Staff View
Role of TOP2B in photoreceptor gene regulatory network by single-cell transcriptome analysis

Descriptive

TitleInfo
Title
Role of TOP2B in photoreceptor gene regulatory network by single-cell transcriptome analysis
Name (type = personal)
NamePart (type = family)
Pinto
NamePart (type = given)
Alexandria
DisplayForm
Alexandria Pinto
Role
RoleTerm (authority = RULIB)
author
Name (type = personal)
NamePart (type = family)
Cai
NamePart (type = given)
Li
DisplayForm
Li Cai
Affiliation
Advisory Committee
Role
RoleTerm (authority = RULIB)
chair
Name (type = corporate)
NamePart
Rutgers University
Role
RoleTerm (authority = RULIB)
degree grantor
Name (type = corporate)
NamePart
School of Graduate Studies
Role
RoleTerm (authority = RULIB)
school
TypeOfResource
Text
Genre (authority = marcgt)
theses
OriginInfo
DateCreated (qualifier = exact)
2018
DateOther (type = degree); (qualifier = exact)
2018-05
CopyrightDate (encoding = w3cdtf); (qualifier = exact)
2018
Place
PlaceTerm (type = code)
xx
Language
LanguageTerm (authority = ISO639-2b); (type = code)
eng
Abstract (type = abstract)
TOP2B is an enzyme that allows for access to the DNA strand for gene transcription. During development, TOP2B is found in cells which have finished mitosis and proliferation, suggesting its function in cell differentiation. Previously, bulk RNA-seq analysis of the retina revealed TOP2B controls expression of genes in the photoreceptor gene-regulatory network. However, bulk RNA-seq does not allow for direct analysis of individual cells to identify the role of TOP2B in photoreceptor cell differentiation. The central hypothesis is that grouping cells based on the photoreceptor gene regulatory network and applying bioinformatics analysis to the data can show that TOP2B plays an essential role in proper photoreceptor differentiation. In this study, we preform bioinformatics analysis on publically available single-cell RNA-seq (scRNA-seq) dataset of postnatal day 14 mouse retina (GSE63473) to determine to role of TOP2B in the photoreceptor gene regulatory network and identify novel genes which contribute to this pathway. Analysis of photoreceptor scRNA-seq data reveals that TOP2B expression is correlated with the expression of photoreceptor marker genes, confirming its role in photoreceptor differentiation. In addition, gene Fam19a3 was identified for its novel role contributing to the Top2b-controlled photoreceptor gene regulatory network. Thus, this study provides further insight into the photoreceptor differentiation processes that could be affected by the gene regulatory pathway.
Subject (authority = RUETD)
Topic
Biomedical Engineering
RelatedItem (type = host)
TitleInfo
Title
Rutgers University Electronic Theses and Dissertations
Identifier (type = RULIB)
ETD
Identifier
ETD_8770
PhysicalDescription
Form (authority = gmd)
electronic resource
InternetMediaType
application/pdf
InternetMediaType
text/xml
Extent
1 online resource (ix, 58 p. : ill.)
Note (type = degree)
M.S.
Note (type = bibliography)
Includes bibliographical references
Subject (authority = ETD-LCSH)
Topic
DNA topoisomerase II
Note (type = statement of responsibility)
by Alexandria Pinto
RelatedItem (type = host)
TitleInfo
Title
School of Graduate Studies Electronic Theses and Dissertations
Identifier (type = local)
rucore10001600001
Location
PhysicalLocation (authority = marcorg); (displayLabel = Rutgers, The State University of New Jersey)
NjNbRU
Identifier (type = doi)
doi:10.7282/T33R0X9T
Back to the top

Rights

RightsDeclaration (ID = rulibRdec0006)
The author owns the copyright to this work.
RightsHolder (type = personal)
Name
FamilyName
Pinto
GivenName
Alexandria
Role
Copyright Holder
RightsEvent
Type
Permission or license
DateTime (encoding = w3cdtf); (qualifier = exact); (point = start)
2018-04-06 20:18:28
AssociatedEntity
Name
Alexandria Pinto
Role
Copyright holder
Affiliation
Rutgers University. School of Graduate Studies
AssociatedObject
Type
License
Name
Author Agreement License
Detail
I hereby grant to the Rutgers University Libraries and to my school the non-exclusive right to archive, reproduce and distribute my thesis or dissertation, in whole or in part, and/or my abstract, in whole or in part, in and from an electronic format, subject to the release date subsequently stipulated in this submittal form and approved by my school. I represent and stipulate that the thesis or dissertation and its abstract are my original work, that they do not infringe or violate any rights of others, and that I make these grants as the sole owner of the rights to my thesis or dissertation and its abstract. I represent that I have obtained written permissions, when necessary, from the owner(s) of each third party copyrighted matter to be included in my thesis or dissertation and will supply copies of such upon request by my school. I acknowledge that RU ETD and my school will not distribute my thesis or dissertation or its abstract if, in their reasonable judgment, they believe all such rights have not been secured. I acknowledge that I retain ownership rights to the copyright of my work. I also retain the right to use all or part of this thesis or dissertation in future works, such as articles or books.
Copyright
Status
Copyright protected
Availability
Status
Open
Reason
Permission or license
Back to the top

Technical

RULTechMD (ID = TECHNICAL1)
ContentModel
ETD
OperatingSystem (VERSION = 5.1)
windows xp
CreatingApplication
Version
1.4
ApplicationName
Mac OS X 10.12.6 Quartz PDFContext
DateCreated (point = end); (encoding = w3cdtf); (qualifier = exact)
2018-04-18T19:06:02
DateCreated (point = end); (encoding = w3cdtf); (qualifier = exact)
2018-04-18T19:06:02
Back to the top
Version 8.3.10
Rutgers University Libraries - Copyright ©2019