Staff View
Electric-field-assisted swirl-flame synthesis of high-porosity nanostructured titania (TiO2) films

Descriptive

TitleInfo
Title
Electric-field-assisted swirl-flame synthesis of high-porosity nanostructured titania (TiO2) films
Name (type = personal)
NamePart (type = family)
Kulkarni
NamePart (type = given)
Aditi
NamePart (type = date)
1989-
DisplayForm
Aditi Kulkarni
Role
RoleTerm (authority = RULIB)
author
Name (type = personal)
NamePart (type = family)
Tse
NamePart (type = given)
Stephen
DisplayForm
Stephen Tse
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
chair
Name (type = personal)
NamePart (type = family)
Pelegri
NamePart (type = given)
ASSIMINA
DisplayForm
ASSIMINA Pelegri
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
internal member
Name (type = personal)
NamePart (type = family)
Mazzeo
NamePart (type = given)
Aaron
DisplayForm
Aaron Mazzeo
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
internal member
Name (type = corporate)
NamePart
Rutgers University
Role
RoleTerm (authority = RULIB)
degree grantor
Name (type = corporate)
NamePart
Graduate School - New Brunswick
Role
RoleTerm (authority = RULIB)
school
TypeOfResource
Text
Genre (authority = marcgt)
theses
OriginInfo
DateCreated (encoding = w3cdtf); (qualifier = exact)
2015
DateOther (qualifier = exact); (type = degree)
2015-01
CopyrightDate (encoding = w3cdtf); (qualifier = exact)
2015
Place
PlaceTerm (type = code)
xx
Language
LanguageTerm (authority = ISO639-2b); (type = code)
eng
Abstract (type = abstract)
Nanostructured mesoporous metal-oxide films can be used in various applications, including dye-sensitized solar cells based on titania. Optimization of the properties of these films is crucial in improving their efficiency. Nanostructured TiO2 films with high uniformity and porosity are grown in a stagnation swirl flame setup under an applied electric field. The effects of external electric-field magnitude and polarity are studied for different substrate temperatures and precursor loading concentrations. The results show considerable differences in film characteristics, for differing electric fields, with more columnar structures and higher porosities under low voltages up to ±400 V. The films have higher packing density at higher voltages of ±800 V. At low substrate temperatures, the morphology and structure are more prominent owing to less on-substrate sintering of the nanoparticles. At low voltages, oppositely-charged particles will be attracted to the substrate increasing the electrophoretic velocity but decreasing the in-flame agglomeration; while at high voltages, the particles will be repelled and stay in the flame longer, thus increasing the in-flame agglomeration. A simple model is proposed which predicts the trend for deposition of particles and formation of nanostructured TiO2 films of a given morphology by balancing the effects of thermophoresis, electrophoresis, and Brownian motion of the particles. The model’s trend for packing density agrees with the experiments.
Subject (authority = RUETD)
Topic
Mechanical and Aerospace Engineering
Subject (authority = ETD-LCSH)
Topic
Titanium oxide
Subject (authority = ETD-LCSH)
Topic
Nanoparticles
RelatedItem (type = host)
TitleInfo
Title
Rutgers University Electronic Theses and Dissertations
Identifier (type = RULIB)
ETD
Identifier
ETD_6140
PhysicalDescription
Form (authority = gmd)
electronic resource
InternetMediaType
application/pdf
InternetMediaType
text/xml
Extent
1 online resource (x, 87 p. : ill.)
Note (type = degree)
M.S.
Note (type = bibliography)
Includes bibliographical references
Note (type = statement of responsibility)
by Aditi Kulkarni
RelatedItem (type = host)
TitleInfo
Title
Graduate School - New Brunswick Electronic Theses and Dissertations
Identifier (type = local)
rucore19991600001
Location
PhysicalLocation (authority = marcorg); (displayLabel = Rutgers, The State University of New Jersey)
NjNbRU
Identifier (type = doi)
doi:10.7282/T36T0PB0
Genre (authority = ExL-Esploro)
ETD graduate
Back to the top

Rights

RightsDeclaration (ID = rulibRdec0006)
The author owns the copyright to this work.
RightsHolder (type = personal)
Name
FamilyName
Kulkarni
GivenName
Aditi
Role
Copyright Holder
RightsEvent
Type
Permission or license
DateTime (encoding = w3cdtf); (qualifier = exact); (point = start)
2015-01-04 23:17:25
AssociatedEntity
Name
Aditi Kulkarni
Role
Copyright holder
Affiliation
Rutgers University. Graduate School - New Brunswick
AssociatedObject
Type
License
Name
Author Agreement License
Detail
I hereby grant to the Rutgers University Libraries and to my school the non-exclusive right to archive, reproduce and distribute my thesis or dissertation, in whole or in part, and/or my abstract, in whole or in part, in and from an electronic format, subject to the release date subsequently stipulated in this submittal form and approved by my school. I represent and stipulate that the thesis or dissertation and its abstract are my original work, that they do not infringe or violate any rights of others, and that I make these grants as the sole owner of the rights to my thesis or dissertation and its abstract. I represent that I have obtained written permissions, when necessary, from the owner(s) of each third party copyrighted matter to be included in my thesis or dissertation and will supply copies of such upon request by my school. I acknowledge that RU ETD and my school will not distribute my thesis or dissertation or its abstract if, in their reasonable judgment, they believe all such rights have not been secured. I acknowledge that I retain ownership rights to the copyright of my work. I also retain the right to use all or part of this thesis or dissertation in future works, such as articles or books.
Copyright
Status
Copyright protected
Availability
Status
Open
Reason
Permission or license
Back to the top

Technical

RULTechMD (ID = TECHNICAL1)
ContentModel
ETD
OperatingSystem (VERSION = 5.1)
windows xp
Back to the top
Version 8.5.5
Rutgers University Libraries - Copyright ©2024