Staff View
Heat transfer in a bladed mixer: scale up and effect of material and process parameters

Descriptive

TitleInfo
Title
Heat transfer in a bladed mixer: scale up and effect of material and process parameters
Name (type = personal)
NamePart (type = family)
Hartmanshenn
NamePart (type = given)
Clara
NamePart (type = date)
1993-
DisplayForm
Clara Hartmanshenn
Role
RoleTerm (authority = RULIB)
author
Name (type = personal)
NamePart (type = family)
Glasser
NamePart (type = given)
Benjamin J
DisplayForm
Benjamin J Glasser
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
chair
Name (type = personal)
NamePart (type = family)
Tsilomelekis
NamePart (type = given)
George
DisplayForm
George Tsilomelekis
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
internal member
Name (type = personal)
NamePart (type = family)
Chiew
NamePart (type = given)
Yee C
DisplayForm
Yee C Chiew
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
internal member
Name (type = personal)
NamePart (type = family)
Metzger
NamePart (type = given)
Matthew J
DisplayForm
Matthew J Metzger
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
outside member
Name (type = corporate)
NamePart
Rutgers University
Role
RoleTerm (authority = RULIB)
degree grantor
Name (type = corporate)
NamePart
School of Graduate Studies
Role
RoleTerm (authority = RULIB)
school
TypeOfResource
Text
Genre (authority = marcgt)
theses
Genre (authority = ExL-Esploro)
ETD doctoral
OriginInfo
DateCreated (qualifier = exact); (encoding = w3cdtf); (keyDate = yes)
2020
DateOther (type = degree); (qualifier = exact); (encoding = w3cdtf)
2020-10
Language
LanguageTerm (authority = ISO 639-3:2007); (type = text)
English
Abstract (type = abstract)
Granular materials make up a significant portion of the products manufactured by a variety of industries, including the pharmaceutical, bulk chemical, food, and construction industries. Yet, despite the ubiquity of particulate systems, a strong fundamental understanding of their behaviors is lacking. In the pharmaceutical industry, agitated drying of active pharmaceutical ingredients (APIs) is often a complex manufacturing step because it requires a combined understanding of the flow, heat transfer, mass transfer, and physicochemical properties of granular materials. During the process, a wet bed of API is heated in a jacketed cylindrical vessel while being agitated by a rotating impeller until the moisture content is reduced to a desired level. Complications often plague the procedure, including issues such as lengthy drying times, over-drying, nonuniform drying, agglomeration, attrition, and form changes. These circumstances make agitated drying a complicated process to understand and control. When considering scale up, these challenges are coupled with the difficulties typically associated with transferring knowledge from lab scale to pilot or manufacturing scale. As a result, it can be difficult to design a drying protocol that optimizes performance and can be translated from scale to scale while minimizing the risk for adverse conditions.

In this work, we decouple the problem and focus on studying the heat transfer aspect of agitated drying using a combination of computational and experimental techniques. More specifically, we studied the influence of material properties and operating conditions on both the rate of heat transfer and the heating uniformity for a bed of dry granular material in a bladed mixer. We conducted numerical simulations using the discrete element method (DEM) coupled with a conductive heat transfer model to assess the effect of the material thermal conductivity and the agitation rate on the heating performance. We also carried out experiments using a laboratory-scale agitated dryer and an infrared camera to assess the effect of the agitation rate and compare with the simulation results. Both the simulations and the experiments suggested that slowly agitating the bed considerably improved heat transfer, but that rapid agitation did not always enhance heat transfer. The results indicated that there is a critical rotation rate beyond which agitating the bed faster did not significantly improve heat transfer and that the critical rotation rate depends on the thermal conductivity of the material. Additionally, we developed a dimensionless scaling that enabled us to collapse the data together and obtain an equation relating the heating time of the bed to the thermal properties of the material and the agitation rate. We also quantified the heating uniformity and found that the temperature standard deviation depended on both the thermal conductivity and the agitation rate. For the parameters studied, we found that the scaling could be used to approximately predict both the mean temperature of the bed and the standard deviation over time. Finally, we demonstrated that heat transfer in a bladed mixer could also be studied using a more theoretical approach by calculating the conduction and granular convection fluxes in the bed. Overall, the findings from this work improve fundamental understanding of heat transfer in a bladed mixer and provide insights into how the performance of agitated filter dryers and scale up of these processes can be optimized.
Subject (authority = local)
Topic
Heat transfer
Subject (authority = RUETD)
Topic
Chemical and Biochemical Engineering
RelatedItem (type = host)
TitleInfo
Title
Rutgers University Electronic Theses and Dissertations
Identifier (type = RULIB)
ETD
Identifier
ETD_11176
PhysicalDescription
Form (authority = gmd)
InternetMediaType
application/pdf
InternetMediaType
text/xml
Extent
1 online resource (xiii, 164 pages) : illustrations
Note (type = degree)
Ph.D.
Note (type = bibliography)
Includes bibliographical references
RelatedItem (type = host)
TitleInfo
Title
School of Graduate Studies Electronic Theses and Dissertations
Identifier (type = local)
rucore10001600001
Location
PhysicalLocation (authority = marcorg); (displayLabel = Rutgers, The State University of New Jersey)
NjNbRU
Identifier (type = doi)
doi:10.7282/t3-f2v5-ag83
Back to the top

Rights

RightsDeclaration (ID = rulibRdec0006)
The author owns the copyright to this work.
RightsHolder (type = personal)
Name
FamilyName
Hartmanshenn
GivenName
Clara
Role
Copyright Holder
RightsEvent
Type
Permission or license
DateTime (encoding = w3cdtf); (qualifier = exact); (point = start)
2020-09-22 10:45:40
AssociatedEntity
Name
Clara Hartmanshenn
Role
Copyright holder
Affiliation
Rutgers University. School of Graduate Studies
AssociatedObject
Type
License
Name
Author Agreement License
Detail
I hereby grant to the Rutgers University Libraries and to my school the non-exclusive right to archive, reproduce and distribute my thesis or dissertation, in whole or in part, and/or my abstract, in whole or in part, in and from an electronic format, subject to the release date subsequently stipulated in this submittal form and approved by my school. I represent and stipulate that the thesis or dissertation and its abstract are my original work, that they do not infringe or violate any rights of others, and that I make these grants as the sole owner of the rights to my thesis or dissertation and its abstract. I represent that I have obtained written permissions, when necessary, from the owner(s) of each third party copyrighted matter to be included in my thesis or dissertation and will supply copies of such upon request by my school. I acknowledge that RU ETD and my school will not distribute my thesis or dissertation or its abstract if, in their reasonable judgment, they believe all such rights have not been secured. I acknowledge that I retain ownership rights to the copyright of my work. I also retain the right to use all or part of this thesis or dissertation in future works, such as articles or books.
Copyright
Status
Copyright protected
Availability
Status
Open
Reason
Permission or license
Back to the top

Technical

RULTechMD (ID = TECHNICAL1)
ContentModel
ETD
OperatingSystem (VERSION = 5.1)
windows xp
CreatingApplication
Version
1.7
ApplicationName
Microsoft® Word for Microsoft 365
DateCreated (point = end); (encoding = w3cdtf); (qualifier = exact)
2020-09-22T10:44:00
DateCreated (point = end); (encoding = w3cdtf); (qualifier = exact)
2020-09-22T10:44:00
Back to the top
Version 8.5.5
Rutgers University Libraries - Copyright ©2024