Staff View
Part-scale thermal and thermomechanical finite element modeling, and model validation framework for the laser powder bed fusion process

Descriptive

TitleInfo
Title
Part-scale thermal and thermomechanical finite element modeling, and model validation framework for the laser powder bed fusion process
Name (type = personal)
NamePart (type = family)
Olleak
NamePart (type = given)
Alaaeldin
NamePart (type = date)
1989-
DisplayForm
Alaaeldin Olleak
Role
RoleTerm (authority = RULIB)
author
Name (type = personal)
NamePart (type = family)
Xi
NamePart (type = given)
Zhimin
DisplayForm
Zhimin Xi
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
chair
Name (type = personal)
NamePart (type = family)
Elsayed
NamePart (type = given)
Elsayed
DisplayForm
Elsayed Elsayed
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
internal member
Name (type = personal)
NamePart (type = family)
Guo
NamePart (type = given)
Weihong
DisplayForm
Weihong Guo
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
internal member
Name (type = personal)
NamePart (type = family)
Guo
NamePart (type = given)
Yuebin
DisplayForm
Yuebin Guo
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
outside member
Name (type = corporate)
NamePart
Rutgers University
Role
RoleTerm (authority = RULIB)
degree grantor
Name (type = corporate)
NamePart
School of Graduate Studies
Role
RoleTerm (authority = RULIB)
school
TypeOfResource
Text
Genre (authority = marcgt)
theses
Genre (authority = ExL-Esploro)
ETD doctoral
OriginInfo
DateCreated (qualifier = exact); (encoding = w3cdtf); (keyDate = yes)
2020
DateOther (type = degree); (qualifier = exact); (encoding = w3cdtf)
2020-10
Language
LanguageTerm (authority = ISO 639-3:2007); (type = text)
English
Abstract (type = abstract)
Quality and reliability of additively manufactured (AM) parts using the Laser Powder Bed Fusion (LPBF) process are greatly affected by the thermal history during the manufacturing process. Prediction of thermal history, residual stresses, and distortions of a part during the LPBF process is critical to understand how the process parameters influence the process stability and mechanical properties of the part. Finite element modeling of the LPBF process at part-scale is challenging and requires massive computational time and resources. These models are computationally infeasible if they are not associated with simplifications in the mesh configuration and the heat source model, or with the reduced domain size. Due to the complexity of the computational model itself, uncertainties during the LPBF process are not systematically studied, and their effects on quality and reliability of the parts are not characterized.

The dissertation overcomes the computational expensiveness associated with modeling of the LPBF process on a part-scale level. It presents the use of different adaptive remeshing techniques that enable the thermal and thermomechanical simulations at the part-scale level without the sacrifice in accuracy. As a result, part-scale thermal and thermomechanical finite element modeling are computationally feasible. This is the first work where an adaptive remeshing framework was developed for the LPBF process, based on an existing general-purpose implicit solver and the tetrahedral mesh. In particular, the tetrahedral mesh can represent parts with complex structures using less elements than the existing remeshing technique. The thermal process modeling presents models for relatively large parts considering different process parameters, and the models can predict location-dependent melt pool size and the lack-of-fusion porosity. The thermomechanical process modeling predicts the thermally induced residual stresses, strains, and distortions for different parts. The model predictions find similar trends with the experimental results from the literature along with achieving a significant reduction in the computational time compared to the state-of-the-art models without using the adaptive remeshing. Furthermore, a general calibration and validation framework for the LPBF process was developed based on multi-fidelity models and limited experimental data. The framework enables the development of highly efficient and accurate models for melt pool predictions under various sets of process parameters through the seamless integration of finite element modeling, machine learning methods, and the model calibration and validation methods. Effectiveness of the framework is demonstrated by experimental data under different sets of process parameters available in the literature.
Subject (authority = local)
Topic
Laser powder bed fusion
Subject (authority = RUETD)
Topic
Industrial and Systems Engineering
RelatedItem (type = host)
TitleInfo
Title
Rutgers University Electronic Theses and Dissertations
Identifier (type = RULIB)
ETD
Identifier
ETD_11034
PhysicalDescription
Form (authority = gmd)
InternetMediaType
application/pdf
InternetMediaType
text/xml
Extent
1 online resource (xv, 135 pages) : illustrations
Note (type = degree)
Ph.D.
Note (type = bibliography)
Includes bibliographical references
RelatedItem (type = host)
TitleInfo
Title
School of Graduate Studies Electronic Theses and Dissertations
Identifier (type = local)
rucore10001600001
Location
PhysicalLocation (authority = marcorg); (displayLabel = Rutgers, The State University of New Jersey)
NjNbRU
Identifier (type = doi)
doi:10.7282/t3-g2sh-wm80
Back to the top

Rights

RightsDeclaration (ID = rulibRdec0006)
The author owns the copyright to this work.
RightsHolder (type = personal)
Name
FamilyName
Olleak
GivenName
Alaaeldin
Role
Copyright Holder
RightsEvent
Type
Permission or license
DateTime (encoding = w3cdtf); (qualifier = exact); (point = start)
2020-07-06 11:55:47
AssociatedEntity
Name
Alaaeldin Olleak
Role
Copyright holder
Affiliation
Rutgers University. School of Graduate Studies
AssociatedObject
Type
License
Name
Author Agreement License
Detail
I hereby grant to the Rutgers University Libraries and to my school the non-exclusive right to archive, reproduce and distribute my thesis or dissertation, in whole or in part, and/or my abstract, in whole or in part, in and from an electronic format, subject to the release date subsequently stipulated in this submittal form and approved by my school. I represent and stipulate that the thesis or dissertation and its abstract are my original work, that they do not infringe or violate any rights of others, and that I make these grants as the sole owner of the rights to my thesis or dissertation and its abstract. I represent that I have obtained written permissions, when necessary, from the owner(s) of each third party copyrighted matter to be included in my thesis or dissertation and will supply copies of such upon request by my school. I acknowledge that RU ETD and my school will not distribute my thesis or dissertation or its abstract if, in their reasonable judgment, they believe all such rights have not been secured. I acknowledge that I retain ownership rights to the copyright of my work. I also retain the right to use all or part of this thesis or dissertation in future works, such as articles or books.
RightsEvent
Type
Embargo
DateTime (encoding = w3cdtf); (qualifier = exact); (point = start)
2020-10-31
DateTime (encoding = w3cdtf); (qualifier = exact); (point = end)
2022-10-31
Detail
Access to this PDF has been restricted at the author's request. It will be publicly available after October 31st, 2022.
Copyright
Status
Copyright protected
Availability
Status
Open
Reason
Permission or license
Back to the top

Technical

RULTechMD (ID = TECHNICAL1)
ContentModel
ETD
OperatingSystem (VERSION = 5.1)
windows xp
CreatingApplication
Version
1.7
ApplicationName
Microsoft® Word for Office 365
DateCreated (point = end); (encoding = w3cdtf); (qualifier = exact)
2020-08-13T11:48:44
DateCreated (point = end); (encoding = w3cdtf); (qualifier = exact)
2020-08-13T11:48:44
Back to the top
Version 8.5.5
Rutgers University Libraries - Copyright ©2024