Staff View
Protein matching using secondary structure similarities

Descriptive

TitleInfo
Title
Protein matching using secondary structure similarities
Name (type = personal)
NamePart (type = family)
Fadel
NamePart (type = given)
Addi R.
NamePart (type = date)
1965-
DisplayForm
Addi Fadel
Role
RoleTerm (authority = RULIB)
author
Name (type = personal)
NamePart (type = family)
Levy
NamePart (type = given)
Ronald
DisplayForm
Ronald Levy
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
chair
Name (type = personal)
NamePart (type = family)
Kahn
NamePart (type = given)
Peter C
DisplayForm
Peter C Kahn
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
internal member
Name (type = personal)
NamePart (type = family)
Taylor
NamePart (type = given)
John W
DisplayForm
John W Taylor
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
internal member
Name (type = personal)
NamePart (type = family)
Sofer
NamePart (type = given)
William H
DisplayForm
William H Sofer
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
internal member
Name (type = personal)
NamePart (type = family)
Wallqvist
NamePart (type = given)
Anders
DisplayForm
Anders Wallqvist
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
outside member
Name (type = corporate)
NamePart
Rutgers University
Role
RoleTerm (authority = RULIB)
degree grantor
Name (type = corporate)
NamePart
Graduate School - New Brunswick
Role
RoleTerm (authority = RULIB)
school
TypeOfResource
Text
Genre (authority = marcgt)
theses
OriginInfo
DateCreated (qualifier = exact)
2013
DateOther (qualifier = exact); (type = degree)
2013-10
Place
PlaceTerm (type = code)
xx
Language
LanguageTerm (authority = ISO639-2b); (type = code)
eng
Abstract (type = abstract)
Sequence alignment techniques have been developed into extremely powerful tools for identifying the folding families of the new protein sequences that are becoming available through the genome projects. It is known that proteins sharing more than 30 sequence identity over the majority of their length have a high probability of adopting the same fold and conventional sequence comparison methods easily detect these similarities. Yet, analysis of the relationship between sequences and structure similarity have shown that around the "twilight zone" or sequence identity of about 17 to 25%, the relationship between primary and tertiary structure becomes problematic. Two proteins may have identical topologies (folds) without sharing detectable sequence similarities. Such fold similarities will normally not be found until both protein 3-D structures have been determined experimentally. Alternative methods which bypass the high cost of experimental structure elucidation include homology modeling and fold recognition techniques which are based on observation that during evolution, folds vary much less than amino acid sequences. Furthermore, the organization of secondary structure elements in space determines the three-dimensional fold of a protein. Secondary structure information therefore may be used to identify folding families when the amino acid sequence identities within the folding families are low. Yet, this information about protein structure topology derived only from the sequence of secondary structure states of residues has not yet been fully exploited. The goal of this work is to show that protein topology can indeed be recognized from the sequence of secondary structures which subsequently can be used as a criterion for fold homology. We have constructed a secondary structure similarity matrix based on a database of three dimensionally aligned proteins (3D_ali). Alignments were then carried out with different mixes of amino acid and secondary structure information to ascertain the reliability of the methodology. We used the SCOP40 database, where only the PDB sequences that have 40% sequence of less are included to evaluate homology detection by the combined amino acid and secondary structure alignments. The results presented in this thesis show that the sequential arrangement of the secondary structure contains significant fold information in addition to the primary structure alone. The quality of the secondary structure information (true VS predicted) has a large influence on the results. Incorporating predicted secondary structure information for six small genomes yields enhancement of homology detection by 20% at a low error rate. Using alignments carried out with secondary structure information, we also clustered proteins with low amino acid sequence identity according to their secondary structures. To ascertain the reliability of this clustering method, we compared it to the other already existing databases such as SCOP, CATH and 3D_ali using statistical analysis which tested the coverage, specificity and error-per-query for each of the databases used in this study. Finally, we also ran a 200 picosecond molecular dynamics simulation on a small 50 amino acid peptide, human TGF-alpha (hTGF-alpha). The generalized order parameters were then calculated from the MD simulation trajectory for both the N-H and C-alpha bonds. During the MD simulation, we observed systematic difference between the order parameters for the N-H bonds and those for C-alpha bonds. Consistent with the results of the experimental studies, the difference was found to be highly correlated with the crankshaft librations of the peptide planes.
Subject (authority = RUETD)
Topic
Biochemistry
Subject (authority = ETD-LCSH)
Topic
Amino acid sequence
Subject (authority = ETD-LCSH)
Topic
Proteins--Analysis
RelatedItem (type = host)
TitleInfo
Title
Rutgers University Electronic Theses and Dissertations
Identifier (type = RULIB)
ETD
RelatedItem (type = host)
TitleInfo
Title
Graduate School - New Brunswick Electronic Theses and Dissertations
Identifier (type = local)
rucore19991600001
Identifier
ETD_4936
Identifier (type = doi)
doi:10.7282/T3513W71
PhysicalDescription
Form (authority = gmd)
electronic resource
InternetMediaType
application/pdf
InternetMediaType
text/xml
Extent
xxiii, 241 p. : ill.
Note (type = degree)
Ph.D.
Note (type = bibliography)
Includes bibliographical references
Note (type = statement of responsibility)
by Addi R. Fadel
Location
PhysicalLocation (authority = marcorg); (displayLabel = Rutgers, The State University of New Jersey)
NjNbRU
Genre (authority = ExL-Esploro)
ETD doctoral
Back to the top

Rights

RightsDeclaration (ID = rulibRdec0006)
The author owns the copyright to this work.
RightsHolder (type = personal)
Name
FamilyName
Fadel
GivenName
Addi
Role
Copyright Holder
RightsEvent
Type
Permission or license
DateTime (encoding = w3cdtf); (qualifier = exact); (point = start)
2013-08-09 05:17:30
AssociatedEntity
Name
Addi Fadel
Role
Copyright holder
Affiliation
Rutgers University. Graduate School - New Brunswick
AssociatedObject
Type
License
Name
Author Agreement License
Detail
I hereby grant to the Rutgers University Libraries and to my school the non-exclusive right to archive, reproduce and distribute my thesis or dissertation, in whole or in part, and/or my abstract, in whole or in part, in and from an electronic format, subject to the release date subsequently stipulated in this submittal form and approved by my school. I represent and stipulate that the thesis or dissertation and its abstract are my original work, that they do not infringe or violate any rights of others, and that I make these grants as the sole owner of the rights to my thesis or dissertation and its abstract. I represent that I have obtained written permissions, when necessary, from the owner(s) of each third party copyrighted matter to be included in my thesis or dissertation and will supply copies of such upon request by my school. I acknowledge that RU ETD and my school will not distribute my thesis or dissertation or its abstract if, in their reasonable judgment, they believe all such rights have not been secured. I acknowledge that I retain ownership rights to the copyright of my work. I also retain the right to use all or part of this thesis or dissertation in future works, such as articles or books.
RightsEvent
DateTime (encoding = w3cdtf); (qualifier = exact); (point = start)
2013-10-31
DateTime (encoding = w3cdtf); (qualifier = exact); (point = end)
2015-10-31
Type
Embargo
Detail
Access to this PDF has been restricted at the author's request. It will be publicly available after October 31st, 2015.
Copyright
Status
Copyright protected
Availability
Status
Open
Reason
Permission or license
Back to the top

Technical

RULTechMD (ID = TECHNICAL1)
ContentModel
ETD
OperatingSystem (VERSION = 5.1)
windows xp
Back to the top
Version 8.5.5
Rutgers University Libraries - Copyright ©2024