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The global carbon cycle has changed in response to climate change, and the effects of these
changes, caused by anthropogenic factors such as the burning of fossil fuels and landscape
alterations, are expected to be widespread. Terrestrial gross primary productivity (GPP), the
largest component flux of the global carbon cycle, plays a significant role in connecting the
global carbon and water cycles and the energy balance between the atmosphere, biosphere,
hydrosphere and pedosphere. Despite the development of various approaches and models for
estimating terrestrial GPP at different scales, large discrepancies and uncertainties remain in
long-term global GPP simulations. Therefore, it is of great value and necessity to better
understand and accurately estimate the spatial and temporal patterns of terrestrial GPP. In this
dissertation, we improved the performance of global terrestrial GPP simulation by: 1) improving
the solar radiation transfer model within a canopy by considering multiple scattering and
radiation partitioning; 2) reconstructing satellite-based leaf area index (LAI) data to minimize
biases and errors caused by cloud contaminations and composite technique; 3) using high

performance computing of the Google Earth Engine (GEE) platform. We estimated global



terrestrial GPP at 0.25<spatial resolution and 3-hour temporal intervals using our integrated

process-based ecosystem model from 2001 to 2020.

In Topicl, we evaluated the performance of five climate variables derived from a new reanalysis
dataset - air temperature, precipitation, downward shortwave radiation, air pressure, and vapor
pressure deficit (VPD) - against observations from 167 worldwide flux tower sites at both daily
and annual scales. The results showed that all of the variables performed reliably, with the
exception of precipitation, which had a tendency to be overestimated. In addition, we examined
the temporal and spatial patterns of these variables from 2001 t02020. We found that global air
temperature, solar radiation, VPD, and precipitation showed significantly increasing trends at
rates of 0.7 <C/decade, 3.1W/m?/decade, 0.15KPa/decade, and 49.6mm/decade, respectively,
while air pressure did not show any significant changes over this time period. The climate
variables also showed different spatial variations at the global scale and their changes over the
past decades were not homogenous in space. In addition to evaluating the climate variables, we
also assessed the performance of reconstructing MODIS LAI products in 24 typical regions,
which covered a range of major climate and vegetation types. The MODIS LAI datasets were
affected by cloud contamination and composite techniques and did not perform well in areas
with long-term continuous cloud cover, where LAI values were severely underestimated. We
developed a new clean-up algorithm to improve the LAI data by including spatiotemporal
correlations of neighboring pixels and applied double logistic functions to achieve continuous
LAI time series. The results showed that most of the outliers were detected and removed, and the
fitted double logistic curves well characterized the variations and patterns of annual LA,

reasonably captured the timing of vegetation phenology between growing and non-growing



seasons, and retained the duration of peak within the growing season for both single vegetation

cycle and double vegetation cycles.

In Topic 2, we found that the good performance of the empirical radiation partitioning approach
indicated that it could be used to derive the two radiation components - direct and diffuse - when
only total solar radiation information was available. Additional, the absorption fraction simulated
by the two stream approach, which considered multiple scattering, was lower than that estimated
by Beer’s law regardless of the LAI and diffuse radiation fraction. The discrepancy in absorption
fraction reached up to 73% in an overcast day. We further compared the performance of the
Beer’s law (BL) model, the two-stream big-leaf (TS-BL) model, and our integrated radiative
transfer (RTM) model — the two-stream two-leaf (TS-TL) model - in simulating GPP and found
that our TS-TL model reduced the RMSE and bias by up to 72% and 81% based on the BL
model, and up to 63% and 75% based on the TS-BL model, respectively. Overall, our integrated
RTM (TS-TL model) exhibited large improvements and robust performance in estimating GPP,
especially in areas with a dense vegetation cover.

In Topic 3, we developed a comprehensive process-based ecosystem model, driven by new
reanalysis climate data and satellite-based LAI data, to estimate global GPP by using different
biochemical photosynthesis models for C3 and C4 plants on the GEE platform. The results were
evaluated by comparing the simulated GPP to observations from 167 flux tower sites, and the
modeled GPP estimates were highly correlated to the flux tower observations for all vegetation
types at both half-hour and annual scales. The annual global terrestrial GPP simulated by our
integrated model ranged from 118 PgC to 134 PgC, with an average of 128 PgC, during 2001-
2020, and showed a significantly increasing trend with an average rate of 0.71 PgC/yr globally.

When compared to recent GPP estimates and products, our simulated results were within a



reasonable range of global terrestrial GPP estimations but had some discrepancies due to the
different models, parameters, and driving data used to simulate GPP. In addition, the sensitivity
analysis exhibited that our simulated GPP was most sensitive to the biophysiological parameters

V.max2s and LA, highlighting the need for accurate biophysiological parameters at large scales.
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1. Introduction

1.1. Background

Global carbon cycle has changed in response to climate change, and the effects of these changes
caused by anthropogenic factors such as the burning of fossil fuels and landscape alterations are
expected to be widespread (Kondratyev et al. 2003, Dixon and Turner 1991). Global climate
change and the increasing atmospheric CO2 concentration have highlighted the importance of
better understanding the global carbon cycle (Nemani et al. 2003, Zhang et al. 2014). Plants
utilize solar radiation, CO., and water through photosynthesis for their growth and maintenance
under changing environmental conditions such as temperature and nutrition. Simulating
vegetation photosynthesis activities at different temporal and spatial scales can help to address
global carbon budget issues, accurately predict future climate changes, and scientifically
understand the crucial role of terrestrial ecosystems in supporting the sustainable development of
human society. Terrestrial gross primary productivity (GPP), the amount of carbon fixed by
plants during photosynthesis, is the largest component flux of the global carbon cycle and plays a
significant role in connecting the global carbon, energy, and water cycles throughout the
atmosphere, biosphere, hydrosphere and pedosphere (Cramer et al., 2001, Wu et al. 2010, Yan et
al. 2017). Despite the development of various approaches and models of estimating terrestrial
GPP at different scales, large discrepancies and uncertainties remain in long-term global GPP
products. Therefore, it is of great value and necessity to better understand and accurately
simulate the spatial and temporal patterns of terrestrial GPP, which is crucial for optimizing the

estimation of global carbon sources and sinks.



Solar radiation, as the primary energy source for ecosystems, drives the biological processes
such as photosynthesis and evapotranspiration and the exchanges of energy and mass between
the atmosphere, vegetation, and soil (Song and Band 2004, Ligot et al. 2014). Consequently, the
amount of energy plants can intercept greatly affects terrestrial production and the carbon cycle,
and accurate modeling of photosynthetically active radiation absorbed by vegetation is the key to
terrestrial GPP estimation (Alton et al. 2007). Therefore, simulating radiative transfer processes
through the canopy is essential in ecosystem process models to understand how radiation is
distributed within the canopy and how much radiation is absorbed by plants (Nilson and Ross
1997, Yuan et al. 2014b, Yuan et al. 2017). A variety of canopy radiation transfer models have
been developed to model the distribution and processes of incoming radiation within and below
the canopy (Sellers 1985, Nijssen and Lettenmaier 1999, Dai et al. 2004). Simplified radiation
transfer models often omit processes such as multiple scattering or radiation partitioning that
have proven to cause large biases when estimating carbon fluxes, while the high computation
burden and difficulty in acquiring data and parameters for more complicated models can hinder
long-term GPP simulation at large scales. Therefore, an appropriate canopy radiation transfer
model that integrates vital processes is important in simulating long-term global terrestrial GPP.
Furthermore, the quality and continuity of model input data is a key factor in accurately
simulating global terrestrial GPP. The development of remote sensing technology provides the
possibility and opportunity to investigate global carbon cycles at high spatial resolution, and
many well-developed products have already been widely applied by climate and ecosystem
models to simulate global GPP. However, noise and gaps in remote sensing products, caused by
atmospheric conditions or the sensors themselves, bring greater uncertainty to GPP estimations.

Leaf area index (LAI), a critical vegetation biological variable, is widely used to estimate



ecosystem processes such as photosynthesis and evapotranspiration (Xiao et al. 2009). LAI
frequently serves as a key input parameter for modeling the exchange of carbon, water, and
energy between the terrestrial and atmosphere (Liu et al. 2012). It is common for ecosystem
models to run in a steady state, and most current models do not consider disturbance or simplify
the process at large scales. Satellite-based LAI, which reflects the actual real-time vegetation
conditions, can help to solve this problem. However, noise points and gaps exist in LAI products
due to the influence of cloud or snow cover, leading to large biases and errors in LAI datasets.
For example, the MODIS LAI datasets suffer from cloud contaminations and the composite
technique and do not work well in areas with long-term continuous cloud cover, such as the
spring of the East Asian monsoon region where a single “Meiyu” rain event can last up to two
months. Cloud contamination can severely underestimate LAI values. The discontinuity and
inconsistency of LAI data in space and time directly affect the accuracy of ecosystem carbon
cycle simulations (Yuan et al. 2011). Therefore, it is important to improve the quality of LAI

products and obtain accurate and consistent estimates of LAI at a global scale.

Like LAI, climate variables, as key driving factors of biogeochemical processes, are crucial to
global carbon cycle modelling and have been widely used as model inputs in most ecosystem
process models (Smith et al. 1993, Reichstein et al. 2013, Yang et al. 2017). While traditional
weather stations provide accurate and valuable information for local and regional research, their
irregular distribution limits their ability to depict spatial variations at a global scale. Reanalysis
datasets, such as ERA-Interim, GLDAS, and NCEP, which combine land surface models, ground
observations, and satellite data, provide global land surface states and fluxes in near-real time at
high spatial and temporal resolution (Bosilovich et al. 2008, Mooney et al. 2011). Evaluating the

performance of reanalysis data as model input data and investigating the patterns and variations



of long-term trends in key climate variables, such as air temperature, precipitation, and solar

radiation, is necessary for a better understanding and modelling of the global carbon cycle.

1.2. Estimating terrestrial gross primary productivity

Direct measurement of GPP does not exist, but various approaches for estimating GPP at
multiple scales have been developed in the past decades (Piao et al. 2013, Ma et al. 2015, Sun et
al. 2019), including flux tower estimates via the eddy covariance technique, remote sensing-
based models, and process-based models. These approaches have their own unique strengths and
limitations in meeting different demands for understanding the global carbon cycle at different

scales.

1.2.1. Eddy covariance technique

The eddy covariance method is a micrometeorological method that is based on the turbulent
transport theory to directly observe the exchanges of gases, energy, and momentum between the
atmosphere and biosphere without disturbing the ecosystem (Baldocchi et al. 1988). Nowadays,
the eddy covariance has been developed as a key technique for measuring the exchanges of net
ecosystem COg, water vapor, and energy fluxes, and it provides powerful data support for plant
ecophysiological studies and modeling of water and carbon cycles at regional and global scales.
Over the past thirty years, the eddy covariance technique has been widely used in different
ecosystems including forests, grasslands, and croplands in Asia (Zhang et al. 2007, Xiao et al.
2013), Europe (Morales et al. 2005, Papale et al. 2015), and America (Amiro et al. 2006, Amiro
et al. 2010, Liu et al. 2022).

GPP can be obtained from measurements of net ecosystem exchange (NEE) between the

atmosphere and terrestrial ecosystems, which uses the eddy covariance technique based on flux



towers (Reichstein et al. 2005, Lasslop et al. 2010, Anav et al. 2015). Hundreds of worldwide
flux tower networks that cover a large range of climate and biome types can provide continuous
estimates of GPP, which play a pivotal role in understanding local carbon cycles and act as
validation and calibration for global carbon models (Baldocchi et al. 2001, Friend et al. 2007).
While GPP cannot be directly measured, flux towers provide probably the best estimates of GPP
fluxes at the ecosystem level and have been used as ground-truth observations in numerous
studies to calibrate and evaluate different models.

However, the estimates from flux towers only represent the fluxes at the scale of the tower
footprint, which ranges between hundred meters and kilometers depending on the homogeneity
of the vegetation (Xiao et al. 2010). And retrieving large-scale GPP estimates by scaling up data
from flux towers has many uncertainties and depends on the availability of sufficient data,

especially for long-term extrapolation (Beer et al. 2010, Anav et al. 2015).

1.2.2. Remote sensing-based models

Remote sensing (RS) datasets have been widely used in various models to estimate GPP, and the
approaches are typically based on light use efficiency models (Monteith 1972, Running et al.
2000, Yuan et al. 2007) or empirical relationships with vegetation indices (Running et al. 2004,
Sims et al. 2008, Li et al. 2013). They are efficient at exploring the spatial and temporal
dynamics of plant growth at large scales and have relatively straightforward expressions (Song et
al. 2013, Yuan et al. 2014, Sun et al. 2018, Sun et al. 2019).

The light use efficiency models were developed on the basis of the concept of radiation
conversion efficiency, and they assumes that GPP is directly associated with the absorbed

photosynthetically active radiation and is substantially dependent on the environmental



conditions and the maximum light use efficiency (Monteith, 1972). The general form of the light
use efficiency model can be expressed as:

GPP = PAR X fPAR X €pmgy X f(T,VPD, ...) (Eq. 1.1)
where PAR is the incident photosynthetically active radiation, fPAR is the fraction of PAR that
vegetation canopy is absorbed, and &,,,, 1S the maximum light use efficiency, which is adjusted
by multiple environmental scalars, such as air temperature f(T) and vapor pressure deficit
f(VPD). And the vegetation index-based empirical models suggest that GPP could be directly
estimated through empirical relationships with spectral-related indexes (Noumonvi et al. 2019).

GPP =axVI+b (Eq. 1.2)
where V1 is the vegetation index, a and b are regression constants.
The RS-based models are characterized by their large spatial coverage, temporal consistency,
and straightforward computation, so they have the potential to investigate the spatial and
temporal patterns of carbon fluxes at both regional and global scales (Pei et al. 2022). However,
large variability still exists in explaining the inter-annual variations in GPP using the RS-based
models due to the limitation in modelling the underlying mechanisms, especially at the global

scale (Keenan et al. 2012, Liu et al. 2014, Yuan et al. 2014, Yan et al. 2017, Zheng et al. 2020).

1.2.3. Process-based models

The process-based ecosystem models, which are based on principles of ecology, biophysiology,
and geochemistry, are also frequently used to understand and predict the storage, flux, and
circulation of carbon, water, and other mineral nutrients in terrestrial ecosystems. Considerable
efforts have been made to develop process-based models, such as Century (Parton et al. 1993),
Biome-BGC (Running and Hunt 1993), LPJ (Sitch et al. 2003), and CASA (Potter et al. 1993), to

estimate terrestrial GPP (Moorcroft 2006, Liu et al. 2014, Prentice et al., 2014, Anav et al. 2015).



The primary physiological processes that are generally used to simulate carbon assimilating
include photosynthesis, transpiration, canopy radiative transmission, and stomatal conductance.
Farquhar et al. (1980) described a biochemical photosynthesis model at a leaf level, assuming
that the CO> uptake rate is limited by either RuBP carboxylase (Rubisco) or RuBP regeneration
and the enzymatic components are all temperature-dependent. Currently, the Farquhar’s
photosynthesis model is widely accepted as theoretical basis, and the corresponding equations
are generally included into all process-based models for GPP simulations. At the meantime,
additional physiological processes, such as CO> diffusion, stomatal conductance, and canopy
radiative transfer, are coupled into Farquhar’s photosynthesis model when estimating GPP.
Upscaling to plant or ecosystem levels, vegetation canopy is commonly treated as one big leaf,
two leaves (sunlit and shaded), or multiple layers for different demand in the process-based
models. And an intact canopy radiative transfer model that describes the absorption, reflection,
and scattering of light provide elaborate physical processes to measure carbon assimilation.
Most of the commonly used process-based models are operated on annually, monthly, or at most
daily scales. The non-uniform changes of meteorological elements, especially solar radiation,
within a day might affect the simulation results and bring large biases, since most ecological
processes are nonlinear processes. The process-based models have the advantages in taking the
effects of various environmental regulations into account at large scale and improving the
understanding of ecological processes and global carbon cycle under global change. (Sitch et al.
2003, Morales et al. 2005, Sitch et al. 2008, Piao et al. 2009, Ryu et al. 2011, Liu et al. 2014),
however tedious preparation of input data and parameters hinder many scientists from
overcoming the computational burden in investigating the carbon cycle at large regions with

shorter time scales.



1.3. Radiation transfer models

1.3.1. Based on light profiles

To examine the light profile within the canopy, the processes of radiation transfer through
canopy have been modeled using different approaches. Monsi and Saeki (1953) first introduced
Beer’s law into ecosystem to quantify the light attenuation through the canopy. According to
Beer’s law, solar radiation decreases exponentially with the increasing depth through canopy
without considering scattering (Monteith and Unsworth 2013), and the equation can be described
as

I = I,e Kol (Eq. 1.1)
where I, and I are the radiation intensities arriving at the top of the canopy and penetrating
below the canopy layer, respectively. L is the cumulative leaf area index measured downwards
from the top of the canopy, and K, is the extinction coefficient of the canopy. In many
ecosystem process models, Beer’s law is commonly coupled within the canopy radiative transfer
model to estimate the absorption and transmission of solar radiation for investigating the
photosynthesis or evapotranspiration processes under different light conditions (Running and
Hunt 1993). Although Beer's law performs well in predicting the average conditions of radiation
below the canopy, previous studies showed that it is inadequate to model the interception within
canopy (Larsen and Kershaw 1996, Nijssen and Lettenmaier 1999). Additionally, multiple
scattering, which may increase the radiation below the canopy by up to 100% has not been
accounted in Beer’s law theory (Nijssen and Lettenmaier 1999).
To overcome the limitations and improve the canopy radiative transfer model, a two-stream
approximation for radiation transfer through the vegetation canopy that considered multiple

scattering was developed by Dickinson (1983) and Sellers (1985). In this two stream radiation



transfer model, the changes in upward and downward radiation streams in a deep canopy are
expressed by two differential equations with the considering of reflection, transmission, and

absorption, and the general equations can be expressed by

drt _

———=—K,I* +K, §1+ + K, %1 (Eq. 1.2)
alr— _ -
——=—KyI” + K, %1* + Kbgl (Eq. 1.3)

where I* and I~ are the upward and downward radiation intensities within the canopy, and « is
the leaf scattering coefficient. It assumes the radiation is scattered equally in the upward and
downward directions in the canopy (Monteith and Unsworth 2013). Recently, Mahat and
Tarboton (2012) extended this two-stream model from infinitely deep canopy to a finite canopy
by using recursive superposition to obtain a solution, and the improved model could be applied
to for both direct and diffuse radiation. Since the direct and diffuse radiation differ in the way
they transfer through plant canopies and have different impacts on the nonlinear process of
photosynthesis (de Pury and Farquhar 1997), it is now generally accepted that separately
considering the transfer processes of direct and diffuse radiation improves the accuracy of
modeling canopy radiation transfer processes. For example, previous studies found that an
increased proportion of diffuse radiation leads to a higher light use efficiency and enhances

vegetation photosynthesis (Gu et al. 2002, Alton et al. 2007).

1.3.2. Based on canopy layers

Three major groups of canopy radiation models include the big leaf model (Amthor 1994, Lloyd
et al. 1995, Sellers et al. 1996), two-leaf model (Norman 1980, de Pury and Farquhar 1997,
Wang and Leuning 1998, Dai et al. 2004), and multilayer model (Norman 1982, Leuning et al.

1995). The big leaf models, which treat the whole canopy as one big layer that retains all the
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properties of individual leaves, have been extensively used in many early studies (Amthor 1994,
Lloyd et al. 1995, Sellers et al. 1996). They usually require fewer parameters and are relatively
easier to test by field data. However, such models usually overestimate the photosynthesis due to
the complex canopy structures (Amthor 1994, Dai et al.2004). To overcome the limitations of the
big leaf model, multilayer models were developed that splitting the canopy into multiple layers
and integrating the fluxes for each sub-layer to give the total flux for the whole canopy (Norman
1982, Leuning et al. 1995). The multilayer models consider the ecological processes of each
layer inside the canopy in great details, such as leaf properties and leaf inclination angles, and
they are regarded as the most accurate way to upscale fluxes from leaf to canopy (Luo et al.
2018). However, their expensive computational demand, especially for large scale, drives the
need to develop alterative models. Two-leaf models have been proposed as simplifications to
multilayer models (de Pury and Farquhar 1997, Wang and Leuning 1998, Dai et al. 2004). These
models separate the canopy into two groups: sunlit leaves and shaded leaves, where the
photosynthesis of sunlit leaves that receiving both direct and diffuse radiation tends to be light
saturated, while the photosynthesis of shaded leaves that only absorb diffuse radiation depend on
the intercepted radiation (de Pury and Farquhar 1997, Luo et al. 2018). The two-leaf models give
very similar estimation of canopy photosynthesis compared to the simulation from multilayer
models, but with far fewer computation time (Wang and Leuning 1998). Therefore, the two-leaf

models have been extensively used in various ecosystem process models.

1.4. Google earth engine platform

Google Earth Engine (GEE) is an innovative cloud-based computing platform that archives a
massive geospatial data catalog, and it provides a significant advance in processing petabyte-

scale datasets at various scales (Gorelick et al. 2017, Mutanga and Kumar 2019). There are more
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than 200 public datasets, including satellite images, land cover data, and climate data, that are
archived in GEE. Besides that, new datasets are updating daily for public use and researchers can
upload their own data to GEE for different projects. Compared to other cloud computing
platforms, GEE can avoid the tedious and time-consuming data downloading and uploading
processes. In addition, GEE has powerful processing capacity and high-performance computing
resources that automatically parallelizes the analysis on several CPUs across lots of computers in
Google’s data centers, which enables researchers to access and analyze mega-scale geospatial
data (Gorelick et al. 2017). Moreover, the web-based application programming interface (API) of
GEE is very user-friendly, and researchers can also choose to access the platform through Java
script or Python API. There are many built-in functions that researchers can utilize for geospatial

data processing and analyzing.

Although various well-developed models exist for estimating the terrestrial carbon cycle, data
downloading and storage load, together with the huge computation cost, make it tremendously
time consuming and even difficult to access for research at broad scales, especially with long
time series (Ryu et al. 2011). Studies that expect high spatial and temporal resolutions need to
deal with gigabytes or even terabytes of data, which might be the main problem that hinders the
research progress. With all the strengths GEE possesses, researchers are able to obtain and
analyze huge geospatial datasets for broader areas over long time periods, and have a rapid
preview of the derived maps (Gorelick et al. 2017). In this study, we present our integrated
process-based model built on the GEE platform to quantify the spatial and temporal patterns of

the terrestrial carbon cycle at global scale without the technical and equipment burdens.
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1.5. Research objectivities

The objectivities of this study are: 1) to build a comprehensive process-based ecosystem model
that integrates the key physical and biogeochemical processes for simulating GPP on Google
Earth Engine platform; 2) to increase the accuracy and performance of global terrestrial GPP
simulation by evaluating the main input climate data that drives the ecosystem model,
reconstructing the satellite-based LAI products, and improving the canopy radiative transfer
model; 3) to achieve the terrestrial GPP estimations at global scale using our integrated process-
based ecosystem model during the past two decades. And Figure 1.1 shows the flowchart of the
major steps in my dissertation.

Three topics were introduced in this dissertation:

Topic 1: Investigating the variation of climate variables from GLDAS 2.1 and assessing the
performance of fitting double logistic functions of LAI. In this topic, | aimed to reduce the biases
from input data and increase the accuracy of Global GPP estimation by evaluating and improving
the key model input data (Chapter 3).

Topic 2: Integrating an improved two-stream canopy radiative transfer model. In this topic, |
aimed to improve the performance of simulating canopy radiation absorption and GPP by
improving the radiative transfer model (Chapter 4).

Topic 3: Mapping global terrestrial gross primary productivity from local sites to global values
using an improved process-based ecosystem model on Google Earth Engine Platform during
2001-2020. In this topic, | aimed to achieve the terrestrial GPP estimation at global scale by
developing an improved process-based ecosystem model driven by satellite-based LAI data and
reanalysis climate data during the past two decades using high performance computing (Chapter

).
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Figure 1.1 Flowchart of the major steps in this research.

My dissertation approaches the goals by the following steps:

(1) Topic 1 evaluated five GLDAS 2.1-derived climate variables that are essential for simulating
global carbon cycle and are commonly used as input data to drive ecosystem models, including
air temperature, precipitation, downward shortwave radiation, air pressure, and VPD (derived
from specific humidity), against the observations from 120 worldwide flux tower sites. The
temporal and spatial variations of the five climate variables from 2001 to 2020 were also
investigated at global scale. Moreover, remote sensing LAI product (MCD15A3H) was
reconstructed to obtain a high-quality and continuous time series by fitting double logistic
functions after eliminating noise and outliers. Different double logistic functions were applied to
grids with single vegetation cycle and grids with double vegetation cycles, and the corresponding

fitting performance was discussed in this chapter.
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(2) Topic 2 focused on improving the accuracy of modeling the radiation absorbed by the
vegetation canopy and further increasing the performance of terrestrial GPP simulation by
integrating a recently developed two stream radiative transfer model that considers multiple
scattering in a finite canopy to a two-leaf model. In addition, an empirical radiation partitioning

approach was evaluated against 258 site-years from 36 flux tower sites.

(3) In topic 3, a comprehensive process-based model that coupled the improved two stream
radiation transfer model was developed on the Google Earth Engine platform, and the simulated
GPP was evaluated against 167 flux tower sites. The spatial and temporal patterns and trends in
global terrestrial GPP during 2001-2020 were examined for different vegetation types, and the
comparisons of global GPP estimates from recent studies and products were discussed. In
addition, the sensitivities of our model to environmental and biological drivers were also

investigated in this chapter.
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2. Materials and methods

2.1. Ancillary Data

2.1.1. Reanalysis dataset

In the past decades, data assimilation techniques that assimilate weather forecast information,
ground observation data and remote sensing data into analysis products provide many global
climate datasets with high spatial resolution for a long time period (Bosilovich et al. 2008,
Mooney et al. 2011). Many well-known reanalysis datasets are commonly used for global
climate and ecosystem modelling, such as the National Centers for Environmental Prediction and
the National Center for Atmospheric Research reanalysis (NCEP/NCAR, Kalnay et al. 1996), the
European Centre for Medium-Range Weather Forecasts (ECMWF) Interim Reanalysis (ERA-
Interim, Dee et al. 2011), and the Japanese 55-year Reanalysis (JRA-55, Kobayashi et al. 2015).
The Global Land Data Assimilation System (GLDAS) is a new generation of reanalysis dataset
that is jointly developed by the National Aeronautics and Space Administration (NASA)
Goddard Space Flight Center (GSFC) and the National Oceanic and Atmospheric Administration
(NOAA) National Centers for Environmental Prediction (NCEP). GLDAS integrated ground-
based observations, remote sensing images, radar precipitation measurements, and outputs from
numerical prediction models into advanced Land Surface Models (LSM) using data assimilation
techniques to produce a global, high-resolution, offline (uncoupled to the atmosphere) terrestrial
modeling system that simulates global land surface states and fluxes in near-real time (Rodell et
al. 2004). GLDAS currently drives five models, including Mosaic, Noah, the Community Land
Model (CLM), the Variable Infiltration Capacity model (VIC), and the Catchment Land Surface

Model (CLSM), to produce a massive archive of global modeled and observed outputs from
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1948 to present with spatial resolution of 1 degree and 0.25 degree and temporal resolution of 3-
hourly, daily, and monthly. There are three components of GLDAS version 2: (1) GLDAS 2.0 is
forced entirely with the Princeton Meteorological Forcing Dataset and provides a temporally
consistent series (with 3- hourly, daily, and monthly temporal intervals) from 1948 through
2014; (2) GLDAS 2.1 is forced with a combination of model and observation data, and contains
3- hourly and monthly data spanning from 2000 to the present; (3) GLDAS 2.2 uses data
assimilation (while the other two products are "open-loop™) to produce daily data output from
2003 to the present.

In consideration of the temporal and spatial resolution, time coverage, and the data availability
on the Google Earth Engine, GLDAS 2.1 (simulated by the Noah-3.6) was used in this study.
The dataset contains 36 parameters with 3-hourly temporal interval, 0.25-degree spatial
resolution, and spatial extent from -60<to 90 <(latitude) and -180“to 180 °(longitude) in the
geographic coordinate system. We retrieved five variables from the dataset, including air
temperature (K), total precipitation rate (kg/m?/s), downward shortwave radiation (W/m?),
specific humidity (kg/kg), and air pressure (Pa), and the detailed information of the variables is
listed in Table 2.1. The variable names with extension “_inst” are instantaneous variables, while
those with extension “ tavg” are backward 3-hour averaged variables. The GLDAS 2.1 dataset is

available to use on Google Earth Engine Platform (“NASA/GLDAS/V021/NOAH/G025/T3H",

https://developers.google.com/earth-

engine/datasets/catalog/NASA GLDAS V021 NOAH G025 T3H).



https://developers.google.com/earth-engine/datasets/catalog/NASA_GLDAS_V021_NOAH_G025_T3H
https://developers.google.com/earth-engine/datasets/catalog/NASA_GLDAS_V021_NOAH_G025_T3H

Table 2.1 Climate variables of GLDAS 2.1 used in this study.
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) . o ) Spatial Temporal
Variable name Unit Description min max ] ]
resolution  resolution
Tair_f_inst K Air temperature 206.8 327.66 0.25° 3-hourly
Rainf_f_tavg kg/m?/s  Total precipitation rate 0 0.01 0.25° 3-hourly
Downward short-wave
SWdown_f tavg W/m? o -56.93 30462.8  0.25° 3-hourly
radiation flux
Qair_f _inst ka/kg Specific humidity -0.02 0.07 0.25< 3-hourly
Psurf f _inst Pa Surface pressure 44063.1 108344 0.25< 3-hourly

We further calculated the vapor pressure deficit (VPD) as one of our input variables to the model

by using specific humidity. The VPD is the difference between the amount of moisture in the air

and how much moisture the air can hold when it is saturated (Howell and Dusek 1995). VPD as

an important driver of atmospheric water demand for plants, influences terrestrial ecosystem

function and photosynthesis (Rawson et al. 1977). VPD is commonly used in stomatal

conductance models to predict leaf stomatal conductance and photosynthesis (Leuning 1995).

Since most reanalysis climate datasets only provide dew point temperature or specific humidity

instead of vapor pressure deficit (VPD), calculations were needed to get the VPD. The VPD

(KPa) can be derived from the difference between saturated vapor pressure (es, KPa) and actual

vapor pressure (ea, KPa) (Yoder et al. 2005):

17.27-T

es = 0.61078 - eT+2373
ea =1.6077-q- P,

VPD = es —ea

(Eqg. 2.1)
(Eq. 2.2)

(Eq. 2.3)

where T is air temperature (<C), q is the specific humidity (kg/kg), and P, is atmospheric

pressure (KPa).
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2.1.2. Global atmospheric CO»

The Global Monitoring Laboratory (GML) of the NOAA/ESRL monitoring program provides
high-precision measurements of the global atmospheric distribution and trends of greenhouse
gases. The global averaged surface carbon dioxide from 1980 to the present are calculated based
on 43 marine boundary layer (MBL) sampling sites from the NOAA/GML global air sampling
network. The air samples collected from these sites are predominantly of well-mixed clean air to
eliminate the influences from nearby sinks and sources of COz, such as vegetation and human
activities (Masarie and Tans 1995). Here, the monthly global averaged CO- from 2001 to 2020

were downloaded and used (https://gml.noaa.gov/ccgg/trends/gl_data.html). Figure 2.1 shows

the trends in global monthly averaged atmospheric CO..
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Figure 2.1 Trends in global monthly averaged atmospheric COs.


https://gml.noaa.gov/ccgg/trends/gl_data.html
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2.1.3. Remote sensing datasets

Remote sensing data is commonly used to improve our understanding of global dynamics and
processes occurring on the land, in the oceans, and in the atmosphere. In this dissertation, remote
sensing data was used to support and drive our model and evaluate the simulation results, and the
four remote sensing datasets we used, including leaf area index (LAI), land cover type, land
cover dynamics (global vegetation phenology), and gross primary productivity (GPP), are all
from Moderate Resolution Imaging Spectroradiometer (MODIS) satellites.

LAI data is derived from the MCD15A3H Version 6.1 Level 4 product, which is a 4-day
composite dataset with 500-meter spatial resolution spanning from 2002 to the present. LAl is
defined as one-sided green leaf area per unit ground area in broadleaf canopies and one-half the
total needle surface area per unit ground area in coniferous canopies in this product. The LAI
dataset is available to use on the Google Earth Engine Platform (“MODIS/061/MCD15A3H”,
https://developers.google.com/earth-engine/datasets/catalog/MODIS_061_MCD15A3H).

Land cover type data is from the MCD12Q1 V6 product, and it provides global annual land
cover types during 2001 to 2019 at 500-meter spatial scale. We used the Annual University of
Maryland (UMD) classification system, which includes 16 different land cover types: evergreen
needleleaf forests, evergreen broadleaf forests, deciduous needleleaf forests, deciduous broadleaf
forests, mixed forests, closed shrublands, open shrublands, woody savannas, savannas,
grasslands, croplands, permanent wetlands, urban and built-up lands, cropland/natural vegetation
mosaics, non-vegetated lands, and water bodies (Table 2.2) , and the first 12 vegetation land
types were used to perform the model. The land cover type dataset is available to use on the
Google Earth Engine Platform (“MODIS/006/MCD12Q1”, https://developers.google.com/earth-

engine/datasets/catalog/MODIS_006_MCD12Q1).


https://developers.google.com/earth-engine/datasets/catalog/MODIS_061_MCD15A3H
https://developers.google.com/earth-engine/datasets/catalog/MODIS_006_MCD12Q1
https://developers.google.com/earth-engine/datasets/catalog/MODIS_006_MCD12Q1
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Table 2.2 Land cover type according to annual University of Maryland (UMD) classification.

Land cover type

Description

Water Bodies
Evergreen Needleleaf Forests (ENF)

Evergreen Broadleaf Forests (EBF)

Deciduous Needleleaf Forests (DNF)

Deciduous Broadleaf Forests (DBF)

Mixed Forests (MF)

Closed Shrublands (CSH)
Open Shrublands (OSH)
Woody Savannas (WSA)
Savannas (SAV)
Grasslands (GRA)
Permanent Wetlands (WET)

Croplands (CRO)
Urban and Built-up Lands

Cropland/Natural Vegetation
Mosaics

Non-Vegetated Lands

At least 60% of area is covered by permanent water bodies.
Dominated by evergreen conifer trees (canopy >2m). Tree
cover >60%.

Dominated by evergreen broadleaf and palmate trees (canopy
>2m). Tree cover >60%.

Dominated by deciduous needleleaf (larch) trees (canopy >2m).
Tree cover >60%.

Dominated by deciduous broadleaf trees (canopy >2m). Tree
cover >60%.

Dominated by neither deciduous nor evergreen (40-60% of
each) tree type (canopy >2m). Tree cover >60%.

Dominated by woody perennials (1-2m height) >60% cover.
Dominated by woody perennials (1-2m height) 10-60% cover.
Tree cover 30-60% (canopy >2m).

Tree cover 10-30% (canopy >2m).

Dominated by herbaceous annuals (<2m).

Permanently inundated lands with 30-60% water cover and
>10% vegetated cover.

At least 60% of area is cultivated cropland.

At least 30% impervious surface area including building
materials, asphalt and vehicles.

Mosaics of small-scale cultivation 40-60% with natural tree,
shrub, or herbaceous vegetation.

At least 60% of area is non-vegetated barren (sand, rock, soil)

or permanent snow and ice with less than 10% vegetation.

The land cover dynamics product (global vegetation phenology) from the MCD12Q2 V6 product

provides the estimates of the timing of vegetation phenology at global scales. The dataset

includes the information of the onset of greenness, greenup midpoint, maturity, peak greenness,

senescence, greendown midpoint, and dormancy over a vegetation cycle, and normally there are
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one or two observed vegetation cycles in a year. This product is yearly data from 2001 to 2018
with 500-meter spatial resolution. The land cover dynamics dataset is available to use on the
Google Earth Engine Platform (“MODIS/006/MCD12Q2”, https://developers.google.com/earth-
engine/datasets/catalog/MODIS_006_MCD12Q2).

The GPP dataset from the MOD17A2H V6 Gross Primary Productivity (GPP) product is a
cumulative 8-day composite data with a 500-meter spatial resolution from 2000 to the present,
and the GPP is calculated based on the light use efficiency model. The GPP dataset is available
to use on Google Earth Engine Platform (“MODIS/006/MOD17A2H”,

https://developers.google.com/earth-engine/datasets/catalog/MODIS 006 MOD17A2H).

2.1.4. Global C3 and C4 distribution map

The global distribution of C3 and C4 plants is crucial for accurately simulating the exchanges of
carbon, water, and energy between atmosphere and biosphere due to the physiological and
functional distinctions between C3 and C4 plants, such as physiological structures,
photosynthetic pathways, and the responses to changing CO3, light, and temperature. Therefore,
we used the distribution map of global C3 and C4 vegetation at 1-degree spatial scale provided
by Still et al. (2003) to incorporate different physiological processes of C3 and C4 vegetation. It
was developed by combining remote sensing products, physiological modeling, global crop
fractions, and national harvest area data, and as a result the C4 vegetation covers approximately
18.8 million km?, the C3 vegetation covers about 87.4 million km?, and the bare ground and ice
cover the rest of the land surface (Still et al. 2003). Figure 2.2 shows the global percentages of
C4 vegetation. We resampled the distribution map using nearest neighborhood method to a 0.25-

degree resolution.


https://developers.google.com/earth-engine/datasets/catalog/MODIS_006_MOD17A2H
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Figure 2.2 Global distribution of C3 and C4 vegetation, presented by the percentages of C4 (%).

2.1.5. Flux tower data

The FLUXNET is a global network that integrates multiple regional flux networks, such as
AmeriFlux, AsiaFlux, ChinaFlux, EuroFlux, OzFlux, and FLUXNET-Canada (Baldocchi et al.
2001), and it is the most comprehensive platform for integration and sharing flux measurements
currently. Globally, the FLUXNET synthesizes datasets from hundreds of observation sites that
measure carbon, water, and energy exchanges between the atmosphere and biosphere based on
eddy covariance methods.

The FLUXNET?2015 Dataset, which is hosted by the Lawrence Berkeley National Laboratory, is
the most recent FLUXNET data product after the FLUXNET Marconi Dataset (2000) and the
FLUXNET LaThuile Dataset (2007). The dataset contains not only the carbon and energy fluxes
but also the meteorological and biological measurements collected from 212 sites around the
globe spanning from the early 1990s to 2014 (Pastorello et al. 2020). The tower sites cover 15

land cover types, including evergreen needleleaf forest (ENF), evergreen broadleaf forest (EBF),
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deciduous needleleaf forest (DNF), deciduous broadleaf forest (DBF), mixed forest (MF),
grassland (GRA), cropland (CRO), closed shrubland (CSH), open shrubland (OSH), wetland
(WET), savanna (SAV), woody savanna (WSA), snow or ice covered land (SNO), urban and
built-up land, and barren or sparsely vegetated land. The outputs of FLUXNET2015 include over
200 variables, such as gross primary productivity, ecosystem respiration, net ecosystem
exchange, soil heat flux, sensible heat, latent heat, air temperature, soil temperature, longwave
radiation, and shortwave radiation, and provides five major temporal resolutions including half-
hourly/hourly, daily, weekly, monthly, and yearly. The dataset is now available to download for

public (https://fluxnet.org/data/fluxnet2015-dataset/).

2.2. Model description

2.2.1. Reconstructing LAI data

The 4-day LAI data derived from MODIS MCD15A3H product was reconstructed to obtain
continuous time series by fitting the double logistic function, and the noise and outliers were
detected and removed before the fitting. The first processing step was to eliminate the noise and
outliers based on the spatiotemporal correlations of neighboring pixels. We first checked the
multi-year time series of each pixel, and removed the outliers based on residual analysis and
boxplot. The outliers were defined either larger than the maximum or smaller than the minimum
(EqQ. 2.4-2.5). Then we applied a 5km by 5km moving window spatially to detect and remove the
outliers based on boxplot.

Minimum = Pys — (Py5 — Py5) X 1.5 (Eq. 2.4)

Maximum = P;5 + (P75 — Py5) X 1.5 (Eq. 2.5)


https://fluxnet.org/data/fluxnet2015-dataset/
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where P, is the 25th percentile and P, is the 75th percentile. After that, double logistic function
was fitted to the dataset after removing the apparent outliers from the LAI series. We then
removed the noise in a third time using boxplot based on the differences between original and
predicted LAI values.

After all the preprocessing steps, double logistic functions were fitted to the cleaned data to
obtain the continuous curves of LAI series, which is applicable to drive the global carbon cycle
model as major input. Double logistic function have been applied on the EVI, NDVI, or LAI
time series to obtain phenology information in previous studies (Cai et al. 2017, Testa et al.
2018). The two sigmoid curves could well indicate green-up and senescence phases of vegetation
growth. When fitting the double logistic function, we classified the pixels into two categories:
grids with single vegetation cycle and grids with double vegetation cycles according to the
numbers of vegetation cycles derived from the MODIS land cover dynamics product, and
applied corresponding double logistic functions to the two categories. For the grids with a single
vegetation cycle, the double logistic function we used in this study was described as (Gonsamo et

al. 2012):

az a3
1+e-v1(t-B1) 1+e-v2(t—B2)

LAI(t) = a; + (Eq. 2.6)
where t is the day of year (DOY), LAI(t) is the observed LAI at time t, a; is the background
LAI, a, — a4 is the difference between the background and the growth season plateau, y; and y,
are the transition in slope coefficients, and ; and 3, are the midpoints in DOY of these
transitions for green-up and senescence/abscission, respectively.

For the grids with double vegetation cycles, we used the phenology information from MODIS

land cover dynamics to detect the boundary between the two vegetation cycles. Then we fitted

the double logistic function (Eq. 2.7) for each cycle and found the solution of the two functions.
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LAI(t) = a; + ——2 L (Eq. 2.7)

1+e-Y1(t-B1) - 1+e-Y2(t-B2)

where a, — a4 is the difference between the background and the amplitude of spring and early
summer plateau, and a; — a; is the difference between the background and the amplitude of late
summer plateau and autumn. Figure 2.3 shows the illustration of the fitted curves and
corresponding parameters. After the fitting, the 7 derived parameters could provide the LAI

values for any given time.

(a)

——Green-up
V2 Senescence
—_ O Observations
<
— Q
OO
oooq}blqmnmmx
(b) .
O Observations
—Ist vegetation cycle M
. @ )
2nd vegetation cycle & Q@
®
O
®
= @
<
— O

DOY
Figure 2.3 Illustration of the fitted double logistic curves for (a) single vegetation cycle and (b) double
vegetation cycles, and the corresponding parameters.
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2.2.2. Integrated canopy radiative transfer model

First, we partitioned the total incoming radiation into direct and diffuse components based on the
cloudiness fraction. Then we improved the two-stream radiative transfer approximation that
considering multiple scattering within a finite canopy by using different scattering coefficient for
direct and diffuse radiation and quantified the transmission and reflection factors for direct and
diffuse radiation, respectively. And finally, we coupled the improved model to a two-leaf model
that considers the differences in the absorption of radiation between sunlit and shaded leaves.

Figure 2.4 illustrates the overview of our two-leaf canopy radiative transfer models.

[ Partitioning of radiation
1 Canopy radiative transfer model
l l l [ 1 Two-leaf model

Incoming downward
shortwave radiation

Partitioning

Diffuse Direct

radiation radiation Reflection

y y

>

<+ Multiple scattering >

-

—>| Direct radiation |—

%

&

—>| Scattered direct radiation |<

i

Two-leaf model

Absorption

=| Diffuse radiation

Transmission

Figure 2.4 Overview of the integrated radiation transfer model that quantify the radiation absorbed by the
canopy, which includes partitioning of radiation (yellow), canopy radiative transfer model (grey), and
two-leaf model (green).

Two-stream radiative
transmission model

<+
<

Partitioning of downward shortwave radiation to direct and diffuse radiation
The incoming direct radiation (S;) and diffuse radiation (S;) are partitioned from the total

downward shortwave radiation (S;) that reaching to the canopy according to Mahat and Tarboton
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(2012). First, we separated the total fraction of radiation reaching to the canopy in reaching to the
top atmosphere (AT, S;/S,) to direct (AT,) and diffuse (AT;) components. These two
components can be calculated as:

AT, = 2AT.(1 - Cf) (Eq. 2.8)

AT, = AT — AT, (Eq. 2.9)

where A is the ratio of direct to total radiation for clear sky, which assumes a fraction A of AT is
direct under a clear sky and all the radiation is diffuse when the sky is fully overcast, and the
value of 6/7 was used in our model, AT, represents the clear sky transmission factor and equals
max(AT, ag + b), as is the fraction of extraterrestrial radiation on overcast days, as + b is the
fraction of extraterrestrial radiation on clear days, and ag = 0.25 and b = 0.50 are recommended
by Shuttleworth (1993). The cloudiness fraction Cy is assumed to be 0 on a clear sky while
equals to 1 on a fully cloudy sky where all the radiation is from diffuse radiation. We estimated
the cloudiness fraction based on the total incoming shortwave radiation using the following

empirical relationship:

S, = (as +by(1 - cf))s0 (Eq. 2.10)
where S, is the extraterrestrial radiation calculated by S, cos 6 (S, as solar constant,
approximately equals to 1367 W/m?, and 6 as solar zenith angle).

After we have the AT, and AT, following the above equations, then the direct radiation and

diffuse radiation are given by:

AT
Sp=="S; (Eq. 2.11)
s, =g (Eq. 2.12)

AT
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Canopy radiative transfer model

Once the direct radiation and diffuse radiation are separated from the total downward shortwave
radiation, we assumed that the two components penetrate the canopy separately. A radiative
transmission model considering multiple scattering using a two-stream approach in a finite
canopy (Mahat and Tarboton 2012) was applied in this paper. This model was developed based
on Beer’s law but was adjusted for multiple scattering and reflection. And it assumed the
radiation is scattered equally in an upward and downward direction and the scattering direction is
along the same path as the incoming radiation. This model considered that the incoming
radiation is either transmitted through the canopy, or reflected by the canopy, or absorbed by the
canopy.

The transmission factor (z) and reflection factor () with multiple scattering for both direct and

diffuse radiation could be estimated by Eq. 2.13 and Eq. 2.14:

_ -8

T 18N (Eq. 2.13)

_ B'[1-(H?
b= 1-(B"2(z")2

(Eq. 2.14)
The above equations for a finite canopy were obtained by recursive superposition of the solution
for infinitely deep canopy. And 7’ and B’ are the corresponding transmission and reflection

factors for an infinitely deep canopy, which could be calculated by:

1, = e ViTaKplAl (Eqg. 2.15)

14 = [(1 = VI = aGLADe V=96l 4 (VT = aGLAI) E;(1,VT — aGLAI) (Eq. 2.16)

ﬁ, _ 1-VJ1-«a
T 1+V1-a

(Eq. 2.17)
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where a is the leaf scattering coefficient (different values are used for direct and diffuse
radiation, where a;, =0.1 and a; =0.65), LAl is the leaf area index, G = ¢, + @, cos0 is the
leaf orientation factor depending on solar zenith angle (Dai et al. 2004), ¢; = 0.5 — 0.633y —
0.33x2, ¢, = 0.877(1 — 2¢,), and y is an empirical leaf angle distribution parameter ranging
from -1 to 1 (-1 for vertical distributed leaves, O for spherical leaf angle distribution with
randomly distributed leaves, and 1 for horizontal distributed leaves), k;, = G/cos@ is the
extinction coefficient of black leaves, and E;(n, x) is exponential integral with n a nonnegative

integer (Nijssen and Lettenmaier 1999), defined as:

00 e—Xt

Ei(n,x) = [| ——dt (Eq. 2.18)

' =1, isused in eqg. 2.13 and eq. 2.14 when calculating the transmission and reflection factors
of direct radiation (z, and f3,), while " = ;' is used for diffuse radiation. Since the approach
for diffuse radiation is just an integral of single beam components over the hemisphere, so the
reflection factors for an infinitely deep canopy f8," and ;" are estimated using the same equation
(eq. 2.17).

Then the transmitted and reflected radiation are calculated by multiplying the corresponding

factors to the incoming direct or diffuse radiation, respectively.

Two-leaf model

To estimate the radiation absorbed by the canopy, we applied a two-leaf model based on Wang
and Leuning (1988) that separates the canopy into two groups of leaves including sunlit leaves
and shaded leaves, which receive different components and portions of incoming shortwave
radiation. It is assumed that the sunlit leaves receive both direct and diffuse solar radiation, while

shaded leaves absorb the diffuse radiation only (Spitters 1986).
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The leaf area index (LAI) of sunlit and shaded leaves of the canopy were derived by Dai et al.

2004:

1

LAlgun = (1 — e~KplAl (Eg. 2.19)

LAl pgae = LAI — LAl g, (Eq. 2.20)
Then the total solar radiation flux density absorbed by the sunlit leaves in the canopy is given as
the sum of the direct component of direct radiation AS,, ;,, the scattered component of direct
radiation AS,, 5, and the diffuse radiation AS,, which is:
ASqun = AS,, + AS, s + AS, (Eq. 2.21)
And the solar radiation flux absorbed by the shaded leaves in the canopy is given as the sum of
the scattered component of direct radiation AS, s and the diffuse radiation AS,, represented as:
ASsnage = ASp s + ASy (Eq. 2.22)
The absorption of the diffuse radiation and the scattered component of direct radiation is
averaged over the total leaf area, while the absorption of the direct component of direct radiation

is given per unit of sunlit leaf area only.

a) :Bdsd/‘ / Sa b) ﬁbsb/‘ / Sb,s/ Sh,b

Sunlit

LAI LAI
Shaded

TaSq TpSh

Figure 2.5 Illustration of the radiation transfer through a canopy for diffuse (a) and direct (b) radiation.

We coupled the canopy radiative transfer model into the two-leaf model to calculate the

absorption of different radiation components by the sunlit and shaded leaves (Figure 2.5).



31

Absorption is the complement to transmission and reflection, hence the absorbed diffuse
radiation AS, is given by:
ASy = Sq(1 =14 — Ba) (Eg. 2.23)
The absorbed direct component (excluding scattering) of direct radiation AS,, , can be expressed
as (Spitters 1986 (second part in eq.14)):
ASpp = SpKp (Eq. 2.24)
And the absorbed scattered component of direct radiation AS,  can be calculated as:

ASps = Sp(1 —Tp — Bp) — ASpp (Eq. 2.25)

2.2.3. Stomatal conductance

In our study, the Ball-Berry-Leuning (BBL) stomatal conductance model was coupled in the

photosynthesis process (Leuning 1995), and the stomatal conductance is given by:

A
=go+ 0gq- L Eq. 2.26
9s = Yo T Y1 (1+%)-(ca—r*) (Eq )

where A,, is the net leaf CO> assimilation rate, VPD is vapor pressure deficit, C, is CO-
concentration at the leaf surface, I'* is the CO2 compensation point, and g,, g, and D, are
empirical coefficients and their values (Panek and Goldstein 2001) are presented in Table 2.3.
We also provide Ball-Berry model (Ball 1988) as another option for calculating stomatal

conductance. In Ball-Berry model, the stomatal conductance is given by:

Ap'RH
Ca

9s =90+ g1~ (Eq. 2.27)

where RH is relative humidity, and other parameters are the same as in the BBL model.



Table 2.3 Parameters for stomatal conductance and photosynthesis.

Parameter Value  Unit References
Jo 75 - Panek and Goldstein 2001
g1 0.01 mol m2s! Panek and Goldstein 2001
Dy 2 KPa Panek and Goldstein 2001
0 0.7 - Medlyn et al. 2002
a 0.3 mol mol*! Medlyn et al. 2002
ky 0.7 -- Oleson et al. 2013
0; 210 mmol mol? -
Rgas 8314 JK'molt -
Kyos 248 mmol mol*  Thornton 2010
Ko 404 pumol mol? Thornton 2010
Q1ok, 1.2 - Thornton 2010
Q1o 2.1 - Thornton 2010
Q10,ry 2.0 - Thornton 2010
Q10 2.0 - Oleson et al. 2013
S, for Vemax 0.3 K Oleson et al. 2013
S, for Vemax 313.15 K Oleson et al. 2013
S3 0.2 K1 Oleson et al. 2013
S, 288.15 K Oleson et al. 2013
S, for R, 1.3 K1 Oleson et al. 2013
S, for Ry 328.15 K Oleson et al. 2013
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2.2.4. Photosynthesis

The photosynthesis model was performed for the C3 and C4 vegetation separately. Then, the C3
and C4 distribution map was used to get the relative proportions of C3 and C4 in each pixel, and
the sum of the results provided the final photosynthesis carboxylation at each pixel.
We used the biochemical photosynthesis model for C3 plants based on the model of Farquhar et
al. (1980) and C4 plants based on the model of Collatz et al. (1992). The net leaf photosynthesis
A,, could be modeled as the minimum of three limiting rates after accounting for dark respiration
(Ry, leaf daytime maintenance respiration):

An = min(A., 4j,A,) — Ry (Eq. 2.28)

A, is the rate of photosynthesis when the RuBP carboxylase (Rubisco) is limited, which is given

by:
Ay = Vi - —C for C3 plant Eq. 2.29
¢ = Yemax " ¢k (140,/K,) or Ls plants (Eg. 2.29a)
A: = Voax  for C4 plants (Eq. 2.29b)

where V..qx 1S the maximum rate of carboxylation, C; is the intercellular CO. concentration, O;
is the atmospheric concentration of O, I'* is the CO, compensation point in the absence of dark
respiration, and K, and K,, are the Michaelis—Menten constants for rubisco carboxylation and
oxygenation, respectively, scaled by the temperature using a Q1o relationship. The Rubisco
activity K. and K,can be calculated following the Michaelis—Menten dynamics for CO and Oz,
respectively (Thornton 2010). The calculation of K, varies depending on the temperature

threshold of 15 degree C. The equations used to calculate K. and K, are described:

Tc—25

K, = Koz5 X Q10k, 1° (Eq. 2.30)
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Tc—25

Kcos X QlO,KC 10 for T, > 15°C
K. = Te-15 (Eq. 2.31)

KeasX(1.8%Q10Kk,) 10 for T, < 15°C
Q10K T

where T, is the leaf temperature in Celsius degrees.

A; is the rate of photosynthesis when the regeneration of RuBP is limited (light-limited), which is

given by:
A =]~ G forC3 plant (Eq. 2.32a)
j =) acrer or C3 plants g. 2.
Aj =0.067 *Q  for C4 plants (Eq. 2.32b)

where J is the rate of electron transport, and it depends on the photosynthetically active radiation
absorbed by the leaf expressed as (Medlyn et al. 2002):

0J% — (@Q + Jmax) + @QJmax =0 (Eq. 2.33)
where /.45 1S the maximum potential rate of electron transport, Q is the photosynthetically
active photon flux density, 6 is the curvature parameter of the light response curve, and « is the
quantum yield of electron transport.
A, is the rate of photosynthesis when the product is limited for C3 plants and when the PEP
carboxylase is limited for C4 plants, which is given by:

Ap = 0.5V;max  for C3 plants (Eq. 2.34a)

Ci

A, =k, x 10° X for C4 plants (Eq. 2.34b)

atm

where k,, is the initial slope of C4 CO. response curve and P, is the atmospheric pressure. The
values of the parameters are listed in Table 2.3.
We also coupled the Eq. 2.37 that represents the CO> diffusion constraints of photosynthetic rate:

A(C orj) = (Ca — i) X Geo2 (Eq. 2.35)
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where, C, is the atmospheric CO concentration and G, is the velocity of CO; diffusion from

atmosphere into leaves.

We used a temperature function and high temperature stress function to scale and describe the
temperature dependences of V.,,.qxr Jmax, ' @nd R, (Bernacchi et al. 2001, Bonan et al. 2011,

Medlyn et al. 2002, Oleson et al. 2013). For C3 plants, the equations are expressed as below:

Vemax = Vemaxzs X f(T) X fu (T) (Eq. 2.36)
Jmax = Jmaxzs X f (T) X fu(T) (Eq. 2.37)
Raq = Razs X f(T) X fu(T) (Eq. 2.38)
I =T"5xf(T) (Eqg. 2.39)

with the temperature functions described as:

AH g %(T},—298.15)

f(T) = @ 298.15XRgasxT (Eq. 2.40)

298.15xAS—AH g
e 29815xRgas

1+
fu(T) = ASXTy—AHg (Eq. 2.41)
1+e Rgas<Tk

Where Ty, is the leaf temperature in Kelvin, R, is the universal gas constant, the values of
temperature dependence parameters AH,, AH,, and AS are listed in Table 2.4, and the J,,,4x25,
Ry4,c, and I'*,5 are the corresponding parameters at 25 degree C and are calculated as: /4525 =

1.97chax25, Rd25 == 0.015chax25, and I—'*25 == 4'275
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Table 2.4 Temperature dependence parameters.

Parameter AH, (3/mol) AHy; (J/mol)  AS (J/mol/K)

Voo 65330 149250 485

T 43540 152040 495
Ry 46390 150650 490
re 37830 ; ]

For C4 plants, the temperature dependence of V., IS scaled by high temperature stress function

and low temperature stress function,

T} —298.15
_ Q19 10
Vemax = Vemaxzs [fH(T)XfL(T)] (Eq. 2.42)
fu(T) = 1+ es*(Tk=s2) (Eq. 2.43)
f(T) = 1 + e%3%(a=Tk) (Eq. 2.44)

where the values of s,, 55, 53, and s, are listed in Table 2.3, and the temperature dependence of

dark respiration is expressed as:

Rd = RdZS (Eq 245)

Ty—298.15
Qo 10

fu(T)

The maximum rate of carboxylation at 25 degree C (V.4x25) depends on the leaf nitrogen
concentration and specific leaf area,

Vemaxas = Ng X Fyg X Fyg X Qgos (Eq. 2.46)
where N, is the leaf nitrogen concentration (gN per m? leaf area), F; yx is the fraction of leaf
nitrogen in Rubisco (gN in Rubisco per gN in leaf), Fyr = 7.16 is the weight proportion of

Rubisco to its nitrogen content (g Rubisco per gN in Rubisco), and ag,s = 60 is the specific
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activity if Rubisco (umol CO2 per g Rubisco per second). The leaf nitrogen concentration N, is a

function of C/N ration and specific leaf area:

1
a " CNyxSLA (Eq. 247)

the CN, is the ration of carbon to nitrogen in the leaf (gC/gN) and SLA is the specific leaf area
(m? leaf area per gC). The CN;, SLA, and F, yx varies for different vegetation type, and the

values can be found in Table 2.5 (Thornton 2010, Oleson et al. 2013).

Table 2.5 Photosynthetic parameters for V,,,qxas-

Vegetation type CN, SLA Fingr

ENF 42 0.012 0.040
EBF 35 0.012 0.046
DNF 25 0.024 0.055
DBF 24 0.030 0.080
MF 32 0.020 0.060
CSH 42 0.012 0.040
OSH 42 0.012 0.040
WSA 25 0.030 0.090
SAV 25 0.030 0.090
GRA 24 0.045 0.120
WET 42 0.012 0.040
CRO 25 0.070 0.410

2.3. Statistical analysis

The Pearson correlation coefficient. The Pearson correlation coefficient (r) is commonly used

to measure the linear correlation between two sets of data. Here, we used Pearson’s r to evaluate


https://en.wikipedia.org/wiki/Linear
https://en.wikipedia.org/wiki/Correlation_and_dependence
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the climate variables from GLDAS 2.1 datasets to the observations from flux tower sites, and it
could be expressed as:

_ 2(xi—x)(yi—Y)
VEIi-02Y(i-y)?

(Eq. 2.48)

where x; and y; denote the ith data in the two datasets, respectively, x and y represent the mean
of the two datasets, respectively.

The root mean square error & The Bias. The root mean square error (RMSE) and the Bias are
frequently used to measure the differences between estimated data and observed data. We used
RMSE and Bias in our research to measure the differences between the climate variables derived

from GLDAS 2.1 or our estimated LAI and GPP to the flux tower observations. Their equations

Wwere:
5.2
RMSE = [HE2) (Eq. 2.49)
Bias = @ (Eg. 2.50)

where x; and Xx; are the ith observed data and estimated data, respectively, and N is the number
of the samples. And the relative RMSE and the relative Bias were obtained by dividing the
means of the variables.

The goodness of fit. The goodness of fit (R?) is an important index that describes how well a
model fits a set of observations, and measuring the goodness of fit could summarize the
discrepancy between observed data and model predicted data. In this study, the goodness of fit

was used to assess the performance of the double logistic fitting to LAI, and was calculated as:

2 _ 2@i=y)?

= Eqg. 2.51
Si-7)? (Eq.2.51)
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where y; denotes the ith observation data, y; represents the ith data predicted by the double
logistic function, and y is the mean of the observation samples.

The trends of the variables (climate variables and GPP) in our research were determined by
linear regression analyses and corresponding F tests were used to test the statistical significance

of the trends at a 1% significance level.

2.4. Sensitivity analysis

We performed a simple sensitivity analysis for global GPP estimated by our model in 2013 by
using the method provided by Ryu et al. 2011. Six variables including air temperature, solar
radiation, atmospheric CO2 concentration, vapor pressure deficit (VPD), leaf area index (LAI),
and V qx25 Were selected to examine the sensitivities of our model to these key environmental
and biophysiological drivers. We changed the values of each variable by +30% while keeping

other variables the same, and compared the GPP outputs.
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3. Investigating the variation of climate variables from GLDAS 2.1 and assessing the

performance of fitting double logistic functions of LAI

Key model input data, including GLDAS 2.1-derived reanalysis climate data and satellite-based
MODIS LAI data, were evaluated and improved to reduce the biases before inputting to the
process-based ecosystem model. This chapter evaluated five GLDAS 2.1-derived climate
variables, including air temperature, precipitation, downward shortwave radiation, air pressure,
and VPD (derived from specific humidity), against the observations from 120 worldwide flux
tower sites. The temporal and spatial variations of the five climate variables from 2001 to 2020
were also investigated at global scale. Moreover, remote sensing LAI product (MCD15A3H) was
reconstructed to obtain a high-quality and continuous time series by fitting double logistic

functions after eliminating noise and outliers.

3.1. Evaluating the climate variables from GLDAS 2.1 using flux tower observations

The air temperature, precipitation, downward shortwave radiation, air pressure, and VPD
(derived from specific humidity) obtained from GLDAS 2.1 were evaluated by the flux tower

observations. We integrated the 3-hour GLDAS 2.1 data to daily scale and extracted the 0.25° X
0.25° pixels using the geographic coordinates of the 120 selected flux tower sites, then we

compared the GLDAS estimates with flux tower observations over daily scale. The selected flux
towers cover 13 major vegetation types including evergreen needleleaf forest (ENF), evergreen
broadleaf forest (EBF), deciduous needleleaf forest (DNF), deciduous broadleaf forest (DBF),
mixed forest (MF), grassland (GRA), cropland (CRO), closed shrubland (CSH), open shrubland
(OSH), wetland (WET), savanna (SAV), woody savanna (WSA), and snow or ice covered land

(SNO). Detailed information for the sites is shown in Table A.1.
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The GLDAS-derived air temperature was highly correlated to the flux tower observations, with
the Pearson's correlation coefficient larger than 0.85 for all the flux sites (Figure 3.1). The RMSE
ranged from 0.85<C to 5.30<C with the mean of 2.10<C. And the bias varied from -3.98<C to
2.07<C with the mean of -0.20<C.

The GLDAS-derived solar radiation also showed a strong relationship to the flux tower
observations, with an average r of 0.91 (Figure 3.2). The RMSE varied from 23.31W/m? to
75.16W/m? with the mean of 37.96W/m?2. And the bias ranged from -22.92 W/m? to 18.02 W/m?
with the mean of -0.66 W/m?,

For the air pressure, the average of the correlation coefficient between GLDAS-derived data and
flux tower observations was 0.91, but with relative large variation (Figure 3.3). The RMSE
varied from 0.04KPa to 3.22KPa with an average of 0.74KPa. And the bias ranged from -2.91
KPa to 3.20KPa with the mean of -0.01KPa.

For the VPD, we found good relationships between GLDAS data and flux tower data on the sites
of all the vegetation types, except NO-Blv where it was mainly covered by snow or ice (Figure
3.4). The average of Pearson’s r over all the sites was 0.86. The RMSE varies from 0.07KPa to
0.53KPa with an average of 0.24KPa. And the bias ranged from -0.32KPa to 0.25KPa with the
mean of -0.04KPa.

For the precipitation, the GLDAS-derived data showed a poor relationship to the flux tower
observations for all vegetation types at daily scale, with an average r of 0.44 (Figure 3.5). The
RMSE varies from 1.81mm to 13.08mm with an average of 5.35mm,and the bias ranges from -
0.86mm to 1.44mm with the mean of 0.43mm. The GLDAS 2.1 data exhibited an overall

overestimation on precipitaion with 85% sites showing positive bias.
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Figure 3.1 Comparison of daily air temperature (C) between the observations from flux towers and the
data retrieved from GLDAS 2.1.

§8

foxelel

g P oo
o %p
o

(o]

00 a0y )|

@ ©

[eesSel

[0}

o P

TR p™®
e

rrrrrgr T

o o

o

[e]
o]

O
O~do o
Otb(xocp

o]
o]
dpcooo Cbmo o: Coc0 UCtD

©
$o
chd-)

Hgrrhrrrh

IEREENENEEN TN

I

Lo @

1

INEENT

TN AIN TR AN TN EN]

(e]
o o
[e]

e}
(o]

o}

NIRRT NN TN TN NN AN

TEEEEE]

a,

¢

INEEN

(o]

o]

o]
o

1

1

NN REEN

INEENE]

CRO

CSH

DBF

DNF EBF

ENF

GRA

MF OSH SAV SNO WET ~WSA
Figure 3.2 Comparison of daily downward shortwave radiation (W/m?) between the observations from
flux towers and the data retrieved from GLDAS 2.1.
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Figure 3.3 Comparison of daily air pressure (KPa) between the observations from flux towers and the data
retrieved from GLDAS 2.1.
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Figure 3.4 Comparison of daily VPD (KPa) between the observations from flux towers and the data
retrieved from GLDAS 2.1.
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Figure 3.5 Comparison of daily precipitation (mm) between the observations from flux towers and the
data retrieved from GLDAS 2.1.

Though there exist some variation between the two datasets, the five climate variables derived
from GLDAS showed strong linear relationship with the flux tower observations at annual scale
and the relationships were all statistically significant (P<0.01) (Figure 3.6). The R? was larger
than 0.93 for all the variables except precipitation (R? = 0.77). Notably, we found that the
relative RMSE was high in precipitation (32.63%) and precipitation showed large and positive
relative bias (22.92%) (Table 3.1), revealing that the GLDAS 2.1 tended to overestimate the
precipitation with an average bias of 222.22mm. The discrepancy might be caused by the high
spatial variability of precipitation, which made it difficult to quantify in large scale. Besides the
annual total precipitation amount, the GLDAS 2.1-derived annual air temperature, solar
radiation, air pressure, and VPD were able to provide highly correlated results but seemed to be
slightly underestimated with an average bias of -0.20<C, -0.66W/m?, -0.01KPa, and -0,04KPa,

respectively.
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Table 3.1 The RMSE and bias of the five climate variables between GLDAS 2.1 and flux tower sites.

RMSE Bias
Variables (Units) Relative (%) Relative (%)
Temperature (<T) 0.94 10.18 -0.20 -2.12
Radiation (W/m?) 7.79 4.88 -0.66 -0.42
Pressure (Kpa) 0.97 1.00 -0.01 -0.01
VPD (Kpa) 0.11 18.66 -0.04 -6.33
Precipitation (mm)  222.22 32.63 156.12 22.92
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Figure 3.6 Comparison of annual means of a) air temperature, b) downward shortwave radiation, c) air
pressure, d) vapor pressure deficit (VPD), and e) precipitation amount between the observations from flux
towers and the data retrieved from GLDAS 2.1.
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Our results indicated that the GLDAS 2.1 data had a good agreement with the in-situ flux tower
observations on air temperature, solar radiation, air pressure, and VPD at both daily and annual
scales, while it failed to accurately capture the precipitation amount. The obvious overestimation

in precipitation data should be carefully considered before using.

3.2. Characterizing the temporal and spatial variations of climate variables from GLDAS 2.1

The GLDAS 2.1-derived global annual mean air temperature varied from 12.87<C to 14.37C,
with an average of 13.59<C, during the study period from 2001 to 2020. The air temperature
exhibited a significant warming trend (p < 0.01) with an increase of 11% during this period
(Figure 3.7a). We also found that the increase rate of the second decade (0.6 <C per decade from
2011 to 2020) doubled the increase rate of the first decade (1.2<C per decade from 2000 to
2010), indicating a continuous warming in recent decades.

The global annual downward shortwave radiation, known as solar radiation, ranged from
185.98W/m? to 195.06W/m?, with an average of 189.84W/m? within the 20 years. Interestingly,
we found a jump in global annual solar radiation after 2010. The mean of the solar radiation after
2010 was 192.33W/m?, which was 2.66% higher than the mean of the solar radiation before
2010. Although the global annual solar radiation significantly (p < 0.01) increased 3% during
2001-2020 (Figure 3.7b), the solar radiation did not show a significant trend (p = 0.23) in the
first decade while it exhibited a significant dimming trend (p = 0.01) of -0.42W/m?/yr during the
second decade. Our result was in agreement with the study from Yuan et al. (2021), who found a
brightening trend since 1982 till 2019. However, the solar radiation in the 2000s did not have too
much differences compared to that in the 2010s in Yuan et al.’s paper. This discrepancy might be

from the different data sources of the studies.
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The global air pressure did not show a significant change (p = 0.47) during the study period from
2001 to 2020, and it varies from 93.96KPa to 94.06KPa with an average of 94.01KPa (Figure
3.7¢). However, the global annual air pressure exhibited a decreasing trend by 0.05KPa/decade
in the first decade and then increased by 0.08KPa/decade in the second decade, and both of the
changes were statistically significant at 5% significance level with p = 0.02 for both.

The global annual averaged vapor pressure deficit varies from 0.65KPa to 0.96KPa with an
average of 0.80KPa during the period of 2001-2020. The annual VPD shows significantly
increasing trend (p < 0.01) in a rate of 0.15KPa/decade from 2001 to 2020, and the increasing
trend was consistent during the two decades (Figure 3.7d). Our study confirmed the findings in
Yuan et al. (2019) that the global VVPD strongly increased after the late 1990s.

The global annual precipitation amount varied from 816.92mm to 991.28mm, with an average of
870.91mm, during the study period from 2001 to 2020. The precipitation showed a significant
increasing trend (p = 0.013) at 5% significance level during this period, and the trend increased
by 49.57mm/decade (Figure 3.7e). However, the changes in both of the two decades during our
study period were not statistically significant. The precipitation was relatively stable in the first

15 years, and rapidly increased 14% after 2015 followed by a 14% drop in 2020.
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pressure, d) vapor pressure deficit (VPD), and €) precipitation amount retrieved from GLDAS 2.1 from

2001 to 2020. The dashed lines indicate the annual trends for the corresponding climate variables.

The five climate variables showed different spatial variations in global scale and their changes

over the past decades were not homogenous in space. The annual average air temperature ranged
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from -26.09<C to 34.16 <C during 2001 to 2020. The annual temperature showed an apparent
decreasing gradient from the equator along the latitude with some exceptions at high elevations
such as the Tibetan plateau in China, the Andes Mountains in the western South America, and
the North American Cordillera in the western North America (Figure 3.8-al). During the recent
two decad