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The liver is an important organ for transforming and eliminating chemicals and thus is 

vulnerable to toxicity from the toxicants. A broad class of chemicals can be potential 

liver toxicants, including environmental and industrial chemicals, herbal and dietary 

supplements, traditional medicines, and medications. Drug-induced liver injury (DILI) 

represents the acute and chronic liver injuries that are caused by medications. Drug 

attrition during clinical trials and post-marketing because of DILI can cause extremely 

high expenses. As a result, there is great interest by regulators to develop in vitro and 

computational modeling to help identify which chemicals have the propensity to cause 

liver injury in the early stage of safety evaluation. For the prediction of complex toxicity 

endpoints like hepatotoxicity, using traditional computational strategies (e.g., 

Quantitative Structure-Activity Relationship, QSAR) and structural, chemical properties 

is not sufficient and often error-prone. As an advanced framework of risk assessment, the 

Adverse Outcome Pathway (AOP) was introduced to describe the mode and mechanism 
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of toxicant action. The mechanisms of DILI are complex and be explained by various 

AOPs. In this study, we specifically focus on oxidative stress-involved hepatotoxicity. 

Reactive metabolites formed during drug metabolism or inhibition of the bile salt export 

pump can cause oxidative stress, which triggers the transcription of antioxidative 

enzymes found in the antioxidant response element (ARE) signaling pathway. The 

quantitative HTS (qHTS) ARE activation assay screened more than 10,000 compounds of 

interest and is an indicator of chemical-induced oxidative stress and subsequent 

hepatotoxicity. This assay, along with other in vitro mechanism-related assays in public 

big data sources will be collected and combined with advanced machine learning and 

deep learning algorithms, for the development of the virtual AOP (vAOP). The resulting 

vAOP framework will reveal hepatotoxicity mechanisms within the available big data 

and resolve the limitations of traditional QSAR modeling by providing accurate 

mechanism-based predictions for new compounds. 
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INTRODUCTION 

Because of its relationship to the gastrointestinal tract and unique role in metabolism, the 

liver is a vulnerable target organ subject to the toxicity of drugs, xenobiotics, and 

oxidative stress. Hepatotoxicity is the leading cause of drug failure in clinical trials and 

after withdrawal from the market. During 1975 and 2007, 32% of drug withdrawals were 

attributed to hepatotoxicity (Andrade et al., 2019; Stevens and Baker, 2009). As a result, 

pharmaceutical companies suffer major losses due to such late-stage attrition of clinical 

candidates, black box warnings, and post-marketing drug withdrawals (Gijbels and 

Vinken, 2019). Some of these adverse events can be serious in nature and as evidenced 

by DILI. The mechanism of DILI is complicated and can be classified into intrinsic and 

idiosyncratic types based on the chemical’s presumed mechanism of action. The intrinsic 

DILI is relatively direct and predictable, dose-related, and occurs shortly after exposure 

in most individuals exposed to the drug, which is toxic at a given threshold level (e.g., 

acetaminophen). In contrast, idiosyncratic DILI is unpredictable, occurs less frequently, 

has a longer latency period, and is determined by the interaction of environmental and 

host factors with the drug (Andrade et al., 2019). Normal drug metabolism processes 

involve drug uptake, Phase I and Phase II metabolism, and drugs/metabolites efflux, 

which are controlled by a large family of proteins that collectively influence the 

accumulation of drugs or their metabolites and lead to the stress effects in the liver. Drugs 

are taken up into hepatocytes passively or by an array of transporters located in the 

basolateral membrane. After that, drugs are metabolized by Phase I and Phase II 

metabolism. After the phase I reactions (oxidation, reduction, and hydrolysis), the 

metabolites usually have only minor structural differences from the parent drug but can 
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have very different pharmacological actions. Phase II metabolism involves the 

conjugation of a drug or metabolite with endogenous molecules such as glucuronic acid, 

sulfate or glutathione resulting in a more polar product that usually does not have 

pharmacological activity. Drugs and metabolites efflux from hepatocytes into the bile or 

back into the sinusoidal blood for subsequent renal excretion, which is mediated mainly 

by ATP-binding cassette (ABC) transporters such as multidrug resistance protein 1 

(MDR1), also called P-glycoprotein. Inhibition of drug efflux transporters, formation of 

reactive metabolites during phase I and II reactions, and inhibition of the bile salt export 

pump can be possible mechanisms of DILI. 

    Determination of the liver safety profile for a drug is time-consuming and expensive, 

usually necessitating the exposure of hundreds of thousands of animals to the drug 

compound. Furthermore, drugs that cause severe DILI in humans typically do not show 

clear hepatotoxicity in animals, do not show dose-related toxicity, and cause low rates of 

severe injury (Xu et al., 2015). This could partly be explained by significant gaps in the 

mechanistic understanding of DILI (Bale et al., 2014). People hope to predict DILI by 

using biomarkers and a series of in vitro assays at the molecular level or cellular level to 

predict the in vivo liver injury, the so-called adverse outcome pathway. The AOP is a 

conceptual construct that portrays existing knowledge concerning the linkage between a 

direct molecular initiating event and an adverse outcome at a biological level relevant to 

risk assessment (Vinken, 2018). Many AOPs are under development for predicting DILI. 

The AOP developed by Mathieu’s team describes the mechanistic basis of drug-induced 

cholestatic hepatotoxicity, with inhibition of the bile salt export pump (BSEP) as the 

molecular initiating event (MIE). Inhibition of BSEP causes the accumulation of bile 
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acids in the hepatocyte cells. The latter key event (KE) induces two types of cellular 

responses: a deteriorative response and an adaptive response. The deteriorative response 

involves the occurrence of inflammation, change of mitochondrial permeability, 

oxidative stress, and cell death. The adaptive response involves the activation of several 

nuclear receptors (NRs), which induces an array of transcriptional changes to facilitate 

the removal of bile salts and their products (Gijbels et al., 2020). Oxidative stress is a KE 

is the AOP of DILI caused by BSEP inhibitor. For other drug compounds, the formation 

of reactive metabolites by cytochrome P450 enzymes could also induce oxidative stress 

(Park et al., 2011). To counterbalance excessive reactive oxidants, the human body 

developed complex antioxidant defense systems which are regulated by a web of 

pathways. As a regulator of cellular response to oxidants, the nuclear factor erythroid 2–

related factor 2 (Nrf2) controls the basal and induced expression of an array of 

antioxidant response element–dependent genes to control oxidant homeostasis in addition 

to drug metabolism (Ma, 2013). When the antioxidant defenses are inadequate, 

mitochondrial dysfunction, hepatocyte cell death can occur and process to liver injury.   

    In recent years, many computational models have been developed for predicting DILI. 

For example, Kotsampasakou et al built classification models to predict drug-induced 

cholestasis, using physicochemical descriptors and predicted transporter inhibition 

profiles as features (Kotsampasakou and Ecker, 2017). Gadaleta et al developed QSAR 

models to predict the MIE leading to hepatic steatosis (Gadaleta et al., 2018). In another 

study, Li et al described a deep learning-powered DILI (DeepDILI) prediction model 

created by combining conventional machine learning algorithms with a deep learning 

framework (Li et al., 2021). However, these models were mainly developed using 
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chemical structures and properties, lacking the integration of enormous in vitro 

bioactivity data. Moreover, the predictions were often generated from “black box” 

models and cannot help revealing the mechanisms of toxicity. For several years, both 

individual initiatives and consortium organizations have produced large amounts of data, 

including in vitro assays and gene expression analysis. Benefiting from the high 

throughput screening (HTS) technique development and many associated data-sharing 

projects, modern drug discovery has stepped into a big data era (Zhu, 2020). For 

example, PubChem is a publicly available big data resource with over 96 million 

compounds, including many drugs and drug-like compounds, tested against over 1 

million bioassays (Kim, Thiessen, et al., 2016a; Wang et al., 2017a). Significant efforts in 

HTS toxicology have been made by the United States Environmental Protection Agency 

(US EPA) research program Toxicity Forecaster (ToxCast) and Toxicology in the 21st 

Century (Tox21). These HTS assays test a large number of chemicals against various 

human cells and have quantitative results that allow for mechanistic interpretation (Gibb, 

2008). This data landscape enables researchers to create predictive computational models 

that incorporate the concept of the AOP with publicly available big data, resulting in 

mechanism-driven virtual AOP (vAOP) models. This project aims to build vAOP models 

that can not only predict the DILI risk of new compounds but also illustrate toxicity 

mechanisms of importance in humans. 
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RESEARCH DESIGN AND METHODS 

AIMS 

The liver plays an important role in detoxification and metabolism, which makes it highly 

vulnerable to injury by environmental chemicals, commercial products, and drugs. Late-

stage drug attrition and post-marketing withdrawal because of hepatotoxicity cause drug 

failure and major loss of drug companies. The animal models used in preclinical 

hepatotoxicity evaluation are expensive and often fail to identify toxicants that cause liver 

injury in the clinical stage, emphasizing the demand for developing new approaches that 

predict drug-induced liver injury (DILI) in the early stages of drug development (Vorrink 

et al., 2018). In 2016, the Frank R. Lautenberg Chemical Safety for the 21st Century Act 

(LCSA) was signed into law to progress chemical risk assessment. The LCSA calls for 

novel computational approaches and associated predictive models for safety evaluation 

purposes. Adverse outcome pathway (AOP) is an important tool that maps the 

mechanisms underlying toxic events relevant for chemical risk assessment. The central 

goal of this project is to develop a virtual Adverse Outcome Pathway (vAOP) model that 

could accurately identify chemicals with a high propensity to induce DILI. 
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Section I. Collect in vitro and in vivo data related to oxidative stress and 

hepatotoxicity 

In this project, we specifically focus on oxidative stress-driven hepatotoxicity. Activation 

of the Antioxidant Response Element (ARE) is a sensitive indicator of chemical-induced 

oxidative stress and subsequent hepatotoxicity (Shukla et al., 2012). The quantitative 

High Throughput Screening (qHTS) ARE beta-lactamase (bla) reporter gene assay was 

one of the assays included in the Tox21 program, which screened >10,000 compounds of 

interest (Betts, 2013; Shukla et al., 2012). Hepatotoxicity databases which are reported by 

U.S. Food & Drug Administration (FDA) (Chen et al., 2016), as well as Toxicity 

Reference Database (ToxRefDB) (Judson et al., 2012) and in the literature, will be 

collected as major sources of human hepatotoxicity data. Bioactivity repositories such as 

PubChem (Kim, Thiessen, et al., 2016a; Wang et al., 2017a) will also be used for short-

term bioassay data. Bioactivity of qHTS assays in toxicology programs like Toxicity 

Forecaster (ToxCast) and Tox 21 will be explored to unveil potential toxicological 

mechanisms. These datasets will be used for developing, validating, and sharing toxicity 

models needed for Section II and III. 

Results - datasets collection  

To study DILI and develop content-rich resources to improve basic understanding of liver 

toxicity, FDA’s National Center for Toxicological Research (NCTR) started the project 

Liver Toxicity Knowledge Base (LTKB) (Chen et al., 2011). The initial benchmark 

dataset (LTKB-BD) contains 287 drugs whose potential to cause DILI in humans has 

been established using the FDA-approved prescription drug labels. The DILIrank dataset 

is an updated version of the LTKB-BD and is the largest reference drug list ranked by the 
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risk for developing DILI in human (Chen et al., 2016). DILIrank consists of 1,036 FDA-

approved drugs that are divided into four classes according to their potential for causing 

DILI: vMost-, vLess-, vNo-DILI concern and Ambiguous-DILI-concern. The 

classification is derived from analyzing the hepatotoxicity descriptions presented in the 

FDA-approved drug labeling documents and assessing causality evidence in the 

literature. Specifically, this largest publicly available annotated DILI dataset contains 

three groups (vMost-, vLess- and  vNo-DILI concern) with confirmed causal evidence 

linking a drug to liver injury and one additional group (Ambiguous-DILI-concern) with 

causality undetermined.  

    Known data resources that can be utilized for data collection and future modeling is 

provided in Table 1. LiverTox is a publicly available website that provides information 

about DILI caused by prescription and non-prescription medications, herbal products, and 

dietary supplements (ncbi.nlm.nih.gov/books/NBK547852/) (Hoofnagle et al., 2013). 

LiverTox is produced by the Liver Disease Research Branch of the National Institute of 

Diabetes and Digestive and Kidney Diseases (NIDDK), with the aim to help physicians, 

patients as well as researchers understanding the idiosyncratic DILI. Comparable 

Toxicogenomics Database is a premier public big data resource that provides data 

describe relationships between chemicals, gene expressions, phenotypes, diseases, and 

environmental exposures (Mattingly et al., 2003; Mattingly et al., 2004; Mattingly et al., 

2006). The AOPwiki website (aopwiki.org) is the repository of qualitative information 

for the international AOP development effort coordinated by the Organisation for 

Economic Co-operation and Development (OECD). There are 15 liver-related AOPs on 

the AOPwiki. Most of these AOPs are still under development and may undergo 
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modifications before being accepted by the OECD. Although much of the data stored on 

these websites may not be suitable for modeling, we could use the information for 

understanding the mechanism of action for drug compounds of interest.   

    The  qHTS assays from ToxCast and Tox21 project tested a large amount of chemicals 

against various human cells for the toxicity-related molecular and pathway perturbations, 

which allow for mechanistic interpretation (Gibb, 2008). Phase I of ToxCast project 

evaluated 300 pesticides using about 500 HTS assays (Judson et al., 2010). Phase II 

evaluated an additional 767 compounds, including some failed pharmaceutical 

compounds, using about 700 HTS assays (Kavlock et al., 2012). Phase I of Tox21 used 

75 HTS assays, which were selected and refined from ToxCast assays, to screen an initial 

set of about 2800 compounds (Attene-Ramos et al., 2013). Phase II began in 2010 to 

screen a more extensive set of approximately 10,000 environmental compounds (Tice et 

al., 2013). The Connectivity Map project (Lamb et al., 2006) created gene-expression 

profiles from cultured human cells treated with bioactive small molecules, providing 

functional connections among diseases, genetic perturbation, and drug action. As the next 

generation Connectivity Map, the L1000 project has developed a low-cost high 

throughput transcriptomic assay using 978 “landmark” genes from human cells 

(Subramanian et al., 2017). Measurement of these “landmark” genes were able to infer 

the expression levels of 81% of non-measured transcripts. The resulted transcriptomic 

profiles for multiple cell lines were generated in response to around 20,000 small 

molecule perturbagens. The L1000 provides us an excellent resource for studying 

chemical toxicity at the transcriptome level, and some relevant data could be used in our 

mechanism driven model development.  
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    In this project, we specifically focus on oxidative stress-driven DILI. The quantitative 

HTS (qHTS) Antioxidant Response Element (ARE) beta-lactamase (bla) reporter gene 

assay was one of the assays included in the Tox21 program, a federal collaboration 

between the US FDA, EPA, and NIH to improve chemical toxicity prediction (Betts, 

2013; Shukla et al., 2012). Activation of the ARE is a sensitive indicator of chemical-

induced oxidative stress and subsequent hepatotoxicity (Shukla et al., 2012). The qHTS 

ARE-bla data sets can also be downloaded from PubChem using Bioassay Accession 

Identifiers (AIDs) 743202 and 651741. 

Table 1. Summary of public data resources 

Name Data type Description  

DILIrank1  In vivo hepatotoxicity 

1,036 FDA-approved drugs: 192 vMost, 

278 vLess, 312 vNo, 254 Ambiguous-

DILI-concern  

LiverTox 2 In vivo hepatotoxicity 

up-to-date information on the diagnosis, 

cause, frequency, clinical patterns, and 

management of liver injury attributable 

to ~1000 medications 

PubChem3 In vitro assays 

over 96 million compounds, over 1 

million bioassays, over 13 billion data 

points related to toxicity, genomics and 

literature data 

ToxCast/Tox 214 Toxicity-related in vitro assays 

test ∼10,000 chemicals against a panel of 

nuclear receptor and stress response 

pathway assays 

CTD*5 chemical-gene interaction 

includes more than 30.5 million 

toxicogenomic connections relating 

chemicals/drugs, genes/proteins, 

diseases, taxa, Gene Ontology (GO) 

annotations, pathways, and gene 

interaction modules. 

L10006 chemical-gene interaction 

almost two million gene expression 

profiles for ~20,000 small molecules and 

drugs against 978 “landmark” genes 

from human cells 

* Comparable Toxicogenomics Database, 1 (Chen et al., 2016), 2 (Hoofnagle et al., 2013), 3 (Kim, 

Thiessen, et al., 2016b; Wang et al., 2017b), 4 (Attene-Ramos et al., 2013; Gibb, 2008; Judson et 

al., 2012; Kavlock et al., 2012; Tice et al., 2013), 5 (Mattingly et al., 2003; Mattingly et al., 2004; 

Mattingly et al., 2006), 6 (Subramanian et al., 2017). 
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Results - data curation 

The DILIrank dataset was used as the primary source of high-quality compounds for 

model development. First, 254 drug compounds belong to Ambiguous-DILI-concern 

class were excluded. Compounds belonging to the Most and Less-DILI-concern were 

classified as hepatotoxic, and compounds belong to the No-DILI-concern were classified 

as non-toxic. Then, structures in the DILIrank dataset were curated and standardized 

using the CASE-Ultra DataKurator 1.8.0.0 software (MulitCASE Inc., Beachwood, OH). 

This includes the removal of duplicates, mixtures, inorganics, and correction of structural 

errors. The curated DILIrank dataset consisted of 680 unique compounds, including 432 

hepatotoxic and 248 non-toxic compounds. There are more toxic compounds than non-

toxic compounds, which provides bias chemical space and is not suitable for model 

development. To balance the toxic/non-toxic ratio, we need to add more non-toxic 

compounds. As shown in Table 2, we collected and curated hepatotoxicity datasets from 

multiple research papers, whose in vivo hepatotoxicity defined using different standards. 

We harmonized various hepatotoxicity classifications into binary classifications of 1 

(hepatotoxic) and 0 (nontoxic). Overlap compounds were identified among different 

datasets. If the overlap compounds yield conflict hepatotoxicity classifications, these 

compounds will be excluded. The high-quality non-toxic compounds were collected by 

selecting compounds that showed consistent hepatotoxicity classifications among the 7 

literature datasets (at least two datasets). Those compounds that already exist in the 

DILIrank dataset (including Ambiguous-DILI-concern drugs) were excluded. As a result, 

the balanced hepatotoxicity dataset consists of 432 hepatotoxic and 450 non-toxic 

compounds. 
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Table 2. Hepatotoxicity Datasets from literature 
Dat

aset 

Initial 

size 

After 

curation 

Curation  Reference  Original source  

1  534 345 salt not included (Ekins et al., 2010) Self - compilation 

2  951 909 Only human data were 

used 

(Fourches et al., 

2010) 

Self - compilation 

3  605 596 Excluding 

inconclusive 

(Liu et al., 2015) LiverTox 2014 

4  287 263 Most, less-concern as 

1; no concern as 0 

(Chen et al., 2011) LTKB-DB 

5  1314 1309 Remove no CID 

structures  

(Kim, Huang, et al., 

2016) 

FDA liver damage data, 

2014 

6 3712 2167 Only use Level 0 

human data  

(Mulliner et al., 

2016) 

Self - compilation 

7  1274 1248 Remove no CID 

structures 

(Liew et al., 2011) Self - compilation 
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Section II. Develop mechanism-driven vAOP models for hepatotoxicity 

This section will identify the novel chemical in vitro-in vivo relationships to generate 

vAOP models for hepatotoxicity. Initial profiles for the model include important 

chemical features and bioprofiles across multiple assays. Relevant portions of the 

chemical structure related to toxic properties (known as toxicophores) will be identified 

using our custom fragment generation tool along with commercial software (i.e., 

Chemotyper®(Yang et al., 2015)). The toxicophore information will serve as the 

chemical and structural profiles for target compounds. Using our automatic data mining 

tool, compounds will then be used as the probe to search for relevant in vitro biological 

and toxicological data within public sources (e.g., PubChem, ToxCast/Tox 21, L1000). 

Compilation of these data using novel knowledgebase deep neural networks (k-DNN) 

will result in a bioprofile containing billions of data points generated from thousands of 

different assays with established toxicity relationships for the target compounds.  

Results - QSAR modeling of ARE activation assay 

Understandably, not all the in vivo hepatotoxicity compounds have the in vitro ARE 

activation activity. In our balanced hepatotoxicity dataset, 221 out of the 882 drug 

compounds have ARE activation testing results (Figure 1). Missing data severely limits 

the identification of the in vitro bioactivity and in vivo hepatotoxicity relationships in this 

study. Thus, we built QSAR models to predict the drug compounds that do not have the 

testing results of ARE activation assay. The ARE assay with PubChem AID 743202 was 

selected for QSAR modeling. The downloaded data table contains 9305 items, which 

were curated and standardized as following: 1) items have inconclusive responses or do 

not have PubChem Compound Identifiers (CIDs) were removed 2) items have the same 
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CID but showed different activity outcomes were also removed, 3) for the remaining 

compounds, those share the same structure (identified by CASE-Ultra) but have different 

activities will be removed. These efforts resulted in 3,394 unique compounds with 

unambiguous activity results (277 actives, 3,117 inactives). To get the antive/inactive 

balanced training set, we include all the 277 active compounds and randomly selected 

300 compounds from the 3,117 inactive compounds.  

 

Figure 1. The number of compounds and overlap in three datasets.  

 

    Five types of chemical descriptors, including chemical fingerprints and molecular 

descriptors, were used in QSAR model development. Chemical fingerprints include 

Extended-connectivity fingerprints (ECFPs), functional-class fingerprints (FCFPs) 

(Rogers and Hahn, 2010), Molecular ACCess system (MACCS) keys (Durant et al., 

2002). These three types of fingerprints were calculated using the RDKit (www.rdkit.org) 

package. Molecular descriptors include 200 RDKit molecular descriptors calculated using 

the RDKit package and 334 Dragon descriptors calculated using the commercial Dragon 

software v.6.0 (Talete s.r.l., Milano, Italy). All the molecular descriptor values were 
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normalized to the range from zero to one for the training set compounds before model 

development. Three types of machine learning approaches implemented by scikit-learn 

were used to develop QSAR models for each bioassay endpoint: k-Nearest Neighbors 

(kNN), Random Forest (RF), and Support Vector Machines (SVM). Individual regression 

models for each bioassay endpoint were developed using the combination of one type of 

descriptors (ECFP6, FCFP6, MACCS, rdkit) and one of the modeling approaches (kNN, 

RF, SVM), resulting in 12 individual models. The consensus QSAR model which was 

generated by averaging predictions of various individual models were also used in this 

study.(Ciallella et al., 2020; Golbraikh et al., 2017; Wang et al., 2015) All models were 

evaluated using a standard five-fold cross-validation procedure, with 20% of the training 

set compounds left out for testing purposes during each iteration, as described in previous 

studies.(Ciallella et al., 2020; Russo et al., 2019; Wang et al., 2015) Each bioassay 

training set was randomly split into five equal subsets, four subsets (80% of the total 

compounds) were used for model training, and the remaining 20% was used to test the 

resulted model. This procedure was repeated five times so that every compound was used 

for prediction once. 

    Another ARE assay with PubChem AID 651741 was used as the external validation 

set. After the above data curation and standardization, the dataset has 1,193 unique 

compounds (394 active and 799 inactive). Furthermore, compounds already in the ARE 

assay 743202 were excluded (Figure 1). The remaining 647 compounds were used for 

external validation. The results of sensitivity (Equation 1), specificity (Equation 2), and 

average correct classification ratio (CCR, Equation 3), when predicting the external 

validation set using individual and consensus models are shown in Figure 2. The two 
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model kNN-ECFP and kNN-FCFP6 showed poor model performance (sensitivity less 

than 0.3) and was not shown in Figure 2. After examining the probability prediction 

values, which ranged from [0, 1], we defined two consensus prediction thresholds (CPTs) 

to classify compounds as active or inactive (Kim, Huang, et al., 2016). CPT-1 (≥ 0.5 as 

active and < 0.5 as inactive), which is same as the default mode method, and CPT-2 (≥ 

0.7 as active and ≤ 0.3 as inactive), where predictions between < 0.7 and > 0.3 were 

inconclusive. The consensus model generated under CPT-1 threshold showed better 

performance than individual models. Under stricter thresholds CPT-2, the performance of 

consensus model was further improved. However, this would decrease the coverage of 

the prediction compounds. Same with the strictest thresholds that only evaluate 

compounds showed consistent predictions among all the 13 models.  

sensitivity =
𝑇𝑃

(𝑇𝑃+𝐹𝑁)
    (1) 

specificity =
𝑇𝑁

(𝑇𝑁+𝐹𝑁)
   (2) 

𝐶𝐶𝑅 =
(𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦+𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦)

2
  (3) 

Where TP represents the number of true positives (active compounds correctly predicted 

as active), FP represents the number of false positives (inactive compounds incorrectly 

predicted as active), TN represents the number of true negatives (inactive compounds 

correctly predicted as inactive), and FN represents the number of false negatives (active 

compounds incorrectly predicted as inactive). 
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Figure 2. Sensitivity, specificity, and CCR results of predicting external validation set 

using individual and consensus models. 13MDLs: consensus model built using 13 

combinatorial models under CPT-1 thresholds. CPT2_13MDLs: consensus model built 

using 13 combinatorial models under CPT-2 thresholds. Strict_13MDLs: only 

compounds showed consistent predictions among all the 13 models were used for 

evaluation. 

 

Results - Profiling Target Compounds using Public Big Data Sources 

The balanced hepatotoxicity dataset consists of 882 compounds: 432 hepatotoxic and 450 

non-toxic. These 882 compounds were used to search the PubChem portal for all the 

bioactivity responses. The result is the bioactivity response profile, so-called bioprofile. 

The initial bioprofile for hepatotoxicity compounds consisted of more than 100,000 

PubChem bioassays, most of which were sparse, consisted of little data, and needed 

further curations. It is important to select critical bioassays based on their relationships to 

the drug compounds. The initial bioprofile is optimized by selecting assays that have at 

least five active responses and one inactive response across the drug compounds. The 
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optimized bioprofile has 544 assays and 715 compounds (358 hepatotoxic, 357 non-

toxic) involved (Figure 3).  

 

Figure 3. Optimized PubChem bioprofile. Only assays showed at least five active 

responses and at least one inactive response across the compounds of interest were 

selected. The resulting optimized bioprofile has 715 compounds and 544 related. Active 

results (1) were represented by red; inactive results (−1) were represented by blue, and 

inconclusive or untested results (0) were represented by gray. 

 

Results – subspace clustering of PubChem in vitro assays. 

To identify potential toxicity mechanisms and further optimize the initial bioprofile, the 

544 PubChem assays were clustered based on shared chemical fragments relevant to 

bioassay responses. To achieve this, we used the established ToxPrint fingerprints, a set 
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of 729 chemical fragments relevant to toxicity reported in a previous study (Yang et al., 

2015). ToxPrint fingerprints were generated using ChemoTyper software version 1.0 

(Molecular Networks GmbH, Erlangen, Germany). We also used saagar descriptors, 

another set of 834 extensible chemistry-aware substructures, as described in the literature 

(Sedykh et al., 2021). By constructing the contingency table of active/inactive response 

with the presence/absence of a fingerprint, and conduct Fisher’s exact test, we determine 

whether an assay is correlated with a fingerprint. If the p-value of Fisher’s exact test < 

0.05, we think the assay is correlated with the fingerprint, and assign a 1 at the assay-

fingerprint matrix. Details of this method are described in our previous study (Russo et 

al., 2019). 

 

Figure 4. distributions of how many correlated fingerprints an assay has using A) saagar 

and B) ToxPrint fingerprints. 

 

    The distributions of how many correlated fingerprints an assay has are shown in 

Figure 4. For saagar fingerprint, there are 604 fragments that had at least one correlated 

assay, and 525 assays had at least one correlated fragment. For ToxPrint fingerprint, 301 

fragments had at least one correlated assay, and 504 assays had at least one correlated 

fragment. With the assay-fingerprint matrix, we can calculate the Jaccard distances for 

every assay pairs. Use the assays as nodes and Jaccard distances as edges, we can 

construct a similarity map of assays and further cluster the assays into different 
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communities using the software Gephi version 0.9.1 (https://gephi.org/), as shown in 

Figure 5. Each assay cluster represents relevant biological data for compounds of interest 

that can be integrated into specific toxicity pathways. We got 36 clusters using saagar 

fingerprints, and 11 clusters using ToxPrint fingerprints. Figure 6 shows the number of 

assays in each cluster using the two kinds of fingerprints. Among the 36 clusters 

identified using saagar fingerprints, nine clusters showed at least five assays in the same 

cluster. Among the 11 clusters identified using ToxPrint fingerprints, eight clusters 

showed at least five assays in the same cluster. 

 

Figure 5. Subspace clustering of PubChem bioassays using the chemical-in vitro assay 

correlations. Nodes represent PubChem assays, edges represent Jaccard similarity 

computed based on A) saagar fingerprints B) ToxPrint fingerprints. Distinct clusters are 

visualized by color. 
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Figure 6. The number of assays in the same cluster for A) clusters identified using saagar 

fingerprints, B) clusters identified using ToxPrint fingerprints. 

 

    Since we are particularly interested in ARE signaling involved hepatotoxicity, we first 

see which cluster the ARE assay falls into. For clusters identified using saagar 

fingerprints, ARE assay falls into cluster#32, which has 44 assays. For clusters identified 

using ToxPrint fingerprints, ARE assay falls into cluster#9, which has 101 assays. After 

reading the assay description of the two clusters that contain the ARE assays, I classified 

the assays into different groups. In both cases, more than half of the assays are testing cell 

viability, anticancer activity, or a summary of the qHTS. The summary of the qHTS 

usually summarizes the results of primary HTS and cell viability counter screen and 

sometimes the auto-fluorescence. Other groups including nuclear receptor activation, 

CYP enzyme interaction, mitochondria activity, DNA damage, cell repair, and 

transcriptional alteration may be related to an outcome pathway lead to DILI. These two 

assay clusters represent relevant biological data for compounds of interest that can be 

integrated into oxidative stress involved DILI pathways.  

Approach: Developing vAOP Models using Biosimilarity Search and Read-Across 

The assay cluster containing the ARE assay represents relevant biological data for 

compounds of interest that can be integrated to ARE involved DILI pathways. As shown 
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in Figure 3, many compounds often do not have experimental results against all assays. 

Missing data can hamper the modeling and predicting procedure. Therefore, we will 

develop machine learning and deep learning models to fill in the missing data for new 

compounds under selected assays, like what we did in predicting ARE activation for 

untested hepatotoxicity compounds. Deep Neuron Network (DNN) is a popular deep 

learning approach with many layers, which consist of many nodes (Goh et al., 2017; 

LeCun et al., 2015). The outputs from the neurons of the previous layer serve as the 

inputs to the neurons in the next layer, creating a highly interconnected network. DNNs 

have been widely used in the field of speech and image recognition, drug discovery, and 

genomics data analysis (Zhang et al., 2017). Multi-task learning, which is based on 

DNNs, is a modeling approach that allows for multiple related tasks to be modeled 

simultaneously. Modeling several biologically related endpoints through multi-task 

learning has shown superior performance to traditional QSAR models by reducing 

overfitting, solving issues of biased data, and identifying variables from related tasks (Xu 

et al., 2017). In this project, the multi-task learning is suitable for model development and 

filling the missing biological data of assays in a cluster for target compounds. The input 

data will be the chemical descriptors of all compounds in the hepatotoxicity database and 

the DNN models will be developed simultaneously for several bioassays within a 

pathway to fill all the missing data. We will use standard five-fold cross validation 

techniques to determine the optimum neural network architecture, including the 1) 

number of hidden layers, 2) number of neurons per layer, and 3) activation function for 

neurons. 
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    Our lab previously described a novel strategy of using the bioprofile-based read-across 

to predict chemical toxicity (Russo et al., 2019; Zhao et al., 2020). In a read-across study, 

the toxicity potential of a new compound will be evaluated by its most “similar” 

compound that has an experimental toxicity result (Ball et al., 2016). Traditional read-

across is based on chemical similarity calculation, which has proved to be error-prone for 

predicting complex toxicity endpoints due to “activity cliffs” (ie, structurally similar 

compounds have different toxicity). The inclusion of biosimilarity rankings based on 

biological data adds extra strength. The biosimilarity between two compounds in a cluster 

c can be calculated by: 

𝐵𝑖𝑜𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 (𝐴, 𝐵)𝑐 =  
|𝐴𝑎 ⋂ 𝐵𝑎| + |𝐴𝑖 ⋂ 𝐵𝑖| ∙  𝑤

|𝐴𝑎 ⋂ 𝐵𝑎| + |𝐴𝑖 ⋂ 𝐵𝑖| ∙  𝑤 + |𝐴𝑎 ⋂ 𝐵𝑖| + |𝐴𝑖 ⋂ 𝐵𝑎|
 

Where 𝐴𝑎 and 𝐵𝑎 represent the sets of active responses, 𝐴𝑖 and 𝐵𝑖 represent the sets of 

inactive responses in PubChem bioassays within a cluster c for compounds A and B. The 

term w weights the inactive responses less than active responses since the proportion of 

active data, which indicates more significant chemical-biological interactions, is much 

lower than inactive data. 

Approach: Developing vAOP Models using Knowledgebase DNNs Modeling 

The drawback of the above biosimilarity search approach is that the linear similarity 

search does not draw distinction and mechanism association between assays. To rectify 

this, we will develop Knowledgebase DNNs (K-DNNs) inspired by the nature of 

complex biological systems and the combined effect of assays testing for protein 

interactions, gene activation, and growth inhibition on resulting adverse outcomes (e.g., 

hepatotoxicity) (Figure 7). The input of all compounds for K-DNNs modeling will be the 

ToxPrint or saagar fingerprints initially generated. This chemical information will be fed 
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to the assays in the second layer of the network system, which in turn are connected to 

the bioassays in the third layer and then induce the organism toxicity. The numbers on the 

edges indicate the weights between connections and the labels on the neurons 

(active/inactive) indicate the status of the activation functions as a result of training. As 

shown in Figure 7A, the path connecting Fragment 1 to Bioassay 1 and then to Bioassay 

3 represents a potential vAOP that predicts organism toxicity (i.e., hepatotoxicity). By 

comparison, Fragment 2 and Bioassay 2 are determined to be irrelevant (Figure 6a). 

“Activation” of a neuron in the K-DNN is dependent on the observed outcome of a 

compound in that assay. In this manner, during the training process, the connections 

between neurons can offer insights into perturbed biological pathways contributing to 

hepatotoxicity. Figure 7B shows a vAOP model based on preliminary data, that includes 

the initial chemical fragment structure, a protein-binding assay, a cell stress assay, a 

cytotoxicity assay, and four other “off-target” assays (two protein-related and two cell 

stress-related). The connections between neurons have been optimized to show the 

predicated vAOP highlighted in red.  



24 
 

 
 

 

Figure 7. K-DNN modeling. A) The concept of K-DNN modeling; B) A representative 

vAOP model resulting from K-DNN modeling. 

 

    Compilation and organization of a large amount of high-quality data are key for proper 

use for modeling. Besides in vitro assays data, we also plan to integrate other types of 

data like toxicogenomic data and dosage data into the vAOP modeling process. 

Toxicogenomic data from CTD or L1000 project could yield novel insights into toxicity 

mechanisms. Drug dosage is also reported as an important feature in DILI (Chen et al., 

2013; Xu et al., 2015). Overall, we expect to develop predictive vAOP models based on 

the combined conventional chemical descriptors, bioprofiles, and toxicogenomic 

information through vAOP modeling workflow. 
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Section III. Share the datasets and modeling framework via a web portal 

The goal of this project is to make use of currently available in vitro data and provide 

methodologies and models that can predict more complicated hepatotoxicity. This will 

greatly advance the field of alternative methods to animal testing. The data collected 

(Section I) and models developed (Section II) in this study will be made be accessible 

through an in-house web portal (http://ciipro.rutgers.edu/). The workflows and tools can 

be adapted accordingly by chemists, biologists, toxicologists, and information scientists 

to model other complex animal toxicity endpoints. 

    A key step after the development of the vAOP model is to validate the model 

predictivity using an external dataset. Drug compounds with known hepatotoxicity 

activities and not in the modeling set will be collected from literature or LiverTox 

website. And it is possible that some external test compounds may not have sufficient 

bioassay data that needs for vAOP model prediction. This issue can be partially solved by 

building computational models to predict in vitro assay activity (e.g., by QSAR modeling 

using machine learning or multi-task learning). This process undoubtedly introduces 

some additional uncertainty into the prediction. External compounds that have little 

bioactivity data or are very dissimilar to our modeling compounds need to be subject to 

applicability domain assessments to eliminate possible unreliable predictions. 

Furthermore, our preliminary data demonstrate that the potential prediction errors of 

models in this step can be corrected by further experimental validation at a low cost. 

    The ultimate goal of this project is to make use of currently available in vitro data and 

develop methodologies and models that can predict more complicated toxicity endpoints. 

The Chemical In Vitro-In Vivo Profiling (CIIPro) portal (http://ciipro.rutgers.edu/) was 
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designed in our lab to disseminate the models that we develop to the toxicology research 

community. The CIIPro portal will be the final deliverable of this project and will 

provide users with access to the hepatotoxicity database, bioprofiles, and the vAOP 

models developed under Section I and II. By processing the data and the models in a 

web portal rather than a toolkit, research groups and communities will be able to obtain 

real-time results that can be readily shared with and accessed by other groups. Most 

importantly, the CIIPro portal will greatly save resources by reducing the use of animals 

in toxicity testing and provide toxicologists worldwide with a computational tool to 

evaluate the risk of toxicity for new compounds. 
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EVALUATION PLAN OF SCIENTIFIC RESULTS 

The one common ground to all computational modeling approaches is obtaining 

standardized and curated high-quality data in large quantity enough to ensure predictivity 

and accuracy. Publicly available data are often not standardized, and some compounds 

may have different results among different data sources, especially for hepatotoxicity 

classification. For example, desmopressin and ethotoin (PubChem CID 27991, 3292) 

were classified as non-hepatotoxic by multiple research papers but were classified as 

ambiguous-DILI-concern in the DILIrank dataset because of liver injury reports without 

confirmed causality. Such compounds will be carefully examined and excluded from 

further computational modeling. Besides that, we have developed methods to detect 

structural errors, structural duplicates, and standardization of chemical representations. 

To evaluate the significance of the resulting models developed in this project, we will 

compare the results to standard machine learning algorithms. All models will undergo 

rigorous technical testing, such as Y-randomization testing, to ensure robustness. The 

biological relevance of the vAOP models will be validated by experimental testing of 

compounds not included in the model training set due to a lack of assay testing results in 

online repositories. If toxicants for the specified endpoint, containing the identified MIEs, 

show active responses in the identified assays, then the vAOP models will be proven 

valid. 
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