Staff View
A novel dynamic power cutoff technology (DPCT) for active leakage reduction in deep submicron VLSI CMOS circuits

Descriptive

TitleInfo (displayLabel = Citation Title); (type = uniform)
Title
A novel dynamic power cutoff technology (DPCT) for active leakage reduction in deep submicron VLSI CMOS circuits
Name (ID = NAME001); (type = personal)
NamePart (type = family)
Yu
NamePart (type = given)
Baozhen
NamePart (type = date)
1973-
DisplayForm
Baozhen Yu
Role
RoleTerm (authority = RUETD)
author
Name (ID = NAME002); (type = personal)
NamePart (type = family)
Bushnell
NamePart (type = given)
Michael
Affiliation
Advisory Committee
DisplayForm
Michael Bushnell
Role
RoleTerm (authority = RULIB)
chair
Name (ID = NAME003); (type = personal)
NamePart (type = family)
Marsic
NamePart (type = given)
Ivan
Affiliation
Advisory Committee
DisplayForm
Ivan Marsic
Role
RoleTerm (authority = RULIB)
internal member
Name (ID = NAME004); (type = personal)
NamePart (type = family)
Zhang
NamePart (type = given)
Yanyong
Affiliation
Advisory Committee
DisplayForm
Yanyong Zhang
Role
RoleTerm (authority = RULIB)
internal member
Name (ID = NAME005); (type = personal)
NamePart (type = family)
Sheng
NamePart (type = given)
Kuang
Affiliation
Advisory Committee
DisplayForm
Kuang Sheng
Role
RoleTerm (authority = RULIB)
internal member
Name (ID = NAME006); (type = personal)
NamePart (type = family)
Agrawal
NamePart (type = given)
Vishwani
Affiliation
Advisory Committee
DisplayForm
Vishwani Agrawal
Role
RoleTerm (authority = RULIB)
outside member
Name (ID = NAME007); (type = corporate)
NamePart
Rutgers University
Role
RoleTerm (authority = RULIB)
degree grantor
Name (ID = NAME008); (type = corporate)
NamePart
Graduate School - New Brunswick
Role
RoleTerm (authority = RULIB)
school
TypeOfResource
Text
Genre (authority = marcgt)
theses
OriginInfo
DateCreated (qualifier = exact)
2007
DateOther (qualifier = exact); (type = degree)
2007
Language
LanguageTerm
English
PhysicalDescription
Form (authority = marcform)
electronic
InternetMediaType
application/pdf
InternetMediaType
text/xml
Extent
xiii, 101 pages
Abstract
Due to the exponential increase of subthreshold and gate leakage currents with technology scaling, leakage power is increasingly significant in CMOS circuits as the technology scales down. The leakage power is as much as 50% of the total power in the 90nm technology and is becoming dominant in more advanced CMOS technologies with smaller feature sizes. Also, the leakage in active mode is significantly larger due to the higher die temperature in active mode. Although many leakage reduction techniques have been proposed, most of them can only reduce the circuit leakage power in standby mode.
In this thesis, we present a novel active leakage power reduction technique using dynamic power cutoff, called the dynamic power cutoff technique (DPCT). To reduce the active leakage power, we target the idle part of the circuit when it is in active mode. First, the switching window for each gate, during which a gate makes its transitions, is identified by static timing analysis. Then, the circuit is optimally partitioned into different groups based on the minimal switching window (MSW) of each gate. Finally, power cutoff transistors are inserted into each group to control the power connections of that group. The power of each gate is only turned on during a small timing window within each clock cycle, which results in significant active leakage power savings. Standby leakage can also be reduced by turning off the power connections of all gates all of the time once the circuit is idle. This technique also reduces dynamic power and short-circuit power by reducing the circuit glitches.
Experimental results on ISCAS '85 benchmark circuits at the logic level modeled using 70nm Berkeley Predictive Models show up to 90% of active leakage, 99% of standby leakage, up to 54% of dynamic, and up to 72% of total power savings. DPCT can also reduce the maximal voltage drop on the power grid by more than 30% on average. With process variations, the average total power and active leakage power savings will be reduced by 12.7% and 14.8%, respectively. In spite of that, DPCT still gives excellent power savings, which are 73.6% of active leakage power and 34.7% of total power under process variations. We also implemented the layouts of a 16-bit multiplier and a c432 using DPCT. The experimental results for the layout designs confirmed the effectiveness of DPCT in physical level design.
Note (type = degree)
Ph.D.
Note (type = bibliography)
Includes bibliographical references (p. 94-100).
Subject (ID = SUBJ1); (authority = RUETD)
Topic
Electrical and Computer Engineering
Subject (ID = SUBJ2); (authority = ETD-LCSH)
Topic
Electronic circuits
RelatedItem (type = host)
TitleInfo
Title
Graduate School - New Brunswick Electronic Theses and Dissertations
Identifier (type = local)
rucore19991600001
Identifier (type = hdl)
http://hdl.rutgers.edu/1782.2/rucore10001600001.ETD.16802
Identifier
ETD_444
Location
PhysicalLocation (authority = marcorg); (displayLabel = Rutgers, The State University of New Jersey)
NjNbRU
Identifier (type = doi)
doi:10.7282/T30Z73PM
Genre (authority = ExL-Esploro)
ETD doctoral
Back to the top

Rights

RightsDeclaration (AUTHORITY = GS); (ID = rulibRdec0006)
The author owns the copyright to this work.
Copyright
Status
Copyright protected
Availability
Status
Open
AssociatedEntity (AUTHORITY = rulib); (ID = 1)
Name
BAOZHEN YU
Role
Copyright holder
Affiliation
Rutgers University. Graduate School - New Brunswick
RightsEvent (AUTHORITY = rulib); (ID = 1)
Type
Permission or license
Detail
Non-exclusive ETD license
AssociatedObject (AUTHORITY = rulib); (ID = 1)
Type
License
Name
Author Agreement License
Detail
I hereby grant to the Rutgers University Libraries and to my school the non-exclusive right to archive, reproduce and distribute my thesis or dissertation, in whole or in part, and/or my abstract, in whole or in part, in and from an electronic format, subject to the release date subsequently stipulated in this submittal form and approved by my school. I represent and stipulate that the thesis or dissertation and its abstract are my original work, that they do not infringe or violate any rights of others, and that I make these grants as the sole owner of the rights to my thesis or dissertation and its abstract. I represent that I have obtained written permissions, when necessary, from the owner(s) of each third party copyrighted matter to be included in my thesis or dissertation and will supply copies of such upon request by my school. I acknowledge that RU ETD and my school will not distribute my thesis or dissertation or its abstract if, in their reasonable judgment, they believe all such rights have not been secured. I acknowledge that I retain ownership rights to the copyright of my work. I also retain the right to use all or part of this thesis or dissertation in future works, such as articles or books.
Back to the top

Technical

Format (TYPE = mime); (VERSION = )
application/x-tar
FileSize (UNIT = bytes)
2748928
Checksum (METHOD = SHA1)
6210f86eb3297f8c1ddeb82c19817b072608a0d9
ContentModel
ETD
CompressionScheme
other
OperatingSystem (VERSION = 5.1)
windows xp
Format (TYPE = mime); (VERSION = NULL)
application/x-tar
Back to the top
Version 8.5.5
Rutgers University Libraries - Copyright ©2024