Staff View
Aggregate breakdown of nanoparticulate titania

Descriptive

TitleInfo (displayLabel = Citation Title); (type = uniform)
Title
Aggregate breakdown of nanoparticulate titania
Name (ID = NAME001); (type = personal)
NamePart (type = family)
Venugopal
NamePart (type = given)
Navin
NamePart (type = date)
1979-
DisplayForm
Navin Venugopal
Role
RoleTerm (authority = RUETD)
author
Name (ID = NAME002); (type = personal)
NamePart (type = family)
Haber
NamePart (type = given)
Richard
Affiliation
Advisory Committee
DisplayForm
Richard A Haber
Role
RoleTerm (authority = RULIB)
chair
Name (ID = NAME003); (type = personal)
NamePart (type = family)
Chhowalla
NamePart (type = given)
Manishkumar
Affiliation
Advisory Committee
DisplayForm
Manishkumar Chhowalla
Role
RoleTerm (authority = RULIB)
internal member
Name (ID = NAME004); (type = personal)
NamePart (type = family)
Niesz
NamePart (type = given)
Dale
Affiliation
Advisory Committee
DisplayForm
Dale E Niesz
Role
RoleTerm (authority = RULIB)
internal member
Name (ID = NAME005); (type = personal)
NamePart (type = family)
Johnson
NamePart (type = given)
Robert
Affiliation
Advisory Committee
DisplayForm
Robert E Johnson
Role
RoleTerm (authority = RULIB)
outside member
Name (ID = NAME006); (type = corporate)
NamePart
Rutgers University
Role
RoleTerm (authority = RULIB)
degree grantor
Name (ID = NAME007); (type = corporate)
NamePart
Graduate School - New Brunswick
Role
RoleTerm (authority = RULIB)
school
TypeOfResource
Text
Genre (authority = marcgt)
theses
OriginInfo
DateCreated (qualifier = exact)
2008
DateOther (qualifier = exact); (type = degree)
2008-01
Language
LanguageTerm
English
PhysicalDescription
Form (authority = marcform)
electronic
InternetMediaType
application/pdf
InternetMediaType
text/xml
Extent
xix, 171 pages
Abstract
Six nanosized titanium dioxide powders synthesized from a sulfate process were investigated. The targeted end-use of this powder was for a de-NOx catalyst honeycomb monolith. Alteration of synthesis parameters had resulted principally in differences in soluble ion level and specific surface area of the powders. The goal of this investigation was to understand the role of synthesis parameters in the aggregation behavior of these powders. Investigation via scanning electron microscopy of the powders revealed three different aggregation iterations at specific length scales.
Secondary and higher order aggregate strength was investigated via oscillatory stress rheometry as a means of simulating shear conditions encountered during extrusion. G' and G'' were measured as a function of the applied oscillatory stress. Oscillatory rheometry indicated a strong variation as a function of the sulfate level of the particles in the viscoelastic yield strengths. Powder yield stresses ranged from 3.0 Pa to 24.0 Pa of oscillatory stress. Compaction curves to 750 MPa found strong similarities in extrapolated yield point of stage I and II compaction for each of the powders (at approximately 500 MPa) suggesting that the variation in sulfate was greatest above the primary aggregate level. Scanning electron microscopy of samples at different states of shear in oscillatory rheometry confirmed the variation in the linear elastic region and the viscous flow regime.
A technique of this investigation was to approach aggregation via a novel perspective: aggregates are distinguished as being loose open structures that are highly disordered and stochastic in nature. The methodology used was to investigate the shear stresses required to rupture the various aggregation stages encountered and investigate the attempt to realign the now free-flowing constituents comprising the aggregate into a denser configuration. Mercury porosimetry was utilized to measure the pore size of the compact resulting from compaction via dry pressing and tape casting secondary scale aggregates. Mercury porosimetry of tapes cast at 0.85 and 9.09 cm/sec exhibited pore sizes ranging from 200-500 nm suggesting packing of intact micron-sized primary aggregates. Porosimetry further showed that this peak was absent in pressed pellets corroborating arguments of ruptured primary aggregates during compaction to 750 MPa.
Note (type = degree)
Ph.D.
Note (type = bibliography)
Includes bibliographical references (p. 166-170).
Subject (ID = SUBJ1); (authority = RUETD)
Topic
Ceramic and Materials Science and Engineering
Subject (ID = SUBJ2); (authority = ETD-LCSH)
Topic
Titanium
Subject (ID = SUBJ3); (authority = ETD-LCSH)
Topic
Aggregates (Building materials)
RelatedItem (type = host)
TitleInfo
Title
Graduate School - New Brunswick Electronic Theses and Dissertations
Identifier (type = local)
rucore19991600001
Identifier (type = hdl)
http://hdl.rutgers.edu/1782.2/rucore10001600001.ETD.17234
Identifier
ETD_578
Location
PhysicalLocation (authority = marcorg); (displayLabel = Rutgers, The State University of New Jersey)
NjNbRU
Identifier (type = doi)
doi:10.7282/T3HD7W1R
Genre (authority = ExL-Esploro)
ETD doctoral
Back to the top

Rights

RightsDeclaration (AUTHORITY = GS); (ID = rulibRdec0006)
The author owns the copyright to this work.
Copyright
Status
Copyright protected
Availability
Status
Open
AssociatedEntity (AUTHORITY = rulib); (ID = 1)
Name
Navin Venugopal
Role
Copyright holder
Affiliation
Rutgers University. Graduate School - New Brunswick
RightsEvent (AUTHORITY = rulib); (ID = 1)
Type
Permission or license
Detail
Non-exclusive ETD license
AssociatedObject (AUTHORITY = rulib); (ID = 1)
Type
License
Name
Author Agreement License
Detail
I hereby grant to the Rutgers University Libraries and to my school the non-exclusive right to archive, reproduce and distribute my thesis or dissertation, in whole or in part, and/or my abstract, in whole or in part, in and from an electronic format, subject to the release date subsequently stipulated in this submittal form and approved by my school. I represent and stipulate that the thesis or dissertation and its abstract are my original work, that they do not infringe or violate any rights of others, and that I make these grants as the sole owner of the rights to my thesis or dissertation and its abstract. I represent that I have obtained written permissions, when necessary, from the owner(s) of each third party copyrighted matter to be included in my thesis or dissertation and will supply copies of such upon request by my school. I acknowledge that RU ETD and my school will not distribute my thesis or dissertation or its abstract if, in their reasonable judgment, they believe all such rights have not been secured. I acknowledge that I retain ownership rights to the copyright of my work. I also retain the right to use all or part of this thesis or dissertation in future works, such as articles or books.
Back to the top

Technical

Format (TYPE = mime); (VERSION = )
application/x-tar
FileSize (UNIT = bytes)
5849088
Checksum (METHOD = SHA1)
c6a44709a7895295d66b84880013945692a5fa24
ContentModel
ETD
CompressionScheme
other
OperatingSystem (VERSION = 5.1)
windows xp
Format (TYPE = mime); (VERSION = NULL)
application/x-tar
Back to the top
Version 8.5.5
Rutgers University Libraries - Copyright ©2024