Staff View
Maintenance modeling for degrading systems with individually repairable components using optimization and reinforcement learning

Descriptive

TitleInfo
Title
Maintenance modeling for degrading systems with individually repairable components using optimization and reinforcement learning
Name (type = personal)
NamePart (type = family)
Yousefi
NamePart (type = given)
Nooshin
DisplayForm
Nooshin Yousefi
Role
RoleTerm (authority = RULIB)
author
Name (type = personal)
NamePart (type = family)
Coit
NamePart (type = given)
David W.
DisplayForm
David W. Coit
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
chair
Name (type = personal)
NamePart (type = family)
Albin
NamePart (type = given)
Susan
DisplayForm
Susan Albin
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
internal member
Name (type = personal)
NamePart (type = family)
Xi
NamePart (type = given)
Zhimin
DisplayForm
Zhimin Xi
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
internal member
Name (type = personal)
NamePart (type = family)
Rodgers
NamePart (type = given)
Mark
DisplayForm
Mark Rodgers
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
outside member
Name (type = personal)
NamePart (type = family)
Nassif
NamePart (type = given)
Hani
DisplayForm
Hani Nassif
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
outside member
Name (type = corporate)
NamePart
Rutgers University
Role
RoleTerm (authority = RULIB)
degree grantor
Name (type = corporate)
NamePart
School of Graduate Studies
Role
RoleTerm (authority = RULIB)
school
TypeOfResource
Text
Genre (authority = marcgt)
theses
Genre (authority = ExL-Esploro)
ETD doctoral
OriginInfo
DateCreated (qualifier = exact); (encoding = w3cdtf); (keyDate = yes)
2021
DateOther (type = degree); (qualifier = exact); (encoding = w3cdtf)
2021-01
Language
LanguageTerm (authority = ISO 639-3:2007); (type = text)
English
Abstract (type = abstract)
There are many different industrial and manufacturing multi-components systems, where each component experiences multiple competing failure processes, such as degradation and environmental shock. In this research there are two competing failure processes for each component, namely soft failure due to the degradation and hard failure due to the random shocks coming to the system. Moreover, each incoming shock results in damage on all the degradation paths of all the components. For some multi-component systems, components can be repaired/replaced individually within the system. For such multi-component systems with individually repairable components and dependent failure processes, it is not economical to replace the whole system if it fails, while in most of the previous studies, the systems are either considered to have independent failure processes or packaged and sealed together, and the whole system was replaced with a new one when any component fails. For systems functioning for a very long time, and each component is repairable within the system, individual components have been replaced several times. Therefore, the starting time or age of all the components within the system are not the same. In this research work, the conditional reliability analysis of such systems is studied considering the initial age of each component, at the beginning of the inspection intervals, as a random variable. For systems, whose costs due to failure are high, it is prudent to avoid the event of failure, i.e., the components should be repaired or replaced before the failure happens. Condition-based maintenance models recommend a policy to initiate repair or replacement before the failure occurs by detecting the system degradation status at each inspection time interval. Different types of condition-based maintenance models, including both static and dynamic models, are formulated and optimized to find the best maintenance policy. In some of the proposed models, determination of the optimal maintenance thresholds, such as on-condition and opportunistic thresholds for each component, along with optimal inspection time for the whole system, work to prevent failures and minimize cost. For multi-component systems with repairable components, it is also beneficial to have a dynamic maintenance plan based on the current degradation level of all the components in the system. In this study, different dynamic condition-based maintenance models are proposed using optimization and reinforcement learning methods. Moreover, different types of maintenance actions and the uncertainty of the maintenance implementation are also considered in the formulation of the maintenance models. Using a reinforcement learning approach provides a more time-efficient and cost-effective method compared to the traditional maintenance optimization solutions, and it can also provide a dynamic maintenance policy for each specific degradation state of the system. This can be more useful and beneficial compared to the fixed or stationary maintenance plans. The maintenance problems are formulated as a Markov decision process and are solved by using a Q-learning algorithm and deep Q-learning. Overall, the goal of the proposed research is to provide practical and effective maintenance models for a multi-component system with individually repairable components to avoid the failure and high downtime cost, and to minimize the cost
Subject (authority = LCSH)
Topic
Materials -- Fatigue
Subject (authority = RUETD)
Topic
Industrial and Systems Engineering
RelatedItem (type = host)
TitleInfo
Title
Rutgers University Electronic Theses and Dissertations
Identifier (type = RULIB)
ETD
Identifier
ETD_11412
PhysicalDescription
Form (authority = gmd)
InternetMediaType
application/pdf
InternetMediaType
text/xml
Extent
1 online resource (xix, 253 pages) : illustrations
Note (type = degree)
Ph.D.
Note (type = bibliography)
Includes bibliographical references
RelatedItem (type = host)
TitleInfo
Title
School of Graduate Studies Electronic Theses and Dissertations
Identifier (type = local)
rucore10001600001
Location
PhysicalLocation (authority = marcorg); (displayLabel = Rutgers, The State University of New Jersey)
NjNbRU
Identifier (type = doi)
doi:10.7282/t3-kzkc-3194
Back to the top

Rights

RightsDeclaration (ID = rulibRdec0006)
The author owns the copyright to this work.
RightsHolder (type = personal)
Name
FamilyName
Yousefi
GivenName
Nooshin
Role
Copyright Holder
RightsEvent
Type
Permission or license
DateTime (encoding = w3cdtf); (qualifier = exact); (point = start)
2021-01-03 17:08:09
AssociatedEntity
Name
Nooshin Yousefi
Role
Copyright holder
Affiliation
Rutgers University. School of Graduate Studies
AssociatedObject
Type
License
Name
Author Agreement License
Detail
I hereby grant to the Rutgers University Libraries and to my school the non-exclusive right to archive, reproduce and distribute my thesis or dissertation, in whole or in part, and/or my abstract, in whole or in part, in and from an electronic format, subject to the release date subsequently stipulated in this submittal form and approved by my school. I represent and stipulate that the thesis or dissertation and its abstract are my original work, that they do not infringe or violate any rights of others, and that I make these grants as the sole owner of the rights to my thesis or dissertation and its abstract. I represent that I have obtained written permissions, when necessary, from the owner(s) of each third party copyrighted matter to be included in my thesis or dissertation and will supply copies of such upon request by my school. I acknowledge that RU ETD and my school will not distribute my thesis or dissertation or its abstract if, in their reasonable judgment, they believe all such rights have not been secured. I acknowledge that I retain ownership rights to the copyright of my work. I also retain the right to use all or part of this thesis or dissertation in future works, such as articles or books.
Copyright
Status
Copyright protected
Availability
Status
Open
Reason
Permission or license
Back to the top

Technical

RULTechMD (ID = TECHNICAL1)
ContentModel
ETD
OperatingSystem (VERSION = 5.1)
windows xp
CreatingApplication
Version
1.5
ApplicationName
Neevia Document Converter Pro v7.1.0.116 (http://neevia.com)
DateCreated (point = start); (encoding = w3cdtf); (qualifier = exact)
2021-01-06T23:13:54
DateCreated (point = start); (encoding = w3cdtf); (qualifier = exact)
2021-01-06T23:13:53
Back to the top
Version 8.5.5
Rutgers University Libraries - Copyright ©2024