Staff View
Design, construction, and engineering of biosensor-assisted microbial co-cultures for the biosynthesis of valuable aromatic compounds

Descriptive

TitleInfo
Title
Design, construction, and engineering of biosensor-assisted microbial co-cultures for the biosynthesis of valuable aromatic compounds
Name (type = personal)
NamePart (type = family)
Wang
NamePart (type = given)
Xiaonan
DisplayForm
Xiaonan Wang
Role
RoleTerm (authority = RULIB)
author
Name (type = personal)
NamePart (type = family)
Zhang
NamePart (type = given)
Haoran
DisplayForm
Haoran Zhang
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
chair
Name (type = personal)
NamePart (type = family)
Pedersen
NamePart (type = given)
Henrik
DisplayForm
Henrik Pedersen
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
internal member
Name (type = personal)
NamePart (type = family)
Schuster
NamePart (type = given)
Benjamin
DisplayForm
Benjamin Schuster
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
internal member
Name (type = personal)
NamePart (type = family)
Su
NamePart (type = given)
Xiaoyang
DisplayForm
Xiaoyang Su
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
outside member
Name (type = corporate)
NamePart
Rutgers University
Role
RoleTerm (authority = RULIB)
degree grantor
Name (type = corporate)
NamePart
School of Graduate Studies
Role
RoleTerm (authority = RULIB)
school
TypeOfResource
Text
Genre (authority = marcgt)
theses
Genre (authority = ExL-Esploro)
ETD doctoral
OriginInfo
DateCreated (qualifier = exact); (encoding = w3cdtf); (keyDate = yes)
2021
DateOther (type = degree); (qualifier = exact); (encoding = w3cdtf)
2021-01
CopyrightDate (encoding = w3cdtf); (qualifier = exact)
2021
Language
LanguageTerm (authority = ISO 639-3:2007); (type = text)
English
Abstract (type = abstract)
The synthesis of aromatic compounds has received increasing interest in recent years due to its value for a wide range of industries. Over the last few decades, the rapid development of metabolic engineering and synthetic biology tools has enabled high-efficiency and low waste-emission microbial biosynthesis of value-added products from renewable carbon substrates. In microbes, aromatic compounds can be biosynthesized via the shikimate pathway, a ubiquitous pathway for making aromatic amino acids and associated aromatics. This dissertation focuses on the biosynthesis of industrially important aromatic compounds by engineering the shikimate pathway in Escherichia coli.

First, L-tryptophan and L-phenylalanine overproducing E. coli strains were developed by a variety of engineering methodologies, such as over-expression of desired pathway enzymes, deletion of competing pathway genes, and optimization of cultivation conditions. In addition, to address the metabolic heterogeneity caused by non-genetic variation, toxin/antitoxin-based cell selection systems were constructed to select for high-producing cells to improve biosynthetic performance. Specifically, a biosensor-based mechanism was utilized to monitor the intracellular concentrations of L-tryptophan/L-phenylalanine and accordingly control the growth of individual cells by regulating the expression level of toxin/antitoxin genes. This strategy was demonstrated to enhance the L-tryptophan and L-phenylalanine bioproduction significantly.

On the other hand, engineered E. coli strains were constructed for the biosynthesis of several other aromatic compounds, including tryptamine, flavonoids (naringenin, pinocembrin, sakuranetin, and acacetin), and salicylic acid. To this end, selected heterologous enzymes were functionally expressed in E. coli to establish the desired biosynthesis pathways using simple carbon substrates as starting materials. Since biosynthesis of these representative natural products involves characteristically long and complicated pathways, a novel modular co-culture engineering approach was adapted. Specifically, each pathway was divided into serial modules, each of which was accommodated in an independent E. coli strain, to address the challenge of metabolic stress reduction and biosynthetic pathway balancing. The co-cultivation of the resulting strains in one culture was utilized for the biosynthesis of the target products. By utilizing the modular co-culture approach, the heterologous biosynthesis performance was improved remarkably compared to the conventional mono-culture approaches. Moreover, rationally designed biosensor-assisted growth regulation systems were integrated into the co-cultures to sense different types of pathway metabolites (substrate, intermediate, and end product, respectively) and accordingly regulate the growth and biosynthetic behaviors during the cultivation process. In all tested cases, the production of the desired compound was significantly improved.

This thesis explores the utilization of advanced metabolic engineering approaches, including co-culture engineering, biosensing, and their combination, for microbial biosynthesis. The findings not only establish robust E. coli platforms for the production of value-added aromatic compounds but also expand the scope of metabolic engineering for cutting-edge research in the future.
Subject (authority = local)
Topic
Metabolic engineering
Subject (authority = LCSH)
Topic
Aromatic compounds -- Synthesis
Subject (authority = RUETD)
Topic
Chemical and Biochemical Engineering
RelatedItem (type = host)
TitleInfo
Title
Rutgers University Electronic Theses and Dissertations
Identifier (type = RULIB)
ETD
Identifier
ETD_11364
PhysicalDescription
Form (authority = gmd)
InternetMediaType
application/pdf
InternetMediaType
text/xml
Extent
1 online resource (xvii, 224 pages) : illustrations
Note (type = degree)
Ph.D.
Note (type = bibliography)
Includes bibliographical references
RelatedItem (type = host)
TitleInfo
Title
School of Graduate Studies Electronic Theses and Dissertations
Identifier (type = local)
rucore10001600001
Location
PhysicalLocation (authority = marcorg); (displayLabel = Rutgers, The State University of New Jersey)
NjNbRU
Identifier (type = doi)
doi:10.7282/t3-0q64-w552
Back to the top

Rights

RightsDeclaration (ID = rulibRdec0006)
The author owns the copyright to this work.
RightsHolder (type = personal)
Name
FamilyName
Wang
GivenName
Xiaonan
Role
Copyright Holder
RightsEvent
Type
Permission or license
DateTime (encoding = w3cdtf); (qualifier = exact); (point = start)
2020-12-19 18:59:03
AssociatedEntity
Name
Xiaonan Wang
Role
Copyright holder
Affiliation
Rutgers University. School of Graduate Studies
AssociatedObject
Type
License
Name
Author Agreement License
Detail
I hereby grant to the Rutgers University Libraries and to my school the non-exclusive right to archive, reproduce and distribute my thesis or dissertation, in whole or in part, and/or my abstract, in whole or in part, in and from an electronic format, subject to the release date subsequently stipulated in this submittal form and approved by my school. I represent and stipulate that the thesis or dissertation and its abstract are my original work, that they do not infringe or violate any rights of others, and that I make these grants as the sole owner of the rights to my thesis or dissertation and its abstract. I represent that I have obtained written permissions, when necessary, from the owner(s) of each third party copyrighted matter to be included in my thesis or dissertation and will supply copies of such upon request by my school. I acknowledge that RU ETD and my school will not distribute my thesis or dissertation or its abstract if, in their reasonable judgment, they believe all such rights have not been secured. I acknowledge that I retain ownership rights to the copyright of my work. I also retain the right to use all or part of this thesis or dissertation in future works, such as articles or books.
RightsEvent
Type
Embargo
DateTime (encoding = w3cdtf); (qualifier = exact); (point = start)
2021-01-31
DateTime (encoding = w3cdtf); (qualifier = exact); (point = end)
2023-01-31
Detail
Access to this PDF has been restricted at the author's request. It will be publicly available after January 31st, 2023.
Copyright
Status
Copyright protected
Availability
Status
Open
Reason
Permission or license
Back to the top

Technical

RULTechMD (ID = TECHNICAL1)
ContentModel
ETD
OperatingSystem (VERSION = 5.1)
windows xp
CreatingApplication
Version
1.7
ApplicationName
Microsoft® Word 2016
DateCreated (point = end); (encoding = w3cdtf); (qualifier = exact)
2020-12-24T15:49:15
DateCreated (point = end); (encoding = w3cdtf); (qualifier = exact)
2020-12-24T15:49:15
Back to the top
Version 8.5.5
Rutgers University Libraries - Copyright ©2024