Staff View
Using baffle to improve axial mixing in double cone blenders

Descriptive

TitleInfo
Title
Using baffle to improve axial mixing in double cone blenders
SubTitle
dry impregnation process
Name (type = personal)
NamePart (type = family)
Rastogi
NamePart (type = given)
Aman
DisplayForm
Aman Rastogi
Role
RoleTerm (authority = RULIB)
author
Name (type = personal)
NamePart (type = family)
Tomassone
NamePart (type = given)
Maria S
DisplayForm
Maria S Tomassone
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
chair
Name (type = corporate)
NamePart
Rutgers University
Role
RoleTerm (authority = RULIB)
degree grantor
Name (type = corporate)
NamePart
School of Graduate Studies
Role
RoleTerm (authority = RULIB)
school
TypeOfResource
Text
Genre (authority = marcgt)
theses
OriginInfo
DateCreated (qualifier = exact)
2018
DateOther (qualifier = exact); (type = degree)
2018-10
CopyrightDate (encoding = w3cdtf)
2018
Place
PlaceTerm (type = code)
xx
Language
LanguageTerm (authority = ISO639-2b); (type = code)
eng
Abstract (type = abstract)
Mixing is used in various processes across the industry and is an important operation to control the quality of products in particle processes. Rotary blenders are widely used for the mixing and dry impregnation operations and it has been understood from previous research that in such blenders the time scales for axial mixing were significantly larger than for radial mixing. The goals of this work are to understand how baffles affect the mixing process in a rotating vessel and to develop a method to determine the optimum baffle size and position to be used in a double cone vessel. To increase the extent of axial mixing, baffles that break the line of symmetry along the axis (three along the cylindrical section and two along the conical sections of the double cone) were considered. In this work we use Discrete Element Method (DEM) simulations to study systematically the effect of baffles on the axial mixing and dry impregnation in the double cone blender. The effect of different properties of baffles, e.g. height, position, angle of orientation of baffles with the various process parameters, e.g. fill level, particle size, rotation speed on the mixing performance were studied. To measure the degree of mixing we use the Kramer mixing index, which is based on the distance between the volume centers of an axially segregated system, was calculated to quantify the mixing of the system. Simulation results show that there is an optimal baffle height for low fill levels, beyond which the mixing performance declines. The angle of orientation has little to no effect on mixing performance for large particles, whereas for smaller particles, there is an optimum range of operation. Also, results for the baffle position indicated that it affects mixing significantly more at lower fill levels, and an optimum baffle position could be found. We determined the positions in the double cone for which the particle velocity is maximum. Our proposed hypothesis is that if the baffles are located in the position of maximum velocity, they will tend to break the flow and offer best mixing performance. We observe that baffles considerably increase homogeneity in the impregnation process, but we do not observe significant differences between mixing performance for different baffle positions.
Subject (authority = RUETD)
Topic
Chemical and Biochemical Engineering
Subject (authority = ETD-LCSH)
Topic
Mixing
RelatedItem (type = host)
TitleInfo
Title
Rutgers University Electronic Theses and Dissertations
Identifier (type = RULIB)
ETD
Identifier
ETD_9340
PhysicalDescription
Form (authority = gmd)
electronic resource
InternetMediaType
application/pdf
InternetMediaType
text/xml
Extent
1 online resource (38 pages : illustrations)
Note (type = degree)
M.S.
Note (type = bibliography)
Includes bibliographical references
Note (type = statement of responsibility)
by Aman Rastogi
RelatedItem (type = host)
TitleInfo
Title
School of Graduate Studies Electronic Theses and Dissertations
Identifier (type = local)
rucore10001600001
Location
PhysicalLocation (authority = marcorg); (displayLabel = Rutgers, The State University of New Jersey)
NjNbRU
Identifier (type = doi)
doi:10.7282/t3-8zcj-pj04
Genre (authority = ExL-Esploro)
ETD graduate
Back to the top

Rights

RightsDeclaration (ID = rulibRdec0006)
The author owns the copyright to this work.
RightsHolder (type = personal)
Name
FamilyName
Rastogi
GivenName
Aman
Role
Copyright Holder
RightsEvent
Type
Permission or license
DateTime (encoding = w3cdtf); (qualifier = exact); (point = start)
2018-10-03 16:29:40
AssociatedEntity
Name
Aman Rastogi
Role
Copyright holder
Affiliation
Rutgers University. School of Graduate Studies
AssociatedObject
Type
License
Name
Author Agreement License
Detail
I hereby grant to the Rutgers University Libraries and to my school the non-exclusive right to archive, reproduce and distribute my thesis or dissertation, in whole or in part, and/or my abstract, in whole or in part, in and from an electronic format, subject to the release date subsequently stipulated in this submittal form and approved by my school. I represent and stipulate that the thesis or dissertation and its abstract are my original work, that they do not infringe or violate any rights of others, and that I make these grants as the sole owner of the rights to my thesis or dissertation and its abstract. I represent that I have obtained written permissions, when necessary, from the owner(s) of each third party copyrighted matter to be included in my thesis or dissertation and will supply copies of such upon request by my school. I acknowledge that RU ETD and my school will not distribute my thesis or dissertation or its abstract if, in their reasonable judgment, they believe all such rights have not been secured. I acknowledge that I retain ownership rights to the copyright of my work. I also retain the right to use all or part of this thesis or dissertation in future works, such as articles or books.
RightsEvent
Type
Embargo
DateTime (encoding = w3cdtf); (qualifier = exact); (point = start)
2018-10-31
DateTime (encoding = w3cdtf); (qualifier = exact); (point = end)
2020-10-30
Detail
Access to this PDF has been restricted at the author's request. It will be publicly available after October 30th, 2020.
Copyright
Status
Copyright protected
Availability
Status
Open
Reason
Permission or license
Back to the top

Technical

RULTechMD (ID = TECHNICAL1)
ContentModel
ETD
OperatingSystem (VERSION = 5.1)
windows xp
DateCreated (point = end); (encoding = w3cdtf); (qualifier = exact)
2019-01-08T15:35:10
CreatingApplication
Version
1.7
Back to the top
Version 8.5.5
Rutgers University Libraries - Copyright ©2024