Staff View
Comprehensive full-depth condition assessment of reinforced concrete bridge decks using ground penetrating radar

Descriptive

TitleInfo
Title
Comprehensive full-depth condition assessment of reinforced concrete bridge decks using ground penetrating radar
Name (type = personal)
NamePart (type = family)
Sedigh Imani
NamePart (type = given)
Fatemeh
NamePart (type = date)
1983-
DisplayForm
Fatemeh Sedigh Imani
Role
RoleTerm (authority = RULIB)
author
Name (type = personal)
NamePart (type = family)
Gucunski
NamePart (type = given)
Nenad
DisplayForm
Nenad Gucunski
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
chair
Name (type = personal)
NamePart (type = family)
Maher
NamePart (type = given)
Ali
DisplayForm
Ali Maher
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
internal member
Name (type = personal)
NamePart (type = family)
WANG
NamePart (type = given)
HAO
DisplayForm
HAO WANG
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
internal member
Name (type = personal)
NamePart (type = family)
Nazarian
NamePart (type = given)
Soheil
DisplayForm
Soheil Nazarian
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
outside member
Name (type = corporate)
NamePart
Rutgers University
Role
RoleTerm (authority = RULIB)
degree grantor
Name (type = corporate)
NamePart
School of Graduate Studies
Role
RoleTerm (authority = RULIB)
school
TypeOfResource
Text
Genre (authority = marcgt)
theses
OriginInfo
DateCreated (encoding = w3cdtf); (qualifier = exact)
2019
DateOther (encoding = w3cdtf); (qualifier = exact); (type = degree)
2019-05
Language
LanguageTerm (authority = ISO 639-3:2007); (type = text)
English
Abstract (type = abstract)
The traditional practice for condition evaluation of concrete bridge decks using GPR is limited to evaluating the upper section above the top reinforcement mat. As such, it does not provide any useful information about the condition of concrete below. In an attempt to expand the GPR evaluation zone beyond the top rebar, this research focuses on the development of a machine learning algorithm for the full depth condition assessment. Two learning algorithms were developed: (i) an algorithm based on numerical data, which was then applied to the experimental data from a GPR survey of a validation slab, and (ii) an algorithm based on a dataset comprised entirely of experimental data, which was later validated using a bridge and validation slab GPR survey data.
For the first algorithm, a database was developed through a series of two-dimensional numerical simulations of GPR surveys of slabs with variable influential or characteristic parameters. The slab was divided into three separate yet interconnected longitudinal layers. The quality of concrete was characterized by two electromagnetic properties – permittivity and conductivity, which were varied for each layer. Using the electromagnetic properties as characteristic parameters, six concrete conditions from good to critical were simulated. A machine learning technique, called gradient boosting, was used to predict the layers’ condition.
Gradient boosting was also used to analyze a dataset compiled through GPR surveys of four concrete bridge decks to predict the deck condition. Two independent prediction modules were developed: Module 1 to predict the condition above the top rebars, and Module 2 to predict the condition of concrete between the top and bottom rebars. A laboratory validation test slab and a fifth concrete highway bridge deck were surveyed using the same GPR system, and the data were used to validate the learning algorithm. The implementation of the proposed method in the validation phase showed that using machine learning and a vast library of GPR data, it is possible to avoid the arbitrary 90th percentile depth correction for new bridges without compromising the ability to assess the deck condition accurately. It was additionally demonstrated that it is possible for GPR to assess the condition of the deck beyond the top reinforcing mat.
To develop a more effective learning algorithm based on numerical simulations, it is recommended that a more extensive dataset is generated. It is also imperative to calibrate the numerical data with experimental data through laboratory testing in which the electromagnetic properties of concrete can be controlled at various depths.
Subject (authority = local)
Topic
GPR
Subject (authority = RUETD)
Topic
Civil and Environmental Engineering
Subject (authority = LCSH)
Topic
Ground penetrating radar
Subject (authority = LCSH)
Topic
Bridges -- Floors -- Imaging
RelatedItem (type = host)
TitleInfo
Title
Rutgers University Electronic Theses and Dissertations
Identifier (type = RULIB)
ETD
Identifier
ETD_9669
PhysicalDescription
Form (authority = gmd)
InternetMediaType
application/pdf
InternetMediaType
text/xml
Extent
1 online resource (xvi, 221 pages) : illustrations
Note (type = degree)
Ph.D.
Note (type = bibliography)
Includes bibliographical references
RelatedItem (type = host)
TitleInfo
Title
School of Graduate Studies Electronic Theses and Dissertations
Identifier (type = local)
rucore10001600001
Location
PhysicalLocation (authority = marcorg); (displayLabel = Rutgers, The State University of New Jersey)
NjNbRU
Identifier (type = doi)
doi:10.7282/t3-mt1d-f138
Genre (authority = ExL-Esploro)
ETD doctoral
Back to the top

Rights

RightsDeclaration (ID = rulibRdec0006)
The author owns the copyright to this work.
RightsHolder (type = personal)
Name
FamilyName
Sedigh Imani
GivenName
Fatemeh
Role
Copyright Holder
RightsEvent
Type
Permission or license
DateTime (encoding = w3cdtf); (qualifier = exact); (point = start)
2019-04-02 22:17:37
AssociatedEntity
Name
Fatemeh Sedigh Imani
Role
Copyright holder
Affiliation
Rutgers University. School of Graduate Studies
AssociatedObject
Type
License
Name
Author Agreement License
Detail
I hereby grant to the Rutgers University Libraries and to my school the non-exclusive right to archive, reproduce and distribute my thesis or dissertation, in whole or in part, and/or my abstract, in whole or in part, in and from an electronic format, subject to the release date subsequently stipulated in this submittal form and approved by my school. I represent and stipulate that the thesis or dissertation and its abstract are my original work, that they do not infringe or violate any rights of others, and that I make these grants as the sole owner of the rights to my thesis or dissertation and its abstract. I represent that I have obtained written permissions, when necessary, from the owner(s) of each third party copyrighted matter to be included in my thesis or dissertation and will supply copies of such upon request by my school. I acknowledge that RU ETD and my school will not distribute my thesis or dissertation or its abstract if, in their reasonable judgment, they believe all such rights have not been secured. I acknowledge that I retain ownership rights to the copyright of my work. I also retain the right to use all or part of this thesis or dissertation in future works, such as articles or books.
Copyright
Status
Copyright protected
Availability
Status
Open
Reason
Permission or license
Back to the top

Technical

RULTechMD (ID = TECHNICAL1)
ContentModel
ETD
OperatingSystem (VERSION = 5.1)
windows xp
CreatingApplication
Version
1.7
ApplicationName
Microsoft® Word for Office 365
DateCreated (point = end); (encoding = w3cdtf); (qualifier = exact)
2019-04-04T08:23:36
DateCreated (point = end); (encoding = w3cdtf); (qualifier = exact)
2019-04-04T08:23:36
Back to the top
Version 8.5.5
Rutgers University Libraries - Copyright ©2024