Staff View
Inter-glider underwater communication and coordination for ocean monitoring and coastal tactical surveillance

Descriptive

TitleInfo
Title
Inter-glider underwater communication and coordination for ocean monitoring and coastal tactical surveillance
Name (type = personal)
NamePart (type = family)
Chen
NamePart (type = given)
Baozhi
DisplayForm
Baozhi Chen
Role
RoleTerm (authority = RULIB)
author
Name (type = personal)
NamePart (type = family)
Pompili
NamePart (type = given)
Dario
DisplayForm
Dario Pompili
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
chair
Name (type = personal)
NamePart (type = family)
Parashar
NamePart (type = given)
Manish
DisplayForm
Manish Parashar
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
internal member
Name (type = personal)
NamePart (type = family)
Marsic
NamePart (type = given)
Ivan
DisplayForm
Ivan Marsic
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
internal member
Name (type = personal)
NamePart (type = family)
Kremer
NamePart (type = given)
Ulrich
DisplayForm
Ulrich Kremer
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
outside member
Name (type = corporate)
NamePart
Rutgers University
Role
RoleTerm (authority = RULIB)
degree grantor
Name (type = corporate)
NamePart
Graduate School - New Brunswick
Role
RoleTerm (authority = RULIB)
school
TypeOfResource
Text
Genre (authority = marcgt)
theses
OriginInfo
DateCreated (qualifier = exact)
2012
DateOther (qualifier = exact); (type = degree)
2012-10
CopyrightDate (qualifier = exact)
2012
Place
PlaceTerm (type = code)
xx
Language
LanguageTerm (authority = ISO639-2b); (type = code)
eng
Abstract (type = abstract)
In order to achieve efficient and cost-effective sensing of the vast under-sampled 3D aquatic volume, intelligent adaptive sampling strategies involving teams of Autonomous Underwater Vehicles (AUVs) endowed with underwater wireless communication capabilities become essential. These autonomous vehicles should coordinate and steer through the region of interest, and cooperatively sense and transmit multimedia data to onshore stations for real-time data processing and analysis. Because of the propagation limitations of Radio Frequency (RF) and optical waves, the typical wireless physical-layer communication technology in underwater networks, for distances above a hundred of meters, relies on acoustic waves. Due to the stringent constraints of the underwater acoustic channels, as of today existing works on underwater acoustic communications are mostly focused on enabling delay-tolerant low-bandwidth applications tailored for measuring only scalar physical phenomena. Hence, it is necessary to design solutions for reliable, high data-rate multimedia underwater acoustic communications and to seamlessly integrate the control and communication of AUVs. In this dissertation, I propose solutions to improve the performance of inter-vehicle acoustic communication and coordination among AUVs. In particular, these solutions are based on underwater gliders and can be extended to other classes of AUVs following predictable trajectories. Due to the inaccessibility of Global Positioning System (GPS) signal underwater, location estimates of a node may be inaccurate. Inaccuracies in models for deriving position estimates, self-localization errors, and drifting due to ocean currents, however, cause uncertainty when estimating an AUV's position. In this dissertation, I first propose a statistical model to estimate an AUV's position and its associated position uncertainty. Then, the position uncertainty under the influence of ocean currents is further predicted using the Unscented Kalman Filter. Based on this model, in order to optimize the inter-vehicle communications, I propose a delay-tolerant networking solution exploiting the predictability of AUV trajectories and the directional radiation pattern of transducers, a reliable geocasting solution for AUVs with high position uncertainty, and an under-ice localization solution that can minimize localization uncertainty and communication overhead. Based on these underwater communication techniques, I also propose efficient team-formation and -steering algorithms for underwater gliders in order to take measurements in space and time from the under-sampled vast ocean. Team formation and steering algorithms relying on underwater acoustic communications are proposed to enable glider swarming that is robust against ocean currents and acoustic channel impairments. These algorithms use real underwater acoustic modems and are combined with realistic underwater communication models. Additionally, novel bio-inspired underwater acoustic communication techniques are also proposed to improve the coordination performance. I also designed and implemented an underwater network emulator using WHOI Micro-Modems, and the performance of the proposed solutions is evaluated using this emulator as well as software simulations. Communication protocols were also implemented on acoustic modems and tested in ocean experiments.
Subject (authority = RUETD)
Topic
Electrical and Computer Engineering
Subject (authority = ETD-LCSH)
Topic
Underwater acoustic telemetry
RelatedItem (type = host)
TitleInfo
Title
Rutgers University Electronic Theses and Dissertations
Identifier (type = RULIB)
ETD
Identifier
ETD_4360
PhysicalDescription
Form (authority = gmd)
electronic resource
InternetMediaType
application/pdf
InternetMediaType
text/xml
Extent
xiii, 149 p. : ill.
Note (type = degree)
Ph.D.
Note (type = bibliography)
Includes bibliographical references
Note (type = vita)
Includes vita
Note (type = statement of responsibility)
by Baozhi Chen
Subject (authority = ETD-LCSH)
Topic
Coastal surveillance
Identifier (type = hdl)
http://hdl.rutgers.edu/1782.1/rucore10001600001.ETD.000066650
RelatedItem (type = host)
TitleInfo
Title
Graduate School - New Brunswick Electronic Theses and Dissertations
Identifier (type = local)
rucore19991600001
Location
PhysicalLocation (authority = marcorg); (displayLabel = Rutgers, The State University of New Jersey)
NjNbRU
Identifier (type = doi)
doi:10.7282/T3VX0F9K
Genre (authority = ExL-Esploro)
ETD doctoral
Back to the top

Rights

RightsDeclaration (ID = rulibRdec0006)
The author owns the copyright to this work.
RightsHolder (type = personal)
Name
FamilyName
Chen
GivenName
Baozhi
Role
Copyright Holder
RightsEvent
Type
Permission or license
DateTime (encoding = w3cdtf); (qualifier = exact); (point = start)
2012-10-03 01:31:54
AssociatedEntity
Name
Baozhi Chen
Role
Copyright holder
Affiliation
Rutgers University. Graduate School - New Brunswick
AssociatedObject
Type
License
Name
Author Agreement License
Detail
I hereby grant to the Rutgers University Libraries and to my school the non-exclusive right to archive, reproduce and distribute my thesis or dissertation, in whole or in part, and/or my abstract, in whole or in part, in and from an electronic format, subject to the release date subsequently stipulated in this submittal form and approved by my school. I represent and stipulate that the thesis or dissertation and its abstract are my original work, that they do not infringe or violate any rights of others, and that I make these grants as the sole owner of the rights to my thesis or dissertation and its abstract. I represent that I have obtained written permissions, when necessary, from the owner(s) of each third party copyrighted matter to be included in my thesis or dissertation and will supply copies of such upon request by my school. I acknowledge that RU ETD and my school will not distribute my thesis or dissertation or its abstract if, in their reasonable judgment, they believe all such rights have not been secured. I acknowledge that I retain ownership rights to the copyright of my work. I also retain the right to use all or part of this thesis or dissertation in future works, such as articles or books.
RightsEvent
DateTime (encoding = w3cdtf); (qualifier = exact); (point = start)
2012-10-31
DateTime (encoding = w3cdtf); (qualifier = exact); (point = end)
2013-10-31
Type
Embargo
Detail
Access to this PDF has been restricted at the author's request. It will be publicly available after October 31st, 2013.
Copyright
Status
Copyright protected
Availability
Status
Open
Reason
Permission or license
Back to the top

Technical

FileSize (UNIT = bytes)
12940288
OperatingSystem (VERSION = 5.1)
windows xp
ContentModel
ETD
MimeType (TYPE = file)
application/pdf
MimeType (TYPE = container)
application/x-tar
FileSize (UNIT = bytes)
12943360
Checksum (METHOD = SHA1)
b8ad4902d92077af3df137f09e3b2ed6bda6f378
Back to the top
Version 8.5.5
Rutgers University Libraries - Copyright ©2024