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ABSTRACT OF THE DISSERTATION

A Walk in the City

Using Large Data Sets to Analyze Urban Sidewalks

by MARYAM SADAT HOSSEINI

Dissertation Director:

Karen Franck

While cities worldwide are increasingly promoting streets and public spaces that pri-

oritize pedestrians over vehicles, significant data gaps have made mapping, analysis, and 

assessment of pedestrian infrastructure, challenging to carry out. Even in industrialized 

economies, most cities still lack information about the location, connectivity, and quality of 

their sidewalks, making it difficult to implement research on pedestrian infrastructure and 

holding the technology industry back from developing accurate, location-based Apps for 

different users. Moreover, despite the growing attention to urban data analysis, there is a 

gap between the real needs of researchers and practitioners directly studying urban 

problems and the urban analysis tools being developed. Standing at the intersection of 

economics, urban planning, and computer science, my dissertation aims at addressing both 

issues by providing theory-rich tools for large-scale assessment of urban sidewalks at two 

scales: at the human scale, using street-level images by proposing CitySurfaces for clas-

sifying eight classes of surface materials, and at the city, scale using aerial imagery, by 

proposing Tile2Net to create pedestrian networks from aerial imagery. Both studies use 

computer vision techniques to design frameworks and models for analyzing pedestrian fa-

cilities.

This dissertation addresses some of the challenges of semantic segmentation models 

regarding the high cost of image annotation by employing different techniques, such as 

active learning to offer solutions tailored to the specific qualities of urban problems.
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1

CHAPTER 1

INTRODUCTION

Throughout the history of urbanization change has been the steady feature of cities. Aided 

by technological advancements, the physical form of cities co-evolved with social compo-

sition as cities underwent cycles of transformation. The prevalence of personal automobiles 

redefined the use of urban space, making remote locations accessible (Schaeffer & Sclar, 

1980). Taken by the wave of suburbanization, concentrated urban areas were transformed 

into sprawling metropolitan regions. Large public spaces and shared streets were replaced 

by wide roads and multi-lane highways, leaving pedestrians with narrow sidewalks. With 

every array of changes, new challenges emerged, putting the health, safety, social well-

being, and economic viability of urban residents at risk.

1.1 Why Sidewalks?

Sidewalks are the focal point of the human scale of the city, where the most basic and 

widely used form of travel, walking, takes place. As the most important pedestrian-dedicated 

planned public spaces, sidewalks have been shown to impact various aspects of urban 

life, from public health to the economy, safety from crime, and social interactions. Well-

designed sidewalks can create safe, lively, inclusive, walkable, and accessible cities (Gehl, 

2011, 2013; Jacobs, 1961; Speck, 2013), all of that by encouraging people to leave their 

cars behind and take a walk/roll in the city.

For a large population of people with mobility or vision impairment, sidewalks are 

the main and often the only means of accessing public spaces (Clarke et al., 2008; Deitz, 

2021; Hosseini, Saugstad, et al., 2022). The design of public spaces, specifically side-

walks and crossings, can significantly impact the independence and self-reliance of such 

groups (Froehlich et al., 2022; Mitchell, 2006b). Environmental barriers, uneven surfaces,
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missing curb ramps and crossing demarcation, and narrow sidewalks can turn a short trip

to local stores into an impossible mission (Brenner & Clarke, 2019; Eisenberg et al., 2017;

Harris et al., 2015).

Accessibility, safety from crime, and walkability often go hand in hand. Safe and acces-

sible sidewalks attract more people, and more frequented sidewalks can bolster the neigh-

borhoods’ safety by increasing the opportunity for informal surveillance, as explained by

Jane Jacobs (1961) eyes on the street theory. Also, the presence and quality of sidewalks

have been found to be significant predictors of perceived safety in the pedestrian environ-

ment (Landis et al., 2001).

Aside from crime safety, sidewalks can impact two other forms of safety: safety from

falling and safety from traffic. Safety from tripping or falling is an important aspect of

sidewalk design considerations (Clifton et al., 2007; Emery et al., 2003). Studies show

a strong correlation between pedestrian falling and injuries and sidewalk features (Chip-

pendale, 2020; S. Lee, 2018; Twardzik et al., 2019). The existence of potholes, unleveled

and heaved surfaces, overcrowded sidewalks, obstructions and obstacles in the way, bad

lighting, and slippery surfaces can all lead to pedestrian falling and injuries. This is of cru-

cial importance, specifically for more vulnerable populations such as the elderly, pregnant

women, and people with disabilities (Aghaabbasi et al., 2018; Clifton et al., 2007; Haans &

De Kort, 2012). Sufficiently wide sidewalks, with furnishing zones that act as buffers be-

tween pedestrians and vehicular traffic, or bike lanes, can reduce the risk of (Asadi-Shekari

et al., 2013; Crews & Zavotka, 2006).

From an economic perspective, well-designed sidewalks can be one of the most impact-

ful forms of marketing for the adjacent business (Credit, 2018). Walkable and accessible

neighborhoods, with retail stores and services located within walking distance, can attract

different groups of people and create strong agglomeration forces that support the local

economy and boost the productivity of the neighborhood businesses (Sevtsuk, 2020).

Accounting for selection bias, sidewalks that promote walking can increase physical
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activity and hence, decrease the risk of diseases associated with a sedentary lifestyle, such

as cardiovascular disease (Krizek, 2003; McCormack et al., 2017; Slater et al., 2013),

provided that the environmental condition such as noise and air pollution are also within

the safe range. Moreover, lively and inviting sidewalks, which provide places for staying,

such as benches or building stoops, can encourage social interactions and create social

capital, enhancing residents’ mental state of residents (Van Cauwenberg et al., 2012).

Sidewalks can also impact the environmental condition of the urban areas. As discussed

in chapter 4, the choice of surface materials can directly impact the microclimates within

the city, which can lead to the creation of Heat Islands, a phenomenon associated with

global warming and climate change (Estoque et al., 2017; Oke, 1982). Impervious surface

materials are also found to be the primary cause of Combined Sewer Overflows (CSOs),

which can lead to massive pollution of natural bodies of water and street flooding (Joshi

et al., 2021).

1.2 The Challenges of Quality Assessment

Assessing the built environment is a challenging task facing several municipalities. An im-

portant mobilizing factor is the Americans with Disabilities Act (ADA) which was passed

in 1990 and required public agencies to identify all barriers to access in publicly-owned

streets and buildings. In the Chicago region, for instance, only 22 of the region’s 200

municipalities with more than 50 employees had a plan (Metropolitan Planning Council,

2021). Even with clear federal requirements, the prohibiting cost and time of assessing the

built environment, specifically pedestrian infrastructure, is a major constraint. In an area as

large as NYC, with thousands of city blocks, manual auditing of the sidewalks is virtually

impossible. To make this problem even more complex, sidewalks, like any built environ-

ment feature, change and evolve. It is then necessary to keep data inventories up to date, as

a static and outdated dataset is arguably only marginally more useful than no dataset.

In recent years, online platforms made available by city agencies where residents can
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report a wide range of problems (including defected sidewalks) have received significant

attention. Analyzing complaints filed to NYC’s 311 services can reveal ongoing concerns

related to sidewalks. However, these complaints mostly come from certain segments of

society, resulting in highly disproportionate and asymmetric data that do not paint a clear

and precise picture of the state of the pedestrian infrastructure. On top of that, complaint-

reporting services such as 311 can often be seen by communities (particularly disadvan-

taged ones) as non-responsive, leading to an increasing discredit in the capacity of the

public agents to enact change.

A more recent alternative is to then automatically assess the state of the pedestrian

infrastructure, with minimal on-site human intervention and leveraging data and machine

learning techniques. While these approaches present challenges in and of themselves, from

the cost of data collection to the accuracy and reliability of models, they point towards a

horizon where municipalities and communities can paint a more vivid picture of the state

of a city’s infrastructure. Also importantly, new methods and techniques can cover large

spatial regions of the city and, given the unbiased nature of many leveraged datasets, offer

an opportunity to address concerns that heavily impact underrepresented communities.

1.3 Motivation

This dissertation is motivated by the lack of information regarding pedestrian infrastruc-

tures and facilities, despite their indispensable role in shaping the urban experience. Pedes-

trian infrastructure has a significant impact on the everyday life of people, specifically those

with special needs, for whom such infrastructures are the primary means of accessing pub-

lic spaces (Qin et al., 2018; M. Saha et al., 2019). Ironically, this data shortage exists in the

face of all the advances in data collection, storage, and management, and in an era where

”Big Data” and ”data availability” has become the recurring theme of the majority of recent

academic publications across various fields. The juxtaposition of the dearth of information

about pedestrian facilities and the breadth of various data about vehicular infrastructure
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draws a vivid picture of the state of disinvestment on this matter. As the findings of a re-

cent study on the availability of pedestrian infrastructure data across 178 municipalities in

the United States show, most municipalities do not collect and maintain data on environ-

mental accessibility features (Deitz, 2021). The inadequacy of pedestrian infrastructures

to meet the needs of different groups of people, including those using wheelchairs and

other forms of mobility aids, cannot be properly addressed if the extent of the problem re-

mains unknown, its changes untraceable, and any effort to address the issue being limited

to the number of publicly available datasets. The existing datasets are collected mainly

by resourceful cities, with substantial variation in the extent of data and attributes and in-

consistent methods from place to place, which creates significant barriers to conducting

comparative studies, or data integration, across administrative borders (Deitz, 2021; Hou

& Ai, 2020; Louch et al., 2020).

Aside from the data availability issue, there is a gap between the real needs of re-

searchers and practitioners directly studying urban problems, such as accessibility, and the

urban analysis tools being developed. The current state of practice and research in urban

science and analytics often suffers from a lack of understanding of urban systems’ concepts

and theories since most of such tools are developed by people who do not have proper train-

ing in the domain fields such as urban sociology, geography, urban planning, and design,

and urban economics, hence, fail to account for the deeper connections between different

forces shaping the cities (Boeing, 2020; Gahegan, 2018; Kontokosta, 2018).

Standing at the intersection of economics, urban planning, and computer science, my

research aims at addressing this gap by providing a set of theory-rich tools and meth-

ods for large-scale assessment of the quality of urban sidewalks. Designing such tools

and methods promotes equitable access to urban data and mitigates problems created by

unequal distribution of investments and poor governance in introducing pedestrian-level

data collection projects. It also enables urban planners and researchers, practitioners, and

municipal decision-makers to have a more realistic image of the everyday challenges of
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pedestrians with connectivity, accessibility, and walkability of sidewalks. Moreover, it

can pave the way for monitoring the compliance of these infrastructures with the official

codes and guidelines designed to serve diverse groups and adopting a complex system

approach to tackle the pressing challenges by combining such information with various

socio-demographic, environmental, or economic data.

My goal is to address two main challenges that have created significant barriers to the

research and practice of pedestrian infrastructure assessment and planning.

1. Lack of scalable, easy to implement, and standardized method to map sidewalk net-

works (B. Kang et al., 2021; Rhoads et al., 2020)

2. Scarcity of fine-level datasets describing sidewalk features (Deitz, 2021; Louch et al.,

2020; Pratt et al., 2012; M. Saha et al., 2019).

Even if the fine-level data scarcity is addressed, it cannot be used to its full potential

without having a comprehensive map of pedestrian networks allowing us to study side-

walks and pedestrian infrastructures from a complex systems perspective in relation to

other location-dependent factors (Rhoads et al., 2020).

I use state-of-the-art techniques in computer vision to design frameworks and tools for

analyzing pedestrian facilities instead of relying on the general pre-trained models with

sub-optimal performance in this domain. In doing so, I address some of the challenges

of semantic segmentation models regarding the high cost of image annotation by employ-

ing different techniques, such as active learning to offer solutions tailored to the specific

qualities of urban problems at hand.

1.4 Significance of the Study

The studies presented here were shaped around the dire need to create an inclusive, ac-

cessible, safe, and healthy environment for pedestrians and aided by the advent of new
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techniques in data processing and management and computer vision that make it possible

to analyze the pedestrian environment at human scale as well as city and global scales.

To this end, this work 1) proposes a standard computer vision-based method for map-

ping sidewalk networks from high-resolution sub-meter satellite images; 2) demonstrates a

state-of-the-art computer vision approach to extract a select set of build environment fea-

tures at large-scale and with significantly lower costs, using the publicly available data, and

creates generalizable models for automated auditing of pedestrian facilities, specifically

sidewalks; 3) addresses some of the challenges related to the high cost of data annotation

for semantic segmentation for both human-scale and city-scale analysis, and 4) uses the

developed models to create pedestrian level sidewalk data sets at scale.

1.5 Organization of the Dissertation

This dissertation is organized based on the three-article format dissertation. The three

chapters following the literature review are dedicated to each of the three articles.

Chapter 1 gives an overview of the motivation, identified problems and gaps to ad-

dress, and the significance of the study.

Chapter 2 provides a review of the conventional and emerging methods of measuring

sidewalk attributes. The last part of this chapter investigates related works on semantic

segmentation and active learning method, looking at emerging trends and how they have

been applied in urban contexts. Aside from this, each article in the presented chapters

includes a relevant literature review.

Chapter 3 focuses on the first challenge and proposes a scalable computer vision ap-

proach for generating sidewalk network datasets from aerial imagery. I detail the method

used to construct the pedestrian network from aerial images, converting the predictions

of the semantic segmentation model into georeferenced polygons, and finally, creating the

network representation from the polygons. The whole study is formed into a journal arti-

cle, with the same format presented here, and is submitted to Computers, Environment, and
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Urban Systems journal and is now under review (Hosseini et al., n.d.).

Chapter 4 addresses the second identified challenge and investigates the application

of computer vision to extract the fine-scale features of the sidewalks from street-level im-

ages. In this chapter, I detail the framework and method used to extract one of the most

challenging features of sidewalks, surface material. I chose this feature due to its multi-

pronged importance, specifically for urban sustainability planning and accessibility analy-

sis. Due to the challenging nature of texture segmentation, automated methods to extract

sidewalk surface data have remained fairly unexplored. The high within-class variability

and between-class similarity of surface materials in an urban setting, present unique chal-

lenges requiring both technical and domain specific knowledge. This study is published

in the Sustainable Cities and Society journal in January 2022 (Hosseini, Miranda, et al.,

2022).

Chapter 5 Presents an extended version of the third paper, which draws upon the re-

sults of the previous two studies and offer a more comprehensive analysis of pedestrian

infrastructure with a threefold understanding of where sidewalks are, how they are con-

nected, and what their condition is. To do that, I used the sidewalk accessibility data from

Project Sidewalk (M. Saha et al., 2019), together with the pedestrian network and surface

material data for Washington DC, to map and assess sidewalks for people with disabili-

ties and create different visualizations of sidewalk connectivity and accessibility patterns

across neighborhoods with varying socioeconomic conditions. The work also addresses

some of the challenges raised in Chapter 3 regarding topology correction. The paper was

accepted to CVPR AVA (Accessibility, Vision, and Autonomy Meet) workshop as a poster

presentation and short paper (Hosseini, Saugstad, et al., 2022).

Chapter 6 is the conclusion section, where I put all the pieces together and talk about

the contribution of the presented studies, their potential implications in practice to solve

real-world problems, their limitations, and the future direction of my research.
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CHAPTER 2

LITERATURE REVIEW

In this chapter, I review the previous studies on measuring sidewalk attributes, both con-

ventional and emerging methods, focusing on computer vision techniques, specifically se-

mantic segmentation and active learning.

2.1 Empirical Studies on Sidewalks

As inter-disciplinary research examined how the built environment can influence health (B. J. 

Lee et al., 2009; Nickelson et al., 2013), safety (Aghaabbasi et al., 2018; Asadi-Shekari 

et al., 2015; Forsyth et al., 2008; Naik et al., 2014), social inclusion (Bise et al., 2018; 

Thornton et al., 2016), social capital (Rogers et al., 2013), objective measurement of the 

qualitative built environment features has become of key interest.

Systematic observations or audits have been designed and developed to measure differ-

ent attributes of the built environment for a specific purpose, such as measuring accessibil-

ity, walkability, impact on physical activity (Pikora et al., 2002), or assessing the pedestrian 

streetscape (Cain et al., 2012), by providing a list of features to be assessed together with 

the objective measurements of each (Aghaabbasi et al., 2018; Clifton et al., 2007; S. Lee 

& Talen, 2014).

A review of 25 pedestrian indices identified sidewalk presence, width, paving materials, 

and running slope as important features for creating walkable neighborhoods (Maghelal & 

Capp, 2011). The design, quality, and accessibility of sidewalks are found to impact pedes-

trian fatalities (Retting et al., 2003), perception of safety (Ariffin & Zahari, 2013), willing-

ness to walk (Katzmarzyk et al., 2018), physical activity (Forsyth et al., 2008; Williams et 

al., 2005), and risk of certain diseases such as cardiovascular or respiratory diseases (Diez 

Roux, 2003; Sallis et al., 2012).
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Pedestrian Level of Services (PLOS) was one of the first attempts to quantify the quality

of pedestrian infrastructure. Calculating PLOS dates back to 1974, when Lautso and Mu-

role (Lautso & Murole, 1974) first introduced this concept to study the impact of the built

environment on pedestrian facilities. PLOS is one of the simplest and easiest to calculate

quality measurements. To calculate the PLOS for the sidewalk, only two measurements

are required: counts of pedestrians per minute passing a given location and the effective

width of the sidewalk. Although easy to calculate and interpret, PLOS fails to capture the

complex nature of pedestrian experience in that space and reduces it to merely sidewalk

width (Bloomberg & Burden, 2006; Jaskiewicz, 2000).

Walkability is probably the most recurrent theme among the empirical studies of side-

walks (Ewing & Handy, 2009; Ewing et al., 2006; Maghelal & Capp, 2011; McCormack

et al., 2017). A walkable neighborhood in many studies refers to a dense, highly acces-

sible area with essential destinations within walking distance from where people live or

work. Transit-Oriented Developments (TODs) are designed with such an approach (Green-

wald & Boarnet, 2001; McKibbin, 2011; Olaru & Curtis, 2015). Multiple audit tools have

been developed to measure different features of sidewalks that are believed to be correlated

with walkability (Aghaabbasi et al., 2018; Frackelton et al., 2013; S. Lee & Talen, 2014;

Millington et al., 2009). But selection bias should also be considered in such analysis since

it can very much be the case that people who are more active and generally tend to walk

more choose to live in more walkable areas (Boone-Heinonen et al., 2010).

Some longitudinal studies accounted for this bias by observing the behavior of the same

population over time (preferably pre and post-move to a more walkable neighborhood) and

controlling for unmeasured characteristics (Krizek, 2003; McCormack et al., 2017).

Collecting comprehensive and fine-level sidewalk data using conventional methods is

cost-prohibitive. According to Hou and Ai (2020), as of 2019, only 17 sidewalk inventories

were created for cities in the United States, even though the Americans with Disabilities

Act (ADA) requires all state and local transportation agencies to collect data on some spec-
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ified key features of sidewalks, such as width, slope, and paving materials (Department of

Justice, 2010).

2.1.1 Auditing the Built Environment

To analyze the impact of the built environment on any of the above-mentioned fields, its

properties should be quantified and for this purpose, different systematic observations, or

audits, have been designed and developed. Aside from measuring the measurable proper-

ties, audits try to quantify the qualitative ones, such as beauty, design, and safety as well. In

doing so, each larger qualitative category is divided into smaller properties and then scored

based on a different scale native to the specific tool. For instance, for measuring the safety,

lighting, sky exposure, width of the sidewalk, obstructions, and many other properties are

recorded. Then, based on the approach and theoretical framework of the study, each prop-

erty will receive a respective weight, showing its importance in forming the overall score

for that broader concept. It is often very difficult to compare the score resulting from differ-

ent audits of the same location, the reason being that the data collection process can differ,

the time frame mostly differs, the auditors are not the same, and in many cases, often the

terminology used can be confusing as different audit tools often use different words for the

same concept Marshall and Garrick, 2010 S. Lee and Talen, 2014.

Pedestrian Level of Services (PLOS) was one of the first attempts to quantify the qual-

ity of the built environment. Calculating PLOS dates back to 1974, when Lautso and Mu-

role Lautso and Murole, 1974 first introduced this concept to study the impact of the built

environment on pedestrian facilities. Highway Capacity Manual (HCM), which provides

tools and guidelines to evaluate transportation facilities, suggests using PLOS to evaluate

the condition of pedestrian facilities, such as sidewalks, and decide whether any actions

should be taken about them. PLOS is one of the simplest and easiest to calculate quality

measurements. To calculate the PLOS for sidewalks, only two measurements are required:

counts of pedestrians per minute passing a given location and the effective width of the
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sidewalk. HCM provides a chart where planners can evaluate how the flow rate of the

sidewalk is ranked. Despite being extremely easy to calculate and interpret, PLOS fails to

capture the complex nature of pedestrian experience in that space and reduces it to merely

sidewalk width Bloomberg and Burden, 2006; Jaskiewicz, 2000.

2.1.2 Conventional Methods for Measuring Sidewalks

The most conventional and widely used method for assessment of the physical conditions of

sidewalks is in-field auditing, and the majority of the popular auditing tools are developed

for this audit method. As the name indicates, it requires trained auditors to be present in

the field, recording their observations based on different auditing protocols and, in many

cases, performing some level of on-site assessments (Nickelson et al., 2013; Sampson,

2012). The in-person visit requirement imposes major limitations on both the geographical

coverage and time of data collection; the cost of training, quality control, or recalculation

of erroneous data is quite high (S. Lee & Talen, 2014). Moreover, the number of features

that can be measured and assessed should be limited since timely and tiring data collection

can impact the quality of the data collected.

2.1.3 Emerging Methods for Measuring Sidewalks

With the advent of new computer vision techniques and the availability of street-level im-

ages from different cities worldwide, the research towards quantifying the urban built envi-

ronment has taken a new direction to create semi or fully automated virtual auditing tools

for different purposes. The ultimate goal in designing automated audit tools is automating

the inference on urban built environment features, achieving higher scalability and more

uniform analysis compared to manual or semi-automated audits. Due to the subjective na-

ture of some assessment tasks, maintaining a constant and consistent rating scheme among

different auditors can be challenging (Aghaabbasi et al., 2018; Frackelton et al., 2013).

Street-level images have gained popularity as a virtual audit tool due to being a free,
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publicly available, and easy-to-use platform, which can overcome some of the limitations

of the manual method (Kelly et al., 2013; Phillips et al., 2017; Rundle et al., 2011; Wilson et

al., 2018). Using these tools, auditors can virtually explore the designated area and record

the features of interest according to the auditing protocols. This would save travel time

and costs, significantly expand the study’s geographical area, and make quality control

of the collected data much easier. Of course, only visual features can be recorded using

this method. For features like noise level, odor, and as such, other datasets should be

used . (Charreire et al., 2014; Rzotkiewicz et al., 2018; Shatu & Yigitcanlar, 2018).

However, specific problems are associated with virtual audits using tools such as Google

Street View (GSV). Despite the extensive international coverage, the image capture fre-

quency differs across different locations. The images are more frequently updated in devel-

oped countries compared to the developing ones, resulting in a more significant time gap

in cross-country studies compared to intra-country cases (Charreire et al., 2014; Curtis et

al., 2013; Rzotkiewicz et al., 2018). This inconsistency in image capture date can become

more problematic in quality assessment studies, where the focus is on fine-level features

such as sidewalk obstacles, litter, signage, or surface condition (Wilson et al., 2018).

Computer vision techniques have been widely applied to street-level imagery to map

openness in cities (X. Li et al., 2017), assess street-level urban greenery (X. Li et al., 2015;

Ye et al., 2019), extract land use information from the built environment (X. Li et al., 2017),

measure the visual quality of street space (Tang & Long, 2019), visual enclosure (Yin &

Wang, 2016) and sky exposure (Carrasco-Hernandez et al., 2015), and to detect traffic

signs (Balali et al., 2015; Campbell et al., 2019), urban landmarks (Lander et al., 2017),

pavement defects (Cao et al., 2020; Guan et al., 2021; Jenkins et al., 2018; Ma et al., 2017;

Nolte et al., 2018; L. Zhang et al., 2016), and curb ramps (Hara et al., 2014).

Image classification and object detection have been frequently used in urban analy-

sis (Campbell et al., 2019; Kharazi & Behzadan, 2021; Law et al., 2018; Miranda, Hos-

seini, et al., 2020; Nolte et al., 2018). However, semantic segmentation, which provides
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pixel-level predictions for object classes, has remained relatively under-utilized. Pavement

material classification has been used in safety and route-finding applications to alert pedes-

trians of upcoming obstacles (H. Kang & Han, 2020; C. Sun et al., 2019; K. Sun, Xiao,

et al., 2019; Theodosiou et al., 2020) and to help the visually impaired in identifying street

entrances based on the change in surface materials captured by cellphones (Jain & Gruteser,

2018).

2.2 Semantic Segmentation

The rise of autonomous vehicles and self-driving cars created significant demand for fast

and efficient algorithms that can extract both high and low-level information from urban

scenes, leading to notable improvements in the field of scene parsing, specifically pixel-

wise classification, commonly referred to as Semantic Segmentation. This method makes

dense predictions inferring labels for each pixel of an image, hence, giving each one a

semantic meaning (Ess et al., 2009; Geiger et al., 2012).

Early work incorporated multi-resolution processing into segmentation architectures to

improve performance over a static resolution approach (H. Zhao et al., 2017). This has been

followed by rapid developments in multi-scale pyramid-style networks (Ding et al., 2018;

J. He, Deng, & Qiao, 2019; J. He, Deng, Zhou, et al., 2019). In particular, HRNet (K. Sun,

Zhao, et al., 2019; J. Wang et al., 2020) connects high-to-low resolution convolutions via

parallel and repeated multi-scale fusions to better preserve low-resolution representations

alongside the high-resolution ones in comparison to previous works (Y. Chen et al., 2018;

Newell et al., 2016; Yu et al., 2018). A variant of HRNet, HRNet-W48, has shown superior

performance across segmentation benchmarks such as Cityscapes (Cordts et al., 2016) and

Mapillary Vista (K. Sun, Xiao, et al., 2019), which is used as a key component of this

proposal’s segmentation framework.

Attention-based mechanisms have been adopted in multiple semantic segmentation ar-

chitectures (L.-C. Chen et al., 2016; Fu et al., 2019; Q. Huang et al., 2017; H. Li et al.,
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2018). Instead of feeding multiple resized images into a shared network and merging the

features to make the prediction, which can lead to sub-optimal results, the attention mech-

anism learns to assign different weights to multi-scale features at a pixel-level and uses the

weighted sum of score-maps across all scales for the final prediction (L.-C. Chen et al.,

2016). Q. Huang et al. (2017) proposed RAN, a reversed attention mechanism that trains

the model on the features which are not associated with the target class. The network has

three branches that simultaneously perform direct, reverse, and reversed-attention learning.

Hierarchical multi-scale attention is a network architecture that learns to assign a relative

weighting between adjacent scales (Tao et al., 2020). This method has shown to be four

times more memory efficient and allows for larger crop sizes that can lead to more accurate

results. We adopted this architecture in our network generation pipeline due to its supe-

rior performance in detecting both high and low-level features while benefiting from its

memory-efficient design.

When applied to urban context (J. H. Kim et al., 2021; R. Wang et al., 2019; F. Zhang

et al., 2018; H. Zhou et al., 2021), researchers often forego retraining or fine-tuning their

models on their target datasets and rather rely only on publicly-available models pre-trained

on datasets such as CityScapes (Cordts et al., 2016), Mapillary (Neuhold et al., 2017), and

ADE20K (B. Zhou et al., 2017). This reliance on pre-trained models not specific to the

desired task limits analysis of the pre-defined object classes included in those datasets (Ahn

& Kwak, 2018). Further, pre-trained models not fine-tuned on domain-specific data can

yield sub-optimal performance (Azizi et al., 2021).

Emerging work has explored sidewalk surface material classification via patch-level

sampling classification (A. Ferreira & Giraldi, 2017; Ran et al., 2019). Another group of

studies used images of sidewalk materials taken with cameras directed at the surface (Jain

& Gruteser, 2018; Xue et al., 2020). This can significantly limit the scalability of the

method. In contrast, CitySurfaces (section 4.3) uses publicly available street-level urban

images in the wild such that the paving material is only part of the overall scene.
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We note that recent progress in self-supervised learning (T. Chen et al., 2020; Grill et

al., 2020; K. He et al., 2020) has led to dramatic gains in image classification with limited

annotated data alongside large collections of unlabeled images. As the architectures and

training strategies for self-supervised classification depart significantly from those used for

supervised urban image segmentation, we instead use active learning to address limited

data concerns in order to make use of high-performing urban segmentation frameworks.

2.3 Active learning

Deep network training requires a large number of annotated images to achieve general-

ization. In particular, semantic segmentation has the highest associated annotation cost as

every pixel needs identification (Pathak et al., 2015) and modern cameras ubiquitously cap-

ture millions of pixels. The substantial cost of accurate annotation restricts the practicality

of semantic segmentation on new datasets and tasks relevant to urban analysis (Montoya-

Zegarra et al., 2014; Xie et al., 2020).

Active learning aims to achieve high accuracy with minimal labeled data by incorpo-

rating human supervision during training. By annotating images that the model struggles

on or the most informative samples, fewer labeled instances are required to achieve similar

performance when compared to supervised approaches where every image is densely an-

notated (Settles, 2009). Common methods to active learning for vision usually follow an

uncertainty-based (Gal et al., 2017; K. Wang et al., 2016) or a representation-based (Gissin

& Shalev-Shwartz, 2019; Sener & Savarese, 2017) approach.

Active learning for semantic segmentation requires measurements of unlabeled image

informativeness for segmentation networks (Xie et al., 2020) and includes methods that

use the entire image for sampling (Kuo et al., 2018; L. Yang et al., 2017) and region-level

methods, which only require informative regions to query unlabeled data (Casanova et al.,

2020; Mackowiak et al., 2018). We refer the reader to Settles (2009) for an extensive review

of active learning techniques.
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CHAPTER 3

PEDESTRIAN NETWORKS

3.1 Introduction

After a century of car-oriented urban growth (Walker & Johnson, 2016), cities around the 

world are implementing policies and plans that aim to make their neighborhoods and streets 

more walkable and transit oriented. Renewed attention to walkability is driven simultane-

ously by the impending climate crisis, public health concerns, and a strive for economic 

competitiveness. With more than a third of all CO2 emissions attributable to the trans-

port sector (EPA, 2021), it has become clear that climate goals will not be reached unless 

urban populations start driving less and relying more on walking and public transporta-

tion (Cervero, 1998; Speck, 2013). From a health perspective, more walkable cities have 

been found to have lower obesity and inactivity-related conditions, respiratory diseases, 

and lower overall public health expenditures (Frank & Engelke, 2001; Grasser et al., 2013; 

Zapata-Diomedi et al., 2019). Economically, walkable and transit-served city environ-

ments have also become an important draw for a competitive workforce (E. Glaeser, 2010; 

Moretti, 2012) and now command some of the highest-priced real estates in American 

cities (Leinberger & Lynch, 2014).

Despite the growing, multi-pronged importance of pedestrian-oriented city design, the 

necessary geospatial data for pedestrian infrastructure mapping and modeling remains far 

behind vehicular infrastructure data. Digital mapping of vehicular road networks expanded 

rapidly in the 1990s, led by Federal legislation (President Clinton 1994), municipal gov-

ernments’ investments, as well as private companies such as Navteq and TomTom that 

operationalized roadway mapping in cities across the world. Assembly and wide-scale 

dissemination of such data has been instrumental to numerous technologies that use road
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network data as a key input: mapping and routing applications (e.g., Google Maps, Tran-

sitApp), transportation service technologies (e.g. Uber, Amazon Prime), urban transporta-

tion models and policies (e.g., metropolitan and urban Travel Demand Models, congestion

charging systems in various of cities), as well as mobility data specification standards (e.g.,

Google’s General Transit Feed Specification, and the City of Los Angeles’ Mobility Data

Specification).

Transportation debates are often skewed towards topics rich in data – vehicle through-

put, for instance, which is monitored on individual streets in many cities, is a key pa-

rameter for new road design and investment. Not only is comparable data describing

pedestrian throughput on sidewalks typically unknown, the locations and types of side-

walks are also rarely mapped or updated, contributing to systemic underinvestment in the

pedestrian realm. When pedestrian accessibility is analyzed, it is often done using simpli-

fied road-centerline data, not the actual pedestrian infrastructure–sidewalks, footpaths, and

road crossings (S. Liu et al., 2021). A number of studies have highlighted the inadequacy

of using street-centerline networks for pedestrian routing (Cambra et al., 2019; Qin et al.,

2018; C. Sun et al., 2019), which can lead to inaccuracies (e.g., streets with no sidewalks),

simplifications (e.g., assumptions that buildings can be directly accessed on both side of a

street centerline, while in reality crossing a street is only allowed at certain locations), and

misrepresentation (e.g., assuming pedestrian connections based on vehicular routes, where

there are none) (Chin et al., 2008; Ellis et al., 2016). Not only can road-network data be im-

precise for pedestrian needs, it can also be hazardous for the more vulnerable street users,

such as vision-, hearing- or mobility-challenged travelers, wheelchair-bound travelers, the

elderly, and the young (M. Saha et al., 2019; H. Zhang & Zhang, 2019).

Aside from navigation purposes, in the absence of comprehensive pedestrian network

data, researchers also used road networks to analyze different features of pedestrian infras-

tructure, which, as discussed, does not provide a true representation. The inadequacy of

street centerline to represent the pedestrian network is mentioned in multiple studies (Cam-
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bra et al., 2019; Chin et al., 2008; Qin et al., 2018; K. Sun, Xiao, et al., 2019). For

instance, Chin et al. (2008) use examples from four metropolitan suburbs in Perth, Western

Australia, to show the impact of using actual pedestrian network data instead of the street

network in walkability analyses and finds a significant difference between the two networks

in measuring connectivity and walkability of neighborhoods.

To address these challenges, we introduce TILE2NET –an end-to-end framework for

automated mapping of pedestrian infrastructure using aerial imagery. TILE2NET enables

users to download orthorectified sub-meter resolution image tiles for a given region from

public sources and generate topologically interconnected, georeferenced sidewalk and cross-

walk centerlines as well as sidewalk, road, and crosswalk polygons. Our goal is to map

pedestrian networks “as they are” rather than trying to improve the network connectivity

artificially. To achieve this, we use a semantic segmentation model that can detect side-

walk, footpath, and crosswalk polygons from orthorectified tiles. We then use the resulting

polygons to create an interconnected network. We pilot tested the approach in Manhattan,

NY, Washington, DC, Boston, and Cambridge, MA, and achieved high accuracy in each

of these cities. The model can be finetuned based on the topological characteristics of

different datasets and cities.

Our key contributions are as follows:

1. We provide an end-to-end, open-source framework to create large-scale pedestrian

networks from orthorectified imagery(link omitted to satisfy double-blind review re-

quirements).

2. The framework also generates georeferenced polygons of roads, sidewalks (including

footpaths) and crosswalks.

3. We offer techniques for the automated creation of annotation masks, using publicly

available or user input datasets to train the semantic segmentation models.

4. Our generalized pedestrian feature detection model–made publicly available–is trained
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on a selected number of cities with varying street network geometries, building

shadow densities, and tree covers (Cambridge, Washington, DC, and New York City

parks), making it applicable for other cities with similar environments without any

need for additional training.

5. Our solution is adjustable to different city environments, offering various settings to

finetune the model on the new dataset, based on the local characteristics of the data.

3.2 Literature Review

3.2.1 Map generation

At least five different frameworks for mapping sidewalk infrastructure can be disguised

in existing literature and practice, with additional combinations thereof. The main differ-

entiating point between these five categories lies in the method used to detect pedestrian

infrastructures such as sidewalks, footpaths, and crosswalks. Figure 3.1 offers an illustra-

tive summary of these methods.

First, physical site surveys and manual aerial imagery surveys have been used in a

number of cities to develop datasets on pedestrian facilities (e.g., in Melbourne, Singapore,

and Boston). This involves tracing observable sidewalks and crosswalks from georefer-

enced aerial imagery, combined with on-the-ground observation and validation (Proulx

et al., 2015). Such mapping efforts can produce accurate and high-quality results, but it

can also be prohibitively labor intensive and difficult to scale across large regions. In a

recent study, 6,400 intersections in San Francisco were manually reviewed and classified

based on the crosswalk presence and condition, which took 90 hours for a researcher to

complete (Moran, 2022). Some cities have relied on crowd-sourcing sidewalk mapping

to a community of online users (Sachs, 2016). Custom-built mapping platforms, such

as OpenSidewalks (TCAT, 2016), WalkScope (Placematters and WalkDenver, 2014), or

global open-access platforms like OpenStreetMap, enable users to view and edit available
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datasets collectively. How these open-sourced data is generated can vary, but can also

include the methods described in this section.

Second, network buffering uses a geospatial road centerline network as a reference,

which is offset on both sides to generate polygons whose boundaries approximate the right-

of-way of the roadway. In this method, which is a widely used and a common approach

in geo-information processing, the boundaries of the resulting polygons are considered as

the approximate location of the sidewalks segments, assuming that (1) pedestrian path seg-

ments only exist along roads, (2) sidewalks exist along both sides of selected roads, and (3)

crosswalks are located at every intersection. Buffer distances can include road right-of-way

or road-width dimensions from the vehicular road centerline network dataset. After side-

walk segment geometries are generated, crosswalks can be added by linking the endpoints

(i.e., intersections) of the assumed sidewalk intersections perpendicularly across road cen-

terlines (Brezina et al., 2017; Karimi & Kasemsuppakorn, 2013). This approach has several

shortcomings, first is the limited extent of the locations such a network can cover. A net-

work constructed based on streets and roads does not include off-road footpaths, pedestrian

bridges, skywalks, or underground tunnels. In other words, it is limited to only where roads

can go and can generate arbitrary sidewalks and crosswalks, which can lead to inaccura-

cies (e.g., all streets will have sidewalks on both sides), simplifications (e.g., assumptions

that buildings can be directly accessed on both sides of a street centerline, while in reality

crossing a street is only allowed at specific locations), and misrepresentation (e.g., assum-

ing pedestrian connections based on vehicular routes, where there are none) (Chin et al.,

2008; Ellis et al., 2016), each of which can lead to potentially hazardous situations for

pedestrians, specifically the more vulnerable population (M. Saha et al., 2019).

Third, pedestrian pathways have also been identified from Global Positioning System

(GPS) trajectories of pedestrian movement. This can include data from designated GPS

tracking devices that are handed out to consenting participants or collected from their

smartphone tracking Apps (Cottrill et al., 2013). Third-party data aggregators, such as
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Figure 3.1: Different methods of map generation. Each box presents the main data sources
(shaded parts), as well as the strengths (+) and weaknesses (-) of each method. The last
box highlighted in orange denotes the method used in this paper.

StreetlightData and Cuebiq collect GPS trace data from hundreds of different Apps that

track their users’ location history. Once collected, GPS traces can be merged, simplified,

and joined into contiguous network datasets (Kasemsuppakorn & Karimi, 2013). The re-

sults can effectively illustrate where people (or at least App users) actually walked, but they

may ignore segments not frequented by smartphone or app users (X. Yang et al., 2020).

Moreover, the accuracy of the final network relies heavily on the positional accuracy of

the GPS trajectories, which can be noisy, specifically in locations such as the vicinity of

high-rise buildings (Karimi & Kasemsuppakorn, 2013).

The fourth category is LiDAR point cloud processing, which utilizes airborne Light

Detection and Ranging (LiDAR) point clouds data. LiDAR devices use active sensing and

can be fixed or mounted on mobile objects such as planes and drones (Cura et al., 2018).

In general, three main methods have been used for processing LiDAR point cloud data to

extract road and sidewalk features. 1) Geometry-based methods, which uses prior knowl-

edge of the unique geometrical shapes and measurements of urban ground elements. 2)

Reflectance-based methods utilize the reflectance intensity of different classes of objects

to classify the data. The classified points are then normalized based on the laser scanning
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model, and distance projection is used to create a saliency map. These two methods are

often combined to more accurately extract the streetscape features. 3) Scan-based methods

take advantage of the scanning pattern to connect the results from consecutive scans into a

continuous boundary and refine the segmentation (Ai & Tsai, 2016; Baker & Hou, 2019;

Balado et al., 2018). In clustering feature classes, pedestrian path segments are typically

assumed to be made of concrete, and parking lots of asphalt (Hou & Ai, 2020; Karimi &

Kasemsuppakorn, 2013; Kasemsuppakorn & Karimi, 2013), which as shown by Hosseini,

Miranda, et al. (2022), is not the case in many cities. The resulting data represents side-

walks as vector lines or polygons that can be both accurate and scalable (Horváth et al.,

2022; Treccani et al., 2021). Unlike aerial imagery, LiDAR data can be acquired during

different hours (day and night), and the data is already georeferenced. However, the lack

of spatially dense, universal LiDAR data has limited this approach to relatively few cities

overall.

Fifth, and in line with our work, different computer vision techniques have more re-

cently been deployed in a limited number of studies to detect pedestrian infrastructure

from aerial images (Ning et al., 2022). The detected features are then converted into geo-

referenced lines or polygons and go through topological corrections to produce the final

network. Among computer vision techniques, semantic segmentation can result in highly

accurate detection and localization of infrastructure elements. This method makes dense

predictions inferring labels for each pixel of an image, hence, giving each one a semantic

meaning (Ess et al., 2009; Geiger et al., 2012). To construct a pedestrian network, a seg-

mentation model is first trained to detect different features of the streetscape, such as roads,

sidewalks, and crosswalks, from aerial images. Although semantic segmentation has been

broadly used to detect roads and building footprints from aerial images (Balali et al., 2015;

Iglovikov et al., 2017; W. Li et al., 2019) and to create road networks (Bastani et al., 2018;

Etten, 2020; Wei et al., 2019), it has not been widely implemented for sidewalk mapping

so far, possibly due to several technical challenges. First, in order to achieve satisfactory
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results, semantic segmentation algorithms need to be trained on densely annotated labels,

which can be labor-intensive and costly to prepare. Consequently, in applying semantic seg-

mentation models to urban context (J. H. Kim et al., 2021; R. Wang et al., 2019; F. Zhang

et al., 2018; H. Zhou et al., 2021), researchers often forego retraining or fine-tuning their

models on their target datasets and rather rely only on publicly-available models pre-trained

on datasets such as CityScapes (Cordts et al., 2016), Mapillary (Neuhold et al., 2017), and

ADE20K (B. Zhou et al., 2017). This reliance on pre-trained models, not specific to the

desired task, limits analysis to the pre-defined classes included in those datasets (Ahn &

Kwak, 2018). Further, pre-trained models not fine-tuned on domain-specific data can yield

sub-optimal performance (Azizi et al., 2021). Second, compared to roads and buildings,

detecting sidewalks, footpaths and crosswalks is more challenging since they constitute a

small portion of the visual information of aerial images, and their detection can be fur-

ther inhibited by occlusion from shadow, vegetation, and structures such as bridges or tall

buildings (Hosseini et al., 2021). Hence, choosing the right network architecture that can

preserve the fine local details while taking the global image context into account is crucial.

3.2.2 Semantic segmentation

The rise of autonomous vehicles and self-driving cars created significant demand for fast

and efficient algorithms that can extract both high and low-level information from urban

scenes, leading to notable improvements in the field of scene parsing, specifically pixel-

wise classification, commonly referred to as semantic segmentation. Early work incorpo-

rated multi-resolution processing into segmentation architectures to improve performance

over a static resolution approach (H. Zhao et al., 2017). This has been followed by rapid

developments in multi-scale pyramid-style networks (Ding et al., 2018; J. He, Deng, &

Qiao, 2019; J. He, Deng, Zhou, et al., 2019). In particular, HRNet (K. Sun, Zhao, et al.,

2019; J. Wang et al., 2020) connects high-to-low resolution convolutions via parallel and

repeated multi-scale fusions to better preserve low-resolution representations alongside the
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high-resolution ones in comparison to previous works (Y. Chen et al., 2018; Newell et al.,

2016; Yu et al., 2018). A variant of HRNet, HRNet-W48, has shown superior performance

across segmentation benchmarks such as Cityscapes (Cordts et al., 2016) and Mapillary

Vista (K. Sun, Xiao, et al., 2019), is used as a key component of this proposal’s segmenta-

tion framework.

Attention-based mechanisms have been adopted in multiple semantic segmentation ar-

chitectures (L.-C. Chen et al., 2016; Fu et al., 2019; Q. Huang et al., 2017; H. Li et al.,

2018). Instead of feeding multiple resized images into a shared network and merging the

features to make prediction, which can lead to sub-optimal results, the attention mecha-

nism learns to assign different weights to multi-scale features at a pixel-level and uses the

weighted sum of score-maps across all scales for the final prediction (L.-C. Chen et al.,

2016). Q. Huang et al. (2017) proposed RAN, a reversed attention mechanism that trains

the model on the features which are not associated with the target class. The network has

three branches that simultaneously perform direct, reverse, and reversed-attention learning.

Hierarchical multi-scale attention is a network architecture that learns to assign a relative

weighting between adjacent scales (Tao et al., 2020). This method is shown to be four

times more memory efficient and allows for larger crop sizes that can lead to more accurate

results. We adopted this architecture in the sidewalk detection part of our pipeline due to its

superior performance in detecting both high and low-level features while benefiting from

its memory-efficient design.

3.3 Materials and Methods

In this section, we detail the datasets used for training the model, describe our methodology,

and discuss how we have addressed the challenges of preparing labor-intensive annotation

labels for training the algorithm and generalized it to detect pedestrian infrastructure in

different urban environments. We also illustrate how initially detected polygon geometries

can be converted into sidewalk centerlines, bringing the outputs closer to a topologically
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interconnected network dataset that can be used for pedestrian routing and other network

analysis procedures.

Table 3.1: Datasets used for training the model and their sources.

City Dataset Features Date Source

Cambridge, MA

Sidewalks Sidewalk polygons 2018 (Cambridge GIS, 2018a)
Roads Roads polygons 2018 (Cambridge GIS, 2018d)
Pavement Markings Crosswalk polygons 2018 (Cambridge GIS, 2018b)
Public Footpaths paved & unpaved 2018 (Cambridge GIS, 2018c)
Ortho-imagery Image tiles 2018 (MassGIS, 2018)

Manhattan and Brooklyn
Sidewalk Inventory Off-road footpaths inside parks 2018 (NYC DoITT, 2018)
Roads Road polygons 2018 (NYC DoITT, 2018)
Ortho-imagery Image tiles 2018 (NYC GIS, 2018)

Washington, DC
Sidewalk Inventory Sidewalk and crosswalk polygons 2019 (DC GIS, 2019b)
Road Road polygons 2019 (DC GIS, 2019a)
Ortho-imagery Orthophoto SID 2019 (DC GIS, 2020)

3.3.1 Data description

The semantic segmentation model requires pairs of aerial images and their corresponding

annotation labels to be trained. Two main data sources were used to create our training

set: 1) High-resolution orthorectified imagery that is available across numerous U.S. (US

Geological Survey, 2018) and international cities, and 2) Planimetric data that is created

from orthorectified images. Next, we provide more details about each one and describe

how they were used in creating the training data. Table 3.1 shows the datasets used to train

the model and their delivery dates.

High-resolution orthorectified imagery

Raw aerial images inherently contain distortion caused by sensor orientation, systematic

sensor and platform-related geometry errors, terrain relief, and curvature of the earth. Such

distortions cause feature displacement and scaling errors, which can result in inaccurate di-

rect measurement of distance, angles, areas, and positions, making raw images unsuitable

for feature extraction and mapping purposes. Orthorectification removes these distortions

and creates accurately georeferenced images with a uniform scale and consistent geome-

try (Tucker et al., 2004; G. Zhou et al., 2005). The orthoimagery tile system also makes it
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possible to convert between positional coordinates of tiles in x/y/z (where z represents the

zoom level) and geographical coordinates.

Aside from orthoimages provided by U.S. Geological Survey (USGS) (US Geological

Survey, 2018), there are some state-wide programs dedicated to producing digital ortho-

imagery on different zoom levels, which may offer more recent data. For the purposes

of this study, we used orthorectified images provided by Massachusetts (MassGIS, 2018),

Washington, DC (DC GIS, 2020), and New York (NYC GIS, 2018) to train the model and

pilot test the approach. TILE2NET is designed with the capability of automating the data

preparation process. It can take as input, the textual name or geographic coordinates of the

bounding box of a given region and download the tiles that fall within the bounding box,

for the cities where orthoimagery is available.

To create the training data, using TILE2NET, we obtained 11,000 tiles from Washing-

ton, DC, 28,000 tiles from Cambridge, and 8,000 tiles from inside NYC parks. Except for

Washington, DC, where the tiles are 512x512 pixels, the rest of the tiles come in 256x256

pixels. We choose zoom level 20 for the 256x256 pixel tiles, which corresponds to the zoom

level 19 for 512x512 pixels tiles, where each pixel of the image represents 0.19 meters on

the surface of the earth. Our experiments training the model with both sizes showed that

the model would perform better using 512x512 pixel input images (an increase of roughly

12% in mIoU). Hence, we used the tool to stitch every four neighboring 256x265 pixel tiles

to get 512x512 pixel images, creating a total of 20,000 tiles.

Planimetric GIS data

Planimetric mapping involves extracting features from orthoimagery to create maps that

only capture the horizontal distance between the features irrespective of elevation (Quack-

enbush, 2004). Since planimetric data are created using orthorectified images, they are

suitable for creating annotation masks–a priori known and accurate raster polygons that

describe the features we seek to automatically detect using semantic segmentation mod-
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els. An annotation label is like a reference map that corresponds to a given tile, where

each pixel color represents the class to which the corresponding pixel in the image belongs

( Figure 3.2(b,c,e,d)).

�

Corrected AnnotationAnnotation 
(Official Data)

Orthorectified Tile

�

�

��

BackgroundSidewalk Crosswalk Road

�

Figure 3.2: Examples of the mismatches between the aerial image and the annotation label
created from the official data. The manually corrected annotation labels are shown in the
last column.

To prepare the annotation labels, TILE2NET primarily relies on available GIS data on

sidewalk, crosswalk, and footpath locations in select city environments. In this study, we

used the publicly available planimetric data on sidewalks, footpaths, and crosswalks in

parts of Cambridge, Washington, DC, and selected sites from inside the parks of New York

City. Reliance on existing GIS datasets allows us to prepare large-scale annotation labels

using available data rather than manually annotating a huge number of images. TILE2NET

takes the bounding box of each tile, finds the corresponding sidewalk, footpath, crosswalk,

and road polygons from the available planimetric GIS data, rasterized the GIS polygons
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into pixel regions, and outputs annotated image tiles with four total classes: sidewalks

(including footpaths), crosswalks, roads, and background, representing each class with a

distinct color. These annotations are used as ground truth data for training the model.

However, challenges remain in creating accurate and consistent training data. The first

challenge arises from the lack of consistency between the mapping standards used by dif-

ferent municipalities. Moreover, since GIS data on pedestrian infrastructure does not nec-

essarily reflect the exact conditions that are represented in aerial images, there can be a

temporal difference between tiles and GIS data as the creation of GIS data may have relied

on a different underlying data source. As illustrated in Figure Figure 3.2, official GIS data

can contain numerous errors. Human adjustment and correction may be necessary to bring

ground truth annotation labels into alignment with the image data. To achieve that, our

research team manually corrected 2,500 tiles of the 12,000 training set, 1,620 image tiles

out of 4,000 tiles that were used as our validation set, and 1,500 tiles out of 4,000 test set

tiles.

3.3.2 Methods

TILE2NET adopts a multi-scale attention model for detecting pedestrian infrastructure

from aerial imagery: sidewalks, crosswalks, stairs, and footpaths that may be separated

from streets and roadways (e.g., in parks and open spaces). We combine a semantic seg-

mentation approach with a raster-to-polygon conversion process to generate vector shape-

files of pedestrian infrastructure elements and, separately, a polygon-to-centerline conver-

sion process to produce a topologically interconnected network of pedestrian centerlines.

The pipeline has two main parts: 1) Detecting street elements from aerial imagery ( Fig-

ure 3.3 (a,b)), and 2) Network construction ( Figure 3.3 (c,d)). In the following, we describe

our methods in detail.
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Figure 3.3: The proposed network generation pipeline. a) Unlabeled orthorectified tiles
are passed through the semantic segmentation model for prediction, b)The model detected
sidewalks (blue), crosswalks (red), and roads (green) in the input tiles, c) The sidewalks
and crosswalks of the prediction results (raster format) are converted into georeferenced
polygons, d) The line representation of the pedestrian network generated from polygons.

Detecting street elements from aerial imagery

To detect street elements from aerial imagery, TILE2NET allows users to train a pedestrian

feature recognition model on custom, locally-specific data. The trained model can then be

used to make inference on unlabeled data. For our semantic segmentation task, we adopted

the Hierarchical Multi-Scale Attention model (Tao et al., 2020), and used HRNet-W48 K.

Sun, Zhao, et al. (2019) and J. Wang et al. (2020) with Object-Contextual Representa-

tions (Yuan et al., 2019) as the backbone. The computed representation from HRNet-W48

is fed the OCR module, which computes the weighted aggregation of all the object region

representations to augment the representation of each pixel. The augmented representa-

tions are the input for the attention model. For the primary loss function, we used Region

Mutual Information (RMI) loss (S. Zhao et al., 2019), which accounts for the relationship

between pixels instead of only relying on single pixels to calculate the loss.

The semantic segmentation model takes an input image, makes dense predictions infer-

ring labels for each pixel, and outputs a feature map showing whether and where the objects

of interest are recognized in the image tile. After the training phase is completed, the unla-

beled orthorectified tiles are passed through the trained model, as shown in Figure 3.3 (a),

the prediction model outputs a raster image where each pixel has a value corresponding to

one of our four classes: sidewalk, crosswalk, road, and background ( Figure 3.3 (b)).
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Figure 3.4: Boston Commons: a) Aerial image, b) Detected sidewalk and footpath poly-
gons (in orange) and detected crosswalks (in red), c) Fitted sidewalk, crosswalk, and foot-
path centerlines superimposed on the aerial image.

Network creation

After the pedestrian features were detected from the input images, TILE2NET takes the

model’s prediction in raster format and performs 1) raster to polygon conversion, which

can save the output polygons in different formats such as GeoJSON and shapefiles, usable

across multiple GIS tools; and 2) polygon to centerline conversion to create the final pedes-

trian network representation. Figure 3.4 shows the results of these two steps for Boston

Commons, which was not part of the training data. Next, we will detail each of these steps.

Raster to polygon conversion

To obtain the vectorized, georeferenced sidewalks, crosswalks, and roads, the detected

regions should be converted into polygons. To achieve that, we employed connected-

component mapping algorithm (L. He et al., 2009; Rosenfeld & Pfaltz, 1966), in which the

connected cells of the same category in the raster image form regions or raster polygons.

These regions are then georeferenced, using an affine transformation, which preserves lines

and parallelism and maps the raster pixels into the geographic coordinates.
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Figure 3.5: Impact of different interpolation distances on the resulting centerline created
from the input polygon. Small values create extra branches (r=0.5 and r=1) and large values
create zigzaggy (r=10) or disjointed lines (r=20). The middle centerline, highlighted with
a thicker border, is computed using the interpolation distance computed using our heuristic
approach.

Polygon to centerline conversion

In the third and final step, TILE2NET calculates the centerlines for each polygon. Given

that the initially detected regions are pixel-precise, we first simplify the polygons using the

Douglas-Peucker algorithm (Douglas & Peucker, 1973). Next, a dense Voronoi diagram

is computed to extract the centerlines of the sidewalk polygons (Brandt & Algazi, 1992).

The centerline is constructed by linking the internal diagram edges not intersecting with

the boundary of the object. The border density parameter, called interpolation distance,

densifies the input geometry’s border by placing additional points at that given distance. If

the interpolation distance is too small, the output will have many unwanted branches, while

large values can lead to zigzaggy and disjointed centerlines (Lewandowicz & Flisek, 2020;

Z. Li et al., 2021) as illustrated in Figure 3.5.

Finding the optimal interpolation distance is beyond the scope of the current work. To

approximate a suitable parameter for each polygon, we used a heuristic approach and se-

lected a sample of 400 polygons of varying areas and perimeters. Next, for each polygon,

we tested different interpolation distances ranging from 0.5 to 20, using a 0.5 step (i.e., total

of 40 different parameters) and chose the line with the highest connectivity and the least

number of extra branches which best represents our irregular shapes. For each polygon, we

record the interpolation distance that results in the best centerline, as well as the polygon

area, perimeter, average width, number of vertices, area to minimum bounding box area
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ratio, and area to perimeter ratio. We used a polynomial regression model and concluded

that the area to perimeter ratio is a significant factor in choosing the interpolation distance.

Using the derived coefficient, we compute the interpolation distance of each polygon for

centerline creation. In Figure 3.5 the centerline highlighted with a thicker border is com-

puted using the interpolation distance derived from our heuristic approach (r=2.38), having

smooth lines which follow the form of the input polygons with very few extra branches

compared to smaller values. The coefficient can be finetuned on new datasets. To clean

and simplify the centerline, we trim branches shorter than an adjustable threshold, which

is generally set to half of the average width of the polygon. Crosswalk centerlines were

created by joining the centroids of the smaller edges of the minimum rotated rectangles for

each polygon. The crosswalk centerlines are then connected to their nearest sidewalk lines.

The resulting vector lines form the basis of our pedestrian network.

Following this step, the network goes through algorithmic post-processing operations

to correct its topology: removing false nodes and removing the isolated lines. To close

the small gaps, we used R-Tree (Guttman, 1984; Kamel & Faloutsos, 1993) and queried

for gaps smaller than certain thresholds. Then we extrapolate both lines to meet in the

center of the gap. These operations help refine the detected pedestrian centerlines into a

topologically continuous network while avoiding undue corrections and additions where

connections between sidewalk segments are lacking.

3.4 Implementation and Evaluation of Results

This section presents the implementation details and results of using TILE2NET to cre-

ate city-scale pedestrian networks. We evaluate the performance of our proposed method

in two parts. First, we evaluate the results of our semantic segmentation model based

on ground truth masks (subsection 3.4.2). Next, we evaluate the accuracy of the con-

structed maps, both polygons, and centerlines, using the available official data (subsec-

tion 3.4.3). Table 3.2 presents an overview of the available ground truth data used in our
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Table 3.2: Availability of the official data across different cities. Training: ◦, Evaluation:

City Data type Sidewalk Crosswalk Footpath

Boston Polygon ◦ - -
Centerline -

Cambridge Polygon ◦ ◦ ◦
Centerline

Washington DC Polygon ◦ ◦ ◦
Centerline - - -

Manhattan Polygon - ◦
Centerline - -

evaluation. The polygon data was partly used in our training process, denoted by a plain

circle, as explained in subsection 3.3.1.

3.4.1 Implementation

The model was trained with a batch size of 16, SGD for the optimizer with polynomial

learning rate (W. Liu et al., 2015), momentum 0.9, weight decay 5e−4, and an initial learn-

ing rate of 0.002. The multi-scale setting used 0.5, 1, 1.5, and 2, where a 0.5 scale denotes

downsampling by a factor of two, and a scale of 2 denotes upsampling by a factor of 2 (Tao

et al., 2020). We used color augmentation, random horizontal flip, random scaling (0.5x–

2.0x), and Gaussian blur on the input tiles to augment the training data and improve the

generalizability of the model. The crop size was set to 512x512. The image and annotation

pairs were split into three parts: 60% of the tiles were used to train the model, 20% of the

tiles to validate, and 20% were held-out to test the model in the final stage. To handle the

class imbalance, we employed class uniform sampling in the data loader, which chooses

equal samples for each class (Y. Zhu et al., 2019) (classes like road and background are

present in almost all images, whereas crosswalks can appear less frequently) and the class

uniform percentage was set to 0.5. The segmentation model was trained for 310 epochs

using 4 NVIDIA RTX8000 GPUs with 48 GB of RAM each.

The trained model is then used to make inference to create the city-scale networks; I

obtained the tiles corresponding to the bounding box of Boston, Cambridge, Manhattan,
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and Washington, DC, on zoom level 20. Since smaller tiles result in more disjointed final

shapes, I used 1024x1024 pixel tiles stitched using TILE2NET for the inference part. The

hierarchical architecture of our semantic segmentation network made it possible to choose

different scales during the inference. In our experiments using 512x512, 1024x1024, and

2048x2048 pixel tiles during inference, the best results were achieved using 1024x1024

pixel tiles, where the model had enough context to distinguish between different classes.

TILE2NET uses the Geopandas (Jordahl, 2014) and PyGEOS(Wel, Casper van der,

2019) libraries for performing different spatial operations. The raster to polygon conversion

was done using the Rasterio library (Gillies et al., 2013). To create the centerlines, I used

the Centerline library (Todic, 2016). Momepy (Fleischmann, 2019) was used to handle

network cleanups, such as removing the false nodes.

3.4.2 Evaluation of the semantic segmentation results

Table 3.3: Evaluation metrics on the test set.

Label IoU Precision Recall
Sidewalk 82.67 0.9 0.92

Road 86.04 0.91 0.94
Crosswalk 75.42 0.86 0.86

Background 93.94 0.97 0.96
mIoU 84.51

The trained model outputs four classes in total, two of which were directly used to

create the pedestrian networks, i.e., sidewalks and crosswalks, one was used to draw local

attributes for finetuning the network creation parameters, and the background, which con-

tains all other elements not used in this study. To evaluate the performance of the model,

I used the Jaccard index, commonly referred to as the Intersection over Union (IoU) ap-

proach, which is a scale-invariant standard evaluation metric for semantic segmentation

tasks. Class-specific accuracy measures are also calculated to assess the model’s perfor-

mance in classifying objects of different classes. I did not rely on the more biased pixel-

level accuracy since sidewalks and crosswalks comprise a small portion of each image,
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Figure 3.6: Model results showing detected sidewalk, crosswalk and footpath centerlines
in a) Boston and Cambridge, b) Manhattan and parts of Brooklyn, c) Washington, DC. The
maps are shown at the same scale for comparison.

resulting in a significant class imbalance and an arbitrary high pixel-level accuracy. Ta-

ble 3.3 presents the average IoU (mIoU), as well as the class-wise IoU, precision, and recall.

The model achieved 84.5% mIoU over all four classes, with sidewalks having 82.7% IoU

and crosswalks having 75.42% IoU. The lower accuracy of the crosswalks can be attributed

to the more temporal nature of the crosswalks and the fact that they can get faded and, in

some cases, not even visible to human eyes.

3.4.3 Evaluation of the constructed maps

Figure 3.6 presents the model outputs in Boston and Cambridge, Manhattan, parts of

Brooklyn, and Washington, DC. All cities are shown at the same scale for comparison. To

evaluate the quality of the output vis-a-vis existing official GIS datasets available in each

city. I compared both the detected polygons to corresponding city GIS polygons and the

detected network segments to a priori known GIS sidewalk networks in each city. Table 3.2

summarizes the availability of official data across the four cities, and how they were used

for both training and evaluation.

For polygon comparisons, comprehensive and public data for sidewalks, crosswalks,

and footpaths, was available in Cambridge, and Washington, DC. In Boston, only sidewalk

GIS polygons were available, and Manhattan’s sidewalk data includes the footpath poly-
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gons. Table 3.4 presents class-level evaluation metrics for detected polygons, showing the

total count and the percentage of ground-truth polygons (from the cities’ GIS data) that had

a matching “detected” polygons spatially intersecting each element. In Cambridge, 98.9%

of all polygons in official GIS data had overlapped with polygons detected by TILE2NET.

In Boston, that number was 98.7%, in Washington, DC, 84.4%, and in Manhattan, 98.2%.

Since most of the unmatched polygons were small in size, we also report the area-weighted

overlap percentages in Table Table 3.4.

The last row of Table Table 3.4 reports the mean aerial overlap percent between of-

ficial GIS pedestrian infrastructure polygons and polygons detected by TILE2NET (also

weighted by size). This illustrates what percent of the area featured in the official pedes-

trian polygons overlaps with detected polygons. In Cambridge, 85.9% of the area of official

GIS polygons was also covered by detected polygons, 77.9% in Boston, 73.8% in Washing-

ton, DC, and 87.5% in Manhattan. Figure 3.4 illustrates an overlay of detected polygons

and network segments in a part of Boston covering the Boston Commons and some blocks

around it.

To evaluate the accuracy of the networks extracted from the imagery, we compared

them against the publicly available sidewalk, crosswalk, and footpath centerline shapefiles

of each city, where available ( Table 3.2). All three types of pedestrian infrastructure cen-

terlines were available in Cambridge. In Boston, the sidewalk centerline dataset includes

Table 3.4: Comparison of polygon accuracy results in Cambridge, MA, Boston, MA, New
York City, NY, and Washington, DC. The % detected indicates what proportion of polygons
in the city dataset had a corresponding detected polygon that overlaps with it. Since many
of the undetected polygons are small in area, we also report the % detected weighted by
area. The mean area overlap % row reports how close in area (from 0-100%) the detected
polygons are to the city dataset, on average (including those city polygons that remained
undetected).

Measures Cambridge, MA Boston, MA Washington, DC New York City, NY
Official data polygon count 17,516 24,604 52,087 4,684

Match (overlaps with detected) 17,327 24,288 43,963 4,602
% Detected 98.92% 98.72% 84.40% 98.25%

% Detected (weighted by area) 99.62% 99.39% 97.48% 99.91%
Mean area overlap % (weighted by area) 85.9% 77.9% 73.8% 87.5%
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Table 3.5: Comparison of network accuracy results in Cambridge, Boston, and Manhattan.

City Measures All Sidewalk Crosswalk Footpath

Cambridge
Official element count 12,792 5,007 2,414 5,371

Match (within 4m of centroid) 10,631 4,735 2,197 3,699
% Match 83.1% 94.6% 91.0% 68.9%

Boston
Official element count 110,031 54,864 11,223 37,023

Match (within 4m of centroid) 86,372 49,806 10,051 23,978
% Match 78.5% 90.8% 89.6% 64.8%

Manhattan
Official element count - - - 6,239

Match (within 4m of centroid) - - - 5,309
% Match - - - 85.1%

crosswalks, and in Manhattan, only footpath centerlines were available for comparison.

However, in Cambridge and Boston, centerline data dates back to 2011.To investigate the

reliability of the centerline data for evaluation, we analyzed the Cambridge data, where

more recent polygon data (2018) are available for both sidewalks and crosswalks. we com-

pute the percentage change of the sidewalk and crosswalk centerlines by intersecting the

centerlines of each class with the more recent polygon data of that class. we manually

examined all the mismatch cases and removed the false positives. Our analysis showed a

23% change from 2011 to 2018 in crosswalks, while sidewalks change was 9.2%, which

shows the relative stability of the fixed features such as sidewalks over time. To perform

the evaluation, we marked the centroid of each network segment from corresponding city

datasets and buffered the centroid by four meters (corresponding to 95th percentile side-

walk width in Boston) to check how many ground-truth network segments have a detected

segment within a 4-meter distance of their centroid. we relied on centroids rather than full

segments or endpoints to avoid matching intersecting line segments around network nodes.

The results are reported in Table 3.5.

In Cambridge, our model matched 83.1% of all segments, with notable heterogeneity

among different types of elements. Among sidewalks, 94.6% of centerlines had a corre-

sponding detected segment, among crosswalks, 91.0%, and among footpaths, 68.9%. The

lower matching rates among footpaths were expected due to more frequent tree cover over

footpaths in parks and green spaces. Network matching in Boston was fairly similar across
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the same network types ( Table 3.5). 90.8% of all sidewalk segments in city GIS data

and 89.6% of all crosswalks were matched by our results. Footpath matching was again

notably lower at 64.8%. In Manhattan, NY, we only had official footpath networks (in

parks) available from the city’s open data repository. Here, 85.1% of official footpath seg-

ments had a corresponding detected segment within a four-meter buffer of their centroid.

In Washington, we did not find any official sidewalk centerlines.

For Washington, DC, the comparison could only be performed on more limited data. In

Washington, DC, we did not find any official sidewalk centerlines and instead performed

the comparison with the available OpenStreetMap sidewalk segments. The results are

shown in Table 3.6. A somewhat lower matching rate with OSM networks was expected

and confirmed by the 76.9% match across all categories since OSM sidewalk networks

are not official data, following different standards than those prepared by city govern-

ments. Though our inspection of results confirmed that both sidewalks and crosswalks

again matched more closely than footpaths in parks, no type attributes for such comparison

were available in the OSM network.

Table 3.6: Network accuracy evaluation in Washington, DC.

City Measure All

Washington, DC
OSM swlk element count 11,317

Match (within 4m of centroid) 8,703
% Match 76.9%

3.5 Discussion

While the automated pedestrian infrastructure mapping methodology we explored was able

to capture a 90% or higher share of sidewalks and crosswalks featured in city GIS datasets,

and a notably lower share of footpaths in parks, green areas, and other public spaces, a few

caveats need to be highlighted to interpret these results. First, the sidewalk, crosswalk, and

footpath data available for validation in Cambridge, Boston, Washington, DC, and New

York City are not necessarily temporally concurrent with the aerial imagery we used for
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feature detection. This can lead to expected differences between ground truth and detected

features. For instance, in Cambridge, the GIS data we used for validation was last updated

to reflect the year 2010 flyover conditions according to the city’s metadata, but the aerial

image tiles we used as input for feature detection were captured in 2018. The Boston

sidewalk and crosswalk centerline data were last updated to reflect 2011 conditions, while

our Boston image tiles were captured in 2018. Some pedestrian elements in aerial views

are therefore not featured in the cities’ GIS data and vice versa, possibly because they were

altered before or after the images were captured. As also explained in subsection 3.4.3,

the percentage change between the data created based on the 2010 flyovers and the 2018

polygon data was 9.2% for sidewalks and 23% for crosswalks.

Second, we also noted errors in the cities’ GIS datasets, where pedestrian infrastructure

elements were missing or different from the Google Street View conditions dated to the

same year. Given that the city datasets were likely prepared with a combination of auto-

mated feature detection and human correction, some error is expected. While these were

the only data available to construct a quasi-official comparison of our results, these caveats

are also partially responsible for the differences between detected and official pedestrian

network elements.

The model can be improved with training and validation data that are both temporally

and geometrically identical to the conditions captured in the image tiles used for feature

detection. If city GIS data is versioned by year, the ground truth GIS data used for training

the model could be dated back to an antecedent year that matches the image tiles and ad-

ditionally humanly corrected to eliminate omissions and errors. This can ensure in future

work that the detected polygons best match ground-truth polygons. The relatively lower

detection accuracy of footpaths is attributable to several factors. On the one hand, feature

detection from aerial imagery is hampered by significantly higher levels of tree cover and

other vegetation obstructions over footpaths found in parks, courtyards, and campuses. Sec-

ond, footpaths also tend to have more complex geometries with winding and non-gridiron
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layouts, resulting in a much higher and more detailed segment count than on sidewalks and

crosswalks. A complex curving footpath in a park made up of several segments may have

a matching detected segments on some but not all of its segmented parts.

The polygon to centerline fitting part could also benefit from further improvement. The

network geometry improvements can be categorized into three separate areas. First, as also

mentioned in section 3.3, the Voronoi skeleton approach (Brandt & Algazi, 1992) used for

converting polygons to centerlines is very sensitive to the interpolation distance parameter

and is not optimized for extracting the centerline of elongated polygons. Moreover, the

algorithm fits centerlines into discrete polygons and is not optimized for fitting the cen-

terlines such that the endpoints of one skeleton topologically connect to the skeleton of

another polygon, resulting in discontinuities between polygons. We were partly able to

adjust this with automated post-processing routines, but further refinements would be de-

sirable to output continuous centerline networks. There is an extensive body of literature

on various skeletonization algorithms (P. K. Saha et al., 2016), with some focusing solely

on creating the centerlines of the elongated polygons (Haunert & Sester, 2008; Lewandow-

icz & Flisek, 2020). However, finding the optimal interpolation distance value is beyond

the scope of the current research, but as a future direction, we are planning to work on

developing algorithms tailored for creating the centerlines of the pedestrian infrastructure.

Second, the resulting network segments are currently not optimized to form singular

nodes or endpoints at intersections. Some detected line segments often converge near street

corners, forming redundant intersections. This can be addressed in future work by improv-

ing the algorithmic procedures to join endpoints into a single overlapping endpoint located

at the geometric centroid of the multiple nodes found within a given distance. This thresh-

old distance would ideally be determined contextually, depending on the street widths in

each area.

Third, though most computer vision solutions are fundamentally unable to detect side-

walk spatial elements where visual obstructions exist, lower detection accuracy in tree-
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Figure 3.7: Mapping obstructed pedestrian facilities in different cities: a) Cambridge, MA.
- sidewalks are mapped as continuous despite the heavy shadow, b) Manhattan - sidewalks
and crosswalks obstructed by tree foliage and shadow are detected and mapped, c) Wash-
ington, DC. - crosswalks covered by vegetation are correctly detected and mapped.

covered regions was expected. Nevertheless, since our model was trained on planimetric

GIS data, where pedestrian infrastructure elements were present regardless of obstructions,

our model performed surprisingly well in occluded areas. Figure 3.7 shows examples of

the created network in sample areas of Cambridge, MA, Manhattan, and Washington, DC.

In each case, the detection model correctly classified sidewalks and crosswalks, creating a

continuous network despite the heavy shadow concentration on sidewalks (a), shadow and

vegetation obstructing sidewalks, and crosswalks (b), and vegetation obstructing curbs and

crosswalks (c).

Future work could further examine ways to fill in missing gaps in the resulting net-

works using probabilistic techniques. For instance, if additional detection classes, such as

“tree” or “shadow,” are added to the semantic segmentation procedure, then these could be

used in the network correction procedures to automatically connect gaps under trees and

shadows. Yet, any automated correction for missing network links faces the hazard of er-

roneously creating pedestrian segments where they are not visible and hence may not exist.

When networks are prepared for vulnerable street users (e.g., wheelchair users, mobility-

impaired users, etc.), for whom network accuracy is critical, automated network correction

procedures are likely futile, and improvements can only be made from ground surveys or
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Google Street View images.

Moreover, in the future, we plan to add additional classes such as driveways, curbs,

stairs, and separating public and private footpaths to our detection model. The model is

presently limited to detecting only sidewalk and crosswalk elements, which may not be

appropriate in cities, where considerable parts of the pedestrian infrastructure are invisible

from aerial imagery–overground foot-bridges, under-ground pedestrian crossings, covered

pathways, and public pathways inside buildings. Additional efforts will be needed to com-

bine aerial sidewalk and crosswalk detection with invisible indoor elements in the contexts

where the latter are significant (e.g., Hong Kong, Singapore, Minneapolis, and Montreal,

to name a few).

The lack of standardized training data across different cities also posed challenges in

our work. For instance, different cities have captured and mapped sidewalks with varying

levels of detail. In Washington, DC, unpaved planter areas were excluded from sidewalk

polygons, whereas in Boston and NYC, they were treated as parts of sidewalks. The same

problem exists for curb extensions, medians, driveways, and curb-cuts. Moreover, the

edges of the road and sidewalk polygons overlap and, in multiple instances, in GIS ground

truth data. Crosswalk representation presented another source of variation among different

cities. While they were mapped as part of sidewalk inventory data in Washington DC,

in Boston, they were only presented in the sidewalk centerline dataset; hence, with no

information available about their size and shape. In Cambridge, they were part of both the

sidewalk centerline data and a separate dataset on road markings, where pedestrian zebras

were represented as polygons.

Beyond heterogeneity in training data, the physical features, materials, and dimensions

of sidewalks and crosswalks can also vary widely between cities. We observed multiple

instances of faded crosswalks that made it challenging for semantic segmentation to detect.

We also noted differences in both sidewalk materials and crosswalk materials across cities.

Whereas very few crosswalks are paved in brick in NYC, they are common in Cambridge
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and Boston. Had we trained the algorithm on NYC, it could have resulted in systemic

underdetection in Boston and Cambridge. Such differences are bound to be much bigger

between international cities, where construction materials, crosswalk marking conventions,

and infrastructure dimensions vary more considerably than between the three East Coast

cities included in our study. When extending the model to new contexts, especially outside

the U.S., it is crucial to train the model specifically for each region.

3.6 Conclusion

In this paper, we presented TILE2NET, a solution that is able to create accurate pedestrian

networks from aerial imagery in an end-to-end fashion. We pilot tested the approach in New

York City, Washington, DC, Boston, and Cambridge, with varying street network geome-

tries, building shadow densities, and tree covers and reported on the quality and accuracy

of the approach. The resulting networks are created using the most recent orthorectified

images, hence, more closely reflect the current urban form and pedestrian infrastructure.

While the results are promising, we emphasize the need for expanding the work to addi-

tional cities and regions globally, where locally specific training may be needed to achieve

high detection accuracy. However, the retraining for new regions can be done at much lower

cost since our pre-trained model can be used for transfer-learning and domain adaptations

with significantly less data compared to the initial training.

The resulting sidewalk and crosswalk dataset can be further combined with attribute

information that may be useful for various pedestrian analytics. For instance, as shown

by Hosseini et al. (2021), the captured sidewalk and crosswalk polygons can be used to

measure the width of each sidewalk segment. Furthermore, using results by Hosseini,

Miranda, et al. (2022), who developed a method for detecting sidewalk surface materials

from Google Street View imagery, our sidewalk segments can be joined with corresponding

geotagged material information, instead of having to aggregate the data from left and right

sidewalks into road centerlines. Such measurable attributes can impact the quality and
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attractiveness of sidewalks, and have been shown to affect pedestrian route choice and

perceived route length (Basu et al., 2022; Erath et al., 2015; Sevtsuk et al., 2021).

Having pedestrian paths represented as continuous, topologically connected network

datasets could open up new (and overdue) efforts for pedestrian routing, flow analysis, and

potential location-based or delivery services. Transit-first policies, walkable-streets initia-

tives, step-free access for public transport, and vision zero goals represent but few planning

and policy areas which could benefit from citywide sidewalk and crosswalk datasets.
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CHAPTER 4

CITY SURFACES: CITY-SCALE SEMANTIC SEGMENTATION OF SIDEWALK 

MATERIALS

4.1 Introduction

As urban areas expand around the world, more impervious surfaces replace the natural 

landscape, creating significant ecological, hydrological, and economic disruptions (Arnold 

Jr & Gibbons, 1996; Chithra et al., 2015). Choosing the right material to cover city surfaces 

has become a critical issue in mitigating the adverse effects of increased anthropogenic 

activities. Historically, local availability, cost, strength, and aesthetics were the main factors 

influencing the choice of surface pavements (Lay et al., 2020; Tillson, 1900). The advent 

of asphalt and, later, concrete changed the face of cities. The longevity and durability 

coupled with relatively low production and installation costs made them the pavements of 

choice. However, as it was later revealed, these benefits came with huge environmental 

burdens (Van Dam et al., 2015).

One of the concerning environmental impacts of impervious surfaces is the sharp rise 

in urban temperature compared to its neighboring rural areas – a phenomenon called Ur-

Figure 4.1: Using CitySurfaces to map the dominant surface material in Chicago, Wash-
ington DC, and Brooklyn (not part of our training data). Segments where the dominant
material differs from concrete are drawn using a thicker line.
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ban Heat Island (UHI) effect (Oke, 1982). UHI, which poses serious challenges to public

health, ecological environment, and urban liveability (Estoque et al., 2017), is shown to be

directly associated with surface characteristics, such as thermal performance and reflectiv-

ity. It can influence microclimates within the city by absorbing more diurnal heat and emit-

ting that into the atmosphere at night (Nwakaire et al., 2020; Takebayashi & Moriyama,

2012; Wu et al., 2018). Natural surfaces and vegetation increase the amount of evapo-

transpiration and decrease the overall temperature and create a cool island effect (Amati

& Taylor, 2010; Du et al., 2017). Reflective/high-albedo materials are also known to de-

crease UHI (Akbari et al., 2009; Santamouris, 2013; Santamouris et al., 2011; S. Zhu &

Mai, 2019). Hence, the spatial distribution of land cover has a strong impact on the sur-

face temperature (X. Chen & Zhang, 2017). Surface material also impact the water runoff

and increase the risk of flooding. Sidewalks and roads form the main part of the urban

ground surfaces. Today, the majority of the sidewalks are covered with impermeable mate-

rials which prohibit the infiltration of the water into the underlying soil, increase both the

magnitude and frequency of surface runoffs (Bell et al., 2019; Shuster et al., 2005), reduce

the groundwater recharge, and negatively impact the water quality. The excessive use of

impervious surfaces is shown to be the primary cause of the Combined Sewer Overflows

(CSOs), which can lead to massive pollution of natural bodies of water and street flood-

ing (Joshi et al., 2021). Aside from the mentioned impacts, sidewalk pavements can also

lead to public health hazards such as outdoor falls, or pose a barrier to walkability and ac-

cessibility of public spaces, specifically for the more vulnerable population and wheelchair

users (Aghaabbasi et al., 2018; Clifton et al., 2007; Talbot et al., 2005). Studies show that

uneven surfaces, indistinguishable surface colors, and low-friction materials contribute to

the high incidence of outdoor falls in elderly populations (Chippendale & Boltz, 2015;

Thomas et al., 2020a).

Despite the substantial economic, environmental, public health, and safety implications

of sidewalk pavements (Estoque et al., 2017; Muench et al., 2010; Van Dam et al., 2015),
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most cities, even in industrialized economies, still lack information about the location, con-

dition, and paving materials of their sidewalks (Deitz et al., 2021). The lack of data creates

barriers to understanding the real extent of the environmental and social impacts of using

different materials and inhibits our ability to take a complex system approach to sustainabil-

ity assessment (Van Dam et al., 2015). For instance, studies show a significant intra-urban

variability of the urban thermal environment due to the street-level heterogeneity of paving

materials (Agathangelidis et al., 2020). However, the data scarcity makes it challenging

to measure this variability across different neighborhoods and consequently, impedes the

development of a sustainable and resilient mitigation response plan (Akbari & Rose, 2008;

X. Li et al., 2013; J. Yang et al., 2019). In the absence of fine-scale data, studies mainly

rely on remote sensing images; however, the high-resolution aerial images are both spa-

tially and temporally sparse (Y. Zhang et al., 2009), requiring researchers to use a variety

of data aggregation and extrapolation techniques to fill in the missing data, which can lead

to high bias and hurt the validity of the final results.

Collecting comprehensive and fine-scale sidewalk data using conventional methods is

time-consuming and cost-prohibitive. Recent technological innovations in data collection

opened new frontiers for research on public space and pedestrian facilities, creating op-

portunities to track features of interest at higher temporal frequencies and more granular

geographic scales (Doraiswamy et al., 2018; E. L. Glaeser et al., 2018; Miranda, Hosseini,

et al., 2020). The use of street-level images in urban analysis has gained popularity since

the introduction of Google Street View (GSV) (Anguelov et al., 2010) and Microsoft Street

Slide (Kopf et al., 2010), services that provide panoramic images captured by cameras

mounted on a fleet of cars. Concurrently, developments in machine learning and computer

vision applied to these new datasets have enabled novel research directions to measure

the “unmeasurable” in urban built environments (Ewing & Handy, 2009), including side-

walks (Ai & Tsai, 2016; Frackelton et al., 2013).

In this work, we address this data gap and take a step towards exploring the surface of
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our cities through CitySurfaces, a framework aimed at generating city-wide pavement ma-

terial information by leveraging a collection of urban datasets. We combine active learning

and computer vision-based segmentation model to locate, delineate, and classify sidewalk

paving materials from street-level images. Our framework adopts a recent high-performing

segmentation model (Tao et al., 2020), which uses hierarchical multi-scale attention com-

bined with object-contextual representations. To tackle the challenges of high annotation

costs associated with dense semantic label annotation, we make use of an iterative, multi-

stage active learning approach, together with a previously acquired sidewalk inventory from

Boston, which lists the dominant paving material for a given street segment. We demon-

strate how the trained segmentation model can be extended with additional classes of ma-

terials with noticeably less effort, making it a versatile approach that can be used in cities

with varying urban fabrics and paving materials. To show the generalization capabilities of

CitySurfaces, we employ our framework in the segmentation of street-level images from

four different cities: Brooklyn, Chicago, Washington DC, and Philadelphia, none of which

were included in the training process. Figure 4.1 highlights how different pavement mate-

rials are spatially distributed in three cities.

Our contributions can be summarized as follows:

• We present CitySurfaces, a deep-learning-based image segmentation framework for

large-scale localization and classification of sidewalk paving materials.

• We adopt an active learning strategy to significantly reduce pixel-level annotation

costs for training data generation, and yield increased segmentation accuracy.

• We conduct extensive experiments using street-level images from six different cities

demonstrating that our model can be applied to cities with distinct urban fabrics, even

outside of the domain of the training data.

• We make publicly available our model as well as the results of our material classifi-

cation in the six selected cities 1.
1https://github.com/VIDA-NYU/city-surfaces

https://github.com/VIDA-NYU/city-surfaces
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Figure 4.2: The eight classes of surface materials used in our study. Top: standard and
prevalent materials, Bottom: materials with distinct use.

This paper is organized as follows: section 4.2 describes the main data sources of our

framework; section 4.3 describes the CitySurfaces framework; section 4.4 summarizes

our results; section 4.6 highlights challenges and limitations; and section 4.7 presents our

conclusion.

4.2 Data Description

Aware of the fact that manually labeling images is a time-consuming task, our proposed

framework leverages a unique dataset that describes the material of sidewalks in Boston.

We combine that data with the street-level images to create the training data for our seman-

tic segmentation model. Next, we describe both data sources.

4.2.1 Boston sidewalk inventory

The sidewalk inventory (Boston PWD, 2014) is part of the Boston Pedestrian Transporta-

tion Plan (Loutzenheiser, Felix, 2010) and describes sidewalk features, including geo-

graphic coordinates and paving materials collected via manual field visits. The material



51

Sidewalks

BackgroundRoadBricksConcreteGranite

Street-level images

Figure 4.3: Examples of sampled points in Boston to obtain street-level images. Three
different sampling locations are highlighted and for each location, the street-level image as
well as the prediction result of the model is depicted.

attribute describes the dominant surface material of each street segment (either concrete,

brick, granite, a mix of concrete and brick, or asphalt). Figure 4.2 illustrates patches of

these five materials; the other three extra materials (granite block, cobblestone, hexagonal

pavers) shown in the image were not recorded in the Boston dataset but were later manually

added to our classes, as we will discuss in subsection 4.3.3. We grouped the street seg-

ments by materials, using the geographic coordinates of the paving materials in the Boston

inventory, and used it to assign an overall image class to the street-level images to guide

the annotation process.

4.2.2 Street-level images

Street-level image usage in urban analysis has gained popularity with the introduction of

Google Street View (GSV) (Anguelov et al., 2010) and Microsoft Street Slide (Kopf et al.,

2010), services that provide panoramic images captured by specifically designed cameras
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Figure 4.4: CitySurfaces workflow. Block (a): Creating the initial ground truth labels using
the Boston sidewalk inventory and GSV images. A sample of unlabeled images is fed to
a pre-trained HRNet, which outputs annotation labels containing two classes of interest:
roads and sidewalks. The labels are manually refined to represent the five sidewalk paving
classes, forming our ground truth set; Block (b): Training the base model to classify five
classes of surface materials, plus roads. The data from block (a) is used for the first stage of
training. The model is then iteratively retrained for multiple stages on new samples. In each
stage, the most representative and informative samples are chosen, and the annotations are
manually refined and added to the training set to retrain the network; Block (c): Introducing
three new classes of materials. The pre-trained model from block (b) is retrained on the
newly annotated image with three new classes. The final model can classify eight classes
of different materials.

mounted on a fleet of vehicles. These new data sources enable new questions and study

designs for urban planning and design, urban sociology, and public health (Griew et al.,

2013; Mooney et al., 2016; Yin et al., 2015). The GSV API can retrieve street-level images

via geographic coordinates and allows users to adjust camera settings such as the heading,

field of view (FoV), and pitch.

We use the OSMnx library (Boeing, 2017) to obtain the Boston street network and

query the GSV API for street-level images at a fixed interval (5 meters), excluding major

highways and tunnels. We acquire the compass bearing of each street to set the camera

heading to be perpendicular to the street, thus looking directly at left and right sidewalks.

The pitch was set to 0◦ with an FoV of 80◦. To create a more diverse training set, for

35% of the training data, we use different combinations of headings (pitch ∈ [−10◦,−20◦],
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and FoV∈ [60◦, 70◦]), to have sidewalk images taken at varying angles and perspectives.

Figure 4.3 illustrates sampled street segments in Boston, together with their image-level

annotations. In order to train our framework, 3,500 Boston images were obtained, and later

2,000 images from New York City (NYC) were added to the pool of initially unannotated

data. We excluded images with no sidewalks as well as those where more than 80% of the

sidewalks were occluded. The final set had a total of 4,300 images.

4.3 CitySurfaces

CitySurfaces adopts an active learning approach for the semantic segmentation of sidewalk

paving materials. Using this framework, we aim to: 1) Train a model that can classify

five different paving materials plus asphalt roads; 2) Extract information about sidewalk

materials of a city for which no ground truth sidewalk inventory exists (e.g., NYC); and 3)

Extend the model to classify additional classes of materials so that it can be applied to a

more general set of cities.

Active learning aims at achieving high accuracy while minimizing the amount of re-

quired labeled data. The main hypothesis is, if we allow the model to choose the training

data, it will perform better with fewer labeled instances (Settles, 2009). Through itera-

tively selecting the most informative or representative images to be labeled, fewer labeled

instances are required to achieve similar performance compared to randomly selecting a

large sample as training data and annotating all of it at once (Bloodgood & Vijay-Shanker,

2014; S.-J. Huang et al., 2010).

In general, our multi-stage workflow is different from previous works in active learning

for semantic segmentation in two important ways: First, our sample selection method is not

fully automated; we use the uncertainty measure to filter the pool of unlabeled data in each

stage, but we also use domain expertise for selecting a sample of images to be annotated and

added to the training set in the next stage. Second, our query frequency is ten epochs (each

epoch is a pass through all training data). The conventional approach in active learning is
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to select new samples (query) every iteration, which can work in cases where the cost of

annotation is not high or in experimental studies that work with already annotated images to

advance the field and develop new query algorithms, as is the case with most of the already

published works in active learning for semantic segmentation, where they use datasets such

as Cityscapes (Cordts et al., 2016) or ADE20k (B. Zhou et al., 2017). However, since no

annotated dataset exists for sidewalk materials, we have to annotate every new sample we

choose during the training process, and it is impractical to annotate a new sample for every

iteration (T. Kim et al., 2020). To overcome this, we adopt a multi-stage framework and

annotate a new sample at the end of each stage, where each stage consists of ten epochs.

Our workflow has three major blocks as illustrated in Figure 4.4: Block (a) creating

initial training labels; Block (b) training a material segmentation model and; Block (c)

extending the model to segment three additional classes from NYC standard materials. In

this section, we first describe the different blocks of the workflow in detail, followed by

a description of the semantic segmentation model. The training process and experiments

were executed on 4 NVIDIA P100 GPUs with 12 GB of RAM each.

4.3.1 Block (a): Initial image annotation

To start the training process, we need a set of annotated images. To obtain the annotated

data, we randomly sample 1,000 images from a pool of unlabeled Boston street-level im-

ages and feed that sample into HRNet-W48 (K. Sun, Zhao, et al., 2019; J. Wang et al.,

2020) model pre-trained on Cityscapes (Cordts et al., 2016) and get the initial segmenta-

tion results ( Figure 4.4(a)). The model outputs 19 classes from which we only keep roads

and sidewalks. To generate an initial set of labeled data, we make use of the Boston Side-

walk Inventory (detailed in subsection 4.2.1). We first query for the street segments of

the images in our initial sample and modify the label to match the audited pavement from

the inventory. Effectively, we are ensuring that, instead of having a general sidewalk class

outputted by the pre-trained HRNet, our image set will have annotations according to the
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ground truth inventory data (e.g., concrete, bricks). We then manually refine them to ac-

count for the pre-trained model’s prediction errors. In the initial training set, we restrict our

sampling to images where the sidewalks mainly consist of a single material and eventually

move to more complex material configurations in later stages. The final annotated images

were split into 80% training and 20% validation to train the model in block (b).

4.3.2 Block (b): Model training on Boston and NYC

In the second block of the framework ( Figure 4.4(b)), we train an attention-based model

(detailed in subsection 4.3.4) using the labeled images from block (a). Our training step

initially uses 800 images for training, and 200 images for validation, with a batch size of

8, SGD for the optimizer, momentum 0.9, weight decay 5e−4, and an initial learning rate

of 0.002. We train the model in a multi-stage framework, where each stage consists of ten

epochs. In each stage, we choose the epoch with the highest mIoU on the validation set. At

the end of each stage, we make two decisions: 1) we select the best model considering all

epochs of the current stage; and 2) we analyze the quantitative and qualitative results of the

model to guide sampling the new addition to the training data. In particular, we analyze the

confusion matrix, similarity matrix, as well as the top 10% of predictions with the highest

mIoU and the top 20% of failures, obtained from the validation phase of the best epoch.

The weights of the best model in the current stage are then used to initialize the model in

the next stage with more training data. This restating scheme of SGD with the best solution

of the previous stage is useful in increasing the chances of finding better solutions in the

current stage.

To sample new images, we employ two strategies: i) Uncertainty in predicting unla-

beled images: We make use of the model’s uncertainty estimations on unlabeled data and

select the images that were most challenging for the model to predict; and ii) Performance

on validation set: By examining per-image IoU, uncertainty, and error rates of the images

from failure and success cases together with confusion matrices, we construct a set of sam-
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ple images to be used as inputs for finding similar unlabeled images. A more detailed

explanation of these two techniques is provided in Appendix A.

Following the sample selection strategies, we retrieve 300 unlabeled images, apply the

current model on these new unlabeled images to generate a prediction, and then modify the

predicted labels to add them to the overall training set, such that the segmentation model

is trained on more samples of hard-to-segment images. To improve model generalization,

in the third stage, we begin including images from Manhattan, which has a different urban

fabric and more diverse forms and types of paving materials, in the pool of unlabeled

data. Since no ground truth data exists for Manhattan, to create the ground truth label, we

need to have a model with reliable performance to create the base annotation. We chose

the third stage since the model reached a reliable performance (83% mIoU) in detecting

the main classes, and outputs had clear borders compared to the other two stages. The

selected images from Manhattan were fed to the model, and the results were corrected

Input image

BackgroundAsphaltRoadGranite block/stoneConcreteCobblestone

Prediction 
block (b)

Training data
block (c)

Figure 4.5: Examples of how the annotation labels with additional classes were created
from the output of the model in block (b) of our framework. The model trained in block (b)
classified granite blocks and cobblestone as background, leaving smooth and clear bound-
aries, which helps to augment the labels with new classes during manual refinement and
train a model that can classify eight different materials (block (c) of the framework).



57

80

100

60

40

20

0

Tr
ue

 L
ab

el

Tr
ue

 L
ab

el

Tr
ue

 L
ab

el

Concrete

Bricks

Granite / 
Bluestone

Asphalt

Mixed

Granite block

Hexagonal

Cobblestone

Road

Background

Concrete

Bricks

Granite / 
Bluestone

Asphalt

Mixed

Granite block

Hexagonal

Cobblestone

Road

Background

Concrete

Bricks

Granite / 
Bluestone

Asphalt

Mixed

Granite block

Hexagonal

Cobblestone

Road

Background

Predicted Label

Concre
te

Bric
ks

Gra
nite

 / 

Bluesto
ne

Asp
halt

Mixe
d

Gra
nite

 block

Hexa
go

nal

Cobblesto
ne

Back
gr

ound
Road

Predicted Label

Concre
te

Bric
ks

Gra
nite

 / 

Bluesto
ne

Asp
halt

Mixe
d

Gra
nite

 block

Hexa
go

nal

Cobblesto
ne

Back
gr

ound
Road

Predicted Label

Concre
te

Bric
ks

Gra
nite

 / 

Bluesto
ne

Asp
halt

Mixe
d

Gra
nite

 block

Hexa
go

nal

Cobblesto
ne

Back
gr

ound
Road

Stage 1 Stage 2 Stage 3

Figure 4.6: Confusion matrices for the three stages of the extended model. These results
guided sample selection and signaled which type of images should be included in the train-
ing data for the next stage. Notice the improvement of the predictions for hexagonal pavers,
granite block, and granite/bluestone (highlighted in red).

and refined using feedback from the domain expert and added to the training dataset. The

segmentation model is then trained on the combined set of the initial and newly annotated

data (1,100 images), initialized with the weight from the best epoch of the previous stage.

This procedure is iterated for five stages (at which point we observe no further notable

improvements). The model at the final stage was trained on 2,500 images ( Figure 4.4(b)),

and achieved 88.6 % mIoU on the held-out test set.

4.3.3 Block (c): Including additional materials from NYC

Once the model in block (b) attains sufficiently accurate segmentation performance, we

extend it by adding three additional classes ( Figure 4.4(c)). The three additional classes are

granite blocks, hexagonal pavers, and cobblestone. These materials are standard sidewalk

materials in the NYC street design manual (NYC DOT, 2020). While granite blocks and

cobblestones were also observed in Boston, they were not included in the Boston sidewalk

inventory. Since the original model in block (b) was not trained to detect these materials,

they are initially either classified as background (mostly granite blocks and cobblestones)

or misclassified (mostly hexagonal pavers) as other visually similar materials. To collect

street-view images that have these new materials, we follow the NYC and Boston street

design manuals (NYC DOT, 2020; Thomas M. Menino, 2013) to filter unlabeled data from
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the locations in which these materials can be found. For example, hexagonal pavers (NYC

only) are typically used on sidewalks adjacent to parks and open spaces, and cobblestones

are used in historic districts.

We select a total of 800 images that contain these new classes to be iteratively sampled

for training, 150 additional images for the validation set, and 200 images for the held-out

test set. Annotating the new image set consumed fewer resources as compared to the initial

annotations since smooth model predictions typically leave clear boundaries, which only

needed to be assigned the appropriate label (see Figure 4.5). The newly generated set of

labels was used to train the model by initializing the architecture with model weights in

block (b) and only replacing the final softmax layer instead, to produce ten output channels

(corresponding to eight paving materials, plus the road, and background). At the end of

each stage, we select a new sample of unlabeled images following the same process ex-

plained in subsection 4.3.2, run them through the model, obtain segmentation predictions,

refine the results, and retrain the model. In total, 726 additional images were added to the

training set, and in the final stage, the model was trained on 3,226 images (2,500 from

block (b) + 726). We halt the training in stage 3 after 30 epochs, and test the model on

the held-out test set ( Figure 4.4(c)). Figure 4.6 shows the confusion matrices for all three

stages of our extended model, illustrating model performance as a function of the amount

of training data. These matrices were also used in part to guide the sampling of images to

annotate.

Using the described method, model performance increases from 74.3% mIoU to 88.6%

for the base model (block (b)) and to 90.5% in the extended model (block (c)), with the

manual refinement time decreasing from 25 to 4 minutes per image. Figure 4.7 depicts the

evolution of the segmentation results of block (c) through the active learning stages. The

model outputs more refined boundaries and significantly less noise in later stages; thus,

significantly less time is needed to modify the newly annotated data as the stages go on. In

each stage, the model is initialized with the weights from the previous stage.
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Figure 4.7: Evolution of the block (c) extended model’s inference through different training
stages.

4.3.4 Semantic segmentation model

For the semantic segmentation task (blocks (b) and (c)), we adopt the Hierarchical Multi-

Scale Attention (Tao et al., 2020) and fine-tune the parameters on our dataset. To train the

model, following Y. Zhu et al. (2019), we employ class uniform sampling in the data loader,

which chooses equal samples for each class for handling the class imbalance, since some

classes like road and background are almost present in all images, whereas classes like

cobblestone and hexagonal pavers are not that prevalent. The Region Mutual Information

(RMI) loss (S. Zhao et al., 2019) was employed as the primary loss function. RMI takes the

relationship between pixels into account and uses the neighboring pixels around each pixel

to represent it instead of only relying on single pixels to calculate the loss. We run different

experiments with and without the RMI loss function for the main segmentation head. In the

absence of RMI, standard cross-entropy loss was used instead. The model under the same
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setting, but without RMI loss, performed slightly worse (89.84) compared to the one where

RMI loss was used (90.51). Figure 4.8 presents an overview of the architecture. Next, we

describe the network’s architecture in more detail.

Backbone

We chose HRNet-OCR (Yuan et al., 2019) as the backbone. The network comprises

HRNet-W48 (K. Sun, Zhao, et al., 2019; J. Wang et al., 2020) and adds Object-Contextual

Representations (Yuan et al., 2019) to further augment the representation extracted by the

HRNet. The final representation from HRNet-W48 works as the input to the OCR module,

which computes the weighted aggregation of all the object region representations to aug-

ment the representation of each pixel. The weights are calculated based on the relations

between pixels and object regions. The augmented representations are the input for the

attention model described next.

Attention model

The model is mainly based on Share-Net (L.-C. Chen et al., 2016). Suppose an input image

is resized to several scales, i.e., s ∈ {1, ..., S}. Each scale is passed through the back-
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HRNet+OCR
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Figure 4.8: The general architecture of the hierarchical multi-scale attention (HMSA) based
semantic segmentation method (Tao et al., 2020). The inputs are images from two scales.
The network learns the relative attention between scales and hierarchically applies the
learned attention to combine the results from two segmentation heads and make a pre-
diction.
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bone part (HRNet-W48+OCR), and we can get the output feature f si,c. For the feature,

c ∈ {1, ..., C} (C is the number of classes of interest, and i ranges over all the spatial posi-

tions). As shown in Figure 4.8, the features then go through two heads, one for attention

generation and the other for segmentation. The features f si,c are resized for different scales

to have the same resolution (with respect to the finest scale) using bilinear interpolation

before passing the model heads. For the attention head, we generate the learned weights

for f si,c which is represented by asi,c. This weight is integrated into the initial output hsi,c

from the segmentation head, and we have:

gsi,c = asi,c ∗ hsi,c (4.1)

in which gsi,c is the final output score map for scale s, and ∗ here represents the pixel-wise

multiplication.

In the model, the combination of score maps is similar to (Tao et al., 2020) to make the

flexible scales during inference time possible and improve the training efficiency. During

the training, we only need to train with two adjacent scales (as shown in Figure 4.8).

During testing, weights for the network are shared for each adjacent scale pair.

To be more specific, suppose the two selected adjacent scales are 1x and 0.5x (the final

selected scales during training in the model are 0.5x, 1x, and 2x) to obtain the pair of

scaled images for the model input. For inference, we can hierarchically and repeatedly use

the learned attention to combine N scales of predictions together. Precedence is given to

lower scales since they have a more global context and can choose where predictions need

to be refined by higher scale predictions. The final combination principle for these adjacent

scales is defined as:

gi,c = a0i,c.5 ∗ h0i,c.5 + (1− a0i,c.5) ∗ h1i,c (4.2)

The hierarchical mechanism used in the model coupled with the powerful HRNet-OCR

backbone provides a robust architecture for the challenging task of material classification
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Figure 4.9: Predictions of the model on the held-out test set. Fine details and boundaries
of objects like poles, plants, wooden sticks, and fire hydrants are very precisely predicted.
The model also segmented curb cuts (line 1 - column 2), different instances of the same
material (3-1), (3-3), and visually similar materials of different classes (1-4).

in the wild.

4.4 Results

In this section, we present the results of applying our trained model on the held-out test set.

We do not rely on pixel-level accuracy in evaluating the model since sidewalks comprise a

relatively small portion of each image, while road and background can occupy more than

70% of most images, resulting in a significant class imbalance. This class imbalance creates

an arbitrary high pixel-level accuracy, which is not a fair representation of the model’s

performance.

4.4.1 General evaluation metrics

Table 4.1 presents class-level evaluation metrics, the mean Jaccard index (IoU), precision,

and recall for the final model. The model outputs ten classes in total, seven classes of side-

walk pavings, one extra class of street pavings - cobblestone - plus road and background.

Excluding road and background, the model achieved 88.37% accuracy, with hexagonal as-

phalt pavers and asphalt sidewalks having the highest accuracy measures. Overall, half

of the pavement classes have IoU above 90%. Concrete, the most prevalent and versatile
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Table 4.1: Evaluation metrics on the held-out test set.

Label IoU Precision Recall
Concrete 88.69 0.95 0.93

Brick 91.79 0.95 0.96
Granite/Bluestone 81.09 0.85 0.95

Asphalt 92.58 0.96 0.97
Mixed 86.11 0.93 0.93

Granite Block/Stone 82.92 0.94 0.88
Hexagonal Asphalt Paver 92.81 0.98 0.95

Cobblestone 90.95 0.94 0.96
Road 99.01 0.99 1

Background 99.16 1 1
mIoU 90.51

mIoU (eight main classes) 88.37

material, can be classified with 88.7 accuracy. A robust result considering the high within-

class variation (i.e., it comes in various colors and textures). Granite/bluestone and granite

block have the lowest accuracy (81.09 and 82.92 respectively). This can be partially ex-

plained by their visual similarity to dark concrete (or wet concrete), potentially leading to

more false positive predictions.

Figure 4.9 illustrates some examples of the model’s prediction, highlighting its perfor-

mance in detecting boundaries between fine objects, like poles and plants, even in shadowed

scenes (line 1 - column 1, 1-3, 2-1). The model can also detect curb ramps in most scenes,

even though it was not specifically trained with such a goal (1-1 and 2-2). Figure 4.9

(1-2) shows an example in which the model accurately classified a sidewalk segment with

patches of different materials. We can also see the model performance in distinguishing

between visually similar materials (1-4, 3-2), as well as different variation of the same

material such as (3-1) where two visually distinct concrete slabs are classified correctly.

4.4.2 Evaluating the generalization capabilities of CitySurfaces

To demonstrate the generalization capabilities of CitySurfaces, we tested the performance

of our approach on samples from Chicago, Washington DC, Philadelphia, and Brooklyn
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Table 4.2: Evaluation metrics on samples from the selected cities (outside of training do-
main).

City mIoU Mean Per-Segment Accuracy
Brooklyn 86.12 87.09
Chicago 84.31 86.52
Washington DC 82.61 84.27
Philadelphia 82.81 83.46

(NYC borough), which were not part of the training data. We randomly sampled 200 street

segments from each city, and obtained their corresponding street-view images, at every five

meters of each segment, from the left and right sides of the sidewalks. After data cleaning

and pre-processing, we were left with roughly 600 images per city; these images were

annotated using the model in block (b), then manually checked and refined to create the

test set. Table Table 4.2 shows the results of applying CitySurfaces on these test sets. We

report mIoU and mean per-segment accuracy. Mean per-segment is a simple and practical

metric that measures whether the model correctly detected the dominant materials in each

street segment and report the average accuracy over all images in the test set. All tested

cities had an accuracy greater than 82%. Brooklyn achieved the highest accuracy, since the

borough’s paving materials follow the same street design regulation as Manhattan, which

was part of the training data.

CitySurfaces enables generating city-wide sidewalk material datasets, as illustrated in

Figure 4.9. This allows us to compare the distribution of different paving materials in vari-

ous cities. Figure 4.10 shows the result of this comparison. We can see that Manhattan and

Washington DC use more diverse and balanced material types. Concrete is the dominant

material in all of the cities. Chicago has the highest number of asphalt sidewalks among

the selected cities; Boston, Washington DC, and Philadelphia have a similar number of

asphalt sidewalks, which come second to Chicago. Asphalt sidewalks are mainly used in

suburban neighborhoods; that is why dense urban areas like Manhattan and Brooklyn have

the lowest number of sidewalks paved with asphalt. Another interesting observation is the

higher usage of granite/bluestone in Manhattan compared to Brooklyn, two boroughs of
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Figure 4.10: Comparison of the distribution of detected materials in six different cities.
The star plots show the log of the number of sidewalk segments identified as having a
given material.

Figure 4.11: Left: Exposure to direct sunlight changed the appearance of colors and texture
of the paving material, Left top: Part of a concrete sidewalk under the shadow was classi-
fied as asphalt. Left bottom: Part of a granite surface under direct sunlight was classified
as concrete. Right: The correct predictions of the final model in the same settings.

the same city. Granite is considered an expensive and decorative material, used mainly in

commercial streets or historic neighborhoods, which signals Manhattan’s higher land value

and income level, since maintenance and installation of decorative pavings are the owner’s

responsibility.

4.5 CitySurfaces Use Case: Plan a Safe Stroll in Downtown

Sidewalk surface is among the most important factors in determining the risk of outdoor

falls (S. Lee, 2018; Twardzik et al., 2019). The type of surface material has a significant
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impact on the walking experience (Ferreira & da Penha Sanches, 2007), in particular, for

older adults and people using mobility aids (Chippendale, 2020). In cities with historic

fabric, such as Boston or Philadelphia, fired bricks are the iconic surviving historic paving

for sidewalks, aging back to 1795 (Archipedia New England, 2019), hence, considered

an asset for many cities to preserve. Since bricks were often installed on a bed of stone

dust and sand to allow surface water to pass through, the surface became uneven over time

(Loutzenheiser, Felix, 2010) which can lead to major tripping hazards. In this section, we

highlight how CitySurfaces can be helpful to domain experts engaged in route planning and

fall prevention programs for seniors.

Slippery surfaces pose a major challenge to pedestrians navigating the outdoor environ-

ment in cold and snowy weather (Chippendale & Boltz, 2015). In the absence of sunlight,

and when the temperature suddenly drops, transparent and slippery form of thick coating

ice, known as black ice, can form on top of pavements. In general, the average tempera-

ture, the relative surface temperature and the type of surface material are key contributing

factors to black ice formation (Aljuboori, 2014; Houle, 2008; Monroy Licht, 2015). More-

over, the form, bulk, and height of different surrounding structures determine the amount of

light that can crawl in from between the tightly standing buildings (Miranda et al., 2019).

Sidewalks located in places that get very little sunlight or much shade are usually lower

in temperature. According to the study by Druschel (2020), the shadow under bridges

caused a 28◦F temperature difference in the asphalt pavement, which highlights the im-

pact of sunlight obstruction on surface temperature, ultimately increasing the risk of black

ice formation. Aside from the shadow and temperature, impermeable pavements, such as

granite, are more susceptible to ice formation and getting slippery since they cannot let the

water pass through.

We collaborated with an occupational therapist who runs fall prevention programs for

older adults. One of the key practices of the fall prevention program is route planning,

in which they assess the condition of different routes as well as various risk factors such
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Figure 4.12: The risk of tripping based on the percentage of brick and granite and the
accumulated shadow for each street segment.

as paving materials, street enclosure, lack of sunlight, and obstacles on the way to inform

their participants about the condition of the walking environment along the route and equip

them with strategies to prepare for each condition before the strolling starts (Chippendale,

2020). But the lack of comprehensive data describing the conditions of pedestrian facilities

at a fine, human-scale level significantly limits the geographic coverage of their practice,

specifically when the locations are distant or unfamiliar.

Motivated by our ongoing collaboration, we use the data generated by CitySurfaces, to-

gether with shadow accumulation data (Miranda et al., 2019, 2020) aggregated on sidewalk

segment level to calculate a simple tripping risk measure for identifying sidewalks that can

pose a higher risk of falls in cold seasons. The measure is calculated using three factors

that our collaborator was interested in: 1) the percentage of bricks; 2) the percentage of

granite; and 3) the accumulated shadow data for a day in December (winter solstice) for

each sidewalk segment. Other contributing factors such as slope and width of the sidewalks

can be taken into consideration, but in this use case, our goal was to highlight the role of

surface materials; hence, we did not incorporate them. For simplicity, we gave all three
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factors the same weight, but the weights can be adjusted based on the preferences as well

as regional / city-scale fall risk assessment models, which is outside of the scope of this

work.

For this study, we chose the downtown and North End neighborhoods of Boston, as

well as downtown and Prospect Park areas in Brooklyn, for their historic fabric and the

fact that these neighborhoods are considered popular destinations. Figure 4.12 shows our

tripping risk map. The highest risk is posed by most shadowed streets with the highest

cumulative percentage of bricks and granite; these are places where the risk of black ice

formation is considerably higher. The heat map ranks the streets based on their safety level

in cold and snowy weather. Moreover, the map informs pedestrians of the type of surface

they would face in each street. As can be seen in Figure 4.12, downtown Boston has a

higher concentration of streets with high tripping risk compared to downtown Brooklyn.

The historic red brick sidewalks in Boston, coupled with less winter sunlight, creates a

riskier environment for walking. In Brooklyn, downtown has a higher concentration of

granite and bluestone, but the wider street and sidewalk design, specifically around the

newly redeveloped areas of upper downtown (top center of the map), provide more sky

exposure, more sunlight, and lower risk of ice formation and slippery surfaces.

Using the information about the percentage of different materials in each street segment

and the amount of shadow accumulation, we can inform pedestrians about the condition of

the walking environment they are planning to visit. An important and distinguishing aspect

of the dataset generated through this work is how it goes beyond the dominant materials

on each segment and provides the percentage of different surface materials used in a given

sidewalk, which proves critical for cases related to safety and health since even a tiny patch

of slippery surface can lead to tripping hazards.
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Figure 4.13: Objects with patterns similar to different materials. Left: Classifying failures
caused by different patterns. Left top: Concrete alongside a furnishing zone was misclas-
sified as mixed class since plant pit was detected as bricks, Left middle: Broken concretes
were misclassified as granite blocks, Left bottom: Concrete was misclassified as mixed
class due to the presence of brownish metal covers. Right: Correct prediction of the model
for the similar pattern in the final cycle of active learning.

4.6 Discussion

The specific characteristics of computing the spatial distribution of sidewalk pavement ma-

terials require experts to oversee the performance of the model and ensure that the network

is correctly classifying the pavement materials. Through active learning process, we iden-

tified certain elements of the urban scenes that can create higher prediction confusion and

lead to misclassification. Two main categories of patterns repeatedly observed among the

failure cases were shadow/light contrasts ( Figure 4.11) and distinct objects such as metal

gratings and plant pits that resemble brick from a distance ( Figure 4.13). The texture and

color of different materials can appear different under shadow or extreme light, showing a

higher resemblance to another material. For instance, under the shadow, concrete is classi-

fied as asphalt ( Figure 4.11 - left top). Moreover, some patterns or objects can look similar

to certain materials. For example, the model initially classified certain plant pits ( Fig-

ure 4.13 - left top) or brownish metal covers ( Figure 4.13 - left bottom) as bricks alongside

the concrete pavement and would incorrectly predict mixed materials for that part of the
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sidewalk, or even small pieces of broken concrete or granite were classified as cobblestones

( Figure 4.13 - left middle). Adding more images with these patterns to the training data

improved the model’s performance in the next stage. Some examples of the correct predic-

tions for similar patterns are shown on the right side of Figure 4.13. The active learning

strategy significantly helped with choosing the right data at each stage. Having an expert in

the loop to review the results in each stage enabled identifying specific patterns that were

not evident by merely analyzing the quantitative metrics of the model.

4.6.1 Challenges

One of the key challenges of this study was handling different textures of the same object

(sidewalk). Objects have defined boundaries that are easier to classify (Jain & Gruteser,

2018). However, similar textures can appear on multiple objects. For instance, red bricks

are used in both building facades and sidewalk pavings (although different types of bricks

are used for each purpose, they possess very close visual characteristics). Our goal is to

have a model that can detect sidewalks of certain materials from street-view images.

Another challenging aspect of this task is the high degree of within-class variation and

between-class similarities. For instance, NYC designated five different types of concrete

as standard materials for sidewalk pavings, while Boston uses three different types of con-

crete. Each of these types has distinct visual features that, in some cases, can resemble

materials of other classes, which pose further challenges to the classification task. Dis-

tinguishing between dark concrete and bluestone in some cases is very difficult, even for

humans. When wet, some concretes with aggregates can look very similar to granite, and

under the shadow, asphalt and worn-off concrete can look very similar. Having a model

that can accurately handle the within-class variability with between-class similarity calls

for smartly selected training datasets with a good distribution of different classes as well as

multiple variants of the same material under different conditions.
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4.6.2 Limitations

Even though CitySurfaces can provide city-scale sidewalk material classification, some

challenges remain unaddressed. For instance, in the absence of proper sidewalk network

data, it can be challenging to map the materials to their corresponding locations accurately.

The maps in Figure 4.1 are based on the road centerlines where GSV cars traveled to

capture images, depicting the dominant materials for each street segment by taking an

average over the materials observed in each image from both the left and right sides of

the street. However, knowing the exact location of certain materials is critical for urban

designers, planners, and those working with safety and ease of walk for people with special

needs. Although our model produces this result at a highly fine level, we cannot depict

this variety in detail without proper sidewalk network data. Having separate maps for left

and right sidewalks can be one solution, but the intersections where more than one street is

captured pose a challenge for assigning the correct materials to each segment.

Also, street-level images have some inherent limitations. Since the images are taken by

cars moving alongside streets, in many instances, specifically in dense urban areas, the cars

parked on the sides blocked the sidewalk view, as shown in the first street-view image of

Figure 4.3. The issue can be mitigated to some extent by adjusting the heading and pitch

of the camera, but that solution fails in images with large vehicles like trucks, or when the

car with mounted cameras is too close to the sidewalks.

4.7 Conclusion

We present CitySurfaces, a scalable, low-cost approach towards the automatic computation

of the spatial distribution of pavement materials at the sidewalk segment level. Our model

can detect a diverse range of materials, which to our knowledge, were not covered by any

existing dataset. For instance, hexagonal pavers or granite blocks were not reported in any

sidewalk inventories reviewed in this study. CitySurfaces produces accurate segmentation



72

considering multiple cities both within and outside the domain of the training data, demon-

strating generalization capabilities across varying urban fabrics. CitySurfaces can detect,

delineate, and classify eight standard surface materials used throughout most US cities. As

shown in subsection 4.3.3, the framework can be extended to include additional surface

materials with less effort than building a city-specific model from scratch, which makes

it possible for almost any city or government agency that has spatially dense street-level

image data, to create a similar dataset. Moreover, since we have covered the standard ma-

terials, such as concrete, asphalt, granite/bluestone, and brick, the model can be applied

to a wide range of cities without any further annotation effort or with substantially less

effort using our pre-trained model. The models as well as the datasets generated for the six

selected cities are publicly available in a GitHub repository.

This work has addressed some challenges in data annotation and accurate classifica-

tion of different materials with high between-class similarities and within-class variation.

The active learning framework utilized in this study helped reduce the annotation costs by

choosing the most informative set of data to be annotated and incrementally decreasing the

manual modification time. By offering the first comprehensive dataset of sidewalk surface

materials at the city scale, this study goes beyond reporting the dominant material of each

segment and provides information on the percentage distribution of all detected materials

per sidewalk segment. The material classes in this study were selected based on the stan-

dard surface materials listed by Boston sidewalk inventory (Boston PWD, 2014), to use it

as our baseline ground truth. That list is not extensive and does not distinguish between

various types of the same class of material, such as concrete. However, for some more

in-depth analysis, such as measuring UHI, we may need to classify the materials differ-

ently, and distinguish between different variations of the same material within one class.

For instance, reflective granite and dark matte bluestone should have two distinct classes,

same goes with the dark and light concretes since they have distinctively different albedo

values. The CitySurfaces framework can be easily extended to detect more classes of ma-
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terials as illustrated with the Manhattan example in subsection 4.3.3, given the availability

of the images corresponding to each class of interest to create the initial ground-truth set.

In future work, we plan to take these differences into account and combine the generated

data with shadow accumulation (Miranda et al., 2019) to generate a city-scale UHI map.

To facilitate designing automated audit tools, we are going to extend our model to de-

tect surface problems such as potholes, significant breakage, and obstacles on pedestrian

paths for accessibility analysis (Miranda, Hosseini, et al., 2020). We also aim to address

the walkability and active design of sidewalks by developing a model to detect the relevant

features of the sidewalks wall plane and furnishing zone, such as window-to-wall ratio. As

another line for our future work, we would like to explore automated sample selection pro-

cedures and self-supervised learning techniques and tailor them to sidewalk and pedestrian

facility analysis. We chose a simple (yet effective) uncertainty measure and coupled it with

the analysis of the model’s performance on the validation set and used expert’s feedback to

refine the annotations and check whether the model is predicting correctly since, on many

instances, it is difficult to distinguish between visually similar materials.
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CHAPTER 5

CROWD+AI TECHNIQUES TO MAP AND ASSESS SIDEWALKS FOR PEOPLE 

WITH DISABILITIES

5.1 Introduction

Sidewalks form the backbone of cities. At their best, they offer sustainable transit, help 

interconnect mass transportation services, and support local commerce and recreation. For 

people with disabilities, sidewalks support independence, physical activity, and overall 

quality of life (Christensen et al., 2010; Eisenberg et al., 2017; Harris et al., 2015; Mitchell, 

2006a). Despite decades of civil rights legislation, however, city streets and sidewalks re-

main inaccessible (United States Department of Justice, 1990). As the UN notes, “[there is 

a] widespread lack of accessibility in built environments, from roads and housing to public 

buildings and spaces” (Nations, 2020).

The problem is not just a lack of accessible sidewalks but also a lack of reliable data 

on where sidewalks exist and their quality (Deitz, 2021; Eisenberg et al., 2020a; Froehlich 

et al., 2019). In a sample of 178 US cities, Deitz et al. found that only 36 (20%) published 

sidewalk data, 18 (10%) had curb ramp locations, and even fewer included detailed acces-

sibility information like sidewalk condition, obstructions, and cross controls (Deitz et al., 

2021). This lack of data fundamentally limits how sidewalks can be studied in cities, the 

ability of communities, disability advocacy groups, and local governments to understand, 

transparently discuss, and make informed urban planning decisions, and how sidewalks and 

accessibility are incorporated into interactive maps, navigation, and GIS tools (Froehlich 

et al., 2019; Miranda, Hosseini, et al., 2020).

We argue that any comprehensive analysis of pedestrian infrastructure must include a 

threefold understanding of where sidewalks are, how they are connected, and what their
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Figure 5.1: We introduce a four-stage Crowd+AI sidewalk pipeline that combines computer
vision and crowdsourcing to locate sidewalks, build a network topology, infer surface ma-
terial, and assess accessibility. The resulting output can support accessibility-aware pedes-
trian routing and new urban science analyses centered on equity and access.

condition is. In this paper, we introduce an initial semi-automatic pipeline that maps side-

walk locations, infers surface materials, and applies an accessibility rating using a com-

bination of crowdsourcing and machine learning techniques (Figure 5.1). To demonstrate

its potential, we apply our pipeline to Washington DC and create different visualizations

of sidewalk connectivity and accessibility. We close with a discussion of key areas of open

research that intersect computer vision, HCI, accessibility, and urban informatics.

5.2 Crowd+AI Sidewalk Pipeline

At the core of our contribution is the threefold integration of sidewalk location, connectiv-

ity, and condition. All three are critical to assessing pedestrian infrastructure and building

pedestrian-oriented routing tools. To achieve this, we propose a four-stage Crowd+AI Side-

walk Pipeline that leverages vision and crowdsourced techniques and aerial and street-level

imagery to enable network-level sidewalk assessments. We describe each pipeline stage be-

low.

5.2.1 Extracting Sidewalks from Aerial Imagery

Our pipeline begins with the extraction of pedestrian pathways—including sidewalks, foot-

paths, and crosswalks—from aerial imagery using semantic segmentation. Although se-

mantic segmentation has been broadly used to detect roads and buildings from aerial im-

ages (Balali et al., 2015; Iglovikov et al., 2017; W. Li et al., 2019) and to auto-generate
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road network topologies (Bastani et al., 2018; Etten, 2020; Wei et al., 2019), it has not

been widely applied to pedestrian infrastructure—perhaps due to two key challenges. First,

semantic segmentation algorithms require large-scale, high-quality training datasets, which

can be labor-intensive and costly to prepare. Thus, researchers often rely on pre-existing

publicly available models pre-trained on datasets such as CityScapes (Cordts et al., 2016),

Mapillary (Neuhold et al., 2017), and ADE20K (B. Zhou et al., 2017), which historically

underemphasize pedestrian-related features. Second, compared to roads and buildings, de-

tecting sidewalks, footpaths, and crosswalks is more challenging due to their comparatively

smaller visual footprints and occlusion from shadows, vegetation, and tall structures (Hos-

seini et al., 2021).

To detect pedestrian infrastructure, we used the model described in chapter 3, which

is trained on the open-government datasets drawn from three US cities: Cambridge, MA;

Washington DC; and New York City (Hosseini et al., n.d.). The segmentation model out-

puts a labeled raster image. Each pixel is labeled with one of four classes: sidewalks (in-

cluding footpaths), crosswalks, roads, and background. It uses a hierarchical multi-scale

attention model (Tao et al., 2020)— which scales the input image up and down, by a 0.5

factor, during the training and learns at which scale the model is performing better for a

certain class. The model then uses that scale during the inference to make better predic-

tions (L.-C. Chen et al., 2016). The detection model is also shown superior performance in

occluded scenes and shadows and can distinguish between visually similar classes such as

asphalt roads and sidewalks.

5.2.2 Creating Sidewalk Network Topologies

The Stage 1 detection model outputs labeled pixels in rasterized format, fed into our Stage

2 pedestrian network creation algorithm. This algorithm has two key parts: first, we convert

the labeled rasters to georeferenced polygons using connected-component labeling (L. He

et al., 2009; Rosenfeld & Pfaltz, 1966)—which finds contiguous pixel groups within the
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same class to form regions or raster polygons. We then map these polygonal elements into

geographic coordinates. Second, to create a node-network diagram of sidewalk connectiv-

ity, we use computational geometry techniques to convert the polygons into polylines (the

centerline of the polygon).

Here, we addressed some of the challenges described in section 3.5 regarding the

TILE2NET network generation algorithm. As it was explained in subsection 3.3.2, the

complex shapes of the georeferenced polygons, together with the sensitivity of the dense

Voronoi diagram algorithm to the interpolation distance parameter, made it difficult to cre-

ate a clean network representation. One challenge was filtering polygons based on their

shapes to choose a more suitable interpolation distance. Our previous solution mainly re-

lied on basic geometrical attributes such as the area to perimeter ratio, which, while useful

in many cases, could not distinguish between elongated, circular, compact, convex or con-

cave, and simple or complex polygons. Hence, we added different measures describing the

polygon’s shape Boccalatte et al., 2022; Fleischmann et al., 2021, such as fractal dimen-

sion (McGarigal, 1995), to describe the complexity of the polygon, circular compactness to

describe how close a polygon’s shape is to a circle by comparing the polygon’s area to the

area of the minimal enclosing circle (Dibble et al., 2019), square compactness (Feliciotti,

2018), convexity and rectangularity (Dibble et al., 2019), and elongation (Gil et al., 2012).

We also added the polygon’s azimuth, defined as the orientation of the longest edge of the

polygon.

Next, we selected long, convex, and close to rectangular shape polygons with relatively

low fractal dimensions, which often represent sidewalks on the sides of the roadways. We

query for not complex (low fractal dimension), convex (high convexity value), and elon-

gated polygons (low elongation index value), which are not compact (low circular com-

pactness, low square compactness) and are close to a rectangular shape (high rectangularity

value). Since these polygons do not have complex shapes and are very close to rectangles,

we use the minimum bounding box to create their centerlines by connecting the centroids
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of the shortest sides of the box. For the rest of the polygons, we continue filtering based on

the mentioned shape descriptors, and using the method described in subsection 3.3.2, we

choose the interpolation distance to create centerlines and set trim parameters accordingly

to remove unwanted branches.

We applied this method to the network generated for DC, which was our lowest per-

forming city. The generated network using our updated algorithm has 34% fewer dangle

lines and branches. We used the same evaluation method described in subsection 3.4.3,

and our results matched 80.2% of the OSM sidewalk networks in DC, which has improved

compared to our previous 76.9%. Overall, these results are promising and demonstrate

the potential of automatically creating pedestrian networks from aerial imagery but also

suggest opportunities for crowdsourced review and refinement.

5.2.3 Inferring Sidewalk Surface Material

Sidewalk Surfaces and Accessibility

The surface material is critical in the accessibility assessment of sidewalks (Ferreira & da

Penha Sanches, 2007; Maghelal & Capp, 2011). The type, color, texture, size, design, cut,

and chamfer of pavers can influence the ease and comfort of the walk, the frequency of

required maintenance, and the risk of accidents. Uneven surfaces, indistinguishable sur-

face colors, and low-friction materials contribute to the high incidence of outdoor falls in

elderly populations (Chippendale & Boltz, 2015; Talbot et al., 2005; Thomas et al., 2020a).

Thomas et al. (2020b) found uneven and bumpy surfaces to strongly correlate with walking

unsteadiness by comparing various surfaces, including bricks, cobblestone, and flagstones.

Sidewalk pavements can create public health hazards such as outdoor falls or pose a barrier

to walkability and accessibility of public spaces, specifically for the more vulnerable popu-

lation and wheelchair users (Aghaabbasi et al., 2018; Chippendale & Boltz, 2015; Clifton et

al., 2007; Talbot et al., 2005; Thomas et al., 2020a). For example, porous and high-traction

materials should be deployed in regions with extreme climates to prevent the formation of
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thick black ice and decrease the risk of falling. These characteristics are critical for at-risk

populations such as the elderly and people with mobility or visual impairments (Aghaab-

basi et al., 2018; Clifton et al., 2007; Kasemsuppakorn & Karimi, 2008). By examining

the interaction between poured concrete sidewalk pavements and varying chamfer widths

and wheelchairs, Cooper et al. (2003) concluded that the quality, maintenance, and repair

of surface materials have a higher impact on navigability for wheelchair users than the

size and number of joints of surface pavers. According to Ferreira and da Penha Sanches

(2007), pavement condition, material composition, and effective width are key metrics to

determine the sidewalks’ accessibility for wheelchair users. Pavement material classifica-

tion has been used in safety and route-finding applications to alert pedestrians of upcoming

obstacles (H. Kang & Han, 2020; C. Sun et al., 2019; K. Sun, Xiao, et al., 2019; Theo-

dosiou et al., 2020) and to help the visually impaired in identifying street entrances based

on the change in surface materials captured by cellphones (Jain & Gruteser, 2018).

Material Extraction from Street-level Images

While Stages 1 and 2 produce a sidewalk network topology, they do not include an as-

sessment of sidewalk surface composition (Stage 3) or its accessibility (Stage 4). Thus,

in Stage 3, we examine techniques to automatically infer sidewalk surface materials, such

as concrete, brick, and cobblestone, which, as explained, can have varying impacts on

pedestrian safety and accessibility. We employed CitySurfaces (Hosseini, Miranda, et al.,

2022), an active-learning-based framework for the semantic segmentation of surface ma-

terials that automatically classifies sidewalk materials using omnidirectional streetscape

imagery—specifically, Google Street View (GSV).

Phase 1. To start the training process, we randomly sampled 1,000 streetscape images

from Boston, MA, fed our sample into HRNet-W48 J. Wang et al., 2020 pre-trained on the

Cityscapes dataset Cordts et al., 2016, and obtained initial segmentation results. While

HRNet outputs 19 classes including sky, trees, and buildings, we filter only to roads and
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sidewalks. To generate an initial set of labeled surface material data, we use the Boston

Sidewalk Inventory Boston PWD, 2014—a unique open dataset that describes the dominant

surface material of each sidewalk segment collected via manual field surveys: concrete,

brick, granite, concrete/brick mix, and asphalt.

Phase 2. We iteratively train an attention-based model using the labeled images from

Phase 1. We begin with 800 images for training and 200 for validation with a batch size of

8 and similar hyperparameters to Stage 1. We train the model in multiple stages. At each

stage (10 epochs), we choose the epoch with the highest average IoU on the validation

set and qualitatively analyze the results to guide new training data sampling. The weights

from the best epoch are used to initialize the next stage’s model with more training data.

We examine the model’s uncertainty estimates to sample new images and select images

that performed worst. Following this sampling strategy, we retrieve 300 unlabeled images,

apply the current model, correct the predicted labels and add them to the overall training set.

To improve model generalization, we begin to include streetscape images from a second

city: Manhattan.

5.2.4 Crowd+AI Accessibility Assessments

The above stages produce sidewalk topologies and surface classifications—both of which

impact human mobility and people with disabilities—but neither focus specifically on ac-

cessibility. Thus, in Stage 4, we introduce Crowd+AI techniques to semi-automatically

find, label, and assess sidewalk accessibility features in the built environment, such as curb

ramps, surface problems, and obstacles. In previous work, we demonstrated that online

streetscape imagery is an accurate source for assessing accessibility infrastructure (Hara,

Azenkot, et al., 2013, 2015) and that with our custom labeling tools, minimally trained

crowdworkers could accurately and quickly find street-level accessibility problems (Hara

et al., 2015; Hara, Le, et al., 2013; Hara et al., 2012). However, relying solely on human

labor limits scalability. We then explored how to effectively combine automated methods
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Figure 5.2: Stage 4 uses Crowd+AI techniques to label accessibility features/barriers in the
pedestrian environment. Above, a user labeled a curb ramp (in green) and an obstacle (in
blue) in Project Sidewalk (M. Saha et al., 2019)

with crowd work (Hara et al., 2014). Our first hybrid Crowd+AI system, Tohme, infers

the difficulty of a sidewalk scene using a trained SVM and allocates work accordingly to

either a computer vision-based pipeline or human users (Hara et al., 2014). In a study of

1,000 street intersections across four North American cities, Tohme performed similarly

to a purely human labeling approach but was more efficient. While promising, Tohme

was limited to a small training dataset and only supported one sidewalk feature (curb ramp

recognition).

Thus, we began to explore more scalable approaches, culminating in Project Side-

walk—an interactive online tool that allows anyone with a laptop and Internet connec-

tion to remotely label accessibility problems by virtually walking through city streets in

GSV, similar to a first-person video game (Figure 5.2). In a 2018 pilot deployment, 1,400

users virtually audited 2,934 km of D.C. streets, providing 250,000 sidewalk accessibil-

ity labels (M. Saha et al., 2019). With simple quality control mechanisms, we found

that remote users could find and label 92% of accessibility problems, including missing

http://projectsidewalk.org
http://projectsidewalk.org
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curb ramps, obstacles, surface problems, and missing sidewalks. To qualitatively assess

reactions to our tool, we also conducted a complementary interview study with three stake-

holder groups (N=14)—government officials, people with disabilities, and caregivers. All

felt that Project Sidewalk enabled rapid data collection, allowed for gathering diverse per-

spectives about accessibility, and helped engage citizens in urban design. Key concerns

included data reliability and quality, which are ongoing research foci in our group.

Building on this D.C. pilot and working closely with local government partners and

NGOs, we have deployed Project Sidewalk in ten additional cities, including Mexico and

the Netherlands. Thus far, we have collected over 700,000 geo-located sidewalk accessibil-

ity labels and 400,000 validations—to our knowledge, the largest and most granular open

sidewalk accessibility dataset ever collected. This large, ever-growing labeled dataset of

images paired with advances in computer vision has enabled new deep learning methods

for automatic sidewalk assessment. In Weld et al. (Weld et al., 2019), we showed how

a modified version of ResNet-18—which incorporates LIDAR depth, scene position, and

geography features in addition to pixels—could achieve state-of-the-art performance in au-

tomatically validating human labels (average precision/recall: 81.3%, 77.2%). We also

presented the first examination of cross-city model generalization showing that one city’s

labels (D.C.) could be used to pre-train model weights for two other test cities (Seattle,

WA, and Newberg, OR).

5.3 Demonstrating Proof-of-Concept

To demonstrate the potential of our approach, we apply our four-stage pipeline to Washing-

ton DC and create sidewalk visualizations of topology, surface material, and accessibility.

D.C. provides an interesting testbed: it has over 1,100 miles of city streets, diverse and

historic urban designs, and is a popular tourist destination; however, no official pedestrian

network data exists for the city.

First, we use our Stage 1 algorithm to detect pedestrian pathways from Washington
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DC orthorectified aerial images. Then, in Stage 2, we converted the auto-labeled sidewalk,

footpath, and crosswalk rasters into georeferenced polygons and centerlines. Finally, to

compute accessibility metrics, we incorporated surface material inference data (from Stage

3) and crowdsourced accessibility information (from Stage 4).

To extract the pedestrian pathways, we fed 73,000 orthorectified satellite image tiles

obtained from Washington D.C. open data (DC GIS, 2020) into our detection model, de-

scribed in subsection 3.3.2. We then use TILE2NET to convert the raster results into georef-

erenced polygons. Using our improved algorithm, we construct the network of sidewalks

for Washington D.C.

We fed 78,786 street-level images from D.C. to our CitySurfaces model to create the

surface material data. The model outputs a tabular dataset of the number of pixels be-

longing to each class per image. To compute the percentage of sidewalk materials per

street/sidewalk segment, we need to know the percentage of each material per detected

sidewalk, not per image, since some images may only contain some part of a sidewalk

due to occlusion. The number of pixels belonging to a certain class for a given sidewalk

in an image can change based on how much sidewalk is captured in that image. To do

that, we first filter images where the sum of all pixels equals at least 0.97 of the sum of

class road and background, meaning we have no sidewalks in the image. Then, for each

image, we calculate sidewalk material composition of each sidewalk material, as the ratio

of the number of pixels belonging to any of the seven classes of sidewalk surface materi-

als (concrete, bricks, mixed, asphalt, granite/bluestone, granite block/decorative stone, and

hexagonal asphalt pavers.), to the sum of the total pixels belonging to these seven classes

detected sidewalks.

We compute a similar measure for the detected road surface with our two classes, as-

phalt roads, and cobblestones. Next, having the geographic coordinates of each GSV im-

age, we will do a spatial join between image-wise sidewalk material composition and the

road centerlines, as well as the sidewalk network data. Our aggregation method takes the
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average of each class, so the sum of sidewalk material composition for all sidewalk classes

equals one in each segment.

Figure 5.3: Proof-of-concept of our pipeline in Washington DC.

We produce three proof-of-concept visualizations based on computed sidewalk-accessibility

scores—an open area of research (A. Li et al., 2018; M. Saha et al., 2022). First, we cre-

ated a sidewalk heatmap visualization using Stage 4 accessibility data (Figure 5.3a; red

is worse). We differentiate between street crossings, which connect sidewalk segments,

and the sidewalk segments themselves. For the street crossings, we associate curb ramps

and missing curb ramps with intersections and compute a crossability score. We calculate

a severity-weighted sum of all accessibility problems over each sidewalk segment for the

sidewalk segments. Second, we created a sidewalk heatmap visualization that incorporates

Stage 3’s surface material inference data (Figure 5.3 b). Here, we apply higher weights to

bricks and cobblestone surfaces, which pose higher tripping hazards to people using mo-

bility aids and bumpy, uncomfortable surfaces for wheelchair users. Finally, we created
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a hybrid visualization that incorporates both surface material (Stage 3) and accessibility

(Stage 4) shown in Figure 5.3 c.

5.4 Discussion and Future Work

Our overarching vision is to develop scalable Crowd+AI techniques capable of mapping

and assessing every sidewalk in the world. In this paper, we introduced a preliminary

four-stage pipeline that extracts sidewalk locations, infers surface materials, and applies

an accessibility rating using a combination of computer vision and crowdsourcing. While

prior work has examined each in piecemeal, we offer the first comprehensive pipeline to-

wards addressing the grand challenge of identifying where sidewalks are, how they are

connected, and what their condition is (Froehlich et al., 2019). All three are needed to

create accessibility-aware pedestrian routing algorithms, interactive maps of neighborhood

accessibility, and to enable equity analyses examining sidewalk infrastructure availabil-

ity/condition and key correlates such as race, real-estate pricing, and socio-economics.

Towards future work, we would like to examine: (1) how the crowd and A.I. can work

together in each stage to improve efficiency and accuracy; (2) how our methods perform

across varying urban fabrics and geographic contexts; (3) and advance understanding of

the underlying biases in our methods—where do they fail and why?

Finally, we call on this cross-disciplinary community to create a database of high-

quality, labeled satellite and streetscape scenes for sidewalks and sidewalk accessibility

problems along with computer vision benchmarks, which has been so critical to innovation

in other ML-based areas.
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CHAPTER 6

CONCLUSION

At a high level, the goal of this dissertation has been to address the lack of fine-level data 

describing pedestrian infrastructure and to provide techniques and tools rooted in domain 

theory to answer the requirements and needs of urban planners and researchers. Towards 

this goal, we designed and developed a set of models and tools for large-scale assessment 

of the quality of urban sidewalks. This dissertation extends the research on walkability 

and accessibility of sidewalks, assessment of the urban built environment, and human-scale 

design of the cities by proposing a set of novel computer vision-based approaches to collect 

the built environment data at a large scale systematically.

6.1 Summary of Contributions

In this section, we restate the contributions listed in the Introduction chapter and summarize 

how each of these contributions was achieved.

6.1.1 Models and tools to analyze sidewalks at different scales

In chapter 5 we argue that any comprehensive analysis of pedestrian infrastructure must 

include a threefold understanding of where sidewalks are, how they are connected, and what 

their condition is and thus, requires data at human scale as well as city-scale. The research 

done in this dissertation tackled the problem of pedestrian infrastructure assessment at the 

human scale by proposing CitySurfaces (chapter 4), which uses street-level images, and at 

the city scale by introducing TILE2NET –an end-to-end framework for automated mapping 

of pedestrian infrastructure using orthorectified aerial imagery (chapter 3).

CitySurfaces leverages computer vision techniques for classifying sidewalk materials 

using widely available street-level images. It was designed to have more insights into how
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the model correlates different visual features during the training process. Through an active

learning scheme with expert-in-the-loop, we help reduce the faulty and false associations

which often happen when the machine learning models are treated as a black box. Al-

though it can make the training process longer, by examining how the model performs after

each stage (10 epochs in our case), we could detect some interesting patterns of errors

(Figure 4.11, Figure 4.13) and choose the right training data to teach the model to make

better predictions. We trained the framework on New York City and Boston images, and

the evaluation results show a 90.5% mIoU score. Furthermore, we evaluated the framework

using images from six different cities, demonstrating that it can be applied to regions with

distinct urban fabrics, even outside the domain of the training data. The models and codes

are made publicly available through our GitHub repository.

TILE2NET was motivated by the lack of open source tools tailored for sidewalk analysis

and the fragmented available tools to handle each part of the pipeline. Urban datasets are

numerous, loosely linked, and can be laborious to sift through. TILE2NET connects various

pieces, from orthorectified aerial tiles and planimetric data to handing tile system and its

associated computations, sidewalk detection through semantic segmentation, vectorizing

and georeferencing the raster data, and finally, creating the topologically correct pedestrian

network. We use a semantic segmentation model that can detect sidewalk, footpath, and

crosswalk polygons from orthorectified tiles and then use the resulting polygons to create

an interconnected network. The approach was pilot tested in Manhattan, NY, Washington,

D.C., Boston, and Cambridge, MA, and achieved high accuracy in each of these cities.

The tool and the semantic segmentation model will be made publicly available to facilitate

research on urban sidewalk analysis.

Designing such tools can mitigate problems created by unequal distribution of invest-

ments and poor governance in introducing and conducting pedestrian-level data collection

projects. It also enables urban planners, practitioners, and municipal decision-makers to

gain new insights into the sidewalks’ current condition, monitor their compliance with the
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official codes and guidelines designed to serve diverse sidewalk users, and combine such

information with various socio-demographic data to form new hypotheses. While each of

these works has approached the sidewalk assessment problem from one scale, in chap-

ter 5 we offer the first comprehensive pipeline towards addressing the grand challenge of

identifying where sidewalks are, how they are connected, and what their condition is. All

three are needed to create accessibility-aware pedestrian routing algorithms and interactive

maps of neighborhood accessibility and to enable equity analyses examining sidewalk in-

frastructure availability/condition, and key correlates such as race, real-estate pricing, and

socio-economics.

6.1.2 Addressing annotation challenges with two different techniques

The quality of the training data has a significant impact on the quality of the model’s in-

ference. Even the most robust architecture would fail if trained on noisy and inaccurate

data. As explained in section 2.2, the substantial cost of accurate annotation restricts the

practicality of semantic segmentation on new datasets and tasks relevant to urban analy-

sis (Montoya-Zegarra et al., 2014; Xie et al., 2020). Hence, it is often difficult to find

annotated datasets for sidewalk-related tasks. To ensure quality and accuracy, we had to

annotate a large number of images to train models in both chapter 3 and chapter 4. We

used two different techniques to overcome the annotation bottleneck based on the nature

of the task, the type of images used, and the availability of external datasets. This section

describes our two strategies and how each can contribute to pushing pedestrian analysis

forward.

1. CitySurfaces: To our knowledge, no annotated street-level or in-the-wild image dataset

exists for sidewalk materials. To address this gap while ensuring the quality of our

segmentation task, I annotated more than 3000 images from scratch for this project.

Using this framework, the annotation time decreased from approximately 25 minutes

to 4 minutes per image for the last set of images. Although the data cannot be pub-
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licly shared due to Google’s restrictions on using street-level images, the resulting

model has a strong performance that can be relied on for generating similar datasets

in much less time. Moreover, the paper provides a framework for applying active

learning with unlabeled data that needed to be annotated live during the training pro-

cess; while the majority- if not all- of the studies exploring active learning techniques

in urban scene parsing and semantic segmentation use available, annotated datasets

and only deal with choosing the right data (Colling et al., 2020; Golestaneh & Kitani,

2020; Kasarla et al., 2019; Mackowiak et al., 2018; Xie et al., 2020). We proposed

a stage-wise model, which would require new samples after ten epochs instead of

feeding new samples at each iteration, which would not be feasible with live data

annotation.

2. TILE2NET: The semantic segmentation model was trained on annotation labels cre-

ated using official data provided by city municipalities. The official data come as

georeferenced vector polygons and cannot be directly used as training data. As ex-

plained in section 3.3, TILE2NET is designed with the capability to automate the

creating of these annotation masks. It takes the bounding box of each tile, finds the

corresponding sidewalk, footpath, crosswalk, and road polygons from the available

planimetric GIS data, rasterized the GIS polygons into pixel regions, and outputs

annotated image tiles with four total classes: sidewalks (including footpaths), cross-

walks, roads, and background, representing each class with a distinct color. These

annotations are used as ground truth data for training the model. As discussed in

detail in chapter 3, the lack of consistency between the mapping standards used by

different municipalities, and numerous instances of mismatch between the official

data and the satellite images, posed another set of challenges in training a generaliz-

able model. To overcome this issue, we created a set of ”rules of capture” to accom-

modate different mapping standards across municipalities. With the help of a team

of undergraduate planning students from MIT, we modified and addressed temporal
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differences between the GIS data and the aerial images. Appendix B presents our

rules of capture and editing strategies which were shared with our team to guide their

annotation modification efforts. The rules are designed with careful consideration

of urban planning and accessibility concepts. In total, our research team manually

corrected 2,500 image tiles of 12,000 in the training set (20.8%), 1,620 of 4,000 in

validation (40.5%), and 1,500 of 4,000 in test (37.5%). Consequently, The model

trained on this data outputs more uniform and consistent results that can be used for

sidewalk analysis across different cities.

6.1.3 New datasets describing sidewalks for multiple cities

The analysis done through this dissertation research led to the creation of new city-scale

datasets described below.

1. Surface material dataset for five cities. Except for Boston, none of these cities had

any data describing their sidewalk materials at street level detail. The Boston dataset

is limited to five standard materials and only reports the dominant material used in

each segment. At the same time, CitySurfaces offer the percentage of materials used

in each segment.

2. Pedestrian network dataset for four cities. As discussed in section 5.2, complete

pedestrian network data was only available in Boston and Cambridge. Even resource-

ful cities like New York and Washington, DC, did not have pedestrian network data.

New York City does not have any public datasets of georeferenced crosswalks.

6.2 Implication

This section reflects on the implications of this dissertation research across different do-

mains.
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6.2.1 Creating sidewalk inventories for different cities

City agencies can create new or update sidewalk inventories at a much lower cost by using

the models provided in this research. CitySurfaces can detect, delineate, and classify eight

distinct standard surface materials used throughout most US cities. The framework can

be extended to cities with additional surface material types with less effort than building

a city-specific model from scratch, which empowers almost any other city or government

agency with spatially dense street-level image data to create a similar dataset. Since City-

Surfaces covers standard materials, such as concrete, asphalt, granite/bluestone, and brick,

our model can be applied to a wide range of cities. Moreover, since the model focuses

mainly on sidewalks, it works better at detecting sidewalks and their boundaries than many

publicly available datasets.

Aside from detecting the materials, CitySurfaces can be used to detect the existence

of sidewalks in street-level images and create annotation labels for semantic segmenta-

tion of other objects on the sidewalks, such as obstacles, poles, planters, and as such. The

model can be used to make inference on unlabeled images from different cities with similar

streetscape features, and the results can be used, with minimal effort, to create new classes

and train new models since it can already detect such objects and classifies them as back-

ground with clear boundaries around them. The multi-scale architecture in both parts of

this work makes it possible to work with images of different sizes, creating more flexibility

for applying them to other datasets.

The semantic segmentation model of TILE2NET makes it possible to detect sidewalks

from high-resolution orthorectified tiles to generate pedestrian network data with high ac-

curacy. It makes handling tile computation easy and provides automated methods to create

annotations from publicly available datasets. TILE2NET is designed with the capability of

automating the data preparation process. It can take as input the textual name or geographic

coordinates of the bounding box of a given region and download the tiles that fall within the

bounding box for the cities where orthoimagery is available. Currently, it offers automatic
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downloads of NYC, Boston, MA., Washington DC, and Seattle, WA.’s most recent aerial

tiles.

6.2.2 accessibility aware routing apps

Having comprehensive network data is essential for safe and easy navigation. Today, GPS-

based navigation apps have become an integral part of our daily travels. The underlying

data for navigation applications is a map database, which existed for vehicular road net-

works far before their wide-scale use in navigation applications (Y. Zhao, 1997). Never-

theless, comparable data describing pedestrian paths seldom exists, and the locations and

types of sidewalks are rarely mapped or updated. Instead, the majority of the existing navi-

gation apps rely on road networks to guide pedestrians through different streets, which can

lead to several problems. One of the common problems of relying on road networks for

pedestrian navigation is the limited extent of the locations it covers. A network constructed

based on streets and roads does not include any off-road footpaths. In other words, it means

being limited to only where roads can go, which can lead to inaccuracies (e.g., streets with

no sidewalks), simplifications (e.g., assumptions that buildings can be directly accessed on

both sides of a street centerline, while in reality crossing a street is only allowed at certain

locations), and misrepresentation (e.g., assuming pedestrian connections based on vehicu-

lar routes, where there are none) (Chin et al., 2008; Ellis et al., 2016), each of which can

lead to potentially hazardous situations for pedestrians, specifically the more vulnerable

population (M. Saha et al., 2019).

Given this lack, sidewalk mobility has not benefited from a wave of technological inno-

vation in routing applications, pedestrian-centered location-based services (e.g., deliveries

and services using active modes), or evidence-based infrastructure investments that would

channel scarce tax-payer dollars into sidewalks and public spaces that likely impact the

greatest number of constituents. Having pedestrian paths represented as continuous, topo-

logically connected network datasets could open up new (and overdue) efforts for pedes-
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trian routing, flow analysis, and potential location-based or delivery services. Transit-first

policies, walkable-streets initiatives, step-free access for public transport, and vision zero

goals represent but few planning and policy areas which could benefit from citywide side-

walk and crosswalk datasets.

6.2.3 Fall prevention programs

The demand for age-in-place among older adults increases the need to audit the built envi-

ronment and ensure its safety. Existing tools are limited in their geographic scope, focusing

on specific neighborhoods and not making use of the technological opportunities available

today (Eisenberg et al., 2020b). Fall prevention programs are aimed at assisting the elderly

population in navigating safely in their neighborhood streets. They assess the condition of

different routes, accounting for risk factors such as paving materials, street enclosure, lack

of sunlight, and obstacles on the way to inform their participants about the condition of the

walking environment along the route and equip them with strategies to prepare for each

condition before the strolling starts (Chippendale, 2020). But the lack of comprehensive

data describing the conditions of pedestrian facilities at a fine, human-scale level signifi-

cantly limits the geographic coverage of their practice, specifically when the locations are

distant or unfamiliar. As discussed in section 4.5, using the data about the percentage of

different materials in each street segment and the amount of shadow accumulation, we can

inform pedestrians about the condition of the walking environment they are planning to

visit.

6.2.4 Water Runoff Management

The type of surface material and its porousness can impact the water runoff and increase

the risk of flooding. Sidewalks and roads form the main part of the urban ground surfaces.

Excessive use of impermeable materials, which prohibit the infiltration of the water into the

underlying soil, increases both the magnitude and frequency of surface runoffs (Bell et al.,
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2019; Shuster et al., 2005), reduces the groundwater recharge, and negatively impacts the

water quality. Having detailed information about the type of materials used in different

parts of cities can help design appropriate disaster management plans and choose more

effective strategies.

6.3 Limitations and Directions for Future Research

In this section, we cover the primary limitations of this dissertation and highlight opportu-

nities for future work.

6.3.1 Creating databases of labeled images for sidewalks

One of the challenges in semantic segmentation of pedestrian facilities is the lack of stan-

dardized, high-quality labeled image datasets. One direction for future research could be

to create publicly available, standardized datasets with clear rules of capture for annotating

different classes. The dataset can be accompanied by an active learning-based tool with

capabilities to add new features and classes to incorporate incremental learning strategies.

6.3.2 Improving the network generation algorithm

Although our model performs quite well in detecting sidewalks and crosswalks in many

challenging scenes, the network generation algorithm is still far from perfect. One of the

biggest challenges is to apply post-processing techniques that close the gaps in the network

or treat some irregularities without adding arbitrary or fake connections. Unlike roads,

pedestrian networks do not guarantee connectivity; sidewalks can unexpectedly end where

they should have been continuous, they may not even exist in many areas, and pedestrian

footpaths can have irregular forms. None of these problems exist in street networks, and

the body of research on pedestrian network representation is very limited. For the road

networks, the job that was done by NavTech in the 1990s and TomTom, who did a lot of

mapping in the US initially and then globally. To create an accurate and reliable network,
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they ended up driving the routes, going through every single path and validating whether

that path exists and is derivable or not, and hence, in a way, the whole network was ground-

truthed to every single segment that ended up in the map. For the pedestrian network, we

are not able to do the ground truthing the same way as the vehicles were able to do. The

algorithmic approach can work as a scalable solution to clean up as many areas as possible

and filter the regions in need of inspection. Nevertheless, to be used as a basis for pedestrian

and wheelchair users’ navigation, there is still a necessity for cities to do manual field visits

in places where the gap in the network exists to distinguish between places where the gaps

are real and those created due to the shortcomings of the model.

One future direction for this research is to build algorithmic ways to handle the com-

plexities of pedestrian networks by 1)improving the polygon to line conversion method and

2)improving the post-processing and network simplification methods. The former mostly

requires surface reconstruction and computer graphics techniques, while the latter requires

computational geometry and morphological analysis methods.

6.3.3 Extending the sidewalk detection model

The sidewalk detection model presented in chapter 3 could benefit from adding more

classes, such as driveways, and stairs, to create richer network data. Moreover, separat-

ing footpaths and sidewalks into separate classes can be helpful for connectivity and con-

tinuity analysis and network generation algorithms. Due to their more complex shapes,

drawing the centerline of footpath polygons is often more challenging. It requires different

parameters for both the Voronoi algorithm and post-processing steps.

6.3.4 Global scale analysis of pedestrian facilities

The three studies presented here were limited to US cities. An interesting avenue for re-

search can be extending these models to cities worldwide and exploring the challenges of

applying models trained on US data to cities on other continents. Considering the high vari-
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ations and inconsistencies in the datasets of US eastern cities, we expect to see even sharper

differences in a global context. Given the sharper differences in the global context, we can

investigate whether having country/region-specific models can provide more accurate and

reliable predictions compared to models trained on multiple cities worldwide. The global

scale presents some unique challenges in different stages of the process, from handling a

large number of high-resolution aerial images, pre-processing and optimizing the method

and algorithms for speed and accuracy, to incorporating varying design elements and ur-

ban fabrics of different countries in the analysis. Using the computational geometry and

network science (Wasserman, Faust, et al., 1994) methods, we can look into 1) designing

automated models to construct a richer and more diverse pedestrian network representa-

tion that can be applied to various cities around the world and 2) using this network as a

basis for a comparative, cross-country analysis on the measures of accessibility and urban

morphology and their correlation with different socio-demographic indicators.

6.4 Final Remarks

Although new data sources and knowledge discovery systems can help us wrestle with tricky

questions, we impoverish our ability to reason with computers if we do not center theory

when we create computational representations of the real world—even if we must rethink

or advance our technologies and tools to do so (Boeing, 2020).

Current research in developing tools for urban data analysis and visualization shows

a considerable lack of understanding of the domain field concepts and theories. This is

mainly due to the fact that the majority of these tools are not developed by people who have

proper training in the domain fields such as urban geography, urban planning, or Urban

social theories Boeing, 2017 and conversely, students with sound theoretical backgrounds

do not have the required skills to develop the tools they need.

Due to their different outlook and nature, it is not easy for experts in humanities and

engineering disciplines to communicate effectively through published research. Hence, the
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majority of the published works are circulated within the research community of each field.

Articles written by urban scholars are often not read by researchers working on developing

new tools, and papers introducing new urban planning support tools often don’t reach their

target audiences, and when they do, they are often considered too ”technical” or missing

the grounded theoretical framework. This becomes more evident when such papers target

long debated, complex concepts such as ”walkability,” where knowing how and from what

perspective walkability is defined makes a huge difference in how and for which purpose

the tool can be utilized by urban researchers and practitioners.

This dissertation reflects my journey and efforts to make this conversation possible and

to help create the foundations for bridging this gap and raising awareness about the critical

concepts and concerns of designing inclusive and accessible pedestrian facilities.
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APPENDIX A

APPENDIX FOR CHAPTER 4: SAMPLING STRATEGIES

A.1 Uncertainty in predicting unlabeled images

Uncertainty sampling is one of the most frequently used query methods to select a new 

sample of training data in active learning (Settles, 2009). To measure the uncertainty, we 

use softmax probability, which has been commonly used in active learning as a strategy for 

choosing the next training sample (Settles, 2009). We use the outputs of the softmax layer 

as part of the sampling strategy, which can partly reveal the most challenging instances 

for the model to predict. We apply multi-class uncertainty sampling known as margin 

sampling (MS) (Scheffer et al., 2001), which calculates the difference between the two 

highest prediction probabilities on softmax to produce uncertainty maps. The smallest 

margin in each map is then chosen as the image-level uncertainty. The MS measure is 

defined as:

x∗MS = argminxPθ(ŷ1|x)− Pθ(ŷ2|x) (A.1)

where ŷ1 and ŷ2 are the class labels for pixel x, with the first and second highest probability,

respectively, under the model θ. The lowest margin gives us the highest uncertainty, which

is used as an image-level uncertainty measure.

To select new samples, we feed the pool of unlabeled images to our network, obtain

the segmentation and calculate image-level uncertainty to select images with the highest

uncertainty. We start by selecting 10% of the images using this strategy. As the training

proceeds, we increase the share of images selected through this strategy at each stage by

10%.
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Ground truth Prediction Uncertainty mapInput image

Figure A.1: Two different scenarios of using the model’s output and uncertainty map in
sample selection. The warmer colors in the uncertainty map represent areas where the
model was less confident in its prediction. Top: the model correctly predicted the class in
a previously identified challenging setting (shadow) but was less certain in predicting the
shadowed areas; Bottom: The model classified the parts in shadow as concrete alongside
brick and outputted mixed class for that region. The uncertainty map shows that the model
was least certain in its prediction for that area.

A.2 Performance on validation set

Since softmax probabilities do not necessarily represent the true correctness likelihood, a

problem known as “confidence calibration” (Guo et al., 2017), we need other strategies

as well to select an informative sample for the model. To this end, at each stage, we ex-

amine the performance of the best epoch on the validation set and select 10% of the best

predictions and 20% of the top failures. Images from failure and success cases are then

clustered using K-means (Cover & Hart, 1967; Fix, 1985) with the Euclidean distance to

investigate potential common patterns in each group. In each cluster, we rank images based

on the average IoU of all classes, excluding road and background. We then select images

with the highest error rate. The error rate is defined as the sums of false positive and false

negative predictions of the model in each image. Aside from the described method, we

examine the clusters of images to detect common error-causing patterns. Figure A.1 (bot-

tom row) depicts a brick sidewalk that the initial model incorrectly segmented the part next
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to shadowed regions as the “mixed” class. Its associated uncertainty map reveals predic-

tion difficulty near the edge of the car and the plant pit, which are incorrectly classified

as mixed. Uncertainty maps of the success cases are examined to find regions where the

model is least confident while making a correct prediction. Figure A.1 highlights a set of

uncertainty maps. After we find the most error-prone images, we use them to find similar

unlabeled images. We extract their feature maps using the backbone HRNet-W48 (K. Sun,

Zhao, et al., 2019; J. Wang et al., 2020) and employ cosine similarity distance to retrieve

similar images from the pool of unlabeled data.
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APPENDIX B

PEDESTRIAN NETWORK ANNOTATION MODIFICATION PROJECT

The goal of this short term project is to modify the inaccuracies of the annotation labels

that will be used to train a semantic segmentation model to detect pedestrian infrastructure

from satellite imagery. The annotations are created using the official, public data published

by different city agencies (NYC, Cambridge and DC in this case). As you will see, such

data is not always accurate and comes with various errors and incorrect classifications.

You will be given image files in PNG format. Each file contains a satellite image (left)

and an annotation label (right). The annotation label is an image where each pixel’s value

(color) represents the class that pixel belongs to. In this study, we have four total classes:

sidewalk, crosswalk, roads, and any other object in the image will be assigned the class

background (Figure B.1). Table B.1 shows these four classes and their associated color

codes.

Table B.1: Classes and RGB color codes

Class Color RGB code
Road Green (0, 128, 0)
Sidewalk feature (including pedestrian footpaths ) Blue (0, 0, 255)
Crosswalk Red (255, 0, 0)
Background Black (0, 0, 0)

In general, you should identify the incorrectly annotated areas as well as missing fea-

tures. The incorrect annotations can range from dislocated features to cases of total error

where an annotated feature is not present in the satellite image.

B.1 General rules of capture

1. If the annotated area is not visible in the image and there is no way of guessing the

shape of the feature, that part should be set as background (black) (Figure B.2).
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Figure B.1

Figure B.2

2. Raised medians should be annotated as background

3. Large planter areas should be annotated as background

4. Any objects other than the ones belonging to class sidewalk, road, or crosswalk

should be classified as background (e.g. planter areas, buildings, etc.)

B.2 Sidewalks

This class includes a wider range of pedestrian infrastructure, such as off-road footpaths,

medians that connect crosswalks, plazas, footpaths to buildings, and stairs.

B.2.1 Rules of capture

The rules of capture for sidewalks are mainly similar to the NYC planimetrics rules of

capture.

https://github.com/CityOfNewYork/nyc-planimetrics/blob/master/Capture_Rules.md
https://github.com/CityOfNewYork/nyc-planimetrics/blob/master/Capture_Rules.md


104

1. In areas where equipment is stored or installed on the sidewalk, the full extent of the

sidewalk was approximated.

2. Sidewalks were annotated when crossing large medians or traffic islands ( Figure B.3).

Figure B.3

3. Sidewalks overlay the exit and entrance portion(s) of parking lot features and drive-

ways (b) and alleys overlay the sidewalks (a) (Figure B.4).

Figure B.4

4. Sidewalks should be annotated as continuous regions when they are obstructed by

different objects such as trees, bridges or shadows, if they are visible on both sides

of the obstruction (Figure B.5 left) or if the obstruction is extended to the edges of

the image (Figure B.5 right).
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Figure B.5

5. Furnishing zones of the sidewalks should be annotated as sidewalks unless we have

large planter areas in the furnishing zones.

6. large public spaces adjacent or connected to sidewalks are annotated as sidewalks

B.2.2 Examples of common incorrect cases that should be edited

1. Sidewalks obstructed by buildings are not annotated while in real-world the side-

walks continues through the obstruction (Figure B.6). In the corrected annotation the

gap should be filled and the sidewalk should be continuous in that area.

Figure B.6

2. Missing pedestrian footpaths (Figure B.7)

3. Highway shoulders annotated as sidewalk features.
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Figure B.7

B.3 Crosswalks

This class includes the marked crosswalks of different types such as standard, mid-block

or controlled crosswalks, and enhanced crossings. All different markings of crosswalks

should be annotated as solid rectangular polygons attached to both ends of the pedestrian-

dedicated spaces.

B.3.1 Rules of capture

1. Crosswalks should be continued up to the edges of the sidewalks, medians or curb

cuts.

2. Crosswalks should be annotated as one solid polygon even if they are demarcated as

two parallel lines.

B.3.2 Examples of common incorrect cases that should be edited

1. Crosswalks are not marked (we don’t see them in the image) but they appear in

the annotation mask (a), are visible in the image but they are not annotated (b), are

detached from the sidewalks/curbs or the medians connecting them (c) (Figure B.8).

2. Crosswalks demarcated by two parallel lines and annotated as two parallel narrow

polygons should be changed to a larger polygon covering the whole area between the
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Figure B.8

two lines.

Figure B.9

3. Crosswalks annotated with wiggly edges - the selected part should be removed and

replaced with the green color since [in this case] it is part of the roadbed (Fig-

ure B.10).

B.4 Roads

The rules for roads are mainly based on NYC capture rules NYC planimetrics. Read the

section on roads carefully to be able to distinguish sidewalks from road shoulders. Drive-

ways should not be annotated as roads.

https://github.com/CityOfNewYork/nyc-planimetrics/blob/master/Capture_Rules.md
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Figure B.10

B.4.1 Examples of common incorrect cases that should be edited

1. Parking lots annotated as roads and should be changed to background (black)

2. Large planter areas annotated as roads (Figure B.11)

Figure B.11

3. Railroads annotated as roads

B.5 Adobe Photoshop recommended settings

In the package, you can find a Photoshop action file called copyhalf.atn . Load the action

in your action panel. You can use it to automatically create an overlay of satellite image
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over the annotation part.

We have also provided the swatch library specific to this project in a file called Ped-

Net.aco. The four colors included in this library are the only colors you should use for the

whole project. These four colors correspond to the four classes described before.

1. Set the image mode to RGB color - 8 Bits/channel (Figure B.12)

Figure B.12

2. Make sure the anti-alias is not selected in any of your selection tools. Figure B.13

and Figure B.14 shows the recommended setting.

Figure B.13

Figure B.14

3. Unless you know how to handle the color ranges created by Object Selection and

Quick Selection tools, do not use them in your work since they can result in the se-

lected area getting filled with a range of colors instead of one solid color you wanted

to replace as shown in the image below Figure B.15.

Tips:
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Figure B.15

1. Run the copy half action on each file to see the actual state of the annotation. The an-

notation label may look correct but when you do the overlay, you may find significant

differences between the image and annotation.

2. When you are happy with the result (last step) you should delete the overlay layer

and save as png.

3. Keep a backup on the cloud (google drive, dropbox, etc.)

4. Do not change the name/format of the files
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APPENDIX C

KEY TECHNICAL CONCEPTS AND TERMS IN THIS DISSERTATION

Most of the definitions are taken from (GoogleDevelopers, n.d.), except for the ones iden-

tified by a star (*).

1. Active Learning: A training approach in which the algorithm chooses some of the

data it learns from. Particularly valuable when labeled examples are scarce or ex-

pensive to obtain. Instead of blindly seeking a diverse range of labeled examples, an

active learning algorithm selectively seeks the particular range of examples it needs

for learning.

2. Attention: Any of a wide range of neural network architecture mechanisms that ag-

gregate information from a set of inputs in a data-dependent manner.

3. Batch: The set of examples used in one iteration (that is, one gradient update) of

model training.

4. Batch Size: The number of examples in a batch. Batch size is usually fixed during

training and inference.

5. Class: One of a set of enumerated target values for a label. In a multi-class classi-

fication model that identifies dog breeds, the classes would be poodle, beagle, pug,

and so on.

6. Classification Model: A type of machine learning model for distinguishing among

two or more discrete classes. E.g. a natural language processing classification model

could determine whether an input sentence was in French, Spanish, or Italian.
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7. Computer Vision*: A field of artificial intelligence (AI) that enables computers and

systems to derive meaningful information from digital images, videos and other vi-

sual inputs.

8. Confusion Matrix An NxN table that summarizes how successful a classification

model’s predictions were; that is, the correlation between the label and the model’s

classification.

9. Deep Model: A type of neural network containing multiple hidden layers.

10. Epoch: A full training pass over the entire dataset such that each example has been

seen once. Thus, an epoch represents N/batch size training iterations, where N is the

total number of examples.

11. Feature: An input variable used in making predictions.

12. Fine Tuning: Perform a secondary optimization to adjust the parameters of an already

trained model to fit a new problem. Fine tuning often refers to refitting the weights

of a trained unsupervised model to a supervised model

13. Framework : A basic structure underlying a system, concept, or text

14. GitHub*: GitHub, Inc. is a provider of Internet hosting for software development

and version control.

15. Ground Truth The correct answer. Reality. Since reality is often subjective, expert

annotators(raters) typically are the proxy for ground truth.

16. Holdout Data Examples intentionally not used (”held out”) during training. Holdout

data helps evaluate your model’s ability to generalize to data other than the data it

was trained on.

17. HRNet* High-Resolution Network is a general purpose convolutional neural network

for tasks like semantic segmentation, object detection and image classification.
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18. Hyperparameter: The ”knobs” that you tweak during successive runs of training a

model.

19. Image Recognition: A process that classifies object(s), pattern(s), or concept(s) in an

image. Image recognition is also known as image classification.

20. Inference: In machine learning, often refers to the process of making predictions by

applying the trained model to unlabeled examples. In statistics, inference refers to

the process of fitting the parameters of a distribution conditioned on some observed

data.

21. Inference In machine learning, often refers to the process of making predictions by

applying the trained model to unlabeled examples. In statistics, inference refers to

the process of fitting the parameters of a distribution conditioned on some observed

data.

22. Intersection over Onion (IoU) The intersection of two sets divided by their union. In

machine-learning image-detection tasks, IoU is used to measure the accuracy of the

model’s predicted bounding box with respect to the ground-truth bounding box. In

this case, the IoU for the two boxes is the ratio between the overlapping area and

the total area, and its value ranges from 0 (no overlap of predicted bounding box and

ground-truth bounding box) to 1 (predicted bounding box and ground-truth bounding

box have the exact same coordinates).

23. Iteration A single update of a model’s weights during training. An iteration consists

of computing the gradients of the parameters with respect to the loss on a single batch

of data.

24. Label In supervised learning, the ”answer” or ”result” portion of an example. Each

example in a labeled dataset consists of one or more features and a label.
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25. Learning Rate A scalar used to train a model via gradient descent. During each

iteration, the gradient descent algorithm multiplies the learning rate by the gradient.

The resulting product is called the gradient step.

26. LiDAR* Light Detection and Ranging, is a remote sensing method that uses light in

the form of a pulsed laser to measure ranges

27. Loss A measure of how far a model’s predictions are from its label. Or, to phrase it

more pessimistically, a measure of how bad the model is. To determine this value, a

model must define a loss function.

28. Machine Leaning(ML) A program or system that builds (trains) a predictive model

from input data. The system uses the learned model to make useful predictions from

new (never-before-seen) data drawn from the same distribution as the one used to

train the model. Machine learning also refers to the field of study concerned with

these programs or systems.

29. Model: The representation of what a machine learning system has learned from the

training data.

30. Model training: is the phase in the data science development life cycle where prac-

titioners try to fit the best combination of weights and bias to a machine learning

algorithm to minimize a loss function over the prediction range.

31. Neural Network: A model that, taking inspiration from the brain, is composed of lay-

ers (at least one of which is hidden) consisting of simple connected units or neurons

followed by nonlinearities.

32. OSMnx*: OSMnx is a Python package that lets you download geospatial data from

OpenStreetMap and model, project, visualize, and analyze real-world street networks

and any other geospatial geometries.
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33. Overfitting: Reusing the examples of a minority class in a class-imbalanced dataset

in order to create a more balanced training set.

34. Parameter: A variable of a model that the machine learning system trains on its own.

For example, weights are parameters whose values the machine learning system grad-

ually learns through successive training iterations. Contrast with hyperparameter.

35. Precision: A metric for classification models. Precision identifies the frequency with

which a model was correct when predicting the positive class. That is: precision=

True Positive ÷ (True Positive - False Positive)

36. Prediction: A model’s output when provided with an input example.

37. Prediction bias: A value indicating how far apart the average of predictions is from

the average of labels in the dataset. Not to be confused with the bias term in machine

learning models or with bias in ethics and fairness.

38. Pre-trained Model: Models or model components (such as embeddings) that have

already been trained. Sometimes, you’ll feed pre-trained embeddings into a neural

network. Other times, your model will train the embeddings itself rather than rely on

the pre-trained embeddings.

39. Python (Py)* An interpreted high-level general-purpose programming language.

40. Recall: A metric for classification models that answers the following question: Out

of all the possible positive labels, how many did the model correctly identify? That

is: Recall = True Positive ÷ (True Positive - False Negative)

41. Self-supervised Learning: A family of techniques for converting an unsupervised

machine learning problem into a supervised machine learning problem by creat-

ing surrogate labels from unlabeled examples. Self-supervised training is a semi-

supervised learning approach.
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42. Semantic Segmentation* A computer vision technique to do pixel-wise classification

for images so every pixel will be assigned a class.

43. Semi-supervised Learning: Training a model on data where some of the training

examples have labels but others don’t. One technique for semi-supervised learning is

to infer labels for the unlabeled examples, and then to train on the inferred labels to

create a new model. Semi-supervised learning can be useful if labels are expensive

to obtain but unlabeled examples are plentiful.

44. Supervised Machine Learning: Training a model from input data and its correspond-

ing labels. Supervised machine learning is analogous to a student learning a subject

by studying a set of questions and their corresponding answers. After mastering the

mapping between questions and answers, the student can then provide answers to

new (never-before-seen) questions on the same topic.

45. Support Vector Machines: are a set of supervised learning methods used for classifi-

cation, regression and outliers detection.

46. Test Set: The subset of the dataset that you use to test your model after the model

has gone through initial vetting by the validation set. Contrast with “training set” and

“validation set”.

47. Training: The process of determining the ideal parameters comprising a model.

48. Training Set/Training Data: The subset of the dataset used to train a model. Contrast

with “validation set” and “test set”.

49. Unsupervised Machine Learning: Training a model to find patterns in a dataset, typi-

cally an unlabeled dataset. The most common use of unsupervised machine learning

is to cluster data into groups of similar examples. The resulting clusters can become

an input to other machine learning algorithms.
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50. Validation Set: A subset of the dataset—disjoint from the training set—used in vali-

dation. Contrast with “training set” and “test set”.

51. Validation: A process used, as part of training, to evaluate the quality of a machine

learning model using the validation set. Because the validation set is disjoint from the

training set, validation helps ensure that the model’s performance generalizes beyond

the training set.

52. Weight: A coefficient for a feature in a linear model, or an edge in a deep network.

The goal of training a linear model is to determine the ideal weight for each feature.

If a weight is 0, then its corresponding feature does not contribute to the model.
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J., & Tannert, B. (2019). Grand challenges in accessible maps. Interactions, 26, 78–
81. https://doi.org/10.1145/3301657

Froehlich, J. E., Saugstad, M., Saha, M., & Johnson, M. (2022). Towards mapping and
assessing sidewalk accessibility across sociocultural and geographic contexts. arXiv
preprint arXiv:2207.13626.

Fu, J., Liu, J., Tian, H., Li, Y., Bao, Y., Fang, Z., & Lu, H. (2019). Dual attention network
for scene segmentation. Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 3146–3154.

Gahegan, M. (2018). Our gis is too small. The Canadian Geographer/Le Géographe Cana-
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Grill, J.-B., Strub, F., Altché, F., Tallec, C., Richemond, P. H., Buchatskaya, E., Doersch,
C., Pires, B. A., Guo, Z. D., Azar, M. G., et al. (2020). Bootstrap your own latent:
A new approach to self-supervised learning. arXiv preprint arXiv:2006.07733.

Guan, J., Yang, X., Ding, L., Cheng, X., Lee, V. C., & Jin, C. (2021). Automated pixel-level
pavement distress detection based on stereo vision and deep learning. Automation
in Construction, 129, 103788.

Guo, C., Pleiss, G., Sun, Y., & Weinberger, K. Q. (2017). On calibration of modern neural
networks. International Conference on Machine Learning, 1321–1330.

Guttman, A. (1984). R-trees: A dynamic index structure for spatial searching. Proceedings
of the 1984 ACM SIGMOD international conference on Management of data, 47–
57.

Haans, A., & De Kort, Y. A. (2012). Light distribution in dynamic street lighting: Two
experimental studies on its effects on perceived safety, prospect, concealment, and
escape. Journal of Environmental Psychology, 32(4), 342–352.

Hara, K., Azenkot, S., Campbell, M., Bennett, C. L., Le, V., Pannella, S., Moore, R., Minck-
ler, K., Ng, R. H., & Froehlich, J. E. (2013). Improving public transit accessibility
for blind riders by crowdsourcing bus stop landmark locations with google street



128

view. Proceedings of the 15th International ACM SIGACCESS Conference on Com-
puters and Accessibility, 1–8. https://doi.org/10.1145/2513383.2513448

Hara, K., Azenkot, S., Campbell, M., Bennett, C. L., Le, V., Pannella, S., Moore, R., Minck-
ler, K., Ng, R. H., & Froehlich, J. E. (2015). Improving public transit accessibility
for blind riders by crowdsourcing bus stop landmark locations with google street
view: An extended analysis. ACM Transactions on Accessible Computing, 6, 1–23.
https://doi.org/10.1145/2717513

Hara, K., Le, V., & Froehlich, J. (2013). Combining crowdsourcing and google street view
to identify street-level accessibility problems. Proceedings of the SIGCHI Confer-
ence on Human Factors in Computing Systems, 631–640. https://doi.org/10.1145/
2470654.2470744

Hara, K., Le, V., & Froehlich, J. (2012). A feasibility study of crowdsourcing and google
street view to determine sidewalk accessibility. Extended Abstracts of the 14th inter-
national ACM SIGACCESS conference on Computers and accessibility - ASSETS
’12, 273–274. https://doi.org/10.1145/2384916.2384989

Hara, K., Sun, J., Moore, R., Jacobs, D., & Froehlich, J. (2014). Tohme: Detecting curb
ramps in google street view using crowdsourcing, computer vision, and machine
learning. Proceedings of the 27th annual ACM symposium on User interface soft-
ware and technology, 189–204.

Harris, F., Yang, H.-Y., & Sanford, J. (2015). Physical environmental barriers to community
mobility in older and younger wheelchair users. Topics in Geriatric Rehabilitation,
31, 42–51. https://doi.org/10.1097/TGR.0000000000000043

Haunert, J.-H., & Sester, M. (2008). Area collapse and road centerlines based on straight
skeletons. GeoInformatica, 12(2), 169–191.

He, J., Deng, Z., & Qiao, Y. (2019). Dynamic multi-scale filters for semantic segmentation.
Proceedings of the IEEE/CVF International Conference on Computer Vision, 3562–
3572.

He, J., Deng, Z., Zhou, L., Wang, Y., & Qiao, Y. (2019). Adaptive pyramid context network
for semantic segmentation. Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 7519–7528.

He, K., Fan, H., Wu, Y., Xie, S., & Girshick, R. (2020). Momentum contrast for unsuper-
vised visual representation learning. Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 9729–9738.

He, L., Chao, Y., Suzuki, K., & Wu, K. (2009). Fast connected-component labeling. Pattern
recognition, 42(9), 1977–1987.

https://doi.org/10.1145/2513383.2513448
https://doi.org/10.1145/2717513
https://doi.org/10.1145/2470654.2470744
https://doi.org/10.1145/2470654.2470744
https://doi.org/10.1145/2384916.2384989
https://doi.org/10.1097/TGR.0000000000000043


129
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