Staff View
Understanding vehicle-bridge interaction through field measurements and model-based simulations

Descriptive

TitleInfo
Title
Understanding vehicle-bridge interaction through field measurements and model-based simulations
Name (type = personal)
NamePart (type = family)
Braley
NamePart (type = given)
John Burton
NamePart (type = date)
1989-
DisplayForm
John Burton Braley
Role
RoleTerm (authority = RULIB)
author
Name (type = personal)
NamePart (type = family)
Moon
NamePart (type = given)
Franklin
DisplayForm
Franklin Moon
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
chair
Name (type = personal)
NamePart (type = family)
Najm
NamePart (type = given)
Husam
DisplayForm
Husam Najm
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
internal member
Name (type = personal)
NamePart (type = family)
WANG
NamePart (type = given)
HAO
DisplayForm
HAO WANG
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
internal member
Name (type = personal)
NamePart (type = family)
Dubbs
NamePart (type = given)
Nathan
DisplayForm
Nathan Dubbs
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
outside member
Name (type = corporate)
NamePart
Rutgers University
Role
RoleTerm (authority = RULIB)
degree grantor
Name (type = corporate)
NamePart
School of Graduate Studies
Role
RoleTerm (authority = RULIB)
school
TypeOfResource
Text
Genre (authority = marcgt)
theses
OriginInfo
DateCreated (encoding = w3cdtf); (qualifier = exact)
2019
DateOther (encoding = w3cdtf); (qualifier = exact); (type = degree)
2019-10
Language
LanguageTerm (authority = ISO 639-3:2007); (type = text)
English
Abstract (type = abstract)
Driven by a desire for simplicity, bridge design and assessment approaches have historically employed a static model to estimate the forces and displacements resulting from trucks (the largest live loads that bridges experience). While these methods apply a constant factor in an attempt to account for the amplification that occurs due to the dynamic nature of truck loads, this approach fails to properly account for the dynamic interaction between trucks and bridges. As bridge designs continue to trade-off conservatism for cost savings, and loadings continue to increase (both in terms of magnitude, frequency, and nature (e.g. truck platooning)), historically-adequate simplifying assumptions (such as those associated with modeling truck loads in a static manner) must be critically examined to ensure their continued applicability.
Towards that end, the overarching aim of this research is to critically examine vehicle-bridge interaction (VBI) and develop a series of recommendations for how it should be addressed within the context of bridge design and assessment. More specifically, the following three objectives were identified to guide this research:
(1)Establish the mechanisms that result in levels of VBI that render the common static live load model unconservative,
(2)For the cases identified in (1) develop and validate a practical approach to estimating the effects of truck loads inclusive of VBI, and
(3)Identify bridge vulnerabilities associated with truck platooning and make recommendations related to how VBI should be estimated and mitigated.
These objectives were realized by taking an inductive approach whereby a structure exhibiting large vibration levels was investigated to identify and characterize the underlying mechanisms through the Structural Identification (StId) framework. A series of field tests of this structure were performed to obtain operational responses that were subsequently used to calibrate and validate an FE model that was subsequently employed to simulate VBI using modal superposition methods. The parameters examined in this study include roadway profile, vehicle suspension parameters, and bridge dynamic characteristics. The results from this study were employed to develop and validate a practical, simplified model for estimating dynamic load levels. This model was employed through a series of parametric studies to generate recommendations related to a wide range of issues including bridge assessment, construction, and policies related to truck platooning. Key findings include:
•A simple model that reduces both the bridge and vehicle to single degree-of-freedom systems was shown to reliably predict dynamic amplification and is recommended when FE simulation is impractical.
•Bridge responses are greatest when the profile induces oscillation in the vehicle close to the bridge’s natural frequency and when the vehicle’s natural frequency is 10-20% greater than that of the bridge.
•Rolling-straightedge length should be no less than 16 feet for a specified deviation of 1/8th inch, and no less than 30 feet for a specified deviation of ¼ inch.
•Traffic and truck platoons can result in increased dynamic amplification because even a single previous truck can induce the bridge conditions (motion) that result in increased dynamic response.
•As spacing between vehicles decreases and more vehicles are present on the bridge, the static load effect increases, but the dynamic amplification will likely be less than what would occur for a single vehicle.
Subject (authority = RUETD)
Topic
Civil and Environmental Engineering
Subject (authority = local)
Topic
VBI
Subject (authority = LCSH)
Topic
Bridges -- Live loads
RelatedItem (type = host)
TitleInfo
Title
Rutgers University Electronic Theses and Dissertations
Identifier (type = RULIB)
ETD
Identifier
ETD_10285
PhysicalDescription
Form (authority = gmd)
InternetMediaType
application/pdf
InternetMediaType
text/xml
Extent
1 online resource (xxi, 252 pages) : illustrations
Note (type = degree)
Ph.D.
Note (type = bibliography)
Includes bibliographical references
RelatedItem (type = host)
TitleInfo
Title
School of Graduate Studies Electronic Theses and Dissertations
Identifier (type = local)
rucore10001600001
Location
PhysicalLocation (authority = marcorg); (displayLabel = Rutgers, The State University of New Jersey)
NjNbRU
Identifier (type = doi)
doi:10.7282/t3-1d56-ma31
Genre (authority = ExL-Esploro)
ETD doctoral
Back to the top

Rights

RightsDeclaration (ID = rulibRdec0006)
The author owns the copyright to this work.
RightsHolder (type = personal)
Name
FamilyName
Braley
GivenName
John
Role
Copyright Holder
RightsEvent
Type
Permission or license
DateTime (encoding = w3cdtf); (qualifier = exact); (point = start)
2019-09-20 15:32:43
AssociatedEntity
Name
John Braley
Role
Copyright holder
Affiliation
Rutgers University. School of Graduate Studies
AssociatedObject
Type
License
Name
Author Agreement License
Detail
I hereby grant to the Rutgers University Libraries and to my school the non-exclusive right to archive, reproduce and distribute my thesis or dissertation, in whole or in part, and/or my abstract, in whole or in part, in and from an electronic format, subject to the release date subsequently stipulated in this submittal form and approved by my school. I represent and stipulate that the thesis or dissertation and its abstract are my original work, that they do not infringe or violate any rights of others, and that I make these grants as the sole owner of the rights to my thesis or dissertation and its abstract. I represent that I have obtained written permissions, when necessary, from the owner(s) of each third party copyrighted matter to be included in my thesis or dissertation and will supply copies of such upon request by my school. I acknowledge that RU ETD and my school will not distribute my thesis or dissertation or its abstract if, in their reasonable judgment, they believe all such rights have not been secured. I acknowledge that I retain ownership rights to the copyright of my work. I also retain the right to use all or part of this thesis or dissertation in future works, such as articles or books.
Copyright
Status
Copyright protected
Availability
Status
Open
Reason
Permission or license
Back to the top

Technical

RULTechMD (ID = TECHNICAL1)
ContentModel
ETD
OperatingSystem (VERSION = 5.1)
windows xp
CreatingApplication
Version
1.7
ApplicationName
Microsoft® Word for Office 365
DateCreated (point = end); (encoding = w3cdtf); (qualifier = exact)
2019-09-20T14:20:14
DateCreated (point = end); (encoding = w3cdtf); (qualifier = exact)
2019-09-20T14:55:38
Back to the top
Version 8.3.13
Rutgers University Libraries - Copyright ©2021