Staff View
Flame and solution syntheses of high-dimensional homo- and hetero-structured nanomaterials

Descriptive

TitleInfo
Title
Flame and solution syntheses of high-dimensional homo- and hetero-structured nanomaterials
Name (type = personal)
NamePart (type = family)
Dong
NamePart (type = given)
Zhizhong
DisplayForm
Zhizhong Dong
Role
RoleTerm (authority = RULIB)
author
Name (type = personal)
NamePart (type = family)
Tse
NamePart (type = given)
Stephen
DisplayForm
Stephen Tse
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
chair
Name (type = personal)
NamePart (type = family)
Shan
NamePart (type = given)
Jerry
DisplayForm
Jerry Shan
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
internal member
Name (type = personal)
NamePart (type = family)
Zadeh
NamePart (type = given)
Shahab Shojaei
DisplayForm
Shahab Shojaei Zadeh
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
internal member
Name (type = personal)
NamePart (type = family)
Kear
NamePart (type = given)
Bernard
DisplayForm
Bernard Kear
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
outside member
Name (type = corporate)
NamePart
Rutgers University
Role
RoleTerm (authority = RULIB)
degree grantor
Name (type = corporate)
NamePart
Graduate School - New Brunswick
Role
RoleTerm (authority = RULIB)
school
TypeOfResource
Text
Genre (authority = marcgt)
theses
OriginInfo
DateCreated (qualifier = exact)
2014
DateOther (qualifier = exact); (type = degree)
2014-10
CopyrightDate (encoding = w3cdtf)
2014
Place
PlaceTerm (type = code)
xx
Language
LanguageTerm (authority = ISO639-2b); (type = code)
eng
Abstract
Tungsten-oxide and molybdenum-oxide nanostructures are fabricated directly from the surfaces of metal substrates using counter-flow diffusion-flame synthesis method, which allows for correlation of morphologies with local conditions. Computational simulations aid in tailoring the flame structure with respect to chemical species and temperature. Furthermore, methane flames are compared with hydrogen flames, which only have H2O (and no CO2) as product species. The temperature profiles of the methane and hydrogen flames are strategically matched in order to compare the effect of chemical species produced by the flame which serve as reactants for nanostructure growth. Single-crystalline, well-vertically-aligned, and dense WO2.9 nanowires (diameters of 20-50 nm, lengths of >10 µm) are obtained at a gas-phase temperature of 1720 K, where the CO2 route is presumed to seed the growth of nanowires at the nucleation stage, with subsequent vapor-solid growth. Similarly, single-crystalline, vertically-aligned, and dense MoO2 nanoplates (thicknesses of 60-80 nm, widths of 200-450 nm, lengths of 1-2 µm) are obtained at 1720 K. Nanoheterostructures are fabricated by decorating/coating the above flame-synthesized tungsten-oxide nanowires with other materials using an aqueous solution synthesis method. With WO2.9 nanowires serving as the scaffold, sequential growth of hexagonal ZnO nanoplates, Zn2SnO4 nanocubes, and SnO2 nanoparticles are attained for different Zn2+:Sn2+ concentration ratios. High-resolution transmission electron microscopy (HRTEM) of the interfaces at the nanoheterojunctions show atomically abrupt interfaces for ZnO/WO2.9 and Zn2SnO4/WO2.9, despite lattice mismatches. Separately, co-axial nanoheterostructures are fabricated using ionic-liquid solutions, where single-crystal nanoscale Al layer are electrodeposited on the surfaces of the above flame-synthesized WO2.9 nanowires. These tungsten-oxide/aluminum coaxial nanowire arrays constitute thermite nanocomposites with high reactivity. These geometries not only present an avenue to tailor heat-release characteristics due to anisotropic arrangement of fuel and oxidizer, but also possibly eliminate or at least minimize the presence of Al2O3 passivation films between the aluminum and metal oxide.
Subject (authority = RUETD)
Topic
Mechanical and Aerospace Engineering
RelatedItem (type = host)
TitleInfo
Title
Rutgers University Electronic Theses and Dissertations
Identifier (type = RULIB)
ETD
Identifier
ETD_5963
PhysicalDescription
Form (authority = gmd)
electronic resource
InternetMediaType
application/pdf
InternetMediaType
text/xml
Extent
1 online resource (xxvi, 162 p. : ill.)
Note (type = degree)
Ph.D.
Note (type = bibliography)
Includes bibliographical references
Subject (authority = ETD-LCSH)
Topic
Nanostructures--chemistry
Subject (authority = ETD-LCSH)
Topic
Nanoparticles--Synthesis
Note (type = statement of responsibility)
by Zhizhong Dong
RelatedItem (type = host)
TitleInfo
Title
Graduate School - New Brunswick Electronic Theses and Dissertations
Identifier (type = local)
rucore19991600001
Location
PhysicalLocation (authority = marcorg); (displayLabel = Rutgers, The State University of New Jersey)
NjNbRU
Identifier (type = doi)
doi:10.7282/T3X63KD3
Genre (authority = ExL-Esploro)
ETD doctoral
Back to the top

Rights

RightsDeclaration (ID = rulibRdec0006)
The author owns the copyright to this work.
RightsHolder (type = personal)
Name
FamilyName
Dong
GivenName
Zhizhong
Role
Copyright Holder
RightsEvent
Type
Permission or license
DateTime (encoding = w3cdtf); (qualifier = exact); (point = start)
2014-09-30 11:58:41
AssociatedEntity
Name
Zhizhong Dong
Role
Copyright holder
Affiliation
Rutgers University. Graduate School - New Brunswick
AssociatedObject
Type
License
Name
Author Agreement License
Detail
I hereby grant to the Rutgers University Libraries and to my school the non-exclusive right to archive, reproduce and distribute my thesis or dissertation, in whole or in part, and/or my abstract, in whole or in part, in and from an electronic format, subject to the release date subsequently stipulated in this submittal form and approved by my school. I represent and stipulate that the thesis or dissertation and its abstract are my original work, that they do not infringe or violate any rights of others, and that I make these grants as the sole owner of the rights to my thesis or dissertation and its abstract. I represent that I have obtained written permissions, when necessary, from the owner(s) of each third party copyrighted matter to be included in my thesis or dissertation and will supply copies of such upon request by my school. I acknowledge that RU ETD and my school will not distribute my thesis or dissertation or its abstract if, in their reasonable judgment, they believe all such rights have not been secured. I acknowledge that I retain ownership rights to the copyright of my work. I also retain the right to use all or part of this thesis or dissertation in future works, such as articles or books.
Copyright
Status
Copyright protected
Availability
Status
Open
Reason
Permission or license
Back to the top

Technical

RULTechMD (ID = TECHNICAL1)
ContentModel
ETD
OperatingSystem (VERSION = 5.1)
windows xp
Back to the top
Version 8.3.13
Rutgers University Libraries - Copyright ©2021