Staff View
Regulation of the yeast DGK1-encoded diacylglycerol kinase

Descriptive

TitleInfo
Title
Regulation of the yeast DGK1-encoded diacylglycerol kinase
Name (type = personal)
NamePart (type = family)
Qiu
NamePart (type = given)
Yixuan
NamePart (type = date)
1987-
DisplayForm
Yixuan Qiu
Role
RoleTerm (authority = RULIB)
author
Name (type = personal)
NamePart (type = family)
Carman
NamePart (type = given)
George M
DisplayForm
George M Carman
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
chair
Name (type = personal)
NamePart (type = family)
Han
NamePart (type = given)
Gilsoo
DisplayForm
Gilsoo Han
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
internal member
Name (type = personal)
NamePart (type = family)
Chikindas
NamePart (type = given)
Michael
DisplayForm
Michael Chikindas
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
internal member
Name (type = personal)
NamePart (type = family)
Storch
NamePart (type = given)
Judith
DisplayForm
Judith Storch
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
outside member
Name (type = corporate)
NamePart
Rutgers University
Role
RoleTerm (authority = RULIB)
degree grantor
Name (type = corporate)
NamePart
Graduate School - New Brunswick
Role
RoleTerm (authority = RULIB)
school
TypeOfResource
Text
Genre (authority = marcgt)
theses
OriginInfo
DateCreated (qualifier = exact)
2016
DateOther (qualifier = exact); (type = degree)
2016-10
CopyrightDate (encoding = w3cdtf); (qualifier = exact)
2016
Place
PlaceTerm (type = code)
xx
Language
LanguageTerm (authority = ISO639-2b); (type = code)
eng
Abstract (type = abstract)
In the yeast Saccharomyces cerevisiae, the DGK1-encoded diacylglycerol (DAG) kinase catalyzes the CTP-dependent phosphorylation of DAG to form phosphatidate (PA). This enzyme, in conjunction with PAH1-encoded PA phosphatase, controls the levels of PA and DAG for the synthesis of triacylglycerol (TAG) and membrane phospholipids, nuclear/endoplasmic reticulum (ER) membrane growth, and lipid droplet formation. In this work, we showed that a functional level of DAG kinase is regulated by the Reb1 transcription factor. Purified recombinant Reb1 was shown to specifically bind its consensus recognition sequence (CGGGTAA, -166 to -160) in the DGK1 promoter. Analysis of cells expressing the PDGK1-lacZ reporter gene showed that mutations (GTÆTG) in the Reb1-binding sequence caused an 8.6-fold reduction in β-galactosidase activity. The expression of DGK1(reb1), a DGK1 allele containing the Reb1-binding site mutation, was greatly lower than that of the wild type allele, as indicated by analyses of DGK1 mRNA, Dgk1, and DAG kinase activity. In the presence of cerulenin, an inhibitor of de novo fatty acid synthesis, the dgk1Δ mutant expressing DGK1(reb1) exhibited a significant defect in growth as well as in the synthesis of phospholipids from TAG mobilization. Unlike DGK1, the DGK1(reb1) expressed in the dgk1Δ pah1Δ mutant did not result in the nuclear/ER membrane expansion, which occurs in cells lacking PA phosphatase activity. These results indicate that the Reb1-mediated regulation of DAG kinase plays a major role in its in vivo functions in lipid metabolism. Treatment of membrane-solubilized and overexpressed Dgk1 with alkaline phosphatase caused a 7.7-fold decrease in DAG kinase activity, and the subsequent treatment with CKII caused a 5.5-fold increase in activity. A purified N-terminal fragment of Dgk1 (Dgk11-77) was phosphorylated by CKII on a serine residue in timeand dose-dependent manners, and the phosphorylation was dependent on the concentrations of Dgk11-77 and ATP. Ser-45 and Ser-46 were identified as the major CKII phosphorylation sites. Analysis of yeast expressing the phosphorylation-deficient mutants indicated that the stimulation of DAG kinase activity is attributed to the phosphorylation of Dgk1 by CKII. DAG kinase activity is required for deleterious phenotypes imparted by the pah1Δ mutation. The phosphorylation-deficient mutations inhibited the function that DAG kinase plays for defects in nuclear/ER membrane expansion and lipid droplet formation, as well as the temperature sensitivity caused by the pah1Δ mutation.
Subject (authority = RUETD)
Topic
Food Science
RelatedItem (type = host)
TitleInfo
Title
Rutgers University Electronic Theses and Dissertations
Identifier (type = RULIB)
ETD
Identifier
ETD_7571
PhysicalDescription
Form (authority = gmd)
electronic resource
InternetMediaType
application/pdf
InternetMediaType
text/xml
Extent
1 online resource (xv, 153 p. : ill.)
Note (type = degree)
Ph.D.
Note (type = bibliography)
Includes bibliographical references
Subject (authority = ETD-LCSH)
Topic
Yeast
Note (type = statement of responsibility)
by Yixuan Qiu
RelatedItem (type = host)
TitleInfo
Title
Graduate School - New Brunswick Electronic Theses and Dissertations
Identifier (type = local)
rucore19991600001
Location
PhysicalLocation (authority = marcorg); (displayLabel = Rutgers, The State University of New Jersey)
NjNbRU
Identifier (type = doi)
doi:10.7282/T39C70R6
Genre (authority = ExL-Esploro)
ETD doctoral
Back to the top

Rights

RightsDeclaration (ID = rulibRdec0006)
The author owns the copyright to this work.
RightsHolder (type = personal)
Name
FamilyName
Qiu
GivenName
Yixuan
Role
Copyright Holder
RightsEvent
Type
Permission or license
DateTime (encoding = w3cdtf); (qualifier = exact); (point = start)
2016-09-13 18:46:00
AssociatedEntity
Name
Yixuan Qiu
Role
Copyright holder
Affiliation
Rutgers University. Graduate School - New Brunswick
AssociatedObject
Type
License
Name
Author Agreement License
Detail
I hereby grant to the Rutgers University Libraries and to my school the non-exclusive right to archive, reproduce and distribute my thesis or dissertation, in whole or in part, and/or my abstract, in whole or in part, in and from an electronic format, subject to the release date subsequently stipulated in this submittal form and approved by my school. I represent and stipulate that the thesis or dissertation and its abstract are my original work, that they do not infringe or violate any rights of others, and that I make these grants as the sole owner of the rights to my thesis or dissertation and its abstract. I represent that I have obtained written permissions, when necessary, from the owner(s) of each third party copyrighted matter to be included in my thesis or dissertation and will supply copies of such upon request by my school. I acknowledge that RU ETD and my school will not distribute my thesis or dissertation or its abstract if, in their reasonable judgment, they believe all such rights have not been secured. I acknowledge that I retain ownership rights to the copyright of my work. I also retain the right to use all or part of this thesis or dissertation in future works, such as articles or books.
Copyright
Status
Copyright protected
Availability
Status
Open
Reason
Permission or license
Back to the top

Technical

RULTechMD (ID = TECHNICAL1)
ContentModel
ETD
OperatingSystem (VERSION = 5.1)
windows xp
CreatingApplication
Version
1.7
DateCreated (point = start); (encoding = w3cdtf); (qualifier = exact)
2016-09-12T01:05:46
DateCreated (point = start); (encoding = w3cdtf); (qualifier = exact)
2016-09-12T01:05:46
ApplicationName
Adobe Acrobat 8.3
Back to the top
Version 8.5.5
Rutgers University Libraries - Copyright ©2024