs) in the BBU pool to save energy.

• Our approach leverages the established BBU computation model and introduces novel

techniques to optimize dynamically the UE-RRH and RRH-BBU associations. Sim-

ulation results coupled with real-time experiments on a small-scale C-RAN testbed

show that the proposed resource allocation solution minimizes the energy consumption

of the network while meeting practical constraints and QoS requirements, and outper-

forms competing algorithms such as Best Fit Decreasing (BFD), RRH-Clustering (RC),

and SINR-based.

Chapter Organization: In Sect. 2.3, we describe the C-RAN software plateform and

the related system challenges; in Sect. 2.4, we introduce the system and power consumption

models considered throughout this work; in Sect. 2.5, we formulate the resource allocation

optimization problem, discuss its properties, decompose it into two simpler subproblems,

and propose two algorithms to solve them; in Sect. 2.6, we present our testbed experiment
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results as well as numerical simulation results to evaluate performance of our proposed

algorithms. Finally, we conclude the chapter in Sect. 2.7.

2.3 C-RAN Software Platform and Implementation Challenges

We describe here the OAI software platform that is capable of realizing a virtualized C-RAN

system. We then discuss the critical issues of a C-RAN implementation and virtualization.

2.3.1 Emulation Platform

We choose an open-source software implementation of LTE standard called OAI [49] to re-

alize the virtualized C-RAN system. This is a wireless communication platform developed

by EUROCOM that provides a complete flexible cellular ecosystem towards an open-source

5G implementation. OAI can be used to build and customize mobile network operators

consisting of eNBs and commercial Off-The-Shelf (COTS) UEs as well as software-defined

UEs. In addition, OAI offers tools to configure and monitor the RAN in real time via a soft-

ware radio front-end connected to a host computer for processing. This approach is similar

to other SDR prototyping platforms in the wireless networking research community such

as OpenBTS [55]. The structure of OAI mainly consists of two components: one, called

Openairintereface5g, is used for building and running eNB units; the other, called Openair-

cn, is responsible for building and running the Evolved Packet Core (EPC) networks, as

shown in Fig. 2.1. The Openair-cn component provides a programmable environment to im-

plement and manage the following network elements: Mobility Management Entity (MME),

Home Subscriber Server (HSS), Serving Gateway (S-GW), and PDN Gateway (P-GW).

Figure 2.2 shows a downlink functional block diagram of an eNB. The RRH includes only

time-domain RF and analog-to-digital functionalities while the BBU contains all the other

functions. Furthermore, it can be observed that the overall processing is the sum of per

User Processing (UP) and Cell Processing (CP). The UP depends only on the MCS and

on the resource blocks allocated to the users as well as on the Signal-to-Noise Ratio (SNR)

and channel conditions; whereas the CP depends on the channel bandwidth, thus imposing

a constant base processing load on the system.
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2.3.2 C-RAN Implementation Challenges

Although C-RAN offers many key features for RAN systems, there are several critical

hardware challenges needed to be identified and addressed to achieve the benefits of using

C-RAN in 5G systems. These challenges are listed as follows.

1. Testbed capacity: a typical C-RAN testbed should be implemented to deal with tens

to hundreds of RRHs at the same time; hence, the testbed must be equipped with

high computational resources and low-latency operation system. Moreover, reliable

synchronization between the BBU pool and the RRHs over the front-haul links should

be achieved.

2. Testbed latency: the Frequency Division Duplex (FDD) LTE Hybrid Automatic Re-

peat Request (HARQ) requires a Round Trip Time (RTT) of at most 8 ms; therefore,

a real-time requirement for hardware and software environments must be provisioned
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Figure 2.3: A conceptual structure of C-RAN network where the BBU pool can be realized
by real-time VMs.

for the BBU pool. Furthermore, the testbed hardware should provide the capabil-

ities to enable dynamic resource provisioning and sharing in order to address the

geographical and temporal variation of the traffic load in the network.

3. Other testbed requirements: other issues related to system front-haul multiplexing

and the back-haul link cost, energy optimization, and channel estimation should also

be considered in the testbed implementation.

In this work, we put a particular focus on LTE FDD, which consists of the following

layers: i) LTE PHY with symbol-level processing, ii) MAC layer, which supports wide-band

multiuser scheduling and HARQ.

2.4 System Model

In this section, we first describe the network setting, communication and BBU computation

models; then, we describe the network energy consumption model.

2.4.1 Network Description

As illustrated in Fig. 2.3, we consider a C-RAN system consisting of a set N = {1, 2, ..., N}

of N UEs and a set L = {1, 2, ..., L} of L RRHs. Each UE is equipped with single antenna

while each RRH has A > 1 antennas. All the RRHs are connected through Fast GB switch

to a common processing center comprising of a set of K BBUs denoted as K = {1, 2, ...,K}.

The BBU pool is composed of high-speed programmable processors and real-time VMs to
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Table 2.1: Summary of key notations.

Notation Definition

N the set of UEs
L the set of RRHs
K the set of BBUs
hij the channel gain between UE i and RRH j
Bij the bandwidth allocated to UE i from RRH j
gij the transmit power allocated to UE i from RRH j
rij the data rate of UE i when it associated with RRH j
Ci the computation capacity allocated for UE i in BBU pool

fCPS
i the computation CPU frequency in BBU pool for UE i

Gi, Di the positive testbed constants depending on the setup
Ebbuk the computation power consumption of BB k
Ea, Es the static and sleeping power of a VM , respectively
Ei(Ci) the CPU power consumption
Ppon the power consumption of PON
Polt the acquired power of OLT

P fh
j the transport link power consumption of fronthaul link j

P a
j , P

s
j the power of RRH j in active and sleep state, respectively

Pnet the total power consumption of C-RAN network
P tr, P c the RRH transmit power and constant power, respectively
λi, µi the Lagrange multipliers
U the maximum number of BBU k in the cloud

carry out PHY/MAC-layer functionalities. The BBUs could serve each UE by generating a

VM to provide computation resource as common datacenters do in a cloud-based system.

The number of VMs generated on BBU pool is limited, which means that one BBU can

only support a limited number of UEs. We assume that each UE can only be supported by

one VM.

We consider that each BBU can serve one or more RRHs, and the RRHs can cooperate

with each other for downlink transmissions to the UEs. We assume that hij ∈ CA×1 is the

channel gain between UE i and RRH j. The bandwidth and transmit power allocated to

UE i from RRH j are denoted as Bij and gij , respectively. The Signal-to-Interference-plus-

Noise Ratio (SINR) for UE i when receiving signal from RRH j is given by,

γij =
gijhij

Bij (N0 + Ii)
,∀i ∈ N , j ∈ L, (2.1)

whereN0 is the Power Spectral Density (PSD) of the Additive White Gaussian Noise (AWGN);
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Ii is the maximum interference introduced by other active RRHs with unit bandwidth, which

can be rewritten as,

Ii =
∑

k∈L\{j}

gmax
k hik/B

max
k ,∀i ∈ N , (2.2)

where gmax
k and Bmax

k are the maximum transmission power and bandwidth, respectively.

Hence, the achievable data rate of UE i when it is associated with RRH j can be calculated

as,

rij = Bij log2 [1 + γij ] ,∀i ∈ N , j ∈ L. (2.3)

Interference management mechanisms, such as Enhanced Inter Cell Interference Coor-

dination (eICIC) and Coordinated Multipoint (CoMP) [56, 57], can be employed to reduce

interference in the network. Benefiting from centralizing BBU resources in a C-RAN, those

schemes reduce processing and transmitting delays since signal processing from many cells

can be done over one BBU pool.

2.4.2 Active-Sleep Network Power Model

In C-RAN, when BBU and RRH are separated, the processing time at the BBU is reduced

and the delay calculation has to consider propagation delays and interface latencies between

RRH and BBU. However, we are going to model the energy consumption according to the

following requirements, which are mentioned in [58]. The first requirement is that the RTT

between RRH and BBU equipped with a CPRI link cannot exceed 700 µs for LTE and

400 µs for LTE-Advanced. Hence, the length of a BBU RRH link should not exceed 15 km

to avoid too high round trip-delays while the speed of light in a fiber is approximately

200 m/µs. Consequently, this leaves the BBU PHY layer only with around 2.3− 2.6 ms for

signal processing at a centralized processing pool. The propagation delay, corresponding to

timing advance, between RRH and UE, affects only the UE processing time. The timing

advance value can be up to 0.67 ms (equivalent to a maximum cell radius of 100 km). Once

the BBU received a subframe (1 ms duration) from the RRH, the BBU has to decode the

subframe as well as assemble and return another subframe back to the RRH within a hard

deadline ≤ 3 ms depending on the RRH–BBU distance.

In a real-world implementation of a C-RAN testbed, which we will describe in detail
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in Sect. 2.6.1, the CPU utilization of the BBU linearly increase with the PRB and MCS

index. Under this premise, we can consider the computation capacity Ci [cycles/s] that is

allocated for UE i in the BBU pool as a linearly increasing function of the user downlink

data rate. Specifically, the computation capacity for the data of UE i can be modeled as,

Ci = Gif
CPS
i +Di, ∀i ∈ N , (2.4)

where Gi and Di are positive constants that can be estimated via offline profiling of the C-

RAN testbed. We use fCPS
i to refer to the computation frequency (CPU cycles per second)

in the BBU pool for UE i.

In this work, we assume that the total power consumption in a downlink C-RAN network

system contains two main parts: the computation power spent in the BBU pool and the

power consumption of RRHs in the downlink transmission. In practice, the BBU pool can

dynamically adjust the VMs’ computation capacities to handle the dynamics of user traffic

demand and channel states. The power consumption of the BBU pool is closely related

to computing workloads for the baseband signal processing [59]. We use aki to indicate

whether UE i is served by the VM generated by BBU k, which can expressed as,

aki =


1 UE i is served by BBU k,

0 otherwise,

∀k ∈ K, i ∈ N . (2.5)

Hence, we can model the computation power consumption of BBU k corresponding to UE i

as,

Ebbuk =


Ea +

∑
i∈N

akiEi(Ci) BBU k is active,

Es BBU k is sleep,

∀k ∈ K, (2.6)

where parameter Ea represents the statistic part of the power consumption of a VM in

working mode, which is constant, while Ei(Ci) represents the CPU power consumption used

to process baseband signal of UE i. Additionally, we use Es to denote the power consumption

of VM i in sleeping mode. The increasing cost power from switching from sleep to active
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mode can be formulated as,

∆bbu
k = Ea +

∑
i∈N

akiEi(Ci)− Es, ∀k ∈ K. (2.7)

According to [60], the amount of power consumption corresponding to UE i can be modeled

as,

Ei(Ci) = wiCi,∀i ∈ N , (2.8)

where wi > 0 is a constant.

Depending on Passive Optical Network (PON) model [61], the Optical Line Termi-

nal (OLT), which connects a set of associated Optical Network Unites (ONUs) through

fiber links, can be used for C-RAN. Therefore, the power consumption of C-RAN network

can be denoted as,

Ppon = Polt +
∑
j∈L

P fh
j , (2.9)

where Polt is the acquired power of OLT and P fh
j is the transport link power consumption

of fronthaul link j, which is given by,

P fh
j =


P a
j RRH j is active,

P s
j RRH j is sleep,

∀j ∈ L, (2.10)

where P a
j and P s

j , with P
a
j > P s

j , are consumed power in active and sleep state, respectively.

Specifically, if RRH j is in active state, the value of P fh
j would increase by,

∆fh
j = P a

j − P s
j , ∀j ∈ L. (2.11)

A binary variable bj is introduced to indicate whether RRH j is active or not, i.e.,

bj =


1 RRH j is active,

0 RRH j is sleep,

∀j ∈ L. (2.12)
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Therefore, Ppon can be transformed as,

Ppon = Polt +
∑
j∈L

(
P a
j − P s

j

)
bj +

∑
j∈L

P s
j

= Polt +
∑
j∈L

∆fh
j bj +

∑
j∈L

P s
j .

(2.13)

Hence, the total power consumption of the C-RAN includes the BBU pool, Ebbu, the

PON, and the transmit power in RRHs, P tr, which can be written as,

Pnet = Ebbu + Ppon + P tr

=
∑
k∈K

(
Ea +

∑
i∈N

akiEi(Ci)− Es

)
yk +

∑
k∈K
Es

+
∑
j∈L

(
P a
j − P s

j

)
bj +

∑
i∈N

∑
j∈L

gijbij + Pc,

(2.14)

where parameter yk indicates whether BBU k is in working mode or not, i.e., yk = 1 if

BBU k is in working mode, and yk = 0 otherwise. The parameter Pc = Polt+
∑
k∈K
Es+

∑
j∈L

P s
j

is a constant.

2.5 Proposed Solution

We present now a novel resource allocation framework that optimizes the total energy con-

sumption in the computation and transmission parts of the C-RAN network. We formulate

the network power consumption minimization problem, followed by our solution approach.

2.5.1 Resource Allocation Problem for Network Power Consumption Min-

imization

The network power consumption in (2.14) suggests the two following strategies to reduce

the network power consumption: (i) reduce the number of active VMs in BBU pool and

(ii) reduce the transmission power consumption. Our goal is to propose an adaptive resource

allocation strategy in C-RAN that minimizes the total energy consumption at the BBU pool

and at the distributed RRHs. The energy minimization problem can be mathematically
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formulated as,

P0 : minimize
bj ,aki,Bij ,gij

Pnet (2.15a)

s.t. rij ≥ rmin
i ,∀i ∈ N , j ∈ L (2.15b)∑

i∈N
Bij ≤ bjBmax

j ,∀j ∈ L, (2.15c)∑
i∈N

gij ≤ gmax
j ,∀j ∈ L, (2.15d)

Bij ≥ 0, gij ≥ 0,∀i ∈ N ,∀j ∈ L, (2.15e)

bj , aki ∈ {0, 1}, ∀i ∈ N , j ∈ L, k ∈ K, (2.15f)

where constraint (2.15b) guarantees the QoS of UEs by keeping the data rate of UE i above

or equal the target; and (2.15c) and (2.15d) account for the bandwidth and power budgets of

RRH j, respectively. Problem P0 is a MINLP, which is NP-hard and difficult to solve [62].

Our goal in this chapter is to design a low-complexity, suboptimal solution to minimize the

network energy consumption in C-RAN, as will be presented in the next subsections.

2.5.2 A Divide-and-conquer Approach: Decomposing the Resource Allo-

cation Problem

As previously stated, the optimization problem defined by P0 is a MINLP since both classes

of binary variables bj and aki take values in discrete sets. Most solutions for MINLP relax

the integer variables into continuous ones so that appropriate linear/nonlinear optimization

methods can be applied. Intuitively, exhaustive search could obtain optimal solutions for

P0; however, the complexity of finding the optimal solution is too high even for medium-

scale cases. Hence, we need to follow a different approach based on a divide-and-conquer

strategy involving breaking the original problem into simpler subproblems that can be

solved directly; the solutions to the subproblems are then combined to give a solution to

the original problem. Because of the properties of the objective function in (2.15), in fact, we

can split the energy minimization problem into two subproblems. The first subproblem, the

BPA, aims at assigning a feasible bandwidth and power to serve all UEs while meeting their

QoS requirements; while the second subproblem, the BBU EARA, consists (i) in deciding
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which UEs in each RRH-UE cluster should be served by which BBU in the pool and (ii) in

minimizing the number of working VMs in the BBU pool. We will formulate the second

subproblem as a bin-packing problem. The two subproblems will be elaborated in detail in

the following subsections.

2.5.3 Bandwidth and Power Allocation Algorithm (BPA)

In this subproblem, our goal to assign the bandwidth and power budgets of the RRHs so

as to satisfy the rate requirements of all users. Given a set of users Nj served by RRH j,

we can formulate a feasible bandwidth and power allocation to serve all users as,

P1 : find Bij , gij (2.16a)

s.t. rij ≥ rmin
i ,∀i ∈ Nj , j ∈ L, (2.16b)∑

i∈Nj

Bij ≤ Bmax
j ,∀j ∈ L, (2.16c)∑

i∈Nj

gij ≤ gmax
j , ∀j ∈ L, (2.16d)

Bij ≥ 0, gij ≥ 0, ∀i ∈ Nj ,∀j ∈ L. (2.16e)

We claim that all UEs in Nj can be served by RRH j if a feasible solution to (2.16) exists.

However, solving the feasibility problem P1 is not straightforward; therefore, we reformulate

P1 into an equivalent form that is easier to address. Specifically, considering that the UEs

in Nj consume all bandwidth Bmax
j , we aim at finding the minimum power consumption of

RRH j with QoS requirements so that the optimization subproblem can be represented as,

P2 : minimize
Bij ,gij

∑
i∈Nj

gij (2.17a)

s.t. (2.16b) ∼ (2.16e). (2.17b)

From constraint (2.16b) and the definition of rij in (2.3), we conclude that,

gij =
N0Bij

hij

(
2

rmin
i
Bij − 1

)
,∀i ∈ Nj , j ∈ L. (2.18)
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Finally, by substituting (2.18) into (2.17), the optimization subproblem can be recast as,

P3 : minimize
Bij

∑
i∈Nj

N0Bij

hij

(
2

rmin
i
Bij − 1

)
, (2.19a)

s.t.
∑

i∈Nj

Bij = Bmax
j ,∀j ∈ L, (2.19b)

Bij ≥ 0, ∀i ∈ Nj ,∀j ∈ L. (2.19c)

Lemma 1. Problem P3 in (2.19) is convex.

Proof. We rewrite the objective of P3 as,

f (Bij) =
∑

i∈Nj

N0Bij

hij

(
2

rmin
i
Bij − 1

)
, ∀j ∈ L. (2.20)

The objective function of (2.20) is convex if and only if its Hessian matrix is positive

semi-definite [63]. In our case, the Hessian matrix can be calculated as,

H =


∂2f

∂(B1)∂(B1)
∂2f

∂(B1)∂(B2)
... ∂2f

∂(B1)∂(BN )

: : : :

∂2f
∂(BL)∂(B1)

∂2f
∂(BL)∂(B2)

... ∂2f
∂(BL)∂(BN )

 ,

∂2f

∂(Bj)∂(Bi)
=


0, ∀i ̸= j,

N0(rmin
i )2(ln 2)2

hij(Bij)3
2

rmin
i
Bij > 0,∀Bij > 0, ∀i = j

(2.21)

It can be seen that the Hessian matrix H is a diagonal matrix where all the diagonal entries

are positive. Hence, H is positive semidefinite and thus P3’s objective function is convex.

Moreover, since constraints (2.19b) and (2.19b) are affine, we can state that problem P3 is

convex. The proof is complete.
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We can define the Lagrangian associated with P3 as,

L(Bij , λi, µi) =
∑
i∈Nj

N0Bij

hij

(
2

rmin
i
Bij − 1

)

+
∑
i∈Nj

λi
(
Bij −Bmax

j

)
−
∑
i∈Nj

µiBij ,

(2.22)

where λi and µi are Lagrange multipliers. Suppose B∗
ij , λ

∗
i , and µ

∗
i are the primal and dual

points with zero dual gap [63]; by applying Karush-Kuhn-Tucker (KKT) conditions [63],

the following optimal values can be obtained as,

λ∗i = −
N0

hij

[(
1− rmin

i ln 2

B∗
ij

)
2

rmin
i
B∗
ij − 1

]
, (2.23)

∑
i∈Nj

B∗
ij = Bmax

j , ∀j ∈ L, (2.24)

µ∗i = 0, B∗
ij > 0, ∀i ∈ Nj ,∀j ∈ L. (2.25)

The BPA algorithm is detailed in Algorithm 1, where ϵ and Λi are a tolerance and an

Algorithm 1 BPA Algorithm for UE-RRH Clustering

1: Initialize: x = 0, λ
(x)
i = 0, λmin

i = 0, and λmax
i = Λi, ∀i ∈ N

2: repeat

3: x = x+ 1, λ
(x)
i = (λmax

i + λmin
i )/2

4: for i ∈ N do
5: Determine Bij from P3
6: if

∑
i∈N Bij > Bmax

j then

7: λmin
i = λ

(x)
i

8: else
9: λmax

i = λ
(x)
i

10: until |λ(x)i − λ
(x−1)
i | ≤ ϵ

11: for i ∈ N do
12: B∗

ij = Bij

13: Determine g∗ij from (2.18)

14: Output: B∗
ij , g

∗
ij

appropriately large number, respectively. Suppose Algorithm 1 needs a total number of T

iterations to converge or the maximum number of iterations is set to T , then the computa-

tional complexity can be approximately given as O
(
T ·N2

)
.
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As the system knows the network optimal bandwidth and power budgets for the RRH

from Algorithm 1, we can determine the set of active RRHs Lj required to serve the given

set of users N . The policy of optimal variable b∗j can be written as,

b∗j =


1 RRH j is active, if gi({j}) ≥ g∗i ({j})

and Bi({j} ≥ B∗
i ({j}) ,∀j ∈ Lj , i ∈ N ,

0 RRH j is sleep, otherwise

(2.26)

2.5.4 BBU Energy-Aware Resource Allocation (EARA)

The BBU power consumption can be formulated as bin-packing problem, which seeks to

assign a set of items in different sizes into the minimum number of bins. Each bin has

a fixed capacity, so that the sum size of items assigned to one bin cannot exceed the bin

capacity. In our case, each BBU is regarded as bin, and the UE-RRH association users are

considered as items.

The main goal for this subproblem is to assign UE-RRH associations to different BBUs

in the pool so as to set up the fronthaul link between BBUs and RRHs, and to minimize

the number of BBUs in working mode to save more energy.

According to (2.14), we can cast the EARA problem as,

P4 : minimize
aki,yk

∑
k∈K
Ebbuk yk (2.27a)

s.t.
∑

k∈K
aki = 1,∀i ∈ Nj , (2.27b)∑

i∈Nj

siaki ≤ Uyk,∀k ∈ K, (2.27c)

aki, yk ∈ {0, 1},∀k ∈ K, i ∈ Nj , (2.27d)

where U is a fixed value representing the maximum number of the BBU k in the cloud;

si accounts for the required baseband resources of UE i. Parameter yk indicates whether

BBU k is in working mode or not, i.e., yk = 1 if BBU k is in working mode, and yk = 0

otherwise.

Constraint (2.27b) ensures that the data from one UE can only be processed by one BBU;
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constraint (2.27c) guarantees that the number of UEs supported by the BBU is less than a

maximum threshold. With these positions, we claim that P4 is a typical 1-D bin-packing

problem.

While bin packing is a classical NP-hard problem, several very efficient heuristic algo-

rithms exist to find suboptimal solutions [64, 65]. In this chapter, we propose a heuristic

algorithm based on Best Fit Decreasing (BFD) method, called EARA, which is another

bin-packing approximate algorithm and has better performance without increasing the com-

plexity. The idea is that we sort all of the UE-RRH clusters into a decreasing order based on

the CPU power consumption metric, as defined in (2.8), for each UE i, ∀i ∈ Nj in the clus-

ter. Then, we will try to put the UE i associated with each RRH j into the most full BBU

where it fits, or activate a new BBU to serve it when no existed BBU in the active mode

has enough space ability, until all the users in UE-RRH clusters are assigned to BBUs. The

computation complexity of solving Algorithm 2 is the same with BFD bin-packing solution,

which is O(Nj logNj), where Nj represents the number of user associated with RRH j.

Algorithm 2 EARA Algorithm for BBU Scheduling

1: Initialize: N , L, K, U ,Gi, Di, f
CPS
i , ∀i ∈ N , k ∈ K

2: while L ≠ ∅ do

3: Associate set Nj UE with active RRHs by using Algorithm 1

4: Compute Ei(Ci), ∀i ∈ Nj from (2.8)

5: Select j∗ = argmin{Ei(Ci)} ∀i ∈ Nj , j
∗ ∈ L

6: Find the most-loaded BBU k in K which can be serve j∗

7: if BBU k is exists then

8: Put j∗ into BBU k

9: else

10: Find empty BBU m in K, put j∗ into BBU m

11: Output: reallocated BBUs set
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2.6 Performance Evaluation

In this section, we first detail the experimental setups and results for the programmable

C-RAN testbed. Then, we evaluate the performance of our proposed resource allocation

algorithms, BPA and EARA, via numerical simulation results.

2.6.1 Testbed Experiment

We present here our C-RAN testbed using OAI, including the testbed architecture, con-

figuration, and experiment methods. Then, we analyze the performance of the virtualized

BBU, i.e., the OAI eNB, in terms of packet delay, CPU processing time, and utilization

under various PRB and MCS configurations.

Testbed Architecture. Figure 2.4(a) illustrates the architecture of our testbed. The

RRH front-ends of the C-RAN testbed are implemented using USRP SDR B210s, each

supporting 2 × 2 MIMO with sample rate up to 62 MS/s. In addition, each radio head is

equipped with a GPSDO module for precise synchronization. Each instance of the virtual

BBU is implemented using the OAI LTE stack, which is hosted in a VMware VM. All the

RRHs are connected to the BBU pool (the physical servers hosting the VMs) via USB 3 con-

nections. The Ubuntu 14.04 LTS with kernel 3.19.0-91-lowlatency is used for both host and

guest operating systems. In order to achieve real-time performance, all power-management

features in the BIOS, C-states, and CPU frequency scaling have been turned off. The CPU

should support the ssse3 and sse4.1 features. These flags must be exposed from the host to

the guest, and can be checked by using the command cat/proc/cpuinfo|grep flags|uniq. For

the physical sever hosting the BBU, we use a Dell Precision T5810 workstation with Intel

Xeon CPU E5-1650, 12-core at 3.5 GHz, and 32 GB RAM. There are several configurations

that depend on the guest OS’s specific setup that should be calibrated in order to boost the

performance of the testbed. Most importantly, the maximum transmit power at the eNB

and the UE can be calibrated as follows.

• eNB: The maximum transmit power at the eNB is signaled to the UE so that

it can do its power control. The parameter is PDSCH Energy Per Resource Ele-

ment (EPRE) [dBm] and is part of the configuration file, pdsch referenceSignalPower.
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Figure 2.4: (a) Logical illustration of C-RAN testbed architecture; (b) C-RAN testbed
implementation utilizing OAI; and (c) Configuration of the eNB-UE connection in an
interference-free channel.

It should be measured using a vector signal analyzer with LTE option for the utilized

frequency and then put in the configuration file.

• UE: At the UE, the maximum transmit power [dBm] is measured over the whole

(usable) bandwidth. If the same hardware is used at the UE and at the eNB, the

power is max ue power = PDSCH EPRE + 10 log10 (12N PRB).

Monitoring the OAI eNB and the UE. As illustrated in Fig. 2.4(b), our C-RAN

experimental testbed consists of one unit of UE and one unit of eNB, both implemented

using USRP SDR B210 boards and running on OAI. The OAI software instances of the

eNB and UE run in separate Linux-based Intel x86-64 machines comprising of 4 cores for

UE and 12 cores for eNB, respectively, with Intel i7 processor core at 3.6 GHz. The charac-

teristics of the OAI software protocol stack are listed as follows: (i) L1/L2 Implementation,

Radio Link Control (RLC), Packet Data Convergence Protocol (PDCP), GPRS Tunneling

Protocol (GTP), and Radio Resource Control (RRC). (ii) Third Generation Partnership

Project (3GPP) LTE MAC/PHY implementation. (iii) Frequency Division Duplex (FDD)

and Time Division Duplex (TDD) modes supports. (iv) Built-in emulator and simulator.

OAI is supplied with useful monitoring tools such as network protocol analyzers, loggers,

performance profilers, timing analyzers, and command line interfaces for performing the in-

tended measurements and monitoring of the network. Specifically, the supported monitoring

tools include: (i) OAI Soft Scope, which monitors received-transmitted waveforms and also

tracks the channel impulse response. (ii) WireShark Interface and ITTI Analyzer, which

analyzes the exchanges between eNB and UE protocols. (iii) OpenAirInterface performance
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Table 2.2: Testbed Configuration Parameters for eNB and UE.

Duplexing mode FDD Mobility Static

Frequency 2.66 GHz PRB 25, 50, 100

Transm. power [150÷ 170] dBm Rad. pattern Isotropic

MCS [0÷ 27] VM VMware

Procedure 1 OAI Setup Processing

1: Initialize: OAI installation, Kernel setup, CPU setting, USRP B210 configuration.
2: repeat
3: Configure CPU
4: Run eNB
5: Run UE
6: if RRC-RECONFIGURED message at UE is observed then
7: Observe Ping and Iperf Tests

8: until Testbed Stability
9: Output: OAI monitoring tools, OAI Soft Scope, Wireshark/PCAP interface, OAI timing

analyzer, OAI message sequence Chart.

profiler, which is used for processing-time measurements.

We summarize the testbed configuration parameters in Table 2.2. In particular, the

eNB is configured in band 7 (FDD) using a DownLink (DL) carrier frequency of 2.66 GHz.

The transmission bandwidth can be set to 5, 10, and 20 MHz, corresponding to 25, 50,

and 100 PRBs, respectively. In order to determine the successful connection between eNB

and UE, the RRC states should be observed in OAI software. Specifically, when the UE

is successfully paired to the eNB, the RRC connection setup message can be seen in the

OAI logger. Procedure 1 illustrates the OAI processing flow for building, running, and

monitoring stages.

Interference-free Testbed Environment. We set up the experiment environment

to emulate a “quiet” transmission between the eNB and UE in which there is no interference

from other devices (so to have control of the environment). To accomplish this, we use two

configurable attenuators, model name Trilithic Asia 35110D-SMA-R, which connect the Tx

and Rx ports of the eNB to the Rx and Tx ports of the UE, respectively. Figure 2.4(c)

shows the configuration of the eNB-UE connection in the interference-free channel. In order

to establish a stable connection, the transmitter and received gains in the downlink have
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been selected to be 90 and 125 dB, respectively.

We use iperf to generate 500 packets to send from the eNB to the UE. Figure 2.5(a)

illustrates the throughput performance versus the attenuation level between the eNB and

UE. The attenuation was varied between 60 and 80 dB. We observe that the connection will

fail when the attenuation level goes beyond 80 dB. The results in Fig. 2.5(a) show that when

the attenuation level is 60 dB the achievable throughputs are around 5, 10, and 20 Mbps

when using 25, 50, and 100 PRBs, respectively. On the other hand, at an attenuation of

80 dB, the throughputs are much lower, i.e., 0.98, 1.64, and 3.40 Mbps, respectively.

Delay Performance. To test the delay in the C-RAN testbed, we focus on measur-

ing the RTT when sending packets between the eNB and the UE. The VM hosting the

BBU is configured with 4 virtual cores and 8 GB RAM in a VMware hypervisor, run-

ning on a physical machine with 12 cores, 3.5 GHz CPU, and 16 GB RAM. The OAI UE

runs on a low-latency Ubuntu physical machine with 3.0 GHz CPU and 8 GB RAM. Fig-

ure 2.5(b) illustrates the relationship between RTT and packet size when the BBU is set

at different CPU frequencies. For each experiment, we sent 500 Internet Control Message

Protocol (ICMP) echo request packets from the eNB to the UE. It can be seen that the

RTT exponentially increases as the packet size increases. Moreover, we have also noted that

the RTT is greater when OAI eNB runs on a VM than on a physical machine, which may

be due to the overhead incurred when running the VM. In addition, there is a correlation

between the CPU frequency and the OAI software performance. We have recorded that

the minimum CPU threshold frequency to run OAI in our scenario is 2.5 GHz. Below the

threshold value, we observed that the synchronization between eNB and UE is occasionally

missed. By controlling the CPU frequency using the Cpupower tool, we have noticed that

the RTT can be improved by increasing the CPU frequency steps.

Processing Time of LTE Subframes. We study here the BBU processing time of

each LTE subframe with respect to different CPU frequency configurations in the VMware

environment. The execution time of each signal processing module in the downlink is

measured using timestamps at the beginning and at the end of each subframe. OAI uses the

RDTSC instruction implemented on all x86 and x64 processors as of the Pentium processors

to achieve precise timestamps [58]. The cpupower tool in Linux is used to control the
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Figure 2.5: (a) Downlink throughput performance at different attenuation levels; (b) RTT
measurement for different packet sizes; and (c) Processing time of LTE subframes against
CPU frequency with MCS = 27 and various PRB allocations.

Table 2.3: Values of parameters αPRB and βMCS.

PRB 25 50 100

αPRB 900 940 970

MCS 0 9 10 16 17 24 27

βMCS 0 9.7 11.8 37.5 39.7 64.8 75

available CPU frequencies. To avoid significant delay and to not miss the synchronization

between eNB and UE hardware, we recommend to run the experiment within a 2.8÷3.5 GHz

CPU frequency range.

In Fig. 2.5(c), we depict the processing time of the eNB given different CPU-frequency

steps, in which the MCS index is set to 27 for both UL and DL, and observed that the

processing time dramatically decreases when the CPU frequency increases. To model the

subframe processing time against the CPU frequency and radio-resource configuration, we

repeat the experiment in Fig. 2.5(c) with different MCS indexes. The subframe processing

time Tsub [µs] can be well fitted as a function of CPU frequency, MCS, and PRB as,

Tsub [µs] =
αPRB

fCPS
+ βMCS + 2.508, (2.28)

where fCPS [GHz] is the CPU frequency, and αPRB and βMCS are two parameters that

increase with PRB and MCS values as reported in Table 2.3.
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Figure 2.6: (a) CPU utilization of the BBU at different values of MCS and PRB; (b) Per-
centage of CPU usage versus the downlink throughput; and (c) Percentage of satisfied UEs
for the different algorithms.

According to (2.28), we can derive the computation frequency that appears in (2.4) as,

fCPS =
αPRB

Tsub − βMCS − 2.508
(2.29)

CPU Utilization. In C-RAN, it is of critical importance to understand the CPU

utilization of the BBU in order to design efficient resource provisioning and allocation

schemes. In the previous subsections, we have seen the relationship between MCS and

CPU usage for different values of PRBs. In this experiment, the CPU utilization percentage

is calculated using the top command in Linux, which is widely used to display processor

activities as well as various tasks managed by the kernel in real time. We repeatedly send

UDP traffic from the eNB to the UE with various MCS and PRB settings. The CPU

utilization percentage has been recorded as in Fig. 2.6(a). By setting the CPU frequency

of the OAI eNB to 3.5 GHz, we have seen that the highest CPU consumption occurred

at MCS 27, which corresponded to 72%, 80%, and 88% when PRBs are 25, 50, and 100,

respectively. We can conclude that the total processing time and computing resources were

mainly spent on the modulation, demodulation, coding, and decoding. These tasks played

the bigger roles in terms of complexity and runtime overhead in the BBU protocol stack.

To understand better the BBU computational consumption in C-RAN with respect to

the users’ traffic demand, we will now establish the relationship between the DL throughput

and the percentage of CPU usage at the BBU. To begin, we learn that OAI supports 28

different MCSs with index ranging from 0 to 27. In the downlink direction, MCSs with
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Figure 2.7: (a) Average number of BBUs in active/working mode under different numbers
of UEs; (b) BBU pool power consumption under different UE number with K = 5, U = 15,
Ebbuk = 200W in active mode and 100W in sleep mode; and (c) BBU pool range under
different number of UEs.

the index 0 to 9 are modulated using QPSK, index 10 to 16 are modulated using 16-QAM,

and the rest are based on 64-QAM. For instance, in LTE FDD system with PRB 100,

corresponding to bandwidth of 20 MHz, we can get 12 × 7 × 2 = 168 symbols per ms, in

case of normal Cyclic Prefix (CP) [66]. Therefore, there are 16, 800, 000 symbols per s,

which is equivalent to a data rate of 16.8 Mbps. Based on the MCS index used in each

experiment, we can calculate the corresponding DL throughput by multiplying the bit rate

by the number of bits in the modulation scheme.

Figure 2.6(b) shows the CPU utilization percentage at the BBU corresponding to dif-

ferent DL throughputs. Using the calculated results, we have fitted the CPU utilization as

a linear function of the DL throughput as,

CPU [%] = 0.6237ϕ+ 21.3544, (2.30)

where ϕ is the throughput measured in Mbps.

2.6.2 Numerical Simulations

We present now simulation results to evaluate the performance of our proposed solutions

to the two subproblems discussed earlier: (i) bandwidth and power allocation and (ii) BBU

power allocation. The simulations are carried out using a MATLAB implementation with

optimization solvers (MOSEK) [67].
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Simulation Setup. We consider a C-RAN system consisting of multiple hexagonal

cells with a RRH in the center of each cell. The neighboring RRHs are 1 Km apart from

each other. We assume that all the wireless channels in the system experience block fading

such that the channel coefficients stay constant during scheduling interval but can vary

from interval to interval, i.e., the channel coherence time is not shorter than the scheduling

interval. We assume that all the RRHs have the same number of transmit antenna A = 2 and

maximum transmit power gmax
j = 20 W, ∀j, while the desired data rate rmin

i = 5 Mbps, ∀i.

We adopt the distance-dependent path-loss model given as Lp [dB] = 148.1+37.6 log10 d[Km],

and the log-normal shadowing variance set to 8 dB. In addition, the wireless transmission

bandwidth Bmax
j is set to 10 MHz and the noise power is set to −100 dBm.

Performance of BPA Algorithm. For comparison, we introduce two user-association

schemes that have been discussed in the literature: SINR-based scheme [68] and Min-

power scheme [69]. The SINR-based simply assumes that each UE only associates with

one RRH that provides the best channel gain. The Min-power scheme differs from our

proposed algorithm, BPA, in the local search procedure. It is designed to minimize the

total consumption power of the network without considering the bandwidth constraint,

where UEs are associated with the nearest RRHs and the BBU pool allocates the same

computing power to all the UEs. Figure 2.6(c) illustrates the percentage of satisfied users

versus different number of users for the three algorithms. It is shown that the BPA algorithm

has better performance compared against SNIR-based and Min-power schemes; it is also

observed that the percentage of satisfied users decreases while the number of users increases

for three algorithm.

Resource Allocation Results and Discussions. We evaluate the performance of

our EARA scheme through numerical simulations. The number of BBUs in the cloud is

K = 5, and the maximum number of VMs in each BBU is set to 15.

• Optimal Algorithm: The optimal bin-packing-based BBU scheduling algorithm needs

to traverse all feasible solutions, and then chooses the solution with minimum number

of BBUs in working mode. Since bin-packing problem is a typical NP-hard problem,

the complexity of the algorithm is O
(
2Nj
)
, where Nj represents the number of user
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associated with RRH j.

• BFD Algorithm: The BFD is a bin-packing approximate algorithm that aims at find-

ing a set of users that fits the BBUs capacity. It has lower complexity, O (Nj logNj),

than other existing algorithms such as Next Fit and First Fit Decreasing [70].

• RRH-Clustering (RC) Algorithm: It is proposed in [64] to assign each RRH to BBUs.

Compared to the previous BBU scheduling algorithms (e.g., BFD and NFB), it reduces

the complexity with however a loss of performance. In each iteration, the algorithm

assigns the cluster with maximum number of UEs and the cluster with minimum

number of UEs to one BBU. The complexity of this algorithm is O(Nj).

• SINR-based Algorithm: In this algorithm [68], the users are associated with a RRH

that provides the maximum SINR; in other words, UE i, ∀i ∈ N is assigned to

RRH j = argmaxj∈L g
max
j Hij . The complexity of this algorithm is O(Nj logNj).

Figure 2.7(a) depicts the average number of BBUs in active mode under different traffic

loads in the network. It is obvious that, when the number of UEs in the cell is small, all the

algorithms—Optimal, EARA, BFD, SINR-based, and RC—have the same performance.

That is because one BBU can support all users in the cell that has the number of UEs

less than or equal to the capacity of a single BBU. As the number of UEs increases, the

performance difference among the BBU scheduling algorithms becomes clearer and clearer.

However, except for the optimal algorithm, our algorithm shows better performance com-

pared to other competing ones, as it chooses the best fit BBU for those cases with lowest

capacity loss.

Figure 2.7(b) illustrates the energy consumption in BBU pool with different number of

UEs. Since the BBU pool carries the baseband signal processing, a large number of UEs

lead to heavy computing workloads in the pool. Therefore, the consumption of the cloud

platform, where the BBU pool is implemented, increases significantly with the increase of

the number of UEs. This indicates that the energy consumption of the BBU pool is closely

related to the network traffic load.

In Fig. 2.7(c), we define the BBU range utility metric as a number calculated by sub-

tracting the maximum number of active VMs in the BBU k, ∀k ∈ K from the minimum
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number of active VMs in the BBU m, ∀m ∈ K under different numbers of UEs. It can be

seen from the plot that all evaluated algorithms have the same performance at low traf-

fic load; however, except for the optimal algorithm, our proposed algorithm shows better

performance compare with the others.

2.7 Summary

We proposed a novel resource-allocation scheme that optimizes the energy consumption of

a Cloud Radio Access Network (C-RAN), one of the key technologies towards 5G wireless

cellular networks. An energy consumption model that characterizes the computation energy

of the Base Band Unit (BBU) pool is proposed based on empirical results collected from our

programmable C-RAN testbed. Then, the resource allocation problem is decomposed into

two subproblems: the Bandwidth Power Allocation (BPA) problem, cast via Mixed-Integer

Nonlinear Programming (MINLP), that aims at assigning a feasible bandwidth and power

allocation to serve all users with QoS requirements; and the BBU Energy-Aware Resource

Allocation (EARA) problem, cast as a bin-packing problem, that aims at minimizing the

number of active Virtual Machines (VMs) in the BBU pool to increase energy saving. We

addressed the BPA problem by transforming it into a convex problem and proposed a novel

heuristic algorithm to the BBU EARA problem based on the Best Fit Decreasing (BFD)

method. Testbed experiments were carried out to evaluate the BBU performance under

various computing and radio-resource configurations. Experimental results showed that

the frame processing time and CPU utilization of the BBU increase with the Modulation

and Coding Scheme (MCS) index and with the number of allocated Physical Resource

Blocks (PRBs). Additionally, simulation results were presented to evaluate the performance

of our two proposed algorithms, BPA and EARA, and their improvement over existing

algorithms under a variety of network conditions.
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Chapter 3

Energy-efficient Resource Allocation in C-RANs with

Capacity-limited Fronthaul

In this chapter, a novel resource allocation scheme that optimizes the network energy ef-

ficiency of a C-RAN is designed. First, an energy consumption model that characterizes

the computation energy of the BaseBand Unit (BBU) is introduced based on empirical

results collected from a programmable C-RAN testbed. Then, an optimization prob-

lem is formulated to maximize the energy efficiency of the network, subject to practical

constraints including Quality of Service (QoS) requirement, radio remote head transmit

power, and fronthaul capacity limits. The formulated Network Energy Efficiency Maxi-

mization (NEEM) problem jointly considers the tradeoff among the network accumulated

data rate, BBU power consumption, fronthaul cost, and beamforming design. To deal with

the non-convexity and mixed-integer nature of the problem, we utilize successive convex

approximation methods to transform the original problem into the equivalent Weighted

Sum-Rate (WSR) maximization problem. We then propose a provably-convergent iterative

method to solve the resulting WSR problem. Extensive simulation results coupled with real-

time experiments on a small-scale C-RAN testbed show the effectiveness of our proposed

resource allocation scheme and its advantages over existing approaches.

3.1 Introduction

The ever-increasing popularity of mobile devices and their demand for high data rates are

presenting serious challenges to the wireless service providers. Cisco [71] envisages that

the number of mobile-connected devices might reach 11.6 billion by 2021. In addition, the

tremendous traffic growth is caused by the presence of various kinds of mobile devices such

as smart phones, ipads, and wearable devices as well as new forms of connectivity such as
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Internet of Things (IoT) and Machine-to-Machine (M2M) communications.

Many advanced technologies are being developed such as Heterogeneous Networks (Het-

Nets), which create a complicated structure of different cell-size networks, and massive

Multiple-Input Multiple-Output (MIMO), which requires cooperation among the Base Sta-

tions (BSs) [72]. However, both technologies come at the cost of an increase in energy

consumption because of the additional energy needed to support the higher number of BS

sites and substantially rely on expanded fronthaul capacity between the BSs for cooperation.

The capacity of the conventional cellular network is generally designed to satisfy the peak

traffic demand of the system without considering the temporal-spatial traffic fluctuations in

the service area. Therefore, there exist active BSs with light traffic loads that still consume

a considerable amount of basic power (e.g., power amplifier and L2/L3 processing power).

Recently, C-RAN has been proposed as a novel architecture for 5G cellular networks

to overcome the difficulties in providing fast and reliable real-time communications. Un-

like the existing cellular networks, wherein the radio resources for baseband processing are

determined at the cell level, C-RAN’s radio resources are allocated and coordinated in a

centralized and powerful computing platform, a.k.a. the cloud. This movement from dis-

tributed systems to a centralized one for baseband processing has noticeable gains such as

reducing energy usage, capital expenditure (CAPEX), and operating expenditure (OPEX)

within the cellular networks [35, 73]. A typical C-RAN consists of: (i) light-weight, dis-

tributed Radio Remote Heads (RRHs) plus antennae, which are located at the remote sites

and are controlled by a centralized virtual BS pool, (ii) the BaseBand Unit (BBU), composed

of high-speed programmable processors and real-time virtualization technology to carry out

the digital processing tasks, and (iii) low-latency high-bandwidth optical fibers, which con-

nect the RRHs to the BBU pool. Due to its centralized nature, C-RAN shows significant

promise in improving both the Spectral Efficiency (SE) and the Energy Efficiency (EE) of

current wireless networks [73].

The centralized BBU structure in C-RAN facilitates cross-cell cooperation, improves

SE, and can enhance the QoS for all UEs in the mobile network [16]. The fronthaul links

with high-bandwidth and low-latency connect the RRHs with the BBU pool while backhaul

links refer to the links between the mobile core network and the BBUs. Although C-RAN
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provides strong computing capabilities by sharing computing and storage resources at the

BBU pool, it still suffers from performance limitation due to the limited capacity of the

fronthaul and backhaul links [58]. To overcome this shortage, traffic through fronthaul links

should be taken into account while designing the resource allocation optimization strategy.

Furthermore, the energy consumption of a C-RAN can be significantly reduced if we opti-

mize the tradeoff between SE and EE. On the other hand, the relation between SE and EE

under realistic and complex network scenarios still requires further investigation because

of the many factors that must be jointly considered such as system sum-data rate, com-

putation energy in BBU pool, fronthaul cost, and transmit energy consuming in RRHs In

this chapter, our objective is to maximize the network EE of a C-RAN, taking into account

the energy consumption at both the BBU pool and the RRHs. Based on the empirical re-

sults obtained from our programmable C-RAN testbed, we formulate the Network Energy

Efficiency Maximization (NEEM) optimization problem, subject to practical constraints

including user QoS requirement, system power, and fronthaul capacity limits. The consid-

ered problem is NP-hard and, as such, difficult to solve. Hence, we focus on designing a

low-complexity algorithm to allow for practical implementations.

3.2 Related Work

Considerable attention has been paid on cooperative communications techniques for C-RAN

under various different objectives. For instance, the trade-off between transmission power

and delay performance is investigated in [74] via cross-layer-based approaches. Furthermore,

the fronthaul uplink compression problem is addressed in [75]. In parallel, several works

have focused on system architectures, feasibility of virtual software BS stacks, performance

requirements, and analysis of optical links between the RRHs and the BBU cloud. For

example, Kong et al. [52] present the architecture and implementation of a BBU cluster

testbed to improve EE in a C-RAN. Liu et al. [76] implement an OFDMA-based C-RAN

testbed with a reconfigurable backhaul architecture. The authors in [51] focus on minimizing

computational and networking latency by Virtual Machines (VMs) or containers. From the

system perspectives, several LTE RAN prototypes have been implemented over General-

Purpose Platforms (GPPs) such as the Intel solutions based on hybrid GPP-accelerator [47],
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and OpenAirInterface (OAI) platform [49].

Other works have addressed the enhancement of the EE and the resource management

of the C-RAN based on maximizing WSR. For instance, the work in [77] presents the

problem of downlink beamforming to improve the EE of C-RANs by focusing on two different

downlink transmission strategies, namely the data-sharing strategy and the compression

strategy. The work in [16] proposes a novel resource-allocation scheme, which is based

on bin-packing theory, that minimizes the number of active VMs in the BBU pool to

save energy. The authors in [78] propose a user-centric clustering scheme to maximize the

network utility based on data joint transmission. A grouping scheme of users and RRHs is

proposed in [79] to achieve high network performance in C-RAN. Considering a dynamic

radio-cooperation strategy, the authors in [80] address the problem of user-centric radio

clustering for a C-RAN system, with a low-complexity and fast-convergence solution.

With a similar focus as ours, in [81] the authors introduce an optimization framework

for deciding how to select the functional splitting for each BS, where to place the Mobile

Edge computing (MEC) functions, and how to route the data in the shared fronthaul net-

work. The authors in [38] formulate a group sparse beamforming problem to minimize the

network power consumption of C-RAN, including the transport network and radio access

network power consumption, with a QoS constraint at each user. The work in [82] studies

the coordinated multipoint joint transmission design problem for C-RAN that explicitly

considers the fronthaul capacity and users’ QoS constraints. The authors in [83,84] jointly

optimize the precoding matrices and the set of active RRHs to minimize the network power

consumption for a user-centric C-RAN with the consideration of limited fronthaul capacity

and the unavailability of full Channel State Information (CSI). However, only weighted

sum-rate maximization was considered. Thus, energy-efficient resource allocation optimiza-

tion in C-RAN with capacity-limited fronthaul needs to be addressed. Along with this line,

the authors in [60, 65] theoretically study the problem of jointly optimizing the resource of

the BBU pool and beamforming in the coordinated RRH cluster with special attention to

the limited fronthaul capacity of C-RAN system. Our proposal is fundamentally different

in three aspects. First, we derive an empirical yet realistic model for the processing power
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consumption at the BBU pool. Second, we investigate the issues of user’ QoS and beam-

forming for EE maximization in C-RAN systems under capacity-limited fronthaul. Finally,

we formulate the NEEM problem as a Mixed Integer Nonlinear Programming (MINLP)

optimization problem over the beamforming vectors. Given the difficult non-convex nature

of this problem, we utilize successive convex approximation method to transform the orig-

inal problem into an equivalent WSR optimization problem, which is then solved using a

Weighted Minimum Mean Square Error (WMMSE) approach.

Main Contributions: The objective of this chapter is to propose an efficient resource-

allocation scheme in a C-RAN that aims at maximizing the EE of the C-RAN system,

subject to the practical constraints including QoS, system power, and fronthaul capacity

limit. Specifically, the main contributions of this chapter are summarized as follows.

• Using Software-defined Radio (SDR) OAI platform and virtualization environment,

we perform real-time experiments on a small-scale C-RAN testbed that establishes

transmissions between the eNodeB (eNB) and the User Equipment (UE). The exper-

iments are carried out under various configurations in order to profile the runtime

complexity and performance limits of the BBU in terms of processing, throughput,

and latency. It is shown that the BBU’s CPU utilization can be modeled as a lin-

ear increasing function of the maximum downlink data rate. As a side note, our

testbed models provide researchers with real-world insights and tools for designing

EE algorithms in C-RAN systems.

• Using empirical data collected from our testbed, we model the network power con-

sumption in a C-RAN system consisting of three main parts: the computation power

consumed in the BBU pool, fronthaul energy cost, and the Radio Frequency (RF)

power transmitted by RRHs. We establish BBU computation model via testbed ex-

periments and novel conic optimization techniques to balance the tradeoff between

EE and QoS effectively for the downlink C-RAN.

• The limited fronthaul capacity is explicitly considered in the NEEM optimization

problem for the downlink C-RAN. To avoid the difficulty of the feasibility problem

caused by relaxing the l0-norm constraint directly, we reformulate the original NEEM
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problem into an equivalent problem by using a cost vector. Then, we utilize the

reweighed l1-norm relaxation and Successive Convex Approximation (SCA) methods

to devise a provably-convergent iterative algorithm. Then, we reduce the proposed

energy-efficient weighted utility function to a Weighted Sum Rate (WSR) maximiza-

tion problem and a minimum energy beamforming problem. Then, we utilize the

WMMSE approach to solve these problems. Furthermore, we present the Branch-

and-Bound (BnB) method to optimally solve the relaxed NEEM problem. Unfortu-

nately, the BnB’s complexity scales exponentially with the problem size, making it

impractical to use online; hence, it is mainly used as an offline optimal benchmark to

make comparisons against.

• We provide formal proofs on the convergence and optimality of our algorithm and

evaluate its performance under different network conditions. Numerical results show

that the resource management of C-RAN can be optimized in terms of network energy

efficiency under practical physical constraints.

Chapter Organization The remainder of this chapter is organized as follows. In Sect. 3.3,

we introduce the system and power consumption models considered throughout this work.

In Sect. 3.4, we formulate the NEEM optimization problem, discuss practical considerations,

and propose an original approach to solve it. Simulation and testbed experiment results

are presented in Sect. 3.5. Finally, we draw the main conclusions in Sect. 3.6.

3.3 System Model

We first describe the system models including the network architecture, wireless communi-

cations, and computation capacity of each BBU. Then, we mathematically formulate the

network power system and present its practical constraints.

3.3.1 System Description

We consider a downlink C-RAN system consisting of a set N = {1, 2, ..., N} of N UEs and

a set L = {1, 2, ..., L} of L RRHs. Each UE is equipped with single antenna while each

RRH has M > 1 antennas. All the RRHs are connected to a BBU pool via low-latency,
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Figure 3.1: Downlink C-RAN with data sharing transmission strategy where the BBU
processes the {x1, x2} data delivered to RRHs. Users 1 and 2 are cooperatively served by
RRH clusters (1,2) and (2,3), respectively.

high-bandwidth Common Public Radio Interface (CPRI). The BBU pool is composed of

high-speed programmable processors and real-time VMs to carry out PHY/MAC-layer func-

tionalities. All the UE data is assumed to be available at the BBU pool and each UE i

receives a signal independent data stream from the RRHs. After processing by the BBU

pool, the data is forwarded to the UE via a group of RRHs, denoted as Li ⊆ L. We con-

sider the data-sharing transmission strategy for the downlink of C-RAN where each UE’s

message is shared among a cluster of serving RRHs. Fig. 3.1 illustrates an example where

the BBU pool processes the UE data x1 and x2, which are forwarded to RRHs 1, 2, and

3 through fronthaul links. UE 1 is cooperatively served by cluster including RRHs 1 and

2, while UE 2 is cooperatively served by the cluster including RRHs 2 and 3 through joint

beamforming. Let vij ∈ CM×1 be the beamforming coefficient vector for RRH j to serve

UE i. The value of vij is set to zero if RRH j is not part of the UE i’s serving cluster. The

transmit signal sj at RRH j can be written as sj =
∑

i∈N vijxi. We model the user data xi

as independent and identically distributed (i.i.d.) complex Gaussian random variables with

zero mean and unit variance. Specifically, the received signal at UE i can be written as,

yi =
∑
j∈Li

hHij vijxi +
∑

k∈N\{i}

∑
j∈Lk

hHij vkjxk + zi, (3.1)
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where hij ∈ CM×1, (.)H represents the conjugate transpose, and zi is the zero-mean circu-

larly symmetric Gaussian noise denoted as CN
(
0, σ2i

)
. Hence, the Signal-to-Interference-

plus-Noise Ratio (SINR) of user i can be calculated as,

γi =

∣∣∣∑j∈Li
hHij vij

∣∣∣2∑
k∈N\{i}

∣∣∣∑j∈Lk
hHij vkj

∣∣∣2 + σ2i

,∀i, k ∈ N (3.2)

Consequently, the achievable rate for UE i is calculated as,

ri = Blog2 (1 + γi) , ∀i ∈ N , (3.3)

where B is the channel bandwidth.

3.3.2 Computation Model

In a real-word downlink LTE system, as illustrated in Fig. 2.2, the overall processing is

the sum of per User Processing (UP) and Cell Processing (CP). The UP depends only on

the Modulation and Coding Scheme (MCS) index and the Physical Resource Block (PRB)

allocated to the users as well as on the number of iterations required by the decoder, which

is proportional to the SINR and channel conditions. Furthermore, the number of iterations

required to successfully encode and decode a codeword for a specific value of γi tightly

depends on the selected data rate ri. Specifically, if ri is chosen close to the channel capac-

ity log2(1 + γi), ∀i ∈ N , a high number of iterations will be required for decoding in the

uplink-BBU pool [85]. However, as the allocated ri decreases for the given γi, the num-

ber of required iterations also decreases. Hence, the overall computational complexity to

process one codeword scales with the number of information bits that are processed and

with the number of iterations for coding/decoding. Therefore, the computational capacity

can be computed as the product of the number of information bits and the required en-

coding/decoding iterations divided by the number of channel users, as in [85,86]. However,

in our work we aim at establishing a numerical computational capacity model that consid-

ers the SINR, channel condition, MCS, and PRB. Therefore, we present in Sect. 3.5.1 the

computational characterizations in the BBU pool.
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Based on the profiling results, we have observed that the CPU utilization of the BBU

increases linearly with the SINR, the PRB resource, and MCS index. Under this premise,

we consider the computation capacity Ci [cycles/s], from the BBU pool that is allocated

for UE i, as a linearly increasing function of the user downlink data rate, considering the

PHY-layer conditions. Specifically, the capacity utilized for processing the data of UE i can

be modeled as,

Ci = Isnri +Giφ(ri) +Di, ∀i ∈ N , (3.4)

where φ(ri) is a function of the achievable rate for UE i; while the Isnr, Gi, and Di

are positive constants that can be estimated by offline profiling of the C-RAN testbed, as

shown in Sect. 3.5.1, Table 3.1. Although the computational capacity in (3.4) is a piece-wise

linearization approximation on a “quiet” transmission between the eNB and UE in which

there is no interference from other devices, we address the SINR and mobility aspects from

different angles: i) we consider the SINR as a key factor that affects the QoS; and ii) we

incorporate mobility in our simulations by running multiple channel realizations.

Table 3.1: Values of parameters Isnr, G, and D.

MCS Modulation
SINR (Isnr) MCS
10 20 30 G D

4 QPSK 0 2.27 7.34 0.3319 5.623

8 16QAM 0 3.13 9.62 0.5194 8.302

27 64QAM 0 14.23 17.4 0.7136 10.71

3.3.3 Power Consumption Model

In this work, we assume that the total power consumption in downlink C-RAN system

consists of two main parts: the computation power spent in the BBU pool and the power

consumption of RRHs in the downlink transmissions. In practice, the BBU pool can dy-

namically adjust the VMs’ computation capacities to handle the dynamic user traffic and

channel states. The power consumption of the BBU pool is closely related to computing

workloads for baseband signal processing [87]. Hence, we can model the computation power



55

consumption for serving UE i as,

EPr
i = ESi + Ei(Ci), (3.5)

where parameter ESi represents the static part of power consumption of a VM in working

mode, which includes the power consumption of fronthaul transmission equipment, while

Ei(Ci) represents the CPU power consumption due to processing of baseband signal xi of

UE i. According to [17], the amount of power consumption for serving UE i can be modeled

as,

Ei(Ci) = wiCi, (3.6)

where wi > 0 is a constant. By substituting (3.4), and (3.6) into (3.5), the power consump-

tion of the entire BBU pool can be calculated as,

EPr =
∑
i∈N
EPr
i =

∑
i∈N
ESi +

∑
i∈N

wi (I
snr
i +Giφ(ri) +Di) . (3.7)

The fronthaul links that connect the RRHs with the BBU pool can be modeled as a set of

communication channels, each with a specific capacity and power dissipation. Accordingly,

we formulate the fronthaul power consumption of these links as,

EFh =
∑
i∈N

∑
j∈L

Pj

∥∥∥∥vij∥22∥∥∥0, ∀j ∈ L, (3.8)

where Pj is a static cost when RRH j is active, the l0-norm
∥∥∥∥vij∥22∥∥∥0 is an indicator

function, which specifies the associations between UEs and RRHs, i.e.,

∥∥∥∥vij∥22∥∥∥0 =

1 ∥vij∥22 ̸= 0,

0 ∥vij∥22 = 0,

∀i ∈ N , j ∈ L, (3.9)

Specifically, ∥vij∥22 = 0 indicates that the BBU pool will not deliver data for the i-th UE

through the j-th RRH via the corresponding fronthaul link and the j-th RRH does not

participate in the joint transmission to the i-th UE; and ∥vij∥22 ̸= 0 otherwise.
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Based on the beamforming vectors of each UE, the total power consumption of the

RRHs can be expressed as,

ETr =
∑

i∈N

∑
j∈Li

∥vij∥22, (3.10)

where
∑

j∈Li
∥vij∥22 represents the transmit power from all RRHs to UE i. The total network

power consumption is calculated as,

E (v) = EPr + EFh + ETr

=
∑
i∈N
ESi +

∑
i∈N

wi (I
snr
i +Giφ(ri) +Di)

+
∑
i∈N

∑
j∈L

Pj

∥∥∥∥vij∥22∥∥∥0 +∑
i∈N

∑
j∈Li

∥vij∥22,

(3.11)

where v = {vij |∀i ∈ N , j ∈ L}. As we can see from (3.11), there are two approaches to

improve the EE of C-RAN: reducing the transmit power and decreasing the BBU pool power.

However, these two approaches are tightly coupled and are difficult to realize simultaneously:

on the one hand, deceasing RRHs power means reducing the capability of maintaining the

QoS for the users; on the other hand, lower computation capacity of BBU pool leads to less

user information being shared among RRH j so that the RRHs achieve worse cooperation

to mitigate interference. Hence, a joint design is needed to balance the BBU computation

capacity and the RRH transmit power.

3.3.4 System Constraints

In addition to the system models described above, we introduce the following three con-

straints to capture the features of a C-RAN.

1. QoS constraint: the QoS can be accounted as the constraint of keeping the data rate

of each UE i above or equal to the desired data rate rmin
i , i.e.,

ri ≥ rmin
i , ∀i ∈ N . (3.12)

2. System power constraint: it is assumed that RRH j has a maximum transmit power



57

of Pmax
j , i.e., ∑

i∈N
∥vij∥22 ≤ P

max
j ,∀j ∈ L. (3.13)

3. Fronthaul capacity constraint: practically, the fronthaul links between the RRHs and

the BBU pool in C-RAN system are capacity limited; in other words, the number of

UEs accessing to each RRH is limited. In this case, the fronthaul constraint corre-

sponding to RRH j can be expressed as,

∑
i∈N

∥∥∥∥vij∥22∥∥∥0 ≤ Bj ,∀j ∈ L, (3.14)

where Bj ∈ N is defined as the maximum j-th fronthaul capacity, i.e, the maximum

number of UEs that can be connected with j-th fronthaul link.

3.4 Energy Efficiency Maximization

We formulate now the NEEM problem (P0) as a MINLP that optimizes the tradeoff among

the network accumulated data rate, C-RAN power consumption, fronthaul cost, and beam-

forming design. Due to the intractability of the problem and the need for a practical online

solution, we then present a step-by-step relaxation and reformulation approach to simplify

P0 in order to obtain a reasonable sub-optimal solution. Our approach is as follows.

1. In Sect. 3.4.1, we cast the NEEM problem P0 as a MINLP, which is NP-hard and

difficult to solve.

2. In Sect. 3.4.2, to tackle the non-convexity in P0, we exploit the properties of fractional

programming, in which the original problem in fractional form is transformed into an

equivalent optimization subproblem with a subtractive form, P1, and then recast it as

P2, as explained in Lemma 2. Then, to handle the convergence of P2, we introduce

Theorem 1, which proposes a method that shows the relationship between P2 and

suboptimal problem P3. In addition, we present some properties of the cost vector

Ψ in P3, and other requirements to satisfy Theorem 1. For a fixed cost vector Ψ, we

apply reweighed l1-norm relaxation on P3 to simplify it to another problem, P4.
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P0

MINLP EEWU

Objective function 

Transformation

C (14d) 

Relaxation

norm and C (14b) 

Relaxation
WMMSE Approach

P1 P2 P3

P4 P5 P6

Figure 3.2: The complete process to solve the NEEM optimization problem (P0) via mul-
tiple transformations (P1→ P6).

3. Finally, in Sect. 3.4.3, we propose an iterative method to solve P4 based on the

WMMSE approach, as described in P5 and P6.

The complete process of transforming the original NEEM problem in such a way as to

obtain its suboptimal solution is depicted in Fig. 3.2.

3.4.1 NEEM Problem Formulation

Our objective is to find the optimal beamforming vectors of the RRHs that maximize the

EE of the considered C-RAN, subject to the system constraints described in Sect. 3.3.4. The

EE of the C-RAN is defined as the ratio between the total throughput, R(v) =
∑

i∈N ri,

and the total power consumption given in (3.11) [88]. Therefore, we formulate the NEEM

problem as follows,

P0 : max
{vij}

ηEE =
R(v)

E(v)
(3.15a)

s.t. ri ≥ rmin
i ,∀i ∈ N , (3.15b)∑

i∈N
∥vij∥22 ≤ P

max
j , ∀j ∈ L, (3.15c)

∑
i∈N

∥∥∥∥vij∥22∥∥∥0 ≤ Bj , ∀j ∈ L. (3.15d)

In problem P0 above, constraint (3.15b) guarantees the QoS requirement of the UEs by

keeping the data rate of each UE i above or equal the target rate; (3.15c) is a maximum

transmit power constraint for RRH j; and constraint (3.15d) accounts for the fronthaul

capacity limit. In P0, the fractional-form objective function is non-convex, and the l0-

norm in constraint (3.15d) imposes additional difficulties to the problem. It can be seen
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that P0 is a MINLP, which is NP-hard [89] and is highly difficult to solve optimally in

polynomial time. To overcome these drawbacks, we propose to reformulate problem P0

using relaxation techniques in the following subsections in order to devise a tractable, low-

complexity solution.

3.4.2 Problem Transformation

Firstly, in order to deal with the non-convexity of the objective function in P0, which is

in fractional form, we convert it into a subtractive form. Specifically, the the EE in P0

can be transformed to the Energy Efficiency Weighted Utility (EEWU) function as in [90].

Therefore, the NEEM problem is now equivalent to,

P1 : max
{vij}

R(v)− λ∗E(v) (3.16a)

s.t. (3.15b) ~ (3.15d), (3.16b)

where λ is a constant representing the system power consumption weight. Without loss

of generality, we let λ = R
E(v) and λ∗ = maximize

v

R
E(v) = R∗

E(v∗) , where v∗ is the optimal

solution to (3.16). Then, we obtain the following lemma.

Lemma 2. P1 is equivalent to P0 if and only if R(v∗)− λ∗E(v∗) = 0.

Proof. Denote (v) and (v∗) as a feasible solution and an optimal solution to the P1, re-

spectively. Since R(v∗)−λ∗E(v∗) = 0 and R(v)−λ∗E(v) ≤ 0, then R(v)
E(v) ≤

R(v∗)
E(v∗) . Thus, v

∗

maximizes R(v)
E(v) while satisfying all constraints in P0. Therefore, v∗ is the optimal solution

to P0. Then, Lemma 2 is proved.

According to Lemma 2, P0 can be transformed to P1 if the optimal λ, i.e., λ∗, is

obtained. Hence, we employed bi-section method to find λ∗ and the corresponding iterative

routine is summarized in Routine 1. The objective function in (3.16) can be rewritten as,
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Routine 1 Bi-section Search for Finding λ∗

1: Initialize: λmin = 0, and λmax =
∑

i∈N rmin
i∑

i∈N (Es
i +wiDi)

2: Set a small threshold for convergence check ξ
3: Let λ = λmin+λmax

2
4: Solve P1 for a given λ and obtain the feasible solution {vij}
5: if R(v)− λ∗E(v) ≤ ξ then
6: λmax = λ
7: else
8: λmin = λ
9: if |λmax − λmin| ≤ ξ then

10: Convergence and break
11: else
12: Return to step 3

f(v) =
∑

i∈N
ri − λ∗

∑
i∈N
ESi − λ∗

∑
k∈K

wi×

(Isnri +Giφ(ri) +Di)− λ∗
∑

i∈N

∑
j∈Li

∥vij∥22

− λ∗
∑

i∈N

∑
j∈L

Pj

∥∥∥∥vij∥22∥∥∥0.
(3.17)

Hence, the NEEM problem can be recast as,

P2 : max
{vij}

∑
i∈N

qiri − λ∗
∑

i∈N

∑
j∈Li

∥vij∥22

− λ∗
∑

i∈N

∑
j∈L

Pj

∥∥∥∥vij∥22∥∥∥0
(3.18a)

s.t. (3.15b) ~ (3.15d), (3.18b)

where qi = (1− λ∗wiGiδ) after assuming φ(ri) = δri, and δ > 0 is a constant. Note that

the term λ∗
∑

k∈N ESi +λ∗
∑

i∈N wi(I
snr
i +Di) in (3.17) is a constant and has been dropped

in the objective function (3.18a).

In problem P2, one of the challenges is the l0-norm constraint (3.15d). Two commonly

used approaches to cope with the l0-norm are smoothing function approximation [91] and

reweighted l0-norm approximation [78, 92]. However, if the left-hand-side of (3.15d) is

a relaxed smooth function or l0-norm approximations, and the relaxed problem is directly

solved, then we cannot guarantee that the obtained solution is also feasible from the problem



61

P2. To overcome these issues, we reformulate problem P2 as follows.

P3 : max
{vij}

∑
i∈N

qiri − λ∗
∑

i∈N

∑
j∈Li

∥vij∥22

− λ∗
∑

i∈N

∑
j∈L

(Pj + ψj)
∥∥∥∥vij∥22∥∥∥0

(3.19a)

s.t. (3.15b) ~ (3.15c), (3.19b)

where ψj ≥ 0 is the cost for RRH j. Let Ψ = [ψ1, ψ2, ..., ψL]. We denote vij(Ψ) as

the optimal solution for problem P3 for a given cost vector Ψ. The following theorem

establishes the relationship between problem P2 and problem P3,

Theorem 1. The optimal solution to problem P3 is also optimal to problem P2 if,

Ij(Ψ) =
∑

i∈N

∥∥∥∥vij(Ψ)∥22
∥∥∥
0
= Bj , ∀j ∈ L. (3.20)

Proof. For convenience, we define Ij =
∑

i∈N

∥∥∥∥vij∥22∥∥∥0, R̃ =
∑

i∈N qiri, and Z =
∑

i∈N
∑

j∈Li
∥vij∥22

to be used in the following proof.

Let Ij(Ψ) = Bj , which implies that vij(Ψ) is also a feasible solution for P2. Since v∗ij

and vij(Ψ) are optimal solution for P2 and P3, respectively, we have,

R̃(Ψ)− λ∗
(
Z(Ψ) +

∑
j∈L

(Pj + ψj) Ij(Ψ)
)

≤ R̃∗ − λ∗
(
Z∗ +

∑
j∈L

(Pj + ψj) I
∗
j

)
≤ R̃∗ − λ∗

(
Z∗ +

∑
j∈L

PjI
∗
j +

∑
j∈L

ψjBj

)
≤ R̃(Ψ)− λ∗

(
Z(Ψ) +

∑
j∈L

PjIj(Ψ) +
∑

j∈L
ψjBj

)
(3.21)

where the first inequality is due to vij(Ψ) is the optimal solution for problem P3, the second

inequality is based on constraint (3.15d) in problem P2, the third inequality is due to v∗ij is

the optimal solution for P2 and vij(Ψ) is a feasible solution for P2. After substituting Bj

with Ij(Ψ) into the right hand side of the third inequality above, we can have,

R̃(Ψ)− λ∗
(
Z(Ψ) +

∑
j∈L

PjIj(Ψ)
)

= R̃∗ − λ∗
(
Z∗ +

∑
j∈L

PjI
∗
j

) (3.22)
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Hence, the theorem is proved.

In practice, many factors contribute to the data rate of the fronthaul, which depends on

the cell and fronthaul configurations. In our programmable C-RAN testbed, which will be

described in more details in Sect. 3.5.1, we can calculate the required fronthaul capacity as,

B[bps] = NantNsecFsWIQOcodKcom, (3.23)

where Nant is the number of Tx/Rx antennas, Nsec is the number of sectors, Fs represents

the sampling rate, WIQ is the bit length of a symbol, Ocod is the ratio of transport protocol

and coding overheads, and Kcom is the compression factor.

According to Theorem 1, if a cost vector Ψ can be found so that (3.20) holds, then the

optimal solution of P2 can be obtained by solving P3. Otherwise, the solution of P3 is

suboptimal to P2 if,

Ij(Ψ) ≤ Bj ,∀j ∈ L. (3.24)

We present the following proposition that allows us to adjust via iterations the cost

vector Ψ in P3 such that the inequality in (3.24) holds.

Proposition 1. By fixing ψk as a constant ψ̄k, ∀k ∈ L\ {j}, and letting Ψ̄j =[
ψ̄1, .., ψ̄j−1, ψj , ψ̄j+1, ..., ψ̄L

]
, the following arguments hold: (i) Ij(Ψ̄j) is a non-increasing

function w.r.t. ψj, (ii) There is a threshold cost for RRH j, given by,

Sj =
∑
i∈N

rmin
i − λ∗

∑
j∈L

(
Pmax
j + PjBj

)
+
∑

k∈L\j

ψ̄kBk


such that for ψj ≥ Sj, Ij(Ψ̄j) ≤ Bj.

Proof. The proof is similar with one provided from [82]. We present it for completeness

as follows. For convenience, we define Ij =
∑

i∈N

∥∥∥∥vij∥22∥∥∥0, R̃ =
∑

i∈N qiri, and Z =∑
i∈N

∑
j∈Li
∥vij∥22 to be used in the following proof.

Let Ψ̄′ = [ψ̄′
1, ..., ψ̄

′
j , ..., ψ̄

′
L] be a different cost vector from Ψ̄j , such that ψ′

j ≥ ψj and

ψ̄′
k = ψ̄k,∀k ∈ L\{j}. We have,
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R̃(Ψ̄j)− λ∗Z(Ψ̄j)− λ∗
∑

j∈L
PjIj(Ψ̄j)− λ∗ψjIj(Ψ̄j)

− λ∗
∑

k∈L\{j}
ψ̄kIk(Ψ̄k)

≤ R̃(Ψ̄′
j)− λ∗Z(Ψ̄′

j)− λ∗
∑
j∈L

PjIj(Ψ̄
′
j)− λ∗ψjIj(Ψ̄

′
j)

− λ∗
∑

k∈L\{j}

ψ̄kIk(Ψ̄
′
k) and,

(3.25)

R̃(Ψ̄′
j)− λ∗Z(Ψ̄′

j)− λ∗
∑

j∈L
PjIj(Ψ̄

′
j)− λ∗ψ′

jIj(Ψ̄
′
j)

− λ∗
∑

k∈L\{j}
ψ̄′
kIk(Ψ̄

′
k)

≤ R̃(Ψ̄j)− λ∗Z(Ψ̄j)− λ∗
∑
j∈L

PjIj(Ψ̄j)− λ∗ψ′
jIj(Ψ̄j)

− λ∗
∑

k∈L\{j}
ψ̄′
kIk(Ψ̄k)

(3.26)

where the inequality in (3.25) is based on the assumption that vij(Ψ̄j) is the optimal

solution for P3, and the inequality in (3.26) is based on the assumption that vij(Ψ̄
′
j) is the

optimal solution for P3. Adding up both sides of the two inequalities above and simplifying

it, we have, (
ψ̄′
j − ψ̄j

)
Ij(Ψ̄

′
j) ≤

(
ψ̄′
j − ψ̄j

)
Ij(Ψ̄j)

Hence, the first statement is proved. We denote v̂ij as a feasible solution for P2, whose

feasible region is nonempty. Then, we have,

R̃(Ψ̄j)− λ∗
Z(Ψ̄j)−

∑
j∈L

PjIj(Ψ̄j)− ψjIj(Ψ̄j)−
∑

k∈L\{j}

ψ̄k Îk


≤ ̂̃R− λ∗Ẑ − λ∗∑

j∈L
Pj Îj − λ∗ψj Îj − λ∗

∑
k∈L\{j}

ψ̄k Îk.

(3.27)

Then, we obtain,

Ij(Ψ̄j)− Îj

≤
{̂̃
R− λ∗

(
Ẑ +

∑
j∈L

Pj Îj + ψj Îj +
∑

k∈L\{j}
ψ̄k Îk

)}
/ψj

≤
{∑

i∈N
rmin
i − λ∗

[∑
j∈L

IPj +
∑

k∈L\{j}
ψ̄kBk

]}
/ψj ,

(3.28)

where IPj = Pmax
j +PjBj . Therefore, if ψj ≥ Sj , then Ij(Ψ̄j)− Îj ≤ 1. Since Ij(Ψ̄j) and Îj

are both integers, then we have Ij(Ψ̄j) = Îj ≤ Sj . The proof is complete.
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Routine 2 Bisection Search for Finding the Cost Vector Ψ

1: Initialize: Ψ(0) = [0, ..., 0], l = 1
2: At iteration l, solve problem P3 given Ψ(l−1) to obtain Ij

(
Ψ(l−1)

)
, ∀j ∈ L

3: if Ij
(
Ψ(l−1)

)
≤ Bj ,∀j ∈ L then

4: break
5: else
6: ∀j̃ ∈ A(l) =∆

{
j : Ij

(
Ψ(l−1)

)
≥ Bj

}
∀j ∈ L, set ψ(l)

j̃
= S

(l)

j̃

7: Fix ψ
(l)
k = ψ

(l−1)
k , ∀k ∈ L\A(l)

8: l = l + 1, go to step 2

Recall that feasible region of P3 is nonempty. Therefore, we can always find ψj ∈ [0, Sj ]

that satisfies (3.24) by using the bisection method, as elaborated in Routine 2. In each

iteration in Routine 2, step 2 involves solving problem P3 which is still NP-hard due to the

l0-norm in the objective function and the non-convex constraint (3.15c). Observe that the

phase of vij does not have impact on the optimality of the solution or the constraints, and

thus, we can assume that each term hijvij has a zero imaginary part. Then, we can rewrite

constraint (3.15b) as an equivalent Second Order Cone (SOC) constraint, expressed as,

√√√√√ ∑
k∈N\{i}

∣∣∣∣∣∣
∑
j∈L

hHij vkj

∣∣∣∣∣∣
2

+ σi2 ≤ τiRe

∑
j∈L

hHij vij

 , (3.29)

in which τi =

√
1 + 1/

(
2

rmin
i
B − 1

)
, ∀i ∈ N , is the equivalent QoS threshold for UE i.

Note that, after such transformation, the NEEM problem is still non-convex because of the

l0-norm in (3.15d). The non-convex l0-norm function can be relaxed to a convex l1-norm

re-weighted [92] as,

∑
i∈N

∥∥∥∥vij∥22∥∥∥0 =∆ ∑i∈N
αij ∥vij∥22 ≤ Bj , ∀j ∈ L, (3.30)

where αij is the weight of the fronthaul link of RRH j and is updated iteratively as,

αij = g
(
∥vij∥22, µ

)
=

η

∥vij∥22 + µ
,∀i ∈ N , j ∈ L. (3.31)

In 3.31, {vij} is the beamformer from the previous iteration, µ is a small positive factor to
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ensure stability and can be set as µ = 10−10 [78], and η is a constant. The idea behind the

heuristic weighted update in (3.31) is that the RRHs having lower transmit power to UE i

would have higher weights and would therefore be forced to further reduce the transmit

power and encouraged to drop out of the RRH cluster eventually. Finally, problem P3 can

be transformed to,

P4 : max
{vij}

∑
i∈N

qiri − α̃ij

∑
i∈N

∑
j∈Li

∥vij∥22 (3.32a)

s.t. (3.29), (3.15c), (3.32b)

where α̃ij = λ∗(1 + αij(Pj + ψj)). Problem P4 can be seen as a beamforming design

problem for Weighted Sum-Rate (WSR) maximization. Although P4 is still non-convex,

we can reformulate it as an equivalent WMMSE problem, which can be solved via an

iterative algorithm in the next subsection.

3.4.3 Proposed Iterative Algorithm

Here, we extend the WMMSE approach proposed in [93] to solve problem P4. In particular,

according to [93], problem P4 is equivalent to the following problem,

P5 : min
ui,ρi,vij

∑
i∈N

qi (ρiei − log2 ρi) + α̃ij

∑
i∈N

∑
j∈Li

∥vij∥22 (3.33a)

s.t. (3.29), (3.15c), (3.33b)

where ρi is the Mean Square Error (MSE) weight for UE i, and ei is the corresponding MSE

at UE i under the receiver beamformer ui ∈ C, i.e.,

ei = E
{∥∥uHi yi − xi∥∥22}

=
∑

i∈N
uHi

{∣∣∣∑
j∈L

hHij vij

∣∣∣2 + σ2i

}
ui

− 2Re
(
uHi
∑

j∈L
hHij vij

)
+ 1.

(3.34)

The equivalent WMMSE minimization problem P5 is convex with respect to each of the

individual optimization variables. We outline the main steps for solving problem P5 as
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Algorithm 3 Iterative method for solving P4
1: Initialize: αij , vij , ri, λ

∗, Pj , ψj∀i ∈ N , j ∈ L
2: repeat
3: For fixed vij , compute the MMSE receiver ui and the corresponding MSE ei accord-

ing to (3.36) and (3.34), respectively
4: Update the MSE weight ρi according to (3.35)
5: For fixed ui, and ρi, find the optimal transmit beamformer vij by solving (3.37)
6: Update αij as in (3.31) and α̃ij = λ∗(1 + αij(Pj + ψj)). Compute the achievable

rate ri as in (3.3)
7: until Convergence

follows.

• The optimal MSE weight ρi under fixed ui and vij is,

ρi = e−1
i . (3.35)

• By fixing vij and ρi, the optimal receive beamformer ui can be obtained as,

ui =

∑
j∈Li

hHij vij∑
k ̸=i

∣∣∣∑j∈Lk
hHij vkj

∣∣∣2 + σ2i

, (3.36)

• Under fixed MMSE receiver ui and optimal MSE weight ρi, the optimal transmit

beamforming vector vij is calculated by solving the following problem,

P6 : min
{vij}

∑
i∈N

qiρiei + α̃ij

∑
i∈N

∑
j∈Li

∥vij∥22 (3.37a)

s.t. (3.29), (3.15c). (3.37b)

Problem P6 above is a Quadratically Constrained Quadratic Programing (QCQP) problem,

which can be solved by using standard convex optimization solvers. Finally, the suboptimal

solution of P4 is obtained using Algorithm 3.

Remark 1 (Convergence Analysis): Algorithm 3 relies on the iterative weighted

updates in (3.31) to deactivate RRHs and reduce the fronthaul capacity for energy saving.

Finding the convergence proof of αij under arbitrary reweighed function is challenging.
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However, we show that, if the reweighing function is selected as,

g
(
∥vij∥22, µ

)
=
((
∥vij∥22 + µ

)
ln
(
1 + µ−1

))−1
, (3.38)

where η = 1
ln(1+µ−1)

, then the l0-norm relaxation can be seen as a special case of the

Majorization-Minimization (MM) algorithms [94] and is guaranteed to converge.

Remark 2 (Complexity Analysis): The main computational complexity of the pro-

posed solution for P4 lies in Algorithm 3 which can be summarized as follows. The com-

putational complexity of step 3 is approximately O(MLN2) due to (3.36) and (3.34). In

step 4, the computational complexity of updating the MSE weight ρi is approximately O(N)

with the MSE ei achieved from step 3. For step 5, the computational complexity can be

approximately given as O
(
N(ML)3

)
. With the optimal beamforming from step 5, the com-

putational complexity to achieve step 6 is approximately O(MLN2). As it can be observed,

the computational complexity of Algorithm 3 per iteration mainly comes from the process of

solving the QCQP problem in step 5. Supposed that Routine 2 and Algorithm 3 require T1

and T2 total number of iterations to converge. Then, the overall computational complexity

of the proposed solution for the NEEM problem is approximately O(T1T2N(ML)3).

3.4.4 Beamforming Design via Branch-and-Bound

In the previous section, the sub-optimal solution for the P0 problem is obtained by solv-

ing the relaxed NEEM optimization problem in P4 using the proposed iterative WMME

method in Algorithm 3 and solving the feasibility problem. We present now the Branch-

and-Bound (BnB) method to solve the P4 problem to a globally optimal solution. While the

BnB method generally has very high computational complexity, which grows exponentially

with the problem size, we mainly use the resulting solution to benchmark the suboptimality

of our efficient iterative WMME solution. The BnB method presented in the following is an

extension of the method in [95] for a Multiple Input Single Output (MISO) network with
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non-cooperative BSs. Firstly, let us rewrite problem in P4 in an equivalent form as,

P4′ : min
{vij},{γi}

Λ(γ) + Υ(v) (3.39a)

s.t. (3.29), (3.15c), (3.39b)

where Λ(γ) =
∑

i∈N −qiB log2(1 + γi), Υ(v) = α̃ij
∑
i∈N

∑
j∈Li

∥vij∥22, and γ = [γ1, ..., γN ].

The idea of the BnB algorithm is to generate a sequence of asymptotically tight upper

and lower bounds for the objective function such that they both converge to a global optimal

value. Specifically, the BnB algorithm divides the box region into smaller ones, and cuts off

boxes that do not contain an optimal solution. The algorithm will converge to the global

optimal solution after finite iterations. The algorithm starts with a known N -dimensional

rectangle ϖinit that contains the feasible region G = {γ| (3.29), (3.15c)}, which can be

specified as follows,

ϖinit =
{
γ|0 ≤ γ ≤ Pmax

j /σ2i
∑

j∈L
∥hij∥22

}
. (3.40)

It is easy to verify that G ⊆ ϖinit. In each iteration, the lower and upper bounds are updated

by partitioning ϖinit into smaller rectangles. In order for the algorithm to converge, the

bounds should be chosen such that they become tighter and tighter as the number of

partitions of ϖinit increases. The iterative BnB algorithm terminates when the difference

between the upper and lower bounds is within a predefined accuracy level ϵt. For any

rectangle ϖ = {γ|γi,min ≤ γi ≤ γi,max,∀i ∈ N} such that ϖ ⊆ ϖinit, we define the

functions to calculate the lower and upper bounds as glb(ϖ) and gub(ϖ), respectively.

For clarity, the BnB algorithm is summarized below (Algorithm 4). In this chapter, we

use the bounding functions derived in [95], which can be expressed as,

gub(ϖ) =


Λ(γmin) ,γmin ∈ G

0 otherwise;

(3.41)
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Algorithm 4 BnB Algorithm for solving P4′

1: Initialize: ϖinit using (3.40) and optimality tolerance ϵt > 0.
2: Set ϖ̄ = ϖinit, B = {ϖ̄}, Gub = gub(ϖ̄), and Glb = glb(ϖ̄).
3: repeat
4: Split ϖ along its longest edge into ϖI and ϖII using bisection subdivision.
5: Update B = (B\{ϖ})

⋃
{ϖI , ϖII}.

6: Set Gub = minϖ∈B{gub(ϖ)}, Glb = minϖ∈B{glb(ϖ)}, ϖ̄ = argminϖ∈B{glb(ϖ)}.
7: until Gub −Glb ≤ ϵt. Return ϖ̄.

Routine 3 Bisection Search for Finding γ̄ for a Given ϖ

1: for i = 1 : N do
2: Set a = γmin, a[i] = a[i] + γmax[i]− γmin[i].

3: if a ∈ G then Set γ̄[i] = γ̄max[i]
4: else Set γ ′ = γmin, γ

′′ = a, and tolerance ϵb > 0. end if
5: repeat
6: Set m = (γ ′ + γ ′′)/2 if m ∈ G then Set γ ′′ = m
7: else Set γ ′′ = m end if
8: until ||γ ′ − γ ′′||2 ≤ ϵb. return γ̄[i] = m[i]

and

glb(ϖ) =


Λ(γ̄min) ,γmin ∈ G

0 otherwise.

(3.42)

In (3.42), γ̄ = [γ̄1, ..., γ̄i] can be obtained using bisection search on each edge of the

rectangle ϖ as described in Routine 3. Let us define the optimal value of γ ∈ G for problem

P4′ as γ∗ = infγ∈G . By using the bounding functions in (3.41) and (3.42), it is shown in [95]

that Algorithm 4 will converge in finite number of iterations to a solution arbitrary close to

γ∗. It should be noted that verifying whether γ ∈ G, which is required in (3.41) and (3.42)

as well as in steps 6 and 9 of Routine 3, is equivalent to solving a feasibility problem in

order to determine if the SINR values specified by γ are achievable and, if so, return a set

of feasible beamforming vectors v’s.

3.4.5 Timescale and Real-time Scheduling Discussing

Observe that, the NEEM algorithm has been designed to dynamically maximize the net-

work EE by taking into accout the radio resource allocation and capacity-limited fronthaul.

One major concern may be the different operation timescales of the radio resource alloca-

tion and the fronthaul link. In current mobile networks, e.g., LTE, the Transmission Time
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Interval (TTI) is 1ms [96]. Therefore, the resource allocation can be achived on a timescale

of 1ms. However, making resource allocation on such a small timescale may lead to ex-

cessive computing and communication overheads. Moreover, the channel coherence time

may be much larger than one TTI. Therefore, the TTI building technique, which enables

the combination and scheduling of multiple consecutive subframes, is supported in the LTE

system [96]. As a result, the practical operation timescale of radio resource allocation can be

several milliseconds. Regarding the fronthaul, the Passive Optical Network (PON) emerges

as a key fronthaul solution for future cloud-based radio access network [97]. In PON, the

Optical Line terminal (OLT) is responsible for receiving the upstream data and broadcast-

ing downstream data to optical network Units (ONUs). The ONU can be switched into the

idle mode for energy savings when it does not carry any traffic load [98]. The idle mode in

ONU operates at a timescale of several milliseconds [98]. Therefore, it is possible to operate

the dynamic radio resource allocation and the fronthaul (ONU) idle mode using the same

timescale.

3.5 Performance Evaluation

In this section, we present testbed experiments and simulation results to show the effective-

ness of our solutions.

3.5.1 C-RAN Experimental Testbed

We have implemented a small-scale, real-world C-RAN testbed to understand the compu-

tational requirement in the BBU pool, which provides us the empirical model for (3.4) and

the design of the NEEM algorithm. Figure 3.3(a) shows the architecture of our testbed.

The RRH front-ends of the C-RAN testbed are implemented using SDR USRP B210s, each

supporting 2 × 2 MIMO with sample rate up to 62 MS/s. In addition, each radio head is

equipped with a GPSDO module for precise synchronization. Each instance of the virtual

BBU is implemented using the OAI LTE stack, which is hosted in a VMware VM. All the

RRHs are connected to the BBU pool via USB 3 connections. Specifically, our C-RAN

experimental testbed consists of one unit of UE and one unit of eNB, both implemented
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Figure 3.3: (a) Illustration of C-RAN testbed architecture where the RRH is connected to
the virtual BBU pool; (b) CPU utilization of the BBU at different values of MCS and PRB;
and (c) Percentage of CPU usage versus downlink throughput.

using the USRP B210 boards and running on OAI. The OAI software instances of the eNB

and UE run in separate Linux-based Intel x86-64 machines comprising of 4 cores for UE

and 12 cores for eNB, respectively, with Intel i7 processor core at 3.6 GHz.

CPU Utilization: To understand the CPU utilization of the BBU pool, we establish a

stable connection between eNB and UE of our testbed. The transmitted and received gain

in downlink have been set to 90 and 125 dB respectively. The CPU utilization percentage

is calculated using the “top” command in Linux, which is widely used to display processor

activities as well as various tasks managed by the kernel in real time. We repeatedly send

UDP traffic from the eNB to the UE with various MCS and PRB settings. The CPU

utilization percentage has been recorded as in Fig. 3.3(b). By setting the CPU frequency

of the OAI eNB to 3.5 GHz, we have seen that the highest CPU consumption occurred at

MCS 27, corresponding to 72%, 80%, and 88% when PRBs are 25, 50, and 100, respectively.

We can conclude that the total processing time and computing resources were mainly spent

on the modulation, demodulation, coding, and decoding.

To understand better the BBU computational consumption in C-RAN with respect to

the users’ traffic demand, we characterize the relationship between the downlink throughput

and the percentage of CPU usage at the BBU. We use OAI as a benchmarking implemen-

tation for profiling the CPU utilization of the LTE PHY layer given different load scenarios

configured through PRBs, MCS, and SINR. The OAI downlink transmission supports 28 dif-

ferent MCSs with index Imcs ranging from 0 to 27 characterized by: QPSK (0 ≤ Imcs ≤ 9),



72

27
0

20

23

40

30

C
P

U
 U

ti
liz

a
ti
o
n
(%

)

60

19

80

MCS

15

SINR

20
11

7 
10 3 

Figure 3.4: CPU utilization versus different MCS and SINR values.

16-QAM (10 ≤ Imcs ≤ 16), and the rest are based on 64-QAM. Specifically, OAI has the

OpenAirLTEPhySimul tool to run the Physical Downlink Shared Channel (PDSCH) and

the Physical Uplink Shared Channel (PUSCH), respectively. Figure 3.3(c) illustrates the

CPU utilization percentage at the BBU corresponding to different downlink throughputs

and MCS indexes. Figure 3.4 illustrates the relationship between the CPU utilization and

SINR under different values of the MCS. We can clearly observe that the CPU utilization

increases with the values of SINR and MCS index. Using the measurement from Figs. 3.3(c)

and 3.4, the CPU utilization percentage can be well fitted as a function of CPU frequency

and MCS as,

CPU% = Isnr +Grth +D, (3.43)

where rth is the achievable throughput, Isnr is parameter corresponding with SINR, and G

and D are two parameters increasing with MCS values as reported in Table 3.1.

Figure 3.5(a) visualizes the frequency domain of transmitted and received OFDM signal

by exploiting LTE System Toolbox 5G Library in OAI. It can be shown that the power

spectral density of transmitted and received video (i.e, after channel modeling) signals have

a located bandwidth 10 MHz. Figure 3.5(b) illustrates the constellation diagram of the

received OFDM signal. Based on profiling results in Fig 3.3(c) and Fig 3.5(c), we note the

following observations: we note the following observations: i) the encoding execution time of

downlink process load is dominating the other processing functions such as modulation and

scrambling; ii) we can conclude that the total processing time and computing resources were
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Figure 3.5: SDR over the air transmission/ reception of a data signal with 16 QAM LTE,
PRB=50, and SINR=20 dBm; (a) Power spectral density of transmitted/received OFDM
signal; (b) Constellations diagram of received OFDM signal; and (c) OFDM downlink
processing time for different stage functions.

mainly spent on the encoding, and modulation, these tasks played the bigger roles in terms

of complexity and runtime overhead in the BBU pool protocol stack; and iii) the percentage

of CPU use at the BBU Pool is well approximated as a linear function of the downlink

throughput.

3.5.2 Numerical Simulations

We present now simulation results to evaluate the performance of Algorithm 3. The simu-

lations are carried out using optimization solvers (e.g., MOSEK) [67].

Simulation Setup. We consider a C-RAN system consisting of 6 hexagonal cells with

a RRH in the center of each cell. The UEs are randomly located inside each cell so that

distance between them and their nearest RRH is d or d/2. The distance between two

nearest RRHs are 2d where d = 500 m. We assume that all the wireless channels in the

system experience block fading such that the channel coefficients stay constant during each

scheduling interval but can vary from interval to interval, i.e., the channel coherence time is

not shorter than the scheduling interval. To reflect the mobility in our simulation, we run

100 channel realizations, and calculate the average performance. We assume that all the

RRHs have the same number of transmit antennas M = 4 and maximum transmit power

Pmax
j = P , ∀j, while the maximum j-th fronthaul capacity number Bj = 5, ∀j. The static

cost when RRH j is active is Pj = 10, ∀j ∈ L, and the minimum data rate requirement

for the i-th UE is rmin
i = 5 Mbps. We set the static energy consumption of a VM in
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Figure 3.6: (a) Convergence comparison of of Algorithm 3 with BnB method; (b) Iteration
run time comparison; and (c) Feasibility association versus different user numbers.

working mode as Esi = 20W, and Gi = Di = wi = 1, ∀i. We adopt the distance-dependent

path-loss model, given as Lp [dB] = 148.1 + 37.6 log10 d[Km], and the log-normal shadowing

variance set to 8 dB. In addition, the bandwidth B is set to 10 MHz and the noise power

is −100 dBm.

Convergence of Algorithm 3. Firstly, we evaluate the performance of Algorithm 3

in yielding the WMMSE-based solution, compared to that of the optimal BnB method in

Algorithm 4. Since the computational complexity of the BnB method is high, it is difficult

to solve the NEEM problem with a large number of variables. Hence, we carry out the

compassion in a small network with N = 4 users uniformly placed in the area covered by

L = 4 cells and P = 10 dBm. In Fig. 3.6(a), we generate one random channel realization

and set the same initial point for Algorithm 3. We observe that the objective value obtained

from Algorithm 3 is very close to the optimal value obtained via BnB method. Iteration run

time until convergence of the BnB algorithm for one random channel realization is depicted

in Fig. 3.6(b). Additionally, we plot here the average iteration number and iteration run

time of Algorithm 3 over 100 random channel realizations. It can be seen that the BnB

method takes extremely long time to converge and is clearly not a practical solution. The

solution of Algorithm 3 converges faster than the BnB algorithm both in terms of average

number of iterations and average iteration run time. This fast-convergence performance

is very important for the practical feasibility of NEEM since we want to optimize the

beamforming design in each iteration.
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Figure 3.7: Simulations on a C-RAN network with N = 25, L = 4, and M = 4 (a) Network
EE versus fronthaul capacity with P = 10dBm; (b) Network energy efficiency versus trans-
mit power with optimality tolerance ϵ = 10−3; and (c) Network power consumption with
P = 10dBm.

Optimality of Algorithm 3. Note that the association relationship between the RRHs

and the UEs is obtained when ∥vij∥22 > 0. Hence, the beamforming vectors, or RRH-UE

associations, can be achieved by our proposed Algorithm 3. To show the optimality of

our proposed Algorithm 3, we compare four algorithms: i) Exhaustive Search (ES): This

scheme aims at finding the best association by searching all possible RRH-UE associations

with extremely high complexity O((MNL)32L). ii) Iterative Static Clustering (ISC): This

scheme is proposed in [78], which is a heuristic algorithm used to obtain the UE set Nj that

association with RRH j such that
∥∥∥v∗ij∥∥∥2

2
> 0,∀i ∈ Nj and

∥∥∥v∗ij∥∥∥2
2
= 0,∀i ∈ N c

j , where N c
j

is the complementary set of Nj . iii) SINR-based scheme: This scheme is similar to work

in [68], which considers the users associated with the RRH that provides the maximum

SINR, i.e., the RRH associates with UE i is determined by Li = argmaxj ∥hij∥2, ∀i ∈ N .

iv) Iterative Closest Clustering (ICC): This is similar to [69] where UEs are associated with

nearest RRHs and the BBU pool allocates to all UEs with same computing power.

Figure 3.6(c) shows a percentage of feasible association, i.e., the number of UEs asso-

ciated with certain RRH when their QoS requirements, transmitted power, and maximum

fronthaul capacity number Bj , are satisfied. It can be seen that our proposed Algorithm 3

shows better performance compared to all the other algorithms, except the optimal search

scheme ES. Observe that the percentage of satisfied users decreases while the number of

users increases for all five algorithms.

Impact of Fronthaul Capacity. Fig. 3.7(a) illustrates the performance of the network
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EE for various values of maximum fronthaul capacity for Algorithm 3 compared with ISC,

ICC, and SINR-based algorithms. To quantify the impact of the fronthaul capacity limit,

we set the such capacity between 5 and 20 Mbps. We observe that the network EE improves

as the fronthaul capacity increases for the all algorithms. The results also show that the

network EE reaches its maximum value when the fronthaul capacity is sufficiently large, e.g.,

20 Mbps in our simulation setup. By increasing the fronthaul capacity, the corresponding

constraint is loosen, resulting in a better EE and, eventually, eliminates the impact of

fronthaul capacity. Observe that our algorithm significantly outperforms the others. Also,

after reaching a certain value, the fronthaul capacity does not affect the EE anymore.

Energy Efficiency Performance. Figure 3.7(b) illustrates the network EE perfor-

mance versus different values of transmit power P for different algorithms. It can be seen

that the achieved EE significantly increases with the transmit power for the all algorithms.

However, our algorithm shows better performance compared to the others. We observe

that, when the traffic load in the network is light, the overall power consumption dominates

over the data transmission rate. Thus, the network has a low EE. On the other hand, when

the number of users increases, the network is saturated with traffic loads. Thus, the data

transmission rate dominates over the overall power consumption and the EE improves.

Additionally, Fig. 3.7(c) depicts the power consumption in C-RAN network. Since the

BBU pool carries the baseband signal processing, a large number of UEs lead to heavy

computing workloads in the BBU pool. Therefore, the power consumption of the cloud

platform increases significantly with the number of UEs. This indicates that the energy

consumption of the BBU pool is closely related to the traffic load in the network. On the

other hand, the energy consumption of the RRHs is much less than that of the BBU pool

because the functionality of the RRHs is limited to basic RF signal processing. Hence, our

algorithm performs better than the other algorithms.

Generalization to Multi-antenna UEs. Our proposed method in Algorithm 3 can

be generalized to the scenario where each UE has multiple antennas. Since we consider a

downlink system, we focus particularly on the number of receiving antennas on each UE i,

denoted as Fi. In this case, one only needs to replace the channel gain vector and the

received signal at UE i in (3.1) with hij ∈ CM×F and yi ∈ CF×1, respectively. Accordingly,
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Figure 3.8: Network EE with different number of UEs number of antennas P = 10dBm.

the receive beamformer in (3.34) will be replaced with ui ∈ CF×1. With this increase in

dimensionality of the variables, the complexity of Algorithm 3 will also increase. Specifically,

the complexities of steps 3 and 6 now become O(FMLN2) and O(FMLN2), respectively.

To evaluate the effect of having more antennas on UEs, we show the EE performance

of Algorithm 3 in Fig. 3.8 with different number of antennas on each UE and on each RRH

as well as with different number of UEs. As it can be observed, having multiple antennas

on UEs and RRHs can lead to a better EE performance since it helps achieve a proper

balance between the capacity of fronthaul and the required QoS. Additionally, it can be

seen that the EE increases with the number of UEs. The reason for this behaviour is that,

if only few users are in the system, the traffic load in the network is light, thus the static

power consumption dominates the overall power consumption of the network. Therefore,

the network has a low energy efficiency. When the number of users increase, the network is

saturated with the traffic load, which results in higher EE performance.

3.6 Summary

We studied the Network Energy Efficiency Maximization (NEEM) problem in a Cloud Radio

Access Network (C-RAN) taking into account practical constraints including QoS require-

ment, transmit power, and fronthaul capacity limits. Based on real-world data collected

from a small-scale, real-time C-RAN testbed, we established an empirical model for the

network power consumption. We formulated the NEEM optimization problem as a MINLP
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that jointly considers the tradeoff between the network accumulated data rate and network

power consumption. To deal with the non-convex nature of the problem, we took advantage

of the l1-norm reweighed method and successive convex approximation techniques. Such

approximation allowed us to reformulate the original problem into the equivalent Weighted

Sum-Rate (WSR) maximization problem, which can be solved efficiently and with proven

convergence via iterations. We evaluated the performance of this iterative algorithm un-

der different network conditions. Extensive simulations coupled with testbed experiments

showed that the proposed resource allocation solution optimizes C-RAN energy efficiency

under practical physical constraints while significantly outperforming existing approaches.
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Chapter 4

On-demand Video-streaming in Mobile-Edge Computing

Mobile-Edge Computing (MEC) has recently emerged as a promising paradigm to enhance

the mobile networks by providing cloud-computing capabilities to the edge of the Radio Ac-

cess Network (RAN) with the deployment of MEC servers right at the Base Stations (BSs).

Meanwhile, in-network caching and video transcoding have become important complemen-

tary technologies to lower network cost and enhance Quality of Experience (QoE) for video-

streaming users. In this chapter, we aim at optimizing the QoE for dynamic adaptive video

streaming that takes into account the Distortion Rate (DR) characteristics of videos and

the coordination among MEC servers. Specifically, the Video-streaming QoE Maximization

(VQM) problem is cast as a Mixed-Integer Nonlinear Program (MINLP) that jointly de-

termines the integer video resolution levels and video transmission data rates. Due to the

challenging combinatorial and non-convex nature of this problem, the Dual-Decomposition

Method (DDM) is employed to decouple the original problem into two subproblems, which

can be solved efficiently using standard optimization solvers. Real-time experiments on a

wireless video streaming testbed have been performed on a FDD downlink LTE emulation

system to characterize the performance and computing resource consumption of the MEC

server under various conditions. Emulation results of the proposed strategy show significant

improvement in terms of users’ QoE over traditional approaches.

4.1 Introduction

Due to the ever-advancing multimedia processing capabilities on mobile devices and the

plethora of Over-The-Top (OTT) video content providers, on-demand video streaming traf-

fic has become the major factor driving the burgeoning traffic demand in mobile networks.

According to the prediction of mobile data traffic by Cisco, mobile video streaming will
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account for 72% of the overall mobile data traffic by 2019 [99]. The increase in demand for

ubiquitous of High-Definition (HD) videos (e.g., 720p, 1080p, and beyond) requesting at

least 5–20 Mbps user data rate [100], as well as, future video compression standards such

as High Efficiency Video Coding (H.265/HEVC) [101] and the availability of 360-degree

video devices may further fuel growth in mobile video traffic and bring great challenges for

streaming and network operation. While such demands create immense pressure on mobile

network operators, distributed edge caching has been recognized as a promising solution

to bring video contents closer to the users, reduce data traffic going through the backhaul

links and the time required for content delivery, as well as help in smoothing the traffic

during peak hours. In wireless edge caching, highly sought-after videos are cached in the

cellular Base Stations (BSs) so that that demands from users to the same content can be

accommodate easily without duplicate transmissions from original content servers.

Recently, the network quality focus has changed from a network provider’s Quality of

Service (QoS) perspective to the less easily quantified end user’s Quality of Experience

(QoE) viewpoint [100]. However, the user diversity in terms of network conditions and

device capabilities, which accompanies the worldwide prosperity of various video services,

poses challenges for video service providers to achieve this enabler. For example, users with

highly capable devices and fast network connection usually prefer high resolution videos

while users with low processing capability or low-bandwidth connection may not enjoy high

quality videos because the delay is large and the video may not fit within the device’s display.

By leveraging such behavior, Adaptive Bit Rate (ABR)-streaming techniques [102, 103]

have been widely used to improve the quality of delivered video on the Internet as well

as wireless networks. In ABR streaming, the quality (bitrate) of the streaming video is

adjusted according to the user device’s capabilities, network connection, and specific request.

From an operator’s perspective, it is essential to guarantee the QoE of mobile users and

maximize network performance by assisting the users to make the network selection decision

for the provided video streaming service. However, optimizing the video quality selection

strategy for video streaming over multiple wireless networks—considering the video service’s

requirements, the wireless channel profiles and the costs of the different links— remains an

open issue.
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Recently, the Mobile Edge Computing (MEC) concept has emerged as a promising

paradigm that enables a capillary distribution of cloud computing capabilities to the edge

of the wireless access networks to provide better performance for certain applications as

compared to cloud computing. This way, MEC allows for the execution of applications

in close proximity to the end users, reducing end-to-end delay and backhaul bandwidth

consumption. In this chapter, we seek to design and analyze a MEC-based efficient mech-

anism that optimizes the QoE for on-demand video-streaming system with consideration of

the Distortion-Rate (DR) properties of video streaming encoder. We envision a framework

to utilize both caching and transcoding processing, in which the MEC servers can perform

transcoding of a video to different quality levels to satisfy the user requests. Each quality

level is a bitrate version of the video and we consider that a lower bitrate level can be

obtained from a higher bitrate variant via transcoding. Furthermore, we seek to implement

real-time over-the-air video streaming testbed that satisfies the computational requirements of

the MEC server under the real-word video streaming considerations (e.g, transmission video

modulation, encoder, and channel estimation). Our over-the-air video streaming testbed

will also help establising models to provide researchers with real-world insights and tools

for designing QoE-aware algorithms in MEC systems.

4.2 Related Work

MEC has attracted a lot of attention from researchers over the last few years. In [104], the

authors demonstrate the detailed definition and framework of edge computing, as well as

the advantages of edge computing through several case studies. They conclude that edge

computing has several potential benefits compared to traditional cloud-based computing

paradigm, such as shorter response time and lower energy consumption. Three represen-

tative use-cases including mobile-edge orchestration, collaborative caching and processing,

and multi-layer interference cancellation are introduced and studied in [105], which demon-

strate that edge computing is crucial for enabling low-latency, high bandwidth, and agile

mobile services.

The idea of using mobile edge caching to support the mobile communications has been

studied in [35,106,107]. In [106], the authors introduce the design aspects and challenges of
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mobile edge caching. Further, they reveal that caching at the 5G cellular networks is still

an open problem due to the network topology, link interference, and user’s mobility. The

work in [107] proposes FemtoCaching architecture, in which a large number of dedicated

helper nodes cache popular video files and serve the users’ demands through local short-range

links. Recently, Tran et al. [35] have suggested a mobile network topology combining caching

and Cloud Radio Access Network (C-RAN), which comprises the edge-caches distributively

deployed at the BSs and the cloud-cache deployed at a Central Processing Unit and all the

cache entities are managed by a Central Cache Manager.

Valuable attention has been paid on video transcoding that relies on predicting channel

conditions or users’ requirements to enhance the system performance [108,109]. The authors

in [110] provide a two-step load prediction method to scale video transcoding service through

proactive resource allocation under real-time constraints, while the authors in [111] use a

Markov prediction model to predict the next video segment requested by users.

As video analytics and caching can be enabled by MEC to further utilize the power-

ful computing resources of MEC servers at edge nodes, the works in [112–114] proposed

to jointly combine the advantages of caching and transcoding to increase the throughput

of mobile networks and QoE of users. In [112], a MEC server transcodes a video with

higher rate version in the cache to satisfy a request for a lower rate version according

to the optimization of the video rate adaptation and the network condition. To improve

the users’ QoE, the authors in [113] derive a logarithmic QoE model based on empirical

results and formulate a cache management problem for adaptive streaming as a convex opti-

mization problem, thereby providing an analytical framework for this engineering problem.

Along with this line, the authors in [114] designed a scheme where multiple MEC caching

and servers collaborate to provide video caching and transcoding. While the approach of

maximizing the users’ QoE has previously been considered by those works, our proposal

is fundamentally different in two aspects. First, we introduce a novel Video-streaming

QoE Maximization (VQM) framework to enhance on-demand video streaming system with

proper consideration of the DR properties of versions from different videos. Second, our

VQM optimization problem is formulated by considering a numerical model of MEC compu-

tation constraints based on carrying out several real-time experiments on a programmable
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MEC testbed.

Main Contributions: Our approach aims to find an optimal video quality level for

each user considering the limited network resources and the video cache available at the

MEC server to maximize the overall QoE. The main objective of this chapter is to utilize

the MEC paradigm in mobile network to enhance the video-streaming QoE. Overall, the

contributions of this chapter can be summarized as follows.

• We formulate the design optimization problem, referred to as VQM problem, that

aims at maximizing the QoE of the system while considering practical constraints such

video data rate and computing resource at the MEC servers. The considered problem

is cast as a Mixed-Integer Nonlinear Program (MINLP) which is NP-hard, and thus

motivates us to design a low-complexity algorithm with practical implementation.

• In addition to video content popularity and network conditions that are commonly

considered by existing caching schemes for adaptive video streaming, video content

characteristics (i.e, the DR property) are further taken into account to assign different

utilities to the representations with same bitrate but with different videos. In this way,

the actual performance of the caching system is properly evaluated in terms of the

users’ viewing quality.

• To deal with the high complexity and non-convexity of the VQM problem, we uti-

lize Lagrangian relaxation and Dual-Decomposition Method (DDM) to decompose the

main problem into two sub-problems. The sub-problems are formulated such that they

can be solved efficiently using standard optimization solvers (e.g., CVX, MOSEK).

The simulations are conducted with different system configurations to show the effec-

tiveness of the proposed scheme.

• Using SDR USRP boards and the Matlab LTE environment, we performe real-time

experiments on an over-the-air video streaming testbed. Specifically, we establish

transmissions between the eNodeB (eNB) and the User Equipment (UE) under various

configurations in order to profile the run-time complexity and performance limits of

the MEC server in terms of processing, throughput, and latency. It is shown that the
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MEC server’s CPU utilization can be modeled as a linear increasing function of the

maximum downlink data rate.

Chapter Organization: The remainder of this chapter is organized as follows. Sect. 4.3

introduces the system model considered throughout this work. Sect. 4.4 describes the VQM

optimization problem and proposes a distributed approach to solve it. We then present and

discuss the architecture of our proposed programmable MEC testbed and simulation results

in Sect. 4.5. Finally, the main conclusions are drawn in Sect. 4.6.

4.3 System Model

We first describe the system overview, followed by the setting of considered model. The

QoE model is then mathematically formulated based on practical video parameters.

4.3.1 MEC System Architecture

As illustrated in Fig 4.1, the MEC server is geographically closer to the mobile users with

high speed localized communication, which is usually assumed to be much faster than the

backhaul links connected to the BS [115]. Furthermore, the MEC server mainly consists of

Content Request Handler (CRH), computing/cache/transcoding unit, VQM controller, and

Radio Network Information Service (RNIS). CRH is responsible for redirecting incoming

video content requests to either the remote server (the origin server) or the local server

(the MEC server). A VQM controller is built into the MEC server to collaborate with the

computing/cache/transcoding unit and adjust users’ QoE. The transcoding unit and VQM

controller need to consider the channel conditions, so as to find the optimal bitrates to be

transcoded. To this end, the transcoding unit and VQM controller need to collaborate with

the RNIS, an intrinsic functional component of the edge computing paradigm [116]. Specif-

ically, the RNIS is responsible for capturing up-to-date Channel State Information (CSI)

and reporting back to transcoding unit and VQM controller.

In Fig. 4.2, we illustrated the possible events that happen when a user requests for a

video. Whenever a mobile user sends a playback request for a specific video, it attempts

to download the highest possible quality representation from its adjacent MEC server in



85

Origin Server

BS with 

MEC server

1080p360p 720pp

h 

ver

RequestResult

Content Request Handler (CRH)

Transcoding

Cache

Computing

VQM controller

Radio Network Information Service 

(RNIS)

Content context

MEC server

Video Request

Channel State 

Information (CSI)

Figure 4.1: Illustration of collaborative video caching and transcoding framework deployed
on a MEC network.

accordance with the content bitrate and the available download link capacity. If the same

high quality video content is cached in MEC server, the user might want to download it from

the MEC server with the highest transmission rate, in order to reduce the initial startup

delay. That is, the user will first determine whether the downloading of highest resolution

level can be supported by the link capacity with an acceptable downloading delay.

If yes, the user could download and play that video version; otherwise, it would make

a further selection for the video content with the next lower bitrate. This process will be

done by the video transcoder installed at the MEC server. When the requested video is

not cached in the MEC server, the user has to turn to the origin server and download the

video file with the highest bitrate that could be afforded by the backhaul link connected

to the base station. However, retrieving from the origin server will result in a much more

expensive transmission cost since the backhaul communication resource is typically very

limited compared to the high-speed links offered by the MEC server.

4.3.2 System Setting

We now describe in more details the model considered in this work, and introduce the

notations. We consider a MEC network with a set N = {1, 2, ..., N} of N mobile users

randomly distributed in a cellular cell and one BS equipped with the MEC server, which

has computation and cache capability that may be provided by Internet service providers as
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Figure 4.2: Illustration of possible events that happen when a user request for a video. (a)
The video is obtained from cache of the MEC server; (b) A higher bitrate version of the
video from cache of the MEC server is transcoded to the desired bitrate version and deliver
to the user; and (c) The video is retrieved from the origin content server.

a value-added service. The MEC server has ability to store a set F = {1, 2, .., F} of F video

files offered to the users. Each video file f ∈ F can be encoded into a setM = {1, 2, ...,M} of

M different display resolutions having an encoding bitrate set R = {Rf1, ..., Rfm}, ∀f ∈ F ,

m ∈ M. In practical, the MEC cache server caches the highest quality bitrate video

file f ∈ F , which can then be transcoded to lower bitrate versions. For the simplicity, and

without loss of generality, similar to [117], we assume that the each video file has the same

length T . We define a binary variable yim ∈ {0, 1} as the resolution indicator of user i,

where yim = 1 if the resolution level m ∈ M of the video is selected by user i; otherwise,

yim = 0. In a real-word video downlink LTE system, which will be described in more

details in Sect. 4.5.1, it can be observed that the overall processing is the sum of per-User

Processing (UP) and Cell Processing (CP). The UP depends only on the Modulation and

Coding Scheme (MCS) index and the Physical Resource Block (PRB) allocated to the users

as well as on the number of iterations required by the decoder, which is proportional to

the Signal-to-Interference-plus-Noise Ratio (SINR) and channel conditions. Under these

considerations, the CPU utilization of the MEC server increases linearly with the PRB

resource and MCS index. Under this premise, we can consider the computation capacity

Ci [cycles/s] from the MEC server that is allocated for user i, as a linearly increasing

function of the user downlink data rate. Specifically, the computation capacity utilized for
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processing the data of mobile user i can be modeled as,

Ci = Giri +Di, ∀i ∈ N , (4.1)

where Gi and Di are positive constants estimated by offline profiling of the MEC testbed, ri

is the achievable video transmission rate for user i. The lower bound of ri can be calculated

as,

ri ≥ Rmin
i = B log2(1 + γi),∀i ∈ N , (4.2)

where Rmin
i is minimum desired data rate of each user, B is the transmitted bandwidth to

each user and γi is the received SINR calculated as,

γi =
P TL(di)

σ2i + I
, ∀i ∈ N , (4.3)

where P T is the transmit power density at BS, di denotes the distance between user i and

the BS, L(di) is the path loss of the channel between the user i and BS, σ2i is the addi-

tive Gaussian noise power density, and I denotes the inter-cell interference when a user

is served by BS. With the advanced interference mitigation techniques such as spectrum

reuse, power control, and interference alignment, the inter-cell interference can be treated as

constant noise [118]. Then, I can be interpreted as the efficiency of interference mitigation.

For example, I = 0 if the interference is canceled completely, which usually requires per-

fect channel information. Larger I means less effective interference mitigation, which can

happen with incomplete channel information, lower received signal strength, or extensive

spatial spectrum use [119]. In this work, we assume that the computing resource required

for transcoding a video from the highest resolution to the requested resolution m is qm. Ob-

viously qm < qm′ if m > m′ and specially qM = 0. Thus, the computing capacity constraint

at the MEC server can be expressed as,

∑
i∈N

∑
m∈M

qmyim ≤
∑
i∈N

βcodi Ci, (4.4)
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where βcodi is the maximum video transcoding capacity assigned for user i and defined as the

number of encoded bits that can be processed per second at the MEC server. For example,

a 400 Mbps computing capacity means up to 400 Mbps videos can be transcoded in one

second.

4.3.3 Quality-of-Experience (QoE) Model

The key factors that affect the QoE of video streaming services mainly depend on initial

startup delay (i.e, the time interval between the user’s request and beginning of playback)

and the average video quality (i.e, the average distortion that may introduce in the video

signal during the video processing) [120]. The initial startup delay constraint demands that

the requested time interval between sending a request and the actual video playback should

not exceed the maximum tolerable requesting time of the user denoted by τmax
i . Hence, the

initial startup delay experienced by the user i to view the the bitrate Rfm from the MEC

server can be expressed as,

τ i,efm =
Rfm∆T

ri
,∀i ∈ N , f ∈ F ,m ∈M, (4.5)

where ∆T is the time fraction within a video file required to be buffered by the user before

the actual playback starts on the client’s screen. Similarly, when the request video is not

available in the MEC cache server, the initial startup delay experienced by user i to request

Rfm version from the origin server can be determined by,

τ i,ofm =
Rfm∆T

ri + coifm
,∀i ∈ N , f ∈ F ,m ∈M, (4.6)

where coifm is the downlink transmission rate needed to download the requested video file

from the origin server. We utilize the DR model in [121] to formulate the distortion of m-th

representation of the video f with the encoding bitrate Rfm. Hence, the DR model can be

formulated as,

∆Df (Rfm) = Dmax −D0 −
ϕ

Rfm −R0
, (4.7)
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where Dmax and ∆Df (Rfm) denote a constant maximal distortion when no video is decoded

and the distortion reduction after successfully decoding this representation, respectively.

The parameters ϕ, D0, and R0 are empirical variables depending on the actual video content,

and they can be estimated as fitting parameters from the empirical DR curves of different

videos by using regression techniques [121]. The term Dmax −∆Df (Rfm) in (4.7) denotes

a RD function to model the distortion of the m-th resolutions of the video f with encoding

bitrate Rfm.

4.4 Video-streaming QoE Maximization

In this section, we firstly formulate the VQM problem as a MINLP. We then propose a low-

complexity approach that first relaxes the original VQM problem using DDM to decouple

the optimization problem into two subproblems efficiently solved by a standard optimization

solver.

4.4.1 System Utility Function

First, we introduce a binary variable af , where af = 1 indicates that the MEC server caches

the video file f ; and af = 0 otherwise. Then, we define the following utility function based

on the average video distortion reduction experienced by the user i and the cost of the

representation downloading either from the MEC server or the origin server.

Uim(Rfm) =
∑
f∈F

afPif {∆Df (Rfm)− ρeRfm}

+
∑
f∈F

(1− af )Pif {∆Df (Rfm)− ρoRfm} ,
(4.8)

where Pif is used to represent the average probability that the video file f is requested by

the user i within this time period. The term {∆Df (Rfm)− ρeRfm)} in (4.8) represents the

video distortion reduction ∆Df (Rfm) of downloading the bitrate Rfm of the video f , and

a transmission cost penalty ρeRfm where ρe is unit price parameter corresponding to the

video resolutions download from the MEC server.

Likewise, the second term in (4.8) includes the average distortion reduction plus the
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average transmission cost penalty experienced by user i downloading requested video reso-

lutions from the original server. The ρo is unit price parameter corresponding to the video

representations download from the origin server. Due to the limited bandwidth available

in the backhaul channel, the unit price for downloading from the origin server ρo is much

higher than the unit price for accessing the adjacent edge servers ρe.

4.4.2 Problem Formulation

Our target is to find an optimal video quality level for each user with considering the limited

network resources and the video cache availability in MEC server to improve the network

utility by maximizing the overall QoE. The VQM optimization problem can be formulated

as follows,

P0 : max
y,r

∑
i∈N

∑
m∈M

Uim(Rfm)yim (4.9a)

s.t.
∑
f∈F

∑
m∈M

afRfmT ≤ S, (4.9b)

afτ
i,e
fm + (1− af )τ i,ofm ≤ τ

max
i , (4.9c)∑

i∈N

∑
m∈M

qmyim ≤
∑
i∈N

βcodi (Giri +Di) , (4.9d)

∑
m∈M

yim = 1, ∀i ∈ N , (4.9e)

ri ≥ Rmin
i ,∀i ∈ N ,m ∈M, (4.9f)

yim, af ∈ {0, 1}, ∀f ∈ F ,m ∈M, (4.9g)

where y and r are vectors defined as y = {yim|m ∈M, i ∈ N}, and r = {ri|i ∈ N}, respec-

tively. The constraints in P0 can be explained as follows: constraint in (4.9b) represents

the cache capacity constraints of the MEC server, where T is the time duration of each

video file and S is cache capacity of the MEC server; the startup delay constraint in (4.9c)

specifies that the initial startup delay experienced by the user i to download the requested

video file either from the MEC server or the origin content server should not exceed the

maximum tolerant waiting time τmax
i ; constraint (4.9d) requires the computing rate to be
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smaller than or equal to the computing capacity on the MEC severer; constraint (4.9e) guar-

antees that only one resolution level is selected for the video requested by each user; finally,

constraint (4.9f) ensures that the data rate of each user is above or equal to the desired data

rate of each user. It can be seen that P0 is a MINLP, which is NP-hard [122] and therefore

it is highly difficult to solve optimally in polynomial time. Furthermore, the complexity of

solving P0 by using greedy or genetic methods will increase significantly with the number

of users and BSs. In future cellular networks, the density and number of small cells will rise

significantly so that the size of optimization variables will become very large. To overcome

these drawbacks, we propose to reformulate problem P0 using relaxation techniques in the

following subsections in order to derive a tractable, low-complexity solution.

4.4.3 Distributed-VQM Solution

In our proposed model, the video resolution level is determined by VQM optimization prob-

lem according to user playback parameters such as initial startup delay and the achievable

data rate. Then, the server resources are assigned depending on the video requests. There-

fore, the MEC network is required to provide some information to help users and servers to

enhance the network performance through caching and transcoding. As shown in P0, our

goal is to design an efficient scheme to maximize the average QoE of all requested videos

while considering the computing resource limitation. To deal with non-convexity of P0,

we adopt the DDM so that the the VQM problem can be decoupled to two subproblems,

which can be efficiently solved by standard optimization solver. We define independent

local feasible sets Γy, and Γd for variables y, and r, respectively. These feasible regions

only subject to constraints that include one of the variables, which can be described as,

Γy = {yim|yim ∈ {0, 1}, i ∈ N ,m ∈ M} and Γr = {ri|ri ∈ R+, i ∈ N} . The Lagrangian

associated with P0 can be calculated as,

L(y, r, µi) =
∑
i∈N

∑
m∈M

Uim(Rfm)yim +
∑
i∈N

µi

[ ∑
m∈M

qmyim

− βcodi (Giri +Di)

]
, ∀f ∈ F ,

(4.10)
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where µi is the Lagrangian multiplier. The dual problem is thus expressed as,

min
µi∈R+

g(µi) = gy(µi) + gr(µi), (4.11)

where gy(µi), and gr(µi) are dual functions obtained as the maximum value of the La-

grangians solved as follows,

gy(µi) = sup
y∈Γy

{∑
i∈N

∑
m∈M

Uim(Rfm)yim + µiqmyim

}
(4.12)

gr(µi) = sup
r∈Γr

{
−
∑
i∈N

∑
m∈M

µiβ
cod
i (Giri +Di)

}
(4.13)

It is obvious that g(µi) in (4.11) is not a differentiable function due to the binary variable

y. Thus, we can employ sub-gradient method to solve dual problem (4.11), which can be

described as,

zµi =
∑
m∈M

qmyim − βcodi (Giri +Di), (4.14)

where zµi is a subgradient of the objective g(µi) for µi. According to dual decomposi-

tion [123], the parameters µi can be updated as,

µ
[t+1]
i =

[
µ
[t]
i − ρ

[t]
µ z

µ
i

]+
, (4.15)

where ρ
[t]
µ is the step length at iteration t, and [x]+ = max{0, x} denotes the projection

function to the nonnegative orthant. Thus, if we can solve the inner problems (4.12) and

(4.13) in each iteration, the controller at each server can collaborate to update dual variables

and transfer them to the BSs and users to assist them to find optimal solutions of their own

variables (y and r).

Video Quality of Experience Selection. The target of this subproblem is to op-

timally set the video quality level, yim. From (4.10), the the video QoE selection can be
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expressed as,

P1 : max
y∈{0,1}

∑
i∈N

∑
m∈M

Uim(Rfm)yim + µiqmyim (4.16a)

s.t. (4.9b), (4.9e). (4.16b)

The structure of the objective function for P1 can be described as follows. The parameter

µi represents the bandwidth cost of user i given by the network, where µi > 0 means the

network can provide more bandwidth for the user i by using the cost to push the user to

select higher resolution. However, if µi ≤ 0, the network may not have enough resource to

support a higher video quality. Problem P1 is still a MINLP due to the binary variable

yim. Several standard solvers (e.g., CVX, MOSEK) can solve it optimally by using the

Branch-and-Bound (BnB) algorithm [124]. However, the computational complexity of BnB

is prohibitive for a large network. For the worst case, 2M iterations are required, thus the

computational complexity is approximated as O
(
2M (MN)3.5

)
, which grows exponentially

with the number of BSs and UEs. Therefore, an efficient algorithm in proposed here below.

To make P1 tractable, we relax the video resolution binary variable yim to a real-valued

variable, i.e., ymi ∈ [0, 1]. Thus, we have to recover it to a binary value after getting the

sub-optimal solution. The basic idea of the rounding method is that we select the highest

resolution for users under the current resource allocation solution. The recovering of yim

can be achieved as,

yim =


1 If m = argmax{Dim > 0},

0 otherwise,

∀m ∈M, (4.17)

where Dim is the first-order partial derivation of the objective function in P1 with respect

to yim.
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Algorithm 5 Iterative VQM algorithm for mobile user i

1: Initialize:M, F , Rfm, Pif , β
cod
i , µi, Gi, Di, S, D0, ϕ, R0, τ

max
i , T , ∆T , Rmax

i , coifm,

µik, z
[t]
µ , ρe, ρo, ρµ, infinitesimal number ω and iteration index t ← 1, ∀i ∈ N , f ∈ F ,

m ∈M
2: for i = 1 : N do
3: while t ≤ Imax, and |µi(t+ 1)− µi(t)| > ω do
4: //Video QoE Selection//
5: Calculate Df (Rfm) from (4.7)
6: Compute yim from P1
7: //Video Transmission Rate Scheduling//
8: Calculate τ i,efm and τ i,ofm from (4.5) and (4.6), respectively
9: Compute ri from P2

10: //Lagrangian Multiplier Update//
11: Update Lagrangian multiplier µi by (4.15)
12: t = t+ 1

Video Transmission Rate Scheduling. Similarly to the procedure used to generate

P1, the problem in (4.13) can be formulated as,

P2 : max
r
−
∑
i∈N

∑
m∈M

βi(Giri +Di) (4.18a)

s.t. (4.9c), (4.9f). (4.18b)

Notice that P2 is a convex problem because the objective function and its constraint are

affine [63]. Thus, it can be solved via standard convex optimization techniques. The

proposed VQM algorithm is summarized in Algorithm 5, in which the time complexity

of the algorithm for user i is O(NMImax), where Imax denotes the maximum number of

iterations of the algorithm.

4.5 Performance Evaluation

In this section, we first detail the experimental setups and results for the programmable

MEC testbed. Then, we present numerical simulation results to evaluate the performance

of our proposed VQM algorithm.
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4.5.1 Testbed Experiment

We present here our MEC testbed including the testbed architecture, configuration, and

experiment methods. Finally, we analyze the performance of the MEC server, in terms of

CPU processing time and latency.

Testbed Architecture. We conducted experiments on a testbed consisting of two

main components, i.e.,

• RAN : We implement a RAN consisting of one LTE eNB and one User Equipment (UE)

using SDR boards—the Ettus USRP B210’s supporting 2×2 MIMO with sample rate

up to 62 MS/s. The hardware architecture of the SDR platform consists of two-

channel USRP devices with continuous RF coverage (70 MHz–6 GHz). Both eNB

and UE are defined to Matlab LTE tools, which are deployed on the MEC server.

• MEC server : We utilize an Intel Xeon server, a Dell Precision T5810 workstation with

Intel Xeon CPU E5-1650, 12-core at 3.5 GHz, and 32 GB RAM, fully configurable

with real-time RF transmitting and receiving signals. To realize the LTE Medium

Access Control (MAC) layer in the MEC server, we implement a dynamical scheduler

to allocate the radio resources based on various scheduling priorities such as a Channel

Quality Indicator (CQI), corresponding to a PRB or multiple PRBs in the form of

MCS index to the BS. LTE specifications require that all PRBs allocated to the same

user in any given Transmission Time Interval (TTI) must use the same MCS (1 ms).

We summarize the testbed configuration parameters in Table 4.1. In particular, the

eNB is configured in band 7 (FDD) using a downLink carrier frequency of 2.66 GHz. The

transmission bandwidth can be set to 5, 10, and 20 MHz, corresponding to 25, 50, and

100 PRBs, respectively. In order to determine the successful connection between eNB and

UE, the findsdru matlab function is used to find and report status for all connected USRP

boards.

CPU Utilization. It is of critical importance to understand the CPU utilization of

the MEC server in order to design efficient resource provisioning and allocation schemes.

Therefore, we profile the physical layer of LTE to understand the relation between the

processing load and number of allocated PRBs and MCS. We study this relationship by
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Table 4.1: Testbed Configuration Parameters for eNB and UE.

Duplexing Mode FDD Mobility Static

Frequency 2.66 GHz PRB 25, 50, 100

Transm. power 150 dBm Rad. pattern Isotropic

MCS [0÷ 27] SINR 20

scheduling a single user for transmission or reception. We prepare a video file which has the

length of 10 s and 720p resolution to transmit over the air by using MEC testbed. The video

file is encoded to H.265 standard and then modulated to 16 QAM with OFDM scheme.

In this experiment, the CPU utilization percentage is calculated using the top command

in Linux, which is widely used to display processor activities as well as various tasks managed

by the kernel in real time. We repeatedly send UDP traffic from the eNB to the UE with

various MCS and PRB settings. Then, based on the MCS index used in each experiment,

we can calculate the corresponding downlink throughput by multiplying the bit rate by the

number of bits in the modulation scheme [125]. The CPU utilization percentage has been

recorded as in Fig. 4.3(a). We can conclude from Fig 4.3(a) that the percentage of CPU use

at the MEC server is well approximated as a linear function of the downlink throughput,

in which the CPU utilization can be fitted as,

CPU [%] = 0.6247ψ + 23.4, (4.19)

where ψ is the throughput measured in Mbps.

Adaptive Video Streaming. In this experiment, we aim to evaluate the performance

of the MEC server under the adaptive video streaming, in which the MEC server tries

to transmit the video file to user according to its channel condition. To simulate the

MEC-based adaptive bitrate streaming, we use two types of bitrate streams provided as:

low bitrate at 700 Kbps, and high bitrate at 1600 Kbps. As the CQI is calculated from

SINR [126], we use the parameters shown in Table 4.2 to give the transforming process

of SINR-to-CQI mapping. The LTE System Toolbox product provides a set of channel

models for the test and verification of UE and eNB radio transmission and reception as

defined in [127]. In [128], the authors show that there is a linear relation between the CQI
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Table 4.2: LTE downlink feedback parameters [1].

Modulation CQI SINR [dB]

QPSK 1 ∼ 6 −6.658 ∼ 2.424

16QAM 7 ∼ 9 4.487 ∼ 8.456

64QAM 10 ∼ 15 10.266 ∼ 19.809
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Figure 4.3: (a) Percentage of CPU usage versus downlink throughput; and (b) Throughput
versus modulation scheme for different video versions with 25 PRBs; and (c) Average dis-
tortion reduction per user with cache size S = 120 Mbps.

index and the actual SINR limits in [dB] as,

SINRu[dB] = uc1 + c2,∀u ∈ U = {1, ..., 15}, (4.20)

where c1 and c2 are constants. It is also shown that the actual range of the SINR limits in

[dB] is determined by the following observations: SINR[dB] = −6 corresponds to CQI = 1,

while SINR[dB] = 20 corresponds to CQI = 15. We then have −6 = c1+c2 and 20 = 15c1+

c2, and hence, c1 = 13/7 and c2 = −55/7. Therefore, we select three types of modulation

schemes and their corresponding parameters are shown in Table 4.2. Figure 4.3(b) shows the

performance of three video bitrate version with 25 PRBs for different modulation schemes.

Note that with the increase of CQI index value, it is better to select adaptive bitrate

technique to overcome the high throughput requirement at the user side.

4.5.2 Numerical Simulations

We present now simulation results to evaluate the performance of our proposed Algorithm.

The simulations are carried out using a Matlab implementation with MOSEK solver [67].
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Simulation Setup. We consider a MEC network with one MEC server deployed on a

BS of a cellular RAN. The mobile users are randomly located inside each cell so that distance

between them and their nearest BS is d or d/2. The distance between two nearest BS are 2d

where d = 500 m. We assume that the BS has a single antenna and transmit power PT =

45 dBm, while the minimum data rate requirement for the i-th users is Rmin
i = 1.5 Mbps.

We use the distance-dependent path-loss model, given as L(d) [dB] = 148.1+37.6 log10 d[Km],

and the log-normal shadowing variance set to 8 dB. In addition, the wireless transmission

bandwidth B is set to 5 MHz, the noise power is −100 dBm, and βcodi = 200 Mbps. We

assume the MEC testbed parameters are set as Gi = Di = 1. We assume the video library

F that consists of V = 4 unique videos, each has the same length of T = 10 s and the time

fraction with a video file ∆T = 1s that is required to be buffered by the user before the

actual playback starts on the user’s screen. We assume the constant maximal distortion is

set as Dmax = 500 and each video file can be transcoded to M = 3 resolution levels with

encoding rate being {3R, 2R,R} where R = 2 Mbps. We assume that the storage capacity

for the MEC server is set to S = 120 Mbits and them empirical parameters θ, R0 and D0

are set to be 1, R/2, and 1, respectively. The popularity of the videos being requested at

the BS follows a Zipf distribution with the skew parameter α = 0.8, i.e., the probability

that an incoming request is for the i-th most popular video is given as, Pif = 1/iα∑
f∈F 1/fα .

To show the effects of MEC resources, we consider three scenarios, as follows:

• VQM refers to our algorithm, which considers the video cache and transcoding (i.e.,

cached video can be utilized only if the exact resolution level is requested) at a MEC

server.

• MECC refers to the scenario where the MEC server only performs caching without

transcoding.

• No-MECC refers to the scenario where all requested videos must be downloaded from

the original server.

Impact of system parameters. In this subsection, we evaluate and compare the

algorithm performance of different schemes under various simulation settings, in order to

gain a further insight into the impact of different system parameters.
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1) Number of users: To evaluate our proposed scheme, we increase the number of users

to represent the increasing network load. Figure 4.3(c) illustrates the average distortion

reduction with cache size of all users with different network settings. It can be observed

that the average distortion value decreases when the number of users increase for three sce-

narios. The reason is that the BS and its MEC server allocate their transmission resources

fairly to all connected users. when more users join the network and connect to the BS and

MEC server, they will compete for the shared transmission resources, resulting in a higher

probability of communication link interference and a lower average user throughput. How-

ever, VQM algorithm has better performance than that of MECC and No-MECC schemes.

2) Cache size: Figure 4.4(a) illustrates the the average distortion reduction per user under

varying the cache size of the MEC server S. The general observation for all schemes is that

the average distortion reduction per user increases as the cache size gradually increases.

The reason is that, the MEC server can pre-fetch more video files in its local cache with the

increment of the cache size, which in turn can create more opportunities for the MEC server

to serve more user requests without the need to communicate with the origin server. In

comparison, the VQM has better performance than that of MECC and No-MEC schemes.

3) Computing capacity and percentage of HD video: Figure 4.4(b) illustrates that increasing

the capability of MEC servers can further improve the performance. Specifically, it is shown

that the proposed VQM scheme becomes stable after a certain level of the capability of MEC

servers, because other parameters, bandwidth of wireless links, and data rate of user have

limited value. As pointed out in [129], the video data rate more than or equal 5 Mbps can be

considered as a minimum requirement for the next generation mobile network. Percentage

of HD video requests refers to the proportion of users that have achievable data rate higher

than 5 Mbps (i.e., resolution higher than 1080p). Figure 4.4(c) shows that the ratio of HD

video (1080p and higher resolutions) decreases with the load of the network, and that it

increases with the available network resources. The proposed scheme gets a much higher

ratio, up to around 14%, on the 1080p and higher resolutions compared to the MECC and

No-MECC schemes. In addition, as shown in Fig. 4.4(c), when the network load is high

and network resource is very limited, the proposed VQM scheme still can provide around

20% and 13% of users with resolutions of 1080p and higher.
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Figure 4.4: (a) Average distortion reduction with different value of cache sizes; and (b) Av-
erage distortion reduction with different value of computing capacities; and (c) Percentage
of HD video requests with different number of users.

4.6 Summary

We utilized the Distortion-Rate (DR) properties to model the end-user Quality of Expe-

rience (QoE) and formulated an optimization problem that aims at maximizing the av-

erage QoE over all users subject to practical constraints on video data rate and comput-

ing resources. Specifically, the considered VQM problem is cast as a MINLP that jointly

determines the integer video resolution levels and data rate variables. Due to the chal-

lenging combinatorial and non-convex nature of the VQM problem, we utilized Lagrangian

relaxation and Dual-Decomposition Method (DDM) to decompose the main optimization

problem into two sub-problems. The sub-problems were formulated such that they can be

solved efficiently using standard optimization solvers. Then, we presented the main MEC

testbed implementation, discussed its challenges, and proposed a technique to stream video

adaptively based on CQI index. Our experimental results showed that the frame processing

time and CPU utilization of the MEC sever increase with MCS index and with downlink

throughput. Additionally, simulation results were presented to demonstrate the superior

performance of our VQM algorithm over competing schemes.
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Chapter 5

Latency and Quality-Aware Task Offloading in Multi-Node

Next Generation RANs

Next-Generation Radio Access Network (NG-RAN) is an emerging paradigm that provides

flexible distribution of cloud computing and radio capabilities at the edge of the wireless

Radio Access Points (RAPs). Computation at the edge bridges the gap for roaming end

users, enabling access to rich services and applications. In this chapter, we propose a multi-

edge node task offloading system, i.e., QLRan, a novel optimization solution for latency

and quality tradeoff task allocation in NG-RANs. Considering constraints on service la-

tency, quality loss, edge capacity, and task assignment, the problem of joint task offloading,

latency, and Quality Loss of Result (QLR) is formulated in order to minimize the User

Equipment (UEs) task offloading utility, which is measured by a weighted sum of reduc-

tions in task completion time and QLR cost. The QLRan optimization problem is proved as

a Mixed Integer Nonlinear Program (MINLP) problem, which is a NP-hard problem. To ef-

ficiently solve the QLRan optimization problem, we utilize Linear Programming (LP)-based

approach that can be later solved by using convex optimization techniques. Additionally,

a programmable NG-RAN testbed is presented where the Central Unit (CU), Distributed

Unit (DU), and UE are realized by USRP boards and fully container-based virtualization

approaches. Specifically, we use OpenAirInterface (OAI) and Docker software platforms to

deploy and perform the NG-RAN testbed for different functional split options. Then, we

characterize the performance in terms of data input, memory usage, and average process-

ing time with respect to QLR levels. Simulation results show that our algorithm performs

significantly improves the network latency over different configurations.
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5.1 Introduction

Motivation: Mobile platforms (e.g., smartphones, tablets, IoT mobile devices) are becom-

ing the predominant medium of access to Internet services due to a tremendous increase

in their computation and communication capabilities. However, enabling applications that

require real-time, in-the-field data collection and mobile platform processing is still chal-

lenging due to (i) the insufficient computing capabilities and unavailable aggregated/global

data on individual mobile devices and (ii) the prohibitive communication cost and response

time involved in offloading data to remote computing resources such as cloud datacenters

for centralized computation. In light of these limitations, the edge computing term was

introduced to unite telco, IT, and cloud computing and provide cloud services directly from

the network edge. In general, the edge cloud servers or nodes are usually deployed directly

at the mobile Base Stations (BSs) of a Radio Access Network (RAN), or at the local wireless

Access Points (APs) using a generic-computing platform. Hence, the edge cloud node has

ability to execute the offloading applications in close proximity to end users. In this way,

the network end-to-end (e2e) latency and the back/mid/fronth-haul cost will be reduced.

Recently, Cloud Radio Access Network (C-RAN) [20] has been emerged as a clean-slate

redesign of the mobile network architecture in which parts of physical-layer communica-

tion functionalities are decoupled from distributed, possibly heterogeneous, Radio Access

Points (RAPs), i.e., BSs or WiFi hotspots, and are then consolidated into a baseband unit

pool for centralized processing. However, the centralized C-RAN design follows a “one size

fits all” architectural approach, which makes it difficult to address the wide range of Qual-

ity of Service (QoS) requirements and support different types of traffic [130]. Also, a fully

centralized architecture imposes high capacity requirements on fronthaul links [19]. There-

fore, Next Generation RANs (NG-RAN) [131] has been introduced as a resource-efficient

solution to address the above issues and reduce deployment costs. It is worthy of note that,

due to the flexibility of NG-RAN architecture, mobile network operators will have high de-

gree of freedom to move from a “full centralization” in C-RAN to a “partial centralization”

in NG-RAN with a specific functional splitting option to a “distributed approach” in edge

cloud [21]—enabling rich services and applications in close proximity to the end users.
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Task offloading can enhance the performance of mobile devices because servers in the

edge cloud have higher computation capabilities than mobile devices. Therefore, enabling

task offloading in NG-RAN is proposed to address the limitations (e.g., storage and comput-

ing resources) in the existing RANs. Meanwhile, in some cases, processing the entire input

data in edge cloud servers would require more than the available computing resources to

meet the desired latency/throughput guarantees. In the context of NG-RAN applications

(e.g., IoT, AR/VR), transferring, managing, and analyzing large amounts of data in an edge

cloud would be prohibitively expensive. Hence, the tradeoff between service latency and

the tolerance of quality loss can improve key network performance metrics like the user’s

QoS [132,133]. In this chapter, we define the Quality Loss of Results (QLR) term as the level

of relaxing/approximating in data processing while the user’s QoS is still at an acceptable

level. Accordingly, our key idea is motivated by the observation that in several NG-RAN

applications such as media processing, image processing, and data mining, a high-accuracy

result is not always necessary and desirable; instead, obtaining a suboptimal result with low

latency cost is more acceptable by vendors or end users. Consequently, relaxing QLR in

such applications alleviates the required computation workload and enables a significant

reduction of latency and computing cost in NG-RAN.

Our Vision: Our objective is to design a holistic decision-maker for an optimal joint

task offloading scheme with quality and latency awareness in a multi-edge NG-RAN to min-

imize the UEs’ overall offloading cost. Specifically, we consider a multi-edge node network

where each RAP is equipped with an edge node to provide computation offloading services

to UEs. In this way, several key benefits could be brought up to NG-RAN system over the

multi-node servers; (i) preventing the resource-limited edge node/servers from becoming

the bottleneck. Usually, the cloud servers overload when serving a large number of UEs

with high processing priority. By directing many UEs to nearby edge nodes, the overloaded

can be alleviated; (ii) reducing the energy consumption and network latency. Each UE has

the capability to offload its task to the RAP with a more favorable uplink channel condi-

tion; (iii) getting better network collaboration. The NG-RAN with multi-RAP set could

coordinate with each other to manage and balance the computation resources between the
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edge servers. In this work, a Latency and Quality tradeoffs task offloading problem, QL-

Ran, is formulated to trade off between the service latency and the acceptable level of QLR

under specific application requirements ( e.g., QoS, computing, and transmitting demands).

Additionally, the process of task allocation across edge nodes is formulated as an objec-

tive optimization problem. The optimization objectives include both minimizing the average

service latency and reducing the overall quality loss.

Our Contributions: The main objective of this chapter is to design the QLRan al-

gorithm, optimizing the trade-off between the application completion time and QLR cost.

The main contributions of this chapter are summarized as follows.

• Subject to transmission and processing delays, quality loss, and computing capac-

ity constraints, we formulate and analyze mathematically the QLRan optimization

problem in NG-RAN as a Mixed Integer Nonlinear Program (MINLP) that jointly

optimizes the computational task allocation and QLR levels. The problem formu-

lation and analysis trade off optimizing the service latency and the overall quality

loss.

• The QLRan optimization problem is proved as a non-deterministic polynomial-time

hard (NP-hard) problem. To solve the problem efficiently, we first relax the binary

computation offloading decision variable and QLR level to real numbers. Then, we uti-

lize the Linear Programming (LP)-based method to solve the relaxed QLRan problem

by using convex optimization techniques.

• We provide a set of tools to deploy the NG-RAN mobile network. To explore the virtu-

alization in the 5G system, we assign several OpenAirInterface (OAI) [49] containers

composing of a RAN and the core of the 5G system. Specifically, we implement a

programmable testbed to demonstrate a connection between UE, RAN, and Evolved

Packet Core (EPC) implemented in the NG-RAN virtualization environment. The

real-time experiments are carried out under various configurations in order to profile

functional splitting, the data input, memory usage, and average processing time with

respect to QLR levels.

• We provide formal proofs on the convergence and optimality of our algorithm and
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evaluate its performance under different network conditions. In terms of computing

capacity and number of tasks, the numerical results show that latency can be reduced

while decreasing the QLR level under practical physical constraints.

Chapter Organization. The remainder of this article is organized as follows. The

related work is introduced in Sect. 5.2. We present the system model in Sect. 5.3. The

QLRan problem is formulated in Sect. 5.4, followed by presenting a linear programming-

based solution for QLRan optimization problem. The performance evaluation is discussed

in Sect. 5.5; finally, we conclude the chapter in Sect. 5.6.

5.2 Related Work

In this section, we introduce the key concepts and papers from both industry and academia

over the past several years.

5.2.1 Related Concepts and Technologies

Several cloud-based task offloading frameworks have been proposed in recent years. For

example, Mobile Cloud Computing (MCC) has been proposed as a cloud-based network

that can provide mobile devices with significant capabilities such as storage, computation,

and task offloading to a centralized cloud [134]. However, MCC has faced several noticeable

challenges to address the mobile next generation in terms of end-to-end network latency,

coverage, and security. To tackle these challenges, Multi-access Edge Computing (MEC)

has been introduced by European Telecommunications Standards Institute (ETSI) as an

integration of the edge cloud computing systems and wireless mobile networks [135]. One

of the key-value features of MEC is to enable rich services and applications in close prox-

imity to end users. with the MEC paradigm, mobile devices have options to offload their

computation-intensive tasks to a MEC server to meet the demanding Key Performance In-

dicators (KPIs) of 5G and beyond, especially in terms of low latency and energy efficiency.

Similar to MEC systems, fog computing networks are proposed by CISCO systems to bring

cloud services to the edge of an enterprise network [136]. In fog networks, the computation

processing is mainly executed in the local area networks and in IoT gateways or fog nodes.
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Recently, the concept of NG-RAN has been defined by 3GPP as a promising approach to

merge edge cloud features and RAN functionaries. In industry, many RAN organizations

have made significant progress in implementing open source-software that supports NG-

RAN technology. For instance, EURECOM has implemented the OpenAirInterface (OAI)

platform [49], which provides an open, full software implementation of 5G and beyond

systems compliant with 3GPP standards under real-time algorithms and protocols. Plus,

ORAN [137], founded by AT&T, aims to drive the mobile industry towards an ecosystem

of innovative, multi-vendor, interoperable, and autonomous NG-RAN with reduced cost,

improved performance, and greater agility. In general, these open RAN-software projects

have a high degree of flexibility, such as being able to run CU and DU entities over a

fully virtual environment such as VMs or Linux containers, as well as enabling promising

next-generation features (e.g., network slicing and functional splitting). Such NG-RAN

software will undoubtedly speed up the transition from monolithic and inflexible networks

to agile, distributed elements depending on virtualization, softwarization, openness, and

intelligence-fully interoperable RAN components.

5.2.2 Task Offloading in Cloud-based RANs

As part of task offloading in cloud-based RAN, several papers have focused on enhancing

overall system performance in network energy, system latency, and energy efficiency. For

instance, the work in [138] formulates a joint task offloading and resource allocation to

maximize the users’ task offloading gains in MEC. Then the main optimization problem has

been decomposed into several sub-optimal problems that are solved using convex and quasi-

convex optimization techniques. The authors in [139] study the energy-latency tradeoff

problem for IoT partial task offloading in the MEC network by jointly optimizing the

local computing frequency, task splitting, and transmit power. Then, the optimization is

solved by an alternate convex search-based algorithm. In [140], by considering a cloud-fog

computing network, the authors design a computation offloading algorithm to minimize

total cost with respect to the energy consumption and offloading latency. To maximize the

energy efficiency of task offloading, Vu et al. propose an approach based on the interior point

method and bound algorithm. Exploiting machine learning methods in task offloading has
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Table 5.1: Summary of Key Notations

Symbol Description

U set of UEs
S set of edge nodes
K set of computational tasks
auk indicator to show whether the task k is generated by UE u
aus indicator to show whether edge node s is available for UE u
ask indicator to show whether task k is assigned to the edge node s
qk QLR level assigned to task k
Du(qk) input data transfer the computing task k from UE u to the edge
Cu(qk) workload of computation to accomplish the task k
Rus transmission data rate of the link between edge node s and UE u
τupk uplink transmission time
τ exek execution time of task k at the edge
fus assigned CPU-clock frequency on edge s of UE u
B(qk) computing demanded from task k with QLR level
δt weight of latency consumption time for task k
δq weight of QLR level for task k

also attracted several types of research in cloud-based RAN systems. Using reinforcement

learning, the work in [141] introduces a MEC-based blockchain network where multi-mobile

users act as miners to offload their data processing and mining tasks to a nearby MEC server

via wireless channels. Although the focus of our article is in the line direction of mentioned

works, applying different offloading schemes and constraints within the joint optimization

NG-RAN framework could open up new, interdisciplinary avenues for researchers in the

context of the 5G and beyond systems. Previously mentioned works consider a single

remote server as the offloading destination. In contrast, with considering constraints on

service latency, quality loss, and edge capacity, our work proposes an algorithmic approach

for latency and quality tradeoff task offloading in multi-node NG-RANs. Furthermore, our

work is based on real-world NG-RAN testbed experiments that allow us to characterize

the performance in terms of data input, memory usage, and average processing time with

respect to QLR levels.
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5.3 System Model

In this section, we describe the task offloading process, network setting, quality loss of result

tradeoff, and task uploading model. Table 5.1 summarizes the key notations used.

5.3.1 Task Allocation Process

The main process of the task allocation in our proposed NG-RAN system can be summarized

as follows:

1. Edge cloud nodes: Initially, a UE searches its communication area for the best edge

cloud node to connect to. Hence, the UE will send a pilot signal and collects response

from edge cloud nodes. Any edge cloud node that responds will be considered to be

a potential candidate. For instance, in Fig. 5.1, the edge cloud candidate of the UE

is the edge node within the coverage area of LTE eNB DU.

2. Task classification: After the edge cloud node assignment, the UE starts uploading

the task information to the edge node. Some key information include; i) the unique ID

of the uploading task; ii) the application’s layers and requirements; iii) the task profile,

which include the task constraints (e.g., tolerable latency, QLR level, workload).

3. Task executing: After task classification, the RAP will run a resource allocation algo-

rithm to determine: i) the service time required for task accomplishment; ii) comput-

ing capacity that is available for the task executing; iii) the compare these estimates

to the tasks’ tolerated latency requirement.

5.3.2 Network Description

For the NG-RAN system model, we consider a multi-cell, multi-node edge system as il-

lustrated in Fig. 5.1, in which each RAP (e.g., BS, eNodeB (eNB), gNodeB (gNB), etc.)

engages with a set S = {1, 2, .., S} of S edge nodes (e.g., neighboring DU servers) to supply

computation offloading services to the limited-resource mobile devices such as smartphones,

tablets, and IoT devices. Specifically, each edge cloud node can be realized either by a phys-

ical server, or by Virtual Machine (VM)/container, which can communicate with the UE
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through wireless channels provided by the corresponding RAP. Plus, each UE can select to

offload its computation task to an edge node from the candidate nearby severs. Accord-

ingly, we denote the set of UEs in the mobile system and the set of computation tasks as

U = {1, 2, ..., U} and K = {1, 2, ...,K}, respectively. To define the association between UEs

and RAPs, we define two binary indicators as follows, auk ∈ {0, 1} is presented to indicate

whether the task k is generated by UE u, while bus ∈ {0, 1} is presented to indicate whether

edge node s is available for UE u (i.e., the edge node s has an acceptable channel state

condition to be in the list of edge candidate). Hence,

auk =


1, k ∈ Ku

0, Otherwise

, aus =


1, s ∈ Su

0, otherwise

, (5.1)

where Su ⊆ S is denoted as the set of edge candidates for UE u, and Ku ⊆ K is defined

as the set of tasks generated by UE u. Thus, from (5.1), we can denote ask as a binary

variable to indicate whether task k is assigned to edge node s or not. If the edge node s is

available for UE u, the task k will be successfully assigned to the edge node s. Hence, ask

will be satisfy the following requirement,

ask ≤ min{auk, aus},∀u ∈ U , k ∈ K, s ∈ S. (5.2)

The modeling of user computation tasks, task uploading transmissions, edge computation

resources, and offloading utility are presented here below.

5.3.3 Quality Loss of Result Tradeoff

Many emerging applications in cloud-based computing networks (e.g., online recommender,

video streaming, object recognition, and image processing) exhibit variant optional param-

eters that authorize end-users to take advantage of the tradeoff between QLR and service

latency. For instance, many object recognition algorithms basically demand specific extrac-

tion methods of several numbers of layers with given wavelengths and orientations from

image datasets for advanced analysis [142]. Hence, the achieved QLR managing the pro-

cessing time in the object recognition can be relaxed if the number of extracted layers are
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Figure 5.1: System overview of QLRan, in which the gray circle represents the communi-
cation range of the RAP.

properly adapted. Another example is multi-bitrate video streaming, in which the Over-

The-Top (OTT) video content providers (e.g., YouTube, Amazon Prime, Netflix, ...) offer

to end-users different video quality levels to fit within the device’s display and network con-

nection [21,143]. Adjusting the video quality levels can save extra computational energy and

time for OTT video providers at the same time make users experience good video watching

without interruption. In this chapter, we denote qk as QLR level assigned to task k. Hence,

we allow each UE u to select different qk values to exploit the trade-off between processing

cost and latency. We define QLR as five levels in which level 1 refers to the strictest demand

for quality, while level 5 represents the highest tolerance for quality loss. In practice, QLR

levels are determined at an application-specific level.

5.3.4 Task Uploading

The computation task uploading in NG-RAN system can be described as a tuple of two

parameters, ⟨Du(qk), Cu(qk)⟩, where Du(qk) [bits] represents the amount of input data

required to transfer the application execution (including system settings, application codes,

and input parameters) from the local device to the edge node, and Cu(qk) [cycles] denotes

the workload, i.e., the amount of computation to accomplish the task. Each UE u ∈ U

has one computation task at a time that is atomic and cannot be divided into subtasks.

The values of Du(qk) and Cu(qk) can be obtained through carefully profiling of the task

execution [138].
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In Sect. 5.5, we will provide more details about the modeling of these metrics. Besides,

the computation task associated with UE can be executed locally or offloaded to an edge

cloud node. The Mobile device would save battery bower by offloading part of its task

application to the remote edge; however, a considered cost, time and energy, from uploading

the input data would be added in the task offloading scenario. Therefore, similar to [138],

we consider several time parameters in the case of the UE u offloads its task k to one of

the edge nodes, the overall uploading time delay consists of the follows: (i) the time τupk [s]

to transmit the input to the edge node on the uplink, (ii) the time τ exek to perform the

computation task at the edge node, and (iii) the time to bring the output data from the

edge node back to UE on the downlink. In general, the size of the output data is much

smaller than the input data, and the downlink data rate is much higher than that of the

uplink. Therefore, similar to [138,144,145], we neglect the delay of sending the output in our

computation model. Note that when the delay of the downlink transmission of output data

is non-negligible, our proposed approach can still be directly applied for a given downlink

rate allocation scheme and known output data size. The transmission time of UE u, that

is required to send its task data input D(qk) in the uplink, can be determined as,

τupk =
Du(qk)

Rus
,∀u ∈ U , k ∈ K, s ∈ S, (5.3)

where Rus is the transmission data rate of the link between the selected edge node s and

UE u. Given the computing resource assignment, the execution time of task k at edge

node s is,

τ exek =
Cu(qk)

fus
, ∀u ∈ U , k ∈ K, s ∈ S, (5.4)

where fus denotes the assigned CPU-clock frequency on edge s to UE u of task k.

5.3.5 System Constraints

We now introduce the following four constraints to capture the features of a task offloading

multi-node NG-RAN system.

1. QLR constraint: As we will describe in 5.3.2, qk can be modeled based on a specific
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key metric in an application. In our scenario, we adopt the video resolution level

as qK in the video streaming application. Under these considerations, which will be

described in more details in Sect. 5.5 the QLR constraint for the task k is defined as,

qk = {1, 2, 3, 4, 5},∀k ∈ K

2. Task association constraint: We assume each computation task of the UE must be

assigned to one edge cloud node. Hence, the offloading policy would satisfy the task

association constraint, expressed as,

∑
s∈S

ask = 1,∀k ∈ K. (5.5)

3. Service latency constraint: In many graphic applications with multiple tasks, the re-

duction of computation workload at the edge node considerably affects the task exe-

cution latency. For instance, real-time gaming applications have a preferred response

time around 50 ms latency to enjoy a higher Quality of Experience (QoE) [146].

Achieving appropriate latency for a graphic video application demands tradeoffs pro-

cessing time, uploading time, and quality. In this chapter, we denote parameter τmax
k

to define the maximum tolerable system latency for the task k. To guarantee that the

task is accomplished in the allowed threshold time, the service latency constraint is

expressed as,

τupk + τ exek ≤ τmax
k , ∀k ∈ K. (5.6)

4. Resource constraint: In multi-node NG-RAN with intensive workloads, the compu-

tation capacity should be taken into account while designing a latency-quality opti-

mization algorithm. The computation capacity could refer to several hardware metrics

such as GPU, CPU, and memory. Adjusting these parameters is directly affected by

the service latency and the required quality. However, the computational processing

capacity at the edge cloud node cannot exceed its limited capacity. Therefore, we

present the parameter, Bmax
s , as the maximum computation capacity of edge node s,

while B(qk) is defined as the require computation capacity generated from processing
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task k at QLR qk. Hence, the capacity constraint is model as,

∑
k∈K

B(qk)ask ≤ Bmax
s ,∀s ∈ S. (5.7)

5.4 Problem Formation

In this section, we mathematically formulate the QLRan optimization problem, which op-

timizes the trade-off between the service latency and quality loss while offloading tasks in

NG-RAN edge nodes. Due to the intractability of the problem and the need for a practi-

cal solution, we then present a step-by-step solution based on a linear programming-based

solution, which is employed to transform the QLRan problem into a convex optimization

problem.

5.4.1 Latency and Quality Tradeoffs Problem

For a given A = {ask|s ∈ S, k ∈ K},the the set of selected edge nodes, and Q = {qk|k ∈ K},

the set of selected QLR levels, we define the system utility as the weighted-sum of all the

UEs’ offloading utilities,

Jk(A,Q) = δtτk + δqqk
∑

s∈S
ask,∀s ∈ S, k ∈ K, (5.8)

where τk =
(
τupk + τ exek

)
, 0 ≤ δt ≤ 1 and 0 ≤ δq ≤ 1 denote the weights of latency con-

sumption time and QLR levels for task k, respectively. Note that we define the latency

and quality tradeoffs utility, Jk(A,Q) of task k as a linear combination of the two metrics

because both of them can concurrently reflect the latency-quality tradeoff of executing a

task, i.e., both higher longer computation completion time and high accuracy of result lead

to higher computational cost. To meet task-specific demands, we allow different UEs to

select different weights, which are denoted by δt and δq, in decision making. For exam-

ple, a UE with low accuracy application demand would like to choose a larger δq to save

more computational cost. On the other hand, when a UE is running some delay-sensitive

applications (e.g., online movies), it may prefer to set a larger δt to reduce the latency.

We now formulate the Latency and Quality Tradeoffs (QLRan) problem as a system utility
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minimization problem, i.e.,

P1 : min
A,Q

∑
k∈K

Jk(A,Q) (5.9a)

s.t. :

ask ∈ {0, 1}, q ∈ {1, 2, 3, 4, 5},∀s ∈ S, k ∈ K, (5.9b)∑
s∈S

(τupk + τ exek )ask ≤ τmax
k ,∀k ∈ K, (5.9c)∑

k∈K
B(qk)ask ≤ Bmax

s ,∀s ∈ S, (5.9d)∑
s∈S

ask = 1,∀k ∈ K. (5.9e)

The constraints in the formulation above can be explained as follows: constraint (5.9b)

secure that the computation task can be accomplished in the time that cannot exceed than

the demanded maximum threshold time,τmax
k ; constraint (5.9c) implies that the demand

for computation capacity must not exceed its edge node capacity; finally, constraint (5.9d)

indicates that each task must be assigned as a whole to one edge node.

Proposition 2. P1 is an NP-hard problem.

Proof. To demonstrate that P1 is an NP-hard, let first consider the case, where δt = 0,

δq = 1. That means the time spent for uploading and executing a task is neglected for this

case and the focusing is done only on the second part of Jk(A,Q), where the QLR term

is important. We assume that q̂k represents the opposite value of qk and denotes as the

quality level in the result of task k. Accordingly, we can reformulate the P1 as P̂1, in which

the the new objective function Ĵ(A,Q) will be maximized. Plus, constraint (5.9c) can be

omitted for simplicity. Besides, Constraint (5.9d) is rewritten to imply that the resource

requirement of task k is exactly equal to its quality value q̂k. Each edge cloud node in the

NG-RAN system can only handle one task generated from the UE in the RAP coverage area.

Let âk is defended as a binary indicator to show whether the task k is assigned to the edge

node, and B to denote the resource capacity of the edge node. With these considerations,
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the optimization problem in (5.9) can be relaxed as,

P̂1 : max
∑

s∈S
q̂kâk (5.10a)

s.t. :
∑

k∈K
q̂kâk ≤ B, (5.10b)

âk ∈ {0, 1}. (5.10c)

It is obvious that problem P̂1 is a standard weighted-sum problem that is an NP-complete

problem [147]. Therefore, P1 also can be characterized as an NP-hard problem. The proof

is completed.

Next, we will propose an iterative approach to solve P1 based on Linear Programming-

based (LP) optimization. By utilizing the standard optimization solver (e.g., MOSEK [67]),

the proposed system can generate an efficient task allocation decision with an acceptable

latency tolerance constraint.

5.4.2 Linear Programming-based Solution

The key challenge in solving the optimization problem in P1 is that the integer constraints

ask ∈ {0, 1} and q ∈ [1, 5] make P1 a MIP problem, which is in general non-convex and NP

complete [148]. Thus, similar to works in [133, 149], we first relax the binary computation

offloading decision variable, ask, and QLR level, qk, to real numbers, i.e., 0 ≤ ask ≤ 1. Then

we will discuss the convexity of P1 with the relaxed optimization variables ask and qk. Then,

we consider the following; D(qk) = ydqk + zd, C(qk) = ytqk + zt, B(qk) = ybqk + zb, and

xsk = qkask. The parameters yd, zd, yt, zt, yb, and zb can be estimated by offline profiling

of the NG-RAN testbed, as detailed in Sect. 5.5. The LP problem for the primal problem
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is given by,

P2 : min
A,Q,X ,t

δtt+ δq
∑

s∈S
xsk (5.11a)

s.t. :

0 ≤ ask ≤ 1, 1 ≤ qk ≤ 5, t ≤ τmax
k , ∀s ∈ S, k ∈ K, (5.11b)

0 ≤ xsk ≤ 5ask, ∀s ∈ S, k ∈ K, (5.11c)

qk − 5(1− ask) ≤ xsk ≤ qk∀s ∈ S, k ∈ K, (5.11d)∑
s∈S

(
yd
Rus

+
yt
fus

)
xsk +

(
zd
Rus

+
zt
fus

)
ask ≤ τmax

k , (5.11e)∑
s∈S

ask = 1, ∀k ∈ K. (5.11f)

Proposition 3. Constraints (5.11c) and (5.11d) can be relaxed to the constraint xsk =

askqk.

Proof. Case 1: (ask = 0, and qk ∈ [1, 5]). Form constraints (5.11c) and (5.11d), we can

conclude the follows,

xsk ≤ 0, xsk ≥ 0, and xsk ≤ qk, xsk ≥ qk − 5, (5.12)

After solving (5.12), we can get xsk = 0.

Case 2: (ask = 1, and qk ∈ [1, 5]).

xsk ≤ 5, xsk ≥ qk, and xsk ≥ qk, xsk ≥ 0, (5.13)

From (5.13), we can conclude xskqk = qk. From Case 1 and Case 2, we demonstrate that

the constraints (5.11c) and (5.11d) are equivalent to the constraint xsk = askqk. The proof

is complete.

5.5 Performance Evaluation

In this section, we describe the testbed experiments and simulation results to provide more

details about the QLR level model in terms of memory and CPU usage, as well as to test
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the effectiveness of the QLRan algorithm.
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Figure 5.2: Logical illustration of the fully containerized-based NG-RAN testbed.

5.5.1 Testbed Experiment

We present here our QLRan testbed, including the architecture, configuration, and exper-

iment methods. Then, we analyze the performance of QLRan in terms of CPU processing

time and latency.

Architecture. We conducted experiments on a testbed consisting of various compo-

nents, i.e.,

• End users: For our experiment we use a Samsung Galaxy S9 running on Android 10

that acts as the UE.

• Edge nodes: To simulate the edge node, we use Asus Laptop equipped with an Intel

Pentium III processor running Ubuntu 18.04. The cloud is represented by the more

powerful desktop PC Intel Xeon E5-1650, 12-core at 3.5 GHz and 32 GB RAM.

• Network: The structure of OAI consists of two components: one, called oai, is used

for building and running gNB units; the other, called openair-cn, is responsible for

building and running the Evolved Packet Core (EPC) networks, as shown in Fig. 5.2.

The Openair-cn component provides a programmable environment to implement and
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Figure 5.3: (a) CPU utilization vs. number of PRBs for DU and CU in Options IF1 and
IF4.5; (b) Memory usage vs. number of PRBs for DU and CU in Options IF1 and IF4.5.

manage the following network elements: Mobility Management Entity (MME), Home

Subscriber Server (HSS), Serving Gateway (SPGW-C), and PDN Gateway (PGW-

U). We use WiFi as well as LTE to act as our physical link between the UE and

the edge. The edge is connected to the cloud through Ethernet. As illustrated in

Fig. 5.2, all the EPC and gNB components are implemented by as container image

by using Docker and docker compose [150]. The UE and RF RAN are implemented

in hardware, conventional cell phone and USRP 210, respectively.

NG-RAN Testbed for Different Functional Options. We endowed our testbed

with several functional split options so as to realize the CU and DU in gNB. All containers

in Fig. 5.2 are hosted by the desktop PC Intel Xeon E5-1650, 12-core at 3.5 GHz and

32 GB RAM. For the UE, we use a Samsung Galaxy S9 running on Android 10. For

network configuration, we run our NG-RAN prototype for three functional splits; Option F1,

(PDCP/RLC, Option 2 in 3GPP TR 38.801 standard), Option IF4.5 (Lower PHY/Higher

PHY, a.k.a Option 7.x in 3GPP TR 38.801 standard), and Option LTE eNB. We summarize

the testbed configuration parameters in Table 5.2.

Figure 5.3(a) shows the CPU utilization percentage at DU and CU containers. The

CPU utilization percentage is measured by the docker stats command in Ubuntu, which
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provides a live data stream for running containers. The downlink UDP traffic repeatedly is

sent from the SPGW-U container to the UE with various PRB settings in two functional

split Options, F1 and IF4.5. It can be observed that the CPU consumption for DU and CU

is continuing to increase linearly as the number of PRBs is increased in the two functional

split options. However, Option IF1 consumes more CPU percentage at DU than at the

CU. For example, the CPU utilization percentage is 43.67 % in DU while it is 14.42 % in

CU. That is because the higher PHY operations such as RLC/MAC, L1/high, tx precode,

rxcombine, and L1/low operations reside in DU for split Option IF1 [151]. In Option IF4.5,

the pattern is reversed. We can see from Fig. 5.3(a) that the CPU usage at CU is higher

than at DU. Figure 5.3(c) shows the memory usage of DU and CU containers when the

NG-RAN testbed performs in Options IF1 and IF4.5 at different values of PRBs. Similar

to the CPU consumption pattern, the memory usage at DU is higher than at DU in Option

IF1. For example, the memory usage is 388 MB in DU while it is 145.3 MB in CU at Option

IF1 and 25 PRB.

Table 5.2: Testbed Configuration Parameters for gNB.

Mode FDD Options IF1, IF4.5, eNB

Frequency 2.68 GHz PRB 25, 50, 100

TX Power 150 dBm Env. Multi-container

MCS 28 SINR 15− 20

5.5.2 Application Profiling

To test QLRan, we consider two applications: video streaming and facial detection in smart

surveillance cameras. These two tasks are both video-based tasks that require varying

degrees of quality.

Video streaming application: Video streaming is run on two Dell Workstations,

each with two Xeon E6-1650 processors. Each workstation is equipped with 32GB of RAM

running Ubuntu 18.04. In our experiments, a prerendered movie of one minute is streamed

between these two computers using ffmpeg, a video transcribing and streaming application.

On the other end, a ffplay is used to receive and render the video stream. Four different
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Figure 5.4: (a) Memory usage for various QLR levels in video streaming; (b) CPU usage
for various QLR levels in video streaming.
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Figure 5.5: (a) Relation between a video’s bitrate and CPU consumption in video streaming;
and (b) Latency in facial recognition.

video resolutions are used: 360× 240, 480× 360, 960× 720, and 1920× 1080. Additionally

for the highest resolution of 1920 × 1080, 30 fps as well as 60 fps is used as well as a

stereographic stream for 60 fps for potential 3D reconstruction applications.

Facial recognition application: In addition to network streaming, a basic facial

detection and recognition application is tested against the very same resolutions in the

network stream. The facial recognition algorithm is based on the popular and simple dLib

library available for python [152].

For both applications, we have chosen QLR 1 to represent the best networking conditions
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while a QLR of 5 represents the worst network conditions. Using the top utility, we were

able to log in 1 second intervals the CPU consumption as well as the memory consumption

of the process on the server streaming the video. Note that in both Figs. 5.4(a) and 5.4(b)

we witness a linear increase in both memory and CPU consumption which can be expressed

in the following equations,

B(qk) = −10.4qk + 95.9, C(qk) = −5.2qk + 33.3,∀k ∈ K. (5.14)

In Fig. 5.5(a), since we downsampled the video resolutions ourselves, we are able to

extract the exact average bitrate for various stream profiles to arrive at an equation,

D(qk) = 4.30x+ 2.75,∀k ∈ K, (5.15)

where x represents the achievable bit rate in Mbps. Similarly—as shown in Fig. 5.5(b)—as

video resolutions increase in facial recognition application, so does processing time. Hence,

the QLR processing time can be modeled as,

T proc = −0.08qk + 0.51, ∀k ∈ K. (5.16)

5.5.3 Numerical Result

We consider a NG-RAN system consisting of 100 m× 100 m cell with a RAP in the center.

The mobile devices, N = 25, are randomly located inside the cell. The channel gains are gen-

erated using a distance-dependent path-loss model given as L[dB] = 140.7+36.7 log10 d[km],

where d is the distance between the mobile device and the BS, and the log-normal shad-

owing variance is set to 8 dB. The other network parameter values are listed in Table 5.3.

In general, the computational tasks can be classified into two different categories: (i) ap-

proximatable, tasks that can be approximated to achieve significant savings in execution

time, with however a potential loss of accuracy in the result; and (ii) non-approximatable,
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Table 5.3: Configuration Parameters for Simulation.

yd,zd 4.3, 2.75 Capacity [GB] 1.5

yt, zt −5.24, 3.31 δt/δq [50, 100, 150]

yb,zb −10.41, 95.9 Data Rate [Mbps] 2

U , K, S 10, 10, 20 Delay Tolerance[ms] 300

Bmax
s [GB] 3 QLR [1, 2, 3, 4, 5]

tasks whose execution without any approximation is necessary for the success of the ap-

plication, i.e., if any approximation technique were applied on these tasks, the application

would not generate meaningful results. We refer the interested readers to the work in [153],

which introduces a lightweight online algorithm that selects between these tasks to enable

real-time distributed applications on resource-limited devices. Accordingly, we consider

video streaming and facial recognition applications, which can be considered as approxi-

matable tasks, for profiling. The reason for choosing these task applications is that they

can highly benefit from the collaboration between mobile devices and edge platforms. In

experimental results, we study the impact of the difference of service quality level, which

can be considered as the resolution level of video streaming and facial applications, on the

system latency and edge node computing capacity.
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Figure 5.6: System latency performance versus: (a) QLR levels; and (b) Computing capac-
ities.

Impact of Control Parameters δt and δq. We discussed the definitions of the scalar

weights δt and δq in Sect. 5.4. In general, these parameters are used to make a tradeoff

between the service latency and quality. Specifically, when δt/δq is increased, the QLRan
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Figure 5.7: (a) System latency performance versus number of computational tasks; and
(b) System latency versus number of computation tasks under different execution schemes.

algorithm will be more sensitive to system latency; otherwise, it will be the quality of result

sensitive. Fig. 5.6(a) shows that the latency cost decreases with a larger QLR parameter

for different values of δt/δq, which are 50, 100, and 150. Specifically, the average system

latency value at the δt/δq ratio is 50 and the QLR level is 1 is around 300 ms, while the

average system latency values are 275 ms and 250 ms for QLR level is 1 and δt/δq ratio are

100 and 150, respectively. That is because when QLR level is 1, which refers to the best

accuracy that can be obtained from processing the computational task in the edge cloud

node, the computational complexity at QLRan will increase as well as the system latency.

The system latency decreases with the tolerance of quality becoming low. Plus, QLRan

shows good performance when the algorithm is acting towards the latency performance.

For instance, when the QLR level increases to 4, the average system latency of QLRan

turns down to 220 ms, 200 ms, and 180 ms, for δt/δq = 50, 100, and 150, respectively.

Impact of Computing Capacity of Edge Cloud Node. To evaluate the offloading

performance in term of memory usage, B(qk), We run the QLRan algorithm for different

values of computing capacity B(qk) at δt/δq ration of 50, 100, and 150. We observe that

as long as the memory requirements are sufficient, the computing capacity (CPU/GPU)

requirements can be satisfied. Hence, the performance can be evaluated with several mem-

ory sizes. As mentioned in Table 5.3, We set the memory size of a edge node node to

Bmax
s = 1.5 GB by default, while the ratio of δt/δq = 50, 100, and 150 are tuned to measure

the system latency and QLR with several memory capacity values. Also, the memory size
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of each edge node is tuned from 0.5 to 2.5 GB. As illustrated in Fig. 5.6(b), the system

latency decreases when the memory capacity of the QLRan algorithm increases. Specifi-

cally, the service latency decreases by around 12% from tuning the δt/δq ratio from 50 to

100 at computing capacity is 0.5 GB, while the overall pattern continues to decrease as the

computing capacity value is increased.

Impact of Increasing Number of Tasks. For the computation task, we use the

face detection and recognition application for airport security and surveillance [154], which

can highly benefit from the collaboration between mobile devices and edge platforms. The

setting value of 12 computational tasks are selected to be in the range of 90 and 250 KB

for the data size and between 890 and 1150Megacycles for the CPU cycles. Fig. 5.7(a)

shows the performance of different schemes versus the number of tasks. In this figure, the

parameter of task data input is a random variable following linearity increasing with QLR

levels. It can be seen that the case δt/δq = 150 has less latency cost compared to the other.

5.5.4 Comparing QLRan with Other Baseline approaches

We compare the QRan algorithm with the following existing benchmarks:

• Cloud Edge Executing Only (CEO): Each UE u ∈ U has only one option: to offload

its task to cloud edge node within its communication coverage without considering

the tradeoff between latency and approximate computing;

• Local Executing Only (LEO): Each UE u ∈ U has only one option: to execute its task

locally within its communication coverage without considering the tradeoff between

latency and approximate computing;

• Latency-aware ask Offloading (LO): Each UE u ∈ U can offload its task to edge

cloud within its communication coverage. Here, only the latency is considered in the

objective function, while approximate computing is ignored.

As illustrated in Fig. 5.7(b), we evaluate the running performance of 12 computational tasks

under different offloading schemes. Our joint latency and quality-aware offloading scheme

outperforms other schemes. Specifically, the performance gap between QLRan and other
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schemes increases when the number of task increases. That is because the QLRan algorithm

is designed to trade off between the latency and QLR level, while the other schemes only

focus on the offloading and executing scenarios.

5.6 Summery

We presented latency-quality tradeoffs and task offloading in multi-node next-generation

RANs. We designed our algorithm, QLRan, to reduce system service latency while adjust-

ing the overall quality level. Practical NG-RAN system constraints have been considered

to formulate the proposed task offloading problem. The constraints depend on network

latency, quality loss, and edge node computing capacity, while the objective function is

the weighted sum of all the UEs’ offloading utilities. The QLRan is cast as an NP-hard

problem; therefore, we propose a Linear Programming (LP)-based approach that can be

solved via convex optimization techniques. Simulation results are generated from running

several real-time applications on the NG-RAN testbed, which is completely implemented

under container-based virtualization and functional-split option technologies. We consid-

ered video-streaming and facial-recognition applications as building blocks of many cloud-

based applications. We evaluated our solution and thorough simulation results showed that

the performance of the QLRan algorithm significantly improves the network latency over

different configurations.
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Chapter 6

Deep Reinforcement Learning-based Resource Allocation for

Next Generation Radio Access Networks

Next-Generation Radio Access Network (NG-RAN) will leverage a novel architecture that

accelerates the transition from inflexible and monolithic networks to agile and disaggre-

gated components. In this chapter, we introduce a novel Deep Reinforcement Learning

Based Resource Allocation (ReLAX) framework to deal with the joint optimization of UE

association and power allocation in NG-RAN systems. Considering the dynamic nature of

the NG-RAN environment, ReLAx problem has been formulated to maximize the network

Energy Efficiency (EE) under the constraints of Quality of Service (QoS), fronthaul link,

functional split configuration and transmit power budget. The optimization problem is cast

via a Mixed-Integer Non-Linear Programming (MINLP), which is in general non-convex

and NP-complete. A multi-task Deep Deterministic Policy Gradient (DDPG) method is

proposed to solve the NG-RAN resource allocation optimization problem, in which two ac-

tors are trained to generate UE association and power allocation, respectively. However,

using two separate models for two closely-related variables could be a waste of training time

and resources. As such, we introduce the soft multi-task learning as a constraint during

training so that one model would not drift too far away from the other one. Our real-time

experiments on a fully containerized NG-RAN testbed show the effect of functional splits

on CPU utilization and system latency. Besides, simulation results show that the proposed

resource allocation solution outperforms competing traditional algorithms, such as ordinary

DDPG and Weighted Minimum Mean Square Error (WMMSE).
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6.1 Introduction

Motivation. In the near future, it is expected that mobile data traffic continues to surge

due to the proliferation of smart portable devices and enormous demands for emerging

technologies, such as IoT, video streaming, and Augmented/Virtual Reality (AR/VR). Ac-

cording to a recent report from Cisco, there will be 5.3 billion total Internet users, while

the average 5G connection speed will reach 575Mbps by 2023 [155]. The increase in the

traffic pattern for Beyond 5G (B5G) services imposes significant challenges in meeting the

specific requirements, including Quality of Service (QoS), channel condition, and service

latency, from the existing mobile network architectures. Radio and computation resources

can be considered as a real bottleneck in satisfying the increasing trend in B5G’s demands.

On the other hand, adding more radio and computing resources at the network sites could

bring another critical issue in the energy consumption of the future mobile communication

systems, especially the direct impact on increasing the Operating Cost (OPEX) of network

operators. Considering the limited communication radio resources and the prohibitive sig-

naling energy costs, it is an essential need for studying novel practical RAN systems, in

which the resource allocation algorithms can be efficiently applied.

Recently, Next Generation Radio Access Networks (NG-RAN) has been presented as

an emerging framework to enable the virtualization and softwarization technologies [156].

The key feature of NG-RAN design is to flexibly move the main signal processing functions

performed by the digital baseband (PHY/MAC) processing to the Central Unite (CU) while

maintaining the radio access and low levels of communication functionalities at the cell sites

in the Distributed Unites (DUs). Cooperation between two main units in an efficient way

will open a path to enhance the overall network significant metrics, including architecture

planning, network operation, resource utilization, and back/mid/front-haul management.

Consequently, multiple wireless B5G services, such as massive Machine-Type Communi-

cation (mMTC), enhanced Mobile Broadband (eMBB), and ultra-Reliable Low-Latency

communication (uRLLC), can dynamically deploy and manage to satisfy the emerging re-

quirements of a variety of B5G applications.

Our Approach. Recently, Machine Learning (ML)—specifically Deep Reinforcement
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Learning (DRL)—has proposed as an effective technique for tackling key wireless chal-

lenges, especially for resource management and power control in wireless communication

networks [157]. However, how to enable DRL to assist wireless networks and User Equip-

ments (UEs) in an intelligent and decision-making procedure is still wide open research

area in cloud communication systems [158]. In this context, Deep Neural Network (DNN)

has been integrated into cloud-based RANs as the representative technology of ML. The

non-linear approximation performance feature of the full-connected DNN enables the DRL

scheme to solve several problems in resource management, such as beamforming, channel

association and power control. Reinforcement Learning (RL), due to its nice property of not

requiring much training data, can be adopted as a feasible option for dealing with real-time

decision-making problems, especially dynamic resource allocation, since the requirements

of the system model and prior data in RL are less restricted. Hence, DRL provides a

fast convergence rate and a high accuracy degree in wireless communication systems with

large state and action spaces (e.g., multi-user systems). A well-known approach of DRL

is Deep Deterministic Policy Gradient (DDPG). Using DDPG as a controller to optimize

variables is a promising direction because DDPG is good at generating continuous actions

given the system state. However, in this problem, two variables need to be optimized, the

UE association, which is discrete, and the power allocation, which is continuous. Jointly

optimizing these two variables together could cause a great increase in the amount of pa-

rameters needed and a bad performance because the action spaces contain both discrete

and continuous spaces. Thus, we introduce a twin-actor approach where two actors are

adopted with each one focus on one variable and a centralized critic to jointly criticize the

actors. Furthermore, we argue that UE association and power allocation are closely-related,

which indicates some level of overlap in the actors’ parameters spaces. Therefore, we in-

troduce the multi-task learning technique, which greatly reduces the amount of parameters

and can increase the training efficiency. Compared with standard convex optimization ap-

proaches, DRL-based resource allocation algorithm can make real-time decisions given the

description, i.e., the state of the network. This kind of intelligent decision-making is critical

for most B5G services, especially those that demand real-time, low latency requirements,

such as AR/VR applications and unmanned aerial vehicle control [159]. In this chapter, we
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provide the system model for the NG-RAN system and formulate our DRL-based resource

allocation, ReLAX, aiming at maximizing overall EE in NG-RAN under the constraints of

QoS requirement, transmitted power budget, and limited fronthaul capacity.

Related Work. The cloud-based RAN paradigm has received significant attention in

academia and industry over the past few years. In 2013, the Centralized-RAN (C-RAN)

was presented as a step forward towards realizing the virtual-based RAN concept [160].

Besides, there is industry consensus within the 3rd Generation Partnership Project (3GPP)

and IEEE to re-think existing cloud-based RAN architecture and evolve it towards the

needs of the NG-RANs by splitting different parts of the radio stack between different

network elements (CU, DU). Thus, recently IEEE has formed Next Generation Fronthaul

Interface (NGFI) working group [161] to standardize transport fronthaul interface for future

cellular networks. With the main target of integrating a full radio stack platforms and open

door towards virtual-cloud-based RAN ecosystems, the architecture of NG-RAN will become

intelligent and agile. However, how to properly manage various radio-computation resources

in NG-RANs has become a key challenge and research focus in wireless communication

field. For instance, energy allocation problems have been studied in [162, 163], while Fang

et al. [164] have considered the user fairness in Multi-Carrier Non-Orthogonal Multiple

Access (MC-NOMA) system. The joint user assignment and power allocation problems

have been included in [65, 165]. Besides, the authors in [16] have proposed a resource

allocation solution as a bin-packing problem aiming at minimizing the number of active

Virtual Machines (VMs) in the cloud center.

In the meanwhile, DRL has become a new research trend in the B5G applications and

been a feasible tool to address dynamic resource allocation problems for cloud-based RAN

systems [166–168]. In [166], the authors have proposed a Deep Q Network (DQN) method

to allocate power in the wireless network. The model has been firstly trained in the simula-

tor following deep Q learning rule and, then, it has been deployed in the real environment

for fine-tuning. However, the DQN showed a good performance for discrete action spaces

while adopting it in continuous power models might lead to undesired performance. The

work in [167] study a resource allocation method by designing a novel DNN-based optimiza-

tion approach solution comprising of a series of alternating direction method of multipliers
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iterative schemes that assign the CSI values as the learned weights. Besides, the authors

in [168] present a three deep-reinforcement-learning-based scheme, which can solve the joint

sub-channel assignment and power allocation problem in an uplink multi-user NOMA sys-

tem to maximize the network EE. While DNN-based methods brought a significant gain

in solving the resource management in the cloud-based wireless system, these studies often

overlook the system challenges and mostly depend on simplified assumptions when mod-

eling the radio-computation resources of the CUs and the DUs. Although these studies

included the resource allocation problems from different perspectives separately, they did

not take into account the dynamic of resource allocation problem in the NG-RAN scenario,

in which the functional splits are supported. In this chapter, we formulate a DRL-based

resource allocation for NG-RAN systems under the realistic circumstances of required QoS

and limited fronthaul capacity and transmitted power. Besides, we support our model by

real-time experiments carried out on the fully containerized-based NG-RAN testbed. The

main contributions of this work are listed as follows.

• We study and investigate the resource allocation for NG-RAN system. Then, a com-

prehensive network system model, including wireless link model, fronthaul model,

and network power consumption model, is presented to simulate the real features of

PHY/MAC layers in the NG-RAN architecture.

• Subjecting to QoS, fronthaul capacity, functional splitting, and transmission power

budget for DU, we mathematically formulate and analyze the resource allocation opti-

mization problem in NG-RAN as a Mixed-Integer Non-Linear Programming (MINLP)

problem jointly optimizing the UE association, and DU transmit power. The objec-

tive function in the proposed problem is modeled as the network EE, which is defined

as the ratio between achievable data rate to total power conception under several

functional splitting scenarios.

• To deal with the complexity of the formulated optimization problem, we develop a

deep learning-based framework—the modified from dual DDPG method and named

ReLAx—which can dynamically find the optimal values of UE association, and trans-

mitted power in the downlink NG-RAN systems.

• Using OpenAirInterface OAI software platform [49] and container-based virtualization
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Figure 6.1: Proposed NG-RAN architecture with resource allocation algorithms.

technique, we integrate a real-time programmable NG-RAN testbed that can establish

uplink/downlink wireless connection between the CU, DU, and the Commercial Off-

The-Shelf (COTS) UE. The experimental results from the testbed show that the CU-

DU CPU utilization depends on several network parameters (e.g., Physical Resource

Block (PRB), and functional split options).

• Extensive simulations reveal that by giving the NG-RAN system model, the proposed

ReLAx framework can optimize EE and show outperform competing algorithms, such

as Deep Deterministic Policy Gradient (DDPG) and Weighted Minimum Mean Square

Error (WMMSE).

Chapter Organization. The remainder of this chapter is organized as follows. In

Sect. 6.2, we present the system model. Then, in Sect. 6.3, we formulate the EE maximiza-

tion problem, followed by our proposed ML solution. In Sect. 6.4, we discuss experimental

results and numerical simulations. Finally, we conclude the chapter in Sect. 6.5.

6.2 System Model

This section presents the network description, functional split model, wireless link model

models, and the network power model.

6.2.1 Network Description

We consider that a Next Generation Node B (gNB) consists of multiple CUs connected

to multiple DUs via a fronthaul interface—high-speed optical fiber. Figure 6.1 shows the

logical diagram of the NG-RAN downlink transmission, which comprises L DUs, and U
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Figure 6.2: Split options as specified by 3GPP [2].

UEs. We denote L = {1, 2, ..., L} and U = {1, 2, ..., U} as the sets of the DUs and UEs,

respectively. The Orthogonal Frequency Division Multiple Access (OFDMA) technique has

been adopted to provide communication services in the downlink scenario. As a part of

NG-RAN, 3GPP has proposed eight different functional split options, defined in 3GPP TR

38.801, between DU and CU, as shown in Fig. 6.2. Hence, we assume that the functional split

technique is integrated into gNB while formulating the NG-RAN system’s essential modes.

In general, there are crucial benefits of enabling a flexible, functional split orchestration

in NG-RAN. Some of them include cost-reducing, traffic load balancing, latency-fronthaul

cost minimizing. It is worth noting that, in real NG-RAN testbed implementation, CU and

DU can be deployed by virtualization technique. For example, in the OAI platform, each

CU can be realized by one container image and associated with one DU container image.

To connect our model with a real experimental NG-RAN testbed, we adopt the DU-to-CU

model.

Functional Split Model. Placing all RAN functions in the CU pool can lead to the

maximization the energy saving, however, adopting full centralized RAN architecture is

not always realizable. For instance, physical layer processes, such as FTT, parallel/serial,

Cyclic Prefix (see Fig. 6.2), have stringent latency requirements as well as incur high traffic

capacity on the limited back/mid-haul interface if installed at CU. Hence, these processes

are typically implemented on DU (e.g., 7.2 functional split option in O-RAN [169]). High

PHY layer and MAC/RLC processes also have strict constraints, such as in LTE where the

round-trip latency tolerance of MAC layer, synchronous HARQ technique, is 3ms [170].

However, in the 5G MAC layer adopting the fully asynchronous HARQ technique, strict

latency requirement is no longer challenging and the round-trip time is mainly affected
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Table 6.1: Practical functional split options for NG-RAN.

Split s Split type DU ↔ CU
zj1 No split, all at CU ↔ f1, f2, f3
zj2 F1 split f1 ↔ f2, f3
zj3 IF 4.5 split f1, f2 ↔ f3
zj4 No split, all at DU f1, f2, f3 ↔

Table 6.2: CPU load for RAN functions in NG-RAN at PRB=50.

Split function CPU load (ωs)
f1 63%
f2 21%
f3 15%

by the service mode being provided. In the light of the above, it can be concluded that

different RAN processes can be served by different 5G services, such as uRLLC, eMBB,

and mMTC. Therefore, we consider the four practical CU/DU configurations based on the

functional split selection described in Table 6.1. In our model, we denote the set of NG-RAN

functions and the set of functional split options as F and Z, respectively. A functional split

zjs, ∀j ∈ L, s ∈ {1, 2, 3, 4}, is performed at gNB j if all RAN functions above and including

fs are run at CU while RAN functions below fs are run at DU. Hence, at functional split

zjs ∈ Z, CPU utilization at CU (ω) is equivalent to the summation of processing load

of all RAN functions above and including fs, i.e., ωs =
∑

j≥s ϱj , where ϱj represents the

CPU requirement at functional split s. Based on experimental results in Sect. 6.4.1, we

have generated Table 6.2 to define the CPU processing load for downlink traffic. Besides,

we define the CU-DU functional split indicator as, zjs = 1 indicates that gNB j runs at

functional split s; otherwise zjs set to 0.

6.2.2 Wireless Link Model

We assume that each UE can establish a wireless connection with the DU thought up/down

cellular links. Plus, the UE is considered in static and the cellular channels are invariant

during each decision-resource allocation algorithm procedure. In this chapter, we adopt the

downlink OFDMA system as a scheme for the NG-RAN proposed model. Consequently,

the operational frequency band B is divided into N equal sub-bands of size W = B/N [Hz].

To meet the orthogonality property in our model, we consider that each UE is assigned
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to one sub-band of the downlink transmission. Thus, each DU can serve at most N UEs

at the same interval time. Furthermore, we consider large scale and small scale fading,

where we assume that large scale fading is the same for all sub-bands and small scale fading

is frequency-selective and flat. Define gnj,u as the channel gain from DU j to UE u using

sub-band n and it is calculated as,

gnj,u = ϖj,u|hnj,u|2, ∀j ∈ L, n ∈ N , u ∈ U , (6.1)

where ϖj,u is the large scale fading including pass loss and shadowing, and hnj,u is the small-

scale Rayleigh fading. To model the Rayleigh fading, we adopt Jake’s model [171] and the

small-scale fading is modeled as a first-order complex Gauss-Markov process and the update

rule is,

hnj,u = ρhnj,u +
√
1− ρ2enj,u, ∀j ∈ L, n ∈ N , u ∈ U , (6.2)

where ρ = J0(2πfdT ) is the correlation between two adjacent fading blocks, J0 is the zero-

order Bessel function of the first kind and fd is the maximum Doppler frequency. T is the

time separation that we re-estimate the channel gain. enj,u is the channel innovation process

and they follow circularly symmetric complex Gaussian distribution. A greater value of ρ

means that the channel has changed significantly since the last channel estimation, which

could be caused by large T or a rapidly changing fd. Let N = {1, ..., N} be the set of

available sub-band at each DU. We denote the sub-channel association between UE u and

sub-channel n of DU j as,

xnju =


1, UE u associated with DU j on sub-channel n

0, otherwise,

(6.3)

Denote hnju as the downlink channel gain between DU j on sub-band n and UE u, including

the effect of path-loss, shadowing, and antenna gain. The DU-UE association usually occurs

in a large period of time that is much larger than the time scale of small-scale fading Hence,

similar to [172], the effect of fast-fading is assumed to be averaged out during the association.
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Let pnju denote the transmission power from DU j on sub-band j to UE u. Hence, the Signal-

to-Interference-plus-Noise Ratio (SINR) from DU j on sub-band j to UE u is defined by,

γnju =
pnjuh

n
ju∑

k∈K\{j}

∑
r∈U

xnkrp
n
krh

n
kr + σ2

, (6.4)

where σ2 is the variance of Additive White Gaussian Noise (AWGN). Then, the maximum

achievable data rate of UE u using the sub-channel n in DU j can be calculated as,

Rn
ju(X ,P) =W log2 (1 + γju) ,∀j ∈ L, n ∈ N , u ∈ U , (6.5)

where γju =
∑

n∈N γnju is the total SINR, X = {xnju|j ∈ L, n ∈ N , u ∈ U} and P = {pnju|j ∈

L, n ∈ N , u ∈ U} are to represent the UE assignment and power allocation, respectively.

Hence, the sum-rate of the network RT can be written as,

RT (X ,P) =
∑

j∈L

∑
n∈N

∑
u∈U

Rn
ju(X ,P) (6.6)

Fronthaul Model. In NG-RAN, the baseband signal processing between the CUs and

DUs is transmitted via a fronthaul interface, standardized as the F1 interface in 3GPP [156].

This kind of fronthaul transmission requires high speed data rate— 10×more data rate than

of the original one [173]. For this reason, the fronthaul link is considered the bottleneck

of cloud-based RANs. To that end, 3GPP proposed a novel functional splitting technique

to flexibly mange and control the data rate transmission between the CUs and the DUs in

NG-RAN. Specifically, the functional split can significantly reduced the transmission cost

by shifting part of the baseband signal processing operations from the CU to DUs [174]. In

this chapter, we define the fronthaul capacity constraint by,

∑
u∈U

∑
n∈N

∑
s∈Z

xnjuzjsR
n
ju(X ,P) ≤ Cj ,∀j ∈ L, (6.7)

where Cj represents the fronthaul capacity of DU j. while ϵ is the ratio of the bandwidth

that are demanded from the baseband transmission between CUs and DUs. Let Cmax
j be

considered as the fronthaul capacity of DU j. Hence, Cj can be expressed as, Cj = Cmax
j /ϵ,
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where the value of Cj mainly relays on the fronthaul transmission technologies (e.g, optical

fiber technology).

6.2.3 Computational Power Model

The computational power consumption for the downlink NG-RAN is modeled to be two

main parts, the power consumption of the CUs and the power consumption of the DUs.

CU-power consumption. In general, the CUs can usually be realized virtually by

VMs or containers. In this way, the CU containers’ capacities can be dynamically modified

to deal with variable traffic load and channel states. Thereby, the power consumption of

the CUs depends on computing workload size while processing the baseband signals from

DUs [87]. Hence, we can model the CU power computation to handle the baseband traffic

from DU j as,

PCU
j = PC

j + αj

∑
u∈U

∑
n∈N

∑
s∈Z

xnjuzjsωs,∀j ∈ L, (6.8)

where PC
j represents the static power of CU j corresponding container of DU j. αj repre-

sents the container power consumption factor determined by the architecture, traffic size,

functional splitting mode, and hardware equipment of the CU pool.

DU-power consumption. Similarly, we can suppose that the DU power consumma-

tion consists of two main parts: static and dynamic power consumption. The static power

consumption is needed to run the DU container while dynamic power consumption is usually

proportional to the DU transmitted power, traffic workload, and network configurations.

Hence, the power consumption of DU j can be modeled as,

PDU
j = PD

j + βj
∑

u∈U

∑
n∈N

∑
s∈Z

xnjuzjs(ω1 − ωs)p
n
ju, (6.9)

where PD
j models the static power consumption of DU j, and βj is the power factor of

DU j characterizing the link between the dynamic power consumption and the traffic load.

The value of βj is determined based on the architecture of the DU, traffic load, and the

type of functional split mode. Hence, the power factor parameters βj and αj are detailed

in Sect. 6.4.1. Based on the above considerations, the total network power consumption
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model of NG-RAN can be expressed as, P (X ,Z,P) = PCU
j + PDU

j .

6.3 Energy Efficiency Maximisation

In this section, we formulate the EE maximization problem, followed by the proposed

solution.

6.3.1 Problem Formulation and Relaxation

To efficiently use the radio resources (e.g., radio spectrum, transmit power) and computation

capacity (e.g., fronthaul capacity, and CU-DU computation capacity) as well as meet the

UEs’ QoS requirement, we define the network EE of total system as a more effective objective

for downlink NG-RAN systems. Hence, the network EE of NG-RAN is defined as,

ζEE(X ,Z,P) =
RT (X ,P)
P (X ,Z,P)

(6.10)

The adaptive EE function in (6.10) quantitatively describes the effect of system performance

brought by network achievable data rate and total power consumption. The main resource

allocation problem can be formulated as,

Max
X ,Z,P

ζEE(X ,Z,P) (6.11a)

s.t.
∑

u∈U

∑
n∈N

∑
s∈Z

xnjuzjsR
n
ju ≤ Cj , ∀j ∈ L, (6.11b)∑

u∈U

∑
n∈N

pnju ≤ Pmax
j ,∀j ∈ L, (6.11c)∑

j∈L

∑
n∈N

xnjuR
n
ju ≥ Rmin

u ,∀j ∈ L, (6.11d)∑
u∈U

xnjun ≤ 1, ∀j ∈ L, n ∈ N , (6.11e)∑
s∈Z

zjs = 1,∀j ∈ L, (6.11f)

xnju = {0, 1}, ∀j ∈ L, u ∈ U , n ∈ N , (6.11g)

The constraints in (6.11) can be described as follows; the fronthaul capacity is modeled as

the maximum tolerated data rate transmitted on the fronthaul link [175, 176]. Therefore,

constraint (6.11b) implies that the fronthaul capacity of DU j must not exceed the jth
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maximum fronthaul capacity system, Cj ; constraint (6.11c) specifies the transmission power

budget of each DU; constraint (6.11d) is to ensure the data rate requirement of each UE

must accede the minimum data rate of each UE, Rmin
u ; constraint (6.11e) restricts that

each UE can serve on sub-band in each allocation decision; constraint (6.11f) restricts that

each gNB j can be performed on one functional split option at each iteration; finally,

constraint (6.11g) imposes the binary resource allocation variable in NG-RAN.

The fractional-form objective function in Problem (6.11) is non-convex. Besides, with

the binary variables X , and Z, the optimization problem in (6.11) is a mixed integer non-

linear programming (MINLP) problem which is NP-hard and difficult to be solved [177].

Similar to [65,178], the primary problem in (6.11) is reformulated as,

Max
X ,Z,P

RT (X ,P)− ψP (X ,Z,P) (6.12a)

s.t. (6.11b)− (6.11f), (6.12b)

where ψ denotes the network power consumption weight. The Lagrangian of problem

in (6.12) is described as,

L(X ,Z,P,µ,γ,υ) =
∑

u∈U

∑
n∈N

xnjuR
n
ju(X ,P)

− ψ[PC
j + PD

j + αj

∑
u∈U

∑
n∈N

∑
s∈Z

xnjuzjsωs

+ βj
∑

u∈U

∑
n∈N

∑
s∈Z

xnjuzjs(ω1 − ωs)p
n
ju]

−
∑

j∈L
µj

(∑
u∈U

∑
n∈N

∑
s∈Z

xnjuzjsR
n
ju − Cj

)
−
∑

j∈L
γj

(∑
u∈U

∑
n∈N

pnju − Pmax
j

)
+
∑

u∈U
υu

(∑
j∈L

∑
n∈N

xnjuR
n
ju −Rmin

u

)

(6.13)

where µ = {µj |j ∈ L}, γ = {γj |j ∈ L}, and υ = {υu|u ∈ U} are the Lagrange

multipliers. Hence, the Lagrange dual problem is,
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Min
µ,γ,υ

Max
X ,Z,P

L(X ,Z,P,µ,γ,υ) (6.14a)

s.t. µ ≥ 0,γ ≥ 0,υ ≥ 0 (6.14b)

6.3.2 ML-based Proposed Solution

The major challenge in solving the resource allocation problem in (6.11) is that the integer

variable xnju makes the optimization problem a MIP problem that is in general non-convex

and NP complete [148]. Besides, in real wireless network environments, the QoS, fronthaul

link, and transmit power requirements update dynamically. Therefore, it is in general in-

feasible to adopt the traditional optimization solutions (e.g., standard convex solutions) to

handle a resource management complexities. Hence, an deep reinforcement method is mod-

ified to deal with these challenges. Specifically, we will first provide a general background

of traditional ML approaches to solve optimization problems and, then, we will present our

proposed solution to solve the problem in (6.11).

Background on Reinforcement Learning. Problem that can be modeled as a

Markov Decision Process (MDP) can be solved by RL algorithms. A MDP consists of

a set of states S, which characterizes the properties of the system, and a set of actions A.

Plus, the RL agent is deployed with a policy π : S → A parameterized by θ, which provide

decisions given the state. After taking an action, the environment will change according

to a state transition function T : S × A → S. The agent will receive a reward from the

environment as a function of state and action r : S ×A → R. The goal of RL algorithms is

to maximize the total expected return R =
∑T

t=0 γ
trt, where T is the maximum steps, and

γ is a discount factor.

Deep Q Learning. A popular algorithm to solve MDP is Q Learning, which learns a

Q table, Qπ(st, at), recording the expected reward of state st and action at at time t. Q

learning has a widely-used deep learning version DQN [179]. DQN replaces the Q table

with a neural network as the function estimator. The goal of DQN is to learn an optimal

Q-function, denoted as Q∗(st, at), by iteratively minimizing the Temporal Difference (TD)
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Figure 6.3: The framework and workflow of ReLAx. Solid lines indicate data flow, red
dashed lines and blue dash-dotted lines represent forward and backward gradient propaga-
tion.

error [180]. Typically, the target Q network, Q̄, is a copy of the Q network and it is updated

in a predefined frequency while the Q network is updated every step. The purpose of using

the target Q network is to stabilize the training process and reduce the model variance [179].

Policy Gradient (PG) Algorithms. Another popular algorithm that is different

from DQN for solving MDP is the PG algorithm. Instead of optimizing the Q network, PG

directly calculates the gradient of the policy function and optimize it towards the optimal

direction. PG algorithms adjusts its parameters θ iteratively to maximize the expected long

term reward. To approximate the state-action value, many works has been proposed. One

popular framework is the actor-critic, which uses a neural network to approximate Q(st, at).

Actor functions as the policy which generates actions/decisions and critic will give scores

to these actions. The critic, i.e., the Q network, is updated following (6.17).

Deterministic Policy Gradient (DPG). The algorithms introduced above treat the

policy as a distribution over the action space, which makes it not capable to deal with

continuous action spaces. To solve this, DPG is proposed, in which the policy µθ is regarded

as a deterministic function. With the help of deep learning, Deep DPG (DDPG) algorithm

is proposed, which introduces a neural network to estimate the Q function. The Q network,

i.e., the critic, is trained by minimizing the estimation error between it and the real rewards.
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Algorithm 6 ReLAx algorithm for solving (6.11)

Initialize continuous actor θC , discrete actor θD, critic θQ and replay buffer D
Initialize target networks, θC

′
, θD

′
and θQ

′

for episode = 1, 2, ... do
Initialize Ornstein-Uhlenbeck noise, N
Observe initial state s
for step = 1, 2, ... do

Sample discrete action, aC ∼ µθC (st) +N
Sample continuous action, aD ∼ µθD(st) +N
Execute actions and receive rt and st+1

Add new item < st, a
C
t , a

D
t , rt, st+1 > to D

Sample a batch (si, a
C
i , a

D
i , ri, si+1) from D

Update θC following Eq. (6.15)
Update θD following Eq. (6.16)
Update θQ following Eq. (6.17)
if reaches target model update frequency then

θC
′ ← θC

θD
′ ← θD

θQ
′ ← θQ

6.3.3 ReLAx Design in NG-RAN System

In the optimization problem (6.11), we face two types of challenges; (i) we are optimizing

a discrete and a continuous variable simultaneously and the classic RL algorithm could
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lead to a slow convergence rate and bad performance; (ii) as the number of DUs and UEs

increase (i.e. the dimension of X and P increase), the required amount of parameters grows

significantly (a.k.a. the curse of dimensionality [181]). To solve the challenges, we propose

a dual DDPG framework, ReLAx. The proposed algorithm consists of a pair of actors and

a centralized critic where one actor handles the sub-band allocation problem and the other

one deals with the power allocation problem. However, the two variables are not completely

independent to each other and there could be some level of overlap in the models’ parameter

spaces. Thus, in ReLAx, we adopt the multi-task training concept so that the actors can

share parameters to reduce the number of parameters needed to be trained. To illustrate,

in classic multi-task learning [182], the tasks will share a common model but with different

output layers. In this way, the model can learn the correlation between the variables and

improve its performance. Figure 6.3 shows the computational diagram of the proposed

framework where the red dashed lines indicate backpropagation direction and blue dashed

line represents the feed forward process in the update of the agent. We can see that the

state for two actors are the same and they are supposed to make decisions on different

aspects given the state. Figure 6.4 exhibits the structure of the two actors. They share

the some parameters at the lower level and then have their own different layers at the end.

The update rules for the actors follow the DDPG update rule. Nonetheless, variable X is

discrete and DDPG can only handle continuous outputs. As such, we apply the Gumble

Softmax trick [183]. This trick can transform the continuous output from DDPG to discrete

outputs in a differetiable way.

Let θC and θD denote the continuous and discrete actors, respectively. The gradient for

the actors can be written as,

∇θJ(θ
C) = Es∼D

[
∇θµθC (st)∇aQ

µ(st, a
C
t )|at=µ

θC
(st)

]
, (6.15)

∇θJ(θ
D) = Es∼D

[
∇θµθD(st)∇aQ

µ(s, g(aDt ))|at=µ
θD

(st)

]
(6.16)

where aCt and aDt stand for the continuous and discrete actions, i.e., UE association and

power allocation, and g(·) represents the Gumbel Softmax. To optimize the critic, we

need the information from both actors at the same time. The intuition behind this is
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that, if we regard these two actors as separate agents, this problem becomes a Multi-Agent

Reinforcement Learning (MARL). If the critic can only observe one agent once at a time,

the whole environment will become dynamic and hard to optimize and a centralized critic

can solve this problem [184]. In this problem, the loss function for the critic can be written

as,

L(θQ) = Est,aCt ,aDt ,rt,st+1

[(
Q∗(st, a

C
t , a

D
t |θQ)− y

)2]
(6.17)

y = r(st, a
C
t , a

D
t ) + γ max

aCt+1,a
D
t+1

Q̄∗(st+1, a
C
t+1, a

D
t+1), (6.18)

The detailed workflow for ReLAx is shown in Algorithm 6. Besides the structure of the

proposed framework, we need to formulate the MDP that ReLAx is trying to solve. We

describe state, action, reward as follows,

State: We encode every helpful information describing the system and help the actors

make decisions as the state. In this problem, the state is defined as a tuple consisting of the

current subband allocation, power allocation and channel gain, st = {Xt−1,Zt−1,Pt−1, Ht−1},

where Xt−1, Zt−1, Pt−1, and Ht−1 are the values of X , Z, P, and channel gain from previous

iterations. The actor is supposed to give good decisions based on these information.

Action: The action is the set of variables to be optimized. The action for variable X is

defined as aDt ∈ {0, 1} where each entry is an integer indicating the selected sub-band. The

continuous action, aCt ∈ R, represents variable P. To meet the maximum power constraint

described in (6.11c), we normalize the powers on each DU so that they do not exceed Pmax
j .

Reward: Reward is the criterion of the action given the state and the greater the reward

is, the better the agent performs. Thus, we defined the reward as the EE that we are trying

to maximize

rt = ζEE(X ,Z,P) =
RT (Xt,Pt)
P (Xt,ZtPt)

. (6.19)
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Figure 6.5: Logical illustration of the fully containerized-based NG-RAN testbed.

6.4 Performance Evaluation

We first provide the settings for experiments and results we obtained for the programmable

NG-RAN testbed. Then, we evaluate ReLAx on resource allocation tasks via numerical

simulation.

6.4.1 Testbed Experiment

We have implemented NG-RAN testbed as a non-standalone 5G architecture, including

DU/CU and Core implementation. Then, we have performed our testbed in terms of

packet delay, CPU utilization under various PRB, and functional split options. NG-

RAN Testbed Architecture. We have utilized an open-source project, OpenAirInter-

face (OAI) [49] to build our experimental prototype. OAI has been fully tested and validated

to compatible with the 5G protocol stack for gNB and UE allowing for end-to-end deploy-

ment of a 5G network. As illustrated in Fig. 6.5, We have implemented a RAN consisting of

two containers; CU and DU, deployed in Docker [150]. Plus, we have used oai-epc-fed [185],

an implementation of the 3GPP specifications concerning the Evolved Packet Core (EPC)

networks, to implement the core network. The oai-epc-fed consists of the following net-

work elements: Mobility Management Entity (MME), Home Subscription Server (HSS),

and Packet Gateway and Service Gateway (SPGW-C-U). All oai-epc-fed components have
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Table 6.3: Testbed Configuration Parameters for gNB.

Mode FDD Options F1, IF4.5, eNB
Frequency 2.68 GHz PRB 25, 50, 100
TX Power 150 dBm Env. Multi-container

MCS 28 SINR 15− 20

been deployed in containers. Besides, we have used Software Defined Radio (SDR) boards—

the brand-new Ettus USRP B210, each covering from 70 MHz–6 GHz and supporting 2× 2

MIMO with sample rate up to 62MS/s. All containers are run by Docker Compose [186],

in which we develop a YAML file to configure the containers. All containers are hosted

by the desktop PC Intel Xeon E5-1650, 12-core at 3.5 GHz and 32 GB RAM. For UE,

we use a Samsung Galaxy S9 running on Android 10. For network configuration, we run

our NG-RAN prototype for three functional splits; Option F1, (PDCP/RLC, Option 2 in

3GPP TR 38.801 standard), Option IF4.5 (Lower PHY/Higher PHY, a.k.a Option 7.x in

3GPP TR 38.801 standard), and Option LTE eNB. We include the key testbed parameters

in Table 6.3.

Impact Functional Splits on CPU Utilization. To understand better the CU-DU

CPU power consumption, mentioned in Sect. 6.2.3, in NG-RAN with respect to the UEs’

traffic request, we plan to set the related link between the functional split options and

the percentage of CPU usage at the CU and DU. In this experiment, we record the CPU

utilization percentage by using the docker stats command in Ubuntu, which provides a live

data stream for running containers. We start repeatedly sending downlink UDP traffic

from the SPGWU to the UE with different PRB values in two functional split settings,

F1, and IF4.5. The percentage of the CPU usage has been measured for functional split

Options F1, and IF4.5 in Fig. 6.6(b), and Fig. 6.6(c), respectively. One of the key notes

from Fig. 6.6(b) is the CPU utilization of DU is reduced by 25.5% when we move from

PRB 100 to PRB 50. However, lower CPU reduction, which is 2.7%, when moving from

PRB 100 to PRB 50 in CU. The reason CPU is consumed higher in DU than in CU, in

Option F1, is that the higher PHY operations such as RLC/MAC, L1/high, tx precode,

rx combine, and L1/low operations reside in DU for split Option F1 [151], while CU has

only PDCP and RCC operations. However, in Fig. 6.6(c), the trend of CPU consumption is

different from Option F1. It can be observed that the highest CPU consumption occurred
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Figure 6.6: Fully containerized NG-RAN testbed experimental results for different configu-
rations; (a) RTT measurement for different packet sizes; (b) CPU utilization of functional
split Option F1 for downlink traffic; (c) CPU utilization of functional split Option IF4.5 for
downlink traffic.

at CU, while CPU consumption of CU is reduced by 14.9% when we move from PRB 100 to

PRB 50. In general, the power usage in the NG-RAN system can be remarkably minimized

if we adapt the computational CU/DU resources such as the CPU cycles per second [16].

Based on experimental results in Figs. 6.6(b), and 6.6(c), we can conclude that the power

factor parameters αj and βj, in (6.8) and (6.9), respectively, mainly depend on NG-RAN

configurations (e.g., number of PRBs, and functional split options). The value of αj is

increased while moving from Option 1 to Option 8. However, the value of βj is decreased

while moving from Option 1 to Option 8. Specifically, the case of αj > βj is obtained, when

CPU consumption in CU is higher than in DU such as in Fig. 6.6(c). Otherwise, the case

of αj ≤ βj will be estimated.

6.4.2 Numerical Simulations

Simulated results are mentioned here to evaluate the performance of our proposed algorithm.

The simulations are conducted using Python with the assist of Pytorch toolkit [187]. We

implemented the ReLAx framework along with other two methods—DDPG and WMMSE

as comparison. ReLAx has an actor with three in-between Fully-Connected (FC) layers of

size 64, 128 and 128, and two different output FC layers corresponding to the discrete and

continuous actions. There are two critics in ReLAx and they are of the same shape where

the state is processed by a FC layer of size 64 and the output is concatenated with the

action. Then the concatenated will be processed by a FC layers of size 128. The nonlinear
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Figure 6.7: The network EE versus (a) Training rounds; (b) The number of UEs; and
(c) The number of DUs.
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Figure 6.8: (a) The network EE versus the time duration between two successive channel
estimations; and (b) The maximum achievable data rate against the number of UEs.

function used in the network is Rectified Linear Unit (ReLU). A learning rate of 0.01 and

0.05 are used for actor and critic, respectively. Table 6.4 lists the common parameters used

during our simulations. Our proposed solution for joint UE association and transmit power

allocation problem is evaluated against the two popular approaches; i) DDPG, which is used

the Deterministic Policy Gradient (DDPG) approach to solve the joint UE association and

transmit power allocation problem; and ii) WMMSE, the sub optimal solution is generated

by using so-called iterative Weighted Minimum Mean Square Error (WMMSE) [78,162].

Convergence of the ReLAx Algorithm. To show that the proposed framework is

able to achieve a good performance in the resource allocation scenario, in Fig. 6.7(a), the



148

Table 6.4: Simulation Parameters

Number of Sub-bands W 4
Maximum transmission power Pmax

j 100W

Static power PC
j 10W

Static power PD
j 10W

Maximum Doppler Frequency fd 10Hz

Table 6.5: Value of ρ for different interval time T .

T (ms) 1 10 100 1000 10000
ρ 1.00 0.90 0.22 0.07 0.02

reward (i.e. the EE defined in (6.10)) against training rounds is exhibited. We observe

three comparisons; (i) for the first two curves, we observe that, with the same number of

sub-bands and DUs, the one with 5 UEs performs better than the one with 10 UEs. The

result indicates that, under the same condition, the more UEs there are, the worse the

performance of the model; (ii) for the second and third scenarios, we can see that, with the

same number of DUs and UEs, the model with 4 sub-bands outperforms the one with 2

sub-bands. The result shows that more sub-bands can improve the model’s performance;

(iii) for the last two scenarios, we can observe that, with the same amount of UEs and

sub-bands, the two models achieve similar performance, which is because that the amount

of DUs are sufficient in both scenarios and, therefore, the two models converges to similar

level.

Impact of the Number of UEs. Figure 6.7(b) shows the ReLAx approach solution

comparing to different other methods versus the number of UEs. We can observe that

when the amount of UEs increases, the performance of all three models degrades because

the dimension of action spaces has increased. Furthermore, WMMSE and DDPG have

similar bad performances. For WMMSE, the reason of this bad performance is that it only

optimizes the set of the power variable P and, thus, when the number of UEs increases,

it cannot assign links to good sub-bands. As for DDPG, it the action space becomes too

large for it to learn a good representation and therefore its performance is much worse than

ReLAx. 5 DUs and 5 subbands are used in this experiments with T = 0.01s.

Impact of the Number of DUs Figure 6.7(c) shows ReLAx’s performance when

varying the number of DUs in comparison with the other two methods. We can observe

that the energy efficiency is not significantly impacted by the number of DUs except for
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a small drop when increasing the number of DUs. The energy efficiency drop could be

caused by the static DU and CU power consumption, because the improvement of data rate

cannot compensate the increase of the power usage. 3 subbands and 20 UEs are used in

this experiment with T = 0.01s.

Time processing of the ReLAx algorithm. T is the time interval between two

channel estimation and the greater it is, the the more the channels change. From Fig. 6.8(a),

we observe that while increasing T , the performance of all three models deteriorates, which

is expected because, from a RL standpoint, the environment changes more significantly

between two steps with a higher T and, thus, RL/WMMSE agent cannot depend on the

knowledge it learned in former steps. The value of the channel change factor ρ is shown in

Table 6.5. We can see that when T changes from 0.001s to 0.01s, the channel is relatively

steady and when T reaches 0.1s, the value of ρ becomes 0.22 indicating that the channel

becomes very hard to be estimated. Due to this phenomenon, ReLAx drops fast after

T = 1× 10−2s because the decision it makes is to maximize the reward in the environment

from the last step. Conversely, other two models’ performances are flat comparing to

ReLAx’s, and this is because they do not learn much from interacting with the environment

and thus their actions are somehow random. Due to this randomness, their performance

tends to be flat no matter how the environment changes. 5 DUs, 20 UEs and 3 subbands

are used here.

Impact of Number of UEs on Maximum Achievable Data Rate. In Fig. 6.8(b),

we show the results of the maximum achievable data rate against the number of UEs. As

the number of UEs increase, ReLAx, DDPG and WMMSE show a performance drop, which

is expected because the network is getting more and more crowded. Besides, ReLAx and

DDPG have achieved similar maximum achievable data rate but has a significant perfor-

mance difference in terms of energy efficiency (see Figure 6.7(b)). This proves that ReLAx

can do a better job at power allocation than DDPG according to Eq. (6.10). 5 DUs and 3

subbands are used in this experiment.
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6.5 Summery

We studied the network Energy Efficiency (EE) maximization problem in NG-RAN taking

into account practical constraints including Quality of Service (QoS) requirement, transmit

power, and fronthaul capacity. Based on real-world data collected from a programmable,

realtime NG-RAN testbed, we established a conclusion to better understand the network

power consumption model in the NG-RAN system. The proposed optimization problem is

classified as a Mixed-Integer Non-Linear Programming (MINLP) problem, which is in gen-

eral non-convex and NP complete. Therefore, we proposed a Deep Reinforcement Learn-

ing (DRL)-based algorithm—the modified dual DDPG method, named ReLAx. Simulation

results coupled with real-time experiments on a fully containerized NG-RAN testbed show

that the proposed approach solution, outperforms competing algorithms, such as DDPG

and WMMSE.
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Chapter 7

Conclusion and Future Directions

This chapter summarizes the main contributions of this dissertation and discusses future

research directions.

7.1 Summary of Dissertation Contributions

This dissertation describes novel cooperative frameworks that exploit the synergies between

resource allocation, video streaming, and task offloading computing in cloud-assisted wire-

less networks. The proposed innovations leverage the emerging 5G and beyound paradigms—

C-RAN, MEC, and NG-RAN—to design optimized control policies aimed at making best

use of the resources available to satisfy the data- and computation-service requests from mo-

bile users. Firstly, given the high degree of cooperation provided by the centralized nature of

C-RAN, we proposed a novel resource-allocation solution that aims at optimizing the energy

consumption of a C-RAN. The proposed algorithm, with reasonably low-complexity, was

demonstrated to significantly improve the system performance over traditional approaches.

Secondly, we proposed a novel resource-allocation scheme that aims at maximizing the net-

work energy efficiency of a C-RAN subject to practical constraints including QoS require-

ment, transmission power, and fronthaul capacity. Extensive simulation results coupled

with real-time experiments on a small-scale C-RAN testbed showed the effectiveness of our

proposed resource allocation scheme and its advantages over existing approaches. Thirdly,

we focused on designing a dynamic video-streaming QoE maximization that takes into ac-

count the distortion rate characteristics of videos and the coordination among MEC server

to enhance adaptive bitrate-video streaming in a MEC network. Real-time experiments on

a wireless video streaming testbed performed on a FDD downlink LTE emulation system

to characterize the performance and computing resource consumption of the MEC server
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under various conditions. Emulation results of the proposed strategy showed significant

improvement in terms of users’ QoE over traditional approaches. Fourthly, task offload-

ing can enhance the performance of mobile devices because servers in the edge cloud have

higher computation capabilities than mobile devices. Therefore, enabling task offloading

in NG-RAN is proposed to address the limitations (e.g., storage and computing resources)

in the existing RANs. Meanwhile, in some cases, processing the entire input data in edge

cloud servers would require more than the available computing resources to meet the de-

sired latency/throughput guarantees. In the context of NG-RAN applications, transferring,

managing, and analyzing large amounts of data in an edge cloud would be prohibitively

expensive. Therefore, we proposed we proposed a multi-edge node task offloading system,

i.e., QLRan, a novel optimization solution for latency and quality tradeoff task allocation

in NG-RANs. Considering constraints on service latency, quality loss, edge capacity, and

task assignment, the problem of joint task offloading, latency, and QLR is formulated in

order to minimize the UEs task offloading utility, which was measured by a weighted sum of

reductions in task completion time and QLR cost. Additionally, a programmable NG-RAN

testbed was presented where the CU, DU, and UE were realized by USRP boards and fully

container-based virtualization approaches. Specifically, we used OAI and Docker software

platforms to deploy and perform the NG-RAN testbed for different functional split options.

Simulation results showed that our algorithm performs significantly improved the network

latency over different configurations. Finally, ML has recently proposed as an effective tech-

nique for tackling key wireless challenges, especially for resource management and power

control in wireless networks. However, how to enable ML to assist wireless networks and

UEs in an intelligent and decision-making procedure is still wide open research area in cloud

communication systems. Therefore, we introduced a novel Deep Reinforcement Learning

Based Resource Allocation (ReLAX) framework to deal with the joint optimization of UE

association and power allocation in NG-RAN systems. Considering the dynamic nature of

the NG-RAN environment, ReLAx problem was formulated to maximize the network EE

under the constraints of QoS, fronthaul link, functional split configuration and transmit

power budget. Simulation results showed that the proposed resource allocation solution

outperforms competing traditional algorithms, such as ordinary DDPG and WMMSE.
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7.2 Future Directions

In the following, we highlight and discuss the key open directions for future research.

Cloud-based Framework for Low-latency wireless mobile systems. With the

proliferation of mobile computers (e.g. smart phones, tablets, wearable devices and PDAs),

there has been interest in porting more computationally-intensive and delay-sensitive ap-

plications to the mobile domain. Some of these applications include face recognition, aug-

mented reality, interactive gaming and video acceleration [12]. However, due to limited

computing, memory and battery capacity, it is very challenging for mobile devices to run

such tasks and expect the same performance. Several delay-sensitive hardware have been

manufactured and promoted such as Google Glasses, Microsoft HoloLens, and the Recon

Jet. AT&T has reported [188] that future low-latency applications are projected to target

smart mobile devices. It is likely the widespread availability of an established platform is

the motivation here. Telecompanies like AT&T plan on using new 5G and MEC to reduce

the network latency and power consumption of mobile VR/AR applications. Despite im-

provements in hardware, mobile delay-sensitive applications still face ongoing struggles on

the software side. There are a multitude of decisions as to how to allocate these newly avail-

able resources which can be layered and constrained in new ways. Problems such as indoor

localization and navigation cannot be solved by simply throwing better hardware at the

problem. While Global Positioning System (GPS) technology is highly extant and works

well in automobile navigation, indoor navigation and error margins remain wanting [189].

Similarly, inertia based tracking suffers from error drifting due to environmental noise. For

now, a hybrid approach using a multitude of sensors seems most promising to an effective

low-latency application. Computer vision is more robust in detecting arbitrary features

within a frame and does not rely on GPS. Henceforth, we shall use a hybrid approach that

combines geographic data with visual data to better localize a user’s position in space.

Therefore, a novel cloud framework for ultra-reliable and low-latency should be designed

for 5G networks to make the best use of the limited resources available in the network and

satisfy the real-time service requests from the users and the ever increasing traffic demand.

Communication-efficient Federated Learning Design in NG-RAN. The rapid
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progress and significant accomplishments that occurred in the artificial intelligence area

have attracted a lot of attention and emerged the potential of machine learning schemes

in beyond 5G applications. Plus, the increasing popularity of real-time mobile applications

have placed strict constraints on cloud-based wireless access network architectures, such as

ultra-low latency, QoS, privacy, and reliability. Moreover, the last decades have witnessed

huge growth in portable and IoT equipment, making numerous limited computation ca-

pacity devices interact with wireless network systems via cellular channels. It is expected

that the connected number of IoT devices increasing to 14.7 billion by 2023 [190]. How-

ever, the difficulty of satisfying private constraint and the high cost of transmitting the

raw data to the central servers due to high round trip latency are driving the need for a

highly decentralized machine learning approach. Motivated by this, federated learning has

emerged to realize the collaborative training of a machine learning model without requiring

to publish the original stream data with any third-party application. In such a scenario,

it is possible for machine learning algorithms to gain experience from a vast range of data

located at several locations. Enabling federated learning in NG-RAN is beneficial in terms

of providing privacy for the end-users while running applications. Accordingly, the DUs and

CUs can be enabled to collaborate on the development of tanning models, in a distributed

machine learning manner, without needing to directly share sensitive data collected from

user devices. Therefor, a novel federated learning algorithm can be efficiently applied in

NG-RAN infrastructure to provide the user devices privileges in personal data protection

and relieve the burden on fronthaul interface at the network.
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