Staff View
Understanding the role of the PALB2-BRCA1 interaction in tumor suppression

Descriptive

TitleInfo
Title
Understanding the role of the PALB2-BRCA1 interaction in tumor suppression
Name (type = personal)
NamePart (type = family)
Mahdi
NamePart (type = given)
Amar Hekmat
NamePart (type = date)
1977-
DisplayForm
Amar Hekmat Mahdi
Role
RoleTerm (authority = RULIB)
author
Name (type = personal)
NamePart (type = family)
Bunting
NamePart (type = given)
Samuel
DisplayForm
Samuel Bunting
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
chair
Name (type = personal)
NamePart (type = family)
Fan
NamePart (type = given)
Huizhou
DisplayForm
Huizhou Fan
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
internal member
Name (type = personal)
NamePart (type = family)
Xia
NamePart (type = given)
Bing
DisplayForm
Bing Xia
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
internal member
Name (type = personal)
NamePart (type = family)
Chan
NamePart (type = given)
Chang
DisplayForm
Chang Chan
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
outside member
Name (type = corporate)
NamePart
Rutgers University
Role
RoleTerm (authority = RULIB)
degree grantor
Name (type = corporate)
NamePart
Graduate School - New Brunswick
Role
RoleTerm (authority = RULIB)
school
TypeOfResource
Text
Genre (authority = marcgt)
theses
OriginInfo
DateCreated (qualifier = exact)
2017
DateOther (qualifier = exact); (type = degree)
2017-05
CopyrightDate (encoding = w3cdtf); (qualifier = exact)
2017
Place
PlaceTerm (type = code)
xx
Language
LanguageTerm (authority = ISO639-2b); (type = code)
eng
Abstract (type = abstract)
Homologous recombination (HR) is the only error-free pathway for the repair of DNA double strand breaks (DSBs). BRCA1 and BRCA2, the two major breast cancer suppressor proteins, play essential roles in HR-mediated repair of DSBs by promoting the recruitment of RAD51, the recombination enzyme, to DNA damage sites for the initiation of HR. PALB2 (partner and localizer of BRCA2) plays a key role in this pathway by acting as a chromatin adaptor for BRCA2 and a linker between BRCA1 and BRCA2. Like BRCA1 and BRCA2, PALB2 is a tumor suppressor gene itself. Germline, heterozygous mutations in the gene increase the risk of breast, ovarian and pancreatic cancers. However, its mechanism is not fully understood. To investigate the in vivo role of the PALB2-BRCA1 interaction, we previously generated a Palb2 knockin mouse strain that contains a mutation that disrupts BRCA1 binding. This mouse model also allows us to bypass the embryonic lethality of the Palb2 KO mice. In this study, we hypothesized that the direct communication between the two proteins is critical for proper DNA damage repair and response in vivo and for suppression of tumorigenesis. Indeed, both immunohistochemistry (IHC) and immunofluorescence (IF) demonstrated that different tissues of the Palb2 mutant mice have higher levels of endogenous DSBs (gamma H2AX foci) and slower DSB repair kinetics after ionizing radiation (IR). Yet, mutant cells were more resistant to cell death. When aged under normal conditions, mutant mice showed increased tumor incidence in multiple tissues, particularly in the liver. Upon challenging of these mutant mice with carcinogen administration or gamma irradiation, they showed accelerated tumor development as compared with wild-type (wt) mice. When crossed with Trp53 mutant mice, the compound mutant mice showed greatly accelerated development of tumors typically associated with mutations in p53, i.e. thymic lymphoma, osteosarcoma and soft tissue sarcoma, etc. Whole exome sequencing (WES) of the tumors arising from Palb2m/m;Trp53+/- mice revealed loss of the wt allele of Trp53 in the majority of tumors, with at least some tumors showing focal deletions of the wt gene, suggesting that disruption of BRCA1-PALB2/BRCA2 axis promotes regional genomic deletions that may lead to loss of other tumor suppressors such as p53. These results underscore the importance of the BRCA1-PALB2/BRCA2 pathway for tumor suppression and suggest a potentially novel mechanism for BRCA/PALB2-mediated tumor suppression, which is by preventing Trp53/TP53 loss of heterozygosity (LOH), which would allow for tumor development. Finally, we also found constitutively elevated levels of reactive oxygen species (ROS) and activation of NF-kB, a redox sensitive transcription factor, in tissues and cells from the mutant mice. Given its established pro-survival function, NF-kB activation could explain why cells in the mutant mice are resistant to apoptosis upon irradiation despite having increased and prolonged DNA damage. This finding also suggests that the NF-kB pathway may be a potential target for treatment of PALB2 and BRCA1-associated cancers.
Subject (authority = RUETD)
Topic
Physiology and Integrative Biology
Subject (authority = ETD-LCSH)
Topic
Cancer--Prevention
Subject (authority = ETD-LCSH)
Topic
Breast--Cancer
RelatedItem (type = host)
TitleInfo
Title
Rutgers University Electronic Theses and Dissertations
Identifier (type = RULIB)
ETD
Identifier
ETD_8035
PhysicalDescription
Form (authority = gmd)
electronic resource
InternetMediaType
application/pdf
InternetMediaType
text/xml
Extent
1 online resource (xv, 128 p. : ill.)
Note (type = degree)
Ph.D.
Note (type = bibliography)
Includes bibliographical references
Note (type = statement of responsibility)
by Amar Hekmat Mahdi
RelatedItem (type = host)
TitleInfo
Title
Graduate School - New Brunswick Electronic Theses and Dissertations
Identifier (type = local)
rucore19991600001
Location
PhysicalLocation (authority = marcorg); (displayLabel = Rutgers, The State University of New Jersey)
NjNbRU
Identifier (type = doi)
doi:10.7282/T31G0Q4Q
Genre (authority = ExL-Esploro)
ETD doctoral
Back to the top

Rights

RightsDeclaration (ID = rulibRdec0006)
The author owns the copyright to this work.
RightsHolder (type = personal)
Name
FamilyName
Mahdi
GivenName
Amar
MiddleName
Hekmat
Role
Copyright Holder
RightsEvent
Type
Permission or license
DateTime (encoding = w3cdtf); (qualifier = exact); (point = start)
2017-04-14 10:31:23
AssociatedEntity
Name
AMAR MAHDI
Role
Copyright holder
Affiliation
Rutgers University. Graduate School - New Brunswick
AssociatedObject
Type
License
Name
Author Agreement License
Detail
I hereby grant to the Rutgers University Libraries and to my school the non-exclusive right to archive, reproduce and distribute my thesis or dissertation, in whole or in part, and/or my abstract, in whole or in part, in and from an electronic format, subject to the release date subsequently stipulated in this submittal form and approved by my school. I represent and stipulate that the thesis or dissertation and its abstract are my original work, that they do not infringe or violate any rights of others, and that I make these grants as the sole owner of the rights to my thesis or dissertation and its abstract. I represent that I have obtained written permissions, when necessary, from the owner(s) of each third party copyrighted matter to be included in my thesis or dissertation and will supply copies of such upon request by my school. I acknowledge that RU ETD and my school will not distribute my thesis or dissertation or its abstract if, in their reasonable judgment, they believe all such rights have not been secured. I acknowledge that I retain ownership rights to the copyright of my work. I also retain the right to use all or part of this thesis or dissertation in future works, such as articles or books.
RightsEvent
DateTime (encoding = w3cdtf); (qualifier = exact); (point = start)
2017-05-31
DateTime (encoding = w3cdtf); (qualifier = exact); (point = end)
2019-05-31
Type
Embargo
Detail
Access to this PDF has been restricted at the author's request. It will be publicly available after May 31st, 2019.
Copyright
Status
Copyright protected
Availability
Status
Open
Reason
Permission or license
Back to the top

Technical

RULTechMD (ID = TECHNICAL1)
ContentModel
ETD
OperatingSystem (VERSION = 5.1)
windows xp
CreatingApplication
Version
1.5
DateCreated (point = end); (encoding = w3cdtf); (qualifier = exact)
2017-04-19T15:51:12
DateCreated (point = end); (encoding = w3cdtf); (qualifier = exact)
2017-04-19T15:51:12
ApplicationName
Microsoft® Word 2010
Back to the top
Version 8.5.5
Rutgers University Libraries - Copyright ©2024