Staff View
Inference of metabolic flux distributions from transcriptomic data

Descriptive

TitleInfo
Title
Inference of metabolic flux distributions from transcriptomic data
Name (type = personal)
NamePart (type = family)
Kim
NamePart (type = given)
Min Kyung
NamePart (type = date)
1984-
DisplayForm
Min Kyung Kim
Role
RoleTerm (authority = RULIB)
author
Name (type = personal)
NamePart (type = family)
Lun
NamePart (type = given)
Desmond S.
DisplayForm
Desmond S. Lun
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
chair
Name (type = personal)
NamePart (type = family)
Lee
NamePart (type = given)
Kwangwon
DisplayForm
Kwangwon Lee
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
internal member
Name (type = personal)
NamePart (type = family)
Nam
NamePart (type = given)
Jongmin
DisplayForm
Jongmin Nam
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
internal member
Name (type = personal)
NamePart (type = family)
Yakoby
NamePart (type = given)
Nir
DisplayForm
Nir Yakoby
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
internal member
Name (type = personal)
NamePart (type = family)
Colijn
NamePart (type = given)
Caroline
DisplayForm
Caroline Colijn
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
outside member
Name (type = corporate)
NamePart
Rutgers University
Role
RoleTerm (authority = RULIB)
degree grantor
Name (type = corporate)
NamePart
Camden Graduate School
Role
RoleTerm (authority = RULIB)
school
TypeOfResource
Text
Genre (authority = marcgt)
theses
OriginInfo
DateCreated (qualifier = exact)
2017
DateOther (qualifier = exact); (type = degree)
2017-05
CopyrightDate (encoding = w3cdtf); (qualifier = exact)
2017
Place
PlaceTerm (type = code)
xx
Language
LanguageTerm (authority = ISO639-2b); (type = code)
eng
Abstract (type = abstract)
Studying changes in the cellular metabolism is important to understand what a living cell does for survival in response to external or internal perturbations. Even though intracellular metabolic flux (i.e. reaction rate) distributions are desirable data to this end, it is challenging to directly quantify fluxes through methods such as metabolic flux analysis using stable isotope labeling. Several computational methods thus have been developed to infer system-level and condition-specific intracellular metabolic flux distributions, which are difficult to measure, from transcriptomic data, which are far easier to obtain. While powerful in many settings, existing methods have several practical shortcomings, and it is unclear which method has the best accuracy in general due to limited validation against experimentally measured fluxes. In this thesis, we describe two computational methods called E-Flux2 (E-Flux method combined with minimization of l2 norm) and SPOT (Simplified Pearson cOrrelation with Transcriptomic data), to be employed when a suitable biological objective is available and unavailable, respectively. Our method overcomes shortcomings of existing methods and combines desirable characteristics including applicability to a wide range of experimental conditions, production of a unique solution, fast running time, and the availability of a user-friendly implementation (at http://most.ccib.rutgers.edu/). Most importantly, the predictive accuracy of our method was validated using the largest experimental dataset compiled to date, consisting of 43 experimental conditions of transcriptome measurements coupled with corresponding central carbon metabolic intracellular flux measurements (19 in Escherichia coli, 9 in Saccharomyces cerevisiae, 8 in Bacillus subtilis, 3 in Synechocystis sp. PCC 6803, 2 in Synechococcus sp. PCC 7002, and 2 in H4IIE rat hepatoma cell line). Our method provided as good as or better predictions than a representative sample of competing methods including pFBA (parsimonious flux balance analysis), in terms of the average of correlation between predicted and measured fluxes and of overall stability in predictions, especially in unicellular heterotrophic microorganisms. This makes our methods useful even in the absence of measured flux rates that allow some existing methods such as pFBA to be employed. The goal of developing these computational tools is to better understand complex biological systems. Not only do the methods we developed contribute to advancing previous work, they have helped to answer biological research questions as well. In several collaborative research, our methods were used to understand the lipid accumulation mechanism of nitrogen-stressed Phaeodactylum tricornutum cells, verify the predictive power of a genome-scale metabolic model of the cyanobacterium Synechococcus sp. PCC 7002, and examine the metabolic impacts of RpiRc, a potent repressor of microbial toxins in Staphylococcus aureus.
Subject (authority = RUETD)
Topic
Computational and Integrative Biology
RelatedItem (type = host)
TitleInfo
Title
Rutgers University Electronic Theses and Dissertations
Identifier (type = RULIB)
ETD
Identifier
ETD_8143
PhysicalDescription
Form (authority = gmd)
electronic resource
InternetMediaType
application/pdf
InternetMediaType
text/xml
Extent
1 online resource (xii, 143 p. : ill.)
Note (type = degree)
Ph.D.
Note (type = bibliography)
Includes bibliographical references
Subject (authority = ETD-LCSH)
Topic
Metabolism
Note (type = statement of responsibility)
by Min Kyung Kim
RelatedItem (type = host)
TitleInfo
Title
Camden Graduate School Electronic Theses and Dissertations
Identifier (type = local)
rucore10005600001
Location
PhysicalLocation (authority = marcorg); (displayLabel = Rutgers, The State University of New Jersey)
NjNbRU
Identifier (type = doi)
doi:10.7282/T39889SQ
Genre (authority = ExL-Esploro)
ETD doctoral
Back to the top

Rights

RightsDeclaration (ID = rulibRdec0006)
The author owns the copyright to this work.
RightsHolder (type = personal)
Name
FamilyName
Kim
GivenName
Min Kyung
Role
Copyright Holder
RightsEvent
Type
Permission or license
DateTime (encoding = w3cdtf); (qualifier = exact); (point = start)
2017-04-28 10:42:26
AssociatedEntity
Name
Min Kyung Kim
Role
Copyright holder
Affiliation
Rutgers University. Camden Graduate School
AssociatedObject
Type
License
Name
Author Agreement License
Detail
I hereby grant to the Rutgers University Libraries and to my school the non-exclusive right to archive, reproduce and distribute my thesis or dissertation, in whole or in part, and/or my abstract, in whole or in part, in and from an electronic format, subject to the release date subsequently stipulated in this submittal form and approved by my school. I represent and stipulate that the thesis or dissertation and its abstract are my original work, that they do not infringe or violate any rights of others, and that I make these grants as the sole owner of the rights to my thesis or dissertation and its abstract. I represent that I have obtained written permissions, when necessary, from the owner(s) of each third party copyrighted matter to be included in my thesis or dissertation and will supply copies of such upon request by my school. I acknowledge that RU ETD and my school will not distribute my thesis or dissertation or its abstract if, in their reasonable judgment, they believe all such rights have not been secured. I acknowledge that I retain ownership rights to the copyright of my work. I also retain the right to use all or part of this thesis or dissertation in future works, such as articles or books.
RightsEvent
DateTime (encoding = w3cdtf); (qualifier = exact); (point = start)
2017-05-31
DateTime (encoding = w3cdtf); (qualifier = exact); (point = end)
2018-05-31
Type
Embargo
Detail
Access to this PDF has been restricted at the author's request. It will be publicly available after May 31st, 2018.
Copyright
Status
Copyright protected
Availability
Status
Open
Reason
Permission or license
Back to the top

Technical

RULTechMD (ID = TECHNICAL1)
ContentModel
ETD
OperatingSystem (VERSION = 5.1)
windows xp
CreatingApplication
Version
1.5
DateCreated (point = end); (encoding = w3cdtf); (qualifier = exact)
2017-05-11T02:30:41
DateCreated (point = end); (encoding = w3cdtf); (qualifier = exact)
2017-05-11T02:30:41
ApplicationName
Microsoft® Office Word 2007
Back to the top
Version 8.5.5
Rutgers University Libraries - Copyright ©2024