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        The global carbon cycle has changed in response to climate change, and the effects of these 

changes, caused by anthropogenic factors such as the burning of fossil fuels and landscape 

alterations, are expected to be widespread. Terrestrial gross primary productivity (GPP), the 

largest component flux of the global carbon cycle, plays a significant role in connecting the 

global carbon and water cycles and the energy balance between the atmosphere, biosphere, 

hydrosphere and pedosphere. Despite the development of various approaches and models for 

estimating terrestrial GPP at different scales, large discrepancies and uncertainties remain in 

long-term global GPP simulations. Therefore, it is of great value and necessity to better 

understand and accurately estimate the spatial and temporal patterns of terrestrial GPP. In this 

dissertation, we improved the performance of global terrestrial GPP simulation by: 1) improving 

the solar radiation transfer model within a canopy by considering multiple scattering and 

radiation partitioning; 2) reconstructing satellite-based leaf area index (LAI) data to minimize 

biases and errors caused by cloud contaminations and composite technique; 3) using high 

performance computing of the Google Earth Engine (GEE) platform. We estimated global 
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terrestrial GPP at 0.25° spatial resolution and 3-hour temporal intervals using our integrated 

process-based ecosystem model from 2001 to 2020.   

In Topic1, we evaluated the performance of five climate variables derived from a new reanalysis 

dataset - air temperature, precipitation, downward shortwave radiation, air pressure, and vapor 

pressure deficit (VPD) - against observations from 167 worldwide flux tower sites at both daily 

and annual scales. The results showed that all of the variables performed reliably, with the 

exception of precipitation, which had a tendency to be overestimated. In addition, we examined 

the temporal and spatial patterns of these variables from 2001 to2020. We found that global air 

temperature, solar radiation, VPD, and precipitation showed significantly increasing trends at 

rates of 0.7°C/decade, 3.1W/m2/decade, 0.15KPa/decade, and 49.6mm/decade, respectively, 

while air pressure did not show any significant changes over this time period. The climate 

variables also showed different spatial variations at the global scale and their changes over the 

past decades were not homogenous in space. In addition to evaluating the climate variables, we 

also assessed the performance of reconstructing MODIS LAI products in 24 typical regions, 

which covered a range of major climate and vegetation types. The MODIS LAI datasets were 

affected by cloud contamination and composite techniques and did not perform well in areas 

with long-term continuous cloud cover, where LAI values were severely underestimated. We 

developed a new clean-up algorithm to improve the LAI data by including spatiotemporal 

correlations of neighboring pixels and applied double logistic functions to achieve continuous 

LAI time series. The results showed that most of the outliers were detected and removed, and the 

fitted double logistic curves well characterized the variations and patterns of annual LAI, 

reasonably captured the timing of vegetation phenology between growing and non-growing 
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seasons, and retained the duration of peak within the growing season for both single vegetation 

cycle and double vegetation cycles. 

In Topic 2, we found that the good performance of the empirical radiation partitioning approach 

indicated that it could be used to derive the two radiation components - direct and diffuse - when 

only total solar radiation information was available. Additional, the absorption fraction simulated 

by the two stream approach, which considered multiple scattering, was lower than that estimated 

by Beer’s law regardless of the LAI and diffuse radiation fraction. The discrepancy in absorption 

fraction reached up to 73% in an overcast day. We further compared the performance of the 

Beer’s law (BL) model, the two-stream big-leaf (TS-BL) model, and our integrated radiative 

transfer (RTM) model – the two-stream two-leaf (TS-TL) model - in simulating GPP and found 

that our TS-TL model reduced the RMSE and bias by up to 72% and 81% based on the BL 

model, and up to 63% and 75% based on the TS-BL model, respectively. Overall, our integrated 

RTM (TS-TL model) exhibited large improvements and robust performance in estimating GPP, 

especially in areas with a dense vegetation cover. 

In Topic 3, we developed a comprehensive process-based ecosystem model, driven by new 

reanalysis climate data and satellite-based LAI data, to estimate global GPP by using different 

biochemical photosynthesis models for C3 and C4 plants on the GEE platform. The results were 

evaluated by comparing the simulated GPP to observations from 167 flux tower sites, and the 

modeled GPP estimates were highly correlated to the flux tower observations for all vegetation 

types at both half-hour and annual scales. The annual global terrestrial GPP simulated by our 

integrated model ranged from 118 PgC to 134 PgC, with an average of 128 PgC, during 2001-

2020, and showed a significantly increasing trend with an average rate of 0.71 PgC/yr globally. 

When compared to recent GPP estimates and products, our simulated results were within a 
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reasonable range of global terrestrial GPP estimations but had some discrepancies due to the 

different models, parameters, and driving data used to simulate GPP. In addition, the sensitivity 

analysis exhibited that our simulated GPP was most sensitive to the biophysiological parameters 

𝑉𝑐𝑚𝑎𝑥25 and LAI, highlighting the need for accurate biophysiological parameters at large scales.  
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1. Introduction 

1.1. Background 

Global carbon cycle has changed in response to climate change, and the effects of these changes 

caused by anthropogenic factors such as the burning of fossil fuels and landscape alterations are 

expected to be widespread (Kondratyev et al. 2003, Dixon and Turner 1991). Global climate 

change and the increasing atmospheric CO2 concentration have highlighted the importance of 

better understanding the global carbon cycle (Nemani et al. 2003, Zhang et al. 2014). Plants 

utilize solar radiation, CO2, and water through photosynthesis for their growth and maintenance 

under changing environmental conditions such as temperature and nutrition. Simulating 

vegetation photosynthesis activities at different temporal and spatial scales can help to address 

global carbon budget issues, accurately predict future climate changes, and scientifically 

understand the crucial role of terrestrial ecosystems in supporting the sustainable development of 

human society. Terrestrial gross primary productivity (GPP), the amount of carbon fixed by 

plants during photosynthesis, is the largest component flux of the global carbon cycle and plays a 

significant role in connecting the global carbon, energy, and water cycles throughout the 

atmosphere, biosphere, hydrosphere and pedosphere (Cramer et al., 2001, Wu et al. 2010, Yan et 

al. 2017). Despite the development of various approaches and models of estimating terrestrial 

GPP at different scales, large discrepancies and uncertainties remain in long-term global GPP 

products. Therefore, it is of great value and necessity to better understand and accurately 

simulate the spatial and temporal patterns of terrestrial GPP, which is crucial for optimizing the 

estimation of global carbon sources and sinks. 
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Solar radiation, as the primary energy source for ecosystems, drives the biological processes 

such as photosynthesis and evapotranspiration and the exchanges of energy and mass between 

the atmosphere, vegetation, and soil (Song and Band 2004, Ligot et al. 2014). Consequently, the 

amount of energy plants can intercept greatly affects terrestrial production and the carbon cycle, 

and accurate modeling of photosynthetically active radiation absorbed by vegetation is the key to 

terrestrial GPP estimation (Alton et al. 2007). Therefore, simulating radiative transfer processes 

through the canopy is essential in ecosystem process models to understand how radiation is 

distributed within the canopy and how much radiation is absorbed by plants (Nilson and Ross 

1997, Yuan et al. 2014b, Yuan et al. 2017). A variety of canopy radiation transfer models have 

been developed to model the distribution and processes of incoming radiation within and below 

the canopy (Sellers 1985, Nijssen and Lettenmaier 1999, Dai et al. 2004). Simplified radiation 

transfer models often omit processes such as multiple scattering or radiation partitioning that 

have proven to cause large biases when estimating carbon fluxes, while the high computation 

burden and difficulty in acquiring data and parameters for more complicated models can hinder 

long-term GPP simulation at large scales. Therefore, an appropriate canopy radiation transfer 

model that integrates vital processes is important in simulating long-term global terrestrial GPP. 

Furthermore, the quality and continuity of model input data is a key factor in accurately 

simulating global terrestrial GPP. The development of remote sensing technology provides the 

possibility and opportunity to investigate global carbon cycles at high spatial resolution, and 

many well-developed products have already been widely applied by climate and ecosystem 

models to simulate global GPP. However, noise and gaps in remote sensing products, caused by 

atmospheric conditions or the sensors themselves, bring greater uncertainty to GPP estimations. 

Leaf area index (LAI), a critical vegetation biological variable, is widely used to estimate 
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ecosystem processes such as photosynthesis and evapotranspiration (Xiao et al. 2009). LAI 

frequently serves as a key input parameter for modeling the exchange of carbon, water, and 

energy between the terrestrial and atmosphere (Liu et al. 2012). It is common for ecosystem 

models to run in a steady state, and most current models do not consider disturbance or simplify 

the process at large scales. Satellite-based LAI, which reflects the actual real-time vegetation 

conditions, can help to solve this problem. However, noise points and gaps exist in LAI products 

due to the influence of cloud or snow cover, leading to large biases and errors in LAI datasets. 

For example, the MODIS LAI datasets suffer from cloud contaminations and the composite 

technique and do not work well in areas with long-term continuous cloud cover, such as the 

spring of the East Asian monsoon region where a single “Meiyu” rain event can last up to two 

months. Cloud contamination can severely underestimate LAI values. The discontinuity and 

inconsistency of LAI data in space and time directly affect the accuracy of ecosystem carbon 

cycle simulations (Yuan et al. 2011). Therefore, it is important to improve the quality of LAI 

products and obtain accurate and consistent estimates of LAI at a global scale.  

Like LAI, climate variables, as key driving factors of biogeochemical processes, are crucial to 

global carbon cycle modelling and have been widely used as model inputs in most ecosystem 

process models (Smith et al. 1993, Reichstein et al. 2013, Yang et al. 2017). While traditional 

weather stations provide accurate and valuable information for local and regional research, their 

irregular distribution limits their ability to depict spatial variations at a global scale. Reanalysis 

datasets, such as ERA-Interim, GLDAS, and NCEP, which combine land surface models, ground 

observations, and satellite data, provide global land surface states and fluxes in near-real time at 

high spatial and temporal resolution (Bosilovich et al. 2008, Mooney et al. 2011). Evaluating the 

performance of reanalysis data as model input data and investigating the patterns and variations 
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of long-term trends in key climate variables, such as air temperature, precipitation, and solar 

radiation, is necessary for a better understanding and modelling of the global carbon cycle. 

1.2. Estimating terrestrial gross primary productivity 

Direct measurement of GPP does not exist, but various approaches for estimating GPP at 

multiple scales have been developed in the past decades (Piao et al. 2013, Ma et al. 2015, Sun et 

al. 2019), including flux tower estimates via the eddy covariance technique, remote sensing-

based models, and process-based models. These approaches have their own unique strengths and 

limitations in meeting different demands for understanding the global carbon cycle at different 

scales.  

1.2.1. Eddy covariance technique 

The eddy covariance method is a micrometeorological method that is based on the turbulent 

transport theory to directly observe the exchanges of gases, energy, and momentum between the 

atmosphere and biosphere without disturbing the ecosystem (Baldocchi et al. 1988). Nowadays, 

the eddy covariance has been developed as a key technique for measuring the exchanges of net 

ecosystem CO2, water vapor, and energy fluxes, and it provides powerful data support for plant 

ecophysiological studies and modeling of water and carbon cycles at regional and global scales. 

Over the past thirty years, the eddy covariance technique has been widely used in different 

ecosystems including forests, grasslands, and croplands in Asia (Zhang et al. 2007, Xiao et al. 

2013), Europe (Morales et al. 2005, Papale et al. 2015), and America (Amiro et al. 2006, Amiro 

et al. 2010, Liu et al. 2022). 

GPP can be obtained from measurements of net ecosystem exchange (NEE) between the 

atmosphere and terrestrial ecosystems, which uses the eddy covariance technique based on flux 
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towers (Reichstein et al. 2005, Lasslop et al. 2010, Anav et al. 2015). Hundreds of worldwide 

flux tower networks that cover a large range of climate and biome types can provide continuous 

estimates of GPP, which play a pivotal role in understanding local carbon cycles and act as 

validation and calibration for global carbon models (Baldocchi et al. 2001, Friend et al. 2007). 

While GPP cannot be directly measured, flux towers provide probably the best estimates of GPP 

fluxes at the ecosystem level and have been used as ground-truth observations in numerous 

studies to calibrate and evaluate different models. 

However, the estimates from flux towers only represent the fluxes at the scale of the tower 

footprint, which ranges between hundred meters and kilometers depending on the homogeneity 

of the vegetation (Xiao et al. 2010). And retrieving large-scale GPP estimates by scaling up data 

from flux towers has many uncertainties and depends on the availability of sufficient data, 

especially for long-term extrapolation (Beer et al. 2010, Anav et al. 2015).  

1.2.2. Remote sensing-based models 

Remote sensing (RS) datasets have been widely used in various models to estimate GPP, and the 

approaches are typically based on light use efficiency models (Monteith 1972, Running et al. 

2000, Yuan et al. 2007) or empirical relationships with vegetation indices (Running et al. 2004, 

Sims et al. 2008, Li et al. 2013). They are efficient at exploring the spatial and temporal 

dynamics of plant growth at large scales and have relatively straightforward expressions (Song et 

al. 2013, Yuan et al. 2014, Sun et al. 2018, Sun et al. 2019).  

The light use efficiency models were developed on the basis of the concept of radiation 

conversion efficiency, and they assumes that GPP is directly associated with the absorbed 

photosynthetically active radiation and is substantially dependent on the environmental 
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conditions and the maximum light use efficiency (Monteith, 1972). The general form of the light 

use efficiency model can be expressed as: 

𝐺𝑃𝑃 = 𝑃𝐴𝑅 × 𝑓𝑃𝐴𝑅 × 𝜀𝑚𝑎𝑥 × 𝑓(𝑇, 𝑉𝑃𝐷, … )                               (Eq. 1.1) 

where 𝑃𝐴𝑅 is the incident photosynthetically active radiation, 𝑓𝑃𝐴𝑅 is the fraction of 𝑃𝐴𝑅 that 

vegetation canopy is absorbed, and 𝜀𝑚𝑎𝑥 is the maximum light use efficiency, which is adjusted 

by multiple environmental scalars, such as air temperature 𝑓(𝑇) and vapor pressure deficit 

𝑓(𝑉𝑃𝐷). And the vegetation index-based empirical models suggest that GPP could be directly 

estimated through empirical relationships with spectral-related indexes (Noumonvi et al. 2019). 

𝐺𝑃𝑃 = 𝑎 × 𝑉𝐼 + 𝑏                                                    (Eq. 1.2) 

where 𝑉𝐼 is the vegetation index, 𝑎 and 𝑏 are regression constants. 

The RS-based models are characterized by their large spatial coverage, temporal consistency, 

and straightforward computation, so they have the potential to investigate the spatial and 

temporal patterns of carbon fluxes at both regional and global scales (Pei et al. 2022). However, 

large variability still exists in explaining the inter-annual variations in GPP using the RS-based 

models due to the limitation in modelling the underlying mechanisms, especially at the global 

scale (Keenan et al. 2012, Liu et al. 2014, Yuan et al. 2014, Yan et al. 2017, Zheng et al. 2020). 

1.2.3. Process-based models 

The process-based ecosystem models, which are based on principles of ecology, biophysiology, 

and geochemistry, are also frequently used to understand and predict the storage, flux, and 

circulation of carbon, water, and other mineral nutrients in terrestrial ecosystems. Considerable 

efforts have been made to develop process-based models, such as Century (Parton et al. 1993), 

Biome-BGC (Running and Hunt 1993), LPJ (Sitch et al. 2003), and CASA (Potter et al. 1993), to 

estimate terrestrial GPP (Moorcroft 2006, Liu et al. 2014, Prentice et al., 2014, Anav et al. 2015). 
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The primary physiological processes that are generally used to simulate carbon assimilating 

include photosynthesis, transpiration, canopy radiative transmission, and stomatal conductance.  

Farquhar et al. (1980) described a biochemical photosynthesis model at a leaf level, assuming 

that the CO2 uptake rate is limited by either RuBP carboxylase (Rubisco) or RuBP regeneration 

and the enzymatic components are all temperature-dependent. Currently, the Farquhar’s 

photosynthesis model is widely accepted as theoretical basis, and the corresponding equations 

are generally included into all process-based models for GPP simulations. At the meantime, 

additional physiological processes, such as CO2 diffusion, stomatal conductance, and canopy 

radiative transfer, are coupled into Farquhar’s photosynthesis model when estimating GPP. 

Upscaling to plant or ecosystem levels, vegetation canopy is commonly treated as one big leaf, 

two leaves (sunlit and shaded), or multiple layers for different demand in the process-based 

models. And an intact canopy radiative transfer model that describes the absorption, reflection, 

and scattering of light provide elaborate physical processes to measure carbon assimilation. 

Most of the commonly used process-based models are operated on annually, monthly, or at most 

daily scales. The non-uniform changes of meteorological elements, especially solar radiation, 

within a day might affect the simulation results and bring large biases, since most ecological 

processes are nonlinear processes. The process-based models have the advantages in taking the 

effects of various environmental regulations into account at large scale and improving the 

understanding of ecological processes and global carbon cycle under global change. (Sitch et al. 

2003, Morales et al. 2005, Sitch et al. 2008, Piao et al. 2009, Ryu et al. 2011, Liu et al. 2014), 

however tedious preparation of input data and parameters hinder many scientists from 

overcoming the computational burden in investigating the carbon cycle at large regions with 

shorter time scales.  
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1.3. Radiation transfer models 

1.3.1. Based on light profiles 

To examine the light profile within the canopy, the processes of radiation transfer through 

canopy have been modeled using different approaches. Monsi and Saeki (1953) first introduced 

Beer’s law into ecosystem to quantify the light attenuation through the canopy. According to 

Beer’s law, solar radiation decreases exponentially with the increasing depth through canopy 

without considering scattering (Monteith and Unsworth 2013), and the equation can be described 

as 

𝐼 = 𝐼0𝑒−𝐾𝑏𝐿                                                       (Eq. 1.1) 

where 𝐼0 and 𝐼 are the radiation intensities arriving at the top of the canopy and penetrating 

below the canopy layer, respectively. 𝐿 is the cumulative leaf area index measured downwards 

from the top of the canopy, and 𝐾𝑏 is the extinction coefficient of the canopy. In many 

ecosystem process models, Beer’s law is commonly coupled within the canopy radiative transfer 

model to estimate the absorption and transmission of solar radiation for investigating the 

photosynthesis or evapotranspiration processes under different light conditions (Running and 

Hunt 1993). Although Beer's law performs well in predicting the average conditions of radiation 

below the canopy, previous studies showed that it is inadequate to model the interception within 

canopy (Larsen and Kershaw 1996, Nijssen and Lettenmaier 1999). Additionally, multiple 

scattering, which may increase the radiation below the canopy by up to 100% has not been 

accounted in Beer’s law theory (Nijssen and Lettenmaier 1999).  

To overcome the limitations and improve the canopy radiative transfer model, a two-stream 

approximation for radiation transfer through the vegetation canopy that considered multiple 

scattering was developed by Dickinson (1983) and Sellers (1985). In this two stream radiation 
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transfer model, the changes in upward and downward radiation streams in a deep canopy are 

expressed by two differential equations with the considering of reflection, transmission, and 

absorption, and the general equations can be expressed by 

−
𝑑𝐼+

𝑑𝐿
= −𝐾𝑏𝐼+ + 𝐾𝑏

𝛼

2
𝐼+ + 𝐾𝑏

𝛼

2
𝐼−                                     (Eq. 1.2) 

𝑑𝐼−

𝑑𝐿
= −𝐾𝑏𝐼− + 𝐾𝑏

𝛼

2
𝐼+ + 𝐾𝑏

𝛼

2
𝐼−                                     (Eq. 1.3) 

where 𝐼+ and 𝐼− are the upward and downward radiation intensities within the canopy, and 𝛼 is 

the leaf scattering coefficient. It assumes the radiation is scattered equally in the upward and 

downward directions in the canopy (Monteith and Unsworth 2013). Recently, Mahat and 

Tarboton (2012) extended this two-stream model from infinitely deep canopy to a finite canopy 

by using recursive superposition to obtain a solution, and the improved model could be applied 

to for both direct and diffuse radiation. Since the direct and diffuse radiation differ in the way 

they transfer through plant canopies and have different impacts on the nonlinear process of 

photosynthesis (de Pury and Farquhar 1997), it is now generally accepted that separately 

considering the transfer processes of direct and diffuse radiation improves the accuracy of 

modeling canopy radiation transfer processes. For example, previous studies found that an 

increased proportion of diffuse radiation leads to a higher light use efficiency and enhances 

vegetation photosynthesis (Gu et al. 2002, Alton et al. 2007).  

1.3.2. Based on canopy layers 

Three major groups of canopy radiation models include the big leaf model (Amthor 1994, Lloyd 

et al. 1995, Sellers et al. 1996), two-leaf model (Norman 1980, de Pury and Farquhar 1997, 

Wang and Leuning 1998, Dai et al. 2004), and multilayer model (Norman 1982, Leuning et al. 

1995). The big leaf models, which treat the whole canopy as one big layer that retains all the 
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properties of individual leaves, have been extensively used in many early studies (Amthor 1994, 

Lloyd et al. 1995, Sellers et al. 1996). They usually require fewer parameters and are relatively 

easier to test by field data. However, such models usually overestimate the photosynthesis due to 

the complex canopy structures (Amthor 1994, Dai et al.2004). To overcome the limitations of the 

big leaf model, multilayer models were developed that splitting the canopy into multiple layers 

and integrating the fluxes for each sub-layer to give the total flux for the whole canopy (Norman 

1982, Leuning et al. 1995). The multilayer models consider the ecological processes of each 

layer inside the canopy in great details, such as leaf properties and leaf inclination angles, and 

they are regarded as the most accurate way to upscale fluxes from leaf to canopy (Luo et al. 

2018). However, their expensive computational demand, especially for large scale, drives the 

need to develop alterative models. Two-leaf models have been proposed as simplifications to 

multilayer models (de Pury and Farquhar 1997, Wang and Leuning 1998, Dai et al. 2004). These 

models separate the canopy into two groups: sunlit leaves and shaded leaves, where the 

photosynthesis of sunlit leaves that receiving both direct and diffuse radiation tends to be light 

saturated, while the photosynthesis of shaded leaves that only absorb diffuse radiation depend on 

the intercepted radiation (de Pury and Farquhar 1997, Luo et al. 2018). The two-leaf models give 

very similar estimation of canopy photosynthesis compared to the simulation from multilayer 

models, but with far fewer computation time (Wang and Leuning 1998). Therefore, the two-leaf 

models have been extensively used in various ecosystem process models. 

1.4. Google earth engine platform 

Google Earth Engine (GEE) is an innovative cloud-based computing platform that archives a 

massive geospatial data catalog, and it provides a significant advance in processing petabyte-

scale datasets at various scales (Gorelick et al. 2017, Mutanga and Kumar 2019). There are more 
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than 200 public datasets, including satellite images, land cover data, and climate data, that are 

archived in GEE. Besides that, new datasets are updating daily for public use and researchers can 

upload their own data to GEE for different projects. Compared to other cloud computing 

platforms, GEE can avoid the tedious and time-consuming data downloading and uploading 

processes. In addition, GEE has powerful processing capacity and high-performance computing 

resources that automatically parallelizes the analysis on several CPUs across lots of computers in 

Google’s data centers, which enables researchers to access and analyze mega-scale geospatial 

data (Gorelick et al. 2017). Moreover, the web-based application programming interface (API) of 

GEE is very user-friendly, and researchers can also choose to access the platform through Java 

script or Python API. There are many built-in functions that researchers can utilize for geospatial 

data processing and analyzing.  

Although various well-developed models exist for estimating the terrestrial carbon cycle, data 

downloading and storage load, together with the huge computation cost, make it tremendously 

time consuming and even difficult to access for research at broad scales, especially with long 

time series (Ryu et al. 2011). Studies that expect high spatial and temporal resolutions need to 

deal with gigabytes or even terabytes of data, which might be the main problem that hinders the 

research progress. With all the strengths GEE possesses, researchers are able to obtain and 

analyze huge geospatial datasets for broader areas over long time periods, and have a rapid 

preview of the derived maps (Gorelick et al. 2017). In this study, we present our integrated 

process-based model built on the GEE platform to quantify the spatial and temporal patterns of 

the terrestrial carbon cycle at global scale without the technical and equipment burdens. 
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1.5. Research objectivities 

The objectivities of this study are: 1) to build a comprehensive process-based ecosystem model 

that integrates the key physical and biogeochemical processes for simulating GPP on Google 

Earth Engine platform; 2) to increase the accuracy and performance of global terrestrial GPP 

simulation by evaluating the main input climate data that drives the ecosystem model, 

reconstructing the satellite-based LAI products, and improving the canopy radiative transfer 

model; 3) to achieve the terrestrial GPP estimations at global scale using our integrated process-

based ecosystem model during the past two decades. And Figure 1.1 shows the flowchart of the 

major steps in my dissertation. 

Three topics were introduced in this dissertation:  

Topic 1: Investigating the variation of climate variables from GLDAS 2.1 and assessing the 

performance of fitting double logistic functions of LAI. In this topic, I aimed to reduce the biases 

from input data and increase the accuracy of Global GPP estimation by evaluating and improving 

the key model input data (Chapter 3). 

Topic 2: Integrating an improved two-stream canopy radiative transfer model. In this topic, I 

aimed to improve the performance of simulating canopy radiation absorption and GPP by 

improving the radiative transfer model (Chapter 4). 

Topic 3: Mapping global terrestrial gross primary productivity from local sites to global values 

using an improved process-based ecosystem model on Google Earth Engine Platform during 

2001-2020. In this topic, I aimed to achieve the terrestrial GPP estimation at global scale by 

developing an improved process-based ecosystem model driven by satellite-based LAI data and 

reanalysis climate data during the past two decades using high performance computing (Chapter 

5). 
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Figure 1.1 Flowchart of the major steps in this research. 

 

My dissertation approaches the goals by the following steps: 

(1) Topic 1 evaluated five GLDAS 2.1-derived climate variables that are essential for simulating 

global carbon cycle and are commonly used as input data to drive ecosystem models, including 

air temperature, precipitation, downward shortwave radiation, air pressure, and VPD (derived 

from specific humidity), against the observations from 120 worldwide flux tower sites. The 

temporal and spatial variations of the five climate variables from 2001 to 2020 were also 

investigated at global scale. Moreover, remote sensing LAI product (MCD15A3H) was 

reconstructed to obtain a high-quality and continuous time series by fitting double logistic 

functions after eliminating noise and outliers. Different double logistic functions were applied to 

grids with single vegetation cycle and grids with double vegetation cycles, and the corresponding 

fitting performance was discussed in this chapter.  
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(2) Topic 2 focused on improving the accuracy of modeling the radiation absorbed by the 

vegetation canopy and further increasing the performance of terrestrial GPP simulation by 

integrating a recently developed two stream radiative transfer model that considers multiple 

scattering in a finite canopy to a two-leaf model. In addition, an empirical radiation partitioning 

approach was evaluated against 258 site-years from 36 flux tower sites. 

(3) In topic 3, a comprehensive process-based model that coupled the improved two stream 

radiation transfer model was developed on the Google Earth Engine platform, and the simulated 

GPP was evaluated against 167 flux tower sites. The spatial and temporal patterns and trends in 

global terrestrial GPP during 2001-2020 were examined for different vegetation types, and the 

comparisons of global GPP estimates from recent studies and products were discussed. In 

addition, the sensitivities of our model to environmental and biological drivers were also 

investigated in this chapter.  
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2. Materials and methods 

2.1. Ancillary Data 

2.1.1. Reanalysis dataset 

In the past decades, data assimilation techniques that assimilate weather forecast information, 

ground observation data and remote sensing data into analysis products provide many global 

climate datasets with high spatial resolution for a long time period (Bosilovich et al. 2008, 

Mooney et al. 2011). Many well-known reanalysis datasets are commonly used for global 

climate and ecosystem modelling, such as the National Centers for Environmental Prediction and 

the National Center for Atmospheric Research reanalysis (NCEP/NCAR, Kalnay et al. 1996), the 

European Centre for Medium-Range Weather Forecasts (ECMWF) Interim Reanalysis (ERA-

Interim, Dee et al. 2011), and the Japanese 55-year Reanalysis (JRA-55, Kobayashi et al. 2015).  

The Global Land Data Assimilation System (GLDAS) is a new generation of reanalysis dataset 

that is jointly developed by the National Aeronautics and Space Administration (NASA) 

Goddard Space Flight Center (GSFC) and the National Oceanic and Atmospheric Administration 

(NOAA) National Centers for Environmental Prediction (NCEP). GLDAS integrated ground-

based observations, remote sensing images, radar precipitation measurements, and outputs from 

numerical prediction models into advanced Land Surface Models (LSM) using data assimilation 

techniques to produce a global, high-resolution, offline (uncoupled to the atmosphere) terrestrial 

modeling system that simulates global land surface states and fluxes in near-real time (Rodell et 

al. 2004). GLDAS currently drives five models, including Mosaic, Noah, the Community Land 

Model (CLM), the Variable Infiltration Capacity model (VIC), and the Catchment Land Surface 

Model (CLSM), to produce a massive archive of global modeled and observed outputs from 
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1948 to present with spatial resolution of 1 degree and 0.25 degree and temporal resolution of 3- 

hourly, daily, and monthly. There are three components of GLDAS version 2: (1) GLDAS 2.0 is 

forced entirely with the Princeton Meteorological Forcing Dataset and provides a temporally 

consistent series (with 3- hourly, daily, and monthly temporal intervals) from 1948 through 

2014; (2) GLDAS 2.1 is forced with a combination of model and observation data, and contains 

3- hourly and monthly data spanning from 2000 to the present; (3) GLDAS 2.2 uses data 

assimilation (while the other two products are "open-loop") to produce daily data output from 

2003 to the present.  

In consideration of the temporal and spatial resolution, time coverage, and the data availability 

on the Google Earth Engine, GLDAS 2.1 (simulated by the Noah-3.6) was used in this study. 

The dataset contains 36 parameters with 3-hourly temporal interval, 0.25-degree spatial 

resolution, and spatial extent from -60° to 90° (latitude) and -180° to 180° (longitude) in the 

geographic coordinate system. We retrieved five variables from the dataset, including air 

temperature (K), total precipitation rate (kg/m2/s), downward shortwave radiation (W/m2), 

specific humidity (kg/kg), and air pressure (Pa), and the detailed information of the variables is 

listed in Table 2.1. The variable names with extension “_inst” are instantaneous variables, while 

those with extension “_tavg” are backward 3-hour averaged variables. The GLDAS 2.1 dataset is 

available to use on Google Earth Engine Platform (“NASA/GLDAS/V021/NOAH/G025/T3H", 

https://developers.google.com/earth-

engine/datasets/catalog/NASA_GLDAS_V021_NOAH_G025_T3H). 

 

 

 

 

https://developers.google.com/earth-engine/datasets/catalog/NASA_GLDAS_V021_NOAH_G025_T3H
https://developers.google.com/earth-engine/datasets/catalog/NASA_GLDAS_V021_NOAH_G025_T3H
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Table 2.1 Climate variables of GLDAS 2.1 used in this study. 

Variable name Unit Description min max 
Spatial 

resolution 

Temporal 

resolution 

Tair_f_inst K Air temperature 206.8 327.66 0.25° 3-hourly 

Rainf_f_tavg kg/m2/s Total precipitation rate 0 0.01 0.25° 3-hourly 

SWdown_f_tavg W/m2 
Downward short-wave 

radiation flux 
-56.93 30462.8 0.25° 3-hourly 

Qair_f_inst kg/kg Specific humidity -0.02 0.07 0.25° 3-hourly 

Psurf_f_inst Pa Surface pressure 44063.1 108344 0.25° 3-hourly 

 

We further calculated the vapor pressure deficit (VPD) as one of our input variables to the model 

by using specific humidity. The VPD is the difference between the amount of moisture in the air 

and how much moisture the air can hold when it is saturated (Howell and Dusek 1995). VPD as 

an important driver of atmospheric water demand for plants, influences terrestrial ecosystem 

function and photosynthesis (Rawson et al. 1977). VPD is commonly used in stomatal 

conductance models to predict leaf stomatal conductance and photosynthesis (Leuning 1995). 

Since most reanalysis climate datasets only provide dew point temperature or specific humidity 

instead of vapor pressure deficit (VPD), calculations were needed to get the VPD. The VPD 

(KPa) can be derived from the difference between saturated vapor pressure (es, KPa) and actual 

vapor pressure (ea, KPa) (Yoder et al. 2005): 

𝑒𝑠 = 0.61078 ∙ 𝑒
17.27∙𝑇

𝑇+237.3                                                    (Eq. 2.1) 

𝑒𝑎 = 1.6077 ∙ q ∙  P𝑎                                                      (Eq. 2.2) 

𝑉𝑃𝐷 = 𝑒𝑠 − 𝑒𝑎                                                          (Eq. 2.3) 

where T is air temperature (°C), q is the specific humidity (kg/kg), and P𝑎 is atmospheric 

pressure (KPa). 
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2.1.2. Global atmospheric CO2 

The Global Monitoring Laboratory (GML) of the NOAA/ESRL monitoring program provides 

high-precision measurements of the global atmospheric distribution and trends of greenhouse 

gases. The global averaged surface carbon dioxide from 1980 to the present are calculated based 

on 43 marine boundary layer (MBL) sampling sites from the NOAA/GML global air sampling 

network. The air samples collected from these sites are predominantly of well-mixed clean air to 

eliminate the influences from nearby sinks and sources of CO2, such as vegetation and human 

activities (Masarie and Tans 1995). Here, the monthly global averaged CO2 from 2001 to 2020 

were downloaded and used (https://gml.noaa.gov/ccgg/trends/gl_data.html). Figure 2.1 shows 

the trends in global monthly averaged atmospheric CO2. 

 
Figure 2.1 Trends in global monthly averaged atmospheric CO2. 
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2.1.3. Remote sensing datasets 

Remote sensing data is commonly used to improve our understanding of global dynamics and 

processes occurring on the land, in the oceans, and in the atmosphere. In this dissertation, remote 

sensing data was used to support and drive our model and evaluate the simulation results, and the 

four remote sensing datasets we used, including leaf area index (LAI), land cover type, land 

cover dynamics (global vegetation phenology), and gross primary productivity (GPP), are all 

from Moderate Resolution Imaging Spectroradiometer (MODIS) satellites.  

LAI data is derived from the MCD15A3H Version 6.1 Level 4 product, which is a 4-day 

composite dataset with 500-meter spatial resolution spanning from 2002 to the present. LAI is 

defined as one-sided green leaf area per unit ground area in broadleaf canopies and one-half the 

total needle surface area per unit ground area in coniferous canopies in this product. The LAI 

dataset is available to use on the Google Earth Engine Platform (“MODIS/061/MCD15A3H”, 

https://developers.google.com/earth-engine/datasets/catalog/MODIS_061_MCD15A3H). 

Land cover type data is from the MCD12Q1 V6 product, and it provides global annual land 

cover types during 2001 to 2019 at 500-meter spatial scale. We used the Annual University of 

Maryland (UMD) classification system, which includes 16 different land cover types: evergreen 

needleleaf forests, evergreen broadleaf forests, deciduous needleleaf forests, deciduous broadleaf 

forests, mixed forests, closed shrublands, open shrublands, woody savannas, savannas, 

grasslands, croplands, permanent wetlands, urban and built-up lands, cropland/natural vegetation 

mosaics, non-vegetated lands, and water bodies (Table 2.2) , and the first 12 vegetation land 

types were used to perform the model. The land cover type dataset is available to use on the 

Google Earth Engine Platform (“MODIS/006/MCD12Q1”, https://developers.google.com/earth-

engine/datasets/catalog/MODIS_006_MCD12Q1). 

https://developers.google.com/earth-engine/datasets/catalog/MODIS_061_MCD15A3H
https://developers.google.com/earth-engine/datasets/catalog/MODIS_006_MCD12Q1
https://developers.google.com/earth-engine/datasets/catalog/MODIS_006_MCD12Q1
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Table 2.2 Land cover type according to annual University of Maryland (UMD) classification. 

Land cover type Description 

Water Bodies At least 60% of area is covered by permanent water bodies. 

Evergreen Needleleaf Forests (ENF) Dominated by evergreen conifer trees (canopy >2m). Tree 

cover >60%. 

Evergreen Broadleaf Forests (EBF) Dominated by evergreen broadleaf and palmate trees (canopy 

>2m). Tree cover >60%. 

Deciduous Needleleaf Forests (DNF) Dominated by deciduous needleleaf (larch) trees (canopy >2m). 

Tree cover >60%. 

Deciduous Broadleaf Forests (DBF) Dominated by deciduous broadleaf trees (canopy >2m). Tree 

cover >60%. 

Mixed Forests (MF) Dominated by neither deciduous nor evergreen (40-60% of 

each) tree type (canopy >2m). Tree cover >60%. 

Closed Shrublands (CSH) Dominated by woody perennials (1-2m height) >60% cover. 

Open Shrublands (OSH) Dominated by woody perennials (1-2m height) 10-60% cover. 

Woody Savannas (WSA) Tree cover 30-60% (canopy >2m). 

Savannas (SAV) Tree cover 10-30% (canopy >2m). 

Grasslands (GRA) Dominated by herbaceous annuals (<2m). 

Permanent Wetlands (WET) Permanently inundated lands with 30-60% water cover and 

>10% vegetated cover. 

Croplands (CRO) At least 60% of area is cultivated cropland. 

Urban and Built-up Lands At least 30% impervious surface area including building 

materials, asphalt and vehicles. 

Cropland/Natural Vegetation 

Mosaics 

Mosaics of small-scale cultivation 40-60% with natural tree, 

shrub, or herbaceous vegetation. 

Non-Vegetated Lands At least 60% of area is non-vegetated barren (sand, rock, soil) 

or permanent snow and ice with less than 10% vegetation. 

 

The land cover dynamics product (global vegetation phenology) from the MCD12Q2 V6 product 

provides the estimates of the timing of vegetation phenology at global scales. The dataset 

includes the information of the onset of greenness, greenup midpoint, maturity, peak greenness, 

senescence, greendown midpoint, and dormancy over a vegetation cycle, and normally there are 
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one or two observed vegetation cycles in a year. This product is yearly data from 2001 to 2018 

with 500-meter spatial resolution. The land cover dynamics dataset is available to use on the 

Google Earth Engine Platform (“MODIS/006/MCD12Q2”, https://developers.google.com/earth-

engine/datasets/catalog/MODIS_006_MCD12Q2). 

The GPP dataset from the MOD17A2H V6 Gross Primary Productivity (GPP) product is a 

cumulative 8-day composite data with a 500-meter spatial resolution from 2000 to the present, 

and the GPP is calculated based on the light use efficiency model. The GPP dataset is available 

to use on Google Earth Engine Platform (“MODIS/006/MOD17A2H”, 

https://developers.google.com/earth-engine/datasets/catalog/MODIS_006_MOD17A2H). 

2.1.4. Global C3 and C4 distribution map 

The global distribution of C3 and C4 plants is crucial for accurately simulating the exchanges of 

carbon, water, and energy between atmosphere and biosphere due to the physiological and 

functional distinctions between C3 and C4 plants, such as physiological structures, 

photosynthetic pathways, and the responses to changing CO2, light, and temperature. Therefore, 

we used the distribution map of global C3 and C4 vegetation at 1-degree spatial scale provided 

by Still et al. (2003) to incorporate different physiological processes of C3 and C4 vegetation. It 

was developed by combining remote sensing products, physiological modeling, global crop 

fractions, and national harvest area data, and as a result the C4 vegetation covers approximately 

18.8 million km2, the C3 vegetation covers about 87.4 million km2, and the bare ground and ice 

cover the rest of the land surface (Still et al. 2003). Figure 2.2 shows the global percentages of 

C4 vegetation. We resampled the distribution map using nearest neighborhood method to a 0.25-

degree resolution. 

https://developers.google.com/earth-engine/datasets/catalog/MODIS_006_MOD17A2H
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Figure 2.2 Global distribution of C3 and C4 vegetation, presented by the percentages of C4 (%). 

 

2.1.5. Flux tower data 

The FLUXNET is a global network that integrates multiple regional flux networks, such as 

AmeriFlux, AsiaFlux, ChinaFlux, EuroFlux, OzFlux, and FLUXNET-Canada (Baldocchi et al. 

2001), and it is the most comprehensive platform for integration and sharing flux measurements 

currently. Globally, the FLUXNET synthesizes datasets from hundreds of observation sites that 

measure carbon, water, and energy exchanges between the atmosphere and biosphere based on 

eddy covariance methods.  

The FLUXNET2015 Dataset, which is hosted by the Lawrence Berkeley National Laboratory, is 

the most recent FLUXNET data product after the FLUXNET Marconi Dataset (2000) and the 

FLUXNET LaThuile Dataset (2007). The dataset contains not only the carbon and energy fluxes 

but also the meteorological and biological measurements collected from 212 sites around the 

globe spanning from the early 1990s to 2014 (Pastorello et al. 2020). The tower sites cover 15 

land cover types, including evergreen needleleaf forest (ENF), evergreen broadleaf forest (EBF), 
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deciduous needleleaf forest (DNF), deciduous broadleaf forest (DBF), mixed forest (MF), 

grassland (GRA), cropland (CRO), closed shrubland (CSH), open shrubland (OSH), wetland 

(WET), savanna (SAV), woody savanna (WSA), snow or ice covered land (SNO), urban and 

built-up land, and barren or sparsely vegetated land. The outputs of FLUXNET2015 include over 

200 variables, such as gross primary productivity, ecosystem respiration, net ecosystem 

exchange, soil heat flux, sensible heat, latent heat, air temperature, soil temperature, longwave 

radiation, and shortwave radiation, and provides five major temporal resolutions including half-

hourly/hourly, daily, weekly, monthly, and yearly. The dataset is now available to download for 

public (https://fluxnet.org/data/fluxnet2015-dataset/). 

2.2. Model description 

2.2.1. Reconstructing LAI data 

The 4-day LAI data derived from MODIS MCD15A3H product was reconstructed to obtain 

continuous time series by fitting the double logistic function, and the noise and outliers were 

detected and removed before the fitting. The first processing step was to eliminate the noise and 

outliers based on the spatiotemporal correlations of neighboring pixels. We first checked the 

multi-year time series of each pixel, and removed the outliers based on residual analysis and 

boxplot. The outliers were defined either larger than the maximum or smaller than the minimum 

(Eq. 2.4-2.5). Then we applied a 5km by 5km moving window spatially to detect and remove the 

outliers based on boxplot.  

𝑀𝑖𝑛𝑖𝑚𝑢𝑚 = 𝑃25 − (𝑃75 − 𝑃25) ×  1.5                                  (Eq. 2.4)                     

   𝑀𝑎𝑥𝑖𝑚𝑢𝑚 = 𝑃75 + (𝑃75 − 𝑃25) × 1.5                                  (Eq. 2.5) 

https://fluxnet.org/data/fluxnet2015-dataset/
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where 𝑃25 is the 25th percentile and 𝑃75 is the 75th percentile. After that, double logistic function 

was fitted to the dataset after removing the apparent outliers from the LAI series. We then 

removed the noise in a third time using boxplot based on the differences between original and 

predicted LAI values. 

After all the preprocessing steps, double logistic functions were fitted to the cleaned data to 

obtain the continuous curves of LAI series, which is applicable to drive the global carbon cycle 

model as major input. Double logistic function have been applied on the EVI, NDVI, or LAI 

time series to obtain phenology information in previous studies (Cai et al. 2017, Testa et al. 

2018). The two sigmoid curves could well indicate green-up and senescence phases of vegetation 

growth. When fitting the double logistic function, we classified the pixels into two categories: 

grids with single vegetation cycle and grids with double vegetation cycles according to the 

numbers of vegetation cycles derived from the MODIS land cover dynamics product, and 

applied corresponding double logistic functions to the two categories. For the grids with a single 

vegetation cycle, the double logistic function we used in this study was described as (Gonsamo et 

al. 2012): 

𝐿𝐴𝐼(𝑡) =  𝛼1 +
𝛼2

1+𝑒−𝛾1(𝑡−𝛽1)
−

𝛼2

1+𝑒−𝛾2(𝑡−𝛽2)                               (Eq. 2.6) 

where t is the day of year (DOY), 𝐿𝐴𝐼(𝑡) is the observed LAI at time t, 𝛼1 is the background 

LAI, 𝛼2 − 𝛼1 is the difference between the background and the growth season plateau, 𝛾1 and 𝛾2 

are the transition in slope coefficients, and 𝛽1 and 𝛽2 are the midpoints in DOY of these 

transitions for green-up and senescence/abscission, respectively. 

For the grids with double vegetation cycles, we used the phenology information from MODIS 

land cover dynamics to detect the boundary between the two vegetation cycles. Then we fitted 

the double logistic function (Eq. 2.7) for each cycle and found the solution of the two functions. 
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𝐿𝐴𝐼(𝑡) =  𝛼1 +
𝛼2

1+𝑒−𝛾1(𝑡−𝛽1)
−

𝛼3

1+𝑒−𝛾2(𝑡−𝛽2)                               (Eq. 2.7) 

where 𝛼2 − 𝛼1 is the difference between the background and the amplitude of spring and early 

summer plateau, and 𝛼3 − 𝛼1 is the difference between the background and the amplitude of late 

summer plateau and autumn. Figure 2.3 shows the illustration of the fitted curves and 

corresponding parameters. After the fitting, the 7 derived parameters could provide the LAI 

values for any given time. 

 
Figure 2.3 Illustration of the fitted double logistic curves for (a) single vegetation cycle and (b) double 

vegetation cycles, and the corresponding parameters. 
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2.2.2. Integrated canopy radiative transfer model 

First, we partitioned the total incoming radiation into direct and diffuse components based on the 

cloudiness fraction. Then we improved the two-stream radiative transfer approximation that 

considering multiple scattering within a finite canopy by using different scattering coefficient for 

direct and diffuse radiation and quantified the transmission and reflection factors for direct and 

diffuse radiation, respectively. And finally, we coupled the improved model to a two-leaf model 

that considers the differences in the absorption of radiation between sunlit and shaded leaves. 

Figure 2.4 illustrates the overview of our two-leaf canopy radiative transfer models. 

 

Figure 2.4 Overview of the integrated radiation transfer model that quantify the radiation absorbed by the 

canopy, which includes partitioning of radiation (yellow), canopy radiative transfer model (grey), and 

two-leaf model (green). 

 

Partitioning of downward shortwave radiation to direct and diffuse radiation 

The incoming direct radiation (𝑆𝑏) and diffuse radiation (𝑆𝑑) are partitioned from the total 

downward shortwave radiation (𝑆𝑡) that reaching to the canopy according to Mahat and Tarboton 
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(2012). First, we separated the total fraction of radiation reaching to the canopy in reaching to the 

top atmosphere (AT, 𝑆𝑡/𝑆0) to direct (𝐴𝑇𝑏) and diffuse (𝐴𝑇𝑑) components. These two 

components can be calculated as: 

𝐴𝑇𝑏 = 𝜆 𝐴𝑇𝑐(1 − 𝐶𝑓)                                                 (Eq. 2.8) 

𝐴𝑇𝑑 = 𝐴𝑇 − 𝐴𝑇𝑏                                                     (Eq. 2.9) 

where 𝜆 is the ratio of direct to total radiation for clear sky, which assumes a fraction 𝜆 of AT is 

direct under a clear sky and all the radiation is diffuse when the sky is fully overcast, and the 

value of 6/7 was used in our model, 𝐴𝑇𝑐 represents the clear sky transmission factor and equals 

max (𝐴𝑇, 𝑎𝑠 + 𝑏𝑠), 𝑎𝑠 is the fraction of extraterrestrial radiation on overcast days, 𝑎𝑠 + 𝑏𝑠 is the 

fraction of extraterrestrial radiation on clear days, and 𝑎𝑠 = 0.25 and 𝑏𝑠 = 0.50 are recommended 

by Shuttleworth (1993). The cloudiness fraction 𝐶𝑓 is assumed to be 0 on a clear sky while 

equals to 1 on a fully cloudy sky where all the radiation is from diffuse radiation. We estimated 

the cloudiness fraction based on the total incoming shortwave radiation using the following 

empirical relationship: 

𝑆𝑡 = (𝑎𝑠 + 𝑏𝑠(1 − 𝐶𝑓)) 𝑆0                                             (Eq. 2.10) 

where 𝑆0 is the extraterrestrial radiation calculated by 𝑆𝑐 cos 𝜃 (𝑆𝑐 as solar constant, 

approximately equals to 1367 W/m2, and 𝜃 as solar zenith angle). 

After we have the 𝐴𝑇𝑏 and 𝐴𝑇𝑑 following the above equations, then the direct radiation and 

diffuse radiation are given by: 

𝑆𝑏 =
𝐴𝑇𝑏

𝐴𝑇
𝑆𝑡                                                          (Eq. 2.11) 

𝑆𝑑 =
𝐴𝑇𝑑

𝐴𝑇
𝑆𝑡                                                          (Eq. 2.12) 
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Canopy radiative transfer model 

Once the direct radiation and diffuse radiation are separated from the total downward shortwave 

radiation, we assumed that the two components penetrate the canopy separately. A radiative 

transmission model considering multiple scattering using a two-stream approach in a finite 

canopy (Mahat and Tarboton 2012) was applied in this paper. This model was developed based 

on Beer’s law but was adjusted for multiple scattering and reflection. And it assumed the 

radiation is scattered equally in an upward and downward direction and the scattering direction is 

along the same path as the incoming radiation. This model considered that the incoming 

radiation is either transmitted through the canopy, or reflected by the canopy, or absorbed by the 

canopy. 

The transmission factor (𝜏) and reflection factor (𝛽) with multiple scattering for both direct and 

diffuse radiation could be estimated by Eq. 2.13 and Eq. 2.14: 

𝜏 =
𝜏′[1−(𝛽′)2]

1−(𝛽′)2(𝜏′)2
                                                          (Eq. 2.13) 

𝛽 =
𝛽′[1−(𝜏′)2]

1−(𝛽′)2(𝜏′)2
                                                         (Eq. 2.14) 

The above equations for a finite canopy were obtained by recursive superposition of the solution 

for infinitely deep canopy. And 𝜏′ and 𝛽′ are the corresponding transmission and reflection 

factors for an infinitely deep canopy, which could be calculated by: 

𝜏𝑏
′ = 𝑒−√1−𝛼𝐾𝑏𝐿𝐴𝐼                                                        (Eq. 2.15) 

𝜏𝑑
′ = [(1 − √1 − 𝛼𝐺𝐿𝐴𝐼)𝑒−√1−𝛼𝐺𝐿𝐴𝐼 + (√1 − 𝛼𝐺𝐿𝐴𝐼)

2
𝐸𝑖(1, √1 − 𝛼𝐺𝐿𝐴𝐼)          (Eq. 2.16) 

𝛽′ =
1−√1−𝛼

1+√1−𝛼
                                                           (Eq. 2.17) 
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where 𝛼 is the leaf scattering coefficient (different values are used for direct and diffuse 

radiation, where 𝛼𝑏 =0.1 and 𝛼𝑑 =0.65), LAI is the leaf area index, 𝐺 = 𝜑1 + 𝜑2𝑐𝑜𝑠𝜃 is the 

leaf orientation factor depending on solar zenith angle (Dai et al. 2004), 𝜑1 = 0.5 − 0.633𝜒 −

0.33𝜒2, 𝜑2 = 0.877(1 − 2𝜑1), and 𝜒 is an empirical leaf angle distribution parameter ranging 

from -1 to 1 (-1 for vertical distributed leaves, 0 for spherical leaf angle distribution with 

randomly distributed leaves, and 1 for horizontal distributed leaves), 𝑘𝑏 = 𝐺/𝑐𝑜𝑠𝜃 is the 

extinction coefficient of black leaves, and 𝐸𝑖(𝑛, 𝑥) is exponential integral with n a nonnegative 

integer (Nijssen and Lettenmaier 1999), defined as: 

𝐸𝑖(𝑛, 𝑥) = ∫
𝑒−𝑥𝑡

𝑡𝑛

∞

1
𝑑𝑡                                          (Eq. 2.18) 

𝜏′ = 𝜏𝑏
′ is used in eq. 2.13 and eq. 2.14 when calculating the transmission and reflection factors 

of direct radiation (𝜏𝑏 and 𝛽𝑏), while 𝜏′ = 𝜏𝑑
′ is used for diffuse radiation. Since the approach 

for diffuse radiation is just an integral of single beam components over the hemisphere, so the 

reflection factors for an infinitely deep canopy 𝛽𝑏
′
 and 𝛽𝑑

′
 are estimated using the same equation 

(eq. 2.17). 

Then the transmitted and reflected radiation are calculated by multiplying the corresponding 

factors to the incoming direct or diffuse radiation, respectively. 

 

Two-leaf model 

To estimate the radiation absorbed by the canopy, we applied a two-leaf model based on Wang 

and Leuning (1988) that separates the canopy into two groups of leaves including sunlit leaves 

and shaded leaves, which receive different components and portions of incoming shortwave 

radiation. It is assumed that the sunlit leaves receive both direct and diffuse solar radiation, while 

shaded leaves absorb the diffuse radiation only (Spitters 1986). 
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The leaf area index (LAI) of sunlit and shaded leaves of the canopy were derived by Dai et al. 

2004: 

𝐿𝐴𝐼𝑠𝑢𝑛 =
1

𝐾𝑏
(1 − 𝑒−𝐾𝑏𝐿𝐴𝐼)                                         (Eq. 2.19) 

𝐿𝐴𝐼𝑠ℎ𝑎𝑑𝑒 = 𝐿𝐴𝐼 − 𝐿𝐴𝐼𝑠𝑢𝑛                                           (Eq. 2.20) 

Then the total solar radiation flux density absorbed by the sunlit leaves in the canopy is given as 

the sum of the direct component of direct radiation 𝐴𝑆𝑏,𝑏, the scattered component of direct 

radiation 𝐴𝑆𝑏,𝑠, and the diffuse radiation 𝐴𝑆𝑑, which is: 

𝐴𝑆𝑠𝑢𝑛 = 𝐴𝑆𝑏,𝑏 + 𝐴𝑆𝑏,𝑠 + 𝐴𝑆𝑑                                     (Eq. 2.21) 

And the solar radiation flux absorbed by the shaded leaves in the canopy is given as the sum of 

the scattered component of direct radiation 𝐴𝑆𝑏,𝑠 and the diffuse radiation 𝐴𝑆𝑑, represented as: 

𝐴𝑆𝑠ℎ𝑎𝑑𝑒 = 𝐴𝑆𝑏,𝑠 + 𝐴𝑆𝑑                                           (Eq. 2.22) 

The absorption of the diffuse radiation and the scattered component of direct radiation is 

averaged over the total leaf area, while the absorption of the direct component of direct radiation 

is given per unit of sunlit leaf area only. 

 

Figure 2.5 Illustration of the radiation transfer through a canopy for diffuse (a) and direct (b) radiation. 

We coupled the canopy radiative transfer model into the two-leaf model to calculate the 

absorption of different radiation components by the sunlit and shaded leaves (Figure 2.5). 
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Absorption is the complement to transmission and reflection, hence the absorbed diffuse 

radiation 𝐴𝑆𝑑 is given by: 

𝐴𝑆𝑑 = 𝑆𝑑(1 − 𝜏𝑑 − 𝛽𝑑)                                          (Eq. 2.23) 

The absorbed direct component (excluding scattering) of direct radiation 𝐴𝑆𝑏,𝑏 can be expressed 

as (Spitters 1986 (second part in eq.14)): 

𝐴𝑆𝑏,𝑏 = 𝑆𝑏𝐾𝑏                                                   (Eq. 2.24) 

And the absorbed scattered component of direct radiation 𝐴𝑆𝑏,𝑠 can be calculated as: 

𝐴𝑆𝑏,𝑠 = 𝑆𝑏(1 − 𝜏𝑏 − 𝛽𝑏) − 𝐴𝑆𝑏,𝑏                                  (Eq. 2.25) 

 

2.2.3. Stomatal conductance 

In our study, the Ball-Berry-Leuning (BBL) stomatal conductance model was coupled in the 

photosynthesis process (Leuning 1995), and the stomatal conductance is given by: 

𝑔𝑠 = 𝑔0 + 𝑔1 ∙
𝐴𝑛

(1+
𝑉𝑃𝐷

𝐷0
)∙(𝐶𝑎−Γ∗)

                                         (Eq. 2.26) 

where 𝐴𝑛 is the net leaf CO2 assimilation rate, VPD is vapor pressure deficit, 𝐶𝑎 is CO2 

concentration at the leaf surface, Γ∗ is the CO2 compensation point, and 𝑔0, 𝑔1 and 𝐷0 are 

empirical coefficients and their values (Panek and Goldstein 2001) are presented in Table 2.3. 

We also provide Ball-Berry model (Ball 1988) as another option for calculating stomatal 

conductance. In Ball-Berry model, the stomatal conductance is given by: 

𝑔𝑠 = 𝑔0 + 𝑔1 ∙
𝐴𝑛∙𝑅𝐻

𝐶𝑎
                                                  (Eq. 2.27) 

where RH is relative humidity, and other parameters are the same as in the BBL model. 
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Table 2.3 Parameters for stomatal conductance and photosynthesis. 

Parameter Value Unit References 

𝑔0 7.5 -- Panek and Goldstein 2001 

𝑔1 0.01 mol m-2 s-1 Panek and Goldstein 2001 

𝐷0 2 KPa Panek and Goldstein 2001 

𝜃 0.7 -- Medlyn et al. 2002 

𝛼 0.3 mol mol-1 Medlyn et al. 2002 

𝑘𝑝 0.7 -- Oleson et al. 2013 

𝑂𝑖 210 mmol mol-1 -- 

𝑅𝑔𝑎𝑠 8.314 J K-1 mol-1 -- 

𝐾𝑜25 248 mmol mol-1 Thornton 2010 

𝐾𝑐25 404 μmol mol-1 Thornton 2010 

𝑄10,𝐾𝑜
 1.2 -- Thornton 2010 

𝑄10,𝐾𝑐
 2.1 -- Thornton 2010 

𝑄10,𝑅𝑑
 2.0 -- Thornton 2010 

𝑄10 2.0 -- Oleson et al. 2013 

𝑆1 for 𝑉𝑐𝑚𝑎𝑥 0.3 K-1 Oleson et al. 2013 

𝑆2 for 𝑉𝑐𝑚𝑎𝑥 313.15 K Oleson et al. 2013 

𝑆3 0.2 K-1 Oleson et al. 2013 

𝑆4 288.15 K Oleson et al. 2013 

𝑆1 for 𝑅𝑑 1.3 K-1 Oleson et al. 2013 

𝑆2 for 𝑅𝑑 328.15 K Oleson et al. 2013 
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2.2.4. Photosynthesis 

The photosynthesis model was performed for the C3 and C4 vegetation separately. Then, the C3 

and C4 distribution map was used to get the relative proportions of C3 and C4 in each pixel, and 

the sum of the results provided the final photosynthesis carboxylation at each pixel. 

We used the biochemical photosynthesis model for C3 plants based on the model of Farquhar et 

al. (1980) and C4 plants based on the model of Collatz et al. (1992). The net leaf photosynthesis 

𝐴𝑛 could be modeled as the minimum of three limiting rates after accounting for dark respiration 

(𝑅𝑑, leaf daytime maintenance respiration): 

𝐴𝑛 = 𝑚𝑖𝑛(𝐴𝑐, 𝐴𝑗 , 𝐴𝑝) − 𝑅𝑑                                      (Eq. 2.28) 

𝐴𝑐 is the rate of photosynthesis when the RuBP carboxylase (Rubisco) is limited, which is given 

by: 

𝐴𝑐 = 𝑉𝑐𝑚𝑎𝑥 ∙
𝐶𝑖−𝛤∗

𝐶𝑖+𝐾𝑐(1+𝑂𝑖 𝐾𝑜⁄ )
      for C3 plants                (Eq. 2.29a) 

𝐴𝑐 = 𝑉𝑐𝑚𝑎𝑥      for C4 plants                                (Eq. 2.29b) 

where 𝑉𝑐𝑚𝑎𝑥 is the maximum rate of carboxylation, 𝐶𝑖 is the intercellular CO2 concentration, 𝑂𝑖 

is the atmospheric concentration of O2, 𝛤∗ is the CO2 compensation point in the absence of dark 

respiration, and 𝐾𝑐 and 𝐾𝑜 are the Michaelis–Menten constants for rubisco carboxylation and 

oxygenation, respectively, scaled by the temperature using a Q10 relationship. The Rubisco 

activity 𝐾𝑐 and 𝐾𝑜can be calculated following the Michaelis–Menten dynamics for CO2 and O2, 

respectively (Thornton 2010). The calculation of 𝐾𝑐 varies depending on the temperature 

threshold of 15 degree C. The equations used to calculate 𝐾𝑐 and 𝐾𝑜 are described: 

𝐾𝑜 = 𝐾𝑜25 × 𝑄10,𝐾𝑜

𝑇𝑐−25

10                                            (Eq. 2.30) 
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𝐾𝑐 = {
𝐾𝑐25 × 𝑄10,𝐾𝑐

𝑇𝑐−25

10               𝑓𝑜𝑟 𝑇𝑐 > 15℃ 

𝐾𝑐25×(1.8×𝑄10,𝐾𝑐)
𝑇𝑐−15

10

𝑄10,𝐾𝑐

          𝑓𝑜𝑟 𝑇𝑐 ≤ 15℃
                 (Eq. 2.31) 

where 𝑇𝑐 is the leaf temperature in Celsius degrees. 

𝐴𝑗 is the rate of photosynthesis when the regeneration of RuBP is limited (light-limited), which is 

given by: 

𝐴𝑗 = 𝐽 ∙
𝐶𝑖−𝛤∗

4𝐶𝑖+8𝛤∗
      for C3 plants                              (Eq. 2.32a) 

𝐴𝑗 = 0.067 ∗ 𝑄      for C4 plants                               (Eq. 2.32b) 

where J is the rate of electron transport, and it depends on the photosynthetically active radiation 

absorbed by the leaf expressed as (Medlyn et al. 2002): 

𝜃𝐽2 − (𝛼𝑄 + 𝐽𝑚𝑎𝑥) + 𝛼𝑄𝐽𝑚𝑎𝑥 = 0                                  (Eq. 2.33) 

where 𝐽𝑚𝑎𝑥 is the maximum potential rate of electron transport, Q is the photosynthetically 

active photon flux density, 𝜃 is the curvature parameter of the light response curve, and 𝛼 is the 

quantum yield of electron transport.  

𝐴𝑝 is the rate of photosynthesis when the product is limited for C3 plants and when the PEP 

carboxylase is limited for C4 plants, which is given by: 

𝐴𝑝 = 0.5𝑉𝑐𝑚𝑎𝑥      for C3 plants                                 (Eq. 2.34a) 

𝐴𝑝 = 𝑘𝑝 × 106 ×
𝐶𝑖

𝑃𝑎𝑡𝑚
      for C4 plants                         (Eq. 2.34b) 

where 𝑘𝑝 is the initial slope of C4 CO2 response curve and 𝑃𝑎𝑡𝑚 is the atmospheric pressure. The 

values of the parameters are listed in Table 2.3. 

We also coupled the Eq. 2.37 that represents the CO2 diffusion constraints of photosynthetic rate: 

𝐴(𝑐 𝑜𝑟 𝑗) = (𝐶𝑎 − 𝐶𝑖) × 𝐺𝑐𝑜2                                            (Eq. 2.35) 
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where, 𝐶𝑎 is the atmospheric CO2 concentration and 𝐺𝑐𝑜2 is the velocity of CO2 diffusion from 

atmosphere into leaves. 

We used a temperature function and high temperature stress function to scale and describe the 

temperature dependences of 𝑉𝑐𝑚𝑎𝑥, 𝐽𝑚𝑎𝑥,  𝛤∗, and 𝑅𝑑 (Bernacchi et al. 2001, Bonan et al. 2011, 

Medlyn et al. 2002, Oleson et al. 2013). For C3 plants, the equations are expressed as below: 

𝑉𝑐𝑚𝑎𝑥 = 𝑉𝑐𝑚𝑎𝑥25 × 𝑓(𝑇) × 𝑓𝐻(𝑇)                                      (Eq. 2.36) 

𝐽𝑚𝑎𝑥 = 𝐽𝑚𝑎𝑥25 × 𝑓(𝑇) × 𝑓𝐻(𝑇)                                       (Eq. 2.37) 

𝑅𝑑 = 𝑅𝑑25 × 𝑓(𝑇) × 𝑓𝐻(𝑇)                                           (Eq. 2.38) 

𝛤∗ = 𝛤∗
25 × 𝑓(𝑇)                                                   (Eq. 2.39) 

with the temperature functions described as: 

𝑓(𝑇) = 𝑒
∆𝐻𝑎×(𝑇𝑘−298.15)

298.15×𝑅𝑔𝑎𝑠×𝑇𝑘                                            (Eq. 2.40) 

𝑓𝐻(𝑇) =
1+𝑒

298.15×∆𝑆−∆𝐻𝑑
298.15×𝑅𝑔𝑎𝑠

1+𝑒

∆𝑆×𝑇𝑘−∆𝐻𝑑
𝑅𝑔𝑎𝑠×𝑇𝑘

                                          (Eq. 2.41) 

Where 𝑇𝑘 is the leaf temperature in Kelvin, 𝑅𝑔𝑎𝑠 is the universal gas constant, the values of 

temperature dependence parameters ∆𝐻𝑎, ∆𝐻𝑑, and ∆𝑆 are listed in Table 2.4, and the 𝐽𝑚𝑎𝑥25, 

𝑅𝑑25, and 𝛤∗
25 are the corresponding parameters at 25 degree C and are calculated as: 𝐽𝑚𝑎𝑥25 =

1.97𝑉𝑐𝑚𝑎𝑥25, 𝑅𝑑25 = 0.015𝑉𝑐𝑚𝑎𝑥25, and 𝛤∗
25 = 42.75.  
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Table 2.4 Temperature dependence parameters. 

Parameter ∆𝐻𝑎 (J/mol) ∆𝐻𝑑 (J/mol) ∆𝑆 (J/mol/K) 

𝑉𝑐𝑚𝑎𝑥 65330 149250 485 

𝐽𝑚𝑎𝑥 43540 152040 495 

𝑅𝑑 46390 150650 490 

𝛤∗ 37830 - - 

 

For C4 plants, the temperature dependence of 𝑉𝑐𝑚𝑎𝑥 is scaled by high temperature stress function 

and low temperature stress function,  

𝑉𝑐𝑚𝑎𝑥 = 𝑉𝑐𝑚𝑎𝑥25 [
𝑄10

𝑇𝑘−298.15

10

𝑓𝐻(𝑇)×𝑓𝐿(𝑇)
]                                       (Eq. 2.42) 

𝑓𝐻(𝑇) = 1 + 𝑒𝑠1×(𝑇𝑘−𝑠2)                                          (Eq. 2.43) 

𝑓𝐿(𝑇) = 1 + 𝑒𝑠3×(𝑠4−𝑇𝑘)                                          (Eq. 2.44) 

where the values of 𝑠1, 𝑠2, 𝑠3, and 𝑠4 are listed in Table 2.3, and the temperature dependence of 

dark respiration is expressed as: 

𝑅𝑑 = 𝑅𝑑25 [
𝑄10

𝑇𝑘−298.15

10

𝑓𝐻(𝑇)
]                                       (Eq. 2.45) 

The maximum rate of carboxylation at 25 degree C (𝑉𝑐𝑚𝑎𝑥25) depends on the leaf nitrogen 

concentration and specific leaf area, 

𝑉𝑐𝑚𝑎𝑥25 = 𝑁𝑎 × 𝐹𝐿𝑁𝑅 × 𝐹𝑁𝑅 × 𝑎𝑅25                                (Eq. 2.46) 

where 𝑁𝑎 is the leaf nitrogen concentration (gN per m2 leaf area), 𝐹𝐿𝑁𝑅 is the fraction of leaf 

nitrogen in Rubisco (gN in Rubisco per gN in leaf), 𝐹𝑁𝑅 = 7.16 is the weight proportion of 

Rubisco to its nitrogen content (g Rubisco per gN in Rubisco), and 𝑎𝑅25 = 60 is the specific 
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activity if Rubisco (𝜇𝑚𝑜𝑙 CO2 per g Rubisco per second). The leaf nitrogen concentration 𝑁𝑎 is a 

function of C/N ration and specific leaf area: 

𝑁𝑎 =
1

𝐶𝑁𝑙×𝑆𝐿𝐴
                                                 (Eq. 2.47) 

the 𝐶𝑁𝑙 is the ration of carbon to nitrogen in the leaf (gC/gN) and SLA is the specific leaf area 

(m2 leaf area per gC). The 𝐶𝑁𝑙, SLA, and 𝐹𝐿𝑁𝑅 varies for different vegetation type, and the 

values can be found in Table 2.5 (Thornton 2010, Oleson et al. 2013). 

Table 2.5 Photosynthetic parameters for 𝑉𝑐𝑚𝑎𝑥25. 

Vegetation type 𝐶𝑁𝑙 SLA 𝐹𝐿𝑁𝑅 

ENF 42 0.012 0.040 

EBF 35 0.012 0.046 

DNF 25 0.024 0.055 

DBF 24 0.030 0.080 

MF 32 0.020 0.060 

CSH 42 0.012 0.040 

OSH 42 0.012 0.040 

WSA 25 0.030 0.090 

SAV 25 0.030 0.090 

GRA 24 0.045 0.120 

WET 42 0.012 0.040 

CRO 25 0.070 0.410 

 

2.3. Statistical analysis 

The Pearson correlation coefficient. The Pearson correlation coefficient (r) is commonly used 

to measure the linear correlation between two sets of data. Here, we used Pearson’s r to evaluate 

https://en.wikipedia.org/wiki/Linear
https://en.wikipedia.org/wiki/Correlation_and_dependence
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the climate variables from GLDAS 2.1 datasets to the observations from flux tower sites, and it 

could be expressed as: 

𝑟 =
∑(𝑥𝑖−𝑥)(𝑦𝑖−𝑦)

√∑(𝑥𝑖−𝑥)2 ∑(𝑦𝑖−𝑦)2
                                         (Eq. 2.48) 

where 𝑥𝑖 and 𝑦𝑖 denote the 𝑖th data in the two datasets, respectively, 𝑥 and 𝑦 represent the mean 

of the two datasets, respectively. 

The root mean square error & The Bias. The root mean square error (RMSE) and the Bias are 

frequently used to measure the differences between estimated data and observed data. We used 

RMSE and Bias in our research to measure the differences between the climate variables derived 

from GLDAS 2.1 or our estimated LAI and GPP to the flux tower observations. Their equations 

were: 

𝑅𝑀𝑆𝐸 = √
∑(𝑥𝑖−𝑥̂𝑖)2

𝑁
                                            (Eq. 2.49) 

𝐵𝑖𝑎𝑠 =
∑(𝑥̂𝑖−𝑥𝑖)

𝑁
                                                (Eq. 2.50) 

where 𝑥𝑖 and 𝑥̂𝑖 are the 𝑖th observed data and estimated data, respectively, and 𝑁 is the number 

of the samples. And the relative RMSE and the relative Bias were obtained by dividing the 

means of the variables. 

The goodness of fit. The goodness of fit (R2) is an important index that describes how well a 

model fits a set of observations, and measuring the goodness of fit could summarize the 

discrepancy between observed data and model predicted data. In this study, the goodness of fit 

was used to assess the performance of the double logistic fitting to LAI, and was calculated as: 

𝑅2 =
∑(𝑦̂𝑖−𝑦̅)2

∑(𝑦𝑖−𝑦)2
                                          (Eq. 2.51) 
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where 𝑦𝑖 denotes the 𝑖th observation data, 𝑦̂𝑖 represents the 𝑖th data predicted by the double 

logistic function, and 𝑦 is the mean of the observation samples. 

The trends of the variables (climate variables and GPP) in our research were determined by 

linear regression analyses and corresponding F tests were used to test the statistical significance 

of the trends at a 1% significance level.  

2.4. Sensitivity analysis 

We performed a simple sensitivity analysis for global GPP estimated by our model in 2013 by 

using the method provided by Ryu et al. 2011. Six variables including air temperature, solar 

radiation, atmospheric CO2 concentration, vapor pressure deficit (VPD), leaf area index (LAI), 

and 𝑉𝑐𝑚𝑎𝑥25 were selected to examine the sensitivities of our model to these key environmental 

and biophysiological drivers. We changed the values of each variable by ±30% while keeping 

other variables the same, and compared the GPP outputs. 
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3. Investigating the variation of climate variables from GLDAS 2.1 and assessing the 

performance of fitting double logistic functions of LAI 

Key model input data, including GLDAS 2.1-derived reanalysis climate data and satellite-based 

MODIS LAI data, were evaluated and improved to reduce the biases before inputting to the 

process-based ecosystem model. This chapter evaluated five GLDAS 2.1-derived climate 

variables, including air temperature, precipitation, downward shortwave radiation, air pressure, 

and VPD (derived from specific humidity), against the observations from 120 worldwide flux 

tower sites. The temporal and spatial variations of the five climate variables from 2001 to 2020 

were also investigated at global scale. Moreover, remote sensing LAI product (MCD15A3H) was 

reconstructed to obtain a high-quality and continuous time series by fitting double logistic 

functions after eliminating noise and outliers. 

3.1. Evaluating the climate variables from GLDAS 2.1 using flux tower observations 

The air temperature, precipitation, downward shortwave radiation, air pressure, and VPD 

(derived from specific humidity) obtained from GLDAS 2.1 were evaluated by the flux tower 

observations. We integrated the 3-hour GLDAS 2.1 data to daily scale and extracted the 0.25º×

0.25º pixels using the geographic coordinates of the 120 selected flux tower sites, then we 

compared the GLDAS estimates with flux tower observations over daily scale. The selected flux 

towers cover 13 major vegetation types including evergreen needleleaf forest (ENF), evergreen 

broadleaf forest (EBF), deciduous needleleaf forest (DNF), deciduous broadleaf forest (DBF), 

mixed forest (MF), grassland (GRA), cropland (CRO), closed shrubland (CSH), open shrubland 

(OSH), wetland (WET), savanna (SAV), woody savanna (WSA), and snow or ice covered land 

(SNO). Detailed information for the sites is shown in Table A.1.  
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The GLDAS-derived air temperature was highly correlated to the flux tower observations, with 

the Pearson's correlation coefficient larger than 0.85 for all the flux sites (Figure 3.1). The RMSE 

ranged from 0.85°C to 5.30°C with the mean of 2.10°C. And the bias varied from -3.98°C to 

2.07°C with the mean of -0.20°C. 

The GLDAS-derived solar radiation also showed a strong relationship to the flux tower 

observations, with an average r of 0.91 (Figure 3.2). The RMSE varied from 23.31W/m2 to 

75.16W/m2 with the mean of 37.96W/m2. And the bias ranged from -22.92 W/m2 to 18.02 W/m2 

with the mean of -0.66 W/m2. 

For the air pressure, the average of the correlation coefficient between GLDAS-derived data and 

flux tower observations was 0.91, but with relative large variation (Figure 3.3). The RMSE 

varied from 0.04KPa to 3.22KPa with an average of 0.74KPa. And the bias ranged from -2.91 

KPa to 3.20KPa with the mean of -0.01KPa.  

For the VPD, we found good relationships between GLDAS data and flux tower data on the sites 

of all the vegetation types, except NO-Blv where it was mainly covered by snow or ice (Figure 

3.4). The average of Pearson’s r over all the sites was 0.86. The RMSE varies from 0.07KPa to 

0.53KPa with an average of 0.24KPa. And the bias ranged from -0.32KPa to 0.25KPa with the 

mean of -0.04KPa.  

For the precipitation, the GLDAS-derived data showed a poor relationship to the flux tower 

observations for all vegetation types at daily scale, with an average r of 0.44 (Figure 3.5). The 

RMSE varies from 1.81mm to 13.08mm with an average of 5.35mm,and the bias ranges from -

0.86mm to 1.44mm with the mean of 0.43mm. The GLDAS 2.1 data exhibited an overall 

overestimation on precipitaion with 85% sites showing positive bias. 
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Figure 3.1 Comparison of daily air temperature (°C) between the observations from flux towers and the 

data retrieved from GLDAS 2.1. 
 
 

Figure 3.2 Comparison of daily downward shortwave radiation (W/m2) between the observations from 

flux towers and the data retrieved from GLDAS 2.1. 
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Figure 3.3 Comparison of daily air pressure (KPa) between the observations from flux towers and the data 

retrieved from GLDAS 2.1. 

 

 
Figure 3.4 Comparison of daily VPD (KPa) between the observations from flux towers and the data 

retrieved from GLDAS 2.1. 



44 

 

 

 

 

 
Figure 3.5 Comparison of daily precipitation (mm) between the observations from flux towers and the 

data retrieved from GLDAS 2.1. 

Though there exist some variation between the two datasets, the five climate variables derived 

from GLDAS showed strong linear relationship with the flux tower observations at annual scale 

and the relationships were all statistically significant (P<0.01) (Figure 3.6). The R2 was larger 

than 0.93 for all the variables except precipitation (R2 = 0.77). Notably, we found that the 

relative RMSE was high in precipitation (32.63%) and precipitation showed large and positive 

relative bias (22.92%) (Table 3.1), revealing that the GLDAS 2.1 tended to overestimate the 

precipitation with an average bias of 222.22mm. The discrepancy might be caused by the high 

spatial variability of precipitation, which made it difficult to quantify in large scale. Besides the 

annual total precipitation amount, the GLDAS 2.1-derived annual air temperature, solar 

radiation, air pressure, and VPD were able to provide highly correlated results but seemed to be 

slightly underestimated with an average bias of -0.20°C, -0.66W/m2, -0.01KPa, and -0,04KPa, 

respectively.  
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Table 3.1 The RMSE and bias of the five climate variables between GLDAS 2.1 and flux tower sites. 

Variables (Units) 

RMSE Bias 

 
Relative (%) 

 
Relative (%) 

Temperature (°C） 0.94 10.18 -0.20 -2.12 

Radiation (W/m2) 7.79 4.88 -0.66 -0.42 

Pressure (Kpa) 0.97 1.00 -0.01 -0.01 

VPD (Kpa) 0.11 18.66 -0.04 -6.33 

Precipitation (mm) 222.22 32.63 156.12 22.92 

 

 

Figure 3.6 Comparison of annual means of a) air temperature, b) downward shortwave radiation, c) air 

pressure, d) vapor pressure deficit (VPD), and e) precipitation amount between the observations from flux 

towers and the data retrieved from GLDAS 2.1. 



46 

 

 

 

 

Our results indicated that the GLDAS 2.1 data had a good agreement with the in-situ flux tower 

observations on air temperature, solar radiation, air pressure, and VPD at both daily and annual 

scales, while it failed to accurately capture the precipitation amount. The obvious overestimation 

in precipitation data should be carefully considered before using. 

3.2. Characterizing the temporal and spatial variations of climate variables from GLDAS 2.1 

The GLDAS 2.1-derived global annual mean air temperature varied from 12.87°C to 14.37°C, 

with an average of 13.59°C, during the study period from 2001 to 2020. The air temperature 

exhibited a significant warming trend (p < 0.01) with an increase of 11% during this period 

(Figure 3.7a). We also found that the increase rate of the second decade (0.6°C per decade from 

2011 to 2020) doubled the increase rate of the first decade (1.2°C per decade from 2000 to 

2010), indicating a continuous warming in recent decades.  

The global annual downward shortwave radiation, known as solar radiation, ranged from 

185.98W/m2 to 195.06W/m2, with an average of 189.84W/m2 within the 20 years. Interestingly, 

we found a jump in global annual solar radiation after 2010. The mean of the solar radiation after 

2010 was 192.33W/m2, which was 2.66% higher than the mean of the solar radiation before 

2010. Although the global annual solar radiation significantly (p < 0.01) increased 3% during 

2001-2020 (Figure 3.7b), the solar radiation did not show a significant trend (p = 0.23) in the 

first decade while it exhibited a significant dimming trend (p = 0.01) of -0.42W/m2/yr during the 

second decade. Our result was in agreement with the study from Yuan et al. (2021), who found a 

brightening trend since 1982 till 2019. However, the solar radiation in the 2000s did not have too 

much differences compared to that in the 2010s in Yuan et al.’s paper. This discrepancy might be 

from the different data sources of the studies. 
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The global air pressure did not show a significant change (p = 0.47) during the study period from 

2001 to 2020, and it varies from 93.96KPa to 94.06KPa with an average of 94.01KPa (Figure 

3.7c). However, the global annual air pressure exhibited a decreasing trend by 0.05KPa/decade 

in the first decade and then increased by 0.08KPa/decade in the second decade, and both of the 

changes were statistically significant at 5% significance level with p = 0.02 for both. 

The global annual averaged vapor pressure deficit varies from 0.65KPa to 0.96KPa with an 

average of 0.80KPa during the period of 2001-2020. The annual VPD shows significantly 

increasing trend (p < 0.01) in a rate of 0.15KPa/decade from 2001 to 2020, and the increasing 

trend was consistent during the two decades (Figure 3.7d). Our study confirmed the findings in 

Yuan et al. (2019) that the global VPD strongly increased after the late 1990s.  

The global annual precipitation amount varied from 816.92mm to 991.28mm, with an average of 

870.91mm, during the study period from 2001 to 2020. The precipitation showed a significant 

increasing trend (p = 0.013) at 5% significance level during this period, and the trend increased 

by 49.57mm/decade (Figure 3.7e). However, the changes in both of the two decades during our 

study period were not statistically significant. The precipitation was relatively stable in the first 

15 years, and rapidly increased 14% after 2015 followed by a 14% drop in 2020.  
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Figure 3.7 Time series of global annual a) air temperature, b) downward shortwave radiation, c) air 

pressure, d) vapor pressure deficit (VPD), and e) precipitation amount retrieved from GLDAS 2.1 from 

2001 to 2020. The dashed lines indicate the annual trends for the corresponding climate variables. 

 

The five climate variables showed different spatial variations in global scale and their changes 

over the past decades were not homogenous in space. The annual average air temperature ranged 
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from -26.09°C to 34.16°C during 2001 to 2020. The annual temperature showed an apparent 

decreasing gradient from the equator along the latitude with some exceptions at high elevations 

such as the Tibetan plateau in China, the Andes Mountains in the western South America, and 

the North American Cordillera in the western North America (Figure 3.8-a1). During the recent 

two decades, the air temperature showed a significant warming trend in the western North 

America, most regions in South America, Africa, most of Europe, Middle East, the southern 

Asia, and Australia, while only a small area in southern Canada and eastern Brazil exhibited a 

significant cooling trend (Figure 3.8-a2). Interestingly, we found that the most pronounced 

warming trend appeared at the high elevation regions, including Tibetan plateau, Andes 

Mountains, Iranian plateau and Arabian plateau. This finding confirmed the previous studies that 

the rate of global warming was amplified with elevation (Rangwala and Miller 2012, Pepin et al. 

2015, Palazzi et al. 2019), and this elevation-dependent warming still existed in recent decades. 

The annual average solar radiation ranged from 56.30W/m2 to 305.82W/m2 during the study 

period of 2001 to 2020. The gradients in solar radiation also occurred along latitudes, and was 

affected by aerosols and clouds in the atmosphere and the geographic elevations (Figure 3.8-b1). 

Solar radiation significantly increased in the regions near 70°N in latitude, most of Africa, 

northern South America, southern India, and western Australia, while eastern China, some 

regions in Europe, and the middle north of America showed significantly dimming trend during 

the twenty years (Figure 3.8-b2). It was interesting to find that the regions with significantly 

decreasing solar radiation were also the most aerosols affected areas in recent decades (Subba et 

al. 2020), indicating the important role of aerosols in characterizing the global solar radiation 

variations. 
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The global averaged air pressure over 2001 to 2020 varied from 47.61KPa to 102.87KPa. The 

global pattern of air pressure was strongly dependent on the geographic elevation, with 

mountains and plateaus showing lower air pressure and flat terrains and plains showing higher 

air pressure (Figure 3.8-c1). The significant changes in air pressure were scattered distributed in 

the world, and most regions did not show a significant change (Figure 3.8-c2). However, we 

found that the high elevation regions showed relatively distinct significant trends but the trends 

were not uniform within each region. 

During the period of 2001 to 2020, the global averaged vapor pressure deficit ranged from 0 to 

3.64KPa. Figure 3.8-d1 showed the global distribution pattern of VPD, and the VPD was highest 

in the arid areas, such as the Sahara Desert, the Arabian Desert, and the Deserts of Australia. The 

trends of VPD during the two decades showed significant increasing trend in most tropical and 

subtropical regions with up to 0.94KPa per decade increasing rate (Figure 3.8-d2). The regions in 

the Brazilian Highlands in Brazil exhibited significant negative trend. 

The global annual precipitation amount averaged over 2001-2022 varied from 1.47mm to 

8721.65mm. The regions with the most abundant rainfall distributed near the equator, including 

the Amazon Rainforest, the Malay Archipelago, and the Congo Basin in Africa, while the areas 

with least rainfall located at arid desert regions (Figure 3.8-e1). In addition, changes in annual 

total precipitation amount did not have a centralized significant changes spatially (Figure 3.8-e2). 

The significant wetting trend scattered in the western North America, the eastern Asia, the East 

African Plateau, and the Brazilian Highlands, while a significant drying trend occurred in the 

Amazon Rainforest, the Congo Basin in Africa, and the southern South America. 
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Figure 3.8 Spatial distributions of global annual average of a1) air temperature, b1) downward shortwave 

radiation, c1) air pressure, d1) VPD, and e1) precipitation and global annual trends (a2 - e2) during the 

period of 2001-2020. For the global annual trend maps, the colors showed the regions where trends were 
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statistical significant at 5% significant level, while the trends in the regions with white color were not 

significant (p > 0.05). 

 

3.3. Assessing the performance of reconstructing LAI 

3.3.1. Single vegetation cycle 

For the grids with a single valid vegetation cycle, we selected 16 typical regions randomly, 

which covered major climate and vegetation types, and evaluated the performance of LAI 

reconstructing in 2003. The sample sites covers 8 major vegetation types, including evergreen 

broadleaf forest, evergreen needleleaf forest, deciduous broadleaf forest, savanna, woody 

savanna, grassland, cropland, and wetland, and the detailed information of the selected regions 

are shown in Table 3.2. 

Table 3.2 Detailed information of the selected sample sites with single vegetation cycle. 

Site ID Longitude Latitude Vegetation type 

1 131.125 -13.375 Grassland 

2 117.651 40.982 Deciduous broadleaf forest 

3 107.547 14.573 Evergreen broadleaf forest 

4 105.917 39.147 Wetland 

5 105.580 31.444 Cropland 

6 100.958 70.082 Woody savanna 

7 62.092 61.674 Evergreen needleleaf forest 

8 37.471 58.830 Deciduous broadleaf forest 

9 30.522 -18.774 Grassland 

10 22.085 7.836 Evergreen broadleaf forest 

11 6.544 48.858 Deciduous broadleaf forest 

12 -14.821 12.393 Savanna 

13 -44.332 -15.083 Savanna 

14 -69.863 -48.949 Woody savanna 

15 -88.896 39.485 Savanna 

16 -105.537 56.866 Wetland 
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Large variations and fluctuations existed in the original 4-day LAI data in 2003 derived from 

MODIS product, and some obvious outliers could be easily detected (Figure 3.9). It could be a 

problem if these LAI data were directly fed into a process-based ecosystem model which used 

LAI as one of the driving factors, for example the value of LAI could continuously drop and 

increase by about 6 (Figure 3.9, Site 3). There were three major situations of the noise in MODIS 

LAI dataset: 1) LAI was underestimated due to the clouds or aerosols in the atmosphere, 2) LAI 

was overestimated due to the error from the sensors, and 3) LAI highly fluctuated in the typical 

tropical rainforest regions. The method used in this study to eliminate the outliers removed 

approximately 15%-48% of the original data (Table 3.3), and was effective and well-performed 

to all the three situations.  

 

Figure 3.9 The fitted curves (green lines) using double logistic function after removing noise (red dots) of 

the LAI data derived from MODIS (white dots) for the 16 sample sites with single vegetation cycle in 

2003. The values of LAI should be scaled by 0.1. 
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Table 3.3 Performance of fitting double logistic function to the LAI data after removing noise for the 

sample sites with single vegetation cycle. 

Site ID Number of data after/before clean R2 RMSE 

1 74 / 92 0.92 0.084 

2 72 / 92 0.97 0.471 

3 63 / 92 0.48 0.261 

4 55 / 92 0.97 0.088 

5 61 / 92 0.86 0.219 

6 76 / 92 0.9 0.045 

7 51 / 92 0.97 0.253 

8 69 / 92 0.92 0.334 

9 48 / 92 0.9 0.328 

10 56 / 92 0.95 0.280 

11 59 / 92 0.81 0.536 

12 65 / 92 0.92 0.247 

13 61 / 92 0.95 0.216 

14 60 / 92 0.77 0.056 

15 58 / 92 0.98 0.087 

16 78 / 92 0.91 0.112 

 

After eliminating the detected noise and outliers, a double logistic function was fitted to the clean 

data annually. We found that the fitted curves well characterized the variations and patterns of 

the annual LAI, reasonably caught the timing of vegetation phenology between growing season 

and non-growing season, and retained the duration of the peak within the growing season (Figure 

3.9). And the fitting was well performed on both southern hemisphere (site 1, 9, 13, and 14) and 

northern hemisphere (the rest sites). The goodness of fit R2 of the fitted curves among the 16 

sample sites ranged from 0.48 to 0.98 with an average of 0.89 and the RMSE of the fitting 

ranged from 0.045 to 0.536 with an average of 0.226, indicating a good performance of the 

double logistic function fitted to the data (Table 3.3). Specifically, the R2 for the tropical 
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rainforest region was relative lower due to the steady LAI through the year. For example, the 

lowest R2 of 0.48 was from site 3, which was dominated by tropical evergreen broadleaf forest 

and had a stable LAI through the whole year. In addition, many noise existed in site 3 and most 

of them underestimated the LAI presumably due to cloud contamination. Our approach could 

accurately detect the noise and derive a steady LAI line after fitting. 

3.3.2. Double vegetation cycles 

For the grids with two valid vegetation cycles, we selected 8 typical region with different climate 

and vegetation conditions to evaluate the reconstructing process of LAI in 2003. The sample 

sites cover 3 major vegetation types, including savanna, grassland, and cropland, and the detailed 

information of the selected sample sites were shown in Table 3.4. 

Table 3.4 Detailed information of the selected sample sites with double vegetation cycles. 

Site ID Longitude Latitude Vegetation type 

1 115.370 35.030 Cropland 

2 115.124 33.030 Cropland 

3 83.916 25.362 Cropland 

4 44.623 2.914 Cropland 

5 -56.354 -21.720 Cropland 

6 -57.262 -20.842 Savanna 

7 -59.296 -36.879 Grassland 

8 -59.468 -36.623 Grassland 

 

Variations and fluctuations also existed in the original 4-day LAI for the grids with double 

vegetation cycles in 2003 (Figure 3.10). Compared to the noise commonly occurred in the grids 

with single vegetation cycle, highly fluctuated LAI and overestimated LAI were less remarkable, 

although underestimation of LAI was still prevalent, especially in growing seasons. The method 

used in this study to eliminate the noise removed approximately 4%-27% of the original data 
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(Table 3.5), and was effective and well-performed to both growing season and non-growing 

season. 

 

Figure 3.10 The fitted curves (green lines) using double logistic function after removing noise (red dots) 

of the LAI data derived from MODIS (white dots) for the 8 sample sites with double vegetation cycles in 

2003. The values of LAI should be scaled by 0.1. 
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According to Figure 3.10, the fitted curves of LAI could well characterize the patterns of the 

double vegetation seasons during a year and reasonably catch the timing of the phenology within 

and between the two vegetation seasons, and the fitting was well performed on both southern 

hemisphere and northern hemisphere. The goodness of fit R2 of the fitted curves among the 8 

sample sites ranged from 0.85 to 0.96 with an average of 0.90 and the RMSE of the fitting 

ranged from 0.141 to 0.484 with an average of 0.232, representing a good performance of the 

model fitting (Table 3.5). Notably, the fitting performance on the sites with two distinct 

vegetation seasons (e.g., site 1 and site 3) was relatively better than that on the regions with small 

LAI variations (e.g., site 5 and site 6) through the year. 

Table 3.5 Performance of fitting double logistic function to the LAI data after removing noise for the 

sample sites with double vegetation cycles. 

Site ID Number of data after/before clean R2 RMSE 

1 67 / 92 0.92 0.141 

2 77 / 92 0.90 0.166 

3 88 / 92 0.96 0.261 

4 75 / 92 0.87 0.136 

5 81 / 92 0.89 0.216 

6 82 / 92 0.85 0.484 

7 86 / 92 0.87 0.161 

8 82 / 92 0.92 0.292 

 

3.3.3. Performance of fitting in global scale  

At the global scale, the fitting performance of the LAI data in 2003 was better in boreal, 

temperate, and part of the tropical regions with R2 larger than 0.8, and the R2 was relatively low 

in most of the tropical region with R2 less than 0.5 (Figure 3.11). According to the fitting results 

from the sample sites, although the relatively stable LAI in the tropical region caused the lower 
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R2, the fitted curves could reasonably caught the patterns of the LAI (Figure 3.9, site 3). 

Regarding the vegetation types, the performance was good in most of the vegetation types except 

evergreen broadleaf forest, such as tropical evergreen broadleaf forest and southeast Asian 

monsoon rainforest, due to the difficulty of detecting noise and the relatively steady LAI. In 

general, the method used in this study to reconstruct continuously LAI data, including detecting 

and removing noise and outliers and fitting double logistic function, performs well globally. 

 

Figure 3.11 Performance of fitting double logistic function of LAI in global scale in 2003. 
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4. Integrating an improved two-stream canopy radiative transfer model 

The performance of simulating canopy radiation absorption and GPP was improved by 

improving the radiative transfer model with the consideration of radiation partitioning, multiple 

scattering, and differentiating of sunlit and shaded leaves for photosynthesis. This chapter 

focused on improving the accuracy of modeling the radiation absorbed by the vegetation canopy 

and further increasing the performance of terrestrial GPP simulation by integrating a recently 

developed two stream radiative transfer model that considers multiple scattering in a finite 

canopy to a two-leaf model. In addition, an empirical radiation partitioning approach was 

evaluated against 258 site-years from 36 flux tower sites 

4.1. Evaluation of radiation partitioning 

We first examined the method of partitioning total downward shortwave radiation into direct and 

diffuse radiation used in our study. Since most flux tower stations lack the records of diffuse 

radiation, therefore observations of 258 site-years from 36 flux tower sites that provides either 

diffuse incoming shortwave radiation or diffuse incoming photosynthetic photo flux density 

information were selected to evaluate the partitioning of radiation. The selected flux towers 

cover 8 major vegetation types including cropland (CRO), deciduous broadleaf forest (DBF), 

evergreen broadleaf forest (EBF), evergreen needleleaf forest (ENF), grassland (GRA), mixed 

forest (MF), open shrublands (OSH), and savanna (SAV), and the information of the flux towers 

used in this study is shown in Table A.2.  

Overall, we found that the modeled diffuse radiation values were in general agreement with the 

observed diffuse radiation for different vegetation types among the 36 flux tower sites (Figure 

4.1). The Pearson’s correlation coefficient was larger than 0.75 for all the sites, with an average 
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of 0.87, indicating that the partitioning method used in this study could considerably catch the 

patterns of direct and diffuse radiation partitioned from total solar radiation. The RMSE varied 

from 22.89 W/m2 to 54.41 W/m2, with the mean of 37.01 W/m2. The bias ranged from -26.74 

W/m2 to -1.24 W/m2 with the mean of -12.60 W/m2. Although the negative biases between our 

estimated data and observations exhibited a tendency to underestimate the diffuse radiation, the 

effects were generally small and acceptable. Therefore, the radiation partitioning method used in 

this study could help to derive the two radiation components: direct and diffuse when only the 

information of total solar radiation was available. 

 

Figure 4.1 Comparison of the observed and modeled diffuse radiation (W/m2) among the 36 flux tower 

sites. 
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4.2. Comparisons of the two stream approach against Beer’s law model on radiation absorption 

by canopy 

Beer’s law model has been used in many studies to estimate the amount of radiation that 

vegetation absorbed and various ecosystem models to further quantify vegetation photosynthesis 

(Wang 2003, Thornton 2010). However, the simple exponential function of Beer’s law that does 

not take scattering effect into account and does not consider direct and diffuse radiation 

separately might bring large uncertainties when estimating how many solar radiation vegetation 

canopy can absorb. Figure 4.2 compares the absorbed fraction of solar radiation estimated by 

Beer’s law and the two stream approach used in our study for vegetation canopy with LAI 

ranging from 0.1 to 8 and diffuse radiation fraction of 0, 0.2, 0.5, 0.8, and 1 under 30° solar 

zenith angle. It is shown that the absorption fraction simulated by the two stream approach used 

in our study decreased with the increased diffuse fraction, and the radiation transfer model based 

on Beer’s law had the highest estimates compared to the two stream radiation transfer model 

(Figure 4.2). Since the Beer’s law model did not consider direct and diffuse radiation separately, 

the curve for absorbed fraction of solar radiation was kept the same under different diffuse 

radiation fraction levels. The discrepancy in absorption fraction between the two models became 

larger when the proportion of diffuse radiation increased, and the differences reached up to 73% 

in an overcast day (𝑓𝑏 = 1). This was in agreement with previous studies that Beer’s law 

overestimated the absorbed radiation due to a lack of considering scattering (Wang 2003, Saitoh 

et al. 2012).  
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Figure 4.2 Comparison of the absorbed fraction of solar radiation estimated by Beer’s law (solid line) and 

two stream approach (shaped lines) for vegetation canopy with leaf area index ranging from 0.1 to 8 and 

diffuse radiation fraction (fb) of 0 (diamond), 0.2 (star), 0.5(triangle), 0.8(square), and 1(circle), 

respectively. The solar zenith angle (SZA) was set to 30°. 

 

4.3. Improvements of our integrated RTM on estimating GPP 

Many previous studies indicated that the sunlit leaves and shaded leaves were different in 

physiological and biochemical processes due to their different exposure levels to sunlight (de 

Pury and Farquhar 1997, Zhang et al. 2012, Guan et al. 2022). Sunlit leaves, which receive both 

direct and diffuse solar radiation, tend to be light saturated for photosynthesis, while the 

photosynthesis of shaded leaves that absorb the diffuse radiation only is usually limited by the 

amount of radiation absorbed by leaves. Hence, the big leaf model that does not differentiate 

sunlit and shaded leaves might induce large biases in estimating canopy radiation absorption and 

GPP. To accurately estimate the radiation absorbed and the carbon assimilated by the vegetation 

canopy, we further coupled the two stream radiative transfer model to a two leaf model instead 
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of the big leaf model used in the study of Mahat and Tarboton (2012) and sum the 

photosynthesis from sunlit and shaded leaves to estimate GPP.  

We compared the simulated GPP derived using the Beer’s law model (BL), two stream approach 

with the big-leaf model (TS-BL), and our integrated radiative transfer model (two stream 

approach with two-leaf model (TS-TL)) with the GPP measurements obtained from six flux 

tower sites. The selected flux tower sites represented the six most extensive vegetation types in 

the world, including deciduous broadleaf forest (DBF), evergreen broadleaf forest (EBF), 

evergreen needleleaf forest (ENF), shrublands (SHB), savanna (SAV), and grassland (GRA), and 

the information of these flux towers is shown in Table 4.1. The three different radiative transfer 

models were carried out at a half-hour scale, together with the photosynthesis model by Farquhar 

et al. (1980), and then we obtained the daily carbon assimilation and compared with the flux 

tower observations.  

Table 4.1 Detailed information of the flux tower sites used to evaluate the radiative transfer model. 

Site ID Vegetation type Latitude Longitude Time Period 

US-Wcr DBF 35.030 115.370 2013-2014 

FR-PUE EBF 33.030 115.124 2007-2008 

CA-Obs ENF 25.362 83.916 2003-2004 

CA-NS6 SHB 2.914 44.623 2003-2004 

SN-Dhr SAV -21.720 -56.354 2012-2013 

CN-Dan GRA -36.623 -59.468 2004-2005 

 

It is shown in Figure 4.3 that the simulated GPP derived by the three different radiative transfer 

models (RTM) could generally catch the seasonal and annual patterns during the two years for 

all the vegetation types though with different variations (Figure 4.3 a1-f1). However, the TS-TL 

model exhibited most consistent relationships with the flux tower measurements on estimating 

GPP, followed by the TS-BL model and the BL model, and the corresponding relationships of 
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TS-TL model were more close to the 1:1 line (Figure 4.3 a2-f2). The RMSE and Bias between 

the simulated GPP and GPP measurements from flux towers were highest in BL model, and then 

TS-BL model and TS-TL model for all sites (Table 4.2). The TS-TL model reduced the RMSE 

and Bias by up to 72% and 81% based on the BL model, and up to 63% and 75% based on the 

TS-BL model, respectively. The improvements of the TS-TL model were also reflected in the 

increase in R2 for all the flux tower sites, and the average R2 for the TS-TL model was 0.76. In 

addition, the superior performance of TS-TL model compared to the other two models was more 

prominent at the sites covered by forests or shrublands and had relatively larger mean GPP, 

which might be caused by considering multiple scattering and differentiating sunlit and shaded 

leaves for photosynthesis in dense canopy. In general, our integrated RTM that used TS-TL 

could distinctly improve GPP estimating compared to that used the TS-BL model and the BL 

model, especially in the growth seasons. 

Table 4.2 The RMSE (gC/m2/day), Bias (gC/m2/day), and R2 between the GPP derived using Beer’s law 

(BL), two-stream approach with big-leaf model (TS-BL), and two-stream approach with two-leaf model 

(TS-TL) and the GPP measurements from flux tower sites. 

Site 

Beer's law Two stream-BL Two stream-TL 

RMSE Bias R2 RMSE Bias R2 RMSE Bias R2 

US-Wcr 11.76 5.54 0.73 9.02 4.24 0.75 3.3 1.08 0.8 

FR-PUE 6.72 4.93 0.38 5.42 3.88 0.39 2.93 1.6 0.46 

CA-Obs 1.77 0.41 0.68 1.44 0.08 0.7 1.26 -0.06 0.73 

CA-NS6 2.18 0.98 0.86 1.69 0.74 0.87 0.82 0.26 0.89 

SN-Dhr 1.95 -0.99 0.73 1.89 -0.98 0.74 1.6 -0.57 0.77 

CN-Dan 0.42 0.12 0.86 0.39 0.09 0.87 0.32 0.09 0.9 
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Figure 4.3 Comparisons of the modeled GPP derived by Beer’s law (orange), two stream approach with big-leaf model (green), and two stream 

approach with two-leaf model (red) and the GPP obtained from flux tower observations (black) for sites US-Wcr (a1, a2), FR-PUE (b1, b2), CA-

Obs (c1, c2), CA-NS6 (d1, d2), SN-Dhr (e1, e2), and CN-Dan (f1, f2). The vegetation types for US-Wcr, FR-PUE, CA-Obs, CA-NS6, SN-Dhr, 

and CN-Dan are DBF, EBF, ENF, SHB, SAV, and GRA, respectively. The black lines in a2-f2 are the 1:1 lines. 
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We further investigated the performance of our integrated RTM that used the TS-TL model in 

improving GPP estimations for different LAI levels. The daily GPP differences between the 

simulated results for the three different RTMs and the flux tower observations among the six flux 

towers during the two years were classified into 7 LAI groups based on LAI values. The 

boxplots in Figure 4.4 showed that the improvements in GPP estimations by using our integrated 

TS-TL model compared to using the other two models were more significant in larger LAI 

groups that represented dense vegetation canopy coverage, while the three RTMs performed 

similarly well in simulating GPP at sparse vegetation coverage or non-growing seasons where 

the values of LAI were small. The GPP differences displayed by the TS-BL model were smaller 

than that simulated by BL model with LAI ranging from 2.1 to 6, but they were almost the same 

when LAI became larger. Multiple scattering could increase the radiation transmitted out the 

canopy, and thus reduce the absorbed radiation by the vegetation canopy (Nijssen and 

Lettenmaier 1999, Zhao and Qualls 2005). However, when the canopy became too thick, the 

radiation that penetrated below the canopy approached zero even considering multiple scattering, 

which might explain the ineffectiveness of the TS-BL model at excessively thick vegetation 

canopy. Nevertheless, differentiating sunlit and shaded leaves lessened the biases when 

estimating canopy photosynthesis due to the non-linear effects of absorbed radiation on the 

partitioning of available energy and photosynthesis, which was confirmed by previous studies 

(Wang and Leuning 1998, Dai et al. 2004). The considerable improvements at larger LAI values 

by using the TS-TL model indicated that with the considering of multiple scattering or 

differentiating sunlit and shaded leaves largely reduced the biases in modeling the light profiles 

and estimating total photosynthesis by vegetation. Therefore, our integrated RTM (TS-TL 
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model) exhibited relatively robust and consistent performance in accurately simulating carbon 

assimilation for different LAI levels.  

 

Figure 4.4 Boxplots of GPP differences between the simulated GPP derived by Beer’s law (red), two 

stream approach with big-leaf model (blue), and two stream approach with two-leaf model (black) and the 

GPP measurements from flux tower sites. 
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5. Mapping global terrestrial gross primary productivity from local sites to global values 

using an improved process-based ecosystem model on Google Earth Engine Platform 

during 2001-2020 

An improved process-based ecosystem model driven by satellite-based LAI data and reanalysis 

climate data was developed to achieve the terrestrial GPP estimation at global scale using high 

performance computing during the past two decades. In this chapter, a comprehensive process-

based model that coupled the improved two stream radiation transfer model was developed on 

the Google Earth Engine platform, and the simulated GPP was evaluated against 167 flux tower 

sites. The spatial and temporal patterns and trends in global terrestrial GPP during 2001-2020 

were examined for different vegetation types, and the comparisons of global GPP estimates from 

recent studies and products were discussed. In addition, the sensitivities of our model to 

environmental and biological drivers were also investigated in this chapter. 

5.1. Comparison against flux tower sites 

Our modeled gross primary productivity results were evaluated against eddy covariance flux 

towers from the FLUXNET2015 Dataset. After a rigorous data quality check, we removed the 

flux towers with inconsistent time series and too many missing or poor quality values, and 167 

flux tower sites across the globe were finally selected in our study. The selected flux towers 

cover 12 major vegetation types, including evergreen needleleaf forests (ENF), evergreen 

broadleaf forests (EBF), deciduous needleleaf forests (DNF), deciduous broadleaf forests (DBF), 

mixed forests (MF), closed shrublands (CSH), open shrublands (OSH), woody savannas (WSA), 

savannas (SAV), grasslands (GRA), wetlands (WET), and cropland (CRO), and the information 

of the flux tower sites used in this study was shown in Table A.3. For each site, the half-hourly 

air temperature, incoming shortwave radiation, atmospheric pressure, and VPD were used to 
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drive our integrated process-based model, and the half-hourly GPP data was used to evaluate our 

model output. The validation was carried out at both half-hour and annual scales: 1) firstly we 

directly compared the half-hourly GPP estimates for all sites and then 2) we calculated the 

annual average GPP from both flux tower observations and model outputs for evaluating at 

annual scale. 

According to Figure 5.1, our integrated process-based model performed well in reproducing 

temporal variations in GPP at most flux tower sites, and our modeled GPP estimates were highly 

correlated to the flux tower observations at a half-hourly scale. The Pearson's correlation 

coefficient between our modeled GPP and flux tower observations varied from 0.39 at the GH-

Ank site to 0.94 at the RU-Ha1 site, and the mean correlation coefficient was 0.77 over all flux 

tower sites. The relative lower correlation coefficients (r < 0.5) were found at tropical forests 

(e.g., GH-Ank with r = 0.39) or sparse vegetation areas (e.g., ES-LJu site with r = 0.48, CN-Du3 

site with r = 0.49). The averaged RMSE across all the sites was 3.54 gC/m2/day, ranging from 

0.75 gC/m2/day to 9.51 gC/m2/day. And the bias varied from -2.05 gC/m2/day to 4.62 gC/m2/day 

with the mean of 0.79 gC/m2/day. In general, the high correlation and low RMSE and bias 

indicated an overall high accuracy of our integrated process-based model in simulating GPP at 

half-hourly scale.  
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Figure 5.1 Comparison of our model-simulated GPP against 167 flux tower-based GPP. 

 

For individual vegetation types, our model-simulated GPP was highly correlated to the flux 

tower-based GPP for the 12 vegetation types, with all the average correlation coefficients larger 

than 0.71 (Figure 5.2). The correlation coefficient was highest in DBF (r = 0.82), while it was 

lowest in OSH (r = 0.71). The values of RMSE and bias were both highest in EBF with 5.02 

gC/m2/day and 2.85 gC/m2/day respectively, where the forests were mainly distributed in tropical 

regions. The complex canopy structures might bring uncertainties to GPP estimating (Zhang et 

al. 2019), therefore considering the canopy structures such as distributions of leaf angle and 

clumping factors in the process-based model is suggested to improve the estimation of tropical 

forest carbon cycling in the future. Although positive biases were found in all the vegetation 

types except ENF, indicating that our integrated process-based model has slightly overestimated 



71 

 

 

 

GPP, the small values of bias were acceptable to us. In general, our model could produce reliable 

estimations of GPP in most vegetation types. 

 

Figure 5.2 Correlation coefficient, RMSE (gC/m2/day), and bias (gC/m2/day) between our model-

simulated and flux tower-based GPP for different vegetation types. 

 

We also evaluated our model-simulated GPP against the observations from 167 flux tower sites 

at an annual scale (Figure 5.3). The annual mean GPP derived from our integrated process-based 

model showed a strong significant linear relation (p < 0.01) with the flux tower data, and it 

explained 72% of the spatial variations in GPP across all the validation sites. The small values of 

relative RMSE and bias between our model-simulated and flux tower-based annual mean GPP, 

with 28% and 1% respectively, indicating that our integrated process-based model performed 

well in estimating GPP at annual scale with a slightly overestimation. 
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Figure 5.3 Comparison of our model-simulated annual mean GPP and flux tower-based annual GPP. The 

black line is the regression line, and the red line is the 1:1 line. Unit: gC/m2/day. 

 

5.2. Temporal and spatial variations in global terrestrial GPP 

Global terrestrial GPP at 0.25° spatial resolution and 3-hourly temporal resolution was simulated 

using our integrated process-based model from 2001 to 2020 driven by reconstructed LAI data 

from MODIS MCD15A3H and climate data from GLDAS 2.1. The annual global terrestrial GPP 

ranged from 118 PgC to 134 PgC, with an average of 128 PgC, during the study period from 

2001 to 2020 (Figure 5.4). And it showed a significant increasing trend (p < 0.01) during the two 

decades, with an average rate of increase of 0.71 PgC/yr globally. We found that the mean of the 

annual GPP after 2010 is 132 PgC/yr, which is 6% higher than the mean of the annual GPP 

before 2010 (124 PgC/yr). Interestingly, an elevation after 2010 was also found in solar radiation 
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(Figure 3.7), which acted as major energy input for vegetation photosynthesis, and the higher 

solar radiation after 2010 might be responsible for the higher annual GPP.  

 

Figure 5.4 Time series of global annual GPP from our study and from a set of previous estimates. The 

right table shows the corresponding linear regressions. 

 

Annual GPP also varied in different vegetation types from 2001 to 2020 (Table 5.1), and the 

annual average GPP from largest to lowest were 2.61 KgC/m2/yr in EBF, 1.29 KgC/m2/yr in 

DBF, 1.07 KgC/m2/yr in WSA, 1.02 KgC/m2/yr in MF, 0.99 KgC/m2/yr in CRO, 0.91 

KgC/m2/yr in SAV, 0.77 KgC/m2/yr in DNF, 0.77 KgC/m2/yr in ENF, 0.67 KgC/m2/yr in WET, 

0.44 KgC/m2/yr in GRA, 0.38 KgC/m2/yr in CSH, and 0.20 KgC/m2/yr in OSH. In addition, the 

significant increasing trend (p < 0.01) in annual GPP was found in all the vegetation types except 

in EBF (p = 0.05), and the percentages of increase were 24.53% in ENF, 2.36% in DNF, 25.62% 

in DBF, 12.29% in MF, 19.14% in CSH, 12.47% in OSH, 42.19% in WSA, 13.60% in SAV, 

14.04% in GRA, 17.97%, 14.84% in WET, and 18.18% in CRO. 

 

 



74 

 

 

 

Table 5.1 Annual GPP (KgC/m2/yr) among different vegetation types during 2001-2020. (ENF: evergreen 

needleleaf forests, EBF: evergreen broadleaf forests, DNF: deciduous needleleaf forests, DBF: deciduous 

broadleaf forests, MF: mixed forests, CSH: closed shrublands, OSH: open shrublands, WSA: woody 

savannas, SAV: savannas, GRA: grasslands, WET: wetlands, CRO: croplands). 

Year ENF EBF DNF DBF MF CSH OSH WSA SAV GRA WET CRO Global 

2001 0.66 2.55 0.71 1.23 0.94 0.35 0.16 0.99 0.84 0.39 0.61 0.91 0.89 

2002 0.67 2.51 0.74 1.21 0.93 0.34 0.17 0.99 0.84 0.40 0.60 0.89 0.88 

2003 0.74 2.62 0.70 1.23 0.99 0.36 0.18 1.04 0.88 0.42 0.68 0.93 0.93 

2004 0.73 2.66 0.68 1.26 0.97 0.38 0.18 1.03 0.88 0.43 0.64 0.97 0.94 

2005 0.75 2.56 0.73 1.23 0.99 0.35 0.18 1.03 0.87 0.42 0.67 0.94 0.92 

2006 0.75 2.59 0.71 1.25 0.96 0.38 0.18 1.04 0.88 0.42 0.67 0.93 0.93 

2007 0.72 2.59 0.72 1.25 0.98 0.35 0.19 1.02 0.89 0.43 0.65 0.95 0.93 

2008 0.70 2.65 0.73 1.26 0.95 0.38 0.18 1.02 0.89 0.42 0.64 0.96 0.93 

2009 0.72 2.63 0.73 1.25 0.96 0.39 0.18 1.02 0.88 0.42 0.63 0.93 0.93 

2010 0.74 2.61 0.74 1.27 1.00 0.40 0.20 1.04 0.89 0.44 0.65 0.96 0.94 

2011 0.79 2.64 0.85 1.32 1.07 0.42 0.21 1.09 0.93 0.45 0.69 1.03 0.97 

2012 0.80 2.65 0.83 1.35 1.07 0.40 0.22 1.10 0.93 0.45 0.71 1.01 0.97 

2013 0.83 2.65 0.81 1.31 1.06 0.40 0.21 1.10 0.93 0.45 0.69 1.02 0.97 

2014 0.82 2.64 0.83 1.33 1.07 0.40 0.21 1.10 0.94 0.45 0.68 1.04 0.98 

2015 0.84 2.65 0.83 1.35 1.09 0.38 0.21 1.11 0.94 0.45 0.70 1.03 0.98 

2016 0.87 2.57 0.82 1.34 1.13 0.40 0.23 1.12 0.95 0.47 0.75 1.06 0.98 

2017 0.81 2.57 0.81 1.34 1.04 0.40 0.22 1.09 0.93 0.46 0.69 1.03 0.96 

2018 0.85 2.65 0.85 1.36 1.10 0.38 0.22 1.13 0.96 0.46 0.70 1.04 0.99 

2019 0.81 2.62 0.85 1.34 1.07 0.37 0.23 1.12 0.96 0.47 0.70 1.05 0.99 

2020 0.82 2.65 0.86 1.34 1.11 0.40 0.23 1.12 0.96 0.48 0.73 1.07 1.00 

Mean 0.77 2.61 0.77 1.29 1.02 0.38 0.20 1.07 0.91 0.44 0.67 0.99 0.95 

 

The spatial patterns of annual mean GPP simulated by our integrated process-based model 

during 2001 to 2020 was shown in Figure 5.5a. The highest annual GPP occurred mainly in the 

tropical regions, especially in the evergreen broadleaf forests in Amazon and Southeast Asia, 

while the lowest GPP was mostly distributed in cold or arid areas. During the period of 2001-

2020, approximately 83.8% of global terrestrial production showed an increasing trend in annual 
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GPP, where more than half of these regions were statistically significant at a 95% confidence 

level, and these significant increasing trends were mainly distributed in temperate regions and 

high elevation regions (Figure 5.5b). Only 3.2% of the global terrestrial production showed 

significantly decreasing trends in annual GPP, which were scattered and located in the tropical 

rainforests such as Congo Basin and the Amazon rainforests. These spatial patterns in annual 

mean GPP and its trends with extended updates of GPP estimates to 2020 were consistent with 

previous studies (Zhang et al. 2017, Zheng et al. 2020). 
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Figure 5.5 Spatial distributions of global a) annual mean GPP and b) significant trend (p < 0.05) of GPP 

during the period of 2001-2020. (Unit: gC/m2/yr) 
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5.3. Global estimates of terrestrial GPP 

Despite the existence of many different methods and models to quantify global terrestrial GPP, it 

is still subject to uncertainty caused by different sources of input data, settings of parameters, and 

model structures. The global estimates of terrestrial GPP in the recent two decades are reported 

varying between 105 PgC/yr and 140 PgC/yr (Zhao and Running 2010, Jiang and Ryu 2016, 

Zhang et al. 2017, Zheng et al. 2020, Bi et al. 2022) using different simulation methods (Figure 

5.4). The GPP simulations of MODIS (MOD17A2H), VPM, TL-LUE, and EC-LUE model are 

all based on light use efficiency model, and the averaged estimates in GPP are 112 PgC/yr 

(2001-2020), 125PgC/yr (2001-2015), 127 PgC/yr (2001-2020), and 107 PgC (2001-2017), 

respectively. Averaged global annual GPP estimated by BESS, a process-based model, is 123 

PgC/yr from 2001 to 2016. We quantified the averaged global annual GPP from 2001 to 2020 as 

128 PgC/yr, which is comparable to the previous estimates. In addition, our simulated GPP 

showed a significantly increasing trend, and the increase is consistent with most other GPP 

estimations excepting EC-LUE who showed a significant declining trend. However, the increase 

rate of 0.71 PgC/yr from our study is a little larger than others due to the higher GPP after 2010. 

We also compared our model simulation with MODIS (MOD17A2H) in annual terrestrial GPP 

averaged over the period of 2001-2020 spatially (Figure 5.6). In general, our model showed 

higher annual GPP estimates in forests, especially in the tropical rainforest regions that are 

mostly dominated by evergreen broadleaf forest. This might be caused by the different model 

structure used to simulate GPP. The MODIS GPP was estimated based on light use efficiency 

model, while our integrated process-based model considered a complex two leaf canopy 

radiative transfer model which could more accurately quantify how much radiation plants absorb 

for photosynthesis use especially for the vegetation areas with large LAI. Meanwhile, our 
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simulated GPP was lower in savanna and open shrublands, where the vegetation coverage is 

relatively low. However, our results for the average annual GPP in forests was more consistent 

with the BESS result (Jiang and Ryu 2016), which might confirms the advantages of using 

process-based model with modelling the underlying mechanisms within canopy in mapping GPP. 

 

Figure 5.6 Difference map of annual mean GPP between our study and MOD17 for the period of 2001-

2020. (Unit: gC/m2/yr) 

 

5.4. Sensitivity analysis on estimated GPP 

We performed a simple sensitivity analysis for the global GPP outputs from our model in 2013, 

and six key environmental and biophysiological variables, including air temperature,  solar 

radiation, atmospheric CO2 concentration, vapor pressure deficit (VPD), leaf area index (LAI), 

and 𝑉𝑐𝑚𝑎𝑥25, were selected to examine the sensitivities of our model to these drivers. According 

to the result, GPP derived from our model were more sensitive to biophysiological variables 

compared to the environmental variables (Figure 5.7). GPP was most sensitive to 𝑉𝑐𝑚𝑎𝑥25, and 

then LAI, atmospheric CO2 concentration, solar radiation, air temperature, and VPD. A 30% 
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change in 𝑉𝑐𝑚𝑎𝑥25, LAI, CO2 concentration, solar radiation, air temperature, and VPD led to 

approximately 21.18%, 21.57%, 18.98%, 14.32%, 10.12%, and 2.69% change in GPP, 

respectively. 

 

Figure 5.7 Sensitivity analysis of our model. Each of the six variables (LAI: leaf area index, CO2: 

atmospheric CO2 concentration, Rad: downward shortwave radiation, Temp: air temperature, Vcmax
25 : 

maximum rate of carboxylation at 25 degree C, and VPD: vapor pressure deficit) was changed ±30% with 

keeping everything else the same, and the GPP (gC/m2/yr) results were compared. 

 

For process-based ecosystem models, biophysiological variables, as essential model parameter 

inputs, directly influence the estimation of carbon fluxes. Variation in biophysiological factors 

could lead to large uncertainties in quantifying terrestrial carbon cycle (Zaehle 

et al. 2005, Kala et al. 2014, Rogers 2014, Walker et al. 2017, Liu et al., 2018, Xie et al. 2019). 

Our results showed that our model derived GPP was most sensitive to biophysiological 

parameters 𝑉𝑐𝑚𝑎𝑥25 and LAI, which was in agreement with the findings reported by Ryu et al. 

(2011) that BESS-derived GPP was most sensitive to LAI and 𝑉𝑐𝑚𝑎𝑥25 with about 25% and 15% 

changes in GPP when LAI and 𝑉𝑐𝑚𝑎𝑥25 changed 30% in 2003. Also, Bonan et al. 2011 found 

that model uncertainty over 𝑉𝑐𝑚𝑎𝑥 has been shown to account for about 30 PgC/yr variation in 
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estimation of GPP. However, accurate biophysiological parameters are difficult to obtain, 

especially in large scale, due to the specificity of different vegetation types and even different 

plant species, which might cause a large discrepancy on estimating global carbon cycle (Roger et 

al. 2017). Hence, obtaining accurate biophysiological parameters at a large scale is challenging 

but necessary and crucial to improve the accuracy of modeling the ecosystem carbon cycle in the 

future.  
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6. Summary 

6.1. Summary 

This dissertation provides insights with respect to achieving an improved global terrestrial GPP 

simulation based on an integrated process-based model on the Google Earth Engine cloud 

platform during 2001-2020 through increasing the performance of the radiation transfer model 

and reconstructing remote sensing LAI products, which is critical to better understanding of 

global carbon cycle in terrestrial ecosystems. The main findings of this study are presented 

below in this chapter. 

In chapter 3, five primary climate variables, including air temperature, precipitation, downward 

shortwave radiation, air pressure, and VPD (derived from specific humidity), obtained from 

GLDAS 2.1 were evaluated against the observations from 167 worldwide flux tower sites that 

cover 13 major vegetation types at both daily and annual scales. All of the GLDAS-derived 

climate variables showed strong correlations compared to the flux tower observations at daily 

scale with the average Pearson's correlation coefficients of 0.97, 0.91, 0.91, and 0.86 for 

temperature, solar radiation, air pressure, and VPD, respectively, except precipitation whose 

average correlation coefficient was 0.44. The GLDAS 2.1 precipitation data exhibited an overall 

overestimation with 85% sites showing positive bias, while other four variables showed small 

negative average biases. Annually, though significant linear relationships were found for all of 

the five climate variables, the large relative RMSE and relative bias in precipitation revealed that 

the GLDAS 2.1 tended to overestimate the precipitation with an average bias of 222.22 mm. 

Overall, the GLDAS 2.1 performed reliable estimations in air temperature, downward shortwave 

radiation, air pressure, and VPD globally, besides a large overestimation in precipitation data. In 

addition, the temporal and spatial patterns of these variables were examined during the period of 
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2001-2020. The global air temperature, solar radiation, VPD, and precipitation showed a 

significantly increasing trend with rates of 0.7°C/decade, 3.1W/m2/decade, 0.15KPa/decade, and 

49.6mm/decade, respectively, while air pressure did not show any significant changes from 2001 

to 2020. The five climate variables showed different spatial variations globally and their changes 

over the past decades were not homogenous in space. During the recent two decades, the air 

temperature and VPD showed significant warming trend in most tropical and subtropical regions, 

and the most pronounced warming and drying trend appeared at the high elevation regions. Solar 

radiation significantly increased in the regions near 70°N in latitude, most Africa, the northern 

South America, the southern India, and the western Australia, while eastern China, some regions 

in Europe and the middle north of America showed a significantly dimming trend during the 

twenty years. It was interesting to find that the regions with significantly decreasing solar 

radiation were also where aerosols most affected areas in recent decades, indicating the 

important role of aerosols in characterizing the global solar radiation variation. The significant 

trends in air pressure and precipitation were irregularly distributed in space, and most regions did 

not show a significant change in these two variables. Besides evaluating the climate variables 

derived from GLDAS 2.1, we also assessed the performance of reconstructing the MODIS LAI 

product in 24 typical regions, which covered major climate and vegetation types, and also the 

global scale. The results showed that most of the outliers were detected and removed, and the 

fitted double logistics curves well characterized the variations and patterns of the annual LAI, 

reasonably caught the timing of vegetation phenology between the growing season and non-

growing season, and retained the duration of the peak within the growing season for both single 

vegetation cycle and double vegetation cycles with average goodness of fit R2 of 0.89 and 0.90 

respectively.  
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In chapter 4, an empirical radiation partitioning approach was evaluated against 258 site-years 

from 36 flux tower sites, and the results showed that the modeled diffuse radiation was in general 

agreement with the observed diffuse radiation for different vegetation types with an average 

Pearson’s correlation coefficient of 0.87. This radiation partitioning approach used in this study 

could help to derive the two radiation components: direct and diffuse when only the information 

of total solar radiation was available. We further evaluated the performance of the integrated two 

stream radiation transfer model that considered multiple scattering compared to Beer’s law 

model in estimating solar radiation absorbed by vegetation canopy, since Beer’s law probably 

overestimated the absorbed radiation due to a lack of considering scattering. The absorption 

fraction simulated by the two stream approach used in this study was lower than that estimated 

by Beer’s law regardless of the LAI and diffuse radiation fraction, and the discrepancy in 

absorption fraction reached up to 73% in an overcast day. We further compared the simulated 

GPP derived using Beer’s law model, two stream approach with the big-leaf model, and our 

integrated radiative transfer model (two stream approach with two-leaf model) with the GPP 

measurements obtained from six flux tower sites representing six vegetation types. The TS-TL 

model reduced the RMSE and bias by up to 72% and 81% based on the BL model, and up to 

63% and 75% based on the TS-BL model, respectively. Moreover, the considerable 

improvements at larger LAI values by using the TS-TL model compared to the other two models 

indicated that considering multiple scattering or differentiating sunlit and shaded leaves largely 

reduced the biases in modeling the light profiles and estimating total photosynthesis by 

vegetation. Overall, our integrated RTM (TS-TL model) exhibited relatively robust and 

consistent performance in accurately simulating carbon assimilation for different LAI levels. 
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In chapter 5, simulated GPP based on the comprehensive process-based model was evaluated 

against 167 flux tower sites that covers 12 major vegetation types at both half-hour and annual 

scale. Our integrated model performed well in reproducing temporal variation in GPP at most 

flux tower sites, and the modeled GPP estimates were highly correlated to the flux tower 

observations for all the vegetation types (r > 0.75) at a half-hourly scale. Annually, our simulated 

GPP showed a strong significant linear relationship with the flux tower data, and it explained 

72% of the spatial variations in GPP across all the validation sites. The positive bias showed a 

slight overestimation in annual GPP. In addition, global terrestrial GPP at 0.25° spatial resolution 

and 3-hourly temporal resolution was simulated using our integrated process-based model from 

2001 to 2020 driven by reconstructed LAI data from MODIS MCD15A3H and climate data from 

GLDAS 2.1. The annual global terrestrial GPP ranged from 118 PgC to 134 PgC, with an 

average of 128 PgC, during the study period, and it showed a significantly increasing trend with 

an average rate of 0.71 PgC/yr globally. The annual GPP also varied in different vegetation 

types, and significant increasing was found in all the vegetation types except in evergreen 

broadleaf forests. The spatial patterns of GPP were not homogenous in space, and approximately 

83.8% of global terrestrial showed increasing trend in annual GPP during 2001-2020, where the 

significantly increasing trends were mainly distributed in temperate regions and high elevation 

regions. Comparing to several recent GPP estimates and products, our simulated results were 

within a reasonable range of global terrestrial GPP estimations but with some discrepancies due 

to the different models, parameters, and driven data used to simulate GPP. In addition, the 

sensitivity analysis exhibited that our simulated GPP was most sensitive to biophysiological 

parameters 𝑉𝑐𝑚𝑎𝑥25 and LAI, emphasizing the needs of obtaining accurate biophysiological 

parameters in large scale. 
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6.2. Uncertainties and limitations 

Even though the methods and models used in this study were shown to perform relatively well 

and were robust in estimating global terrestrial GPP of various vegetation types, there still exists 

uncertainties and limitations that need further improvements. First, climate variables are essential 

in driving ecosystem models to estimate global terrestrial GPP, and obtaining accurate and 

consistent time series at a global scale becomes vital in global carbon modeling. Although 

GLDAS 2.1 showed reliable estimates in most variables, large biases occurred in precipitation 

which is one of the key variables that affect ecosystem models. Evaluations of different climate 

datasets could help to improve the accuracy of the input driven data in ecosystem models. In 

addition, the spatial resolution of 0.25 degree and temporal resolution of 3-hour when simulating 

global terrestrial GPP in this study was limited by the resolution of climate variables. A climate 

dataset with finer resolution could improve the GPP simulation accuracy and provide more 

information on spatial and temporal variations. Then, an empirical radiation partitioning model 

was used to obtain the direct and diffuse components from total solar radiation. Although the 

radiation partitioning approach generally captured the patterns of partitioning, the negative biases 

between our estimated data and observations exhibited an overall tendency of slightly 

underestimation in diffuse radiation. Since diffuse radiation is generated by the scattering effects 

of molecules and aerosols in atmosphere and is directly affected by clouds and aerosols, taking 

the aerosol factors into consideration could better simulate the direct and diffuse radiation. Also, 

leaf structures and foliar clumping effects should be considered in the radiatve transfer model as 

they influence the proportion of sunlit and shaded leaves and consequently change carbon 

assimilations by vegetation canopy.  
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Appendices 

Table A.1 Information of flux tower stations used for evaluating the climate variables derived from 

GLDAS 2.1. 

Vegetation 

Type 

Site ID Site name Latitude 

(°) 

Longitude 

(°) 

Time Period 

CRO BE-Lon Lonzee 50.55 4.75 2004-2014 

DE-Geb Gebesee 51.10 10.91 2001-2014 

DE-Kli Klingenberg 50.89 13.52 2004-2014 

DE-RuS Selhausen Juelich 50.87 6.45 2011-2014 

DE-Seh Selhausen 50.87 6.45 2007-2010 

DK-Fou Foulum 56.48 9.59 2005-2005 

FI-Jok Jokioinen 60.90 23.51 2001-2003 

FR-Gri Grignon 48.84 1.95 2004-2014 

US-ARM Southern Great Plains site Lamont 36.61 -97.49 2003-2012 

US-CRT Curtice Walter-Berger cropland 41.63 -83.35 2011-2013 

US-Ne1 Mead-irrigated continuous maize 

site 

41.17 -96.48 2001-2013 

US-Ne2 Mead-irrigated maize-soybean 

rotation site 

41.16 -96.47 2001-2013 

US-Ne3 Mead-rainfed maize-soybean 

rotation site 

41.18 -96.44 2001-2013 

US-Tw2 Twitchell Corn 38.10 -121.64 2012-2013 

US-Tw3 Twitchell Alfalfa 38.12 -121.65 2013-2014 

CSH RU-Vrk Seida/Vorkuta 67.05 62.94 2008-2008 

DBF CA-Oas Saskatchewan - Western Boreal, 

Mature Aspen 

53.63 -106.20 2000-2010 

CA-TPD Ontario - Turkey Point Mature 

Deciduous 

42.64 -80.56 2012-2014 

DE-Hai Hainich 51.08 10.45 2001-2012 

DE-Lnf Leinefelde 51.33 10.37 2002-2012 

DK-Sor Soroe 55.49 11.64 2000-2014 

FR-Fon Fontainebleau-Barbeau 48.48 2.78 2005-2014 

IT-CA1 Castel d'Asso1 42.38 12.03 2011-2014 
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IT-CA3 Castel d'Asso 3 42.38 12.02 2011-2014 

IT-PT1 Parco Ticino forest 45.20 9.06 2002-2004 

IT-Ro1 Roccarespampani 1 42.41 11.93 2001-2008 

IT-Ro2 Roccarespampani 2 42.39 11.92 2002-2012 

US-Ha1 Harvard Forest EMS Tower  42.54 -72.17 2000-2012 

US-Oho Oak Openings 41.55 -83.84 2004-2013 

US-UMB Univ. of Mich. Biological Station 45.56 -84.71 2001-2014 

US-UMd UMBS Disturbance 45.56 -84.70 2007-2014 
 

US-WCr Willow Creek 45.81 -90.08 2000-2014 

US-Wi1 Intermediate hardwood  46.73 -91.23 2003-2003 

US-Wi3 Mature hardwood  46.63 -91.10 2002-2004 

US-Wi8 Young hardwood clearcut  46.72 -91.25 2002-2002 

DNF RU-SkP Yakutsk Spasskaya Pad larch 62.26 129.17 2012-2014 

EBF AU-Cum Cumberland Plain -33.62 150.72 2012-2014 

AU-Whr Whroo -36.67 145.03 2011-2014 

AU-Wom Wombat -37.42 144.09 2010-2014 

CN-Din Dinghushan 23.17 112.54 2003-2005 

FR-Pue Puechabon 43.74 3.60 2001-2014 

ENF AU-ASM Alice Springs -22.28 133.25 2010-2014 

CA-Qfo Quebec - Eastern Boreal, Mature 

Black Spruce 

49.69 -74.34 2003-2010 

CA-SF1 Saskatchewan - Western Boreal, 

forest burned in 1977 

54.49 -105.82 2003-2006 

CA-SF2 Saskatchewan - Western Boreal, 

forest burned in 1989 

54.25 -105.88 2001-2005 

CA-TP1 Ontario - Turkey Point 2002 

Plantation White Pine 

42.66 -80.56 2002-2014 

CA-TP2 Ontario - Turkey Point 1989 

Plantation White Pine 

42.77 -80.46 2002-2007 

CN-Qia Qianyanzhou 26.74 115.06 2003-2005 

FI-Hyy Hyytiala 61.85 24.29 2000-2014 

FI-Let Lettosuo 60.64 23.96 2009-2012 

FI-Sod Sodankyla 67.36 26.64 2001-2014 

FR-LBr Le Bray 44.72 -0.77 2000-2008 
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IT-La2 Lavarone2 45.95 11.29 2001-2002 

IT-SRo San Rossore 43.73 10.28 2000-2012 

NL-Loo Loobos 52.17 5.74 2000-2014 

RU-Fyo Fyodorovskoye 56.46 32.92 2000-2014 

US-Me2 Metolius mature ponderosa pine 44.45 -121.56 2002-2014 

US-Wi2 Intermediate red pine  46.69 -91.15 2003-2003 

US-Wi4 Mature red pine  46.74 -91.17 2002-2005 

US-Wi5 Mixed young jack pine  46.65 -91.09 2004-2004 

US-Wi9 Young Jack pine  46.62 -91.08 2004-2005 

GRA AU-Emr Emerald -23.86 148.47 2011-2013 

AU-Rig Riggs Creek -36.65 145.58 2011-2014 

AU-Stp Sturt Plains -17.15 133.35 2008-2014 

AU-Ync Jaxa -34.99 146.29 2012-2014 

CH-Cha Chamau 47.21 8.41 2005-2014 

CH-Oe1 Oensingen grassland 47.29 7.73 2002-2008 

CN-Cng Changling 44.59 123.51 2007-2010 

CN-Du2 Duolun_grassland  42.05 116.28 2006-2008 

CN-Du3 Duolun Degraded Meadow 42.06 116.28 2009-2010 

CN-Sw2 Siziwang Grazed 41.79 111.90 2010-2012 

DE-Gri Grillenburg 50.95 13.51 2004-2014 

DE-RuR Rollesbroich 50.62 6.30 2011-2014 

DK-Eng Enghave 55.69 12.19 2005-2008 

DK-ZaH Zackenberg Heath 74.47 -20.55 2001-2014 

NL-Hor Horstermeer 52.24 5.07 2004-2011 

RU-Ha1 Hakasia steppe 54.73 90.00 2002-2004 

RU-Sam Samoylov 72.37 126.50 2002-2014 

RU-Tks Tiksi 71.59 128.89 2010-2014 

US-AR1 ARM USDA UNL OSU Woodward 

Switchgrass 1 

36.43 -99.42 2009-2012 

US-AR2 ARM USDA UNL OSU Woodward 

Switchgrass 2 

36.64 -99.60 2009-2012 

US-ARb ARM Southern Great Plains burn 

site- Lamont 

35.55 -98.04 2005-2006 



89 

 

 

 

US-ARc ARM Southern Great Plains control 

site- Lamont 

35.55 -98.04 2005-2006 

US-Goo Goodwin Creek 34.25 -89.87 2002-2006 

US-IB2 Fermi National Accelerator 

Laboratory- Batavia  

41.84 -88.24 2004-2011 

US-SRG Santa Rita Grassland 31.79 -110.83 2008-2014 

US-Var Vaira Ranch- Ione 38.41 -120.95 2001-2014 

US-Wkg Walnut Gulch Kendall Grasslands 31.74 -109.94 2004-2014 

MF BE-Bra Brasschaat 51.31 4.52 2000-2014 

BE-Vie Vielsalm 50.31 6.00 2000-2014 

CA-Gro Ontario - Groundhog River, Boreal 

Mixedwood Forest 

48.22 -82.16 2003-2014 

CH-Lae Laegern 47.48 8.37 2004-2014 

CN-Cha Changbaishan 42.40 128.10 2003-2005 

JP-SMF Seto Mixed Forest Site 35.26 137.08 2002-2006 

US-Syv Sylvania Wilderness Area 46.24 -89.35 2001-2014 

OSH CA-NS6 UCI-1989 burn site 55.92 -98.96 2001-2005 

CA-NS7 UCI-1998 burn site 56.64 -99.95 2002-2005 

CA-SF3 Saskatchewan - Western Boreal, 

forest burned in 1998 

54.09 -106.01 2001-2006 

RU-Cok Chokurdakh 70.83 147.49 2003-2014 

US-Whs Walnut Gulch Lucky Hills Shrub 31.74 -110.05 2007-2014 

SAV AU-Cpr Calperum -34.00 140.59 2010-2014 

AU-DaS Daly River Cleared -14.16 131.39 2008-2014 

AU-Dry Dry River -15.26 132.37 2008-2014 

AU-

GWW 

Great Western Woodlands, Western 

Australia, Australia 

-30.19 120.65 2013-2014 

SNO NO-Blv Bayelva, Spitsbergen 78.92 11.83 2008-2009 

WET CZ-wet Trebon  49.02 14.77 2006-2014 

DE-Akm Anklam 53.87 13.68 2009-2014 

DE-Zrk Zarnekow 53.88 12.89 2013-2014 

DK-NuF Nuuk Fen 64.13 -51.39 2008-2014 

DK-ZaF Zackenberg Fen 74.48 -20.55 2008-2011 

FI-Lom Lompolojankka 68.00 24.21 2007-2009 
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US-Atq Atqasuk 70.47 -157.41 2003-2008 

US-Los Lost Creek 46.08 -89.98 2001-2014 

US-Tw1 Twitchell Wetland West Pond 38.11 -121.65 2012-2014 

US-Tw4 Twitchell East End Wetland 38.10 -121.64 2013-2014 

WSA AU-Gin Gingin -31.38 115.71 2011-2014 

AU-How Howard Springs -12.49 131.15 2001-2014 

AU-RDF Red Dirt Melon Farm, Northern 

Territory 

-14.56 132.48 2011-2013 

US-SRM Santa Rita Mesquite 31.82 -110.87 2004-2014 

US-Ton Tonzi Ranch 38.43 -120.97 2001-2014 
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Table A.2 Information of flux tower stations used for evaluating radiation partitioning. 

Vegetation 

Type 

Site ID Site name Latitude 

(°) 

Longitude 

(°) 

Time Period 

CRO CH-Oe2 Oensingen crop 47.29 7.73 2004-2012 

DE-Geb Gebesee 51.10 10.91 2003-2014 

FR-Gri Grignon 48.84 1.95 2004-2014 

IT-BCi Borgo Cioffi 40.52 14.96 2005-2011 

DBF CA-Oas Saskatchewan - Western Boreal, 

Mature Aspen 

53.63 -106.20 2003-2010 

DE-Hai Hainich 51.08 10.45 2003-2012 

DE-Lnf Leinefelde 51.33 10.37 2003-2012 

DK-Sor Soroe 55.49 11.64 2003-2013 

IT-Col Collelongo 41.85 13.59 2004-2014 

IT-PT1 Parco Ticino forest 45.20 9.06 2003-2004 

IT-Ro2 Roccarespampani 2 42.39 11.92 2004-2004 

US-UMd UMBS Disturbance 45.56 -84.70 2008-2010 

EBF FR-Pue Puechabon 43.74 3.60 2003-2014 

GF-Guy Guyaflux (French Guiana) 5.28 -52.92 2008-2014 

GH-Ank Ankasa 5.27 -2.69 2011-2014 

ENF CA-Obs Saskatchewan - Western Boreal, 

Mature Black Spruce 

53.99 -105.12 2003-2010 

CA-Qfo Quebec - Eastern Boreal, Mature 

Black Spruce 

49.69 -74.34 2003-2010 

CZ-BK1 Bily Kriz forest 49.50 18.54 2004-2014 

DE-Tha Tharandt 50.96 13.57 2003-2014 

FI-Hyy Hyytiala 61.85 24.29 2003-2014 

FR-LBr Le Bray 44.72 -0.77 2003-2008 

IT-Ren Renon 46.59 11.43 2003-2013 

IT-SR2 San Rossore 2 43.73 10.29 2013-2014 

IT-SRo San Rossore 43.73 10.28 2004-2012 

NL-Loo Loobos 52.17 5.74 2004-2014 

US-Me1 Metolius - Eyerly burn 44.58 -121.50 2004-2005 

US-Me2 Metolius mature ponderosa pine 44.45 -121.56 2012-2014 

GRA AT-Neu Neustift 47.12 11.32 2003-2012 
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CH-Oe1 Oensingen grassland 47.29 7.73 2008-2008 

CZ-BK2 Bily Kriz grassland 49.49 18.54 2004-2006 

IT-MBo Monte Bondone 46.01 11.05 2003-2013 

RU-Ha1 Hakasia steppe 54.73 90.00 2003-2004 

MF CA-Gro Ontario - Groundhog River, Boreal 

Mixedwood Forest 

48.22 -82.16 2003-2014 

US-Syv Sylvania Wilderness Area 46.24 -89.35 2003-2003 

OSH ES-Ln2 Lanjaron-Salvage logging 36.97 -3.48 2009-2009 

SAV CG-Tch Tchizalamou -4.29 11.66 2006-2009 
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Table A.3 Information of flux tower sites used for GPP validation. 

Vegetation 

Type 

Site ID Site name Latitude 

(°) 

Longitude 

(°) 

Time Period 

CRO BE-Lon Lonzee 50.55 4.75 2004-2014 

CH-Oe2 Oensingen crop 47.29 7.73 2004-2014 

DE-Geb Gebesee 51.10 10.91 2003-2014 

DE-Kli Klingenberg 50.89 13.52 2004-2014 

DE-Seh Selhausen 50.87 6.45 2007-2010 

DK-Fou Foulum 56.48 9.59 2005-2005 

FI-Jok Jokioinen 60.90 23.51 2003-2003 

FR-Gri Grignon 48.84 1.95 2004-2014 

IT-BCi Borgo Cioffi 40.52 14.96 2004-2014 

IT-CA2 Castel d'Asso2 42.38 12.03 2011-2014 

US-ARM Southern Great Plains site- Lamont 36.61 -97.49 2003-2012 

US-CRT Curtice Walter-Berger cropland 41.63 -83.35 2011-2013 

US-Lin Lindcove Orange Orchard 36.36 -119.84 2009-2010 

US-Tw2 Twitchell Corn 38.10 -121.64 2012-2013 

US-Tw3 Twitchell Alfalfa 38.12 -121.65 2013-2014 

US-Twt Twitchell Island 38.11 -121.65 2009-2014 

CSH IT-Noe Arca di Noe - Le Prigionette 40.61 8.15 2004-2014 

US-KS2 Kennedy Space Center (scrub oak) 28.61 -80.67 2003-2006 

DBF AU-Lox Loxton -34.47 140.66 2008-2009 

CA-Oas Saskatchewan 53.63 -106.20 2003-2010 

CA-TPD Turkey Point Mature Deciduous 42.64 -80.56 2012-2014 

DE-Hai Hainich 51.08 10.45 2003-2012 

DE-Lnf Leinefelde 51.33 10.37 2003-2012 

DK-Sor Soroe 55.49 11.64 2003-2014 

FR-Fon Fontainebleau-Barbeau 48.48 2.78 2005-2014 

IT-CA1 Castel d'Asso1 42.38 12.03 2011-2014 

IT-CA3 Castel d'Asso 3 42.38 12.02 2011-2014 

IT-Col Collelongo 41.85 13.59 2003-2014 

IT-Isp Ispra ABC-IS 45.81 8.63 2013-2014 

IT-PT1 Parco Ticino forest 45.20 9.06 2003-2004 

IT-Ro2 Roccarespampani 2 42.39 11.92 2003-2012 
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JP-MBF Moshiri Birch Forest Site 44.39 142.32 2004-2005 

PA-SPn Sardinilla Plantation 9.32 -79.63 2007-2009 
 

US-Oho Oak Openings 41.55 -83.84 2004-2013 

US-UMd UMBS Disturbance 45.56 -84.70 2007-2014 

US-WCr Willow Creek 45.81 -90.08 2003-2014 

US-Wi1 Intermediate hardwood (IHW) 46.73 -91.23 2003-2003 

US-Wi3 Mature hardwood (MHW) 46.63 -91.10 2004-2004 

ZM-Mon Mongu -15.44 23.25 2007-2009 

DNF RU-SkP Yakutsk Spasskaya Pad larch 62.26 129.17 2012-2014 

EBF AU-Cum Cumberland Plain -33.62 150.72 2012-2014 

AU-Rob Robson Creek, Queensland -17.12 145.63 2014-2014 

AU-Wac Wallaby Creek -37.43 145.19 2005-2008 

AU-Whr Whroo -36.67 145.03 2011-2014 

AU-Wom Wombat -37.42 144.09 2010-2014 

BR-Sa3 Santarem-Km83-Logged Forest -3.02 -54.97 2003-2004 

CN-Din Dinghushan 23.17 112.54 2003-2005 

FR-Pue Puechabon 43.74 3.60 2003-2014 

GF-Guy Guyaflux (French Guiana) 5.28 -52.92 2004-2014 

GH-Ank Ankasa 5.27 -2.69 2011-2014 

IT-Cp2 Castelporziano2 41.70 12.36 2012-2014 

IT-Cpz Castelporziano 41.71 12.38 2003-2008 

MY-PSO Pasoh Forest Reserve (PSO) 2.97 102.31 2003-2009 

ENF AR-Vir Virasoro -28.24 -56.19 2010-2012 

AU-ASM Alice Springs -22.28 133.25 2010-2014 

CA-NS1 UCI-1850 burn site 55.88 -98.48 2003-2005 

CA-NS2 UCI-1930 burn site 55.91 -98.52 2003-2005 

CA-NS3 UCI-1964 burn site 55.91 -98.38 2003-2005 

CA-NS4 UCI-1964 burn site wet 55.91 -98.38 2003-2005 

CA-NS5 UCI-1981 burn site 55.86 -98.49 2003-2005 

CA-Obs Saskatchewan Mature Black Spruce 53.99 -105.12 2003-2010 

CA-Qfo Quebec - Mature Black Spruce 49.69 -74.34 2003-2010 

CA-SF1 Saskatchewan forest burned in 1977 54.49 -105.82 2003-2006 

CA-SF2 Saskatchewan forest burned in 1989 54.25 -105.88 2003-2005 

CA-TP1 Turkey Point 2002  42.66 -80.56 2003-2014 



95 

 

 

 

CA-TP2 Turkey Point 1989  42.77 -80.46 2003-2007 

CA-TP3 Turkey Point 1974  42.71 -80.35 2003-2014 

CA-TP4 Turkey Point 1939 42.71 -80.36 2003-2014 

CH-Dav Davos 46.82 9.86 2003-2014 

CN-Qia Qianyanzhou 26.74 115.06 2003-2005 

CZ-BK1 Bily Kriz forest 49.50 18.54 2004-2014 

DE-Lkb Lackenberg 49.10 13.30 2009-2013 

DE-Obe Oberbärenburg 50.79 13.72 2008-2014 

DE-Tha Tharandt 50.96 13.57 2003-2014 

FI-Hyy Hyytiala 61.85 24.29 2003-2014 

FI-Let Lettosuo 60.64 23.96 2009-2012 

FR-LBr Le Bray 44.72 -0.77 2003-2008 

IT-Lav Lavarone 45.96 11.28 2003-2014 

IT-Ren Renon 46.59 11.43 2003-2013 

IT-SR2 San Rossore 2 43.73 10.29 2013-2014 

IT-SRo San Rossore 43.73 10.28 2003-2012 

NL-Loo Loobos 52.17 5.74 2003-2014 

RU-Fyo Fyodorovskoye 56.46 32.92 2003-2014 

US-Blo Blodgett Forest 38.90 -120.63 2003-2007 

US-GBT GLEES Brooklyn Tower 41.37 -106.24 2003-2003 

US-GLE GLEES 41.37 -106.24 2005-2014 

US-Me1 Metolius - Eyerly burn 44.58 -121.50 2004-2005 

US-Me2 Metolius mature ponderosa pine 44.45 -121.56 2003-2014 

US-Me3 Metolius-second young aged pine 44.32 -121.61 2004-2009 

US-Me6 Metolius Young Pine Burn 44.32 -121.61 2010-2014 

US-NR1 Niwot Ridge Forest (LTER NWT1) 40.03 -105.55 2003-2014 

US-Wi4 Mature red pine (MRP) 46.74 -91.17 2003-2005 

US-Wi5 Mixed young jack pine (MYJP) 46.65 -91.09 2004-2004 

US-Wi9 Young Jack pine (YJP) 46.62 -91.08 2004-2005 

GRA AT-Neu Neustift 47.12 11.32 2003-2012 

AU-DaP Daly River Savanna -14.06 131.32 2007-2013 

AU-Emr Emerald -23.86 148.47 2011-2013 

AU-Rig Riggs Creek -36.65 145.58 2011-2014 

AU-Stp Sturt Plains -17.15 133.35 2008-2014 
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CH-Cha Chamau 47.21 8.41 2005-2014 

CH-Fru Früebüel 47.12 8.54 2005-2014 

CH-Oe1 Oensingen grassland 47.29 7.73 2003-2008 

CN-Cng Changling 44.59 123.51 2007-2010 

CN-Du2 Duolun_grassland (D01) 42.05 116.28 2007-2008 

CN-Du3 Duolun Degraded Meadow 42.06 116.28 2009-2010 

CN-HaM Haibei Alpine Tibet site 37.37 101.18 2003-2004 

CZ-BK2 Bily Kriz grassland 49.49 18.54 2006-2012 

DE-Gri Grillenburg 50.95 13.51 2004-2014 

DE-RuR Rollesbroich 50.62 6.30 2011-2014 

DK-Eng Enghave 55.69 12.19 2005-2008 

IT-MBo Monte Bondone 46.01 11.05 2003-2013 

IT-Tor Torgnon 45.84 7.58 2008-2014 

NL-Hor Horstermeer 52.24 5.07 2004-2011 

PA-SPs Sardinilla-Pasture 9.31 -79.63 2007-2009 

RU-Ha1 Hakasia steppe 54.73 90.00 2003-2004 

US-AR1 ARM USDA UNL OSU Woodward 

Switchgrass 1 

36.43 -99.42 

2009-2012 

US-AR2 ARM USDA UNL OSU Woodward 

Switchgrass 2 

36.64 -99.60 

2009-2012 

US-ARb ARM Southern Great Plains burn 

site- Lamont 

35.55 -98.04 

2005-2006 

US-ARc ARM Southern Great Plains control 

site- Lamont 

35.55 -98.04 

2005-2006 

US-Goo Goodwin Creek 34.25 -89.87 2003-2006 

US-IB2 Fermi National Accelerator 

Laboratory- Batavia (Prairie site) 

41.84 -88.24 

2004-2011 

US-SRG Santa Rita Grassland 31.79 -110.83 2008-2014 

US-Var Vaira Ranch- Ione 38.41 -120.95 2003-2014 

US-Wkg Walnut Gulch Kendall Grasslands 31.74 -109.94 2004-2014 

MF AR-SLu San Luis -33.46 -66.46 2009-2011 

BE-Bra Brasschaat 51.31 4.52 2004-2014 

BE-Vie Vielsalm 50.31 6.00 2003-2014 

CA-Gro Ontario 48.22 -82.16 2003-2014 
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CH-Lae Laegern 47.48 8.37 2004-2014 

CN-Cha Changbaishan 42.40 128.10 2003-2005 

JP-SMF Seto Mixed Forest Site 35.26 137.08 2003-2006 

US-Syv Sylvania Wilderness Area 46.24 -89.35 2003-2014 

OSH AU-TTE Ti Tree East -22.29 133.64 2012-2014 

CA-NS6 UCI-1989 burn site 55.92 -98.96 2003-2005 

CA-NS7 UCI-1998 burn site 56.64 -99.95 2003-2005 

CA-SF3 Saskatchewan - Western Boreal, 

forest burned in 1998 

54.09 -106.01 

2003-2006 

ES-LgS Laguna Seca 37.10 -2.97 2007-2009 

ES-LJu Llano de los Juanes 36.93 -2.75 2004-2013 

US-SRC Santa Rita Creosote 31.91 -110.84 2008-2014 

US-Sta Saratoga 41.40 -106.80 2005-2009 

US-Whs Walnut Gulch Lucky Hills Shrub 31.74 -110.05 2007-2014 

US-Wi6 Pine barrens #1 (PB1) 46.62 -91.30 2003-2003 

US-Wi7 Red pine clearcut (RPCC) 46.65 -91.07 2005-2005 

SAV AU-Cpr Calperum -34.00 140.59 2010-2014 

AU-DaS Daly River Cleared -14.16 131.39 2008-2014 

AU-Dry Dry River -15.26 132.37 2008-2014 

AU-

GWW 

Great Western Woodlands, Western 

Australia 

-30.19 120.65 

2013-2014 

CG-Tch Tchizalamou -4.29 11.66 2006-2009 

SD-Dem Demokeya 13.28 30.48 2005-2009 

SN-Dhr Dahra 15.40 -15.43 2010-2013 

ZA-Kru Skukuza -25.02 31.50 2003-2013 

WET AU-Fog Fogg Dam -12.55 131.31 2006-2008 

CN-Ha2 Haibei Shrubland 37.61 101.33 2003-2005 

CZ-wet Trebon (CZECHWET) 49.02 14.77 2006-2014 

DE-SfN Schechenfilz Nord 47.81 11.33 2012-2014 

DE-Spw Spreewald 51.89 14.03 2010-2014 

DE-Zrk Zarnekow 53.88 12.89 2013-2014 

US-Los Lost Creek 46.08 -89.98 2003-2014 

US-Myb Mayberry Wetland 38.05 -121.77 2011-2014 

US-Tw1 Twitchell Wetland West Pond 38.11 -121.65 2012-2014 
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US-Tw4 Twitchell East End Wetland 38.10 -121.64 2013-2014 

WSA AU-Ade Adelaide River -13.08 131.12 2007-2009 

AU-Gin Gingin -31.38 115.71 2011-2014 

AU-How Howard Springs -12.49 131.15 2003-2014 

AU-RDF Red Dirt Melon Farm -14.56 132.48 2011-2013 

US-SRM Santa Rita Mesquite 31.82 -110.87 2004-2014 

US-Ton Tonzi Ranch 38.43 -120.97 2003-2014 
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