Staff View
Theory and analysis of the luminance of top-emitting and bottom-emitting OLEDs

Descriptive

TitleInfo
Title
Theory and analysis of the luminance of top-emitting and bottom-emitting OLEDs
Name (type = personal)
NamePart (type = family)
Wasule
NamePart (type = given)
Sumant Rajendra
DisplayForm
Sumant Rajendra Wasule
Role
RoleTerm (authority = RULIB); (type = text)
author
Name (type = personal)
NamePart (type = family)
O'Carroll
NamePart (type = given)
Deirdre
DisplayForm
Deirdre O'Carroll
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
chair
Name (type = personal)
NamePart (type = family)
Akdogan
NamePart (type = given)
E. Koray
DisplayForm
E. Koray Akdogan
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
internal member
Name (type = personal)
NamePart (type = family)
Birnie, III
NamePart (type = given)
Dunbar P.
DisplayForm
Dunbar P. Birnie, III
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
internal member
Name (type = corporate)
NamePart
Rutgers University
Role
RoleTerm (authority = RULIB)
degree grantor
Name (type = corporate)
NamePart
School of Graduate Studies
Role
RoleTerm (authority = RULIB)
school
TypeOfResource
Text
Genre (authority = marcgt)
theses
OriginInfo
DateCreated (qualifier = exact); (encoding = w3cdtf); (keyDate = yes)
2021
DateOther (type = degree); (qualifier = exact); (encoding = w3cdtf)
2021-05
Language
LanguageTerm (authority = ISO 639-3:2007); (type = text)
English
Abstract (type = abstract)
The pioneering work by Tang and Van Slyke in 1987 that invented organic light emitting diodes (OLEDs) resulted in considerable attention to these devices in both academic and industrial circles. OLEDs have very unique properties compared to traditional light-emitting devices such as synthetically tunable emission colors and color temperatures. There are two general types of OLED device structures: bottom-emitting OLEDs and top-emitting OLEDs. Electrons and holes are injected into the organic semiconducting emissive layer via electrical contacts (one metallic and one transparent, e.g. indium-tin oxide (ITO)) in combination with an electron injection layer and a hole injection layer, respectively. In the organic semiconducting emissive layer, holes and electrons combine to emit light (photons). However, because of the high refractive indices of ITO and glass used on the transparent side of most bottom-emitting OLED devices, the emitted light tends to get trapped in the ITO or glass substrate due to total internal reflection at the interfaces thus reducing the light extraction efficiency. In contrast, top-emitting OLEDs can have reduced waveguiding losses due to thinner or lower refractive index transparent layers. The hypothesis of this thesis is that the efficiency of organic conjugated polymer–based top-emitting OLEDs is greater than that of bottom-emitting OLEDs because of reduced total internal reflection and waveguiding losses. Organic conjugated polymer semiconductors are of interest in this work as the emissive layer instead of more-common small-molecule organic semiconductors because they offer solution process-ability which can lower the overall cost of the OLEDs. The objectives of this project are: to compare the performance of polymer-based bottom-emitting and top-emitting OLEDs using optoelectronic simulation software, to compare current - voltage, light flux - voltage, light flux - current density, light flux - input power relationships; and to determine the OLED external quantum efficiency. Additionally, fabrication methods for both device types are developed and the optical and electrical properties of both the devices are compared.
Subject (authority = local)
Topic
F8BT
Subject (authority = RUETD)
Topic
Materials Science and Engineering
RelatedItem (type = host)
TitleInfo
Title
Rutgers University Electronic Theses and Dissertations
Identifier (type = RULIB)
ETD
Identifier
ETD_11605
PhysicalDescription
Form (authority = gmd)
InternetMediaType
application/pdf
InternetMediaType
text/xml
Extent
1 online resource (v, 30 pages)
Note (type = degree)
M.S.
Note (type = bibliography)
Includes bibliographical references
Genre (authority = ExL-Esploro)
ETD graduate
RelatedItem (type = host)
TitleInfo
Title
School of Graduate Studies Electronic Theses and Dissertations
Identifier (type = local)
rucore10001600001
Location
PhysicalLocation (authority = marcorg); (displayLabel = Rutgers, The State University of New Jersey)
NjNbRU
Identifier (type = doi)
doi:10.7282/t3-bdp6-bh09
Back to the top

Rights

An error occurred while attempting to load this metadata section
Back to the top

Technical

RULTechMD (ID = TECHNICAL1)
ContentModel
ETD
OperatingSystem (VERSION = 5.1)
windows xp
CreatingApplication
Version
1.5
DateCreated (point = end); (encoding = w3cdtf); (qualifier = exact)
2021-03-05T15:58:05
DateCreated (point = end); (encoding = w3cdtf); (qualifier = exact)
2021-03-05T15:58:05
ApplicationName
Microsoft® Word 2010
Back to the top
Version 8.5.5
Rutgers University Libraries - Copyright ©2024