Staff View
Topics in MIMO radars

Descriptive

TitleInfo
Title
Topics in MIMO radars
SubTitle
sparse sensing and spectrum sharing
Name (type = personal)
NamePart (type = family)
Li
NamePart (type = given)
Bo
NamePart (type = date)
1987-
DisplayForm
Bo Li
Role
RoleTerm (authority = RULIB)
author
Name (type = personal)
NamePart (type = family)
Petropulu
NamePart (type = given)
Athina
DisplayForm
Athina Petropulu
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
chair
Name (type = personal)
NamePart (type = family)
Bajwa
NamePart (type = given)
Waheed
DisplayForm
Waheed Bajwa
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
internal member
Name (type = personal)
NamePart (type = family)
Patel
NamePart (type = given)
Vishal
DisplayForm
Vishal Patel
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
internal member
Name (type = personal)
NamePart (type = family)
Li
NamePart (type = given)
Hongbin
DisplayForm
Hongbin Li
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
outside member
Name (type = corporate)
NamePart
Rutgers University
Role
RoleTerm (authority = RULIB)
degree grantor
Name (type = corporate)
NamePart
Graduate School - New Brunswick
Role
RoleTerm (authority = RULIB)
school
TypeOfResource
Text
Genre (authority = marcgt)
theses
OriginInfo
DateCreated (qualifier = exact)
2016
DateOther (qualifier = exact); (type = degree)
2016-10
CopyrightDate (encoding = w3cdtf); (qualifier = exact)
2016
Place
PlaceTerm (type = code)
xx
Language
LanguageTerm (authority = ISO639-2b); (type = code)
eng
Abstract (type = abstract)
Recently, multiple-input multiple-output (MIMO) radars have received considerable attention due to their superior resolution. A MIMO radar system lends itself to a networked implementation, which is very desirable in both military and civilian applications. In networked radars, the transmit and receive antennas are placed on wireless connected nodes, such as vehicles, ships, airplanes, or even backpacks. The transmit antennas transmit probing waveforms, which impinge on targets and are reflected back. A fusion center collects the target echo measurements of all receive antennas and jointly processes the signals to extract the desired target parameters. This dissertation proposes to address the following two bottleneck issues associated with networked radars. Reliable surveillance requires collection, communication and process of vast amounts of data. This is a power and bandwidth consuming task, which can be especially taxing in scenarios in which the antennas are on battery operated devices and are connected to the fusion center via a wireless link. Sparse sensing techniques are used to substantially reduce the amount of data that need to be communicated to a fusion center, while ensuring high target detection and estimation performance. In the first part, this dissertation derives the theoretical requirements and performance guarantees for the application of compressive sensing to both MIMO radar settings, namely, the collocated MIMO radars and the distributed MIMO radars. Confirming previous simulations based observations, the theoretical results of this thesis show that exploiting the sparsity of the target vector can reduce the amount of measurements needed for successful target estimation. For compressive sensing based distributed MIMO radars, we also propose two low-complexity signal recovery approaches. With the increasing demand of radio spectrum, the operating frequency bands of communication and radar systems often overlap, causing one system to exert interference to the other. Uncoordinated interference from communication systems may significantly harm the tactical radar functionality and vice versa. In the second part, this dissertation studies spectrum sharing between a MIMO communication system and a MIMO radar system in various scenarios. First, a cooperative spectrum sharing framework is proposed for the coexistence of MIMO radars and wireless communications. Radar transmit precoding and adaptive communication transmission are adopted, and are jointly designed to maximize signal-to-interference-plus-noise ratio (SINR) at the radar receiver subject to the communication system meeting certain rate and power constraints. Compared to the non-cooperative approaches in the literature, the proposed approach has the potential to improve the spectrum utilization because it introduces more degrees of freedom. In addition, the proposed spectrum sharing framework considers several practical issues which are not addressed in literature, e.g., the radar pulsed transmit pattern, targets falling in different range bins, and radar systems operating in the presence of clutter. Second, we investigate spectrum sharing between a MIMO communication system and a recently proposed sparse sensing based radar, namely the matrix completion based MIMO radar (MIMO-MC). MIMO-MC radar receivers take sub-Nyquist rate samples, and transfer them to a fusion center where the full data matrix is completed with high accuracy. MIMO-MC radars, in addition to reducing communication bandwidth and power as compared to MIMO radars, offer a significant advantage for spectrum sharing. The advantage stems from the way the sub-sampling scheme at the radar receivers modulates the interference channel from the communication system transmitters, rendering it symbol dependent and reducing its row space. This makes it easier for the communication system to design its waveforms in an adaptive fashion so that it minimizes the interference to the radar subject to meeting rate and power constraints. Two methods are investigated to minimize the effective interference power to the radar receiver: 1) design the communication transmit covariance matrix with fixed the radar sampling scheme, and 2) jointly design the communication transmit covariance matrix and the MIMO-MC radar sampling scheme. Furthermore, we investigate joint transmit precoding for the co-existence of a MIMO-MC radar and a MIMO wireless communication system in the presence of clutter. We show that the error performance of matrix completion in MIMO-MC radars is theoretically guaranteed when precoding is employed. The radar transmit precoder, the radar sub-sampling scheme, and the communication transmit covariance matrix are jointly designed to maximize the radar SINR while meeting certain communication rate and power constraints. Efficient optimization algorithms are provided along with insight on the proposed design problem.
Subject (authority = RUETD)
Topic
Electrical and Computer Engineering
RelatedItem (type = host)
TitleInfo
Title
Rutgers University Electronic Theses and Dissertations
Identifier (type = RULIB)
ETD
Identifier
ETD_7684
PhysicalDescription
Form (authority = gmd)
electronic resource
InternetMediaType
application/pdf
InternetMediaType
text/xml
Extent
1 online resource (xvii, 173 p. : ill.)
Note (type = degree)
Ph.D.
Note (type = bibliography)
Includes bibliographical references
Subject (authority = ETD-LCSH)
Topic
MIMO systems
Note (type = statement of responsibility)
by Bo Li
RelatedItem (type = host)
TitleInfo
Title
Graduate School - New Brunswick Electronic Theses and Dissertations
Identifier (type = local)
rucore19991600001
Location
PhysicalLocation (authority = marcorg); (displayLabel = Rutgers, The State University of New Jersey)
NjNbRU
Identifier (type = doi)
doi:10.7282/T3DJ5HXJ
Genre (authority = ExL-Esploro)
ETD doctoral
Back to the top

Rights

RightsDeclaration (ID = rulibRdec0006)
The author owns the copyright to this work.
RightsHolder (type = personal)
Name
FamilyName
Li
GivenName
Bo
Role
Copyright Holder
RightsEvent
Type
Permission or license
DateTime (encoding = w3cdtf); (qualifier = exact); (point = start)
2016-09-29 14:52:36
AssociatedEntity
Name
Bo Li
Role
Copyright holder
Affiliation
Rutgers University. Graduate School - New Brunswick
AssociatedObject
Type
License
Name
Author Agreement License
Detail
I hereby grant to the Rutgers University Libraries and to my school the non-exclusive right to archive, reproduce and distribute my thesis or dissertation, in whole or in part, and/or my abstract, in whole or in part, in and from an electronic format, subject to the release date subsequently stipulated in this submittal form and approved by my school. I represent and stipulate that the thesis or dissertation and its abstract are my original work, that they do not infringe or violate any rights of others, and that I make these grants as the sole owner of the rights to my thesis or dissertation and its abstract. I represent that I have obtained written permissions, when necessary, from the owner(s) of each third party copyrighted matter to be included in my thesis or dissertation and will supply copies of such upon request by my school. I acknowledge that RU ETD and my school will not distribute my thesis or dissertation or its abstract if, in their reasonable judgment, they believe all such rights have not been secured. I acknowledge that I retain ownership rights to the copyright of my work. I also retain the right to use all or part of this thesis or dissertation in future works, such as articles or books.
Copyright
Status
Copyright protected
Availability
Status
Open
Reason
Permission or license
Back to the top

Technical

RULTechMD (ID = TECHNICAL1)
ContentModel
ETD
OperatingSystem (VERSION = 5.1)
windows xp
CreatingApplication
Version
1.5
ApplicationName
MiKTeX pdfTeX-1.40.12
DateCreated (point = end); (encoding = w3cdtf); (qualifier = exact)
2016-09-29T14:50:26
DateCreated (point = end); (encoding = w3cdtf); (qualifier = exact)
2016-09-29T14:50:26
Back to the top
Version 8.5.5
Rutgers University Libraries - Copyright ©2024